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ABSTRACT

Low Frequency Noise (LFN) and Random Telegraph Noise (RTN) are performance limiters in
many analog and digital circuits. For small area devices, the noise power spectral density can easily
vary by many orders of magnitude, imposing serious threat on circuit performance and possibly
reliability. In this thesis, we propose a new RTN model to describe the statistics of the low frequency
noise in MOSFETS. Using the proposed model, we can explain and calculate the Expected value and
Variability of the noise as function of devices’ biases, geometry and physical parameters. The model
is validated through numerous experimental results for n-channel and p-channel devices from different
CMOS technology nodes. We show that the LFN statistics of n-channel and p-channel MOSFETS can
be described by the same mechanism. From our results and model, we show that the trap density of
the p-channel device is a strongly varying function of the Fermi level, whereas for the n-channel the
trap density can be considered constant. We also show and explain, using the proposed model, the
impact of the halo-implanted regions on the statistics of the noise. Using this model, we clarify why
the variability, denoted by o[log(Sid)], of RTN/LFN doesn't follow a 1/\area dependence; and we
demonstrate that the noise, and its variability, found in our measurements can be modeled using
reasonable physical quantities. Moreover, the proposed model can be used to calculate the percentile
quantity of the noise, which can be used to predict or to achieve certain circuit yield.

Keywords: Flicker Noise. Halo implants. Low Frequency noise (LFN). MOSFETSs. Power
Spectral Density (PSD). Random Telegraph Noise (RTN). Statistical Model. Variability.



Um Modelo Estatistico e Fisicamente Baseado para o Ruido RTN

RESUMO

O Ruido de Baixa Frequéncia (LFN), tais como o ruido flicker e 0 Random Telegraph Noise
(RTN), séo limitadores de performance em muitos circuitos analdgicos e digitais. Para transistores
diminutos, a densidade espectral de poténcia do ruido pode variar muitas ordens de grandeza, impondo
uma séria limitacdo na performance do circuito e também em sua confiabilidade. Nesta tese, nos
propomos um novo modelo de RTN estatistico para descrever o ruido de baixa frequéncia em
MOSFETSs. Utilizando o modelo proposto, pode-se explicar e calcular o valor esperado e a
variabilidade do ruido em funcédo das polarizagdes, geometrias e dos parametros fisicos do transistor.
O modelo ¢ validado através de inimeros resultados experimentais para dispositivos com canais tipo
n e p, e para diferentes tecnologias CMOS. E demonstrado que a estatistica do ruido LFN dos
dispositivos de canal tipo n e p podem ser descritos através do mesmo mecanismo. Através dos n0ssos
resultados e do nosso modelo, nds mostramos que a densidade de armadilhas dos transistores de canal
tipo p é fortemente dependente do nivel de Fermi, enquanto para o transistor de tipo n a densidade de
armadilhas pode ser considerada constante na energia. Também é mostrado e explicado, através do
nosso modelo, o impacto do implante de halo nas estatisticas do ruido. Utilizando o modelo demonstra-
se porque a variabilidade, denotado por o[log(Si)], do RTN/LFN néo segue uma dependéncia 1/\area;
e fica demonstrado que o ruido, e sua variabilidade, encontrado em nossas medidas pode ser modelado
utilizando parametros fisicos. Além disso, 0 modelo proposto pode ser utilizado para calcular o
percentil do ruido, o qual pode ser utilizado para prever ou alcancar certo rendimento do circuito.

Palavras-chaves: Ruido Flicker. Implantes de Halo. Ruido de Baixa Frequéncia (LFN).
MOSFETSs. Densidade Espectral de Poténcia (PSD), Random Telegraph Noise (RTN). Modelo
Estatistico. Variabilidade.
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1 INTRODUCTION

Low Frequency Noise (LFN) is a serious performance limiter in mixed signal CMOS circuits
such as RF mixers, voltage-controlled oscillators (VCOs), and time-to-digital A/D converters.
Moreover, Random Telegraph Noise (RTN) is emerging as a potential yield hazard in the most
advanced CMOS nodes, as it can for instance appear as a time dependent Static Noise Margin (SNM)
limiter in SRAMSs (Agostinelli, et al., 2005) (Toh, 2009). Therefore, providing adequate models for

LFN/RTN average value and variability is essential for circuit reliability.

1.1 The Low Frequency Noise

Mainly, there are three different behaviors of the noise in the low frequency domain of MOS
devices. The power spectrum density (PSD) plot of Figure 1.1 shows two of these behaviors. At
higher frequencies, the figure shows the white noise and at lower frequencies, it shows the flicker
noise. The flicker noise is characterized by a 1/f or a pink spectrum behavior. Therefore, it is
commonly named as 1/f noise or pink noise. In contrast, the white noise is characterized by its

frequency independent behavior.

Figure 1.1 — Representation of the noise power spectral density of an arbitrary MOS transistor

1/f, flicker,

pink noise...

white noise

—

PSD [A%/Hz]

Frequency [Hz]

In addition to the flicker and white noise, it is also very common to see bumps on the noise
spectra, as shown in

Figure 1.2. These bumps are the result of the prominence of the effect of individual defects in
the device (Kirton & Uren, 1989).This effect adds Lorentzian-like spectrum (see Chapter 2) to the
already existing noise PSD. This low frequency noise behavior is commonly referred to as Random
Telegraph Noise (RTN) and it is often found on smaller devices (Hung, et al., 1990). On the analysis
of the LFN of various different MOS devices it is common to see from almost perfect 1/f spectra

(Section 1.2) to spectra that are totally dominated by Lorentzians (Section 1.3).
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Figure 1.2 — Example of a bump present in the LFN spectrum.
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1.2 LF Noise on Large Devices
Figure 1.3 shows an example of the measured low frequency noise of a very large device with

width (W) of 100 um and length (L) of 8 um on CMOS 140-nm technology. The noise spectrum in
the figure shows a nice 1/f behavior. The notation Sq is used to note that the measured power spectrum
density of the noise is measured in the drain current of the devices.

Figure 1.3 — Example of the LFN of large devices with WL = 100x8pum?,

S () [A%/Hz]

Frequency [Hz]

Figure 1.4 shows, from the noise measurement of 48 similar devices, that the noise variability
for such large devices is small. Thus, the noise behaves more deterministically and is well-modeled

using empirical models or using deterministic physics-based models — e.g. (McWhorter, 1957) and

(Hung, et al., 1990).
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Figure 1.4 — Noise spectra of 48 devices with WL = 100x8um?,
107
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1.3 LF Noise on Small Devices

On small area devices, as shown in Figure 1.5, for three devices with WL = 1x0.06pm? (CMOS
65-nm technology), the noise has a completely different behavior than on very large devices, which
makes the models used to predict the noise of large devices unable to properly address the behavior
of small devices. From Figure 1.5, even among three devices with the same area, each noise spectrum
has a different frequency behavior and a different noise magnitude. This is a characteristic of the RTN
caused by the effect of individual defects, each of which adds a Lorentzian to the noise spectrum.

Due to the difference between the noise spectra of large devices and small devices, some
authors — e.g. (Kolhatkar, et al., 2003) — separate the analysis of the two noise behaviors and treat
them as results of different effects. However, the findings of this work support the view in (Wirth, et

al., 2009) and show that the noise can be modeled from the same effect for any device area.

Figure 1.5 — Example of 3 noise spectra of small devices with WL = 1x0.06um?.

S () [A°Hz]

10' 10° 10> 10°
Frequency [Hz]
Figure 1.6 shows the noise measurement of 282 devices. As seen in the figure, the variability
of such small devices is huge. Comparing, for a given frequency, the smallest noise magnitude with

the largest noise magnitude there is a difference of almost four orders of magnitude. This large
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variability imposes serious challenges on the usage of small devices in noise sensitive circuits. It also

highlights the need to develop a stochastic model for such stochastic phenomena.

Figure 1.6 — Noise spectra of 282 devices with WL = 1x0.06um?,

10 10°  10° 10
Frequency [Hz]
1.4 Scaling of the Noise Variability with Device Area

In this work, the useful quantity used to describe the variability of the LFN is the Standard
Deviation of the natural logarithm of the noise, o[log(Sid)]. Sometimes, it will be only referred to as
Standard Deviation or just variability. The reasons to use log(Sid) will become clearer along the work.
However, considering that the LF noise quantity is usually analyzed in the logarithm domain, the
calculation of o[log(Sia)] should make the variability analysis easier and more meaningful.

The variability of the LFN power spectral density depends strongly on the gate area of
MOSFETs (Ghibaudo & Roux-dit-Buisson, 1994). LFN variability studies — e.g., (Lopez, et al.,
2011), (loannidis, et al., 2013) and (loannidis, et al., 2011) — generally propose an area scaling of the
noise variability, o[log(Sid)], based on a 1/Narea dependency. Figure 1.7 shows that the variability
indeed depends strongly on the device area. However, according to our measurements, present in the

Figure 1.7, the variability does not follow the 1/Varea dependency.

Figure 1.7 — Standard deviation of the logarithm of the noise for various device areas.
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The work in (Yu, et al., 2012) reasons that LF noise variability deviates from the 1/Varea
dependency based on the statistics of sums of lognormal distributions, but eventually it relies on a
rather arbitrary empirical function to fit the variability area scaling.

Other works — e.g. (Higashi, et al., 2014) and (Nour, et al., 2016) — attempt to describe the
noise in a transistor by modeling the very complicated trapping and detrapping mechanism of every
trap in a transistor. The resultant noise is then found trough transient and Monte Carlo simulations in
which every time step of the simulation complex calculations are needed. Therefore, this method is
very time demanding and it is dependent on trapping-detrapping mechanisms that are not thoroughly
understood.

Since there is no satisfactory model that describes statistically the LFN from large devices to
small devices and that could physically describe the scalability of the noise variability with the device
area, in the following chapters of this work we are going to develop a new physics-based model.
Using the model proposed in this work, we can better describe the statistic nature of the low frequency

noise.

Remark

One could argue that the fitting of Figure 1.7 is not the best fitting possible, and that something
as shown in Figure 1.8 is a better fitting. However, according to Pelgrom (Pelgrom, et al., 1989),
hardly a physical mechanism that causes variability in the transistor parameter could create such
behavior. Considering that the noise is given by two independent effects, each represented by a
random variable (A and B). If the variance of A vanishes with the area, following the Pelgrom-
behavior, so 642 = o/WL and the variance of B doesn’t depend on the area due to distance variations

in the wafer, so og? = B, the standard deviation of the noise is calculated as
o=, —+p8, (1.0)

and at its highest slope the tangent of the curve described by (1.1) should point towards the origin in
the o x 1/YWL plot, as shown in Figure 1.9.
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Figure 1.8 — Wrong method for fitting noise Figure 1.9 — Ideal Pelgrom behavior of the
variability. standard deviation.
2 [ ’{1
£ 1} L _-- )
o L” - = - Wrong fit
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0 » i
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1.5 Relevance of the LFN

The most obvious application in which the low frequency noise can limit performance is in
circuits with low frequency applications. An example of such low frequency systems are the audio
amplifiers. Moreover, sensor networks are playing more and more role in several applications such
as healthcare wearables, agriculture, and environment monitoring (Mainetti, et al., 2011). In many
cases, the sensors are monitoring low frequency signals, such as bio-chemical signals and movements.

The LFN can also limit the performance of high frequency systems, due to the upconversion
of the low frequency noise. The upconversion happens, for instance, in voltage-controlled oscillators
(VCOs), causing phase noise. Phase noise can limit channel capacity and interfere in adjacent signals.
This effect can pose a serious threat in the advance of wireless communication and in the advancement
of the Internet of Things (IoT). As shown in Figure 1.10, the upconversion of the flicker noise results

in the 1/f 3 component, whereas the white noise results in the 1/f2 component.

Figure 1.10 — Upconversion of the LFN.
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In the digital domain, the phase noise manifests itself as jitter. Jitter is an uncertainty in the

period of the clock, as shown in Figure 1.11, and can cause timing violations in digital circuits.
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Figure 1.11 — Period Jitter.
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In very small area devices, Random Telegraph Noise (RTN) is emerging as a potential yield
hazard, as it can for instance appear as a time dependent Static Noise Margin (SNM) limiter in
SRAMs (Agostinelli, et al., 2005) (Toh, 2009), where the high current deviation present in such small
devices can lead to read, write or data retention failures.

Works on the literature that try to understand and model the low frequency noise in MOSFET
circuits exist as early as 1970s — e.g. (Christensson, et al., 1968), (Christensson & Lundstrém, 1968),
(Berz, 1970) and (Fu & Sah, 1972) — and the LFN has been relevant since then. Nowadays, however,
the relevance of the LFN has increased due to use of deeply scaled devices, use of lower supply
voltages, and due to the popularization of wireless communication and sensor networks, among other
factors. Conversely, present models are incapable of fully modeling the LFN characteristics in these
devices. Therefore, LFN is not only a problem of the past but is also a problem of the present and a

major issue for the near future.
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2 AREVIEW ON LFN MODELS

2.1 The Random Telegraph Noise

The random telegraph noise (RTN) is characterized by the fluctuation of the drain current
between two fixed levels with stochastic low- and high-level times, resembling a random telegraph
signal (RTS), as shown in Figure 2.1.These fluctuations are mainly caused by a defect in the gate
dielectric or at the dielectric-silicon interface (Kirton & Uren, 1989). These defects, or traps, are
known to capture and release carriers from the channel. Therefore, the two current levels, between
which the current fluctuates, represent the state of the trap (empty or occupied). In the case of an
acceptor like trap (negatively charged when occupied by a carrier and neutral when not occupied) the
current of an n-channel device decreases when the trap captures a carrier and returns to its highest
level when the carrier is released back to the channel.

In the frequency domain, the RTN associated with a single trap is represented by a Lorentzian
function. In the log-log domain, as shown in Figure 2.2, the Lorentzian is characterized by a plateau
region and by a 1/f2 region.

Figure 2.1 — lllustration of the RTS given by the Figure 2.2 — Illustration of a RTN spectrum in
impact of a single defect in the oxide. log-log domain.

|
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The power spectrum density (PSD) of the random telegraph noise, given by a single defect, is
calculated as (Machlup, 1954)

4Al ?

@+ )| (V7 +VR) +(2r1) ]

Su(f)= (2.1)

where 7.,and 7, are the mean of the emissions and captures times respectively, and Al is the

amplitude of the drain current fluctuation.

With some algebra, equation (2.1) can be rewritten as

_ . P 7
Su(f) =44l A+ B 1+72(2x )" @2)
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where g = ? : % = é +_i and, from detailed balance theory (degeneracy g =1) (Ralls, etal., 1984),
T

c Te 2-C

f_e =eE—E)/XT "where Er, Et, k and T are the Fermi energy, the trap energy, the Boltzmann constant
T,

and temperature respectively. In the form of (2.2), the Lorentzian formula evidently shows the plateau

amplitude, given by 4Al1} ﬁ?, and the corner frequency of the Lorentzian (transition between
+

the plateau and the 1/f? region, 3dB drop), given by f, =1/27 .

Another characteristic of the RTN is the time taken for a trap to capture an emit a carrier, tc

and t. respectively. For a given trap, tc and te have an exponential distribution, where the average
capture and emission times, 7, and 7., are unique proprieties of a trap. Figure 2.3 shows the

measured emission times of a single trap (Kirton & Uren, 1989).
Figure 2.3 — Distribution of the emission time of a trap
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(Kirton & Uren, 1989)
The exponential distribution of the capture and emission times arises from the stochastic

o

nature of the trap, which behaves as a regeneration-generation center (R-G centers). From Shockley-
Read-Hall (SRH) model (Shockley & Read, 1952) (Hall, 1952) the possible transitions in R-G centers
are: a) the capture of electrons from the conduction band, b) emission of an electron to conduction
band, c) capture of a hole from valance band and d) emission of a hole to the valance band. In

equilibrium and steady-state conditions, the average rate for these transitions are

on on _E.
—| =o.u,n , —| =ou,ne" E')/kT,
6t n*~’th 6t n~th" i

(a) (b) (2 3)
0 0 . '
Pl _sop and D =5 neEENT
81: p~th at p~th™i

(c) (d)

where an, op, v, N, p and n; are the electron capture cross section, the hole capture cross section, the
carrier thermal velocity, the electron concentration, the hole concentration, and the intrinsic

concentration of electrons respectively.
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Combining the average rates that a trap captures an electron — (a) and (d) — and combining the

average rates that a trap releases an electron — (b) and (c) — results in

1
—=v,(o,p+ annie(ET’E‘)/kT)
Te
i (2.4)
— =, (o,n+o,nem K,
Which gives
_ Z_-e _ a(Ee-Ep)/KkT
Yi; —f——e (2.5)
C
and
T=T, ﬁﬁ . (2.6)
+

In a normal operation condition of a n-channel device, one can consider only the electrons capture

rate. Therefore,

R 27)
Gnuthn
and
T = 1 _ﬁ (2.8)
o.u,n f+1

Bulk defects, depending on their nature, are known to have defined energies and defined cross
sections due to the crystalline nature of the semiconductor. Therefore, it is not believed that they
could be the responsible for Lorentzians with such different population of time constants (Kirton &
Uren, 1989), as shown in Figure 1.6. Thus, it is believed that defects in the gate dielectric or at its
interface are responsible for such noise behavior, where the amorphous nature of the dielectric allows
a wide distribution of defect energy and cross section.

The exact nature of the wide distribution of cross sections are unknown. Nevertheless, many
different theories are present in the literature. The tunneling theory correlates the position of the
defect inside the dielectric with its cross section, by which the trap time constant can be approximated
as (McWhorter, 1957)

z_'ocioceyaz, (2.9)

O,

where v, is the wave function attenuation constant and z is the trap distance from the interface.

Another theory proposes a nonradiative multiphonon (NMP) capture cross section, in which the trap
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cross section is proportional to an activation energy and that a wide distribution of such energies is

responsible for the distribution of 7 . According to this theory (Kirton & Uren, 1989)

o, =o', (2.10)

where o is the cross section pre-factor that can include information about the tunnel interaction given
by (2.9)and other gate voltage dependencies of the transitions (Palma, et al., 1997).

Other works on the literature — e.g. (Grasser, 2012) and (Grasser, et al., 2009) — propose more
complex theories to explain the capture and emission mechanisms of a trap. These works extend the
NMP model to account for metastable defect configurations, where after a capture or before an
emission the trap changes to metastable states generating different electric field and temperature

dependencies.

2.2 McWorther’s 1/f Model

The McWorther model (McWhorter, 1957), also known as the carrier number fluctuation
model, considers the flicker noise as a result of interactions between traps in the oxide and the carriers
in the channel, as described in Section 2.1. According to the model the power spectral density of the
mean-square fluctuations in the number of occupied traps over an elemental volume is given by

7(x,v,z,E)

, 2.11
1+ w’r(X,y,2,E)’ v (211)

SAV&'N‘ = 4Nt(X, Y.z, E) ft (1_ ft)

where N(x,y,z,E) is the trap density in the oxide and in the energy, z(x,y,z,E) is the trap time constant,
fi= [1+exp((E-Ef)/kT)]* and o = 2xf the angular frequency. In our case, the elemental volume Av is
given by Av = Axdydz.

The total PSD of the fluctuations in the number of occupied traps in a section of the device
with area equal to WAX is given by the summation of all the traps that contribute to the noise in this
area, where AN+=AXWN:. Therefore,

E

SAN‘ (x, f)= I

E

Tox

[ 4N (xy. 2. E)f,0- 1) (x,Y,2,E)

1+ w’z(X,y,z,E)

> AxdzdydE (2.12)

ot—=

Vv

In the evaluation of (2.12) two assumptions are made: 1) the trap density has a uniform spatial
distribution in the oxide near the interface. Hence, N(x,y,z,E) = Nt(E) and 2) the trap time constant is

given by the tunneling theory, in which

T= Toeyaz , (213)
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where v, IS the attenuation factor of the electron wave function in the oxide. For a Si-SiO; interface,
the electron tunneling theory predicts that ya=108 cm™ (McWhorter, 1957). Since fi(1-f;) behaves like
a delta function around the quasi-Fermi level with area equal to kT, the integral in (2.12) results in

KTW Ax
SANI (X, f) = Nt(Efn’fp)y—f (214)

a

From the number fluctuation model, the fluctuations of occupied traps induce a fluctuation on
the carrier’s density, which in turn cause fluctuation on the drain current. Local fluctuations on the

drain current of a section of the channel with width W and length Ax, are calculated as

|
ol, =——6AN, 2.15
1= AN (2.15)

where AN=WAXN. In the original derivation in, McWorther (1957) considered that JAN~JAN, which
is a good simplification in the strong inversion. Reimbold et al. (1984) derived a more complete
relation in which the trapped charge not only impacts the inversion layer charge but it also impacts
the depletion charges and the trapped charges (Reimbold, 1984). Therefore,

oN Ci (2.16)

SN, C_+C,+C,+C,

Now (2.15) can be written as

|
Sy =—-14 oN OAN, , (2.17)
WAXN { SN,

and the power spectral density of the local current fluctuation is

2
I, 1Y/(oN
S, (x, )= —4—= S (X, ). 2.18
w2 s 00 @1
Finally, using Klaassen and Prins (Klaassen & Prins, 1967) and replacing (2.14) in (2.18) we have
1t KT 12 & nY

S,d(f)=E£SAIdAde=%—fWL2£Nt(Em) N @ (2.19)

with 77 = oN Con

SN, C._+C,+C,+C,

t

2.3 Correlated Mobility Fluctuation 1/f Model

The correlated mobility fluctuation extends the carrier number fluctuation theory to account

for the Coulomb scattering of free charge carriers at the vicinity of the trapped oxide charge (Hung,
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etal., 1990). As a consequence, the trapped carrier will not only cause a fluctuation on the free carrier
number but will also cause a fluctuation on the mobility. This model is widely used in modern
compact models such as BSIM (Chauhan, et al., 2013) and PSP (Li, et al., 2008) models.

According to the correlated mobility model, fluctuations on the drain current of a section of

the channel with width W and length Ax, are calculated as (Hung, et al., 1990)

5
51, = d{ 1 AN | 1 Oy

+ SAN,, (2.20)
AN SAN, ~ s, AN,

The next step to derive this model is to find the value of duer/ 6ANt, using Mathiessen’s rule

EEIE I S e (2.21)

lueff /Jn /uox lun

where pox is the mobility limited by oxide charge scattering, one can show that

Ol _ aﬂjﬁ

- . (2.22)
SAN, W AX

Using (2.22) in (2.20) the expression of the fluctuation on the drain current becomes

sl =1, (iiayeﬁj&'\'t (2.23)

AN WAX

Finally, the power spectral density of the mean-square fluctuations in the drain current is

2

KT 12§ n
Sld(f):%_f\W_ENt(Efn) Nia,ueﬁ dX (224)

2.4 Hooge’s 1/f Model

Hooge’s model considers the flicker noise is a result of fluctuation in the bulk mobility caused
by phonon scattering (Hooge & Vandamme, 1978). According to Hooge’s model, the drain current
noise is given by the following empirical equation:

_ oy,
T fWLN

(2.25)

where an is Hooge’s empirical parameter, f the frequency and N the carrier density.
Equation (2.25) is only valid when the carrier density is uniform across the channel. Therefore,
to account for the noise with large drain bias applied the channel can be divided into infinitesimal

uniform segments and the total noise is evaluated by

I, JL~ dx

T WLE I N (2.26)

0



27

For bulk devices, the aw parameter was found to have a constant value of about 2x107 (Hooge
& Vandamme, 1978). However, for MOS devices an is found to be several orders of magnitude below
this value. Nevertheless, to explain the discrepancy between measurements and the expected noise
using (2.25) a bias dependence of an is often used, which apparently contradicts Hooge’s theory
(Hung, et al., 1990). Despite this discrepancy, there are still authors that argue in favor of Hooge’s
model, especially when modeling the 1/f noise of PMOS devices — e.g. (Vandamme, et al., 1994).

Figure 2.4 shows a comparison among the three flicker noise models, calculated for a NMOS
transistor with Tox = 3 nm, Vin=0.5 V, N¢= 1.7x10* cm3eVL.

Figure 2.4 — Comparison among three flicker noise models.
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2.5 NMOS versus PMOS Discussion

Figure 2.5 shows an example of the noise power spectral density for both NMOS and PMOS
devices (140-nm node, WxL = 8x1um?), measured at 20Hz for different gate bias and Vgs = 0.1V.
Analyzing the noise in the figure one can clearly see that the noise of PMOS device has a weaker
dependence with gate bias than the NMOS device.

To explain this difference, many authors along the years have considered that the origin of the
noise in PMOS devices is given by the phonon scattering theory (Hooge’s model) whereas the noise
of NMOS devices has an origin in interface defects (Mcworther’s model). To understand this view,
one can use the calculation of carrier density at strong inversion, given by Cox(Vgs—VT)/q (Where Cox
is the oxide capacitance, Vr the threshold voltage and q the electron charge), then for a small drain
bias (2.19) and (2.25) become

KT 12 q
S cWor er(f)z__dN (E n) CVEEEYEC) (227)
0 Metorth yaf WL e Cozx(vgs _Vth)2
and
12a,q
SId,Hooge(f) d_H (228)

- fVVLCOX (Vgs _Vth) .
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Equation (2.27) is inversely dependent on the square of Vgs while (2.28) is only inversely
dependent on Vgs. Therefore, this difference for some authors in the past was a clear evidence that

PMOS and NMOS devices have different noise origins.

Figure 2.5 — Difference between the noise behavior of NMOS and PMOS devices.
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With the introduction of the mobility correlated model (Hung, et al., 1990), the fitting of the
noise of both PMOS and NMOS was possible by just adjusting the a and Nt parameters. However, if
it is assumed that the trap density is constant as a function of the energy the a parameter assumes
unphysical values for PMOS devices. Therefore, the discussion about the origins of the noise has
continued, with some authors — e.g. (Scofield, et al., 1994) — arguing in defense of a varying trap
density with energy for the PMOS devices while others — e.g (Vandamme, et al., 1994) — arguing for
a phonon scattering mechanism to explain the noise of PMOS device.

In this work, using our proposed model and analyzing the Expected value, Variance and noise
variability we show strong evidences in favor of the varying trap density viewpoint and that the noise
origin from interface defects for both NMOS and PMOS devices.
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3 DERIVING A STATISTICAL MODEL

3.1 Oxide defects as the LFN origin
In this work, the low frequency noise is treated as a consequence of the capture and emission
of channel carriers from multiple oxide defects (or traps). The noise of multiple defects in the oxide

is derived by discrete summation of the noise of each individual defect (assuming that they are

uncorrelated), resulting in

Niot "~
S, (@) =43 A2 2 i 3.1
Id( ) ; i (1+ﬁ,)2 l+Z_'i20)2 ( )
where Niot is the total number of traps in the device oxide.
When the characteristic time constant (7 ) of the traps in a transistor is log-uniform distributed,
in other words, when the corner frequency of individual Lorentzians are uniformly distributed in the

log-scale, the total noise in the transistor will have a 1/f behavior, as shown in the Figure 3.1.

Figure 3.1 — Illustration of the noise given by the summation of traps with log-uniformly distributed time

constants.
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Figure 3.2 shows the average of the noise spectra previously shown in Figure 1.6. The figure
demonstrates that the average of such large amount of spectra, formed by well-defined Lorentzians,
has a 1/f behavior. This observation, combined with studies as for instance reported in (Wirth, et al.,
2009) and (Scholten, et al., 2003), supports our fundamental assumption that RTN effects dominate
the LFN behavior and that 7 is indeed log-uniform distributed. Therefore, the RTN and the 1/f noise
should be treated in a single model to describe the LFN variability. In addition, if the traps are
uniformly distributed over the entire transistor area, this implicates that large area devices have many

traps and have a LFN with a 1/f behavior, and that small area devices have few traps and have a LFN

with a Lorentzian behavior.
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Figure 3.2 — Average of the noise spectra of a small area device.
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3.2 Noise distribution
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According to our measurements, shown in Figure 3.3, the noise could be well described by a

lognormal distribution for different device sizes. Other works in the literature already point that the
noise distribution is lognormal (Lopez, et al., 2011) (loannidis, et al., 2011) (Srinivasan & Dey, 2012).

However, for the first time this noise distribution characteristic is used to build a statistical LFN

model.

Figure 3.3 — Noise distribution for three different devices’ area.
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Using general statistics of the lognormal distribution, found in statistics textbooks (Johnson,

et al., 1994), to calculate the standard deviation of the natural logarithm of the noise one has that

o[In(S,(f))]= |n[1+

(3.2)

Var[s,, (f )]J
E[S,(D)] )

and the average of the natural logarithm of the noise is

u[In(s,(f))]= In(E[S,d(f)])—%a[ln(Sid )7 (3.3)
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Equation (3.2) will be the key equation for deriving our model. We demonstrate, using (3.2)
and (3.3), along this work that our model is useful to calculate and predict the envelope of the

RTN/LFN noise (e.g. u = 3c), as shown in the Figure 3.4.

Figure 3.4 — Example of the Noise Variability Model prediction.

S, [A%/Hz]

Frequency [Hz]

Therefore, the next two important quantities to calculate are the Expected value, E[S,,(f)],

and the Variance, Var[S,(f)], of the noise.

3.3 Expected Value and Variance

From our first key assumption in Section 3.1, that the LFN is given by the summation of

Lorentzians and it is described by (3.1), we can calculate the Expected value and the Variance of the

noise. To accomplish it, the parameters in the equation are treated as random variables. A complete

derivation of the Expected value and the Variance is given in Section 3.4 and 3.5. However, the key

assumptions for the derivation are:

T is log-uniform distributed.
The total number of traps in a transistor, N, is Poisson distributed with mean equal to

Ne>xWL and Ny is the trap density.

a 'Bﬂ)z can be approximate by a delta function, at energy equal to Er, multiplied by KT.
+

Therefore, there is no need to assume any particular distribution for Er.

Alq is a random variable dependent on the random position of the trap along the channel
(X1). However, as discussed later, the trap position is not the only source of Alg variability
and the expectation of Alg is given by the law of total expectation: E[Al4] = E[E[Al4|XT]],
where, E[Alg|X7] is the conditional expectation of Alg dependent on the value of the
random variable Xr.

Xt is uniformly distributed along the channel.
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From Section 3.4, the Expected of the LF noise is

5.0 k:V;aLE{Ar;_NAEﬂ

i L ’ (3.4)
E[Sld(f) d J.E[AliﬂxT:X]wdx
0
and, from Section 3.5, the Variance is
4 N, (E
Var[s, ()] = 2f2 { i Fn)}
i} (3.5)
I4 L Ntl’(EFn)
Var[8, (1)] =2 s [E[ AL X, =x] === ;
0

Normalizing the Variance by the square of the Expected value we have
L

Var[s, ()] _ 1 !E[AfﬂXT = x| N, (E )dx

E[Sld(f)] 37 kTW[IE[AIZP( —X:|N (EF)dX}

, (3.6)

where Als = AlgWL/Iq is the normalized current deviation, Ni(E) is the trap density as a function of
the quasi-Fermi level [cm2eV!] and y = In(Tmax/Tmin).  is a unitless constant that describes the density
of traps in the log scale of time constants. Therefore, it is more meaningful to refer to the trap density
as Nu/y per cm? per eV per neper. In this work, when we refer to trap density we will always be
referring to the N/y quantity.

The normalized Variance (Var[Si]/E[Sid]?), described by (3.6) is used to calculate the standard
deviation of the noise in (3.2). From (3.4) — (3.6), the last quantity to calculate, to have the full
derivation of our LFN statistical model, is the statistic of the current deviation (Alg). This statistic is

derived in Chapter 4.

3.4 Expected Value Derivation

The calculation of the Expected value, E[Sii(f )], and the Variance of the LF noise, Var[Si(f
)], is done using equation (3.1) in which Er, X1, T and Alg are properties of each trap and are random
variables. It is also necessary to consider that the total number of traps, N, in a transistor is also a

random variable. Using the law of total expectation, E[Y] = E[E[Y|N]], one has that

ELZ::XJ:E{ELZ:XJNH:E[N E[X]]. (3.7)



33

For N and X independents,
e >0 | -],

Therefore, the Expected value of the noise described in equation (3.1) is

_ 2P 3
E[Sld(a))]_4E[Nm]E[AI T 57 1+f2a)2] (3.8)

The expected value of a measurable function of X is given by: E[g(x)] = J' g(x) f,dx , where

—00

f_ is the probability density function of X. Using this, one has that the Expected value of the LFN is

X

E[S, (@)] = 4] “’t”HAIZ(Hﬂ) 1+f2 ~f 1., dE,d7dAl, (3.9)

0 74in O

where fet, - and f4z4 are the probability density function of the traps’ energy, time constant and current
deviation respectively
Figure 3.5 shows the behavior of /(1 + $)? as a function of the trap energy (remembering

that 5 = eEF=ET)/KT) From the figure, the behavior of /(1 + B)? can be approximated as a delta

function at E; = Eg, with an area equal to

w— —d KT .
'[0 (1+ ) !O p=
Therefore, B/(1 + B)? ~ kTS(E — Er) and (3.9) becomes
e T _
E[Sii(@)]=4KTE[N,][ | A|2W fe (Eq)f.f, d7dAl,. (3.10)

0 7pin

Figure 3.5 — Plot of g/(8+1)? as a function of the trap energy, for Er=0.75 V.
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As Alg is independent of 7, one can solve separately
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7 T
E| ——|= | ——— f.d7. 3.11
[l+f2a)2} J.1+f2a)2 ’ G1)

Considering that 7 is a log-uniform distributed random variable in an arbitrary interval
between Tmin and Tmax (Where Tmin << 1l/® << Tmax) that contains a total number of trap given by N,
the probability density function of T is fz = 1/y7, with y = In(Tmaxd/Tmin). Solving equation (3.11) with
fz = 1/y7T one has

_ 1 ) .
E [—1+ ;sz } = y—w (arctan (Tpex@) —arctan (Tmmw)) _ (3.12)

For an observation window where Tmin << 1/® << Tmax, the Expected value is simplified to

T

E[Sis(@)]=4E[N, JE[ AI*f, (E,)] (3.13)

L
vy 2
or

E[s,d(f)]:yifE[Nm]E[mszT (E-)]. (3.14)

Considering that Nt is Poisson distributed with mean equal to N/,.WL, where N{,. is the trap
density per cm?, the Expected value is calculated as
N' WL

E[Sld(f)]: /1

E[AI*f, (E)]. (3.15)

Now, consider that the distribution of Alg is dependent on the random position of the trap

along the length of the channel (Xt) and it is also subject to other random factors, so

e[ar?]=g[E[aiZ]x, ]],
and,

E[ A1 (E,) |=E[ E[AX, ] e () |- (3.16)

Consider, also, that the traps are uniformly distributed in the channel, fXT =1/L , so now

KT

E[aI”f,, (EFn)]:T

O ey

E[AIF|X; =x] fe, (Eg,)x. (3.17)

Substituting equation (3.17) into (3.15) and using N{,-fer(Er)/y = Nu(EF)/y, the trap density per cm?

per eV,

E[S,(f)]= kTTWjE[Alj |X; =% N, (Ep,)/ ydx. (3.18)
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Finally, normalizing Alg, so Al =V£AId , the Expected value of the LFN is given by (3.4).

(34): E[S,(f)]= 'd jE[AfﬂxT:x]de
0 Y

3.5 Variance Derivation

To take into account that the traps’ proprieties (Et, X1, T and Alg) and Nt are random

variables, the variance of (3.1) is calculated using the law of total variance,

Var[Y]=E[ Var[Y|N]]+Var[E[Y|N]] . (3.19)

Hence, the variance of the random sum of a random variable is:

ol el e

N N
As Va{ZXi‘N}NVar[x] and E{ZXi‘N}NE[x], also with N and X
independents, equation (3.20) becomes

Va{ZX} E[N]Var[X]+Var[N]E[X]. (3.21)

In our case, N is a Poisson random variable (since Nt in (3.1) follows a Poisson distribution)

then E[N] = Var[N]. Moreover, usingVar[X]=E[ X* |-E[X |’ one can reduce (3.21) to
Va{Zx} E[N]JE[X?]. (3.22)

Substituting X = 4Al? (1+'Bﬂ)2 1+i ~, as in equation (3.1), and E[N] = E[Nw] = N, WL,
T

the Variance of the LF noise is

2 =2
Var[S _16N WLE| Al 7 ‘ 3.23
ar[ Id (a’)] tr { (1+,B)4 (1+272w2)2:| ( )
or
0 Tmax 0 2 ZTZ
Var[S,, (0)] =16N WLH]AV‘ fe f_f,, dE,d7dAl, (3.24)

vy LB TR T T

The function B2/(1 + B)*, also, behaves as a delta function at E = Ef, with area equal to
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¢ B 15K
AR [T 62
Therefore, B2/(1 + B)* = %Tcﬁ(E — Eg) and (3.24) reduces to
kT 0 Tmax A —2 _
Var[$,, ()] =16——NWL[ [ Al Tz)szT(EF)f? f,, d7dAl,. (3.26)
0 7pin
As Alg is independent of 7, one can solve separately
=2 Trmax =2
El s |= | s IS PR S S P
1+7°w%) S o(+T o’)? yT 27w - 1 5, 1
mn Tax T a)2 Tiin T 2
For Tmin<< 1/® << Tmax, the variance of the noise is approximated as
1
Var[s, (a))]~ N WLE[AHfET(EF)]W, (3.28)
or
N' WL
Var[S, (f)]= 37;;” ~E[ Al (E)]. (3.29)

Again, considering the distribution of Alq dependent on the position of the trap along the

length of the channel and considering the traps uniformly distributed in the device’s length,

E[ Al f. (EF) ] :%jE[AIﬂXT =x] fe, (Eq,)dx. (3.30)
Therefore,
Var[S,d(f)] kT WIE[AI4|X =x]N, (Eq,)dx . (3.31)

Finally, using AI~d =V%AId , the Variance of the LFN is given by (3.5).

d
|4

35): Var[S,(f)]= 3277 f WL

L

— - [E[ AT X = x N, (Eg,)dx.
0

3.6 Monte Carlo Comparison

To show that the derivations of (3.4), (3.5) and (3.6) are correct, we compare their results with

a Monte Carlo calculation applied to (3.1).
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In this Monte Carlo calculation, we use the same distributions for the random variables used
for the derivation of the model (i.e. T is log-uniform distributed, the total number of traps is Poisson
distributed and the traps are uniformly distributed in the device area). To show that the delta functions
at E=Er multiplied by KT and kT/6 are good simplifications for p/(B+1)? and B%/(B+1)* respectively,
we use an arbitrary distribution of the traps’ energies (Et) depicted in Figure 3.6. The temperature is
300 K and the frequency is 20Hz. We also assume that the current deviation is given by an exponential
distribution (the assumption of an exponential distribution is explained in Chapter 4), where E[Al3|X1]
=2.8x10 8 cm?, E[AI?[X7] = 1.57x107% cm*and E[Al¢*|Xt] = 1.47x107*° cm® for all traps’ positions
along the channel. An average of 620 traps was used per device with a hypothetical area of 1x1um?
and 7 distributed from Tmin=2x10"° s and Tmax=5x108 s, which gives the Ntr(Eg)/y depicted in Figure
3.6.

Figure 3.6 — Arbitrary trap distribution in energy used in the Monte Carlo simulation.

2.0 ; :
—~ 3; I 100000 MCs é
5§ 2 ——
(=)
= 15
X
= 1
=" 05
0
02 0 02 04 06 08 1 12

E (eV)
Figure 3.7 and Figure 3.8 show the comparison between the calculated values using (3.4),

(3.5) and 100000 Monte Carlo simulations, described above, for different quasi-Fermi levels. The
figures show a good fitting between the proposed model and the Monte Carlo. This indicates that the

model was correctly derived and the simplifications used just introduce some minor errors.

Figure 3.7 — Expected value calculated using the
proposed model (solid line) and Monte Carlo
(symbols) for different quasi-Fermi levels.
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Figure 3.8 — Variance calculated using the
proposed model (solid line) and Monte Carlo
(symbols) for different quasi-Fermi levels.
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3.7 Derivation using SRH Model

In Sections 3.4 and 3.5, we derived the statistical model considering T a random variable log-

uniform distributed. However, in Section 2.1, according to the SRH model, we derived that

1 B (3.32)

T = ,
ou,N f+1

where, now, the log-uniform distributed random variable is the trap capture cross section (on).
In this section, we show that using (3.32) we have the same results as in Sections 3.4 and 3.5.
From (3.9), the Expected value is calculated as

0 Tmax ©

E[S, ()] =4E] tot]IHA 2(1+ﬂ) 1+f_2 _f, 1.1, dE,d7dAI.

0 7mjp O

After applying the delta function simplification and using (3.32), one has that

e (2o v,n)™"
E[S, (@)] = 4KT E[N,, _!' j AI21+(26 ui:n) — fe (B, Ty doydal,. (339)

Solving the cross-section independent of Alg

E{ (20,050)"

1+ (20,0,n) " &

}: 1 (arctan (@ / (26,,,0,0)) —arctan (w/ (20,,0,1))),  (3.34)
V0

where
7. =In (Gﬂj (3.35)

The new observation window to make the Expected value of the noise inversely proportional
to the frequency is 1/(20,,,,0,,n) << @ <<1/(20,,,0,,n) . The observation window hence is dependent
on the carrier density. This can make the observation window, depending on the bias, to reach a region

where the cross section is no longer log-uniform distributed (beyond omin and omax) and can result in

a 1/f* dependence of the Expected value.
Restricting the observation window as 1/(20,,,,0,n) <<1/@ <<1/(20,,,0,N) , then the Expected

value is given by

E[Sis(@)]=4E[N JE[ AI”f, (EF)]yiw— , (3.36)

o

NN

and it is the same as calculated in Section 3.4.
Equation (3.35) then suggests that, depending on the nature of the effect that dominates the

cross section distribution (shown in Section 2.1), the Nu/y can be directly dependent on the
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temperature (if energy activated, equation (2.10)), can be independent on the temperature (if purely
tunnel assisted, equation (2.9)) or, as the mechanisms behind it are not totally understood, can have
other temperature dependencies and also electric fields dependencies. Anyhow, in this work, we do
not investigate the temperature dependency of the Nu/y, and all our measurements are done in the
absolute temperature of 298 K.

Using the same methods one can show that the same conclusion applies for the Variance. The

Variance is calculated as

0 Tmax 0 2 =2
Var[$,, ()] =16N,WL | | IAI4(1+ﬁ) (1+;2w e, fu, OE,d7dA, (3.37)

0 z'mln

After applying the delta function simplification one has that

0 Omax )
Var[sm (0))] =16k—T NtrWLj J. Al? (Zanuthn)% _
6 (1+ (ZGnUthn) w )

0 Omin

fo (E)f, f, do,dAl,. (338)

Solving the cross-section independent of Alg

E{ (20.v,n) }_ 1 1 . 1 339
2 _2\2 | T 4| . .
(e @ow) @) ] 27,0%) oo 4 o)t

For the observation window 1/(20,,,,0,,n) <<1/@ <<1/(20,,;,0,") the Variance is given by

Var[S,, (a))]~ N WLE[Al“fET(EF)]iz, (3.40)
)10}

which is the same as shown in Section 3.5.



40

4 MODELING THE CURRENT DEVIATION

The next step to evaluate the proposed model in (3.4), (3.5) and (3.6), is to calculate the
statistics of the impact of a trap at a given position in the channel. To that end, we start by using the
drift-diffusion theory as proposed by Klaassen and Prins (1967) — in the derivation of thermal noise
(Klaassen & Prins, 1967) — to calculate the current deviation caused by a trap at the oxide-silicon
interface and at position x; along the channel. After, we use a modified version of Klaasen and Prins
to calculate the current deviation in non-uniform doped devices. Finally, we use these calculations as

a start point to derive the full statistics of the trap impact at a given position along the channel.

4.1 The Charge Balance

When a carrier is trapped in the oxide, all the charges present in a cross section of the device
balance out, altering the inversion charge, depletion charge and the gate charge, hence the total charge

remains unchanged, as depicted in Figure 4.1.

Figure 4.1 — Charge balance in a small cross section of a NMOS transistor.

The drain current of a MOS device is given by

dv
Id :WQinv/’l& . (41)

Hence, the current deviation caused by an occupied trap has a direct relation with the deviation in the
inversion charge and with the deviation in the mobility.

From the charge balance principle,

5Q, =—(6Qy, +6Qp +5Q). (4.2)

The charges can be related to the capacitances using
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§Qinv = _Cinv5¢s ,
0Q, =—-Cpop, (4.3)
0Q; =-C_,00,.

Where, Cinv, Cox, Cp and ¢s are the inversion capacitance, oxide capacitance, depletion capacitance
and surface potential respectively. Therefore, the change in the inversion charge due to a fluctuation

in the trapped charge is given by (Reimbold, 1984)

5Q, 5Q. C.
va n=- va — inv , ( 4. 4)
5Qt 5QG + 5Qinv + 5QD Cinv + Cox + CD

Using the simplification Cinv =~ g?Nin/KT,

N (4.5)

"Ny + (KT 199)(C, +Cy)

n
4.2 Trap Impact on a Uniformly Inverted Channel (Vds = 0V)

On a uniform channel, the resistance is given by
Rl

o ’ (46)
gy W

where go is the channel conductivity.
After a trap is occupied, the conductivity in the impacted area (LtxLt) will change to ¢, as

depicted in Figure 4.2, and the new equivalent resistance of the channel is calculated as

Ag
RL ¢
R'=R+2x_ 9 4.7)
\/\/l' ].'F AEZL,f?§£1
W g,

where 4g = go — @’ is the change in conductivity in the area impacted by the occupied trap

Figure 4.2 — Change on the conductivity of a segment of a uniformly inverted channel device given by an
occupied trap.
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Therefore, the change in the channel resistance is

R, A
AR ~ Dokt A9 4.8)
WL g,
and the impact on the current given by the occupied trap can be calculated as
Sl AR 2 A
_d:__z_i_g. (4.9)
Iy Ry WL g,
The conductivity in a MOSFET is given by
g = Qinv/u (410)

and the change in the conductivity given by a change in both inversion charge and mobility is

Ag = AQinv:u + QinvA:u + AQinvAau

(4.11)
Ag ~ AQinv/u + QinvAlu'

4.3 Carrier Number Fluctuation

The carrier number fluctuation, or simply the number fluctuation, considers that there is only
a change on the inversion charge. Hence,

Ag = AQinv/u : (412)

From the charge balance, the change in the inversion charge is given by

0Q,
AQ  =—"AQ, 4.13
va §Qt Qt ( )
hence, for only one trapped electron,
Q9 q
AQ, =3y L (414
QL L

Finally, using (4.12), (4.14), (4.9) and considering a constant mobility along the channel, the current
deviation (in a uniformly inverted channel) given by a fluctuation in the carrier density caused by an
occupied trap is

oly n

—4d_ ) 4.15
I,  WLN,, (4.15)
and it is independent on the trap impacted area (LXLt).
Using (4.5), we obtain
ﬂ L ! (4.16)

I, WLN,,+(KT/q5)(C, +Cy)
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4.4 Mobility Fluctuation
If one considers that the occupied trap only changes the mobility of the device,
Ag=Q, Au.
Relating the mean scattering rate (1/z., ) with the mobility, one has that (Mueller & Schulz,
1996)
1_9

*

T m

sC

=0, 0,N, (4.17)

T |+

where m” is the conduction effective mass, v the thermal velocity, os the cross section of the
scattering centers and Nsc the density of scattering centers.
From Matthiessen’s rule
1 1 1

- += (4.18)
HoopFAu

where ust is the mobility due to a single trap and u+Ag is the mobility due to all other scattering events.
Substituting (4.18) into (4.17) and considering the mobility fluctuation due to only one trap, results

n

11 A .1
(—— jz—“=a DM ——. (4.19)

pooptAu) gt e :

Following our nomenclature, the single trap cross section iso,,, =L, and the mobility fluctuation is

given by
Au « 1
—:L[U m —U. (420)
po T L
From (4.9) the current deviation, given by a fluctuation in the mobility, is calculated as
Sl 2 A
oly _ L Au ' (4.21)
l, WL u
Finally, substituting (4.20) into (4.21),
% = Lﬂﬂ ) (4.22)
I, WL q

Differently from the carrier number fluctuation, equation (4.16), the current deviation caused
by a mobility fluctuation is dependent on the trap scattering cross section. A simple estimate for L is
calculated by considering that the carrier is scattered once the interaction energy from the trap is
larger than kT (Simoen, et al., 1992). The electrostatic potential from a point charge is given by
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V(r)= 4;29 - (4.23)

Therefore, the cross section where the potential is larger than kT/q is given by (Simoen, et al., 1992),
_ 2
bre kT

L, (4.24)

For T = 300 K, one has that Lt = 8 nm.

In strong inversion, the carriers charge decrease the trapped charge potential range (Simoen,
et al., 1992), an effect named screening. Nevertheless, in thin oxide devices the gate charge also
screens the trap potential [28], which makes the full calculation of the scattering cross section very
complex, as the 2-D Poisson equation needs to be solved. In [28] the calculation of the cross section
for thin oxide devices was done, and the authors concluded that the scattering cross section was
weakly dependent on the carrier density and could be approximated as 1.6Tox.

In this work, the analyzed devices with oxides ranging from 2 nm to 5 nm. Therefore, we use

a = L,m q"as a constant fitting parameter. For instance, when Li= 4 nm one has that a = 1.3x10%°

Vs.

4.5 Correlated Carrier Number and Mobility Fluctuation

Combining the effects of a charged trap on the carrier number and on the mobility, one has

that
Ag = AQ,, 1+ Q. Au (4.25)
and
Sy _ ﬁ(%JFA_ﬂj_ (4.26)
I, WL Q,, Y7,
Substituting (4.14) and (4.20) into (4.26),
% . \ﬁ(NL + L[Umm*ﬂ%] (4.27)
For a=Lou,mq™"
51, n

1
Sy _1(n ., 4.28
I WL(NW ”J (4.28)
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Figure 4.3 shows a comparison between the carrier number and mobility component of (4.28)
, for a typical NMOS transistor with Tox=2.9 nm, Vin = 0.5 V and a=0.8x107" Vs . From the figure,

we can see that the mobility fluctuation component is only relevant at the strong inversion region.

Figure 4.3 — Comparison between the mobility fluctuation and number fluctuation components.

e —— Number Fluctuation
5 . Mobility Fluctuation
;a% -
§ 13 \
10 E
04 06 08 1 12 14 16 18
V. IV]
gS
Using (4.5), we obtain
n 1

~ . . (4.29)
N' Ninv+(kT/q )(Cox+CD)

nv

Therefore, in weak inversion, Niny << (KT/g?)(Cox + Cp) and, as shown in Figure 4.3, equation (4.28)
saturates at

Sly| 1 q°

I E— (4.30)
| WL kT (C,, +C,)

d lwi

4.6 Trap Impact for a Non-uniformly Inverted Channel (|Vas| > 0 V)

When |Vgs| is larger than 0 V the conductivity of the MOSFET is a function of the channel
position, thus

g(X) =Qinv(x):u(x) (431)
and

Ag (X) ~ AQinv (X)/J(X) +Qinv (X)A/J(X) ' (432)

Therefore, to calculate the impact of a trap on the drain current the full transistor equation has to be
considered. This was deduced in the Klaassen and Prins paper (Klaassen & Prins, 1967) for thermal
noise calculation. In the paper, the authors relate the current impact on the terminal of a transistor
with the internal current impact on an infinitesimal uniformly charged transistor, as shown in Figure

4.4. This relation is given by
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Sl = %AixAx, (4.33)

where Aix is the impact on the current of the infinitesimal uniformly charged transistor with length

equal to Ax.

Figure 4.4 — Equivalent transistor for calculating the current deviation.
|
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v

As previously calculated in (4.28), the impact of a trap on the current of a uniform transistor

with length equal to Ax is given by

S T /S (4.34)
Id WAX Ninv,><

Therefore, using (4.33) and (4.34), the current impact on a transistor is dependent of the trap

position (x¢) and is equal to

51,00 _ 1 ( %)

Due to the infinitesimal uniform transistor approximation used in the derivation of (4.35), the
result is an approximation where the channel potential between the positions x+—L/2 and xt+L/2 can

be nearly constant, where Lt is the length under the influence of the trap.

4.7 Trap Impact for Non-Uniformly Doped MOSFETS
For non-uniformly doped devices, the Klaassen and Prins calculation is incorrect and a more
complete derivation was done in the work in (Roy, et al., 2007), which relates the current impact on

the terminal of a transistor with the internal current impact on an infinitesimal uniform transistor by

Sl = LfiAiXAx, (4.36)
j f (x)dx
0
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where,
f(x)= exp{—iia—gdx} : (4.37)
5 g OX
Therefore,
sla(x) _ F(x) (%)
= [va ) +ay(xt)j. (4.38)

g WJL.f(xt)dx

4.8 Sources of the Current Deviation Variability

From (4.38), one of the most evident sources of the current deviation variability is the trap

position along the device channel. In order to account it without discarding other presumable source
of variability, one can use the law of total expectation, E[Al, ]:E[E[AId |X; ﬂ . For a uniform trap

density from source to drain,

E[Ald]=% E[ Al |X; =x]dx. (4.39)

O ey

Another candidate source of Alg variability is the trap distribution along the oxide thickness.
If just the distribution of traps along the x (source to drain) and y (interface to gate) positions are

considered as source of variability and if this distribution is uniform, we have

L Tox
1

E[Ald]:FJ. I Al (X, y)dydx,, (4.40)

ox 0 0

where Tox is the oxide thickness.

However, the position of the trap inside the oxide and along the channel are not the only
sources of variability. Random dopant and fixed oxide charges are known to induce the current
through percolation paths on the transistor channel (Mueller & Schulz, 1996) (Mueller & Schulz,
1998) (Asenov, et al., 2003). This effect makes the local current density bellow the trap to be a random
quantity, resulting in a high variability of Alag.

Some works on the literature associate the variability of Alq caused by the random dopants,
the oxide charges and the position of the trap inside the oxide to an exponential distribution (Mueller
& Schulz, 1998) (Asenov, et al., 2003) (Bukhori, et al., 2010) (Kaczer, et al., 2010). Based on this,
we assume that for a given position along the channel the current deviation can be approximated to
an exponential distribution. For exponential distributions, we can easily calculate its second and

fourth raw moments as a function of the average, hence:
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E[A2[X, ]=2E[al,|x, |

) i \ (4.41)
E[ATf|X, |=24E[ AT, X, |
We, now, further assume that for our proposed model,
E[Al[X, |=6T,(%). (4.42)

with 873(x) given by (4.38).
Remark

The exponential distribution is a special case of the Weibull distribution with the shape
parameter ky = 1. Therefore, we can use a more generic form of (4.41). Using the Weibull distribution
properties

E[al7|X, ] F[%+1]E[Al~d|XTT,

w

F(ki+1]E[Al~d|XT]4,

w

(4.43)

E[Al{|X, ]

where T is the gamma function.

According to our measurements present hereinafter we have a very good fitting of the model
with the data using the exponential distribution, even though, a fine tuning can be achieved by the
use of kw # 1.
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5 THERTNSTATISTICAL MODEL

In this Chapter, we connect the statistical current deviation model derived above with the
model derived in Chapter 3, to create the complete Statistical RTN Model for MOSFETs. We
introduce the quantity K, which gives the area scalability of the LFN variability for different
technologies. We show the implications of the proposed model when the devices are operated under
uniformly charged channel and non-uniformly charged channel conditions. We also show that the

proposed model can explain the differences in the behavior between the n- and p-channel devices.

Completing the Model

Combining our proposed equations for the Expected value and the Variance of the LFN
(equations (3.4) and (3.5) respectively) with the statistics of the current deviation derived in (4.41)
and (4.42), gives the Expected value of the LFN as

kT I ¢ 0 Ntr(EFn)

E[S,(F)]= 2——j5| () ——=Fnt (5.1)
and the Variance as
kT ¢ ca N, (Eg)
Var([S,, (f)]= Ww%@mﬂm%m, (5.2)
where the normalized current deviation is given by (4.38),
- ol f
5T, (x) w21 |00 [N’?(X(tx)fau(xt)} 539

SN ETCALY

From general statistics of the lognormal distribution, previously shown in (3.2),

a[ln(Sid(f))]—\/ln[l M] (5.4)

E[S, ()]
If a K parameter is defined as

K =WLVar[S,4 (F)]/E[Sia (). (5.5)

then (5.4) can be written as
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o[In(S,(f))]=[In (“v%)' (5.6)

The theory that is developed in this work shows that, under certain simplifying conditions, K
is a constant value for all device geometries, justifying our choice to take K as the key quantity to
investigate in this study. K, as will become clear in this work, is a normalized quantity that allows
comparing the behavior of the noise variability amongst different technologies, dimensions, and bias
conditions. Using (5.1) and (5.2) in (5.5), the quantity that describes the variability of LF noise is

calculated as

Iél:(x)NuEF)dx
K=6 4 ) (5.7)

37°KT 2
Ual (X)N,, (E. )dxj

From the lognormal statistics, we also have that
1
u[In(s4(f))]= |n(E[s,d(f)])—§a[|n(sid )7 (5.8)

Hence, the 99.7"" percentile of Si(f ) (+3c in a normal distribution) can be calculated from

ﬂ[ln(sid (f ))}3‘7{'“(5“1 ﬂ _

99.7" percentileS, (f)=@€ (5.9)

5.1 Models Comparison

For a uniformly doped MOSFET the current deviation is given by (4.35) and the Expected

value of the noise in (5.1) becomes

15§ 1 2
[Sm(f) f WL2 I[[va(x) +aﬂ(x)j N, (Eg,)dX, (5.10)

which is a similar equation as the total noise derived in the widely-adopted flicker noise model
introduced by Hung et al (1990),

125 n(x) :
Su(f)= f WL2 _!:[ N._(x) "‘aﬂ(x)j N, (Eg,)dx. (5.11)

Despite the similarities, there are some fundamental differences in both equations. In Hung’s
model derivation, equation (5.11) is the total noise given by the sum of all the traps in a transistor.
However, in our model, equation (5.10) is the Expected value of the noise in a set of transistors.

Therefore, our proposed model is a stochastic model in which Hung’s model is the special case when
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WL is so large that oflog(S,,)]—0 and E[S,(f)]—S,(f), it is also the special case when the

transistor is uniformly doped and the current deviation is just a function of the trap position along the
channel. While, in our Expected value calculation the factor 2 accounts for the exponential
distribution of the current deviation.

According to the derivation done by McWorther (1857) used by Hung et al (1990), t is
assumed to be associated with the depth location of the trap inside the oxide, and ya represents the
attenuation coefficient of the electron wave function (y2~108 cm). The log-uniform distribution of T
is attributed to a uniform distribution of traps inside the oxide. Campbell et al (2009) demonstrated
that the elastic tunneling model underpinning this assumption is not realistic. In our approach t is
simply treated as a log-uniform random variable, implying that y, in our model, represents the density
of T in the natural logarithm scale, hence y=In(tmax/tmin) and it is unitless. In Hung’s model the trap
density, Ni(Er) has unit of cm3eV-! while in our derivation Ni(EF) has unit of cm 2eV 1. However, it
should be noted that despite these differences in the assumptions, the resulting Ni/y (cm2.eV 1) and
Ni/ya (cm~2.eV 1) have the same unit in both works. In a direct translation between the parameters of
both models

N, (Eg,) 5 N, (Eq,) |
7a /4

(5.12)

5.2 The Uniformly Inverted Channel

In the remainder of this work, the bias conditions that a device can be subject to are divided
in two scenarios: the uniformly charged (inverted) channel and the non-uniformly charged channel.
In the latter scenario, the effects of the halo implants and the large carrier density gradient induced
by Vgs are substantial and the full calculation of the model equations must be done. In the first
scenario, when Vgs is high and Vgs is small, the channel can be assumed to be uniformly charged
(inverted) from source to drain. Under this assumption, Alq and Ng/y can be assumed independent of

the trap position, and the proposed model equations can be simplified into

Sl =WL§|iz[L+ayJ, (5.13)
d inv
2
KT 12( n N, (E.)
E[S,(f) :2——d(—+a,uj s (5.14)
[ N ] f WL Ninv 7

KT 14 (g *N(E.)
Var[S,. (f)|=24 d + —uwr Pl 5.15
[ Id ( )] 37[2 f 2 (\NL)3 ( Ninv a;uj 7 ( )
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Var[S,d(fZ]: 1 y 1 (5.16)
E[Sld(f)] 37°kT N"(EF)WL

and
oy Vsl 2y (5.17)

E[Si - 2%KT Ny (Eg)

Moreover, under this condition n = 1 and Ninv = Cox (Vgs — VT1)/q, With Vr representing the strong
inversion threshold voltage.

The above equations show that when the channel is uniformly charged and the trap density is
independent of the transistor size, the Expected value of the LF noise is inversely proportional to the
area (WL) %, the Variance is inversely proportional to the cubic of the area (WL) and K is area
independent. The experimental results in Figures 5.1 — 5.3 confirm this behavior. In these figures we
fit the extracted Expected value, Variance and K from the measured data and compare with the values
calculated using (5.14), (5.15) and (5.17) respectively. For this fit we use Nu(Er)/y = 1.5x10° cm?eV-
Land (n/Niny + ap) = 2.8x10712 cm? for all devices dimensions. We also plot the results from 100000
draw Monte Carlo calculations applied to (3.1) (see Section 3.6), using a constant trap density in
energy. The measured devices were fabricated in a 140-nm CMOS technology with WxL (um?) given
by: 30x0.32, 8x8, 8x1, 8x0.336, 8x0.14 0.8%8, 0.8x0.32, 0.232x8, 0.232x0.32 and 0.232x0.14. For
each geometry, 43 devices were measured.

For all the following analysis of this work, the Expected value, Variance and K are extracted
from the measured data at 20 Hz, using the Maximum Likelihood Estimator of lognormal distribution
(described in Chapter 9). The uncertainty bars are the 0.02"" and 0.98"" quantiles from a Bootstrap

analysis (described in Chapter 9). The temperature used in all the following analysis is 298 K.

Figure 5.1 — Area scaling of the Expected value of
the LF noise, for n-channel devices in 140-nm
technology. Vgs= 1.4V and Vgs = 0.1V.

Figure 5.2 — Area scaling of the Variance of the LF
noise, for n-channel devices in 140-nm technology.
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Figure 5.3 — K value for different area devices, for n-channel devices in 140-nm technology. Vg = 1.4 V and
Vgs = 0.1V.
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In the calculations above, we assumed 873 = (n/Ninv + ap) to be the same value for all devices
dimensions. However, this is not very accurate as Vr and the mobility varies for different channel
length devices. In the analyzed 140-nm technology the Vr is expected to have values of 0.5 V and 0.6
V for the long channel and the minimum length device respectively. Therefore, this Vt variation in
conjunction with a variation in the mobility can cause some deviation from the area dependency.
However, this difference is very small compared to the span of orders of magnitude in the device
area, shown in Figures 5.1to 5.3. This deviation can be better seen in technologies with highly doped
halo implants. The halo implants increase the Reverse Short Channel Effect (RSCE), which in turn
increase the difference in Vr values between devices with different channel length, and increase the
mobility difference.

The fact that a single value of K fits the variability for all device dimensions, as shown in
Figure 5.3, and the dependence of K on the trap density given by (5.17), suggests that all devices have
similar trap densities, despite their area. However, the high uncertainty in the small area devices data
could be hiding a slightly higher trap density in the perimeter of the devices (e.g. along the Shallow
Trench Isolation — STI — edges (Tuinhout & Duijnhoven, 2013)). Anyhow, one can conclude from
these figures that the trap density should be roughly of the same order of magnitude for all device
dimensions.

According to our model, the fitting value of K from Figure 5.3 can be used in (5.6) to give the
area scaling prediction of the noise variability (c[In(Sig)]) for this technology. Figure 5.4 and Figure
5.5 show how, in practice, the area scaling of the noise variability follows the predicted behavior of
(5.6). The dashed lines represent the conventional 1/varea dependency when calculated using the
large geometry devices (which gives the smallest statistical uncertainty). They clearly show the
overestimation of the variability for small devices when the 1/ \area relation is used. Moreover, Figure
5.5 also demonstrates that the variability does converge to the conventional 1/+area model for large

area devices.



Figure 5.4 — Area scaling of the Standard Deviation
of the logarithm of LF noise, for n-channel devices
in 140-nm technology. Vg = 1.4V and Vg = 0.1V.
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Figure 5.5— Same data as in Figure 5.4 now plotted
on log-log scale, to demonstrate that the model
converges to 1/\area for large devices and that no
noise saturation occurs near the origin of Figure 5.4.
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Figures 5.6 and 5.7 demonstrate, for a large and a small device geometry, how well the 3-

sigma PSD predictions given by our noise variability model correspond with the observed variability
of the LF noise spectra. The Standard Deviation was calculated using (5.6) with K = 5x10* m? for

both geometries and was plotted back into the original spectra using (5.9). Figure 5.6 shows that for

large area devices the many individual Lorentzians are summed, implying that they are no longer

discernible as individual bumps. The apparent larger spectrum noise in the lower frequency bands

(>1 kHz and <100 Hz), in Figure 5.6, is due to the lower number over time traces used for the FFT

averaging at lower frequencies.

Figure 5.6 — Example of the LFN Variability
model prediction for a population of large
geometry devices plotted back into the original
spectra using (5.6) with K = 5x10 ¥ m2 WL =
30%0.336 um?, Vgs= 0.1V and Vg =1.4 1V.
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Figure 5.7 — Example of the LFN Variability
model prediction for a population of small
geometry devices plotted back into the original
spectra. K = 5x107¥m?, WL = 0.232x0.16 pm?,
Ves=0.1Vand Vg =14V.
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Figure 5.8 to Figure 5.11 demonstrate that, for p-channel devices in 140-nm technology, the

proposed model also gives a good prediction of the noise statistics under the uniformly inverted

channel assumption. The figures show the fittings using the proposed model for p-channel devices

With Vgs = —1.4 V, Vas= —0.1 V and WXL (um?) given by: 30x0.32, 8x1, 8x0.32, 8x0.14, 0.8x0.336,
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0.232x0.336 and 0.232x0.14. For each geometry 43 devices were measured. The extracted Expected
value, Variance, K and o[In(Si4)] are fitted using (5.14), (5.15), (5.17) and (5.6) respectively. A good
fitting was achieved using Nu(Er)/y=13.1x10° cm?eV?! and (1/Niny + op) = 2.7x107*2 cm? for all

devices dimensions.

Figure 5.8 — Area scaling of the Expected value
of the LF noise, for p-channel devices in 140-
nm technology, Vgs=—1.4 V and Vgs=—0.1V.
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Figure 5.10 — K value for different area devices,
for p-channel devices in 140-nm technology,
Vgs = _14 V and Vdsz —OIV

Figure 5.9 — Area scaling of the Variance of the
LF noise, for p-channel devices in 140-nm
technology, Vgs =—1.4 V and Vgs=—0.1V.
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Figure 5.11 — Area scaling of the Standard
Deviation of the logarithm of LF noise for p-
channel devices in 140-nm technology, Vgs=—1.4
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Figure 5.16 to Figure 5.15 show applications of the model for n- and p-channel devices from
two additional contemporary mixed-signal CMOS technologies. For all cases, the simplified model
allows an excellent fit of the noise statistics with device area. Figures 5.12 — 5.15 show the fitting for
40-nm technology with [Vgs| = 1.1, [Vas| = 50 mV and WxL (um?) given by: 9x9, 0.9x0.9, 0.9x0.45
and 0.9x0.04. For each geometry 54 devices were measured. Figures 5.16 — 5.19 extends the low Vgs
simplification to [Vgs|= 0.5V for the 65-nm technology with a thicker oxide (here called 65-nm GO2)
— which allows a gate voltage up to 2.5 V. The fitting still holds for this case when the Vs is large
(hence implying a similar gradient of carriers for different device lengths). For the 65-nm GO2
technology 68 devices were measured for each geometry with WxL (um?) given by: 10x10, 1x5, 1x2,
1x0.5, 1x0.28, 0.4x5 and 0.4x0.28.



Figure 5.12 — Area scaling of the Expected value

of the LF noise, for devices in 40-nm technology.
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Figure 5.14 — K value for different area devices,
for devices in 40-nm technology. [Vg|= 1.1V
and |Vgs| =50 mV.
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Figure 5.16 — Area scaling of the Expected value
of the LF noise, for devices in 65-nm GO2
technology. [Vg|= 2.5V and |Vgs|= 0.5 V.
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Figure 5.13 — Area scaling of the Variance of the
LF noise, for devices in 40-nm technology, Vgs=
1.1V and Vgs=50 mV.
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Figure 5.15 — Area scaling of the Standard
Deviation of the logarithm of the LF noise for
devices in 40-nm technology. Fitted using (5.6)
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m?2 for PMOS. |Vg| =50mV and |V = 1.1V.
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Figure 5.17 — Area scaling of the Variance of the
LF noise, for devices in 65-nm GO2 technology.
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Figure 5.19 — Area scaling of the Standard
Deviation of the logarithm of the LF noise for

Figure 5.18 — K value for different area devices, devices in 65-nm GO2 technology. Fitted using
for devices in 65-nm GO2 technology. [Vg|= 1.1 (5.6) with K = 1.9x10—-12 m2 for NMOS and K
V and |[Vg| =50 mV. =5.4x10—13 m2 for PMOS. [Vds| = 0.5 V and
[Vgs|=2.5V.
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Comparing different technology nodes

Below, we show that we can use the uniformly charged channel condition and the proposed
model to compare the parameters of different technology nodes. In the present work, we analyze the
LF noise in three different technology nodes, 140-nm, 65-nm and 40-nm, all of them use silicon
dioxide as dielectric and have polysilicon gate. Both NMOS and PMOS were measured. For the 65-
nm node, devices with two different oxide thickness were measured, 2.5 nm and 5.6 nm, named GO1
and GO2 respectively. However, in this analysis of uniformly inverted channels the 65-nm GO1
devices are not analyzed since we only have the measurements with high drain bias applied.

Equation (5.6) shows that as higher the K value for a certain technology is, the higher the
variability of the low frequency noise will be. From (5.7), the factors that distinguish K for different
technologies and device dimensions are the trap density (Nu/y) and the spread of Alg values. As we
show in the next section, the spread of Alg values are primarily due to the non-uniformity of carriers
caused by either the doping gradient or the lateral electrical potential gradient (induced by Vgs). Using
high gate bias and low drain bias voltages, we have a uniformly inverted channel, and the variability
mechanisms of Alq dependent on the position of the trap along the channel become irrelevant. Hence,
as already discussed, for a uniformly charged channel the K value calculation is simplified to (5.17),

2 /4
7°kT Ntr(EF)

(5.17): K =

and the Expected value is reduced to (5.14), where 5fd can be further simplified to

STy =0/(CoVy e ) + ity . Hence,
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Equation (5.17) suggests that the trap density defines the variability in a uniformly inverted
channel. Hence, the values of K used in Figures 5.3, 5.10, Figure 5.18 and 5.14 allow a comparison
of the dielectric quality among the different technologies. The above equations show that the
Expected value of the LF noise spectral density is directly proportional to the trap density whereas K
(hence the variability) is inversely proportional to the trap density. Thereby, for a given technology,
when the trap density is higher, K is lower and the Expected value is higher. When the oxide thickness
(Tox), the effective mobility (Uefr), the mobility degradation factor (o)) or Vr is higher, the Expected
value of the noise is higher.

In Figures 5.1 — 5.15, we have fitted the measured data of different technologies, for both n-
channel and p-channel devices, using the proposed model. Below, we use equations (5.17) and (5.18)
, the quantities used in the above fittings and the parameters of each technology to extract the Nu/y
and the aperr quantity. Hence, by assigning a mobility we can also extract the o parameter. Using this
technique allows for some insights and comparison among the different technologies.

In Figure 5.1 to Figure 5.3, we have shown the model fit for various n-channel 140-nm devices
with Vgs= 1.4 V and Vgs= 0.1 V. The fitting was done using a Nu(Er)/y = 1.5x10° cm eVt and (/Ninv
+ ap) = 2.8x10713 cm?. The threshold voltage for this technology is assumed to be around 0.5 V and
Tox = 2.9 nm. Hence q/(CoxVgetf) = 1.5%10712 cm? and we can extract that aperr is around 1.3x107%,
For a mobility of 200 cm?Vs ™, o.= 0.7x1071° Vs. Moreover, using the extracted a and, from Chapter

4, thata = o,v,mq ", the trap scattering cross section (csc) is extracted to be about 2 nm. Hence, it is

a reasonable physical quantity.

For the p-channel devices, in 140-nm technology, a good fitting was achieved using N«(Er)/y
= 13.1x10° cm?eV! and (/Ninv + op) = 2.7x107 cm? for all devices dimensions (Figures 5.8 —
5.11). The threshold voltage for the p-channel devices is also assumed to be around 0.5 V and Toxeff
= 2.9 nm. Hence, /(CoxVgerr) = 1.5%107" cm? and we can extract that apef is around 1.2x107 cm?,
For a mobility of 150 cm?Vs™, a = 0.8x107* Vs and the scattering cross section is also about 2 nm.

We also apply this methodology to the 40-nm and 65-nm technologies, analyzed above. The

result is shown in Table 5.1 and Table 5.2, for n-channel and p-channel devices respectively.
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Table 5.1 — Extracted Model Parameters for n-Channel Devices

Device  Toxefft  Vageft WLXE[Sid/le?] (WL)*xVar[Sid/l¢?] K 814 Ntr/y ULeff a
(nm) V) (cm? /Hz) (cm® /HZ?) (m?) (cm?) (cm2eVvY) (cm?) (Vs)
140-nm 2.9 0.9 3x1071 4.8x107% 5x10%  2.8x10° 1.56x10° 1.3x10® 0.7x10°5
40-nm 2.4 0.7 3.1x107%° 3.65x10746 3.7x1073  24x107%%  2.1x10°  1x107 0.5x10°%5
‘éfggm 5.6 2 4.3x10°20 35x1047  1.86x102 2x108  042x10° 0.7x10%3 0.4x10°5

Table 5.2 — Extracted Model Parameters for p-Channel Devices

Device Tox,eff Vg,eff WLx E[Sld/ldz] (WL)vaar[Sld/le] K Bid Ntr/y OlLLeff o
(nm) (V) (cm? /Hz) (cm® /Hz?) (m?) (cm?) (cm2eVv?Y)  (cm?) (Vs)
140-nm 2.9 0.9 25x1071° 3.6x107% 0.6x1018  2.7x10°1 13.1x10° 1.2x1013 0.8x10°%
40-nm 2.7 0.7 16x1071° 2.5x107% 1x10™ 2.8x10°13 7.8x10° 1x10713  0.7x10°15
g&';)r;m 5.6 2.1 5.7x1071° 1.5x10745 4.6x1013  3.6x10713 1.7x10° 2x10718  1.3x10°1

5.3 Non-Uniformly Inverted Channel

When the inversion layer charge density and electrical fields are a strongly varying function
of channel position, the dependence of Alg on trap position will become appreciable. This makes K
bias and length dependent (see equation (5.7) repeated below), which affects the noise variability
given by (5.6), deviating its area scalability from the behavior predicted for uniformly charged
channel, shown in Section 5.2. This length dependent behavior of K, for non-uniformly inverted
channel devices, may increase the variability of large channel devices by more than an order of
magnitude, which may, in some cases, cause the variability of long channel devices to be as large as
that of short channel devices. Figure 6.20 shows an example of the loss of area scalability for devices
with the same width (W = 8 um) and with different lengths, for Vgs= 0.5V and Vgs = 0.5V. Therefore,
for low Vgs and/or high Vgs, the full calculation of the proposed model equations ((5.1) — (5.7)) is

required.

J 150N, (Ep)/ yax
(57): K =6 0

372KT (L 2’
[ 815 00N, (E)/ ydlx
0
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Figure 5.20 — LF noise PSD variability of 43 n-channel devices with W = 8 um, using Vgs= 0.5 V and Vg =
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Equation (5.6) and (5.7) predict however, that when changing the W with a fixed L, the model

should keep scale for any bias combination. This is only possible if the traps are uniformly distributed

along the width of the devices and if there is no considerable border effect such as an increase on the

trap density at the edges of the STI. According to our measurements in Figure 5.21, the width

scalability is confirmed and if there is any increase in the trap density at the edges of the device, its

effects on the device variability are hidden within the uncertainty of the variability.

Figure 5.21 — Variability as a function of the channel width for various bias configuration, L = 0.32 pum.
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The fitted K’s from this experiment (varying W, fixed L), for each bias combination, are

summarized in Figure 5.22. The figure indicates a clear difference, between short and long channel

devices, on the behavior of K relative to the drain bias and gate bias dependency. For long channel

devices, Figure 5.22 shows that K is strongly dependent on Vgs and Vs, which can vary by more than

2 orders of magnitude. For short channel devices, Figure 5.22 shows that the K dependence on Vs is

weaker than for the long channel device, and that K is practically independent on Vgs. In addition, for

both short and long channel devices, as Vgs increases, K approaches the value calculated for the

uniform channel condition in Section 5.2.
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Following our model, the change in K with Vg could either be attributable to a gate bias
dependency of Nu(Ek), or to an increase of E[Al4*]/E[Al4?]? associated with a non-uniformity of the
channel (e.g. non-uniform doping or source and drain potential effect). The difference in the behavior
of long and short channels can be associated to the enhancement of the contribution of the halo-
implanted regions in long channel devices to the noise (Paydavosi, et al., 2013), hence for short
channel this dependence with Vgs is weaker due to the overlap of the halo-implanted regions.
Moreover, the different behavior with Vgs can be attributed to the fact that the surface carrier
concentration on the drain side of the channel is a function of Vgs and, due to the velocity saturation,

it is also a function of the channel length. Therefore, from (5.7), K — and thus the variability — will

depend on the channel length, Vgs and V.

Figure 5.22 — Difference between the K behavior for short and long channel devices.
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Figure 5.23 and Figure 5.24 then demonstrate how this increase on the K value is very
significant for long channel devices. Figure 5.24 shows that the LF noise PSD of a large area device

can easily vary by 2 orders of magnitude for certain bias configuration.

Figure 5.23 — LF noise PSD of 43 NMOS 140-nm  Figure 5.24 — LF noise PSD of 43 NMOS 140-nm
node devices, W = 8 um, L = 8um, V¢=1.4 and node devices, W =8 um, L =8 um, Vgs = 0.5 and

Vgs=0.5 V. Vds=0.5V.
220 i,
_ 10 ‘.‘m1
N
=21
Z10
<
= 107
w
107
1 al N 1 .
10' 10° 10° 10°

Frequency [Hz] Frequency [Hz]

Therefore, when dealing with non-uniformly inverted channels, different device lengths have
different electric field behaviors and different distribution of carriers along the channel. This leads to

a different distribution of the current deviation as a function of the trap position in the channel. Hence
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the integrals relation in (5.7) will have different values for different device lengths. Moreover, non-
uniformly doped devices will have different dlq in different doped regions, which enhance the
variability of the current deviation and thereby increases K. Figure 5.25 to Figure 5.32 show, for 4
different technologies, that this length and bias dependent behavior of K is consistent among different
device geometries and technologies.

These effects on K values will be discussed in detail in Chapter 6, where dl4(xt) and K for
different bias conditions will be calculated using the data extracted from TCAD simulations for long

channel and short channel devices.

Figure 5.25 — Extracted K of 43 n-channel devices Figure 5.26 — Extracted K of 43 n-channel
in 140-nm technology with V4s=0.1V. W =38 devices in 140-nm technology with Vg = 0.5 V.
pm and various channel lengths. W = 8 um and various channel lengths.
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Figure 5.27 — Extracted K of 43 n-channel devices in 140-nm technology with Vgs = 1.8 V. W =8 um and
various channel lengths.
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Figure 5.28 — Extracted K of 63 n-channel
devices in 40-nm technology with Vg = 0.05 V.
W = 0.9 um and various channel lengths. For 9-

um long devices, W = 9um.
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Figure 5.29 — Extracted K of 63 n-channel
devices in 40-nm technology with Vg = 0.55 V.
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Figure 5.30 — Extracted K of 63 n-channel devices in 40-nm technology with Vgs = 1.1 V.
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Figure 5.31 — Extracted K of 282 n-channel
devices in 65-nm GO1 technology with Vg = 0.5
V. W =1 um and various channel lengths. For
the 10-um long devices, W = 10pum.
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Figure 5.32 — Extracted K of 68 NMOS 65-nm
node GO2 devices with Vgs=0.5V. W= 1 pm
and various channel lengths. For 10-um long
devices, W = 10um.
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5.4 n-Channel Versus p-Channel Devices

In Section 2.5, we have discussed the difference on the behavior of the LF noise between n-
and p-channel devices. We also commented that, to explain this difference, two schools of thought
have emerged. One school of thought attributes the noise of NMOS transistors to trapping, and
attributes the noise of PMOS transistors to a bulk mobility fluctuation (i.e Hooge model) (Vandamme,
et al., 1994). The other school of thought considers the noise of both NMOS and PMOS transistors
to be a consequence of the trapping mechanism, with the trap density constant for NMOS transistors
and varying with the quasi-Fermi level for PMOS transistors (Scofield, et al., 1994).

Figures 5.33 and 5.34 show the Expected value and K of short channel devices (L = 0.14 um)
for n-channel and p-channel devices. The figures show that for high |Vys| the p-channel device LF
noise has a larger Expected value and a smaller K than that of the n-channel device. From our model,
this strongly indicates that at energies accessible in the operation of p-channel devices the trap density
is higher than the trap density at energies accessible in the operation of n-channel devices. This can
be seen in Section 5.2, where for three different technologies - in uniformly inverted channel
conditions - we show that p-channel devices have a higher Expected value and a smaller K and
therefore we have extracted a higher trap density for p-channel devices in Tables 5.1 and 5.2.

The figures also show that the Expected value of the p-channel devices has a weaker
dependence on gate bias than of the n-channel devices, and K (hence the variability) of the p-channel
devices has a larger dependence on gate bias than of the n-channel devices. In Figure 5.34 we can see
that even within Vgs=1.8 V and Vg 1.4 V, which meet the uniformly inverted channel conditions, the
K value of p-channel device varies by almost three times. From the mechanism described above and
from (5.7), this effect can only be explained by the dependence of the trap density with the quasi-
Fermi level, which supports the viewpoint of Scofield et al. (1994). This viewpoint considers the trap
density to be weakly dependent on energy for n-channel devices and strongly dependent on energy
for p-channel devices.

For p-channel devices, decreasing |Vgs| therefore effectively reduces the trap density. This
effect counteracts that of 8lq with Vg, which increases with decreasing |Vgs|. Thus, due to these
opposing effects, the dependence of E[Sia(f)] with Vs is reduced. In turn, the trap density reduction
with decreasing |Vgs| increases the variability, as K is inversely proportional to Ny/y. This effect
explains the smaller dependence of E[Sia(f)] and the larger dependence of the K value with the gate

bias for p-channel compared to n-channel devices found in Figures 5.33 and 5.34.
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Figure 5.33 — Expected value of 43 p-channel Figure 5.34 — K value of p-channel devices in 140-

devices in 140-nm technology, with WxL = nm technology, with WxL = 8x0.14pum2 and |Vds|
8x0.14pum?2 and |Vds|=0.1 V. =0.1V.
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Figures 5.35 — 5.37 then show that the behavior described above is also found for p-channel
devices with different geometries and drain biases.

Figure 5.35 — Extracted K of 43 p-channel devices  Figure 5.36 — Extracted K of 43 p-channel devices
in 140-nm node, with W = 8 um, Vg = 0.1V and in 140-nm node, with W = 8 pum, Vg = 0.5V and
various channel lengths. various channel lengths.
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Figure 5.37 — Extracted K of 43 p-channel devices in 140-nm node, with W = 8 um, Vg = 1.8 V and various
channel lengths.
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6 MODEL CALCULATION USING TCAD SIMULATIONS

In section 5.2, we were able to calculate the statistics of the Low Frequency Noise for various
different technological nodes under the uniformly-inverted channel simplification. The next step is to
test the proposed model for all bias situations. In section 5.3, we have explained that when the
inversion charge layer has a non-uniform distribution along the device channel the variability of the
noise will have a different behavior among different channel lengths devices. To test this hypothesis,
we need to properly calculate the current deviation as a function of the trap position along the channel
given by (5.3). To that end, in this chapter we use a TCAD tool for extracting the trap impact at
different channel positions.

In this chapter, we show that with the help of a TCAD simulator we can analyze the influence
of the halo-implanted regions and the bias on the LF noise statistics. We also show that we can
properly calculate K, the Expected value and Variance of the noise using the quantities (74, Ninv, L,
Er ...) extracted from the TCAD simulator, with a TCAD deck carefully calibrated to reproduce the

measured DC IV characteristics.

6.1 TCAD Deck Calibration

To do this analysis, first we need to replicate the transistor characteristics in the TCAD
simulator. The TCAD simulation is divided in two steps: the process simulation and the device
simulation. The process simulation was done using the TSUPREM-4 tool. In this step, all major
process steps were simulated in 2-D, such as oxidation, implantation, deposition, diffusion, etc. After
the process simulation, a 2-D cross section of the device containing the doping profiles and device
structure is generated. Then, the generated 2-D structure is simulated in the MEDICI device simulator
where the electrical transport models and related parameters are defined. The device simulation then
gives the potentials and currents at the device electrodes. This information is compared to the
measured data of real devices and the process information or the device parameters are tuned until
the DC IV characteristics of the real devices are reproduced in the device simulator. Figure 6.1

demonstrates a schematic of this calibration process.
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Figure 6.1 — Schematic of the calibration process.
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After reaching a good process description, with the right doping profiles and device structure,
we compare the CV and IV characteristics. This comparison not only allows us to check the process
information but also allows us to calibrate some of the device parameters such as the mobility
parameters, the gate workfunction and permittivity of the dielectric. All device simulations were done
using the Modified Local Density Approximation (MLDA) quantum correction model — which gives
a better estimation of the real carrier density in the device — and using the drift diffusion transport
model.

As demonstrated in Figure 6.2, we use the CV curve to check the doping profiles by comparing
the depletion capacitance, given by the bottom part of the curve. We can also use the CV curve to
compare the gate work function, the permittivity of the dielectric and the depletion of the polysilicon.
Figure 6.2 shows an example of the CV curve of a long n-channel device in 140-nm technology, from
the figure we see that we must increase the gate work function and must decrease the oxide
capacitance to have a better fit. The gate work function was tuned by increasing the polysilicon
electron affinity parameter, since the process simulation includes the polysilicon deposition step. The
oxide capacitance was tuned by decreasing the oxide permittivity. The final result is also shown in

Figure 6.2.

Figure 6.2 — CV curve comparison for the n-channel 140-nm technology.
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After reaching a good CV curve fit, the next step is to check the 1¢sXVgs curves to fine-tune the

mobility parameters. The following mobility models were used in the simulation: Lombardi model
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(which includes doping dependence and the transversal field dependence) and the High Lateral Field

model (which accounts for velocity saturation). The steps used to check and tune the mobility

parameters are as follows:

Ids [Ax107]

Ids [Ax107)

1. Long channel device with low drain bias (Figure 6.3) — to check the surface roughness
parameter and surface phonon degradation parameter.
2. Short channel with low drain bias (Figure 6.4) — to check contact or/and lumped

resistance.
3. Short channel high drain bias (Figure 6.5) — to check high field mobility model.

Figure 6.3 — IV curve of a large channel device with low drain bias.
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Figure 6.4 — IV curve of a short channel device with low drain bias.
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6.2 Current Deviation Extraction Method

To extract 5lq(xt) using the MEDICI tool the following procedure is done:
1. The current with no interface charge is evaluated, lqo.
2. A small charge density Q; (C/cm?) is introduced between the interface nodes x»—1 and
Xn+1
3. The new current is measured, lg.
4. blg(xt) is then calculated as dlda(Xn) = q(lda-1do)/ (WX QX (Xn+1—Xn-1)).
5. Repeatsteps2to4 forn=n+1.
To understand step 4, let’s first understand what happens with the current when we introduce
a small quantity of charge in a small rectangle region (L:xW;) of the Si-SiO; interface, along the length
(L) and width (W) of the device. Using (4.9) one has that in a uniform channel device with length
equal to Ax, and width equal to W,

A, W xL 7AQ
i WAXx Q

X

. (6.1)
Hence, the current deviation is directly proportional to the charged area, LxW4, and the charge density
introduced in this area, Q.

If the potential drop across L: is negligible, we can generalize (6.1) for a non-uniformly

inverted channel and non-uniformly doped channel using (4.36).

(4.36): 51, :LfiAixAx.

j f (x)dx

For only one captured electron, Q; = g/L¢, and (6.1) becomes (4.12), repeated below.

(12 SN
I WA><Ninv

X

Therefore, comparing (6.1) with (4.12) one can normalize the current deviation for one

electron using

5Id,1-elec = 5Id,Q[ ﬁ ' (6.2)
t

where dlq,qt IS the current deviation extracted in the TCAD after the introduction of a charge density,
Q, in an area given by WxL; (here we use W = W because in a 2-D device simulation the introduced
charge is distributed in the whole width of the device). From step 2, the charge density is introduced
between the mesh nodes xn+1and xn-1. Hence, Lt = Xn+1—Xn-1and (6.2) is the normalization used in step
4,
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Figure 6.6 and Figure 6.7 show the results of the normalization using (6.2) for various mesh
sizes and charge densities respectively. The simulation was performed in a uniformly doped 2-um
long n-channel device, created for this experiment, with Tox = 2.5 nm, Na=3e17 and polysilicon gate.
Figure 6.6 clearly shows that the normalization works independent of the mesh size as long as the
mesh size is small enough to consider the potential drop across Xn+1 and x»-1 negligible. When Vs is
high, Figure 6.6 clearly shows that mesh size of 20 nm, 100 nm and 200 nm are too large to account
for the large potential drop close to the drain side. Although, when the potential drop is small all the
mesh sizes used gives similar results.

Figure 6.7 shows the normalization result for different charge densities with a fixed 4-nm
mesh. From the derivations of (6.1) in Chapter 4 the normalization should work as long as the
introduced charge density can be considered to cause a small signal perturbation in the channel
potential beneath it, otherwise the small signals simplification used in the derivation of (6.1) is no
longer valid. The figure shows that the normalization works for different charge densities and does
not work for Qi/q = 200x10*° cm. When the charge density is too small, the current deviation is so
small that it can barely be detected because of the simulator resolution. This causes the normalized
current deviation for one electron to show some quantization effects, as seen when Qi/q = 0.02x10%°

cm2.

Figure 6.6 — One-electron normalization of the current deviation for different mesh sizes. Q/q = 2x10'° cm™.
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Figure 6.7 — One-electron normalization of the current deviation for different mesh sizes.
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Therefore, (6.2) can be used to calculate the current deviation for any mesh size — as long as
the mesh is not so coarse that there is a large potential drop across its nodes — and for any charge
density — as long as the charge density is small enough for the potential perturbation stays in the small
signal regime and large enough so there is a measurable current deviation.

The TCAD simulation does not account the mobility degradation when a charge is introduced
in the Si—SiO; interface. Due to this limitation on the TCAD tool, only the number fluctuation part
of the 614 equation, (4.38), is extracted using the above methodology. In Chapter 4 we demonstrated
that the mobility degradation caused by a trap is only relevant at strong inversion. As will become
clear along this work, the term given by the non-uniformity of the doping, shown in Figure 6.8, is the
responsible to increase 6lq in the halo-implanted regions. This term is larger in the halo-implanted
regions when the channel is in weak inversion and can be approximated to 1/L for all channel

positions when the channel is strongly inverted.

Figure 6.8 — Description of the current deviation equation.
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In order to account for the mobility fluctuation in the calculation of the current deviation, we

use the characteristics of the current deviation equation described above to approximate 6lq(x:) as

IAROEE RN
51,(x) = (va(xt)}WLay(xt). (6.3

Where the effective () is also extracted from TCAD by

[ 10 y)n(x, y)dy (64)

ﬂ(X) ) NinV(X) 0

and the carrier density by

Yd

N;,, () = [ n(x, y)dy - (65)

0
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After extracting the quantities from the TCAD simulation, the only fitting parameters left to
fit the measured data with our proposed model, equations (5.1) to (5.8), are the Nu/y and the a

parameter.

6.3 Current Deviation

In Section 5.4, we showed that there is a clear difference between the behavior of the
variability of large and small channel devices. The variability of large devices has a larger dependence
with both Vgs and Vs than the variability of short channel devices. We have addressed this difference
in Section 5.4 as being caused by the difference in the carrier distribution along the channel and by
the halo regions. This behavior of the variability is clarified when analyzing the current deviation
extracted using the TCAD simulation and (6.3).

We extracted the current deviation for long and short channel devices from the 140-nm TCAD
deck, carefully tuned as demonstrated above. For this experiment, we simulate n-channel devices
with L =8 um, L =0.32 um and L = 0.14 um, to represent different device geometries. The current
deviation is analyzed for four different bias configurations: linear region, weak inversion, saturation
and weak inversion with high Vgs applied.

Long Channel (8 pm)

Figure 6.9 shows the 2-D cross section of the net doping gradient of a long channel device. In

the figure, the dark-blue regions are strongly doped regions. It demonstrates that the regions with halo

implantation represent a small amount of the channel and are far apart.

Figure 6.9 — 2-D cross-section of a long channel device (1 pm), showing the net doping gradient. Halo-
implanted regions are far apart.
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The current deviation extracted for the long channel device is shown from Figure 6.10 to
Figure 6.13. Figure 6.10 shows that using high Vg and low Vgs, the impact on a large device is almost
constant from source to drain, confirming the uniformly-charged channel consideration in Section

5.2. Analyzing the equation in Figure 6.8, when Vgs is high, the term highlighted in blue, which
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accounts for the non-uniformity in the doping concentration, is almost constant along the channel and
approximately 1/L. In addition, the term in the parentheses can also be considered constant, because
Vs is low.

Figure 6.11 shows a much larger impact at the halo regions when Vgs is low and the device is
operated close to the weak inversion regime, where the term highlighted in blue increases the current
deviation at highly doped regions.

Figure 6.12 shows the device in the saturation regime, with high Vgs and high Vgs. On this
condition the trap with the highest impact is situated at the onset of the pinch-off region due to the
small number of carriers at the drain side (n/Ninv is large) and because the drain-side halo region is in

weak inversion (blue highlighted term is large).
When decreasing Vgs and keeping Vas high, the term 7(x)/ N, (x) = ((kT /qz)(COX +CD))_1

— according to Section 4.5 — hence it is saturated along the channel and the difference of 5lq as a
function of the trap position is given only by the influence of the halo region, as shown in Figure 6.13.
The figure also shows that the impact at the drain side halo is smaller; this is caused by the lowering
of the halo-implanted region barrier induced by Vs.

Therefore, the high impacts at small regions of the channel, shown in Figure 6.11 to Figure
6.13, are the responsible for the strong increase in the K value — hence the variability — when the large

channel device operates in weak inversion or in saturation.

Figure 6.10 — Normalized impact vs. channel Figure 6.11 — Normalized impact vs channel
position, high Vg, low Vg, L = 8 um. position, low Vs, low Vgs, L = 8 um.
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Figure 6.12 — Normalized impact vs. channel Figure 6.13 — Normalized impact vs. channel
position, high Vg, high Vs, L = 8 um. position, low Vg, high Vgs, L = 8 um.
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Short Channel (0.32 pm)
Figure 6.14 shows the cross section of the net doping gradient of a 0.32-um device,

representing a short channel device with the halo-implanted regions very close to each other.

Figure 6.14 — 2-D cross-section of a 0.32-um device showing the net doping gradient. Halo-implanted
regions are very close to each other.
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The current deviation extracted for the short channel device is shown from Figure 6.21 to
Figure 6.24. The current deviation as a function of the trap position is very similar to the 8-um long
device. However, it has two main differences. In weak inversion, the peaks in dlq at the halo-
implanted regions represent a large percentage of the channel, which in turn makes K weaker
dependent with Vgs than the 8-pum device. In saturation, Figure 6.17, the difference from the impact
at the onset of the pinch-off to the impact close to the source are smaller than this difference in the 8-
um long device. This is due to the velocity saturation, which makes the carrier’s density at the onset
of pinch-off to be a function of the channel length (as shown in

Figure 6.19). Therefore, the lower peak in the saturation condition and the fact that the peak

also represents a large percentage of the channel makes the variability to also have a smaller

dependency with Vgs.
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Figure 6.15 — Normalized impact vs. channel
position, high Vg, low Vgs, L =0.32 um.
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Figure 6.17 — Normalized impact vs. channel
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Figure 6.16 — Normalized impact vs channel
position, low Vg, low Vgs, L = 0.32 um.
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Figure 6.18 — Normalized impact vs. channel
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Figure 6.19 — Carriers density as a function of the normalized channel position for three different channel
lengths. Vg =1.8 V and Vg=1.8 V.
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Short Channel (0.14 pm)

Figure 6.20 — 2-D cross-section of a 0.14-um device showing the net doping gradient. Halo-implanted
regions are overlapped.

The current deviation extracted for the short channel device is shown from Figure 6.21 to
Figure 6.24. For the small channel device, the comparison between Figure 6.21 and Figure 6.23 shows
that, the change of Vgs cause a minor change on the impact of the trap close to the drain.

In such small channel device, the halo regions are overlapped. Hence, we do not see the
behavior of the current deviation present in the halo regions. However, for low Vg the effect of the
depletion region of the source and drain affects dlq, creating the behavior shown in Figure 6.22 and

in Figure 6.24, which slightly increases the value of K.

Figure 6.21 — Normalized impact vs. channel Figure 6.22 — Normalized impact vs channel
position, high Vg, low Vg, L = 0.14 um. position, low Vg, low Vg, L = 0.14 pm.
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Figure 6.23 — Normalized impact vs. channel Figure 6.24 — Normalized impact vs. channel
position, high Vg, high Vg, L = 0.14 um. position, low Vg, high Vg, L = 0.14 um.
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6.4 Model Fit for n-channel devices in 140-nm node

The next step is to use the current deviations extracted with the help of the TCAD tool, shown
above, to calculate the proposed model equations, (5.1) to (5.8), and to test the validation of the model
for different bias configuration. After extracting the quantities from the TCAD simulation, there are
two parameters left to be defined, N/y and a, which are carefully chosen to fit the model with the
measured data. To test the validation of the proposed model we, compare the model with the measured
data from devices with different channel lengths and using different gate and drain bias. Below we
show the comparison of devices fabricated in a 140-nm CMOS technology with WXL (um?) given
by: 8x0.14, 8%0.32, 8x1 and 8x8. Each geometry has 43 measured devices. We chose wide devices

with W = 8um, to have a smaller uncertainty on the extraction of the Expected value, Variance, K and
o[In(Sid)].

L=0.14 pm

The comparison between the measurements and our model for devices with L = 0.14 um is
shown from Figure 6.25 to Figure 6.28. To calculate the model, we use a constant trap density of Ne/y
=1.3x10° cmteV ! and a mobility degradation coefficient of a = 0.8x1071°Vs. The extracted values
from the measured data are represented by symbols and the values calculated — using the proposed
model — are represented by dashed lines. Figure 6.25 show the comparison of the extracted K value
from the measured data and the K calculated using (5.7). Figure 6.26 shows the comparison of
o[In(Sig)], calculated using (5.6). According to (5.6), K and o[In(Sid)] have similar behaviors. The
figures show that the behavior of the current deviation shown above and the proposed model can
nicely predict the behavior of the LF noise variability of the 0.14-um device as a function of Vg and
Vs.
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Figure 6.27 and Figure 6.28 show the comparison of the measured data and the calculated
values using (5.1) and (5.2) for the Expected value and Variance of the LF noise respectively. The

figures also show a good fit between the model and the measured data for both Expected value and
Variance.

Figure 6.25 — Measured versus calculated K. Figure 6.26 — Measured versus calculated Standard
L=0.14 pm. Deviation. W =8 um, L = 0.14 pm.

04 06 08 1

Vs IV
Figure 6.27 — Measured versus calculated Expected Figure 6.28 — Measured versus calculated
value. L=0.14 um. Variance. L =0.14 pm.
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L =0.32 um
For the 0.32-um long device, the comparison between the measurements and our model is
shown from Figure 6.29 to Figure 6.32. Using a constant trap density of Ny/y = 1.1x10° cm™ eV

and a mobility degradation coefficient of o= 0.8x1072° Vs our proposed model provides a very good
prediction of the Expected value and Variability of the noise.
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Figure 6.29 — Measured versus calculated Expected  Figure 6.30 — Measured versus calculated Variance.
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Figure 6.31 — Measured versus calculated K. Figure 6.32 — Measured versus calculated Standard
L=0.32 pm. Deviation. L=0.32 pm.
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L=1pum
For the 1-pum long device, the comparison between the measurements and the proposed model

is shown in Figures 6.33 — 6.36. The proposed model is calculated using a constant trap density of

Nir/y = 1.1x10° cm™ eV ! and a mobility degradation coefficient of 0. = 0.8x1071° Vs,

Figure 6.33 — Measured versus calculated Expected  Figure 6.34 — Measured versus calculated Variance.

value. L=1 um. L=1 um.
e
___________________ ® V=05V . 1
quzl.gv ...... N::U
—-prop. model ] o
' s
........................ =
Tl
B = — — e — ! ;
04 06 08 1 12 14 16 18 1.2 14 16

Vo VI Vs VI



80

Figure 6.35 — Measured versus calculated K. L=1  Figure 6.36 — Measured versus calculated Standard
deviation. L=1 um.
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For the 8-um long device, the comparison between the measurements and the proposed model
is shown in Figures 6.37 — 6.40 using the data of 43 devices with WL = 8x8um?. The model provides
a very good fitting using a constant trap density of Ny/y = 1.1x10° cm™eV! and a mobility
degradation coefficient of a = 0.8x1071°Vs. Figure 6.37 and Figure 6.38 show the Expected value
and Variance of the LF noise respectively. The dashed lines in the figures are the fitting calculated
using (5.1) and (5.2).

The behavior of 614 described in Figure 6.10 to Figure 6.13 can explain the bias dependence
of K for large devices shown in Figure 6.39. Analyzing Figure 6.39 one can see that for Vgs = 0.1V,
when Vgs decreases the value of K increases due to the increase of the influence of the halo regions,
as shown in Figure 6.13. For Vgs = 0.5 V, K increases as Vgs decreases, first because of the decrease
of the carrier concentration at the drain side and then, due to the influence of the halo regions as Vgs

approaches the threshold voltage, as shown in Figure 6.12 and Figure 6.13.

Figure 6.37 — Measured vs calculated Expected Figure 6.38 — Measured vs calculated Variance.
value. L=8 pm L=8 um
T T T T T T 3 BEACE L L B B B T
g A V=01V ] 18‘“’ ﬁé _ ! i
107 _ . & Tix=05 V_ _ 10:2? = -i:\ ................... NS SR SO |
it 3 . . o=, i N:_:'cl 10 e \.\‘t*:\. e L T S e -
= X 1 =10 il - s M
=) 42 A - Ly
o . \ = 107 N T N 1
m S 107t N W TN J
. 107 - b 2 1
g TR g 1077 AT T
:| t | 1 1 ’---.‘_‘___:: ‘I‘...I‘.‘.\.‘..I...‘I‘.‘.é....\.—‘-.—-‘-l
04 0.6 0. 1 12 14 16 18 04 06 08 1 12 14 16 18
Vgs [V] Igs [V]



81

Figure 6.39. — Measured versus calculated K. L=8 Figure 6.40 — Measured vs calculated Standard
Deviation. L=8 um
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6.5 Model Fit for p-channel devices in 140-nm node

As we already analyzed, the p-channel device has a different noise behavior than the n-channel
device. Using the proposed model, we explain this difference with the trap density behavior as a
function of the energy. For n-channel devices, the trap density can be considered constant and, for
the p-channel, the trap density varies strongly with the energy. Moreover, Figure 6.41 shows that the
difference between the K value for different channel length devices are not as large as the difference
found in n-channel devices. We can understand this by analyzing Figure 6.42, which shows that the

halo-implanted regions have a smaller impact when compared to the n-channel device in Figure 6.11.

Figure 6.41 — Extracted K of 43 PMOS 140-nm Figure 6.42 — Normalized impact versus channel
node devices with Vgs = 0.5 V. position for an 8-um long p-channel device with
low Vgs and low Vgs.
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To account the energy dependency, for all p-channel devices geometries analyzed, we assume

that the trap density is given by

Ne(E) _p , peteem (6.6)
¥

where, lc = (Em—En)/log(Dn/D1), Dn = 6.5x10°cm2eV!, Dy = 3.6x10% cm2eV?, En=—-0.76 eV and Em
= —0.54eV. The resultant distribution is shown in Figure 6.43. We also demonstrate in the figure a
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comparison with the trap density used in the NMOS analysis. Moreover, the mobility degradation

coefficient used for all dimensions is o= 1x1071° Vs,

Figure 6.43 — Trap distribution used for the calculation of PMOS devices.
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Different authors did also observe an increased trap density close to the edges of the Si
bandgap, leading to a defect band or U-shape trap distribution. For instance, it was observed in the
context of NBTI in SiGe pFETs with a high-k stack (Scofield, et al., 1994), as well as it agrees to
recent RTN noise measurements by other groups (Nour, et al., 2016). It was also observed in the
context of transient capacitance spectroscopy (Wang, 1980), as well as in charge pumping in different
technologies and using different techniques. See, for instance, the work of Kim et al. (2011) and
references therein.

To account the trap density as a function of energy in the integrals of (5.1), (5.2) and (5.7),
the trap density must be converted as a function of channel position. An example of such translation
is given in Figure 6.44, for three different bias configurations. The conversion is done by extracting

the holes quasi-Fermi energy as a function of the channel position and then by applying it in (6.6).
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Figure 6.44 — Conversion from trap density as a function of quasi-Fermi level to trap density as a function of
channel position.
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Using the parameters and the methodology explained above we compare our proposed model
to the measured data. For this analysis, we use the measurements of 48 PMOS devices for each
dimension (8x1pm?, 8x0.316pum? and 8x0.14um?). The results of this comparison are shown from
Figure 6.45 to Figure 6.47 for the 1-um, 0.32-um and 0.14-pm long devices respectively. The
comparison show very good agreement between our model and the measured data. In the figures, the
dashed lines are calculated using our proposed model and the symbols are the data extracted from the
LF noise measurements.
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Figure 6.46 — LFN Measurements versus proposed model, for p-channel devices with L=0.316um.
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L=0.14 pm

Figure 6.47 — LFN Measurements versus proposed model, for p-channel devices with L = 0.14 pm.
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Figure 6.48 shows that a better fit, for the 0.14-um devices can be achieved by using trap
density that is 20% higher than the one shown in Figure 6.43.

Figure 6.48 — LFN Measurements versus proposed model using the trap density 20% higher, for p-channel
devices with L=0.14um.
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6.6 Model Fit for n-channel devices in 40-nm node

We also tested the model using the TCAD deck of the 40-nm technology. The results of the
comparison between the measurements and the calculated values using the proposed model are shown

in Figures 6.49 — 6.51. In the calibration process of the DC-1V characteristic of the 40-nm TCAD

deck, we could not achieve a perfect calibration. Because of this, we believe that the proposed model
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for the 40-nm technology does not give a fit as good as the fit achieved for the 140-nm technology.
Anyhow, it predicts very well the behavior of the noise statistics, such as the increase in two order of
magnitude of K when the 9-um long device is operated in weak inversion.  The fittings were done

using a constant trap density of Nu/y = 1.7x10° cm eV ! and a mobility degradation coefficient of o
=0.8x10 Vs,

L=9pum
Figure 6.49 — LFN Measurements versus proposed model, for 9-um long n-channel devices in 40-nm
technology.
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L=0.9 pm
Figure 6.50 — LFN Measurements versus proposed model, for 0.9-um long n-channel devices in 40-nm
technology.
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Figure 6.51 — LFN Measurements versus proposed model, for 0.04-um long n-channel devices in 40-nm
technology.
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6.7 Discussion

This chapter shows that our proposed model can be used to calculate the statistics of the LF
noise for both large and small devices and is well suited for both 1/f like and Lorentzian dominated
spectra. The fitting with the measured data was done using only two parameters, Nu/y and o. The
other physical quantities, used to calculate 6lg, were extracted from TCAD simulations, which
reinforce the physics-based characteristic of our proposed model.

The difference in the behavior of LFN variability for small and large devices with the bias
voltage was attributed to the presence of the halo implant and the different dependence of the carrier
density at the drain side with Vgs, for long and short devices.

Moreover, the difference in the noise behavior for NMOS and PMOS devices is explained
using our proposed model and considering the trap density of PMOS devices to be strongly dependent
on the energy, while the NMOS device has a trap density that is weakly dependent on the energy.

To have a better fit, a 15%-30% variation on the trap density between large devices and short
devices was considered in the 140-nm technology. This can be an evidence of a slightly increase on
the trap density close to the source and drain. Although, this small difference can be also explained
due to discrepancies between the TCAD devices and the measured devices.

Furthermore, despite our model be derived from RTN only, we do not mean that RTN is the
only noise mechanism present in the transistor. However, the experimental results and analysis done
in this chapter indicate that it is the major noise mechanism, and that it is adequate to explain and
model the experimental observations. In Section 8.2 we briefly comment how other noise sources can
possibly affect the left tail of the noise distribution in very small area devices.

Finally, the proposed model can be easily transformed into a compact model, suited for circuit
simulators, by just modeling the current deviation calculation in (5.3). In the next Chapter, we discuss
some possibilities for implementing the proposed model in a compact model.
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7 ANALYTICAL ANALYSIS & COMPACT MODELING

In this chapter, we discuss the possibilities to formulate our proposed model into a compact

analytical form that can be incorporated into standard compact electrical simulators.

7.1 Uniformly doped devices

In Section 5.1 we have shown that the proposed model for the LFN Expected value in
uniformly doped devices (Equation (5.10)) is similar to the proposed by Hung et al. (1990) (Hung, et
al., 1990) for the total LFN (Equation (5.11)). The work of Hung et al. (1990) proposed an analytical
and a compact calculation for (5.11). The same methodology can be used in our proposed model. For

convenience (5.10) and (5.11) are repeated below.

(5.10): E[S, (1)]=22" I( () +aﬂ(X)J N (Ex)lx

f WL NIrIV( )
(511): S,5(f) = fV¢L2 j(N’?(?X)my(x)j N, (Ex, ).

In the derivation of (5.10) we use that for a uniformly doped device the normalized current

deviation is simplified to

Vﬂad =i, =(L+ay]. (6.7)

We showed in (4.5) that n/Ninv = 1/(Ninv + (KT/9?)(Cox+Ca)). Hence, in this section, for a matter of
simplicity and consistency with the compact model proposed by Hung et al. (1990), we use that 1/Ninv
= 1/(Ninv + N*) with N* = (kKT/g%)(Cox+Ca).

Using our model, the Variance of the LF noise for a uniformly doped device is given by

) ‘
Var[S,, (f)]=24 3 T WL !( N0 +ay(x)] N, (Er,)dx . (6.8)

In (Hung, et al., 1990) the following empirical relation is used, Ni(1 + aueriNinv/n)?> = A + BNiny +
CNin/?. Hence,
(17/Nipy +a22)° N, (Er,) = (A+BN,,, +CN2, ) [(N,,, + N *)’ (6.9)

where A, B and C are the model parameters. Analyzing (6.9) one can see that the empirical function

must account for the trap density as a function of the quasi-Fermi level and also the normalized current
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deviation (874 = #/Ninv + az) as a function of the carrier density. If the trap density is constant, A = N,
B = 2Nty * and C = Ne(aur 1)%. Hence, for a constant trap density C = B%/(4A) and it is a redundant
parameter.

Substituting (6.9) in (5.11),

KT 12 % )
S'd(f)zy/_fWL z[(A+BNmV(x)+CNmV(x))/( () +N*) dx (6.10)

a

Using las = WQgNinvpets dV/dx and the carrier density linearization, dNiny (g/aCox + ®t/Ninv) = dV, we

can calculate the noise in all operation regions as
1, e

9"t KT j(A+BN +CN?

Sld(f)_ C f L2

inv )/(Ninv + N *)dNinv ' (611)

where a is the slope factor that accounts the bulk charge effect on the threshold voltage, No and N
are the carrier density at the source side and drain side respectively. In the original derivation in
(Hung, et al., 1990) the carrier linearization is not used and the calculation of the noise is divided in
the linear region, saturation and weak inversion. One should note that for the calculation of (6.11) we
use aCox = Cox+Ca hence (g/aCox + ®/Ninv) = (q/aCoxNiny)(Ninv + N).

The integral in (6.11) is readily evaluated in a closed form given by

S, (f)= q”"—"[ (NZ=N*)+(B-CN")(N, ~N )+(A-BN +CN" )|n(N°+N*ﬂ. (6.12)
C y fl? N +N

L

It is straightforward to demonstrate that the same transformation used in (6.11) can be applied

in the calculation of the Expected value and Variance of our proposed model. Which become

No
E[S,, ()] = zq i Tl [N, 8T (N, + NN, (6.13)
OX N
— qz'ueff KT Ig ¢ 4 *
Var[sld(f)] - aC0x37T27f2 W2L4 _[ Ntr6| (Nlnv + N )dNinv . (614)

However, one cannot readily use (6.9) for the calculation of the Variance. First, the trap density term
must be separated. For devices with a constant trap density, the Variance can be calculated using the
same set of parameters A, B and C. For the Expected value N¢(1 + auNinv/n)?> = A(1 + (B/A)N +
(C/A)N?) then for the Variance Ni(1 + auNin/n)* = A(1 + (B/A)N + (C/A)N?)%. However, as is shown
in Section 5.4 and Section 6.5, to describe the behavior of p-channel devices we need to vary the trap
density and for that we need to introduce a new set of parameters. In order that the integrals in (6.13)

and (6.14) have a closed form, the traps density can be described as a polynomial,
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N, (N )=N, +NxN +N_.xN2 .. (6.15)
tr inv TA B inv TC inv

Instead of using (6.9), the normalized current deviation can be calculated using one parameter for au.

Hence,

- 1 1
ol,=| ——+ =(———+N,). 6.16
d (Ninv N aﬂ] (Ninv N 1) ( )

Using Nt = Nta and (6.16) in (6.13), and in (6.14), to calculate the Expected value and Variance

respectively, one has that

*

"4, KT N, +N’ N? .
E[Sm(f)]:?_q Mo _ZNTA(IOQ ot +2N|(N0—NL)+?'(NOZ—NL2)+N‘I2N (NO—NL)j, (6.17)

aC_yf L N, +N
Qu kT 1° N +N° N
Var[sm(f)]=24+ﬁNTA(6Nf|og S FANP(N, =N )+ —S (N7 =N?)+NIN(N, - N,)
37°aC_yf W N, +N 2
(6.18)

. . 4N 4N
+2(N, +N)*=2(N, +N")* + ' ' j

(N +N) (N +N")
Therefore, using only a set of two parameters we can describe in a compact form all the noise statistics
(E, Var, K ...) of a uniformly doped device with a uniformly distributed trap density in energy.
Figures 7.1 and 7.2 show, respectively, the behavior of the LF noise Expected value and K of
uniformly doped devices with an ideal long channel (channel doping Na =6e17 and oxide thickness
Tox =3 nm and Vs, = —0.8V). The figures show a comparison between the original calculation of the
model ((5.10) and (6.11)) and the compact form in (6.17) and (6.18), for Ni/y = Nta=1x10° cm2eV !
and aperr = N1=1x1071% cm?,

Figure 7.1 — Expected value of long channel and  Figure 7.2 — K value of long channel and uniformly

uniformly doped devices, calculated using the full doped devices calculated using the full model in
model in (5.10) (solid lines) and the compact (6.11) (solid lines) and the compact model in
model in (6.17) (dashed lines). (6.18) (dashed lines).
—_ E T T T T T T T ; — T T T
g """""""" Origina] 1 0-11 Original
g I N e 1 [ommmmmeees Compact
i 1 0_17E Compact _
F o
> | 2
< 107 , i
73] . - 12
2 i sV 107 oo N0
= 10‘]9 1 1 1 1 1 1 1 ‘--l ------- r | -h-------------‘-----
0 0204 06 08 1 12 14 16 0 02 04 06 08 1 12 14 1.
1 v
£s as

As we have shown in Section 6.5 the halo implants of the p-channel devices in 140-nm

technology does not cause a large impact on the statistics of the LF noise. Therefore, we use the No
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and N. extracted from the TCAD simulations, in Section 6.5, to calculate the Expected value and K
using the compact form of the uniformly doped channel model. In Figures 7.3 and 7.4 we compare
the calculated values using the compact form with the measured data. The trap density of the p-
channel devices in 140-nm technology is a function of the Fermi-level hence in the derivation of the
compact form we use that Nir = Nta + Nt8XNiny.

The compact form is calculated using No and Ny extracted from the TCAD simulator, although
in modern compact models such as BSIM6 (Chauhan, et al., 2013) and PSP (Aarts, et al., 2008) No
and N can also be extracted taking into account short channel effects and velocity saturation. Ng and
N_ are extracted, from the TCAD, a few nanometers away from the source and drain. Hence the
depletion region of the source and drain does not impact the extraction of No and NL.

The full compact form using Nta and Nts is shown in (6.19) and (6.20). A good fitting was
possible using Nta = 4.6x10% cm2eV %, Nt = 2.8x103 eV 1 and Ni = 0.8x10 13 cm?.

Figure 7.3 — Expected value of 8x1um? p-channel  Figure 7.4 — K value of 8x1um? p-channel devices

devices in 140-nm technology. Comparison in 140-nm technology. Comparison between
between measured data (solid symbols) and measured data (solid symbols) and calculated using

calculated using the compact model (dashed lines). the compact model (dashed lines).
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Full compact form using Nta and Nts

i, KT N, +N° N? .
E[Sld(f)]:Zq'u;ﬁ—“ Noa | In—"——+2N, (N, =N )+—L (N’ =N’)+ N’N"(N, - N,)
aC_yf L N, +N 2
; , (6.19)
. N _+N s oo NGNTO Ny
+Nig| N In —+(N, =N )+N, (N, =N )+———(N, =N )+— (N, =N/)
N, + N 2 3

0
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u KTl N, +N N} .
Var[Sld(f)]:24qz'u;" S| Npn | BNJ IN—"—— +4NS(N, =N )+ = (NS = N?) + NyN"(N, - N,)
3z7aC_yf WL N +N 2

. . 4N, 4N, N )
+2(N, +N )" =2(N,+N )" + —— — |+ N1g 2N N’ In —+6N (N, -N,)
(N +N) (N,+N) N, +N (6.20)
3 N N¢ NZ(2N, +N) = N*(2N, +N") '
+

N, N,N s R
(N —N)+ (N —N)+ (N, = N)+
2 3
N, +N° N’ N’
4N, | In -+ —— -
N,+N  (N,+N) (N +N)

7.2 Halo-implanted Devices

For devices with lateral doping gradient the current deviation caused by a trap at position x:

2(N, +N")*(N, +N")*

along the channel is given by (4.38), repeated below.

L fe) (n(xt) j
Alg (%)== 1 +ap(X) (7.1)
W J' f (X)dX Ninv(xt)

1Z—d } g(x,V (x)) = u(x,V (X))Q(x,V (x)) is the channel conductance and
g
the first parenthesis of the equation accounts for the lateral doping gradient.

In modern MOSFETS, the lateral doping gradient is introduced by the halo or pocket implants

where, f(x)= exp[f
0

at the drain and source side of the transistor, as shown in Figure 7.5. In the figure, L is the extension

of the halo-implanted region and Le is the effective channel length.

Figure 7.5 — Example of the lateral doping gradient introduced by the halo implants.

=

" Halo implant

Total doping




94

In the form of (7.1) the current deviation of halo-implanted devices is very difficult to be
analytically analyzed. Therefore, in this section, we propose some simplifications that allow us to
quickly analyze the impact of halo-implanted regions in the statistics of the LF noise.

In Figure 7.6, the long channel transistor (where Less > 2Lp) is simplified by 3 different
uniformly doped regions. Hence, the halo-implanted regions is described by an effective doping
(Nanerr) and an effective length (Lnefr), and the channel region without halo-implants (we’ll call it
channel region) is also described by an effective doping (Nachefr) and an effective length (Lefr — 2Ln eff).
Using these simplifications, the surface potential along the channel is given by three different regions
with step transitions among them, as shown in Figure 7.6. The figure also shows the channel potential
for this simplification, where V1 and V> are the potentials at halo-channel transitions. In the following
nomenclature, we use the index 1 to refer to the source-side halo region and 2 to refer to the drain-

side halo region. In this simplification, we also consider that the mobility is the same for all regions.

Figure 7.6 — Simplification of the halo-implanted device in three different uniform regions.
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Using the simplifications described above, f(x) can be simplified from weak to strong

inversion regions as

1, forx < L
f(x)= Nhl—(vl) forL, <x<L-L, (7.2)
Nch(vl)

Nps (Vi) Ng (Ve)
N (V) Np, (V)
where Nn1(V) and Nn2(V) are, respectively, the carrier density at the source and drain side halo as a
function of the channel potential, and Ncn(V) is the carriers density at the channel region as a function

of the channel potential. The problem is now simplified in finding V1 and V> potentials and then

forL-L, <x<L
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calculate Nn1, Nn2 and Neh at these potentials. To simplify the nomenclature, in the following equations
we use L and Ly instead of Letr and Lnefr, hence one should remember that in this section L and Ly, are
actually effective lengths.

Using the proposed simplification, the calculation of the Expected value of the noise can be
also separated in 3 different regions and it is given by:

Ly 2 L-L, 2
. 1j(ﬁ+au] N, dx+ A® _[ {Nih+aﬂJ N, dx
0 1 cl

Ly
E[S.d(f)]=2y—fv—\f;l—2 L i , (7.3)
+B? J. (Lﬂny N, dx
L-Ly h2
where | ::|_|_h +A(|__2|_h)+B|_h , A:Nhl—(vl) and B = Nh1(V1) Nch(vz) ,
Nch (Vl) Nch (Vl) th(vz)
And the Variance,
Ly 4 L-L, 4
1J.(Ni+ayJ N, dx+ A* I LNLJFOWJ N, dx
kT |4 0 hl L, ¢ch
Var[S,d(f)]:24WW ) 4 (74)
+B* j £L+a,u] N, dx
L-L, h2

By now, one can realized that the simplification in Figure 7.6 allows that the halo-implanted
transistor be described by three transistors in series. In Section 7.3 we show the derivation of (7.3)
and (7.4) using a three transistor model. Although, in this section we continue to analyze the model
in the form of (4.38) and (7.2).

In order to find an analytical expression for (7.3) and (7.4), we need to find and analytical
expression for A and B. The dependencies with V1 and V2 turn this task very challenging. However,
as is shown in Chapter 6, the halo-implanted regions influence is higher in weak inversion. This
allows us to construct some simplifications to analyze the halo-implanted regions impact in the LF
noise statistics.

In weak inversion, the carrier density is approximated as

1 Vgb-V1 Ve (%)
Ninv(x)za(n—l)coxqﬁte o a (7.5)

where n is the slope factor. Using (7.5) it becomes clear that in weak inversion A and B become

independent of the channel potential (V1 and V2). A in weak inversion is given by
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Aui =

n, —1 Vy, —V- V,, —V-
( h ) X ( gb —¥T,n1  Vgb T,chJ, (7.6)

(Nen —1) nkT/q nyukT/q

where nn, Neh V1,0, V1,01 are the slope factor of the halo and channel region, and the threshold voltage
of the halo and channel regions respectively. To easy understand the behavior of the halo-implanted

region in weak inversion, we rough approximate nn~ nch = 1+Cq/Cox. Hence,

Vi eh =V
. =exp| —————— 7.7
A\NI p( nh KT /q ( )
and
V1 h2 =V eh ]
By = A, exp[; . (7.8)
W ' n, KT /q

Hence, the amplification of the current deviation at the halo-implanted region is given by the
exponential of the difference between the threshold voltage from the halo region and channel region,
and also by the exponential of the temperature.

If the threshold voltage of the source-side halo is equal to the threshold voltage of the drain-
side halo (V1n1 = V1n2), an approximated condition where there is no barrier lowering on the drain-
side halo induced by Vgs, one has that Bwi = 1. Using this condition, equation (7.3) and the fact that
in weak inversion n/Ninv + ap = g%/(KT(Cox+Cd)) (see Section 4.5) one finally has that the Expected
value of the LFN in weak inversion is approximated as

E[S, ()], =2KT N (Ee) g (ZLh+AM(L_2Lh))2[ @ J (7.9)
" y W (2L, + A, (L-2L,)) \KT(C,, +Cy)

and using the same condition in (7.4), one can calculate K in weak inversion as

6y L2 +AlL-2L))
BT NGB (2L, 4 A (L-2L,))

wi (7.10)
Therefore, in weak inversion, K becomes dependent on the channel length and (7.10) gives an
analytical expression to analyze this dependency.

Figures 7.7 — 7.10 show the Expected value normalized by the device area and K, calculated
using (7.9) and (7.10) respectively, and compare with the measured data for three different channel
lengths. Figures 7.7 and 7.8 show the comparison for n-channel devices in 40-nm technology and
Figures 7.9 and 7.10 show the comparison for n-channel devices in 140-nm technology. The 40-nm
devices fit was done using Vrn= 0.43 V, V1o = 0.3 V, Cd = 0.45Cox, Tox = 2.1 nm. Ny = 1.7x10°
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cm2eV ! and Ly= 80 nm. The 140-nm devices fit was done using V1 =0.54 V, V1ch = 0.45V, Cq =
0.3Cox, Tox = 2.9 nm, Ny=1.1x10°cm2eV *and Ly = 50 nm.

Figure 7.7 — Weak inversion approximation for the
Expected value of n-channel 40-nm devices. Vgs =

50 mV.
el ¥ : i:jgg“m ]
= A B ———— pm
= [ i ........................ L70.45um ]
< o 21 . — ,_.....t...T......'.'.'.-.-.-TT-.EU..7.9 .......

0 F *
% L : ]
= 107k s
E ’i ................... 3
- *3 5 g

Vg IV]

Figure 7.9 — Weak inversion approximation for the
Expected value of n-channel 140-nm devices. Vgs =

0.1V.
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Figure 7.8 — Weak inversion approximation for K
value of n-channel 40-nm devices. Vg =50 mV.
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Figure 7.10 — Weak inversion approximation for K

value of n-channel 140-nm devices. Vgs= 0.1 V.
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Figure 7.11 show how in practice the o[In(Sig)] as a function of the channel length is calculated

using the K calculated from (7.10), for n-channel devices in 140-nm technology with Vg=0.5 V and

Vs = 0.1V. The figure shows a good fitting with the measured data, when using the same parameters

as used in Figures 7.9 and 7.10.
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Figure 7.11 — Comparison between the measured (solid symbols) and calculated (dashed lines) Standard
Deviation of the logarithm of the LFN for different channel lengths. Vgs= 0.5V and Vgs= 0.1V.
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Figure 7.12 shows a comparison between the current deviation extracted from the TCAD
simulation (same as in Section 6.4) and the current deviation calculated using (7.1) with the
simplification in (7.2), for 1-um long devices in 140-nm technology. For the calculation, the same
parameters used in the fittings of Figures 7.9 and 7.10 were used (Vth=0.54 V, V1ch =0.45V, Cq =
0.3Cox, Tox = 2.9 nm, Ni/y=1.1x10° cm2eV1). Moreover, Figure 7.13 shows the effect of the barrier
lowering at the drain-side halo when Vgs is high. This effect decreases the threshold voltage of the

drain-side halo, which makes Bwi# 1. For the fitting in Figure 7.13 Bwi is calculated using Vrn2 = 0.49
V.

Figure 7.12 — Weak inversion approximation of the  Figure 7.13 — Weak inversion approximation of the
current deviation for 1-um long devices in 140-nm  current deviation for 1-um long devices in 140-nm

technology with Vg =0.4 V and Vds =0.1V. technology with Vg=0.4V and Vg=1.8V.
=] clr o E !
s s
10° 10” :
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In strong inversion the carrier density can be approximated as

qN inv (X) Cox (ng nVcb (X)) (711)

Using (7.11) it become clear that in strong inversion A and B become dependent of the channel
potential (Vep =V1 and Vep=V2) and A and B is given by:

(ng _VT,h - nhvl)

A&i =
(ng _VT,ch - nchvl)

(7.12)



99

and

(ng _VT,ch - nchvz)
(ng _VT,h2 - nh2V2)

B, = A, (7.13)

Figure 7.14 shows a comparison between the A calculated using a 1D Poisson solver and using
the weak inversion simplifications in (7.6) and (7.7), and the strong inversion simplification in
(7.12).

Figure 7.14 — A calculated using the proposed simplifications and calculated solving the 1D Poisson equation
with Vis=—0.82 V, Nach = 4.5x10Y cm 2, Nap = 8x10Y cm2 and Tox = 3 nm.
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Using the proposed simplifications in (7.2), the problem in finding a compact model of (7.3)
and (7.4) is reduced in applying the methodology used in Section 7.1 to the three different integrals
of (7.3) and (7.4), and finding an analytical expression for A and B that works from strong to weak
inversion. In the next Section, we show that the LF noise statistics of the halo implanted device can
be simulated in compact simulators using three uniform doped transistors in series, where the noise

statistics of each individual transistor can be calculated using the compact form in Section 7.1.

7.3 The Three Transistors Model

Using the simplifications of the previous section, the halo-implanted transistor can be

described as three transistors in series (Mn1, Mch and Mn2) as shown in Figure 7.15.

Figure 7.15 — Schematic of the three transistors model.
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In the schematic of Figure 7.15 the noise of each individual transistor is added to the current
at the terminals S and D, and the Expected value of the total LF noise in the I4 current can be calculated

as a sum of the Expected value of each transistor noise given by

2 2 2
9 1 Yaen ! 9s,
E[Su]= = E[Sgml+| ———————| E[Syul+ ——L Seh2 E[Si r.]
g + g + g gd,ch 1+ gs,ch + gd,ch 1+ gs,ch + gd,ch
e T A sh2 Oam  Ysn2 Oam Yon2
(7.14)

where gs.ch and gsn2 are the source transconductance of the Mch and Mho transistors respectively; gd,ch
and gany are the drain transconductance of the M and Mhy transistors respectively. The

transconductances are calculated by

Oson = _qﬂL——ZLh Ny sch Qa,cn = _QIUL——ZLh N, ocn
(7.15)
w w
Oy =—d4—Ni, om Ogon =—A— Ny sn2
L, L,

where Ninv,sch and Ninv,pch are, respectively, the inversion carrier density at the source and drain side
of the transistor Mcn; Ninv,on1 and Ninv,sh2 are the inversion carrier density at the drain of the transistor
Mhz and at the source of transistor Mnz, respectively.

Using some algebra one can show that (7.15) and (7.3) are the same and can be rewritten as

Li E[Sim]+ (L_ZLh)ZAZ E[Si o]+ BZLﬁ E[Si r2]

ElS]= 7
(L, + A(L-2L,) +BL,)

(7.16)

Therefore, the Expected value of the noise introduced by the transistors representing the halo regions
IS
L E[S,yml+ B°L; E[Sq 1.1

E[S o = ,
[t (L, + A(L-2L,) +BL,)?

(7.17)

and the Expected value of the noise introduced by the transistor representing the region without halo
implants is

L(L—2L,)?A2E[S,, ]
E[Sld ]channel = " 1d.ch 2 " (718)
(L, + A(L-2L,)+BL,)

The Variance can also be calculated using the methodology above. Therefore,

Ly Var[S,, ., ]+ (L-2L,)* A* Var[S,, . ]+ B'L; Var[S,, .,]

Var[S,]=
5] (L, + A(L-2L,)+BL,)*

(7.19)

Hence, the Variance of the noise introduced by the halo region and channel region are, respectively,
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_ Ly Var[S, .1+ B L, Var[S, ;1

Var[S = , 7.20
SO (L, + A(L-2L,)+BL,)* (7.20)
L(L-2L,)*A" Var[S
Var[S,, lyuma = ( ) [ "““4] : (7.21)
(L, + A(L-2L,)+BL,)
Using the transistors transconductances, A and B can be calculated as
UL (7.22)
gs,ch (L - 2Lh)
and
B= AM@ ) (7.23)

gs,hz I‘h

Using the method proposed above, the noise statistics of halo-implanted devices can be
implemented in compact simulators. To that end, the calculation of the statistics of each equivalent
transistor must be done by implementing the compact calculation of the uniformly doped transistor,
described in Section 7.1, and by implementing (7.16), (7.19), (7.22) and (7.23). The drawback of this
method is that each transistor is now modeled as three transistors and the equivalent halo-region and
channel-region transistors must be fully modeled, not only to give good IV and CV curves of the

complete transistor but also to properly characterize the noise effect.
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8 DISCUSSIONS ON THE LFN DISTRIBUTION

In the previous chapters, we have shown that the proposed model can predict the noise
statistics. On this chapter, we take a more detailed look in the LF noise distribution and analyze if the
assumptions used to derive the model combined with Monte Carlo (MC) simulations can also predict
the LFN distribution shape.

8.1 Large area devices

In Section 3.2, we have shown that the RTN (or LFN) distribution can be well approximated
by a lognormal distribution. However, in weak inversion and in saturation conditions it is expected
that the behavior of current deviation as a function of the trap position in the channel (shown in
Figures 6.16 and 6.17), with high impacts at small regions of the channel, can cause some deviations
in the distribution of the noise. Although the distribution can still be roughly simplified as a
lognormal, as depicted in Figures 8.1 and 8.2, where the Q-Q plot is shown for 10x10 um? devices in
65-nm GO1 technology with Vgs = 1.2 V and Vgs = 0.4 V respectively. In the Q-Q plot of the logarithm
of the noise, the straight line fit shows that the distribution is lognormal and the derivative of this line
is given by the standard deviation of the logarithm of the noise (c[In(Si)]).

In Chapter 6 we showed that using our proposed model to calculated K and then applying it
in a lognormal distribution to calculate o[In(Sid)] gives a good prediction of the measured o[In(Sid)].
However, as shown in Figure 8.2 the lognormal simplification (dashed line), in some cases, can
underestimate the probability of high LFN values.

Figure 8.1 — Q-Q plot of In(Sig) for 10x10 um? Figure 8.2 — Q-Q plot of In(Sis) for 10x10 pm?

devices in 65-nm GO1 technology with Vgs= 1.2 V. devices in 65-nm GO1 technology with Vg= 0.4 V.
Dashed lines represent the lognormal fit, symbols Dashed lines represent the lognormal fit, symbols

represent the measured data. represent the measured data.
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In Figure 8.3 we normalized the measured data to make the left tail of the two distribution (in
Figures 8.1 and 8.2) to have the same values. Using this technique, the figure shows the distortion of
the original lognormal distribution, this distortion is given by the high impacts at the halo-implanted
regions, which introduce high Siq values in the right tail of the distribution.

Figure 8.4 shows that the distribution can be described by the sum of two independent
lognormal distributions. In the simplifications used in Sections 7.2 and 7.3, we separated the device
channel in three different regions, two regions representing the halo implants and the other region
representing the channel without halo implants. From this simplification, one can infer that the final
distribution is given by the sum of the lognormal distribution representing the halo regions and the
lognormal distribution representing the channel without halo implants.

Figure 8.3 — Q-Q plot of the normalized In(Siq). Figure 8.4 — Distribution made by summing two
The normalization is done to coincide the left tails independents lognormal distributions with ¢, =
of both distributions. 0.16, w1 = —55.35, o,= 1.1 and p, = -57.35.
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Since, in weak inversion, the current deviation can be separated in three uniform regions, as
is shown in Figure 7.12, the K value of the lognormal distribution of each region will only depend on
the trap density of each region. Considering the trap density the same for all the regions, the standard
deviation (o[In(Sig)]) of the lognormal distribution introduced by each region is determined by the
length of the region.

Considering the area of the channel region without halo implants to be approximated by WxL
= 10x10 pum?, we can use the value of o1 = 0.16 to extract the trap density Ni/y = 0.5x10° cm2eV 2,
using (5.6) and (5.17). Using 2= 1.1, equation (5.17) and that the trap density is the same in the halo-
implanted region, we can extract the area of the halo-implanted region as WxL= 10x0.86 um?. Hence,
we can extract that each halo has an effective length of approximately 43 nm.

Using (3.3) and (7.9) one has that

ElS o _ & AL(L-2L,)

o5 (7.24)
E[Sld ]halo eﬂz s 2L

H

Therefore, using (7.24), we can extract that Awi = 0.17.
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To test the extracted quantities, above, we use the Monte Carlo simulation described in
Section 3.6. For this Monte Carlo simulation, we assume the average trap impact as a function of its
position along the channel (Jl4(xt)) as given by Figure 8.5, and the traps are uniformly distributed
from source to drain. As in Section 3.6, the trap impacts (4lq) are exponentially distributed.
Differently from Section 3.6, the energy of the traps are uniformly distributed, Ni/y = 0.5x10°
cm 2eV 1! at any energy. In Figure 8.6, we compare the distribution of the Measured Data and the
distribution of the Monte Carlo simulation of 400 devices. The figure shows that the Monte Carlo
simulation (with the same assumptions used in the derivation of the proposed model) fits well the
measured distribution.

Moreover, using a constant current deviation along the channel, depicted in Figure 8.7, the
Monte Carlo simulation can also fit well the distribution of the LF noise when Vg = 1.2 V and Vgs =
0.5 V, shown in Figure 8.8. Figure 8.8 also shows that, using a constant current deviation along the
channel, the Monte Carlo simulation results in a distribution that closely resembles a lognormal
distribution. Some small deviation in the right tail of the measured distribution is expected since at

Vgs = 0.5 V the channel is not completely uniform as simplified in Figure 8.7.

Figure 8.5. — Current deviation as a function of the Figure 8.6 — Comparison of the measured data
trap position used in the Monte Carlo simulation, distribution and the generated distribution using
for Vg=0.4 V. Monte Carlo simulations for, 10x10 pm? devices
with Vg = 0.4V.
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Figure 8.7 — Current deviation as a function of the Figure 8.8 — Comparison of the measured data
trap position used in the Monte Carlo simulation, distribution and the generated distribution using
forVg=12V. Monte Carlo simulations, for 10x10 um? devices
with Vg = 0.4V.
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In Figures 8.9 — 8.14, the Jl4(x;) extracted from the TCAD simulation for the 140-nm
technology, described in Chapter 6, is used in Monte Carlo simulations. Then, we compare the
resultant Monte Carlo distribution with the distribution of the measured LFN. In these Monte Carlo
simulations we use Ny/y = 1.1x10° cm2eVL. In Figure 8.10, we compare the Monte Carlo distribution
with the measured distribution of WxL=8x1 pm? devices with Vg=0.4 V and Vgs=1.8 V, where the
ola/lg used in the Monte Carlo simulation is depicted in Figure 8.9. In Figure 8.12 we compare the
distributions of WxL=8x0.14 um? devices with Vg=0.4 V and Vgs=0.1 V, and 614/14 depicted in Figure
8.11. In Figure 8.14 we compare the distributions of WxL=0.8x8 um? devices with Vg=1.8 V and
Vi4s=1.8 V, and dld/lq depicted in Figure 8.13.

In Figure 8.10, despite the high impacts at the halo-implanted regions the noise distribution
does not have two distinguishable lognormal distributions as shown in Figure 8.4. This happens
because usually the sum of two lognormal distributions can be well approximated by one lognormal
distribution (Beaulieu & Xie, 2004) and the effect shown in Figure 8.4 is given by a relation among

the values of o1, 62, p1 and po.



Figure 8.9 — Current deviation used in the Monte
Carlo simulation for 8x1 um?devices in 140-nm
node with Vgs= 0.4V and Vgs= 1.8 V.
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Figure 8.11 — Current deviation used in the Monte
Carlo simulation for 8x0.14 um? devices in 140-nm
node with Vg=10.4V and Vgs= 0.1 V.

10777 WL=8x0.14um* 5

a1

10 ¢

V=04V
V=01V

0 002 004 006 008 0.1 0.12 0.14
Trap position along the channel (pum)

Figure 8.13 — Current deviation used in the Monte
Carlo simulation for 0.8x8 um? devicesin 140-nm
node with Vg= 1.8 V and Vys=1.8 V.
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Figure 8.10 — Comparison of the Q-Q plot of
measured and simulated In(Sis/142), for 8x1 pm?
devicesin 140-nm node with Vg = 0.4 V and Vs =

@20Hz
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Figure 8.12 — Comparison of the Q-Q plot of
measured and simulated In(Sia/14?), for 8x0.14 um?
devicesin 140-nm node with Vg = 0.4 V and Vs =

0.1V.
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Figure 8.14 — Comparison of the Q-Q plot of
measured and simulated In(Sis/14%), for 0.8x8 pm?
devicesin 140-nm node with Vg= 1.8 V and
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8.2 Verysmall area devices

As shown in Figure 8.15 in very small area devices the distribution of the LFN from the Monte
Carlo simulation is no longer lognormal. However, as shown in the figure the distributions of the
measured data are still lognormal. This causes a deviation, on the left tail of the distribution, between
the Monte Carlo and the measured data.

Very small area devices have a very small number of traps per neper (or decade). For instance,
n-channel devices in 140-nm technology with WxL=0.232x0.14 pym?, have WLxNy/y = 0.49 traps per
eV, which translate in a trap density per decade per eV of 1.12. Therefore, there is a high probability
that some devices will have no traps with a time constant close to the analyzed frequency (f = 20 Hz
in our analysis). This effect makes some devices to have a very low noise PSD, distorting the left tail
of the distribution in the Monte Carlo simulation. However, such effect is not visible in the measured
data.

There are some possible explanations from this deviation: in the measured devices, there are
more traps with low noise power than simulated in the Monte Carlo; or there is another noise source
in addition to RTN, which is responsible to increase the values of the left tail of the distribution hence
making the final distribution lognormal. Figure 8.15 shows that neither the system noise floor nor the

device white noise can explain these higher values.

Figure 8.15 — Q-Q plot of 43 measured devices with WxL=0.232x0.14 um? and the Q-Q plot of 100,000
Monte Carlo simulations with a constant trap density in energy of Nu/y = 1.5x10° cm2eV "t and 6/ =
2.8x1071 cm? uniform from source to drain.
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Despite the possibility of this effect be a consequence of additional noise sources we keep our
efforts in explaining this deviation, in the Monte Carlo simulation, in the context of RTN, by
considering that in the simulations depicted in Figure 8.15 the number of traps with very low noise
power used was lower than in the actual device. There are two possible explanations for the measured
device to have more traps with a lower noise power than simulated.

1) There is a high number of traps with energies away from the Fermi level. Traps with

energies away from the Fermi level have a very low power due to the p/(B+1)? relation.
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Due to this, as we show in Section 3.2, the Expected value, the Variance and K can be
calculated using the trap density at the Fermi-level with a good precision. However, the
very low values at the left tail of the distribution are sensitive to the trap density at energies
away from the Fermi-level (in the Monte Carlo simulations of Figure 8.15 the trap
densities are uniformly distributed in energy).

2) There is a higher number of traps with small Alg than expected by the exponential

distribution.

The first explanation is tested in the Monte Carlo simulation shown in Figure 8.16. The trap
density in energy used is depicted in Figure 8.17. At the Fermi-level used in this simulation, the trap
density is the same as the one used in the simulation of Figure 8.15. Hence, the Expected value,
Variance and K are effectively the same from the original Monte Carlo. This can be verified in Figure

8.16 where the values of the right tail are approximately the same for the two different Monte Carlo

simulations and for the measured data.

Figure 8.16 — Q-Q plot of the MC simulation using Figure 8.17 — Distribution of the trap density in
a varying trap density in energy. energy and the arbitrary Fermi-level used for the
MC simulation of Figure 8.16.
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The second explanation can be interpreted in two different ways. In one interpretation, there
is another independent set of traps with a lower dlq. This set of traps can be originated from the edges
of the device or in a region in the oxide away from the Si—SiO. interface (closer to the oxide-
polysilicon interface). This interpretation is shown in Figure 8.18, in which another set of traps with
4 times the number of traps than the original set and Jlq 10 times smaller is added to the Monte Carlo
simulation.

In the other interpretation, the nature of the Alg distribution is not exponential but
approximated as a Weibull distribution with the shape parameter (kw) smaller than one (in the

exponential distribution kw = 1). In the derivation of K for the uniformly inverted channel we have
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K = E[Aal*] 1 /4 6 /4

= s =— , (7.25)
E[Al4°]° 37°KT Ny (Ep)  37°KT Ny (Eg)

where the factor 6 comes from the relation between the fourth raw moment and the square of the
second raw moment of the Alq distribution, E[414%]/ E[414%]?, which is equal to 6 for the Exponential
distribution.

The Expected value is directly proportional to the second raw moment of the Alq distribution
(E[414%]), which is equal to 2E[414)? for the exponential distribution. Moreover, in the derivation of
the model we considered that E[414] = dlq4, where dlq is the current deviation calculated with a point
charge at the Si—SiO> interface in a homogeneous channel (no random dopants effects).

Using (4.43), if kw = 0.51, E[414*[/E[414°]? = 60 and E[414%] = 20E[414]%. By consequence the
trap density extracted, using the Weibull distribution and (7.25), is 10 times larger than the one
extracted by considering 414 exponentially distributed. Therefore, in the Expected value equation the
trap density used will be 10 times larger, also E[414%] = 20E[414]? and as consequence E[414] must be
equal to 0l¢/10 for the model to give the same Expected values. The result of the Monte Carlo
simulation using kw = 0.51 and E[414] = 014/10 is shown in Figure 8.19.

Although there is a nice fitting between the measured distribution and the distribution given
by the Monte Carlo simulation using the Weibull distribution for Alg, there is no experimental
evidence in the literature showing that 414 follows a Weibull distribution with kw < 1. This can be
explained in part because the measurement resolution used in the literature can be possibly incapable
of measuring such large number of traps with such small 414, given by the Weibull with ky < 1.
Moreover, there is a lack of physical meaning in using E[414] = d14¢/10. Therefore, this is a topic that
needs further investigations, especially in extracting the values and distribution of Alg from

measurements or from atomistic simulators.
Figure 8.18 — Resultant MC distribution after Figure 8.19 — Monte Carlo distribution considering

adding another set of traps with 4 times the trap Alg with a Weibull distribution with k,=0.51.
density and Jl4 10 times smaller.
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It is important to note that all possible solutions shown above, to give the measured lognormal
shape to the MC simulation of small area devices, does not affect the LFN distributions of large area
devices shown in the previous section. It, also, does not change the values calculated, using the

proposed LFN model, for the Expected value, Variance and K, shown in previous chapters, for any
device size.
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9 MEASUREMENT & DATA ANALYSIS

9.1 Low Frequency Noise Characterization

In this work, in order to calculate the Low Frequency Noise statistics, we measured large
populations of devices from different technologies, for various devices geometries and different bias
configuration. All LF noise and DC measurements were done with the EDGE ™ system from Cascade
Microtech depicted in Figure 9.1. The fully integrated measurement system provides the combination
of LFN and DC IV measurements. It also offers an automatic multi-die and multi-site wafer stepping
(Hansen, 2009). This provides a great automation of the LFN characterization and allows the

acquisition of such large diversity of data.

Figure 9.1 — EDGE Low Frequency Noise system.

(Tuinhout & Duijnhoven, 2013)

Figure 9.2 shows the configuration of the LF noise measurement. The Rioad resistor provides
a load for the device such that a voltage divider is constructed from the drain and the bias supply. The
center of this voltage divider is the point where the voltage is measured by the LNA. Hence, the data
in the FFT represents the voltage-squared data taken at the drain of the device. This data is then

converted to the equivalent noise input current of the device using

2

q

5
N

Rioad fds 8
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€4 Rigad *+'ds 8.1)
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@ N

and rgs is the drain to source resistance of the MOS transistor.



112

Figure 9.2 — Schematic of the LFN test setup.
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Adapted from (Hansen, 2009)
The measurement setup includes the possibility to set the gate and drain bias, and the source

resistor (Rs) and the load resistors. The load resistor in conjunction with the parasitic capacitances of
the devices and of the measurement equipment determines the system roll-off frequency. The roll-off
frequency is the frequency at which the frequency response of the system dominates the behavior of
the noise PSD and can be calculated as

1

Frolloft = 27RC (8.2)

where R is the Thevenin equivalent of the resistive loads and C is the capacitance of the measuring
system and cables. Hence, the load resistor can be selected to optimize the roll-off frequency.
However, it must still provide enough impedance to drive properly the drain current. Figure 9.3
demonstrates an example of the roll-off frequency found in our measured noise PSD data. Figure 9.4
shows an example of the frequency response of the system dominating the PSD characteristics and

generating non-reliable data.

Figure 9.3 — Roll-off frequency for 10x10 pm? n- Figure 9.4 — Roll-off frequency smaller than 10
channel devices with Vgs=0.9 V, Vgis= 0.5V, ras=  Hz. For n-channel devices with WxL = 8x30 um?,
14 KQ and Rload —10 KQ Vgs 1 8 V Vds—o 1 V IN'gs = 13 KQ and Rload - 10

Sig) [AYHz]
S,y A"Hz]

roll-off
frequency

10 10° 10° 10
Frequency [Hz| Frequency [Hz|

The load resistor also defines how much of the system noise floor is added to the drain voltage

noise, through (8.1). Figure 9.5 shows the system noise floor added to the drain voltage noise of the

device under test. The figure shows that for a frequency around 10 Hz the system noise is around -



113

150 dB. Then, for the setup in Figure 9.4, the converted current noise of the system noise floor is

approximately 3x10"22A?/Hz, which is very close to the measured noise.

Figure 9.5 — Noise floor of the low frequency noise measurement system
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(Hansen, 2009)

One problem in looking at noise with an FFT is that the obtained spectrum is inherently noisy.
Due to this problem, the system allows to use averaging in the FFT data. Averaging sacrifices the
information of low frequencies to decrease the noise of the FFT data. This method divides the time
domain in many windows of the same size and the FFT result of each window is averaged out,
resulting in a smoother frequency domain response. In our analysis, averaging was commonly set as
25x for 1 Hz to 100 Hz, 250% for 100 Hz to 1 KHz and 2500x% for higher bands.

From Parseval’s theorem, the resulting variance in the FFT spectrum is given by Si4? divided
by the averaging number. As instance, for an averaging set as 25x the variance in the FFT spectrum
is S? /25. For devices with very small LFN variability, this inherent variance in the FFT spectrum
can interfere in the proper extraction of the LFN variability. Therefore, after acquiring the data from
the measurement system we also treat the FFT data in MATLAB, using a smoothing function. The
smoothing function also helps to smooth out spikes and some interferences found in the spectrum.

Figure 9.6 and Figure 9.7 show examples of the data before and after smoothing.



Figure 9.6 — Smoothing function applied to four
1x0.06 pm? n-channel device with Vg=1.2 V,
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Figure 9.7 — Smoothing function applied to a
10x10 um? n-channel device with Vg=1.2 V,

Vus=0.5 V. Vus=0.5 V.
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107" : M
N 6k N 107 F
NE 10 E NE N
= 0k i =
S, sf = mf
o4 10 F 3 o 10¢ Measured Data
10" ] 107 Smoothed
1 ul 1 N
10' 10° 10’ 10" 10’ 10° 10°

Frequency [Hz]

Frequency [Hz]

9.2 Lognormal Estimators

In this section of the work, we are going to analyze three different ways to estimate the
expected value, the variance and the normalized variance (variance/mean?) of a lognormal
distribution. The three different methods are characterized by its bias and variance. From these
analyses, we are going to discuss which estimator is more convenient to use in the low frequency
noise analysis.

The three different methods analyzed are as follow:

Method 1 — Sample Mean and Variance

Method 1 consists of the simple use of the sample mean and sample variance of the original

data. Therefore, the estimated population mean, the estimated population variance and the estimated

population normalized variance are given by

m, = %in : (8.3)
2 1 % 2
S = nTZ(Xi —-m) (8.4)

and s’ /m? respectively. Where, x; is the original ith observation, n is the size of the
observation.
Method 2 — Maximum Likelihood Estimator

Method 2 is given by the Maximum Likelihood Estimator (MLE), which calculates the mean
and variance of the normal distribution and then transforms back to the lognormal distribution using
the distribution properties. Using MLE we have:

m, =e“72, (8.5)



115

s? =¥ (g7 —1), (8.6)
s?/m?=e” -1, (8.7)
where
1 n
p==3"In(x) (8:8)
[ )
and
2 1 : 2
o’ =—=>"(In(x) - 1) (8.9)
n-143

Method 3 - UMVU Estimator
The method 3 is given by the Uniformly Minimum Variance Unbiased Estimator (UMVUE).
As its name already says, this estimator is unbiased and it has the minimum variance. Using UMVUE,

we have
m, =e*“f (6%/2), (8.10)
s; = e [ f(20%) - f (”—:iazﬂ , (8.11)
where
f(t):1+tnT_1+k=Zz;__[tk(nn;|2-)!2k_li[n+;| _3] (8.12)

Evaluation of the Methods

The three methods are compared with respect to its mean, median and variance for each
parameter estimated (mean, variance and variance/mean?). The variance of the parameter estimated
is compared by the 2" and 98" percentile calculation. The influence of the sample size on these
estimators is determined by swiping from 15 to 150 observations. To compare the three methods,
100,000 Monte Carlo simulations were done, for each sample size, using Matlab for generating
random variables from the lognormal distribution described in Table 9.1. Then for each sample size
the mean, median and the 2" and 98" percentiles were calculated from the 100,000 simulations.

Table 9.1 shows the statistics of a lognormal distribution found in our LFN measurements for

a small area device.

Table 9.1 — Statistics of the lognormal distribution used in the Monte Carlo simulation.

Mean Variance Mean of log (W) SD of log (o) Variance/Mean?
1.04x10°8 2.66x1071° -20 1.8 24.53
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Figure 9.8 shows the estimation of the mean for the three methods. In the figure, we can see
that Method 1 and Method 3 are unbiased estimators for the mean, as their means of estimated means
are equal to the distribution’s mean from Table 9.1. Method 2 is a biased estimator for the mean;
however, it is symmetrical around the distribution mean. Hence, the median of the estimations is

unbiased. Figure 9.8 also shows that Method 3 gives a smaller variability in the estimations.

Figure 9.8 — Estimation of the Expected value of a lognormal distribution using three different methods.
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Figure 9.9 shows the estimation of the variance for the three methods. In the figure, we can
see that Method 1 and Method 3 are also unbiased estimators for the variance, as their means of
estimated variance are equal to the distribution’s variance in Table 9.1. Again, Method 3 gives a
smaller estimations’ variability and Method 2 is a biased estimator for the variance. However, it is
symmetrical around the distribution’s variance and the median of the estimations is unbiased. This
symmetry is an important propriety for estimators of lognormal distributions as it gives the same

probability to find lower and higher values than the distribution’s parameter.

Figure 9.9 — Estimation of the Variance of a lognormal distribution using three different methods.
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Figure 9.10 shows the estimation of the variance/mean? for the three methods. In the figure,
we can see that all three methods are biased estimators for the normalized variance. However, Method
2 is symmetrical around the distribution’s normalized variance and the median of the estimations is
unbiased.

Because of the symmetry property of Method 2, in this work we use this method to evaluate
the E[Sia], Var[Sig] and K. Section 9.3 shows how the bootstrap analysis behaves using the three

methods and the reasons for choosing Method 2 may become more evident.

Figure 9.10 — Estimation of the Variance/mean? of a lognormal distribution using three different methods.
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9.3 Bootstrapping

Bootstrapping is a resampling method efficient for calculating the uncertainty and the
confidence interval of an estimation. The method randomly samples the observations with repetition,
keeping the original size of observations of the original population, repeating the process for
thousands of times. Hence, for an original population of N observation the bootstrap creates M new
populations of N observations and values of the original observations may appear multiples times in
the new resampled population. For every population of N observations new means, variances and
normalized variances are calculated. Therefore, from the M quantities of mean, variance and
normalized variance calculated, one can calculate the uncertainties from the mean, variance and
normalized variance estimations.

In order to test the behavior of the three methods, described in Section 9.2, in the bootstrapping
analysis, 20 populations of 50 observations (n = 50) were taken from the true lognormal distribution
described in Table 9.1. For all the 20 populations the mean, variance and variance/mean? was

calculated using the three methods and for all the 20 populations a bootstrap analysis with 100000
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draws was done to determine the uncertainty of the estimations. The uncertainty was calculated using
2" and 98™ percentiles and the results can be seen in Figure 9.11, Figure 9.12 and in Figure 9.13.
From the figures bellow we can see that despites Method 2 has a larger variability than Method
3 and be a biased estimator (Section 9.2) the symmetry propriety makes Method 2 a better estimator
and the calculated uncertainty bars more often englobe the true distribution value, differently than

what is seen for Method 1 and 3.

Figure 9.11 — Bootstrapping analysis of 50 observations using three different estimation methods for the
expected value.
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Figure 9.12 — Bootstrapping analysis of 50 observations using three different estimation methods for the

variance.
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Figure 9.13 — Bootstrapping analysis of 50 observations using three different estimation methods for
variance/mean?,
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10 CONCLUSION

In this work, we proposed a new physics-based RTN model to describe the statistics of the
low frequency noise in MOSFETSs. Using the model, we explained the behavior of the LF noise
statistics as a function of device biases, geometry and physical parameters. The applicability of the
model is demonstrated through numerous results for n-channel and p-channel devices from different
mixed-signal CMOS technology nodes. The model is well suited for both large and small area
devices, and for both 1/f like and Lorentzian dominated spectra. Using the lognormal nature of noise
distribution, we also explained why variability of RTN does not follow a 1/varea dependency, as it is
still commonly assumed in literature.

From our measurements, we show that the noise variability (c[In(Sis)]) of long channel
devices is a strong function of drain and gate biases, while the variability of short channel devices is
weakly dependent on bias. Using the proposed model, we explain these observations. We, also,
analyze and explain, using the proposed model, the effect of the halo-implanted regions in the LF
noise statistics, which can considerably increase the noise variability of long channel devices under
weak inversion operation.

Furthermore, we showed that the statistics of the LF noise of n-channel and p-channel devices
are different. We explained this difference using the proposed model and considering that the trap
density of p-channel devices is a varying function of the quasi-Fermi level, while the trap density of
n-channel devices can be considered constant in energy.

Moreover, we introduced the normalized parameter K that allows us to compare the noise
variability among different device technologies, geometries and biases. Under given bias condition,
we demonstrated that this parameter is technology specific and can be used to compare the dielectric
quality of different technologies.

Finally, we showed that the proposed model can be transformed into a compact model, suited for

circuit simulators and we analyzed some of the possibilities to implement it.
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