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ABSTRACT

Traditional unreliable failure detectors are per process oracles that provide a list of

processes suspected of having failed. This work proposes a new and flexible unreliable

failure detector (FD), denoted the Impact FD, that outputs a trust level value which is

the degree of confidence in the system. By expressing the relevance of each process

by an impact factor value as well as a margin of acceptable failures of the system, the

Impact FD enables the user to tune the failure detection configuration in accordance

with the requirements of the application: in some scenarios, the failure of low impact

or redundant processes does not jeopardize the confidence in the system, while the

crash of a high impact process may seriously affect it. Either a softer or stricter moni-

toring strategy can be adopted. In particular, we define some flexibility properties that

characterize the capacity of the Impact FD to tolerate a certain margin of failures or

false suspicions, i.e., its capacity of providing different sets of responses that lead the

system to trusted states. The Impact FD is suitable for systems that present node re-

dundancy, heterogeneity of nodes, clustering feature, and allow a margin of failures

which does not degrade the confidence in the system. We also show that some classes

of the Impact FD are equivalent to Ω and Σ which are fundamental FDs to circumvent

the impossibility of solving the consensus problem in asynchronous message-passing

systems in presence of failures. Additionally, based on different synchrony assump-

tions and message-pattern or timer-based approaches, we present three algorithms

which implement the Impact FD. Performance evaluation results using real PlanetLab

traces confirm the degree of flexible applicability of our failure detector and, due to the

accepted margin of failures, that false responses or suspicions may be tolerated when

compared to traditional unreliable failure detectors.

Keywords: Fault tolerance, unreliable failure detector, impact factor, trust level of the



system, process relevance, margin of failures, flexibility property.



RESUMO

Impact FD: Um Detector de Falhas Baseado na Relevância dos Processos e

Confiança no Sistema

Detectores de falhas não confiáveis tradicionais são oráculos disponíveis localmente

para processos de um sistema distribuído que fornecem uma lista de processos suspei-

tos de terem falhado. Este trabalho propõe um novo e flexível detector de falhas não

confiável, chamado Impact FD, que fornece como saída um valor trust level que é o

grau de confiança no sistema. Ao expressar a relevância de cada processo por um va-

lor de fator de impacto, bem como por uma margem de falhas aceitáveis do sistema, o

Impact FD permite ao usuário ajustar a configuração do detector de falhas de acordo

com os requisitos da aplicação: em certos cenários, o defeito de um processo de baixo

impacto ou redundante não compromete a confiança no sistema, enquanto o defeito

de um processo de alto fator de impacto pode afetá-la seriamente. Assim, pode ser

adotada uma estragégia de monitoramento com maior ou menor rigor. Em particu-

lar, definimos algumas propriedades de flexibilidade que caracterizam a capacidade

do Impact FD para tolerar uma certa margem de falhas ou falsas suspeitas, ou seja,

a sua capacidade de fornecer diferentes conjuntos de respostas que levam o sistema

a estados confiáveis. O Impact FD é adequado para sistemas que apresentam redun-

dância de nodos, heterogeneidade de nodos, recurso de agrupamento e permite uma

margem de falhas que não degrada a confiança no sistema. Nós também mostramos

que algumas classes do Impact FD são equivalentes a Σ e Ω, que são detectores de

falhas fundamentais para contornar a impossibilidade de resolver o problema do con-

senso em sistemas de transmissão de mensagens assíncronas na presença de falhas.

Adicionalmente, com base em pressupostos de sincronia e nas abordagens baseada

em tempo e padrão de mensagem, apresentamos três algoritmos que implementam o

Impact FD. Os resultados da avaliação de desempenho usando traces reais do Plane-

tLab confirmam o grau de aplicabilidade flexível do nosso detector de falhas e, devido



à margem aceitável de falhas, o número de falsas respostas ou suspeitas pode ser tole-

rado quando comparado a tradicionais detectores de falhas não confiáveis.

Palavras-chave: tolerância a falhas, detectores de falhas não-confiáveis, fator de im-

pacto, nível de confiança do sistema, relevância dos processos, margem de falhas, pro-

priedade de flexibilidade.
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1 INTRODUCTION

Unreliable failure detectors have been an important topic of research for the last

two decades. Proposed by Chandra and Toueg (CHANDRA; TOUEG, 1996) in order

to circumvent the impossibility of deterministically solving the consensus problem

in distributed asynchronous systems subject to failures, an unreliable failure detec-

tor (FD) can be seen as an oracle that gives information, not always correct, about

process failures. Since in asynchronous systems, a process or the network can be arbi-

trarily slow, the consensus impossibility comes from the fact that it is not possible to

determine whether a process has really failed or if it is just slow (FISCHER; LYNCH; PA-

TERSON, 1985). Thus, in (CHANDRA; TOUEG, 1996), Chandra and Toueg introduced

the abstraction of unreliable failure detectors and proved that consensus can be solved

deterministically in asynchronous systems in presence of failures, if they are enriched

with an unreliable failure detector that present certain properties. The latter is unre-

liable because it can make mistakes by erroneously suspecting a correct process or by

not suspecting a faulty process.

From Chandra and Toueg’s work, numerous other failure detector implementa-

tions and classes have been proposed in the literature. They usually differ in the system

assumptions such as synchronous model, type of node: identifiable, anonymous (BON-

NET; RAYNAL, 2013a), homonymous (ARÉVALO et al., 2012); type of link (AGUILERA

et al., 2004) (LARREA; ANTA; ARÉVALO, 2013), (AGUILERA et al., 2003): lossy asyn-

chronous, reliable, timely, eventually timely, etc.; behavior properties (MOSTÉFAOUI;

MOURGAYA; RAYNAL, 2003), (AGUILERA et al., 2004), (MALKHI; OPREA; ZHOU, 2005);

type of network: static (BERTIER et al., 2003) (LARREA; ANTA; ARÉVALO, 2013) or dy-

namic (ARANTES et al., 2013) (GÓMEZ-CALZADO et al., 2013); type of failure: crash,

omission (FERNÁNDEZ-CAMPUSANO et al., 2016) (DELPORTE-GALLET; FAUCON-
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NIER; FREILING, 2005), Byzantine (GREVE et al., 2012), etc. They can also have dif-

ferent implementation choices: timer-based (CHEN; TOUEG; AGUILERA, 2002) (LAR-

REA; FERNÁNDEZ; ARÉVALO, 2004), message pattern (MOSTÉFAOUI; MOURGAYA;

RAYNAL, 2003); and performance or quality of service (QoS) requirements (CHEN;

TOUEG; AGUILERA, 2002). The type of problem can also define the properties of the

FD: mutual exclusion (DELPORTE-GALLET et al., 2005), k-set agreement (BONNET;

RAYNAL, 2011), register implementation (DELPORTE-GALLET et al., 2004), etc.

The majority of these FDs are based on a binary model, in which monitored pro-

cesses are either “trusted” or “suspected”. Consequently, most of them output the set

of processes that are currently suspected to have crashed.

However, current distributed environments are usually large scale and/or hetero-

geneous infrastructures composed from super computers and large data centers to

thousands of small portable computers or embedded devices. Nodes have, therefore,

different relevance and/or power capacities. On the one hand, these systems are of-

ten affected by unpredictable behavior which can lead to failures. On the other hand,

the service rendered by them should not be interrupted even in the presence of fail-

ures, i.e., the system reliability is not a binary property and tolerates a certain margin

of failures which depends on the relevance and number of the components of the sys-

tems. Hence, a failure detector that considers these features and can be configured in

accordance with the needs of the environment is fundamental.

In view of such requirements, this thesis presents a new unreliable failure detector,

denoted the Impact Failure Detector. Contrarily to the majority of existing unreliable

failure detectors, the Impact FD provides an output that expresses the trust of the FD

with regard to the system (or set of processes) as a whole and not to each process indi-

vidually. A system is considered "trusted" if it behaves correctly for a specific purpose

even in the face of failures, i.e., the system is able to maintain the normal functionality.

The conception of the Impact FD was inspired on systems that have the following

features: (1) applications that execute on them are interested on information about the

reliability of the system as a whole and can tolerate a certain margin of failures. The lat-

ter may vary depending on the environment, situation, or context, such as the systems

that provide redundancy of software/hardware; (2) systems that organize nodes with

some common characteristic in groups; (3) systems where the nodes can have differ-
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ent importance (relevance), power, or roles and, thus, their failures may have distinct

impact on the system. Systems that present node redundancy, heterogeneity of nodes,

clustering, and allow a margin of failures which does not degrade the confidence in the

system can, therefore, benefit from the Impact FD and its configuration choices. They

have motivated our work. Section 1.1 describes some examples of such systems, how

the Impact FD can be applied and configured to them, and the advantages, in these

cases, of using the Impact FD instead of traditional FDs.

The Impact FD outputs a trust level related to a given set of processes S of the mon-

itored system. We, thus, denote FD (Ip
S) the Impact failure detector module of pro-

cess p that monitors the processes of S. When invoked in p, the Impact FD (Ip
S) re-

turns the tr ust_levelp
S value which expresses the confidence that p has in set S. To

this end, an impact value, defined by the user, is assigned to each process of S and

the tr ust_levelp
S is equal to the sum of the impact factors of the trusted nodes, i.e.,

those not suspected of failure by p. Furthermore, a threshold parameter defines a lower

bound for the trust level, over which the confidence degree on S is ensured. Hence, by

comparing the tr ust_levelp
S with the threshold, it is possible to determine whether S

is currently “trusted” or “untrusted” by p. The impact factor indicates the relative im-

portance of the process in the set S, while the thr eshol d offers a degree of flexibility

for failures and false suspicions, thus allowing a higher tolerance in case of instability

in the system. For instance, in an unstable network, although there might be many

false suspicions, depending on the value assigned to the threshold, the system might

remain trustworthy (AGUILERA et al., 2004). We should also point out that the Impact

FD configuration allows nodes of S to be grouped into subsets and threshold values

can be defined for each of these subsets. In addition, similarly to the traditional FD,

several classes of Impact FDs can be defined depending on their capability of suspect-

ing faulty processes (completeness property) and of not suspecting correct processes

(accuracy property).

Arguing that traditional approaches which assume a maximum number of failures

f may lead to suboptimal solutions, such as in replication protocols where the number

of replicas depend on f , JUNQUEIRA et al. (2010) propose the survivor set approach,

i.e., the unique collection of minimal sets of correct processes over all executions, each

set containing all correct processes of some execution. The principle of the Impact FD
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also follows the authors’ argument: the threshold expresses certain margin of failures

or false suspicions and the number of failures tolerated by the system is not necessarily

fixed but depends on sets of correct processes, their respective impact factors, and

threshold value. Therefore, the Impact FD presents, what we denoted, the flexibility

property.

The flexibility property expresses the capability of the Impact FD of considering dif-

ferent sets of responses that lead S to trusted states. In this context, we also define in

this work, two properties, PR(I T )S
p and PR(♦I T )S

p , which characterize the minimum

necessary stability condition of S that ensures confidence (or eventual confidence) in

it by the monitor process p. In other words, if PR(I T )S
p (resp., PR(♦I T )S

p ) holds, the

system S is always (resp., eventually always) trusted by the monitor process p. Note

that the Impact FD threshold/impact factor approach is strictly more powerful than the

maximum number of failures f approach since the latter can be expressed with the for-

mer but not the other way around. Furthermore, inspired in (MALKHI; OPREA; ZHOU,

2005), we also introduce the concept of PS−accessi bi l i t y and♦PS−accessi bi l i t y : a

correct process p is PS−accessi bl e (resp., ♦PS−accessi bl e) if every query broadcast

by p obtains from the beginning (resp., eventually) a set Q of responses that satisfy the

degree of confidence in S, i.e., the trust level of S is greater or equal than the thr eshol d

value. Interestingly that the set Q of processes is not fixed, i.e., it can change at each

query, which is in accordance with the flexibility property of the Impact FD.

Taking into account the problem of solving consensus in asynchronous message-

passing systems enriched with failure detectors, we show in this thesis that the Impact

FD of class Impact Omega IΩU (resp., Impact Sigma IΣU ) is equivalent to the OmegaΩ

(resp., SigmaΣ) FD. A failure detector is equivalent to another if there exist an algorithm

that transforms the first one into the second one (i.e., the second is reducible to the

first one) and an algorithm that transforms the latter into the former. Consequently, a

problem that can be solved with one of the FDs can also be solved by the other. It is

worth remembering thatΩ FD (CHANDRA; HADZILACOS; TOUEG, 1996) andΣ FD (or

Quorum FD) (DELPORTE-GALLET et al., 2004) are two fundamental classes of failure

detectors; the Ω FD is the weakest one to solve consensus, provided that a majority of

processes are correct, while the pair of FDs <Ω,Σ> is the weakest one to solve consensus

for any number of process failures. Furthermore, we also show that Σ is reducible to
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♦I PU and ♦IW U FD is equivalent to Omega FD (Ω) if some conditions on the number

of failures and/or membership hold.

We also present different algorithms for the Impact FD with their respective proofs

of correctness, showing, therefore, that the Impact FD can have distinct implemen-

tations. The latter depends on the characteristics of the system model and behav-

ior properties, exploiting either a timer-based or message-pattern approach. Then,

based on real trace files collected from nodes of PlanetLab (PLANETLAB, 2014), we

conducted extensive experiments in order to evaluate the Impact FD. These trace files

contained a large amount of data related to the sending and reception of heartbeat

messages, including unstable periods of links and message, characterizing, therefore,

distributed systems that use FDs based on heartbeats. Performance evaluation results

confirm the degree of flexible applicability of the Impact FD, that both failures and false

suspicions are more tolerated than in traditional FDs, and that the former presents bet-

ter Qos than the latter if the application is interested in the degree of confidence in the

system (trust level) as a whole.

1.1 Motivation

Our proposed approach can be applied to different distributed scenarios and is

flexible enough to meet different needs. It is quite suitable for environments where

there is node redundancy or nodes with different capabilities. We should point out that

both the impact factor and the thr eshol d render the estimation of the confidence of

S more flexible. Hence, there might be a situation where some processes in S are faulty

or suspected of being faulty but S is still considered to be trusted. Furthermore, the

Impact FD can easily be configured and adapted to the needs of the application or

system requirements. For instance, the application may require a stricter monitoring

of nodes during the night than during the day. For this kind of adaptation, it is only

necessary to adjust the threshold.

The following examples show some scenarios to which the Impact FD can be ap-

plied

Scenario 1: A system in the area of healthcare requires the use of several sensors

to measure different kinds of information about the health status of a person, such as,

vital signs, location, falls, gait patterns, and acceleration. From this perspective, this
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is a critical situation since any faults in the components can put a patient’s life at risk.

For instance, consider a scenario with four sensors: q1 - body temperature; q2 - pulse;

q3 - electrocardiogram (ECG); and q4 - galvanic skin as well as node p, responsible for

collecting information from these sensors and taking appropriate action based on the

output of the Impact FD. In this example, some sensors are not considered to be crit-

ical, such as the sensor q1 which measures the temperature. On the other hand, q3,

the ECG sensor, is crucial which means that the impact factor assigned to q3 should

be higher than that of q1. Furthermore, q3 collects data about both the heartbeats and

electrical activity of the heart while q2 is a type of sensor that also collects data about

heartbeats. Hence, there is redundancy of information, i.e., the failure of q2 sensor is

not critical enough to make the system vulnerable and endanger the life of the moni-

tored person. We could then define a threshold as being equal to the sum of the impact

factor of all the sensors minus the impact factor of the q2 since, the failure of q2 does

not jeopardize the trustworthiness of the system.

Scenario 2: Another important scenario that underlies our proposal is Ubiquitous

Wireless Sensor Networks (WSNs). These kinds of networks are deployed to monitor

physical conditions in various places such as geographical regions, agriculture lands,

battlefields, etc. In WSNs, there is a wide range of sensor nodes with different bat-

tery resources and communication or computation capabilities (ISHIBASHI; YANO,

2005). However, these sensors are prone to failures (e.g., battery failure, process fail-

ure, transceiver failure, etc.) (GEETA; NALINI; BIRADAR, 2013). Hence, it is necessary

to provide failure detection and adaptation strategies to ensure that the failure of sen-

sor nodes does not in any way affect the overall task of the network. The redundant use

of sensor nodes, reorganization of the sensor network and overlapping sensing regions

are some of the techniques used to increase the fault tolerance and reliability of the

network (ABBASI et al., 2014).

Let us take as example an ubiquitous WSN which is used to collect environmental

data from within a vineyard (Figure 1.1 (a)), and is divided into management zones in

accordance with different characteristics (e.g., soil properties). In the Figure 1.1 (a),

the area is divided into five zones (Z1, Z2, Z3, Z4, Z5). Each zone comprises sensors of

different types (e.g., humidity control, temperature control, etc.) and the density of the

sensors depends on the characteristics of each zone. That is, the number of sensors can
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be different for each type of sensor within a given zone. Furthermore, the redundancy

of the sensors ensures both area coverage and connectivity in case of failure. Each

management zone can thus be viewed as a single set which has sensors of the same

type grouped into subsets. This grouping approach allows a threshold to be defined as

being equal to the minimum number of sensors that each subset must have to keep the

connectivity and application functioning all the time. Furthermore, in some situations,

there might be a need to dynamically reconfigure the density of the zones, for instance,

when there is a stability of weather conditions. In this case, the management zones can

be jointed and the density of sensor decreased, as illustrated in Figure 1.1 (b), where

zones Z4 and Z5 were joined and some sensors disabled. Consequently, the threshold

value would change.

Figure 1.1: WSN in management zones

Scenario 3: In large-scale WSN environments, grouping sensor nodes into clus-

ters has been widely adopted aiming the overall system scalability and reduction of

resources consumption like battery power and bandwidth. Each clusteri has a node,

denoted cluster head (CH), which performs special tasks (for instance, routing, fusion,

aggregation of messages, etc.), and several other sensor nodes (SN). The latter peri-

odically transmit their data to the their corresponding CH node which aggregate and

transmit them to the base station (BS) either directly or through the intermediate com-
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munication with other CH nodes. In this scenario, the concept of Impact FD can be

applied considering each clusteri as a subset of the system S whose size is initially

ni . When defining the impact factor for the processes of clusteri , two issues should

be considered: 1) the failure of CH implies that the cluster is inaccessible, compro-

mising network connectivity, therefore, the failure of CH leads to untrusted state of S;

2) When the number of alive SNs drops below a threshold, additional resources must

be deployed to replenish the system to maintain its population density. Taking these

constraints into account, we could have: impact factor = 1 to SN, impact factor = ni to

the CH of clusteri , and threshold for this cluster equal to thr eshol di = ni + (ni − fi ),

where fi is the maximum number of SN’s failures of clusteri , Thus, when either the

CH fails or more than fi SNs fail, the trust level will be below the threshold and the BS

must be warned to take some decision.

Scenario 4: A fourth example is a system with a main server that offers a certain

quality of service X (bandwidth, response time, etc.). If it fails, N backup servers can

replace it, since each backup offers the same service but with a X /N quality of service.

In this scenario, both the impact factor of the main server and the threshold would

have the value of N ∗ I back where I back is the impact value of each backup server,

i.e., the system becomes unreliable whenever the primary server and one or more of

the N servers fail (or are suspected of being faulty).

The Impact FD can be applied to all the above scenarios which have the following

features: a) the grouping of nodes that have some common characteristics into sub-

groups (subsets); b) the possibility of having nodes with different levels of relevance

and c) the flexibility of some systems in being able to tolerate a margin of failure.

1.2 Main Objectives and Contributions of the Thesis

The main goal of this thesis is the conception of a new unreliable failure detec-

tor, denoted Impact Failure Detector, which exploits process relevance and the confi-

dence degree in the system. We then seek to the following specific objectives:

• Formally define the Impact failure detector, which is based on process relevance

and the confidence degree in the system;

• Define behavior properties that characterize the flexibility feature of the Impact
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FD;

• Propose different algorithms that implement the Impact FD and show their proofs

of correctness. Furthermore, if the above properties hold, the algorithms should

ensure that the failure detector will always consider the system to be trusted;

• Show the equivalence between classes of the Impact FD toΩ andΣ failure detec-

tors;

• Conduct experiments based on real traces for evaluating the effectiveness and

QoS of the Impact FD.

As contributions of this thesis, we highlight the definition of a new unreliable fail-

ure detector, the Impact FD, which is based on process relevance and the confidence

degree in the system. The proposed failure detector includes features which are not

considered by traditional unreliable failure detectors: it provides as output a trust level

of a set of processes (trust level); it allows processes to have different levels of impor-

tance (impact factor) and to be grouped in subsets; it tolerates a margin of failures

(threshold). These features make the Impact FD very flexible and robust, providing an

efficient solution for different applications with specific reliability requirements. The

thesis also introduces the properties PR(I T )S
p and PR(♦I T )S

p , which characterize nec-

essary conditions to ensure confidence (or eventual confidence) of the monitor pro-

cess p in system S as well as the concept PS−accessi bi l i t y and ♦PS−accessi bi l i t y .

The latter enable Impact FD implementations (see Section 5.3.2) that do not depend

on a maximum number of failures, which is a very useful feature in accordance with

(JUNQUEIRA et al., 2010), as previously discussed in this chapter. Additionally, since

the concept of Impact tolerates a margin of failures and false suspicions, it is expected

that the Impact FD presents better QoS when the application is interested in the degree

of confidence in the system (trust level) as a whole. Finally, we should point out that

some classes of Impact FD can be used (see Section 4.5) to enrich message-passing

asynchronous systems in order to circumvent the impossibility of the consensus prob-

lem.
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1.3 Structure of the Document

The document is structured as follows. In Chapter 2 we provide a background of

main concepts related to failures in distributed systems and unreliable failure detec-

tors. Chapter 3 discusses relevant related work. Chapter 4 presents the Impact failure

detector, its characteristics, some of its properties, and shows the equivalence of some

classes of Impact FD in regard with Σ and Ω classes. Chapter 5 presents three algo-

rithms (and their respective proofs of correctness) that implement the Impact FD, con-

sidering different synchrony assumptions, implementation choices (message-pattern

and timer-based), and behavior properties. Chapter 6 presents evaluation results of

experiments conducted with real traces on PlanetLab (PLANETLAB, 2014). Chapter 7

summarizes the conclusions of this thesis and highlights some future research direc-

tions.
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2 BACKGROUND

In this chapter, we present some of the main concepts related to failures in dis-

tributed systems. First, we set out fundamental notions of dependability. Next, we

discuss failures in distributed environments and provide an overview on some impor-

tant concepts. Finally, we outline basic concepts of unreliable failure detectors and

examine important features with regard to their implementation.

2.1 Dependability

Computing systems are subject to failures that may be from a variety of sources

such as hardware failures, software bugs, malicious attacks, operation/maintenance

human errors, and natural disasters. The capability of avoiding failures that can put

services at risk is a guideline that must be followed. Therefore, dependability is a key

issue in such systems. According to AVIZIENIS et al. (2004), dependability is the ability

to deliver service that can justifiably be trusted, in spite of continuous changes.

As stated in AVIZIENIS et al. (2004), the dependability concept can be further ex-

tended to encompass mechanisms required to increase and maintain the dependabil-

ity of a system. The authors add that the three main elements of dependability are

attributes, threats, and means. Attributes are the qualities of a system that can be mea-

sured in terms of qualitative and quantitative features such as availability, reliability,

safety, integrity, and maintainability. These attributes are differently emphasized, de-

pending on the considered application.

On the other hand, threats are characterized by faults, errors, and failures. A com-

puting system can be considered as a sum of components. The trustworthiness of

the interaction between the system components can be seen in Figure 2.1. Denoted a
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fault-error-failure chain by AVIZIENIS et al. (2001), the figure represents a component

which can eventually return a fault, i.e., the component is not delivering an expected

service. If this fault is activated, it can cause an error, which in turn (if propagated) can

cause a failure. This failure will be translated by the next component as a fault.

The purpose of dependability is to reduce the number of failures experienced by

the users of a system. To this well, the following well-known paradigms are applied:

prevention, removal, forecasting, and tolerance. The prevention approach seeks to

prevent faults from being incorporated into the systems; removal methods aim at re-

ducing the number and seriousness of faults; forecasting techniques are used to pre-

dict or circumvent faults; fault tolerance is a paradigm characterized by the fact that

it allows a system to continue delivering the required service in the presence of faults,

although that service may be degraded. Therefore, the building of dependable systems

is closely related to the control of failures.

Figure 2.1: Fault-Error-Failure chain (AVIZIENIS et al., 2001)

2.2 Failures in Distributed Environments

According to COULOURIS; DOLLIMORE; KINDBERG (2005), a distributed system

consists of a finite set of autonomous processes linked by a computer network which

communicate with one another by exchanging messages. To refer to these intercon-

nected elements the most common terms are node or process. We consider that there

is one process by node (site) or sensor. Therefore, the word process can mean a node,

sensor, or site.

Unfortunately, in distributed systems failures can occur. Several problems related

to distributed systems requires some coordination among the various processes which

communicate via communication channels/link. Both processes and communication

channels are subject to failures. If a process fails during execution, it is said faulty,
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otherwise the process is called correct. In this way, a key requirement for coordination

among the processes is that they know each others states, so that they can take ap-

propriate action in case of failure. In some types of distributed systems, this may be

a difficult or impossible task, for instance in the case of asynchronous systems. With

this in mind, in this section we take a closer look at some important concepts neces-

sary to understand failures in distributed systems and their detections: failure mod-

els, synchrony models, communication channels/links, and the consensus problem in

asynchronous message-passing systems in the presence of failures.

2.2.1 Fault Models

Faults are usually identified by the way they affect the behavior of the system com-

ponents. The different ways in which a generic system component can fail are called

failure models and were classified by Cristian (1991) apud (JALOTE, 1994) as:

• Crash: It occurs when the component stops working, ceasing to respond to any

service request. This is the most common kind of failure in the system models re-

lated to the design of distributed systems. For instance, in a sensor node, the fail-

ure can occur due to at least one of the following reasons: a) battery is completely

depleted, b) transceiver is faulty, or c) node is completely damaged. If nodes can

recover without losing internal state, this model is called crash-recovery;

• Omission: It occurs when a component does not respond to some entries or re-

quests, having an intermittent or transient behavior. For instance, in a send omis-

sion failure, a message which is sent by a process is never placed into the com-

munication channel while in a receive omission failure, a message which arrives

over the communication channel is never actually deliver to the destination pro-

cess. Another example is a sensor node that does not respond to the sink node

in time, fails to send a required message on time, or fails to relay the received

message to its neighbor;

• Timing/Performance: It occurs when the response of component is functionally

correct, but is provided outside the specified time interval. This kind of failure

may either occur as an early response or through a late response. The timing

failure is related to violations of delay bounds;

• Byzantine: Are the most general type of failures which can correspond to any ar-
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bitrary behavior. For instance, a faulty process may change the content of mes-

sages, duplicate messages, send unsolicited messages, or even maliciously try to

break down the whole system. This model includes the other models described

above.

2.2.2 Synchrony Models

According to LARREA; FERNÁNDEZ; ARÉVALO (2004), distributed algorithms can

be designed under different assumptions of system behaviors, i.e., system models. One

of the main assumptions in which system models can differ is related to the timing as-

pects to which two attributes are considered: the time taken for message transmission

across a communication channel and the time taken by a processor to execute a piece

of code. Depending on whether these attributes are bounded or not, and on the knowl-

edge of these bounds, they can be classified as synchronous, asynchronous, or partially

synchronous (CHANDRA; TOUEG, 1996).

2.2.2.1 Synchronous System

A distributed system is synchronous if there are bounds on transmission delay and

processing time and these bounds are known (VERISSIMO; RODRIGUES, 2012). In

such systems, for instance, it is possible to distinguish crashed processes from slow

processes or slow messages from omitted messages, which allows to deterministically

detect failures. However, one problem of this type of system is the fact that bounds

have to be defined to behave correctly in the worst case. Otherwise, the assumptions of

the system model might be violated and, therefore, the algorithm may lose correctness

(VERISSIMO; RODRIGUES, 2012).

In synchronous distributed systems, message transmission delays and process speed

are bounded and known, such that a simple timeout mechanism can be used to surely

assert if a node has failed or not.

2.2.2.2 Asynchronous System

A distributed system is asynchronous if there is no bound on message transmis-

sion delay nor the time to execute a processing step, i.e., there is no timing assump-

tion (CRISTIAN; FETZER, 1999) (VERISSIMO; RODRIGUES, 2012). In asynchronous

distributed systems, since there are not bounds on process speed neither message de-
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lay, no mechanism can ensure the failure of a remote process since it is impossible to

know whether the latter has actually crashed or whether its message transmissions are

delayed for some reason (ARANTES; GREVE; SENS, 2010).

2.2.2.3 Partially Synchronous System

In general, a real system holds timing bounds most of the time, i.e, it behaves like a

synchronous system almost always but can be unstable during some periods of time,

behaving like an asynchronous system and thus exceeding normal bounds.

The partial synchrony was introduced by DOLEV; DWORK; STOCKMEYER (1987)

aiming at defining an intermediate model between synchronous and asynchronous

systems, namely partially synchronous systems. In particular, the authors introduced

32 models of partial synchrony by the combination of five parameters which can be

set to ”favorable” or ”unfavorable”. However, an important definition about partially

synchronous systems was presented by DWORK; LYNCH; STOCKMEYER (1988) who

considered two interesting models: M1) There exist time bounds on message pass-

ing delays and relative speed of processes, but they are not known; M2) Bounds exist

and are known, but hold only after an unknown time called Global Stabilization Time

(GST). This system is also called eventually synchronous. Basically, before GST the

system behaves like an asynchronous system and after GST it holds bounds like a syn-

chronous system.

Another important definition was presented by CHANDRA; TOUEG (1996) who

identified the previous models as M1 and M2 and introduced another partially syn-

chronous model, namely M3, with the weakest assumptions of the previous ones: bounds

exist but they are not known and they hold only after some unknown time GST.

In short, it is not necessary that an eventually synchronous system holds its bounds

forever, i.e., behaves like a synchronous system for good. However, it is enough that sta-

bility lasts during the necessary time for the algorithm to finalize its execution (GUER-

RAOUI; RODRIGUES, 2006).

2.2.3 Communication Channels/Links

The behavior of the communication channels is an important issue in the defini-

tion of a distributed system model. Communication channels or links represent an ab-

straction of the network. Processes communicate among them by sending messages
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though their corresponding links.

A unidirectional communication link from a process p to another process q allows

p to send messages to q . When a link from p to q is bidirectional, it is assumed a

communication link from p to q and another one from q to p.

In AGUILERA et al. (2004), the authors have defined the following properties:

• integrity: ensures that q receives a message m from p at most once, and only if

p previously sent m to q . In other words, communication links cannot create or

alter messages;

• fairness: messages carry a type in addition to its data. For every type, if p sends

infinitely many messages of type type to q and q is correct, then q receives in-

finitely many messages of type type from p;

• timeliness: There exists a time interval δ such that if p sends a message m to q at

time t and q is correct, then q receives m from p by time t + δ. The maximum

message delay δ is not know;

• ♦−t i mel i ness: there exists δ and a time t such that if p sends a message m to

q at time t ′ ≥ t and q is correct, then q receives m from p by time t ′+δ. The

maximum message delay δ and the time t after which it holds are not known.

Note that messages sent before time t can be lost.

We then consider the following types of links:

• l oss y as ynchr onous: A link that satisfies the integrity property. Note that, in

this case, a message m sent over the link can be lost. However, if m is not lost, it

is eventually received at its destination;

• reliable: A link that satisfies the integrity property and does not lose messages.

Every message sent by this link will be delivered and will not be lost.

• f ai r l oss y : A link that satisfies the integrity property and the fairness property.

Note that a reliable link is also fair lossy;

• correct-restricted reliable: Such a link is a variant of the reliable link that behaves

as a reliable link only if the sender and the recipient do not crash. Otherwise, the

link may behave as fair-lossy one;

• timely: A link that satisfies the integrity property and the timeliness property. A

timely link is also reliable;



32

• ♦−t i mel y : A link that satisfies the integrity property and the ♦−t i mel i ness.

Note that messages sent before time t can be lost and a ♦−t i mel y link is also a

fair-lossy.

2.2.4 Consensus Problem in Presence of Failures

Consensus is a widely-studied fundamental problem in distributed computing, the-

ory and practice. Intuitively speaking, it requires the processes of the system to agree

on a common decision value. The consensus problem describes how all participants

of a distributed system must decide on a common value: every process pi proposes

a value vi and, eventually, every correct process calls the primitive deci de(d), where

d is the same value for all correct processes and is chosen among the set of proposed

values v1; v2; ...; vn .

Formally, a Consensus implementation has to satisfy the following three properties:

• Validity: Every correct process has to decide a proposed value;

• Agreement: Every correct process has to decide the same value;

• Termination: Every correct process eventually decide.

Although many solutions have been proposed to solve consensus in synchronous

systems, FISCHER; LYNCH; PATERSON (1985) presented an impossibility result, namely

Fischer-Lynch-Paterson or FLP Impossibility, that states that it is impossible to reach

consensus, deterministically, in an asynchronous systems subject to even a single crash

failure. Intuitively, this impossibility stems from the following fact: in a purely asyn-

chronous system there is no bound on the transmission delay, i.e., a message may be

arbitrarily long in transit from a process p to another process q . On the other hand,

processes may fail by crashing. Now, if p waits for a message from q , it can be never

sure, whether this process has crashed or if just the process is slow. Whatever p does

may be the wrong decision: if it waits without bound it may wait forever, since q may

have crashed - violating the termination property. If it stops waiting for the message

and continues without this message, the message might have been just slow, and p

decides without the information from q , which may lead to a violation either of the

agreement or the validity property.

The concept of partially synchrony emerged as a way for circumventing the FLP im-

possibility (Section 2.2.2.3). In this case, systems become synchronous eventually, so,
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instead of using fixed value timeouts, algorithms should implement adaptive timeouts.

Also, aiming to overcome the impossibility of deterministically soving distributed

consensus in fully asynchronous systems, CHANDRA; TOUEG (1996) introduced the

concept of unreliable failure detectors. A failure detector is a module, available at ev-

ery process, that informs, in a possibly unreliable way, about the operational state of

processes in the system. The next sections of this chapter give a more detail description

of failure detectors, their properties, and implementation.

Many other fundamental problems in fault-tolerant distributed computing also re-

quire agreement among the participants. Therefore, they also suffer from the same

consensus impossibility result in asynchronous problem in presence of failures. Some

examples of such problems are: atomic broadcast (LAMPORT, 1978), where messages

are received by all processes in a total order; group membership (CHANDRA et al.,

1996) where all members agree on the set of members; and leader election (LAMPORT;

LYNCH, 1991) where all non-crashed processes agree on the same leader process.

We should also remember that uniform consensus (CHARRON-BOST; SCHIPER,

2004) is a variation of the consensus problem with the condition that no two processes

(whether faulty or not) decide differently. Thus, the agreement property of the classical

consensus is replaced by the uniform agreement property: every process has to decide

the same value.

2.3 Unreliable Failure Detectors

An important abstraction for the development of fault-tolerant distributed systems

is the unreliable failure detector (FD) (CHANDRA; TOUEG, 1996). As mentioned in the

previous section, failure detectors were proposed by CHANDRA; TOUEG (1996) as an

abstraction to encapsulate timing assumptions when solving consensus.

An unreliable FD can be seen as an oracle that gives (not always correct) informa-

tion about process failures (either trusted or suspected). It usually provides a list of

processes suspected of having crashed. In addition, a failure detection system consists

of local modules in which each machine may monitor a group or subgroup of system

processes, or even be monitored by other detectors.

According to HAYASHIBARA; DÉFAGO; KATAYAMA (2003), unreliable FDs are so

named because they can make mistakes (1) by erroneously suspecting a correct pro-
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cess (false suspicion), or (2) by not suspecting a process that has actually crashed. If

the FD detects its mistake later, it corrects it. For instance, a FD can stop suspecting at

time t + 1, a process that it suspected at time t . Although the unreliable FDs can not ac-

curately determine the real state of processes, using them increases knowledge about

the processes of the system (CHANDRA; TOUEG, 1996). This means that an unreliable

FD encapsulates the uncertainty of the communication delay between two distributed

entities.

CHANDRA; TOUEG (1996) proposed failure detectors that output a list of suspected

processes. On the other hand, HUTLE (2005) denotes the latter suspi ci on based fail-

ure detectors and additionally characterizes failure detectors which output a list of

non-suspected processes, i.e., tr usted processes, as tr ust based ones.

Furthermore, CHANDRA; TOUEG (1996) presented some important formal defini-

tions. They considered that processes can fail by crashing and assume the existence of

a discrete global clock which is merely a fictional device:

• Failure patterns: A crash failure pattern is a function that defines a possible set

of failures, and their corresponding time, that can occur in an execution. A fail-

ure pattern F is a function from T → 2Π, where F (t ) denotes the set of pro-

cesses that have crashed through time t . Once a process crashes, it does not

”recover”, i.e., ∀t : F (t ) ⊆ F (t +1). They also defined cr ashed(F ) =∪t∈T F (t ) and

cor r ect (F ),= Π− cr ashed(F ). If p ∈ cr ashed(F ), it is said that p cr ashes in F

and if p ∈ cor r ect (F ), it is said that p is cor r ect in F ;

• Failure Detector History: It is a function that provides a list of the processes that a

failure detector is suspecting at a given time. Formally, a failure detector history

H is a function Π×T → 2Π. H(p, t ) is the value of the failure detector module of

process p at time t . If q ∈ H(p, t ) it is said that p suspect q at time t in H ;

• Failure Detector: Failure detector D is a function that maps each failure pattern F

to a set of failure detector histories D(F ). This is the set of all failure detector his-

tories that could occur in executions with failure pattern F and failure detector

D .
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2.3.1 Classes of Failure Detectors

Failure detectors can be classified into classes based on properties they satisfy. This

approach allows to design applications and prove their correctness based only on these

properties, without referencing, for example, low-level network parameters.

According to CHANDRA; TOUEG (1996), unreliable failure detectors are character-

ized by two properties, completeness and accuracy. Completeness characterizes the

failure detector’s capability of suspecting faulty processes, while accuracy character-

izes the failure detector’s capability of not suspecting correct processes, i.e., restricts

the mistakes that the failure detector can make. Failure detectors are then classified

according to two completeness properties and four accuracy properties (CHANDRA;

TOUEG, 1996):

• Strong completeness: Eventually every process that crashes is permanently sus-

pected by every correct process;

• Weak completeness: Eventually every process that crashes is permanently sus-

pected by some correct process;

• Strong accuracy: No process is suspected before it crashes;

• Weak accuracy: Some correct process is never suspected;

• Eventual strong accuracy: There is a time after which correct processes are not

suspected by any correct process;

• Eventual weak accuracy: There is a time after which some correct process is

never suspected by any correct process.

The combination of these properties yields eight classes of failure detectors as can

be seen in Table 2.1.

For instance, the ♦P (Eventually Perfect Failure Detectors) class includes all the

failure detectors that, after some unknown but finite time, make no mistake. They

satisfy the strong completeness and eventual strong accuracy properties.

2.3.2 Omega and Sigma Failure Detectors

Many other classes of failures detectors have been defined in the literature. Two

important ones, largely exploited by distributed algorithms and applications, are the

classes of Omega (Ω) (CHANDRA; HADZILACOS; TOUEG, 1996) and Sigma (or Quo-
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Table 2.1: Failure detectors classification

Accuracy
Completeness

Strong Weak Eventual strong Eventual weak

Strong
Perfect

P

Strong

S

Eventual Perfect

♦P

Eventual Strong

♦S

Weak
Quasi

Q

Weak

W

Eventual Quasi

♦Q

Eventual Weak

♦W

rum - Σ) (DELPORTE-GALLET et al., 2004) failure detectors.

The Leader Failure Detector Omega (Ω): Together with Hadzilacos, Chandra and Toueg

extended their work in (CHANDRA; HADZILACOS; TOUEG, 1996), proposing the leader

FDΩ.

The specification ofΩ states that eventually all the correct processes trust the same

correct process, i.e., it provides an eventual leader election functionality. Ω is also the

weakest failure detector to solve consensus in a distributed system, provided that a

majority of processes are correct. Furthermore, contrarily to ♦S and ♦W , the knowl-

edge of membership of the system is not necessary (JIMÉNEZ; ARÉVALO; FERNáN-

DEZ, 2006). When it is known, a Ω FD trivially also implements a ♦W or ♦S failure

detectors.

At each process p, the failure detector module of Ω at p outputs the identity of a

single process, denoted LE ADERp , such that the following property holds:

Eventual Leadership: There exists a correct process l and a time t after which, for

every correct process p, LE ADERp = l .

Note that at any given time processes do not know if there is a leader; they only

know that eventually a leader will be elected by all correct processes and will remain

leader.

The Quorum Failure Detector Sigma (Si g ma): A failure detector Sigma (Σ) outputs, at

each correct process of the system and, at any time, a list of processes, called tr usted

processes, such that:

• Intersection : Every two lists of trusted processes intersect;

• Completeness: Eventually, every list of processes trusted by a correct process con-
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tains only correct processes.

According to DELPORTE-GALLET; FAUCONNIER; GUERRAOUI (2003), the class of Sigma

failure detectors is the weakest one to implement a register, in any environment.

The importance ofΣ andΩ failures detectors was extended by DELPORTE-GALLET;

FAUCONNIER; GUERRAOUI (2003), proving that the pair <Ω,Σ> is the weakest FD to

solve consensus (uniform or not) in asynchronous message-passing where all but one

process may fail.

2.3.3 Reducibility and Equivalence

Failure detectors can be compared with each other through the notions of reducibil-

ity and equivalence. According to CHANDRA; TOUEG (1996), reducibility means that

there is an algorithm TD→D ′ which transforms a failure detector D into another failure

detector D’. Algorithm TD→D ′ uses D to maintain a variable outputp at every p. Given

a reduction algorithm TD→D ′ , any problem that can be solved using failure detector D’,

can be solved using D instead. Thus, if there is an algorithm TD→D ′ that transforms D

into D’, we say that D’ is reducible to D, noted D º D ′ ; we also say that D’ is weaker than

D (º is a transitive relation). Furthermore, if TD→D ′ and TD ′→D both exist, then D ∼= D ′

and we say that D and D’ are equivalent.

Similarly, given two classes of failure detectors C and C ′, if for each failure detector

D ∈C there is a failure detector D ′ ∈C such that D ≥ D ′, we write C ≥C ′ and say that C ′

is weaker than C . So, if C ≥C ′, then if a problem is solvable using C ′, it is also solvable

using C ). If C ≥C ′ and C ′ ≥C , we write C ∼=C ′ and say that C and C ′ are equivalent.

A failure detector being weaker than another means that the stronger failure de-

tector can provide an emulation of the weaker failure detector. Regarding the fail-

ure detectors classes proposed by CHANDRA; TOUEG (1996) (in Table 2.1), they pro-

vide that P ∼= Q,S ∼= W, P ∼= ♦Q, and ♦S ∼= ♦W . This means that the class of fail-

ure detectors on the same column of Table 2.1 are equivalent. They also prove that

P º S,Q º W,♦P º ♦S, and ♦Q º ♦W . That is, failure detectors with weak accuracy

are weaker than the ones with strong accuracy.

Additionally, the authors prove that weakest class of failure detectors to solve con-

sensus is ♦W , provided that there exist a majority of correct processes. Hence, any

failure detector that solves consensus must be at least as strong as a ♦W .
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2.3.4 Implementation of Failure Detectors

The literature has several proposals for implementing unreliable failure detectors

which usually exploit either a timer-based or a message-pattern approach.

In the timer-based strategy, FD implementations make use of timers to detect fail-

ures in processes. There exist two mechanisms that can be used to implement the

timer-based strategy: heartbeat and pinging. In the heartbeat mechanism every pro-

cess q periodically sends a control message ("I am alive" message) to process p that is

responsible for monitoring q . If p does not receive such a message from q after the

expiration of a timer, it adds q to its list of suspected processes. If p later receives an “I

am alive” message from q , p then removes q from its list of suspected processes.

An alternative approach uses the pinging mechanism which sends a query message

“Are you alive?” from each process p to another process q periodically. Upon reception

of such messages, the monitored process replies with an “I am alive” message. If pro-

cess p times out on process q , it adds q to its list of suspected processes. If p later

receives an “I am alive” message from q , p then removes q from its list of suspected

processes. The heartbeat strategy have advantages over pinging since the former sends

half of the messages pinging detectors send for providing the same detection quality.

Furthermore, a heartbeat detector estimates only the transmission delay of “I am alive”

messages, whereas the pinging detector must estimate the transmission delay of “Are

you alive?” messages, the reaction delay, and the transmission delay of “I am alive”

messages.

The message-pattern strategy does not use any timeout mechanism. In (MOSTE-

FAOUI; MOURGAYA; RAYNAL, 2003), the authors propose an implementation that uses

a request-response mechanism. A process p sends a QU ERY message to n nodes that

it monitors and then waits for responses (RESPON SE message) fromαprocesses (α ≤
n, traditionally α= n− f , where f is the maximum number of failures). A query issued

by p ends when it has received α responses. The other responses, if any, are discarded

and the respective processes are suspected of having failed. A process sends QU ERY

messages repeatedly if it has not failed. If, on the next request-response, p receives a

response from a suspected process q , then p removes q from its list of suspects. This

approach considers the relative order for the receiving of messages which always (or

after a time) allow some nodes to communicate faster than the others.
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2.3.5 QoS Metrics for Failure Detectors

A set of metrics have been proposed by CHEN; TOUEG; AGUILERA (2002) aiming at

evaluating the quality of service (QoS) of failure detectors: how fast they detect actual

failures and how well they avoid false detections, i.e., the speed and accuracy of failure

detectors.

In the definition of the metrics, the authors consider that the output of the failure

detector at p at time t is either S or T , which means that p suspects or trusts q at time

t , respectively. A transition occurs when the output of the failure detector at p changes:

An S−tr ansi t i on occurs when the output at p changes from T to S; a T−tr ansi t i on

occurs when the output at p changes from S to T . Furthermore, they assume that there

are only a finite number of transitions during any finite time interval.

The proposed metrics are the following:

- Primary Metrics:

• Detection Time (TD ): the time that elapses from the moment that process q

crashes until the FD at p starts suspecting q permanently. More precisely,

TD measures the time that elapses from the moment that the crash of q

occurs to the moment when the final S−tr ansi t i on occurs (at p) and there

are no further transitions (see figure 2.2);

• Mistake recurrency time (TMR ): the time between two consecutive mis-

takes, i.e, it is a random variable representing the time that elapses from

an S−tr ansi t i on to the next one (see Figure 2.2);

• Mistake duration (TM ): the time taken by the failure detector to correct a

mistake, i.e., it is a random variable representing the time that elapses from

an S−tr ansi t i on to the next T−tr ansi t i on (see Figure 2.2).

- Derived Metrics:

• Average Mistake Rate (λR ): measures the rate at which a failure detector

makes mistakes, i.e., it is the number of S−tr ansi t i ons per unit of time.

This is an important metric for long-lived applications where a mistake re-

sults in a costly interrupt, such as group membership applications (SCHIPER;

TOUEG, 2008) and cluster management (CORREIA; NEVES; VERÍSSIMO,

2006);
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• Query Accuracy Probability (P A): the probability that the failure detector’s

output is correct at a random time. This metric is useful for applications

that interact with the failure detector by querying it at random times;

• Good Period Duration (TG ): measures the length of a good period, i.e., it is a

random variable representing the time that elapses from a T−tr ansi t i on

to the next S−tr ansi t i on;

• Forward Good Period Duration (TFG ): a random variable representing the

time that elapses from a random time at which p trusts q , to the time of the

next S−tr ansi t i on.

Figure 2.2: QoS Metrics

In order to make a proper comparison of the Impact FD, we used some of the QoS

metrics described above in the evaluation presented in chapter 6.
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3 RELATED WORK

We can divide the state-of-the art related to this thesis into three groups: (1) failure

detectors and failure handling systems, (2) heartbeat arrival estimation strategies, and

(3) works which consider additional assumptions for asynchronous systems.

3.1 Failure Detectors and Failure Handling Systems

In this section we discuss some existing works that, similarly to the Impact FD, (a)

provide an output that it is not a list of suspected processes and should be interpreted/

compared by the application ((HAYASHIBARA et al., 2004), (COSQUER; RODRIGUES;

VERÍSSIMO, 1995), (GUPTA et al., 2013) ); (b) assign some value (e.g. weight, probabil-

ity of failure) to nodes ((YIM; CHOI, 2010) , (BRUN et al., 2011), (ARANTES et al., 2015),

(VÉRON et al., 2015)): (c) consider a threshold value to define the confidence in the

system or answers given by it ((ARANTES et al., 2015), (BRUN et al., 2011)); (d) flexibil-

ity in the number of failures ((ARANTES et al., 2015), (BRUN et al., 2011), (JUNQUEIRA

et al., 2010)).

Accrual: The Accrual failure detector (DÉFAGO et al., 2005) adopts an approach where

the output is a suspicion level on a continuous scale, rather than providing informa-

tion of a binary nature (trusted or suspected). The suspicion level captures the degree

of confidence with which a given process is believed to have crashed. If the process

actually crashes, the value is guaranteed to accrue over time and tends toward infinity.

Given two processes p and q, with q monitoring p, the suspicion level of process

q monitoring process p expresses the confidence of q in the statement that p is faulty.

Thus, the output of the failure detector of q over time can be represented by the func-

tion susp_levelp (t ) ≥ 0 ("suspicion level of p").
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The aim of Accrual failure detectors is to decouple monitoring from interpretation.

According to the authors, the Accrual failure detectors provide a lower level abstraction

that avoids having to interpret monitoring information. The suspicion level is left for

the applications to interpret. For instance, by setting an appropriate threshold, appli-

cations can trigger suspicions and take appropriate action. In addition, applications

can directly use the value output by the detector as a parameter for their actions.

Cosquer et al.: This work proposes a group membership service which tunes its failure

detection by monitoring several system parameters combined internally into a single

value (COSQUER; RODRIGUES; VERÍSSIMO, 1995). To this end, the Failure Suspector

(FS) is designed to evaluate a number of operational parameters as roundtrip delay,

throughput, and error rate. The application can configure the failure suspector, by

indicating which parameters must be measured and by giving their acceptable values.

Each parameter is characterized by a set of variables such as: the maximum inter-

val at which the parameter needs to be evaluated; the maximum (threshold) acceptable

value for the parameter; the parameter’s relative importance (weight); the number of

samples at which the parameter value has exceeded its threshold; the current value for

the parameter, etc. The authors also define the disturbance index (DI) whose aim is to

provide an index that measures the overall connectivity to a remote node and informs

how often the operational parameters have exceeded the defined thresholds. A very

low DI value means that the connectivity is satisfactory while a high value means very

poor connectivity and, thus, the remote node is considered suspected.

Pigeon: Arguing that applications should have information about failures to take spe-

cific and suitable recovery actions, GUPTA et al. (2013) define a service, called Pigeon,

for reporting faults to applications. Pigeon works within a single administrative do-

main (an enterprise, a data center, a campus network) and its architecture is geared to-

ward extracting and exploiting the information about failures that is already available

inside the system. The architecture of Pigeon has sensors, relays, and interpreters. A

sensor is component-specific and tailored; it is embedded in the component and can

detect faults in it. Relays communicate with sensors and propagate these sensors’ fault

information to end-hosts. Each end-host has an interpreter that receives information
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about faults from the relays. The interpreters convey this information as failure condi-

tions and estimate the expected duration of these conditions.

The Pigeon also encapsulates uncertainty which allows applications to proceed

safely in the presence of doubt. The service, called failure informer, provides status

reports related to fault detection with an abstraction that describes the degree of un-

certainty. The failure informer interface discloses the conditions (shown in Figure 3.1)

to the applications, where each condition abstracts a class of problems in a remote tar-

get process that affects the distributed application.

Figure 3.1: Conditions reported by Pigeon (GUPTA et al., 2013)

Yim et al.: In (YIM; CHOI, 2010) the authors present the concept of confidence levels of

sensor nodes in an adaptive fault-tolerant event detection service for wireless sensor

networks. After the analysis of the consistency of detecting results of nodes, the con-

fidence levels of the nodes are dynamically adjusted as well as the threshold, which

is used for decision making. The solution also exploits a filter for tolerating transient

faults to correct some erroneous sensor readings. The approach models a sensor net-

work as a weighted directed graph, G(V, E), where V represents the set of sensor nodes

and E represents the set of edges connecting the sensor nodes. Each node vi is as-

signed a self-confidence level ci . Each edge ei j is also assigned a weight wi j , which in-

dicates the confidence level of v j from the viewpoint of vi . Confidence levels of nodes

are used to isolate potentially faulty sensor nodes from the rest of the network as well as

to reinstate an isolated node if the confidence levels associated to it satisfies required

conditions. The confidence levels are updated each time a fault detection or event de-

tection is performed.

RepFD: In (VÉRON et al., 2015), the authors propose the use of a reputation mecha-

nism to implement failure detectors for large and dynamic networks. The reputation
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mechanism allows node cooperation through the sharing of views about other nodes.

The proposed approach exploits information about the behavior of nodes in order to

increase the quality of detection both in terms of completenness and accuracy. A repu-

tation service based on the periodically heartbeat messages exchanged by nodes, clas-

sify nodes in terms of reputation: the reputation of a node dynamically increases if it

sends its heartbeat on time, and decreases if some heartbeats get lost or arrive after the

expected dates.

Survivor sets and cores: JUNQUEIRA et al. (2010) define a system model that can ex-

press correlated failures using cores and survivor sets. It is an alternative dependent

failure model that captures the behavior of systems where failures are not necessar-

ily independent and identically distributed. Giving as example replication protocols

which use the traditional maximum number of f failure approach and can, therefore,

be suboptimal by replicating more than necessary, the authors propose the survivor

sets, the unique collection of minimal sets of correct processes over all executions, each

set having all correct processes of some execution. Moreover, they also define core as

a subset of processes that generalizes subsets of size f +1 in the maximum number of

failures model. Hence, in every execution of the system, there is at least one process in

every core that is correct. From the set of cores, one can obtain the survivor set system

by creating all minimal subsets of processes that intersect every core.

Brun et al.: Assuming that each node has a probability of being Byzantine, a voting

node redundancy approach is adopted in (BRUN et al., 2011) in order to improve the

reliability of distributed systems. On the basis of these probability values, the authors

estimate the minimum number of machines that the system should have to provide

a degree of reliability which is equal to, or greater than, a threshold value (probabil-

ity threshold). The threshold is defined by the probabilistic reliability that this answer

will be correct, given the average reliability of the nodes in the system. The authors

proposed an iterative redundancy approach whereby the system chooses a number of

nodes to perform the computation necessary to reach the required reliability level. If

consensus cannot be reached among the selected nodes, more nodes are allocated for

the computation. The algorithm is repeated until the required degree of reliability is

achieved.
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Arantes et al.: In (ARANTES et al., 2015), the authors present a study on probabilis-

tic reliability in Byzantine cloud computing environments. To this end, they propose

to use reputation-based replication to mitigate Byzantine behaviors and its impact on

the correctness of the computation. Each node has a given probability p of behaving

in a Byzantine manner and, thus, a reputation r = 1− p. The latter can dynamically

change based on the history of good answers of tasks that run on the node. Further-

more, the answer given by the application must satisfy a given degree of correctness

(probability threshold). Instead of fixing f (number of Byzantine nodes) like in the tra-

ditional solutions that tolerate this kind of failures, computation tasks are dynamically

replicated over a minimal number of compute nodes until meeting the probabilistic

thresholds of correctness.

3.2 Heartbeat Arrival Estimation Strategies

Timer-based failure detectors use time bounds (timeout) to wait for messages sent

over the network. In order to both minimize false suspicions and not degrade quality

of service (QoS), failure detectors dynamically adjust the timeout value, based on ob-

served communication delays of the past heartbeat history. In this section, we review

different estimation approaches that have been proposed in the literature to dynami-

cally predict heartbeat arrivals.

Chen: Seeking to reduce both the number of false suspicions and the time needed to

detect a failure, CHEN; TOUEG; AGUILERA (2002) propose a method for estimating

the arrival of the next heartbeat which is based on the history of the arrival time of

heartbeats and includes a safety margin (β). The timer is then set according to this

estimation.

The estimation algorithm is as follows: process p takes into account the n most re-

cent heartbeat messages received from q, denoted by m1, m2, . . . , mn ; A1, A2, . . . , An are

their actual reception times according to p’s local clock. When at least n messages have

been received, the theoretical arrival time EA(k+1) for a heartbeat from q is estimated

by:
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E A(k+1) =
1

n

k∑
i=k−n

(Ai −∆i ∗ i )+ (k +1)∆i

where∆i is the interval between the sending of two q’s heartbeats. The next timeout

value which will be set in p’s timer and will expire at the next freshness point τ(k+1), is

then composed by EA(k+1) and the constant safety margin β:

τ(k+1) =β+E A(k+1)

Bertier et al: In (BERTIER et al., 2003), the authors introduced a failure detector suit-

able for LAN environments. Their heartbeat arrival estimation approach combines of

Chen’s estimation with a dynamic estimation based on Jacobson’s estimation (JACOB-

SON, 1988). The latter is used in the protocol TCP to estimate the delay after which a

node retransmits its last message. Basically, the estimation of the next heartbeat ar-

rival is calculated by adding Chen’s estimation to a safety margin given by Jacobson’s

algorithm. Their approach provides a shorter detection time, but generates more false

suspicions than Chen’s estimation, according to their measurements on a LAN.

φAccrual: TheφAccrual failure detector (HAYASHIBARA et al., 2004) is based on inter-

arrival estimation time which follows a normal distribution. The Accrual FD dynam-

ically adapts current network conditions based on the suspicion level. The overall

mechanism is described in Figure 3.2. The heartbeats arrival from the network and

their arrival time are stored in a sampling window and past samples are used to esti-

mate some arrival distribution. Thus, the time of the last arrival Tl ast , the current time

tnow and the estimated distribution are used to compute the current value of φ. Sim-

ilarly to the above discussed FDs (BERTIER et al., 2003) and (CHEN; TOUEG; AGUIL-

ERA, 2002), the estimation protocol samples the arrival time of heartbeats and main-

tains a sliding window of the most recent samples. The distribution of past samples

is then used as an approximation for the probabilistic distribution of future heartbeat

messages. Based on such information, it is possible to compute a value ϕ with a scale

that changes dynamically to match recent network conditions.
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Figure 3.2: Information flow in the implementation of the Accrual failure detector
(HAYASHIBARA et al., 2004)

Adaptive Accrual: In (SATZGER et al., 2007), the authors extended the Accrual FD by

exploiting the histogram density estimation. Taking into account a sampled inter-

arrival time and the time of the last received heartbeat, the algorithm estimates the

probability that no further heartbeat messages will arrive from a given process, i.e., it

has failed.

ANNFD: The ANNFD presented in (ARAÚJO MACÊDO; LIMA, 2004) is a failure detec-

tor based on artificial neural networks. It uses as input parameters variables collected

by the Simple Network Management Protocol (SMNP) that characterize the network

traffic at each time instant. After training the neural network, it must compute the

message arrival time estimation E Ak+1, which is used to define the freshness point.

AFD: By observing the changes in the computing environment and exploiting both

the feedback control theory and user-defined QoS constraints, the autonomic failure

detector (AFD) proposed in (SÁ; ARAÚJO MACÊDO, 2010) dynamically configures the

monitoring period and detection timeout value. AFD provides a crash detection ser-

vice using pull monitoring style. It calculates the monitoring period and detection

timeout based on the previously defined QoS (TD , TM , TMR ). A new metric, denoted

failure detector availability (AV = (TMR −TM )/TMR ), is also defined. The AV is used to

suggest a safety margin (α) in such a way to decrease failure detector mistakes and to
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achieve the desired detection availability. If the detection service is inaccurate (i.e., AV

is low), then the safety margin is increased to improve detection accuracy; otherwise,

if AV is high, then α is decreased to improve the detection speed.

Furthermore, several works aim at improving the QoS of failure detectors which

estimate the arrival time of the next heartbeat by varying some parameters such as

window size, threshold, or safety margin ((TOMSIC et al., 2015), (XIONG et al., 2012),

(NUNES; JANSCH-PORTO, 2004), (YANG et al., 2014)). In addition, there are studies

that address the reduction of the number of sent heartbeats in the context of multi-

ple concurrent applications with distinct QoS needs. One approach with this focus is

presented in (TURCHETTI et al., 2016), which considers that different processes may

require different heartbeat intervals to satisfy their respective QoS. To handle it, the

authors propose the IFDS (Internet Failure Detector Service) that computes adaptive

timeout intervals using two strategies: the first one, called ηmax , seeks to maximize

monitoring parameters to encompass the needs of all processes; the second one, called

ηGC D , computes the greatest common divisor of the corresponding parameters.

3.3 Additional Assumptions for Asynchronous Systems

Several failure detector algorithms proposed in the literature rely on asynchronous

distributed systems enriched with additional network behavior assumptions or prop-

erties. We present in this section some of them which are based on communication

synchrony or message pattern.

Winning responses: The message pattern approach does not assume eventual bounds

on process and communication delays. In (MOSTEFAOUI; MOURGAYA; RAYNAL, 2003),

the authors consider that there is a correct process p and a set Q of f processes (with

p ∉Q, moreover, Q can contain crashed processes) such that, each time a process q ∈Q

broadcasts a query, it receives a response from p among the first (n− f ) corresponding

responses (such a response is called a wi nni ng response). Note that this assump-

tion does not prevent message delays from always increasing without bound. This ap-

proach has been applied to the construction of a leader protocol.

♦f-source: Aguilera et al. introduce the ♦ f −sour ce assumption in (AGUILERA et al.,

2004) aiming at providing communication-efficient leader and consensus protocol im-
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plementations. In a system with n nodes and up to f process can crash, a ♦ f −sour ce

node p is a correct node with f outgoing links that are eventually timely, i.e., there ex-

ist t0 and a bound δ, such that any message sent by p after t0 on one of these links is

received at most δ units of time after it has been sent.

♦f-accessibility: In MALKHI; OPREA; ZHOU (2005), the authors define the concept of

eventual ♦ f −accessi bi l i t y . A process p is eventual ♦ f −accessi bl e if there is a time

t0 such that, at any time t ≥ t0, there is a set Q(t ) of f processes such that p ∉Q(t ) and

a message broadcast by p at t receives a response from each process of Q(t ) by time

t +δ (where δ is a bound known by the processes). This approach requires a major-

ity of correct processes. Its interest lies in the fact that the set Q of processes whose

responses have to be received in a timely manner is not fixed and can be different at

distinct times. The paper also presents a protocol building Ω when there is a process

that is ♦ f −accessi bl e forever, and all other links are fair-lossy. The authors state that

the assumptions are strongly motivated by practical needs, particularly those of the

Paxos protocol.

Responsiveness property: In (ARANTES et al., 2013) and (GREVE et al., 2012), the au-

thors propose a model to implement unreliable FDs in dynamic networks with suit-

able assumptions for such a scenario. The message pattern model establishes con-

ditions on the logical time the messages are delivered by processes. They present a

stabilized responsiveness property (SRP ). The property states that there exists a time t

after which all nodes of pi ’s neighborhood receive, to every of their queries, a response

from pi which is always among the α j responses to the query. That is, it denotes the

ability of a node to reply to a query among the first nodes. Similarly to the winning

channel approach, the response of pi is always a winning response.

3.4 Discussion

Even if some of the above-cited works of group (1) are not failure detectors, they

present interesting characteristics related to failure handling that the Impact FD also

exploit, i.e., we selected these works taking into account potential similarity to the

Impact FD features such as: (a) the non-boolean (suspected/trusted) output; (b) the

grouping of processes in sets; (c) assignment of weight to processes to express their
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relevance; (d) margin of failures. Note that, among them, there is no work that ad-

dresses all the Impact FD features and none of them tackle with subsets of processes

associated with threshold values. Additionally, even if some of the works (VÉRON et al.,

2015) (ARANTES et al., 2015) consider a reputation approach that provides information

about each node reliability, they do not take into account the relevance of processes

and are not easily configurable to the requirements of the system. Finally, only Accrual

FD provides as output a suspicion level, however, related to each process and not to

the system as a whole.

We should point out that some of these works such as (COSQUER; RODRIGUES;

VERÍSSIMO, 1995) and (YIM; CHOI, 2010) were defined to specific systems or services.

In (COSQUER; RODRIGUES; VERÍSSIMO, 1995), the authors put forward a failure de-

tection mechanism based on application requirements of group membership service

or view synchronous communication. In (YIM; CHOI, 2010), the concept of confi-

dence level is applied to manage the status of sensors in wireless sensor networks. The

other works target large scale distributed systems such as Clouds. For instance, Pigeon

(GUPTA et al., 2013) addresses the question of how applications should be notified of

failures and introduces an approach that encapsulates the degree of certainty in the

failure report. In this way, the applications can use this information to take the most

appropriate action needed for the failure handling, similarly to the Impact FD.

The probability threshold concept based on the degree of confidence in the an-

swers, proposed in (BRUN et al., 2011) and (ARANTES et al., 2015), is in some extent

close to the Impact FD threshold since it reflects some margin of failure. On the other

hand, the threshold parameter of the Impact FD provides more flexibility in the num-

ber of failures because it considers the impact factor of processes and subsets.

It is worth remarking that, like the survivor sets (JUNQUEIRA et al., 2010), the Im-

pact FD can be implemented without depending on the maximum number f of fail-

ures (see Section 5.3).

The works of group (2) present different approaches to estimate the timeout. As

discussed in Section 2.3.5, the QoS of failure detectors depends on the choice of heart-

beat arrival estimation strategy: a short timeout leads a FD to detect failures quickly,

but may increase the number of false suspicions decreasing, consequently, its accu-

racy. This thesis proposes a new unreliable failure detector and its focus is not in heart-
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beat arrival estimation strategies. However, implementations of Impact FD may use

different approaches to estimate the timeout. In the case of the timer-based Impact

FD implementation of Section 5.2 (Algorithm 13), we use the heartbeat arrival estima-

tion proposed by CHEN; TOUEG; AGUILERA (2002). Note that to use another one, it

is just necessary to change the code of the function Timeout () (Algorithm 8) called

by Algorithm 13. For the Chen’s estimation algorithm, we consider the safety margin

suggested by the authors, adding a dynamic increment for eventual timely links. The

reason for the Chen et al’s algorithm choice is that, although the estimation solutions

proposed by the latter and Accrual FDs (HAYASHIBARA et al., 2004) (SATZGER et al.,

2007) have similar performance (mistake rate X detection time) over a wide-area net-

work (environment of our experiments), the Accrual FD estimation requires tuning of

the threshold parameter for each process and depends on application characteristics.

It is important also to point out that Bertier, AFD, and ANNFD estimations were de-

signed to local area networks where messages are rarely lost.

The aim of the works of group (3) is to circumvent the impossibility of solving some

distributed problems in pure asynchronous systems in the presence of failures (for in-

stance, the consensus) by adding behavior properties on the underling system. Thus,

the tailored assumptions, when satisfied, allow the implementation of the proposal so-

lution in the target system. Similarly, we are interested in implementing the Impact FD

on asynchronous systems enriched with additional assumptions. In Chapter 5, we pro-

pose algorithms for the Impact FD, considering different type of systems and behavior

properties: PR(I T )S
p , PR(♦I T )S

p , PS−accessi bi l i t y , and ♦PS−accessi bi l i t y .
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4 IMPACT FD

In this chapter we describe the Impact Failure Detector. First, we present the def-

initions related to the Impact FD: Impact Factor, Subsets, Trust Level and Margin of

Failures. After that, we define a f lexi bi l i t y property that denotes the capacity of the

Impact FD to tolerate a certain margin of failures or false suspicions, i.e., its capacity of

considering different sets of responses that lead the system to trusted states. In Section

4.3 we introduce the concept that a process can be PS−accessi bl e (or♦PS−accessi bl e).

Section 4.4 we propose some properties and classes of FD that exploit the Impact FD

concept. We also show the equivalence of some classes of Impact FD in regard with Σ

and Ω classes, which are fundamental classes to circumvent the impossibility of con-

sensus in asynchronous message-passing distributed systems.

4.1 Definitions

We consider a distributed system which consists of a finite set of processes Π =
{q1, . . . , qn} with |Π| = n, (n ≥ 2) and that there is one process per node, site, or sen-

sor. Therefore, the word process can mean a node, a sensor, or a site. Each process is

uniquely identified (i d | 1 ≤ i d ≤ n) and identifiers are totally and consecutively or-

dered.

Processes can fail by crashing and they do not recover. A process is considered

correct if it does not fail during the whole execution. We consider the existence of some

global time denoted T . A failure pattern is a function F : T → 2Π, where F (t ) is the set

of processes that have failed before or at time t . The function cor r ect (F ) denotes the

set of correct processes, i.e., those that have never belonged to a failure pattern (F ),

while function f aul t y(F ) denotes the set of faulty processes, i.e., the complement of
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cor r ect (F ) with respect toΠ.

A process p ∈Π monitors a set S of processes of Π. Every process in S is connected

to p by a communication link and sends messages to it through this link. Notice that

other links among processes of S can exist.

The Impact FD can be defined as an unreliable failure detector that provides an

output related to the trust level with regard to a set of processes. If the trust level pro-

vided by the detector, is equal to, or greater than, a given threshold value, defined by

the user, the confidence in the set of processes is ensured. We can thus say that the

system is trusted. We denote FD (Ip
S) the Impact failure detector module of process p

and S is a set of processes of Π. When invoked in p, the Impact FD (Ip
S) returns the

tr ust_levelp
S value which expresses the confidence that p has in set S.

We note cor r ect (FS) = cor r ect (F )∩S and f aul t y(FS) = f aul t y(F )∩S.

4.1.1 Impact Factor and Subsets

Each process q ∈ S has an impact factor ( Iq |Iq > 0 : Iq ∈ R ). Furthermore, set S

can be partitioned into m disjoint subsets (S = {S1,S2, ...Sm}). Notice that the grouping

feature of the Impact FD allows the processes of S to be partitioned into disjoint sub-

sets, in accordance with a particular criterion. For instance, in a scenario where there

are different types of sensors, those of the same type can be gathered in the same sub-

set. Let then S∗ = {S∗
1 ,S∗

2 , ...S∗
m} be the set S partitioned into m disjoint subsets where

each S∗
i is a set which each element is a tuple of the form 〈i d , I 〉, where i d is a process

identifier and I is the value of the impact factor of the process in question.

S∗ = {S∗
1 ,S∗

2 , ...S∗
m} is a set such that ∀i , j , i 6= j ,S∗

i ∩S∗
j =; and⋃

{q|〈q,_
〉 ∈ S∗

i ;1 ≤ i ≤ m} = S.

4.1.2 Trust Level

We denote tr ustedp
S(t ) the set of processes of S that are not considered faulty

by p at t ∈ T . The trust level at t ∈ T of process p ∉ F (t ) in relation to S is denoted

tr ust_levelp
S∗

. We have then tr ust_levelp
S∗

(t ) =
Tr ust_l evel (tr ustedp

S ,S∗), where the function Tr ust_level (tr ustedp
S ,S∗) returns,

for each subset S∗
i , the sum of the impact factors of the elements 〈i dq , Iq〉 of S∗

i such

that i dq ∈ tr usted .
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Tr ust_level (tr usted ,S∗) = {tr ust_leveli | tr ust_leveli = ∑
j∈(tr usted∩Si )

I j , 1 ≤ i ≤ |S∗|}

In other words, the tr ust_levelp
S∗

is a set that contains the trust level of each sub-

set of S∗ expressing the confidence that p has in the processes of S. Note that if all

processes of S∗
i have failed tr ust_l eveli = 0.

4.1.3 Margin of Failures

An acceptable margin of failures, denoted thr eshol d S∗
, characterizes the ac-

ceptable degree of failure flexibility in relation to set S∗. The thr eshol d S∗
is ad-

justed to the minimum trust level required for each subset, i.e., it is defined as a

set which contains the respective threshold of each subset of S∗: thr eshol d S∗ =
{thr eshol d1, . . . , thr eshol dm}.

The thr eshol d S∗
is used by p to check the confidence in the processes of S. If, for

each subset of S∗, the tr ust_leveli (t ) ≥ thr eshol di , S is considered to be trusted at t

by p, i.e., the confidence of p in S has not been compromised; otherwise S is consid-

ered untrusted by p at t .

Three points should be highlighted: (1) both the impact factor and thr eshol d S∗

render the estimation of the confidence in S flexible. For instance, it is possible that

some processes in S might be faulty or suspected of being faulty but S is still trusted;

(2) the Impact FD can be easily configured to adapt to the needs of the environment;

(3) the thr eshol d S∗
can be tuned to provide a more restricted or softer monitoring.

Note that the Impact FD can also be applied when the application needs individual

information about each process of S. In this case, each process must be defined as a

different subset of S∗.

4.1.4 Examples

Table 4.1 shows several examples of sets and their respective thresholds. In the first

example (a) there is just one subset with three processes. Each process has impact

factor equal to 1 and the threshold defines that the sum of impact factor of non faulty

processes must be at least equals to 2, i.e., the system is considered trusted whenever

there are two or more correct processes. Example (b) shows a configuration where

processes must be monitored individually. Each process is the only element of a subset

and the threshold defines that if any of the processes fails, the system is not trusted
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anymore. In the third example (c), S∗ has two sets with three processes each. The

threshold requires at least two correct processes in each subset. The last example (d)

has a single subset with five processes with different impact factors. The threshold

defines that the set is trusted whenever the sum of impact factor of correct processes

is at least equals to seven.

Table 4.1: Examples of sets and threshold

S∗ thr eshol d S∗

a {{
〈

q1,1
〉

,
〈

q2,1
〉

,
〈

q3,1
〉

}} {2}
b {{

〈
q1,1

〉
}, {

〈
q2,1

〉
}, {

〈
q3,1

〉
}} {1,1,1}

c {{
〈

q1,1
〉

,
〈

q2,1
〉

,
〈

q3,1
〉

}, {
〈

q4,2
〉

,
〈

q5,2
〉

,
〈

q6,2
〉

}} {2,4}
d {{

〈
q1,1

〉
,
〈

q2,1
〉

,
〈

q3,1
〉

,
〈

q4,5
〉

,
〈

q5,5
〉

}} {7}

In Table 4.2, we consider a set S∗ composed by three subsets: S∗
1 , S∗

2 , and S∗
3 (S∗ =

{{
〈

q1,1
〉

,
〈

q2,1
〉

,
〈

q3,1
〉

}, {
〈

q4,2
〉

,
〈

q5,2
〉

,
〈

q6,2
〉

},

{
〈

q7,3
〉

,
〈

q8,3
〉

,
〈

q9,3
〉

}}). The values of thr eshol d S∗ = {1,4,6} define that the subset

S∗
1 (resp., S∗

2 and S∗
3 ) must have at least one (resp., two) correct process. The table

shows several possible outputs for FD (Ip
S) depending of process failures: the set S∗ is

considered trusted at t if, for each subset S∗
i , tr ust_l eveli (t ) ≥ thr eshol di .

Table 4.2: Example of FD (Ip
S) output: S∗ has three subsets

t F(t) tr ustedp
S(t ) tr ust_levelp

S∗
(t ) Status at t

1 {q2} {q1, q3, q4, q5, q6, q7, q8, q9} {2,6,9} Trusted
2 {q1, q2, q5} {q3, q4, q6, q7, q8, q9} {1,4,9} Trusted
3 {q1, q2, q5, q6} {q3, q4, q7, q8, q9} {1,2,9} Untrusted

S∗ = {{
〈

q1,1
〉

,
〈

q2,1
〉

,
〈

q3,1
〉

}, {
〈

q4,2
〉

,
〈

q5,2
〉

,
〈

q6,2
〉

}, {
〈

q7,3
〉

,
〈

q8,3
〉

,
〈

q9,3
〉

}}

thr eshol d S∗ = {1,4,6}

4.2 Flexibility of the Impact FD

The flexibility of the Impact FD characterizes its capability of accepting different

set of responses that lead to a trusted state of S. We define PS as the set that contains

all possible subsets of processes which satisfy a defined threshold:

PS = T Power Set (S∗, thr eshol d S∗
)|T Power Set (S∗, thr eshol d S∗

) =
× Power Set (Si

∗, thr eshol di
S∗

)
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where ×Si corresponds to the cartesian product of several sets.

Initially, the TPowerSet function generates the power set 1 for each subset (Si
∗) of

S∗. Then, only the subsets of Si
∗ whose sum of their parts is greater than, or equal to,

thr eshol di are selected. That is, the output is the sets of possible trusted set that sat-

isfy the threshold for each subset Si
∗. Following this, the cartesian product is applied

to generate all possible combinations, i.e., all the generated subsets of processes satisfy

the thr eshol d S∗
.

Let’s consider the following example:

S∗ = {{
〈

q1,1
〉

,
〈

q2,1
〉

}, {
〈

q3,1
〉

,
〈

q4,1
〉

}, {
〈

q5,1
〉

,
〈

q6,1
〉

}}

thresholdS∗
= {1,1,1}

PS = T Power set (S∗, thr eshol d S∗
)

PowerSet(S∗
1 , thr eshol d1) = {{q1}, {q2}, {q1, q2}}

PowerSet(S∗
2 , thr eshol d2) = {{q3}, {q4}, {q3, q4}}

PowerSet(S∗
3 , thr eshol d3) = {{q5}, {q6}, {q5, q6}}

PS = PowerSet(S∗
1 , threshold1) × PowerSet(S∗

2 , threshold2) × PowerSet(S∗
3 , threshold3)

PS = {{q1, q3, q5}, {q1, q3, q6}, {q1, q3, q5, q6},

{q1, q4, q5}, {q1, q4, q6}, {q1, q4, q5, q6},

{q1, q3, q4, q5}, {q1, q3, q4, q6}, {q1, q3, q4, q5, q6},. . . }

For instance, if tr ustedp
S(t1) = {q1, q3, q5} and tr ustedp

S(t2) = {q1, q3, q4, q6},

tr ustedp
S(t1) and tr ustedp

S(t1) ∈ PS, and, therefore, p considers that the system S

is trusted at both t1 and t2.

We now define two properties, PR(I T )S
p and PR(♦I T )S

p , that characterize the sta-

bility condition that ensures the confidence (or eventual confidence) of p on S.

Impact Threshold Property - PR(I T )S
p : For a failure detector of a correct process p, the

set tr ustedp
S is always a subset of PS.

PR(I T )S
p ≡ p ∈ cor r ect (F ),∀t ≥ 0, tr ustedp

S(t ) ∈ PS

1the power set of any set S is the set of all subsets of S, including the empty set and S itself
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Eventual Impact Threshold Property - PR(♦I T )S
p : For a failure detector of a correct pro-

cess p, there is a time after which the set tr ustedp
S is always a subset of PS.

PR(♦I T )S
p ≡∃t ∈ T, p ∈ cor r ect (F ),∀t ′ ≥ t , tr ustedp

S(t ′) ∈ PS

If PR(I T )S
p (resp., PR(♦I T )S

p ) holds, the system S is always (resp., eventually al-

ways) trusted by p.

4.3 PS−accessi bi l i t y Assumptions

Inspired by the concept that a process is ♦ f −accessi bl e proposed in MALKHI;

OPREA; ZHOU (2005) (see Section 3.3), we also define the concept of a PS−accessi bl e

and a ♦PS−accessi bl e process:

A process p ∈ cor r ect (F ) is PS−accessi bl e (resp., ♦PS−accessi bl e) if every QU ERY

message broadcast by p obtains from the beginning (resp., eventually) a set Q of re-

sponses that satisfy the thr eshol d S∗
.

Thus, if p is PS−accessi bl e (resp., ♦PS−accessi bl e), PR(I T )S
p (resp., PR(♦I T )S

p )

holds for p.

We have then the following definitions for the message pattern and timer-based

approaches:

Message-pattern approach: Given a QU ERY issued by p, the set of the first RESP

messages received by p to this query are denoted winning responses (MOSTEFAOUI;

MOURGAYA; RAYNAL, 2003), (RAYNAL, 2007).

A process p ∈ cor r ect (F ) is PS−accessi bl e (resp., ♦PS−accessi bl e) if for τ0 = 0

(resp., ∃τ0) ∀τ≥ τ0, there exists a set Q(τ) of processes such that Q(τ) ∈ PS and p ∉Q(τ)

and a QU ERY message broadcast by p at τ receives RESP messages from processes of

Q(τ) and these responses are always (resp., eventually always) winning responses.

Timer-based approach: A process p ∈ cor r ect (F ) is PS−accessi bl e (resp.,

♦PS−accessi bl e) if for τ0 = 0 (resp., ∃τ0) ∀τ ≥ τ0, there exists a set Q of processes

such that Q(τ) ∈ PS and p ∉ Q(τ) and a QU ERY message broadcast by p at τ receives

a RESP message from each process of Q(τ) by time τ+δ.
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We should point out that in both definitions of PS−accessi bl e and♦PS−accessi bl e,

the set Q(τ) is not fixed and can be different at distinct instants of time which is in ac-

cordance with the flexibility property of the Impact FD.

4.4 Classes of Impact FD

Similarly to the completeness and accuracy properties defined in (CHANDRA; TOUEG,

1996) (see Section 2.3.1), we define the following properties for the Impact FD:

Impact completenessp
S : For a failure detector of a correct process p, there is a time

after which p does not trust any crashed process of S;

∃t ∈ T, p ∈ cor r ect (F ),∀q ∈ f aul t y(FS) : ∀t ′ ∈ T ≥ t , q ∉ tr ustedp
S(t ′)

Impact weak completenessp
S : For a failure detector of a correct process p, there is

a time after which some p does not trust any crashed process of S;

∃t ∈ T,∃p ∈ cor r ect (F ),∀q ∈ f aul t y(FS) : ∀t ′ ∈ T ≥ t , q ∉ tr ustedp
S(t ′)

Eventual i mpact str ong accur ac yp
S : For a failure detector of a correct process p,

there is a time after which all correct processes of S belong to tr ustedp
S ;

∃t ∈ T,∀t ′ ∈ T ≥ t , p ∈ cor r ect (F ),∀q ∈ cor r ect (FS) : q ∈ tr ustedp
S(t ′)

Eventual i mpact weak accur ac yp
S : For a failure detector of a correct process p,

there is a time after which some correct process of S is trusted by every correct process.

∃t ∈ T,∀t ′ ∈ T ≥ t ,∀p ∈ cor r ect (F ),∃q ∈ cor r ect (FS) : q ∈ tr ustedp
S(t ′)

Lets consider that p in S and S =Π
We can then define some classes of Impact FD, similarly those defined in (CHAN-

DRA; TOUEG, 1996) and (DELPORTE-GALLET et al., 2004):

• ♦I P (Eventually Perfect Impact Class): For S =Π, ∀p ∈ cor r ect (F ),

i mpact completenessp
S and eventual i mpact str ong accur ac yp

S proper-

ties are satisfied;

• ♦I S (Eventually Strong Impact Class): For S =Π, ∀p ∈ cor r ect (F ),

i mpact completenessp
S and eventual i mpact weak accur ac yp

S properties

are satisfied;
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• ♦IW (Eventually Weak Impact Class): For S =Π, ∃p ∈ cor r ect (F ) such that

i mpact weak completenessp
S property is satisfied and∀p ∈ cor r ect (F ), even-

tual impact weak accur ac yq
S property is satisfied;

• IΩ: (Impact Omega Class): For S =Π, ∀t ≥ 0, |tr usted(t )| = 1, and ∃l ∈ cor r ect (F )

such that ∃t1 ∈ T,∀t2 ∈ T ≥ t1,∀p ∈ cor r ect (F ), tr ustedp
S(t2) = {l } (Impact lead-

ership property).

• IΣ: (Impact Sigma Class): For S =Π, the two following properties are satisfied:

Intersection: ∀t1, t2 ∈ T,∀p1, p2 ∈Π : tr ustedp
S(t1)∩ tr ustedp

S(t2) 6= ;
Completeness: ∃t ∈ T,∀p ∈ cor r ect (F ) : ∀t ′ ∈ T ≥ t , tr ustedp

S(t ′) ⊆ cor r ect (F )

We point out that the trust level output of the failure detectors of the above classes

depends on S∗, i.e., the impact factor assigned to the processes as well as how they are

grouped in subsets.

4.5 Impact FD Equivalences

As we have seen in Section 2.3.3, failure detectors can be compared with each other

through the notions of reducibility and equivalence. In (CHANDRA; HADZILACOS;

TOUEG, 1996), Chandra and Toueg defined several failure detector classes which are

sufficient to solve Consensus and showed that some pairs are equivalent while others

are distinct. The authors proved that the weakest failure detector needed to solve Con-

sensus is ♦W . Furthermore, they introduced the Ω class as an intermediate step in

their proof, and showed that ♦W and Ω are equivalent. Thus, any failure detector of

one of these classes can be transformed into a failure detector of the other class.

In (CHU, 1998), Chu presents two transformations from ♦W toΩ. The first one re-

quires each message to carry an array of counters, some of them growing indefinitely.

In the second one, each message keeps a sequence number plus a set of processes

identities. Since the sequence number stops increasing, this transformation is quies-

cent, i.e., the processes eventually stop sending message in any run.

The authors in (MOSTÉFAOUI et al., 2007) present a communication efficient trans-

formation from ♦W to Ω for asynchronous message-passing systems equipped with

a reliable broadcast communication primitive. The transformation is also quiescent
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and, contrarily to (CHU, 1998), requires each message to carry only one process iden-

tifier.

The most important results presented in those works is the fact that the classes Ω

and ♦W are equivalent.

By considering that all processes of S =Π have impact value equals to its identifier

and each process belongs to a different subset of S∗ , we show that IΣU (resp.IΩU ) FD

is equivalent to Σ (resp., Omeg a) FD. In addition, Σ is reducible to ♦I PU , provided

there exists a majority of correct processes, and ♦IW U FD is equivalent to the Omega

FD (Ω), provided that the membership of the system is known. Both Σ andΩ FDs were

defined in Section 2.3.2 while IΣU , IΩU , ♦I PU , and ♦IW U FDs are defined in this

section.

Let’s assume that Π= {q1, . . . , qn} are uniquely identified by {1,2, . . . ,n} respectively

with |Π| = n, (n ≥ 2). For both cases, i.e., Omeg a’s and Si g ma’s reductions, we consider

that p in S, S =Π.

Furthermore, S∗ requires the unique identifier format: |S∗| = n, ∀S∗
i 1 ≤ i ≤ n,S∗

i =
{〈_, i 〉}, i.e., each of the n subsets of S∗ has just one process of S whose impact factor is

equal to its identifier. This way, it is possible to deduce, by the output of the Impact FD

of process p (trust_level), the processes that are trusted by p. For instance, consider

the following configuration of S∗ and a possible trust level output of the Impact FD of

p at t (processes q1 and q4 suspected of having failed):

S∗ =Π∗ = {{
〈

q1,1
〉

}, {
〈

q2,2
〉

}, {
〈

q3,3
〉

}, {
〈

q4,4
〉

}, {
〈

q5,5
〉

}}

tr ust_level S
p (t ) = {0,2,3,0,5}

The set of processes trusted by p at t corresponds to those tr ust_leveli (1 ≤ i ≤ n)

of tr ust_l evel (t ) which are greater than 0.

tr usted(t ) = {2,3,5}

We denote IU the set of failure detectors of Impact FD class that require the unique

identifier format for S∗. Similarly, ♦I PU , ♦I SU , IΣU , IΩU , and ♦IW U FDs are ♦I P ,

♦I S, IΣ, IΩ, and ♦IW FDs respectively that also require the same S∗ unique identifier

format.

The following functions are used by the reductions algorithms:
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• Tr ust_l evel ToPr ocs(tr ust_level ): returns the set of processes of the

tr ust_level whose tr ust_l eveli is greater than zero, i.e., the processes consid-

ered trusted:

Tr ust_level ToPr ocs(tr ust_l evel ) = {tr ust_leveli |tr ust_l eveli > 0;1 ≤ i ≤ |Π|}

• Pr ocsToTr ust_level (tr usted): returns the set tr ust_level related to the

trusted set, composed by the identifiers of processes that are trusted:

tr ust_leveli is equal to i , if i belongs to tr usted ; otherwise it is equal to 0.

Pr ocsToTr ust_level (tr usted) = {tr ust_leveli | tr ust_leveli = i if i ∈ tr usted ;

else tr ust_leveli = 0;1 ≤ i ≤ |Π|}

We consider that the FDs and the algorithms presented in this section run on all

nodes ofΠ. Note that the input ofΩ andΣ FDs isΠwhile the input of IΣU , IΩU , ♦I PU ,

and ♦IW U isΠ∗.

4.5.1 Equivalence Between IΣU FD and Σ FD

• Σ is reducible to IΣU (IΣU ºΣ): Algorithm 1

• IΣU is reducible to Σ (Σº IΣU ): Algorithm 2

Algorithm 1 Transforming IΣU to Σ

1: Begin
Input

2: Π

Init
3: S∗ =;
4: for i = 1 to Π do
5: S∗ = S∗∪ {{〈qi , i 〉}}
6: end for

T1
7: Upon invocation of Σ() do
8: return Tr ust_level ToPr ocs(IΣ(S∗))
9: end

10: End

Algorithm 1 transforms the output of Impact IΣU FD to the output of Σ FD. When

invoked in p, IΣU returns the trust level value of p in relation to processes of Π that p

trusts. The function Tr ust_l evel ToPr ocs then transforms the trust level to the set of

trusted processes (line 8).



62

Algorithm 2 Transforming Σ to IΣU

1: Begin
Input

2: Π∗

Init
3: S =;
4: for i = 1 to Π∗ do
5: S = S ∪ {i }
6: end for

T1
7: Upon invocation of IΣ() do
8: return Pr ocsToTr ust_level (Σ(S))
9: end

10: End

Algorithm 2 transforms the output of Σ FD to the output of Impact IΣU FD, i.e., the

trust level. When invoked in p, the Sigma FD returns the set tr usted which contains

the identifier of trusted processes. This set is then transformed in the trust level (line

8).

Sketch of Proof

Lemma 1. Algorithm 1 transforms the output of IΣU FD to the output of Σ FD.

Proof. Immediate from the intersection and completeness properties of IΣU and func-

tion Tr ust_level ToPr ocs that transforms a trust level value to a set of trusted pro-

cesses identifiers.

Lemma 2. The Algorithm 2 transforms the output of Σ FD to the output of IΣU FD.

Proof. Immediate from the intersection and completeness properties of IΣ FD and

function Pr ocsToTr ust_level that transforms a set of trusted processes identifiers to

a trust level value.

Theorem 1. Σ FD is equivalent to IΣU FD

Proof. The theorem holds directly from Lemma 1 and Lemma 2.

4.5.2 Equivalence between IΩU FD andΩ FD

• Ω is reducible to IΩU (IΩU ºΩ): Algorithm 3

• IΩU is reducible toΩ (Ωº IΩU ): Algorithm 4
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Algorithm 3 Transforming IΩU toΩ

1: Begin
Input

2: Π

Init
3: S∗ =;
4: for i = 1 to Π do
5: S∗ = S∗∪ {{〈qi , i 〉}}
6: end for

T1
7: Upon invocation of Ω() do
8: trusted = Tr ust_level ToPr ocs(IΩ(S∗))
9: return l such that l ∈ tr usted

10: end
11: End

Algorithm 3 transforms the output of Impact IΩU FD to the output of Ω FD. When

invoked in p, IΩU returns the trust level value of p in relation to a process that p con-

siders as leader. Then, the function Tr ust_l evel ToPr ocs returns a trusted set com-

posed only by the leader process, which is returned by the function (line 8).

Algorithm 4 TransformingΩ to IΩU

1: Begin
Input

2: Π∗

Init
3: S =;
4: for i = 1 to Π∗ do
5: S = S ∪ {i }
6: end for

T1
7: Upon invocation of IΩ() do
8: tr usted = {Ω(S)}
9: return Pr ocsToTr ust_l evel (tr usted)

10: end
11: End

The Algorithm 4 transforms the output ofΩ FD to the output of Impact IΩU FD, i.e.,

the trust level. When invoked in p, the Omeg a FD returns a process that it considers

as leader which is then included in the trusted set. This set is transformed in the trust

level (line 9).

Sketch of Proof
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Lemma 3. Algorithm 3 transforms the output of IΩU FD to the output ofΩ FD.

Proof. Immediate from the leadership property of IΩU and function

Tr ust_l evel ToPr ocs.

Lemma 4. The Algorithm 4 transforms the output ofΩ FD to the output of IΩU FD.

Proof. Immediate from the leadership property of IΩ FD and function

Pr ocsToTr ust_level .

Theorem 2. Ω FD is equivalent to IΩU FD

Proof. The theorem directly holds from Lemma 3 and Lemma 4.

4.5.3 Σ FD is Reducible to ♦I PU with a Majority of Correct Processes

We consider that every pair of processes in Π is connected by a bidirectional link

which does not lose messages, neither corrupts them, nor generates spontaneous mes-

sages. In addition, there exists a majority of correct processes, i.e., the maximum num-

ber o failures f < |Π|/2. Then, Σ FD is reducible to ♦I PU :

Algorithm 5 Transforming ♦I PU to Σ

1: Begin
Input

2: Π

Init
3: tr ust_level =; ; S∗ =;
4: for i = 1 to |Π| do
5: S∗ = S∗∪ {{

〈
qi , i

〉
}}

6: end for
Task T1

7: Upon invocation of Σ() do
8: tr usted =;
9: repeat

10: tr ust_level =♦I P (S∗)
11: tr usted = tr usted ∪Tr ust_level ToPr ocs(tr ust_level )
12: until |tr usted | > |Π|/2
13: return tr usted
14: end
15: End

Algorithm 5 transforms the output of Impact ♦I PU FD to the output of Sigma FD.

When invoked in p, ♦I PU returns the trust level value of p in relation to processes
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of Π (line 10). Then, the function Tr ust_level ToPr ocs(tr ust_l evel ) is called. The

algorithm returns when there are a majority of process i whose tr ust_leveli is greater

than zero, i.e., a majority of processes considered trusted by p (line 12).

Sketch of Proof

Lemma 5. Let’s consider that the call to ♦I P () never blocks. The invocation of Σ() by p

(Algorithm 5) always returns a set of processes whose size is greater than |Π|/2.

Proof. Since the call to ♦I P () (line 10) never blocks by assumption, the only way for

function Σ() to not return from a call would be if it looped forever because the un-

til condition of line 12 was never satisfied. However, since there is no message loss

by assumption, p eventually receives every heartbeat message sent by other processes.

Furthermore, since f < |Π|/2 by assumption, if all the f failures take place, the eventual

impact accuracy of ♦I P ensures that eventually the set trusted will contain a majority

of processes (the correct ones) of the system, avoiding, thus, that the algorithm blocks

permanently in line 12. Therefore, the condition of this line always becomes true and,

by calling function Trust_levelToProcs, function Si g ma() returns a set of trusted pro-

cesses whose size is greater than |Π|/2.

Lemma 6. Algorithm 5 ensures the intersection property of the Σ FD.

Proof. By assumption, all processes ofΠ execute both♦I PU FD and Algorithm 5. There-

fore, the lemma holds directly from Lemma 5 since, when invoked by p, Algorithm 5

always outputs a set of at least |Π|/2+1 processes.

Lemma 7. Algorithm 5 ensures the completeness property of the Σ FD.

Proof. By assumption, all processes ofΠ execute both♦I PU FD and Algorithm 5. Thus,

∀p ∈ cor r ect (F ), the lemma holds directly from the compl etenessΠp property of ♦I P

FD.

Theorem 3. Algorithm 5 transforms ♦I PU to Σ FD.

Proof. The theorem holds directly from Lemma 6 and Lemma 7.

We should point out that ♦I PU FD is not reducible to Σ FD since the eventual im-

pact strong accuracy of ♦I PU FD can not be ensured from the output of Σ FD.
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4.5.4 Equivalence Between ♦IW U FD andΩ FD

We consider that f < n −1. ♦IW U is equivalent to Ω. Note that the membership

(Π) is known by all processes (JIMÉNEZ; ARÉVALO; FERNáNDEZ, 2006):

• Ω is reducible to ♦IW U (♦IW U ºΩ). The idea is to transform ♦IW U FD to ♦W

FD (Algorithm 6) and then use any algorithm of the literature, such as (CHAN-

DRA; HADZILACOS; TOUEG, 1996), (MOSTÉFAOUI et al., 2007), (CHU, 1998),

which transforms ♦W toΩ.

• ♦IW U is reducible toΩ (Ωº♦IW U ): Algorithm 7.

♦IW U FD can be trivially reduced to ♦W FD (Algorithm 6) as well as Ω FD to

♦IW U FD (Algorithm 7).

Algorithm 6 Transforming ♦IW U to ♦W

1: Begin
Input

2: Π

Init
3: S∗ =;;
4: for i = 1 to |Π| do
5: S∗ = S∗∪ {{

〈
qi , i

〉
}}

6: end for
Task T1

7: Upon invocation of ♦W do
8: tr ust_l evel =♦IW U (S∗)
9: suspected =Π−Tr ust_level ToPr ocs(tr ust_level )

10: return suspected
11: end
12: End

Sketch of Proof

Lemma 8. Algorithm 6 ensures the completeness property of the ♦W FD.

Proof. At every invocation of ♦W by p, Algorithm 6 outputs a set of suspected pro-

cesses composed by all processes of Π which are not currently trusted by p (line 9). By

assumption, ♦IW U and Algorithm 6 are executed by all nodes ofΠ. ♦IW U FD ensures

that ∃p ∈ cor r ect (F ) such ∀q ∈ f aul t y(F ) : ∃t ∈ T,∀t ′ ∈ T ≥ t , q ∉ tr ustedp
π(t ′). By

Algorithm 6, all the faulty processes also belong to the suspect set (line 9). Hence,
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Algorithm 7 TransformingΩ to ♦IW U

1: Begin
Input

2: Π∗

Init
3: tr usted =;; S =;;
4: for i = 1 to |Π∗| do
5: S = S ∪ {i }
6: end for

Task T1
7: Upon invocation of ♦IW do
8: tr usted = {Ω(S)}
9: return Pr ocsToTr ust_level (tr usted)

10: end
11: End

∃p ∈ cor r ect (F ),∀q ∈ f aul t y(F ), : ∃t ∈ T,∀t ′ ∈ T ≥ t , q ∈ suspect , and, thus, the weak

completeness property of ♦W FD is satisfied.

Theorem 4. Algorithm 6 transforms ♦IW U FD to ♦W FD.

Proof. Lemma 8 ensures the weak completeness of♦W FD. Since♦IW U and Algorithm

6 are executed by all nodes of Π by assumption, the eventual impact weak accur ac yΠp

property of ♦IW U FD is satisfied ∀p ∈ cor r ect (F ) and, therefore, the eventual impact

weak accuracy of ♦W is also satisfied. Thus, the theorem holds.

Lemma 9. Algorithm 7 executed by the correct process p ensures both the impact

compl etenessΠp and the eventual impact weak accur ac yΠp of ♦IW U .

Proof. The eventual leadership property of Ω FD ensures that there exists t ∈ T and a

correct process l ∈ Π such that for all correct processes ∈ Π, ∀t ′ ∈ T ≥ t , Omeg a() = l

and tr usted = {l } (line 8). Consequently, after t , no faulty processes belong to trusted

set (compl etenessΠp of ♦IW U ) and there exists a correct process l which is trusted by

all p ∈ cor r ect (F ) (eventual impact weak accur ac yΠp of ♦IW U ).

Theorem 5. Algorithm 7 transformsΩ FD to ♦IW U FD.

Proof. The theorem holds directly from Lemma 9 and the call to ProcsToTrust_level

(line 9) that transform a set of processes to a trust level value.
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5 IMPLEMENTATIONS OF IMPACT FD

The Impact FD can have different implementations in accordance with the charac-

teristics of the system: the synchronization model, whether or not the process p has

knowledge about the composition of S (membership) and the type of nodes.

CHANDRA; TOUEG (1996) state that the failure detector abstraction is a clean ex-

tension to the asynchronous model of computation that allows us to solve many prob-

lems that are otherwise unsolvable. It is important to point out that an asynchronous

system is characterized by the absence of bounds on process speed and on message de-

lay. It is impossible to distinguish with certainty a crashed process from a very slow pro-

cess in a purely asynchronous distributed system (RAYNAL, 2007). In this context, we

are interested in providing distributed algorithms which implement the Impact FD for

asynchronous system models and enriching them with assumptions about synchrony

of the links or the relative speed between them.

In this chapter we present three implementations of the Impact FD:

• 1) a timer-based implementation that can be applied to systems where either all

links are lossy asynchronous or some or all links are ♦−t i mel y while the others

are lossy asynchronous;

• 2) an implementation based on a time-free message pattern approach which

waits for responses from α processes or from a set Q of processes whose re-

sponses satisfy the thr eshol d S ;

• 3) an implementation based on query-response message rounds that exploits the

flexibility property and considers a set of bounded timely responses.

The three algorithms have S∗ as input. Thus, they know S, the impact factor of all

processes of S, the number of subgroups m, and how processes are grouped.
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In the section 5.2 we present the implementation (1) of a timer-based distributed

algorithm (and its proof of correctness) that uses the algorithm proposed by CHEN;

TOUEG; AGUILERA (2002) to estimate heartbeat message arrivals from monitored pro-

cesses. The implementation can be applied to systems whose links are lossy asyn-

chronous or those whose all (or some) of them have eventually a bounded synchronous

behavior (♦−t i mel y) (AGUILERA et al., 2004).

Section 5.3 presents two different algorithms (implementations (2) and (3)) and

their respective proofs of correctness, based on query-response message rounds, that

implement the Impact FD. The implementations were tailored to satisfy the Impact

FD’s flexibility. In both implementations, if the process that monitors S is PS−accessi bl e

or ♦PS−accessi bl e, at every query round, it only waits (or eventually only waits) for a

set of responses that satisfy the threshold.

5.1 Definitions

The system S consists of n processes grouped in m subsets. The monitor process

p ∉ S.

Process synchrony: We consider that each process has a local clock that can accu-

rately measure intervals of time, but the clocks of the processes are not synchronized.

Processes are synchronous, i.e., there is an upper bound on the time required to exe-

cute an instruction. For simplicity, and without loss of generality, we assume that local

processing time is negligible with respect to message communication delays.

Type of systems: For the current implementation, we consider that links are directed

(either unidirectional or bidirectional) and there exists a link between p and ∀q ∈ S.

Concerning loss property link synchrony, we consider the types of links as defined in

section 2.2.3.

We then define the following types of system:

• AS: a system where all links are lossy asynchronous;

• F-AS: a system where all links are a fair lossy asynchronous;

• R-AS: a system with bidirectional reliable links;

• R-W-δ: a system which is a R-AS system such that there exists a known upper

bound δ on the round-trip delay of messages, but it might not hold on all pairs
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of processes at all times;

• W-ET (weak eventually timely system): a system where some links are ♦−t i mel y

and the others are lossy asynchronous ;

• S-ET (strong eventually timely system): a system where all links are ♦−t i mel y ;

• S-ET-Π: a system which is a S-ET system such that p in S, S = Π, every pair of

processes in S is connected either by a pair of directed links (with opposite di-

rections) or bidirectional links, and all processes of Π executes the Impact FD

algorithms.

• W-ET-Π: a system which is a W-ET system such that p in S, S = Π, every pair

of processes in S is connected either by a pair of directed links (with opposite

directions) or bidirectional links, and all processes of Π execute the Impact FD

algorithms. Moreover, there exists a correct process q1 in Π, such that, for all

process q2 in Π, q1 6= q2, q1 is connected to q2 by a ♦−t i mel y link (similarly to

the definition of ♦− sour ce of (AGUILERA et al., 2003)).

Note that a S-ET is also a W-ET and S-ET-Π (resp. W-ET-Π) is also a S-ET (resp.,

W-ET).

Figure 5.1 shows three types of system. The first one (a) represents an AS system

where all links are loss y as ynchr onous while system (b) shows a W-ET where some

links are ♦−t i mel y and others are lossy asynchronous. Finally, the last one (c) shows a

W-ET-Πwhere site q1 is a ♦− sour ce.

Figure 5.1: Examples of system types.
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5.2 Asynchronous System with Additional Assumptions

In this section, we present a timer-based implementation of the Impact FD (Algo-

rithms 9 and 10).

Our implementation (Algorithms 9 and 10) uses timers to detect failures of pro-

cesses. Process q periodically sends (heartbeat) messages to process p, that is respon-

sible for monitoring process q . If p does not receive such a message from q after the

expiration of the timer, it removes q from its list of trusted processes.

Chen’s heartbeat estimation arrival: Algorithm 9 uses the algorithm proposed by CHEN;

TOUEG; AGUILERA (2002), denoted Chen’s algorithm in this work, which computes

the timeout value for waiting for a heartbeat message from each monitored process

(see section 3.1).

Chen’s algorithm uses arrival times sampled in the recent past to compute an esti-

mation of the arrival time of the next heartbeat. Then, timeout value is set according

to this estimation and a safety margin (β). It is recomputed at each timer expiration.

In Algorithm 9, Chen’s algorithm is executed by the T i meout function (Algorithm

8) which calculates the arrival estimation of the next heartbeat for process q . Further-

more, if the link is♦−t i mel y , aη value is added to the timeout. Theηhas an initial zero

value and is incremented whenever p falsely suspects q (line 9 of Algorithm 9). Such

an increment ensures that, if the link is ♦−t i mel y and stable, i.e., the delay bound δ

verifies forever, the heartbeat arrival estimation time will be always equal or greater

than the actual arrival time for every heartbeat and, therefore, there will be no more

estimation mistakes and, therefore no more false suspicions.

Algorithm 8 Timeout Function

1: function TIMEOUT(q,η,model )
2: if model =∗− AS then . AS or F-AS system
3: τq =β+E Aq

4: else
5: τq =β+E Aq +η
6: end if
7: return τq

8: end function

Algorithm 9 is executed by the monitor process p while Algorithm 10 by all pro-

cesses of S.

The following local variables are used by the algorithm:
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• trusted: set of processes considered not faulty py p;

• η[]: keeps the timeout increment of each process in S;

• t i mer []: is set to the timeout value at each timer expiration.

Algorithm 9 Timer-based Impact FD Algorithm for p

1: Begin
Input

2: S∗, model , η
Init

3: tr usted = S
4: ∀q 6= p : r eset t i mer [q] = T i meout (q,0,model ); η[q] = 0

Task T1 - Upon reception of ALIVE from q
5: tr usted = tr usted ∪ {q}
6: r eset t i mer [q] = T i meout (q,η[q],model )

Task T2 - When timer[q] expires
7: tr usted = tr usted \ {q}
8: if model =∗−ET then .W-ET or S-ET system
9: η[q] = η[q]+η

10: end if
11: r eset t i mer [q] = T i meout (q,η[q],model )

Task T3
12: Upon invocation of Impact () do
13: return Tr ust_level (tr usted ,S∗)
14: end
15: End

Algorithm 10 Timer-based Impact FD Algorithm for q in S

1: Begin
Input

2: p
Task T1 - Repeat forever every ∆ time unit

3: send(ALIV E) to p

4: End

In Algorithm 9, p receives as input the set S∗, the increment time η for the time-

out estimation (used when occurs false suspicions in W-ET or S-ET systems), and the

model of the system (AS, F-AS, W-ET or S-ET).

At the initialization, tr usted is initialized with the set of processes. Then, for each
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process q in S (q 6= p), p initializes the timer that will control the arrival of heartbeat

messages from q (line 4).

Upon the reception of an ALIVE message from q (Task T1), q is added to the tr usted

set (line 5) and the timeout related to q is recomputed (line 6).

In task T2, q is considered faulty by p and, therefore, removed from trusted (lines

7). Furthermore, if the system is W-ET or S-ET, the timeout must be adjusted with a

higher value (line 9). The timeout related to q is then recomputed (line 11).

Task T3 handles the invocation of the Impact() function, which computes the

trust_level of each subset and returns the trust level related to the current trusted pro-

cesses which are trusted by p.

In Algorithm 10, every monitored process q of S sends periodically, every ∆ units

of time, an ALIVE message to its input observer p in order to inform the latter that it is

alive (Task T1).

Note that if p ∈ S, like in S-ET-Π or W-ET-Π, all processes of Π execute the two

algorithms behaving, thus, as both a monitor and a monitored process. In this case,

the primitive send in line 3 of Algorithm 10 is replaced by the primitive br oadcast ,

i.e., every processes periodically sends a heartbeat to all processes of S.

5.2.1 Sketch of Proof

In this section, we prove the correctness of some properties of Algorithm 9 and 10.

Theorem 6. If p is correct, Algorithms 9 and 10 satisfy the impact completeness property

for p in relation to S.

Proof. Let’s consider that at t , S f = f aul t y(FS) (i.e., all failures of processes in S al-

ready took place) and that all the ALIV E messages (heartbeats) sent by these faulty

processes before they crashed were delivered to p. Thus, after t , p will receive no more

ALIV E messages from processes of S f . Then, ∀q ∈ S f , in the next expiration of the

timer[q] after t , q will be removed from tr usted (line 7). Moreover, since p will receive

no more ALIV E messages from q , line 5 will never be executed for q anymore and,

therefore, q will nevermore be included in tr usted . Therefore, ∃t ′ > t ,∀t ′′ ≥ t ′,∀q ∈
f aul t y(FS) : q ∉ tr ustedp (t ′′).
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Lemma 10. If S is a W-ET or S-ET system, p is correct, and q ∈ cor r ect (FS) is linked to

p by a ♦−t i mel y, there is a time t after which q is always trusted by p.

Proof. Let’s denote Tq the stabilization time of the link q from p, i.e., ∀t ≥ Tq , if q sends

a message m to p, then q receives m by time t +δ. Then, when q sends a message to p

at t ≥ Tq , and p receives the message at t1 > t , two cases may happen:

• the next timer of q expires after t1 (Task T1). In this case, q will be added to

tr usted (line 5) and the timer of q restarted;

• the current timer of q expires before t1: p removes q from tr usted (line 7).

Then, the timeout value of q is incremented (line 9) and the timer is restarted.

Since q keeps on sending ALIV E messages to p and t i mer [q] increases at every

expiration of q’s timer, there exists a time t2 > Tq such that t i mer [q] ≥ δ and then Task

2 will nevermore be executed by p for q and, ∀t3 ≥ t2, upon every q ’s message reception

by p, task T1 will be executed for q . Therefore, q will remain forever in tr usted .

Theorem 7. If S is a S-ET system and p is correct, then, for Algorithms 9 and 10, there is

a time after which S is either always tr usted or always untr usted for p.

Proof. Since in S-ET, all links are ♦−t i mel y , from Theorem 6 and Lemma 10, Algo-

rithms 9 and 10 ensure both the Impact compl etenessS
p and the Eventual impact

weak accur ac yS
p properties. Thus, ∃t ,∀t ′ ≥ t ,∀q ∈ cor r ect (FS), q ∈ tr usted and,

∀q ∈ f aul t y(FS), q ∉ tr usted . Hence, ∀t ′ ≥ t , tr usted never changes as well as the

trust level value rendered by the FD. Consequently, if at t , the trust level output ≥
thr eshol d S∗

p (resp., trust level output < thr eshol d S∗
p ), S is tr usted (resp., untr usted)

for p at t , and it will remain forever tr usted (resp., untr usted) for p.

Theorem 8. In W-ET-Π systems, Algorithms 9 and 10 implement a FD of class ♦I S.

Proof. If the system is W-ET-Π, S = Π, all processes of Π execute Algorithms 9 and 10

and ∃p ∈ cor r ect (F ) such that∀q ∈Π, q 6= p, p is linked to q by a♦−t i mel y link. Thus,

∀q∈ cor r ect (F ), Lemma 10 holds for q and Eventual impact weak accur ac yq
Π is sat-

isfied. From Theorem 6, ∀q ∈ cor r ect (F ), Impact compl etennessΠq is also satisfied.

Therefore, the algorithms implement a FD of class ♦I S.
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Theorem 9. In S-ET-Π systems, Algorithms 9 and 10 implement a FD of class ♦I P.

Proof. If the system is S-ET-Π, S =Π and all processes ofΠ execute Algorithm 9 and 10.

Hence, since the system is a S-ET, from Theorem 6 and Lemma 10, ∀p ∈ cor r ect (F ),

both Impact compl etenessp
Π and Eventual i mpact weak accur ac yp

Π are satis-

fied respectively. Therefore, the theorem holds.

Theorem 10. If PR(I T )S
p (resp., PR(♦I T )S

p ) holds, the system S is always (resp., eventu-

ally always) trusted by p.

Proof. if PR(I T )S
p (resp., PR(♦I T )S

p ) holds, ∀t ≥ 0 (resp., ∃t1,∀t ≥ t1), tr usted ∈ PS

and, therefore, S is trusted by p.

5.3 Implementation Under PS−accessi bi l i t y Assumptions

In this section we present two different implementations of the Impact FD: the first

one is based on the message-pattern approach and the second one on the timer-based

approach. Both of them use query-response message rounds and were conceived to

exploit the flexibility capacity of the Impact FD.

In chapter 4 we introduced the concept that if process p is PS−accessi bl e (or

♦PS−accessi bl e) the system S will always (or eventually always) be trusted by p, as

well as two properties, PR(I T )S
p and PR(♦I T )S

p , that characterize the necessary stabil-

ity condition of S that ensures confidence (or eventual confidence) on it.

A correct process p is PS−accessi bl e (resp., ♦PS−accessi bl e) if every query broad-

cast by p obtains from the beginning (resp., eventually) a set Q of responses that sat-

isfy the degree of confidence in S, i.e., the trust level of S is greater or equal than the

thr eshol d value. In the case of the message pattern approach, this property implies

that a query broadcast by p receives responses from a set of processes Q whose sum of

impact factors satisfy the thr eshol d and these responses are always (resp., eventually

always) winning responses, i.e., arrive before the other responses. In the case of the

timer-based approach, there exists a set Q of processes whose sum of impact factors

satisfies the thr eshol d and a query broadcast by p always (or eventually always) re-

ceives timely (i.e., within a known bounded delay) responses from each process of Q.
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Note that in both implementations the set Q of processes is not fixed, i.e., can change

at each round, which is in accordance with the flexibility property of the Impact FD.

We consider that the monitor process p ∈ cor r ect (F ) and p ∉ S. It repeatedly issues

queries by calling the primitive broadcast(m) which sends a copy of the QU ERY mes-

sage over every link from p to q , ∀q ∈ S. The time interval between two consecutive

rounds of QU ERY messages is finite and arbitrary (resp., bounded) for the message

pattern (resp., timer-based) implementation. The reception of the QUERY message is

handled, for both implementations, by Algorithm 11 (Task T1), which is executed by

every process q ∈ S. Upon the reception of (QUERY, rp ) message, where rp is the round

identifier (line 2), q responds to p with a RESP message, identified by the same round

value rp (line 3).

Algorithm 11 Impact FD Algorithm for q ∈ S

1: Begin
Task T1

2: Upon reception of (QU ERY ,rp ) from p do
3: send(RESP,rp ) to p
4: end
5: End

Both algorithms (message-pattern and timer-based) use the following variables:

• trusted, tmp_tr usted : sets that keep those processes considered not faulty by

the monitor process p;

• PS: set composed of all possible subsets of processes, whose sum of their impact

factor values are equal or greater than thr eshol d S∗
p .

5.3.1 Message-pattern Implementation

Algorithm 12 presents the message pattern approach implementation of the Im-

pact FD of process p with respect to S in a R-AS system (See Section 5.1).

Process p receives S∗, the threshold value of each subset of S∗ (the set thr eshol d S∗
),

and the maximum number of messages to wait (α). The latter is a set α= {α1, . . . ,αm},

where each αi corresponds to a bound value on the number of messages to wait from

the processes of subset S∗
i . For instance, if fi denotes the maximum number of failures

of processes of subset S∗
i , αi ≤ |S∗

i |− fi (for i = 1 to m).
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Algorithm 12 Message pattern implementation for p

1: Begin
Input

2: S∗, thr eshol d S∗
, α

Init
3: rp = 0
4: tr usted =;
5: tmp_tr usted =;
6: for i = 1 to |S∗| do
7: tr usted = tr usted ∪ {qi }
8: end for
9: PS = T Power Set (S∗, thr eshol d S∗

)

Task T1
10: loop
11: br oadcast (QU ERY ,rp )
12: w ai t unti l (|tmp_tr ustedi | ≥αi ∀i ∈ [1,m]) or (tmp_tr usted ∈ PS)
13: tr usted = tmp_tr usted
14: tmp_tr usted =;
15: rp = rp +1
16: end loop

Task T2
17: Upon reception of (RESP,rq ) from q do
18: if rq = rp then
19: tmp_tr usted ∪ {q}
20: end if
21: end

Task T3
22: Upon invocation of Impact () do
23: return Tr ust_level (tr usted ,S∗)
24: end

25: End
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The algorithm has three tasks. At the initialization, tr usted is initialized with the

processes of S and both rp and tmp_tr usted are reset. Then, function T Power Set

is carried out to generate the set PS which contains all possible subsets formed by

processes of S that satisfy the thr eshol d S∗
. The variable tmp_tr usted , at every query

round, gathers the identifier and impact factor of those processes that answered to the

current query.

Task T1 of p is composed by an infinite loop. First, p sends message (QUERY, rp ) to

all processes of S (line 11). Then, at each round (rp ), p waits for at least αi responses

(1 ≤ i ≤ m) or until tmp_tr usted is a subset of PS (i.e., contains processes whose sum

of impact factor values satisfy the thr eshol d S∗) (line 12). Finally, the round counter

(rp ) is incremented (line 15).

Task T2 is responsible for the reception of messages (RESP, rq ) sent by a process q

of S. If the round rq value of the RESP message is equal to rp , then q is added to the

tmp_tr ustedq set.

Task T3 handles the invocation of the Impact() function (line 22), which computes

and return the trust level related to the trusted processes (line 23).

5.3.1.1 Sketch of Proof

Lemma 11. Process p never blocks forever in a query-response round.

Proof. The only point that p could block forever would be in the wait statement of Task

T1 (line 12).

Let’s consider round rp and that the system is blocked in the wait statement. Let’s

also suppose that the system is trusted in round r and that the set tmp_tr usted by

Task T2 within round rp is also included in PS. In this case, the second condition of

the wait becomes true and T1 will not block. Let’s now suppose that p is blocked on

the wait statement and that the second condition does not hold, i.e., p will not be

unblocked because of it. However, for every subset S∗
i , p waits for αi messages (1 ≤ i ≤

m), where fi is the maximum number of processes of S∗
i that can fail and αi ≤ |S∗

i |− fi .

Therefore, as the channels are reliable and, even if fi nodes of each S∗
i have failed, p will

receive αi responses (1 ≤ i ≤ m) which will render the first condition true, and p will

be unblocked. In other words, sinceαi is bounded and no query or response messages

are lost, such a condition always ensures the progress of the failure detector.
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Theorem 11. Algorithm 12 satisfies the strong completeness property.

Proof. From Lemma 11, task T1 never blocks. Let’s consider a process q that crashes.

Then, after some time t after the crash of q , all the RESP messages sent by q before it

crashed have been received or discarded by p. Thus, after t , p will no more receive any

RESP message from q and, therefore, q will never be included again in tmp_tr usted

after the latter was reset in a round at or after t (line 14). Consequently, there exists a

time after t which q will permanently not in tmp_tr usted and, consequently, not in

tr usted , i.e., q is permanently suspected. Since the same reasoning can be applied to

all faulty processes, every process that crashed eventually permanently will not belong

to tr usted and, thus, strong completeness is satisfied.

Lemma 12. At every query rp issued by p, tr usted is updated with the identifier of

winning processes which respond to query rp .

Proof. From Lemma 11, task T1 never blocks and, thus, line 13 is always executed. This

line is the only point where tr usted is updated with tmp_tr usted after initialization

(line 7). Furthermore, tmp_tr usted is set to empty at every query (line 14) and only

processes whose response concerns query rp are added to tmp_tr usted at round rp

(lines 18 - 19) at task T2. Hence, at every query round rp , tr usted is updated with the

identifiers of winning processes which respond to query rp .

Lemma 13. If p is PS−accessi bl e (resp., ♦PS−accessi bl e), Algorithm 12 ensures that

PR(I T )S
p (resp., PR(♦I T )S

p ) holds for p.

Proof. For t = 0, tr usted = S. Let Q(r) be the set of winning responses at round r and

r0 be the first round such that tr usted = tmp_tr usted ∈ PS. Let then consider that

∀r ≥ r0, for every Q(r ), tr usted ∈ PS which characterize the PS−accessi bi l i t y of p.

In this case, since from Lemma 12, tr usted is updated at every query round with the

identifiers of processes of Q(r ), tr usted = tmp_tr usted ∈ PS. Let t be the time when

tr usted is updated in round r0 (line 7 or line 13). Therefore, ∀t ′ ≥ t , when the impact

FD is invoked, PR(I T )S
p (resp., PR(♦I T )S

p ) holds.

Theorem 12. Let tr ust_level S∗
p (t ) be the output value returned by Algorithm 12 at

t . If p is PS−accessi bl e (resp., ♦PS−accessi bl e), ∀t ′ ≥ 0 (resp. ∃t ∈ T,∀t ′ ≥ t ),

tr ust_l evel S∗
p (t ′) ≥ thr eshol d S∗

.
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Proof. The proof follows directly from Lemma 13.

5.3.2 Timer-based Implementation

Algorithm 13 shows a timer-based implementation of the Impact FD of process p

with respect to S in a R-W-δ system (See Section 5.1). The latter includes the assump-

tion that there exists a known upper bound δ on the round-trip delay of messages, but

it might not hold on all pairs of processes at all times. Processes are considered syn-

chronous and process p issues a query periodically at every ∆ units of time (∆> δ).

Process p monitors the processes of S and receives as input the set S∗, the

thr eshol d S∗
, the interval time∆ to send the broadcast message, and the upper bound

δ on the round-trip delay of messages for timely links.

If p ∈ cor r ect (F ) is PS−accessi bl e (resp., ♦PS−accessi bl e), it always (resp. even-

tually always) receives RESP messages, in a delay of time smaller than δ, from a set Q

of processes whose impact factors ensure that the respective tr usted ∈ PS.

The algorithm has four tasks. At the initialization, tr usted is initialized with the

processes of S. Then, the function T Power Set is carried out to generate the set PS

which contains all possible subsets formed by processes of S that satisfy the thr eshol d S∗

(line 7). The variables rp and timer t i meout are also initialized.

At every round rp , Task T1 of p reset tmp_tr usted and increments the round

counter (lines 10-11). Periodically (interval of ∆ time units), process p sends to the

processes in S a QU ERY message (line 12) and starts the timer t i meout (line 13).

In Task T2, when process p receives a RESP message sent by q , if round rq is equal

to rp and q is not in tmp_tr usted , q is added to tmp_tr usted (line 15). At this point,

if tmp_tr usted is a subset of PS (i.e., contains processes whose sum of impact factor

values satisfy the thr eshol d S∗
) (line 18), than the variable tmp_tr usted is assigned

to tr usted and the t i meout is stopped.

Task T3 is the same of Algorithm 12. It handles the invocation of the Impact() func-

tion by p, which returns the sum of impact factor of the trusted processes (line 24).

Upon the expiration of the timer t i meout (Task T4), p assigns its current knowl-

edge about trusted processes (i.e., tmp_tr usted) to tr usted .

5.3.2.1 Sketch of Proof
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Algorithm 13 Timer-based implementation for p

1: Begin
Input

2: S∗, thr eshol d S∗
, ∆, δ

Init
3: tr usted =;
4: for i = 1 to |S∗| do
5: tr usted = tr usted ∪ {qi }
6: end for
7: PS = T Power Set (S∗, thr eshol d S∗

)
8: rp =−1
9: t i meout = δ

Task T1 - Repeat forever every ∆ time unit
10: tmp_tr usted =;
11: rp = rp +1
12: br oadcast (QU ERY ,rp )
13: st ar t t i meout

Task T2
14: Upon reception of (RESP,rq ) from q do
15: if rq = rp then
16: tmp_tr usted ∪ {q}
17: end if
18: if tmp_tr usted ∈ PS then
19: Stop ti meout
20: tr usted = tmp_tr usted
21: end if
22: end

Task T3
23: Upon invocation of Impact () do
24: return Tr ust_level (tr usted ,S∗)
25: end

Task T4 - When timeout expires
26: Upon expi r ati on o f t i mer do
27: tr usted = tmp_tr usted
28: end
29: End



82

Theorem 13. Algorithm 13 satisfies the strong completeness.

Proof. The proof is the same of Theorem 11.

Lemma 14. At every query rp issued by p, tr usted is updated with the identifiers of the

processes which respond to query rp within at most δ units of time.

Proof. At every new query rp of task T1, p starts a timer (line 13). Furthermore,

tmp_tr usted is set to empty at every query and only processes whose response is

timestamped with rp is added to tmp_tr usted at round rp at task T2. As ∆ > δ, a

new query will not be issued before the timer expires or is stopped. If the set of Q

RESP messages received by this query are such that Q ∈ PS, the timer is stopped and

tr usted = tmp_tr usted = Q by Task T2 (lines 19 - 20). Otherwise, the timer will ex-

pires (Task T4) and tr usted will be updated with tmp_tr usted set which contains the

identifiers of processes that sent RESP messages related to query rp (line 27) within a

delay of δ.

Lemma 15. If p is PS−accessi bl e (resp., ♦PS−accessi bl e), Algorithm 13 ensures that

PR(I T )S
p (resp., PR(♦I T )S

p ) holds for p.

Proof. From Lemma 14, tr usted is updated at every query. Let t0 ∈ T . For every query

QU ERY message broadcast by p at t ≥ t0, it receives a RESP message from processes

of a set Q of processes such that tr usted ∈ PS within t + δ. In this case, the timer

started in every query at line 13 will never expire and, therefore, Task T4 will be never

executed ∀t ′ ≥ t . On the other hand, since at t , tr usted ∈ PS, the test of line 18 is

always true. Hence ∀t ′ ≥ t , when the impact FD is invoked PR(I T )S
p (resp., PR(♦I T )S

p )

holds for p.

Theorem 14. Let tr ust_level S∗
p (t ) be the output value returned by Algorithm 13 at

t . If p is PS−accessi bl e (resp., ♦PS−accessi bl e), ∀t ′ ≥ 0 (resp. ∃t ∈ T,∀t ′ ≥ t ),

tr ust_l evelp
S∗

(t ′) ≥ thr eshol d S∗
.

Proof. The proof follows directly from Lemma 15.
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6 PERFORMANCE EVALUATION

In this chapter, we first describe the environment in which the experiments were

conducted and the QoS metrics used for evaluating the results. Then, we discuss some

of the results in different systems and configurations of node sets with regard to both

the impact factor and the threshold.

Our goal is to evaluate the QoS of the Impact FD: how fast it detects failures and

how well it avoids false suspicions. With this purpose, we exploit a set of metrics that

have been proposed by CHEN; TOUEG; AGUILERA (2002) and we compare the results

of Impact FD with an approach that monitors processes individually using Chen’s FD

(CHEN; TOUEG; AGUILERA, 2002). We conducted a set of experiments, considering

two different systems: 1)AS: a system where all links are lossy asynchronous; (b) W-ET :

a system where some links are ♦−t i mel y and the others are lossy asynchronous.

6.1 Environment

Our experiments are based on real trace files, collected from ten nodes of PlanetLab

(PLANETLAB, 2014), as summarized in Table 6.1. The PlanetLab experiment started

on July 16, 2014 at 15:06 UTC, and ended exactly a week later. Each site sent heartbeat

messages to other sites at a rate of one heartbeat every 100 ms (the sending interval).

We should point out that these traces of PlanetLab contain a large amount of data con-

cerning the sending and reception of heartbeats, including unstable periods of links

and message loss which induce false suspicions. Thus, such traces can characterize

any distributed system that uses FDs based on heartbeat. Furthermore, since our ex-

periments were conducted using the PlanetLab traces, all of them reproduce exactly

the same scenarios of sending and receiving of heartbeats by the processes.
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Table 6.1: Sites of Experiments

ID Site Local

0 planetlab1.jhu.edu USA East Coast
1 ple4.ipv6.lip6.fr France
2 planetlab2.csuohio.edu USA, Ohio
3 75-130-96-12.static.oxfr.ma.charter.com USA, Massachusetts
4 planetlab1.cnis.nyit.edu USA, New York
5 saturn.planetlab.carleton.ca Canada, Ontario
6 PlanetLab-03.cs.princeton.edu USA, New Jersey
7 prata.mimuw.edu.pl Poland
8 planetlab3.upc.es Spain
9 pl1.eng.monash.edu.au Australia

For the evaluation of Impact FD, we defined S = {1,2,3,4,5,6,7,8,9} and site 0 as the

monitor node (p ∉ S).

Table 6.2 gives some information about the heartbeat messages received by site 0

(the monitor node). We observe that the mean inter-arrival times of received heart-

beats is very close to 100 ms. However, for some sites, the standard deviation is very

high, like for site 5 which the standard deviation was 310.958 ms with a minimum inter-

arrival time of 0.006 ms, and a maximum of 657,900.226 ms. Such deviation probably

indicates that, for a certain time interval during execution, the site stopped sending

heartbeats and started again afterwards. Note also that site 2 stopped sending mes-

sages after approximately 48 hours and, therefore, there are just 1,759,990 received

messages.

Table 6.2: Sites and heartbeat sampling

Site Messages Min (ms) Max (ms) Mean (ms) Stand. Dev.(ms)

1 5,424,326 0.025 26,494.168 100.058 19.525
2 1,759,989 0.031 509.093 100.415 9.275
3 5,426,843 0.027 1,227.349 100.012 1.709
4 5,414,122 0.003 1,193.276 100.247 18.595
5 5,413,542 0.006 657,900.226 100.258 310.958
6 5,426,700 0.003 3,787.643 100.015 2.557
7 5,424,117 0.006 59,603.188 100.062 31.229
8 5,424,560 0.027 11,443.359 100.054 100.714
9 5,422,043 0.004 30,600.076 100.100 18.798

The implementation of the Impact FD used in our evaluation experiments is based

on Algorithms 9 and 10, presented in Section 5.2. For the estimation of the timeout

value of Chen’s estimation algorithm, the authors suggest that the safety margin β

should range from 0 to 2500 ms. For all experiments, we set the window size to 100
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samples, which means that the FD only relies on the last 100 heartbeat message sam-

ples for computing the estimation of the next heartbeat arrival time.

6.1.1 Evaluation of Sites’ Stability

We evaluated the stability of sites, considering that the traces could correspond to

either an AS system or W-ET system. For the first case, the value AS was assigned to

the model parameter of Algorithm 9 while for the second case, the same parameter

was set to W-ET. Each of the sites of S is considered individually and not as a whole

system. The impact value of sites and the threshold values are not concerned for the

experiments.

The β value of Chen’s algorithm was set to 400ms. We chose such a value because it

is an acceptable safety margin for detection time and is not too aggressive; otherwise

the failure detector would be prone to too many mistakes. The stability of sites and the

corresponding links to the monitor were evaluated during the whole trace period for

the AS system and during just the first 24 hours of the trace period for the W-ET system.

AS System: Figure 6.1 shows the cumulative number of mistakes, i.e., false suspicions,

made by the monitor site 0 for each site of S. We can observe that site or link peri-

ods of instability entail late arrivals or loss of heartbeats and, therefore, mistakes by

the monitor site. For example, site 9 had a large number of cumulative mistakes at

hour 48. After that, there is a stable period with regard to this site. On the other hand,

around this time, site 2 stopped sending messages since it crashed and, consequently,

the monitor node made no more mistakes about it after this time. Finally, we can say

that, considering the whole period, sites 3 and 6 (resp., 8 and 9) are, in average, the

most stable (resp., unstable) sites.

W-ET System: In Algorithm 8 (Task T2), when the system is W-ET, Chen’s heartbeat

arrival estimation value is incremented by η, whenever a false suspicion occurs. How-

ever, in order to prevent this estimation from increasing too fast when there is a period

of high instability, which could increase the detection time considerably, we consid-

ered that the value of the timer (line 9) will be incremented by η at every µ heartbeat

arrivals, provided that during the period of theseµ heartbeat arrivals, one or more false

suspicions took place. For the experiment, we considered µ equals to 10 and η= 1ms .

Note that when the heartbeat arrival estimation reaches a value which is greater
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Figure 6.1: AS System: Cumulative number of mistakes of each site.

than the transmission delay limit for links with ♦−t i mel y behavior, the monitor site

does not make anymore mistakes for the related sites. Moreover, for unstable sites, as

the heartbeat arrival estimation value will also be incremented by η in case of false sus-

picions, such an increment will be responsible for decreasing the number of mistakes

for these sites when compared to an AS system. However, in this case, at the expense

of higher false suspicion detection time.

Figure 6.2 shows the cumulative number of mistakes that the monitor process made

for each site in the first 24 hours of the traces. We can observe that there are links which

behave ♦−t i mel y while the others are lossy asynchronous. The failure detector did

not make mistakes related to site 4. For sites 2 and 3, it did only 1 and 2 mistakes, re-

spectively, while for site 6, it did 99 mistakes during the first hour, and then no more

mistakes. Although some sites have had some periods of stability (1, 5, 8 and 9), site 0

made mistakes related to them until almost the end of these execution. On the other

hand, it did no mistakes for site 7 after hour 9. In summary, we can consider that site

0, the monitor site, is connected by ♦−t i mel y links to sites 2, 3, 4 and 6, and by lossy

asynchronous links to 1, 5, 7, 8, and 9.

6.1.2 Evaluation of Heartbeat Arrival Times

The goal of this section is to show the behavior of the arrival times when the timer

expires and the failure detector does not receive the heartbeat message. For the first 24

hours, we evaluated the behavior of the three arrival times at si te 0 related to heart-

beat messages of si te 1 with two different values to β (100 and 400 ms). We chose
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Figure 6.2: W-ET System: Cumulative number of mistakes of each site.

si te 1 because it has many periods of instability. We consider that si te 1 and si te 0 are

alternately connected by lossy asynchronous or ♦−t i mel y links.

We evaluated three arrival times: 1) arrival of the heartbeat; 2) the estimated arrival

time considering that the link is lossy asynchronous; 3) the estimated arrival time con-

sidering that the link is ♦−t i mel y . In order to compute the latter, we set η= 1ms and

the number of heartbeats before incrementing the heartbeat arrival estimation value,

in case of false suspicions, to 100 (µ= 100). Figures 6.3 and 6.4 show the time difference

between the arrival time of the previous heartbeat and the above three arrival ones (in

ms): 1) the difference in milliseconds between the arrival time of the last heartbeat and

the previous one; 2) the difference in milliseconds between the estimated arrival time

(τq =β+E Aq ) and the arrival time of the previous heartbeat, considering the link lossy

asynchronous (estimation LA); 3) the number of milliseconds elapsed between the es-

timated arrival time (τq = β+E Aq +η) and the arrival time of the previous heartbeat,

considering the link ♦−t i mel y (estimation ET).

Figures 6.3 and 6.4 show the behavior of times when the timeout expires for β =
100ms and β= 400ms respectively till hour 24. In order to simplify at not overloading

the figures, the points correspond only to the times where mistakes took place. Figure

6.4 has fewer points than Figure 6.3 because the number of mistakes drops consider-

ably due to a higher β value.

Figure 6.3 summarizes the time differences for β = 100ms. The monitor si te 0

made 807 (resp., 592) mistakes when the link is lossy asynchronous (resp. ♦−t i mel y).
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Note that at several points, the estimated arrival time for the ET estimation is higher

than the arrival time of the heartbeat while, in the LA estimation, the difference be-

tween them is very small (1 or 2 ms), specially from time 6 to 21. Thus, both lines in

the figure overlap but the estimation arrival time is often below the arrival one which

explains the high number of mistakes. At times 1, 4, 6, 21, and 23, which correspond to

periods of instability, the arrival time of the heartbeat is much higher than the estima-

tion one for the LA estimation.

Figure 6.3: Behavior of the arrival times when timeout expires - β= 100ms, µ= 100.

Contrarily to Figure 6.3, the number of mistakes drops to 168 and 166 mistakes, for

ET and LA estimations respectively as shown in Figure 6.4. Therefore, since they are

almost equal, the estimated arrival times for the lossy asynchronous and ♦−t i mel y

are also quite close. Similarly to Figure 6.3, the mistakes are concentrated in periods of

great instability (1, 4, 6, 21, and 23).

6.2 QoS Metrics

First, let’s remember that the goal of the Impact FD is to inform if a system is “trusted”

or “untrusted”. This information can be deduced by comparing the output tr ust_l evel

of the Impact FD with the thr eshol d . Thus, we say that the output of the Impact FD

of p is correct if either, for each subset of S∗ (1 ≤ i ≤ m), tr ust_l eveli >= thr eshol di

and S is actually trusted, or ∃ i such that tr ust_leveli < thr eshol di and S is actually

untrusted. Otherwise, the FD made a mistake.

For evaluating the Impact FD, we used three of the QoS metrics proposed in (CHEN;
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Figure 6.4: Behavior of the arrival times when timeout expires - β= 400ms, µ= 100.

TOUEG; AGUILERA, 2002): detection time, average mistake rate, and query accuracy

probability. Considering that p monitors S, the QoS of the Impact FD at p must take

into account the transitions between “trusted” to “ untrusted” states of S.

In the case of the Impact FD, the detection time (TD ) of p in relation to S is the time

elapsed till the monitor process reports a suspicion that leads to a status transition in

S from trusted to untrusted. To this end, for each freshness point of a process q in

S, it is necessary to check which process failures would lead to a state transition of S

from trusted to untrusted and then compute the detection time TD for each of these

processes. The latter is the time elapsed between the current freshness (τi+1) and the

last heartbeat (Hbi ) with respect to the previous freshness point, i.e., τi+1 −Hbi , from

each of these processes. If there is more than one process q ∈ S which could lead to the

transition, i.e., S f = q ∈ tr ustedi |(tr ust_leveli − Impact (q)) < thr eshol di , the TD in

relation to S is the greatest of them: TD = max(τi+1 −Hbi ), ∀q ∈ S f .

Figure 6.5 shows an example where S∗ has just one subset with three processes

whose impact factor is 1. The thr eshol d S defines that at least two processes must be

correct. Note that at τi+3, process p did not receive the heartbeat message from q1 and,

therefore, p removes it from its trusted set (tr ustedp = {{
〈

q2,1
〉

,
〈

q3,1
〉

}}). However, S

remains trusted for p because the trust level satisfies the threshold. At freshness point

τi+5, FD verifies if the failure of any of the processes of tr ustedp (q2 and q3) can lead

to S transition (tr ust_level1 < thr eshol d1). For this purpose, p computes the TD of
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each of the two processes. The TD in relation to S is the greatest among TD of q2 and

TD of q3. Since p did not receive a heartbeat from q3, S becomes untrusted.

Figure 6.5: Transitions between “trusted” and “untrusted” states.

6.3 Asynchronous System (AS)

For this evaluation we consider an AS, i.e., links are lossy asynchronous. Table 6.3

shows five configurations with regard to impact factor values that have been consid-

ered for S∗ in the experiments. The sum of the impact factor of the processes is 90 for

all configurations.

6.3.1 Experiment 1 - Query Accuracy Probability

The aim of this experiment is to evaluate the Query Accuracy Probability (P A) with

different threshold values (64, 70, 74, 80, and 83) and different impact factor configu-

rations (Table 6.3). The safety margin was set to 400ms (β=400ms).

Figure 6.6 shows that in most cases the P A decreases when the threshold increases.
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Table 6.3: Set Configurations (S∗)

Config Impact Factor of each site

S∗ 0 {{
〈

q1,7
〉

,
〈

q2,3
〉

,
〈

q3,20
〉

,
〈

q4,20
〉

,
〈

q5,3
〉

,
〈

q6,20
〉

,
〈

q7,3
〉

,
〈

q8,7
〉

,
〈

q9,7
〉

}}
S∗ 1 {{

〈
q1,7

〉
,
〈

q2,20
〉

,
〈

q3,20
〉

,
〈

q4,3
〉

,
〈

q5,3
〉

,
〈

q6,20
〉

,
〈

q7,3
〉

,
〈

q8,7
〉

,
〈

q9,7
〉

}}
S∗ 2 {{

〈
q1,20

〉
,
〈

q2,7
〉

,
〈

q3,3
〉

,
〈
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It should be remembered that the threshold is a limit value defined by the user and if

the FD trust level output value is equal to, or greater than, the threshold, the confidence

on the set of processes is ensured. Hence, the results confirm that when the threshold

is lower, the Query Accuracy Probability is higher.

Figure 6.6: AS System: P A vs. threshold with different set configurations (S∗).

On the one hand, except for threshold 83, “S∗ 0” configuration has the highest P A

for most of the thresholds due to the assignment of high (resp., low) impact factors for

the most stable (resp., unstable) sites. On the other hand, “S∗ 2” and “S∗ 4” have the

lowest P A since unstable sites have high impact factor values assignment. For instance,

in “S∗ 2” the high impact factor value of unstable sites 8 and 9 with standard deviation

of 100 and 18 ms respectively degrades the P A of this set.

“S∗ 4” shows a sharp decline of the P A curve when the threshold = 83. This behavior

can be explained since, in this set configuration, all sites have the same impact factor

(10) which implies that every false suspicion renders the trust_level smaller than the

threshold (83), increasing the mistake duration. Therefore, the Query Accuracy Proba-

bility decreases.

Notice that site 2 failed after approximately 48 hours. Thus, after its crash, the FD
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output, which indicates trust_level smaller than the threshold, is not a mistake, i.e. it is

not a false suspicion. Hence, in “S∗ 1”, where the impact factor of site 2 is 20 (high), the

P A is constant for a threshold greater than 70: after the crash of site 2, the FD output

is always smaller than the threshold and false suspicions related to other sites do not

alter it. The average mistake duration in the experiment is thus smaller after the crash,

which improves the P A.

Finally, we compared the P A of the Impact FD and a FD approach that monitors

processes individually by applying Chen’s algorithm with WS=100 and β=400ms. For

the latter, the metric is the average of the P A value of all sites of S: PA =
∑n

x=1 PAx

n , for

n = 9 and x equals to the index of each site in S. Thus, the obtained mean P A (PA)

is equal to 0,979788. This result shows that, regardless of the set (S∗) configuration,

the Impact FD has a higher P A than Chen’s FD since the former has enough flexibil-

ity to tolerate failures, i.e., the mistake duration only starts to be computed when the

trust_level provided by Impact FD is smaller than the threshold, in contrast with indi-

vidual monitoring, such as that by Chen FD, where every false suspicion increases the

mistake duration.

The results of this experiment highlight the fact that the assignment of heteroge-

neous impact factors to nodes can degrade the performance of the failure detector,

especially when unstable sites have a high impact factor.

6.3.2 Experiment 2 - Query Accuracy Probability vs. Detection time

In the second experiment, we evaluated the average Query Accuracy Probability

(PA) regarding the average detection time (TD ) for different threshold values (64, 70,

80, and 83). In order to obtain different values for the detection time, we varied the

safety margin (Chen’s estimation) with intervals of 100 ms, starting at 100 ms. For this

experiment, we chose the “S∗ 0” configuration since it presented the best P A in Exper-

iment 1. We also evaluated the PA and TD for Chen’s algorithm, which outputs the set

of suspected nodes. For the latter, the TD is computed as the average of the individual

TD of all sites of S: T D =
∑n

x=1 T Dx

n , for n = 9 and x equals to the index of each site in S.

Figure 6.7 shows that for a high threshold and detection time close to 200 ms, the

PA of the Impact FD is quite small, independently of the threshold, because the safety

margin (used to compute the expected arrival times) is, in this case, equal to 100 ms,



93

which increases both the number of false suspicions and mistake duration. However,

when TD is greater than 230 ms, the PA of Impact FD is considerably higher than that

of Chen. After a detection time of approximately 400 ms, the PA of Impact FD becomes

constant regardless of the detection time and threshold, and gets close to 1. Such a

behavior can be explained since the higher the safety margin, the smaller the number

of false suspicions, and the shorter the mistake duration which confirms that when the

timeout is short, failures are detected faster but the probability of having false detec-

tions increases (SATZGER et al., 2007).

Figure 6.7: AS System: PA vs. TD with different thresholds.

6.3.3 Experiment 3 - Average Mistake Rate

In this experiment, we evaluated the average detection time (TD ) vs. the mistake

rate (λR ) (mistakes per second). For Chen’s algorithm, the λR is computed as the av-

erage of the individual λR of all sites of S: λR =
∑n

x=1λR

n , for n = 9 and x equals to the

index of each site in S. We considered the “S∗ 0” configuration and the mistake rate is

expressed in a logarithmic scale.

We can observe in Figure 6.8 that the mistake rate of the Impact FD is high when the

detection time is low (i.e., smaller than 400 ms) and the threshold is high (i.e., from 23

to 25). Such a result is in accordance with Experiment 2: whenever the safety margin

is small and threshold tolerates fewer failures, the Impact FD makes mistakes more

frequently. In other words, the mistake rate decreases when the threshold is low or the

detection time increases.



94

Figure 6.8: AS System: λR vs. TD with different thresholds.

6.3.4 Experiment 4 - Cumulative Number of Mistakes

Figure 6.9 shows the cumulative number of mistakes for “S∗ 0” during the whole

trace period, considering β=400ms and threshold value equals either to 80 or 83.

Figure 6.9: AS System: Cumulative number of mistakes for “S∗ 0” configuration.

We can observe in the figure that the cumulative number of mistakes is greater

when the threshold value is equal to 83 (2754 mistakes) when compared to the thresh-

old value equals to 80 (179 mistakes). The former makes few mistakes until approx-

imately the hour 48 (when the site 2 crashed). After that, the number of cumulative

mistakes significantly increases because, since the threshold is high (83) and the fail-

ure of site 2 was detected, false suspicions of any other site induce a trust_level value

smaller than 83 in most cases. For instance, site 8 is highly unstable and has impact
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factor value of 7. Whenever there is a false suspicion about it, after the crash of site 2,

the trust_level value is 80. On the other hand, for the threshold 80, there are fewer in-

stability periods since the crash of site 2 does not have much impact on the confidence

of the system. At hour 48, there is an increase in the cumulative number of mistakes

due to the unstable period of site 9, as shown in Figure 6.1. From hour 50 to 100, the

FD makes fewer mistakes. Such a behavior can be explained since, as observed in the

same figure, all sites, with exception of site 8, also have this same period of stability.

After hour 108, there is a greater number of mistakes which is related to the instability

of sites 1, 7, and 8 (see Figure 6.1).

6.3.5 Experiment 5 - Query Accuracy Probability vs. Time

In this experiment, we divided the execution trace duration by fixed intervals of

time and computed the average Query Accuracy Probability (PA) for each of them. We

chose the “S∗ 0” configuration, β=400ms, and the threshold values of 80 and 83. Sim-

ilarly to the cumulative number of mistakes (Experiment 4), we observe in Figure 6.10

that instability periods have an impact in the PA. For instance, for the threshold = 80,

from hour 108, the cumulative number of mistakes increases very fast. Consequently,

the PA decreases. The period of instability of site 9 is the responsible for the important

reduction of the PA at hour 60 (i.e., from hour 48 to 60) when threshold = 83. A new

degradation of the PA happens at hour 120 (i.e., from hour 108 to 120), due to unstable

periods of the sites 1, 7, and 8.

Figure 6.10: AS System: P A vs. Time.
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6.4 Weak ♦−t i mel y System (W-ET)

In this section, we consider the W-ET system described in Section 6.1.1: site 0, the

monitor site, is connected by ♦−t i mel y links to sites 2, 3, 4 and 6 and by lossy asyn-

chronous links to 1, 5, 7, 8, and 9.

We defined the set S∗ with three subsets and all sites have the same impact factor

(1) :

S∗ = {{
〈

q1,1
〉

,
〈

q3,1
〉

,
〈

q4,1
〉

}, {
〈

q2,1
〉

,
〈

q5,1
〉

,
〈

q6,1
〉

}, {
〈

q7,1
〉

,
〈

q8,1
〉

,
〈

q9,1
〉

}}

The thr eshol d S was defined as follows:

thr eshol d S = {2,2,2}

The thr eshol d S defines that the subsets S1, S2 and S3 must have at least two cor-

rect processes. As this experiment assigns W-ET to model parameter, it uses the η

value and the heartbeat arrival estimation value is incremented by η at every µ heart-

beat arrivals, if false suspicions occurred during this period.

The experiments were carried out just for the first 24 hours of the traces, because

after this time the failure detector does not make more mistakes for the set S∗.

6.4.1 Experiment 6 - Eventually Timely Links vs Asynchronous Links

In this experiment, we compare the results obtained taking into account the above

S∗ configuration and both systems W-ET and AS. The evaluation metrics are shown

in Table 6.4. We set the value of safety margin β to 50ms and η to 50mµ. This safety

margin value is quite aggressive, which, consequently, leads the failure detector prone

to make mistakes. For the W-ET system, we also varied µ : 1, 10, and 100.

The first three rows of the table show the results for the W-ET system and the last

row for the AS system. We can observe that the number of mistakes increases for dif-

ferent values of µ in the W-ET, but it is much smaller when compared to the AS (4689

mistakes). As a consequence, in the AS, the mi st ake r ate is higher and P A is lower.

In contrast, the average mistake duration in the AS (27.70 ms) is smaller than in the

W-ET (around 43 ms). Such a difference occurs because the AS system has a lower

timeout which induces false suspicions more often. Nevertheless, a heartbeat message

may arrive immediately after the expiration of the timeout, generating a short mistake
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time. On the other hand, in the W-ET, the timeout value increases when there are false

suspicions in periods of greater instability where messages take longer to arrive. For

the W-ET system, we can observe that the time of the last mistake was at 64 minutes

(heartbeat number 349,341) whereas in the AS there are mistake occurrence until the

last hour (24h, heartbeat number 7749909). This happens because in the W-ET the

heartbeat arrival estimation value is incremented by η when p falsely suspecting the

process within a period of µ heartbeats, which allows p to eventually get every heart-

beat message from a site before the timeout expires. It is worth remarking that the

number of mistakes reduces drastically, but the TD does not increase in the same rate.

Table 6.4: W-ET vs AS - β= 50ms,η= 500mµ

µ Mistakes
Mistake

rate PA

Avg Mistake
Duration (ms)

Time last
mistake (min)

HB
Number MAX(TD ) (ms) TD (ms)

1 152 0.0017 0.99992 43.36 64 (1h) 349341 312.9 234.5
10 324 0.0037 0.99983 43.69 64 (1h) 349341 263.0 182.0

100 383 0.0044 0.99979 45.18 64 (1h) 349341 256.6 173.9

AS 4689 0.0542 0.99849 27.70 1438 (24h) 7749909 300.0 151.7

Table 6.5 summarizes the results of the experiments considering β = 100ms and

η = 500mµ. When comparing the two tables, we observe that with a less aggressive

safety margin β, the number of mistakes reduces, especially in the AS system (231).

Accordingly, the mi st ake r ate decreases and P A increases in both systems. The last

mistake is around 64 minutes in the W-ET while AS made mistakes until hour 24. The

TD of the AS reduces because it has a higher safety margin and makes fewer mistakes.

For instance, withβ= 50ms, two processes, whose maximum TD is 300ms, that has the

timeout expired, leads the set S∗ to a state untrusted. However, with β= 100 only one

of them is suspected which does not lead a transition of state from trusted to untrusted.

Table 6.5: W-ET vs AS - β= 100ms,η= 500mµ

µ Mistakes
Mistake

rate PA

Avg Mistake
Duration (ms)

Time last
mistake (min)

HB
Number MAX(TD ) (ms) TD (ms)

1 84 0.00097 0.99995 48.35 64 (1h) 349341 339.4 273.7
10 121 0.00140 0.99993 48.28 64 (1h) 349341 264.0 224.0

100 135 0.00156 0.99993 44.53 64 (1h) 349341 262.5 219.6

AS 231 0.00267 0.99989 37,56 1431 (24h) 7708057 240.0 208.0

We also conducted the same experiment with β = 100ms and η = 1ms for the W-

ET system (Table 6.6). We can note that the number of mistakes is reduced. On the
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other hand, with few mistakes, especially withµ= 1, both the average mistake duration

and TD increase. Based on these results, we can conclude that setting µ with a value

greater than 1 is more suitable for this scenario, achieving, therefore, a better trade-off

between detection time and accuracy of the Impact FD.

Table 6.6: W-ET vs AS - β= 100ms,η= 1ms

µ Mistakes
Mistake

rate PA

Avg Mistake
Duration (ms)

Time last
mistake (min)

HB
Number MAX(TD ) (ms) TD (ms)

1 6 0.000069 0.999990 140.00 64 (1h) 349339 910.0 689.5
10 45 0.000520 0.999972 53.07 64 (1h) 349341 460.0 383.9

100 98 0.001133 0.999945 47.99 64 (1h) 349341 291.0 243.9

AS 231 0.002672 0.999899 37.56 1431 (24h) 7708057 240.0 226.7
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7 CONCLUSION

In this thesis, we presented a new unreliable failure detector, the Impact FD, that

provides an output that expresses the trust of the failure detector with regard to the

system (or set of processes) as a whole. The trust is configured by the impact factor

and the threshold which enable the user to define the importance (e.g., degree of relia-

bility) of each node and an acceptable margin of failures respectively. It is thus suitable

for environments where there exist applications which require information on the reli-

ability of the system as a whole, processes can be grouped into different sets based on

some criterion, nodes have different capabilities, and the applications tolerate a cer-

tain margin of failure. Both the impact factor and the threshold render the estimation

of the confidence in the system (or a set of processes S) more flexible. For instance,

in some scenarios, the failure of low impact or redundant nodes does not jeopardize

the confidence in S, while the crash of a high impact factor one may seriously affect it.

Either a softer or a stricter monitoring is, therefore, possible.

We have further defined two properties, PR(I T )S
p and PR(♦I T )S

p , which denote

the capacity of the Impact FD of process p of accepting different sets of responses that

lead to a trusted state of the system S as well as the concept of a PS−accessi bi l i t y and

♦PS−accessi bi l i t y : a correct process p is PS−accessi bl e (resp., ♦PS−accessi bl e)

if every query broadcast by p obtains from the beginning (resp., eventually) a set Q of

responses that satisfy the degree of confidence in S (thr eshol d S∗
). These properties

can be ensured by a query-based and timer-based approaches. Interestingly that, in

both cases, set Q is not fixed and can be different at distinct times which further im-

proves the flexibility property of the Impact FD.

This thesis has also shown that the Impact FD of class IΩ (resp., IΣ) is equivalent

to Ω (resp., Σ) FD. These equivalences are extremely important since Ω (resp., the pair
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〈Ω,Σ〉) is the weakest failure detector that solves the consensus impossibility problem

in asynchronous distributed systems with a majority of correct processes (resp., any

number of failures). Consequently, IΩ and/or IΣ can be these detectors. In addition,

it has been shown that, if there exists a majority of correct processes, Σ is reducible

to ♦I PU and ♦IW U FD is equivalent to Omega FD (Ω), provided that membership is

known.

The Impact FD can have distinct implementations in accordance with the charac-

teristics of the system model and behavior properties. We have provided three algo-

rithms which implement the Impact FD: the first one is a timer-based implementa-

tion for systems where either all links are lossy asynchronous or some or all links are

♦−t i mel y while the others are lossy asynchronous. The second and third ones ex-

ploit the PS−accessi bi l i t y or ♦PS−accessi bi l i t y properties of the monitor process

p. The former is based on a time-free message pattern approach where p waits for

responses from α processes or from a set Q of processes whose responses satisfy the

thr eshol d S∗
. The latter is based on query-response message rounds where p can re-

ceive responses to its broadcast query from a set of processes within a bounded delay

(timely responses) and the responses of this set of processes (or eventually) satisfy the

threshold.

Based on real trace files collected from nodes of PlanetLab (PLANETLAB, 2014), we

conducted extensive experiments aiming at evaluating the Impact FD. These trace files

contained a large amount of data related to the sending and reception of heartbeat

messages, including unstable periods of links and messages, characterizing, there-

fore, distributed systems that use FDs based on heartbeats. The testbed of the experi-

ments comprises various configurations with different threshold values, impact factor

of nodes, and types of links. For evaluation sake, we basically used three of the QoS

metrics proposed in (CHEN; TOUEG; AGUILERA, 2002): detection time, average mis-

take rate, and query accuracy probability. The Impact FD implementation was also

compared to the tradition Chen’s timer-based FD that outputs information about fail-

ure suspicions of each monitored process. Performance evaluation results showed that

the assignment of a high (resp. low) impact factor to more stable (resp. unstable) nodes

increases the Query Accuracy Probability of the Impact FD. Furthermore, we observed

that the Impact FD might weaken the rate of false suspicions when compared to Chen’s
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FD. Additionally, in the experiments carried out considering a W-ET system, it was ob-

served that the number of mistakes reduce drastically when compared with the AS sys-

tem, while the detection time does not increase in the same rate. Such results confirm

the degree of flexible applicability of the Impact FD, that both failures and false suspi-

cions are more tolerated than in traditional FDs, and that Impact FD presents better

QoS than the Chen’s FD if the application is interested in the degree of confidence in

the system (trust level) as a whole.

Among many systems to which the Impact FD can be applied, we present some

examples in Section 1.1: (1) healthcare monitoring with several sensors which have

different levels of relevance, (2) wireless sensor networks (WSNs) that monitor envi-

ronment conditions, (3) large-scale WSNs which group sensor nodes into clusters for

scalability and resource saving reasons, and (4) replicated servers that offer some qual-

ity of service (QoS) such as bandwidth or response time. In addition, the concept of

Impact FD can be incorporated to solutions that require failure detection with regard

to a system (or set of processes) as a whole. In this light, we aim to integrate the Impact

FD as the failure detection mechanism to the self-healing module, currently in devel-

opment, of the Self-healing in Ubiquitous Environments project of the GPPD (Parallel

and Distributed Processing Group). More details about this self-healing module are

presented in the Appendix 2.

7.1 Future Work

We believe that the Impact FD opens interesting research directions for future work.

We highlight some of them:

• Extending the concept of confidence in the system: The tr ust_level is defined

as the sum of the impact factor of all trusted processes of S and the latter is

trusted whenever the tr ust_level value is equal or greater than the thr eshol d

value. As a near future work, we intend to generalize the trust level calcula-

tion as well as its comparison with the threshold. In view of such extension, the

Tr ust_l evel (tr usted ,S∗) function could perform an operation over the impact

factor of the trusted processes other than the sum (e.g., multiplication, average,

etc.) and the threshold would not necessary be a lower bound (e.g., upper bound,

equality, etc.). For instance, suppose that the impact factor of a node corre-
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sponds to the probability that it behaves maliciously. The trust level, in this case,

would express the probability that all nodes of the system behave maliciously.

Thus, the tr ust_level sum operation would be replaced by multiplication oper-

ation and should be smaller than a reliability threshold value;

• Dynamic impact factor: In the definition of the Impact FD, each node has an

impact factor value which does not change. We propose a dynamic impact factor,

i.e., the value of the impact factor of a node can vary during execution, depending

on the current degree of reliability of the node or its current reputation, its past

history of stable/unstable periods, etc;

• Processes recovery and other failure models: The Impact FD considers only

crash failures and the latter are permanent. Inspired by some existing

works that propose FD for omission mode ((DELPORTE-GALLET; FAUCON-

NIER; FREILING, 2005), (CORTINAS et al., 2012), (FERNÁNDEZ-CAMPUSANO

et al., 2016)), byzantine mode ((DOUDOU et al., 1999), (MALKHI; REITER,

1997), (KIHLSTROM; MOSER; MELLIAR-SMITH, 2003), (GREVE et al., 2012)),

or processes recovery ((AGUILERA; CHEN; TOUEG, 2000), (FERNÁNDEZ-

CAMPUSANO et al., 2016), (LARREA; MARTÍN; SORALUZE, 2011)), we could

think of extending the Impact FD to other failure modes and/or consider that

faulty processes can recover. We should point out that in Section 2.2.1, we have

presented different process failure modes in distributed systems. There is an or-

dering relation between them: more severe failure modes cover less severe ones

(Byzantine ⊃ omission ⊃ timing ⊃ crash). Therefore, the extension of tradition

crash failure detectors to more severe failures render their respective failure de-

tector implementation more complex or even unfeasible;

• New Impact FD implementations: The Impact FD algorithms presented in this

thesis considered that nodes are static, uniquely identified, only fail by crash, and

that the membership of the system is known. By changing some of these assump-

tions(e.g., unknown membership, mobile processes, anonymous or homony-

mous processes, etc.) in order to broaden the application domain that can ben-

efit from the Impact FD features and flexibility, new challenges will raise for the

conception and prove of Impact FD algorithms suitable for these new environ-

ments. An implementation of the Impact FD for anonymous systems with un-
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known membership is presented in the Appendix 1;

• Performance evaluation on other type of networks: We conducted experiments

based on real traces files collected from nodes of PlanetLab, a wide area net-

work. We intend to extend the evaluation of the QoS of the Impact FD to dif-

ferent networks such as MANET or LAN, comparing its performance with other

well-known failure detectors;

• Numerical analysis: Considering some application scenarios, it would be in-

teresting to carry out analytical evaluation of the Impact FD (and/or an algo-

rithm that implements it), by varying different parameters, such as the number

of nodes, impact factor, the maximum number of failures, the threshold, etc. For

instance, let’s consider a subset S where nodes have different impact factors that

follow a given law. Some possible analysis would be: (a) If at most f nodes can

fail, what is the probability of S to be trusted in relation to different threshold

values ? (b) If the maximum number of failures varies, what are the possible

distributions of failures, i.e., trust level values, which ensure a given threshold ?

(c) what is the minimum number of nodes in relation to the number of failures

and a given threshold that renders S always trusted ? (d) how does the Accuracy

Probability (P A) behave in a Query-Response implementation when α varies ?
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Appendix 1 Impact FD on an Anonymous System

Considering that processes are anonymous (i.e., non identifiable) and both the

membership and the cardinality of the system are unknown, the timer-based Algo-

rithm 14 implements a Impact FD that runs on a R-S-δ-Π system. The latter is defined

as:

R-S-δ-Π: a system such that p in S, S =Π, and all processes of Π are synchronous

and execute the Impact FD algorithm. Every pair of processes is connected by reliable

bidirectional links and there exists a known upper bound δ for the delay of messages.

As Algorithm 14 implements a perfect failure detector, we denoted it I AP (anony-

mous perfect impact failure detector). We assume that all processes start executing the

algorithm at the same time. Moreover, the local clocks of processes are synchronized

and they do not present drifts.

We denote :

• S∗
cor r (t ): the set of tuples 〈_, I 〉 of all non faulty processes at t .

• sum(S∗, t ) = ∑
〈_,I 〉∈S∗(t )

I

When invoked in p at t , the failure detector of the class I AP returns the trust level

of p in relation toΠ. It satisfies the following properties:

• Safety: ∀p ∈ cor r ect (F ),∀t ∈ T ≥ 0, tr ust_l evelp (t ) ≥ sum(S∗
cor r , t )

• Liveness: ∃t ∈ T,∀p ∈ cor r ect (F ),∀t ′ ∈ T ≥ t , tr ust_l evelp (t ′) =
tr ust_levelp (t ).

The safety property states that at t , the tr ust_levelp is always greater or equal than

the sum of impact factor values of no faulty processes at t , while the liveness property

ensures that there is a time after which tr ust_levelp does not change, i.e., the system

is either always tr usted or always untr usted for p.

Process p receives as input its own impact factor (Ip ), the timeout value, the heart-

beat interval (∆), and the timeout value (δt ).

At the initialization, the set S∗
1 is reset (line 3) and the impact factor of p (〈_, Ip〉) is

added to tmp_S1
∗. Note that all tuples 〈i d , I 〉 are included in the subset 1 of S∗ (S∗

1

and tmp_S1
∗), without the identifier i d , since processes are anonymous. The timer
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Algorithm 14 Timer-based implementation

1: Begin

Input
2: Ip , ∆, δt

Init
3: S∗

1 =;
4: tmp_S1

∗ = {〈_, Ip〉}
5: t i meout = δt

Task T1 - Repeat forever every ∆ time unit
6: br oadcast (ALIV E , Ip )
7: st ar t t i meout

Task T2
8: Upon reception of (ALIV E , I ) do
9: tmp_S1

∗ = tmp_S1
∗∪ {〈_, I 〉}

10: end

Task T3 - When timeout expires
11: Upon expi r ati on o f t i mer do
12: S1

∗ = tmp_S1
∗

13: tmp_S1
∗ = {〈_, Ip〉}

14: end

Task T4
15: Upon invocation of I AP () do
16: if S∗

1 6= ; then
17: return Tr ust_l evel (;,S1

∗)
18: else . before the first timeout
19: return ∞
20: end if
21: end

22: End



116

t i meout is then initialized to δt .

In Task T1, process p periodically sends to the other processes an ALIVE message

with its impact factor value Ip (line 6) and starts the t i meout (line 7).

When process p receives an ALIVE message from an anonymous processes (Task

T2), it includes the information about the impact value of this process in its tmp_S1
∗

set.

Upon expiration of the timer t i meout (Task T3), p assigns its current knowledge

about the received impact factor values (i.e., tmp_S1
∗) to S1

∗ and re-initialize the

tmp_S1
∗ set.

Task T4 handles the invocation of the IAP() function by p, which returns the sum of

impact factor values of the processes in S∗
1 (line 17), provided that p has a view (even

if partial) of the set of impact factor values of the system, i.e., at least one timeout has

expired; otherwise, it returns ∞.

The followings points should be highlighted:

• The function Tr ut_level (tr usted ,S∗) needs to be redefined since the processes

do not have identifier (anonymous) and thus, the i d of the processes can not be

assigned to tr usted . Hence, we define:

Tr ust_level (tr usted ,S∗) = {tr ust_l evel | tr ust_level = ∑
〈_,I j 〉∈S∗

I j }

• As defined in Section 5, we assume that local processing time is negligible with

respect to message communication delays. Furthermore, by assumption, all pro-

cesses start executing at the same time and send ALIV E messages at each round

(i.e., within the expiration of two consecutive timeouts). Let δh be the maximum

difference (delay) between the sending time of the heartbeats by all correct pro-

cesses in a single round and δl at , be the maximum time for the transmission of

a heartbeat message. The value of the t i meout δt must, thus, be greater than

δt = δh + δl at while ∆, interval between the sending of two heartbeats from a

node, must be greater than the δt ;

• Since the system is synchronous (no false suspicions), the trust level value re-

turned by Impact FD at invocation i is always equal or smaller than the value

returned by the previous invocation i −1;

• If f is the maximum number of failures, when all of the f faults take place, the
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value returned by the Impact FD will always be the same;

• The algorithm can also applied to both homonymous (several processes may

have the same identifier (ARÉVALO et al., 2012)) and identifiable systems;

• If we consider the impact value equals to 1, a similar approach is proposed by the

AP perfect failure detector for anonymous networks (BONNET; RAYNAL, 2013b),

which returns an estimation of the current number of processes in anonymous

synchronous systems.

Sketch of Proof

Theorem 15. Algorithm 14 ensures the safety property.

Proof. Let denote F∗(t ) (resp., d fp
∗(t )) the set of faulty (resp., detected faulty) pro-

cesses and their respective impact factors until t ;

Since the channels are reliable, the system is synchronous, and δt > δ, every time-

out expiration (Task T3) at t , S∗
cor r (t ) ⊆ S1

∗(t ), i.e., every ALIVE message sent by a non

faulty process at t is received by p before the expiration of the timeout at t .

Let’s consider p correct and two cases: (1) the first timeout has not expired yet; (2)

at least one timeout has expired; In case (1), as a timeout has never expired, task T3 has

never executed and, consequently, neither line 12. S∗
1 keeps then its initial value S∗

1 =;
and, thus, when I AP () is invoked, tr ust_levelp = ∞. Hence, the safety property is

ensured. For case (2), let’s denote t1 ∈ T the time of the last timeout expiration (Task

T3). In this case, S∗
1 has been updated at line 12 and we denote its value S∗

1 (t1). Then,

∀t2 ∈ T ≥ t1, if F∗(t2) = d fp
∗(t1), i.e., all failures were detected by p at the last timeout

expiration at t1, S∗
1 (t1) = S∗

cor r (t2), which implies that tr ust_l evelp (t2) = sum(S∗
1 , t1) =

sum(S∗
cor r , t2). Otherwise, if d fp

∗(t1) ⊂ F∗(t2), i.e., not all failures were detected by p,

S∗
1 (t1) = S∗

cor r (t2)∪ (F∗(t2)/d fp
∗(t1)) ⊃ S∗

cor r (t2) which implies that tr ust_l evelp (t2) =
sum(S∗

1 , t1) > sum(S∗
cor r , t2). Therefore, the safety property is ensured.

Corollary 1. Algorithm 14 ensures that:

∀p ∈ cor r ect (F ),∀t1, t2 ∈ T >= 0, t2 > t1, tr ust_l evelp (t2) ≤ tr ust_l evelp (t1).

Proof. The corollary directly holds from Theorem 15.

Theorem 16. Algorithm 14 ensures the liveness property.
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Proof. Let consider that p is correct. Since processes and links are synchronous and

the timeout value δt is greater that message delay δ, there are no false suspicions. Let

t ∈ T be the time after which all faulty processes are crashed, i.e., ∀t ′ ∈ T ≥ t ,S∗
cor r (t ) =

S∗
cor r (t ′) and all ALIV E messages sent by these faulty processes before they crashed

were delivered to p. Thus, after t , p will receive no more ALIV E messages from faulty

processes. Then, in the next expiration of the timeout after t , faulty processes are not in

S∗
1 and p will always receive the same number of ALIV E messages, i.e., the messages

from the correct processes (S∗
cor r (t )). Hence, ∀t ′ ∈ T ≥ t ,S∗

1 = S∗
cor r (t ′) = S∗

cor r (t ) and,

therefore, ∀t ′ ∈ T ≥ t , tr ust_l evel (t ′) = tr ust_level (t ). The liveness property is thus

ensured.

Corollary 2. Algorithm 14 ensures that ∃t ∈ T such that, if tr ust_levelp (t ) ≥ thr eshol d S∗
p

(resp., tr ust_l evelp (t ) < thr eshol d S∗
p ), ∀t ′ ∈ T ≥ t , S is tr usted (resp., untr usted) for

p, i.e., it will be permanently tr usted (resp., untr usted) for p after t .

Proof. The corollary directly holds from Theorem 16.
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Appendix 2 The Self-healing Module

Ubiquitous systems have become a common technology in our everyday lives, in-

creasing then our dependency on them. However, the occurrence of failures in this

type of systems can reduce their applicability/usability which may induce some hard,

or even dangerous, consequences. Such systems must, therefore, present self-healing

capabilities in order to detect failures and make the necessary adjustments to prevent

their impact on applications. Self-healing is a property of autonomic computing. A

system designed with this feature automatically discovers, diagnoses, and reacts to dis-

ruptions (GANEK; CORBI, 2003). The system must then be able to detect failures and

make the necessary adjustments to prevent them from having an undesirable impact

on the application which should keep active and available. Hence, failure detection

service which delivers monitory information about the aliveness of the system nodes

is a crucial feature for self-healing systems. Moreover, ubiquitous systems have some

inherent features that must be taken into account and which are not always addressed

in the existing literature, in particular in regard to the failure detection mechanism.

In this context, a Self-healing Module is proposed with capabilities to detect fail-

ures and make the necessary adjustments to prevent their impact on applications. The

module is shown in Figure B.1 and has two components: the Detection Service (DS)

and Adaptation Manager (AM). The former is responsible for detecting failures of dif-

ferent entities (nodes, sensor, etc.) that have to be monitored in the system. The Adap-

tation Manager provides suitable adaptation strategies and is designed to reduce the

impact of detected failures on the application.

The architecture also has a Repository that is used to keep all the previous settings

required for the self-healing system to operate. This Repository allows the user (who is

likely to be an administrator) to configure all the data that will be used by the Detection

Service and Adaptation Manager components.

The structure of the Self-healing Module provides a mechanism for node failure

detection, makes decisions about the action required to prevent damage to the system

and reports them to the ubiquitous applications so that they can execute them. The

proposed approach is a generic self-healing module that can be integrated with legacy

systems, i.e. existing software systems. Considering these premises, the project of Self-
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Figure B.1: Self-healing Module

healing Module intends to use the Impact FD as a sub-module of Detection Service for

monitoring of nodes.

The Detection Service comprises the detecting stage which includes a monitoring

mechanism of the nodes and the analysis that determines whether the system is in

a degraded state or not. Through the monitoring of a set of nodes (S) and compar-

ing the output of Impact FD (tr ust level ) with the thr eshol d , the detection service

defines its status which can be either "trusted" or "untrusted". When the status of set

(S) is considered to be "untrusted", the Detection Service notifies the Adaptation Man-

ager so that suitable adaptation strategies can be adopted. In this case, the Adaptation

Manager decides if some measures must be taken (their degree of urgency depend-

ing on the trust level output). For instance, when the trust level of a subset is smaller

than its threshold, one or more action plans may be required. The plans are the recon-

figuration strategies which have been predefined by the administrator that set up the

Repository. After the definition of the plan, the Adaptation Manager communicates to

the Application which will activate it .
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