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ABSTRACT 

Low Frequency Noise (LFN) and Random Telegraph Noise (RTN) are performance limiters in 

many analog and digital circuits. For small area devices, the noise power spectral density can easily 

vary by many orders of magnitude, imposing serious threat on circuit performance and possibly 

reliability. In this thesis, we propose a new RTN model to describe the statistics of the low frequency 

noise in MOSFETs. Using the proposed model, we can explain and calculate the Expected value and 

Variability of the noise as function of devices’ biases, geometry and physical parameters. The model 

is validated through numerous experimental results for n-channel and p-channel devices from different 

CMOS technology nodes. We show that the LFN statistics of n-channel and p-channel MOSFETs can 

be described by the same mechanism. From our results and model, we show that the trap density of 

the p-channel device is a strongly varying function of the Fermi level, whereas for the n-channel the 

trap density can be considered constant. We also show and explain, using the proposed model, the 

impact of the halo-implanted regions on the statistics of the noise. Using this model, we clarify why 

the variability, denoted by σ[log(SId)], of RTN/LFN doesn't follow a 1/√area dependence; and we 

demonstrate that the noise, and its variability, found in our measurements can be modeled using 

reasonable physical quantities. Moreover, the proposed model can be used to calculate the percentile 

quantity of the noise, which can be used to predict or to achieve certain circuit yield. 

Keywords: Flicker Noise. Halo implants. Low Frequency noise (LFN). MOSFETs. Power 

Spectral Density (PSD). Random Telegraph Noise (RTN). Statistical Model. Variability.  

  



 

Um Modelo Estatístico e Fisicamente Baseado para o Ruído RTN  

 

RESUMO 

O Ruído de Baixa Frequência (LFN), tais como o ruído flicker e o Random Telegraph Noise 

(RTN), são limitadores de performance em muitos circuitos analógicos e digitais. Para transistores 

diminutos, a densidade espectral de potência do ruído pode variar muitas ordens de grandeza, impondo 

uma séria limitação na performance do circuito e também em sua confiabilidade. Nesta tese, nós 

propomos um novo modelo de RTN estatístico para descrever o ruído de baixa frequência em 

MOSFETs. Utilizando o modelo proposto, pode-se explicar e calcular o valor esperado e a 

variabilidade do ruído em função das polarizações, geometrias e dos parâmetros físicos do transistor. 

O modelo é validado através de inúmeros resultados experimentais para dispositivos com canais tipo 

n e p, e para diferentes tecnologias CMOS. É demonstrado que a estatística do ruído LFN dos 

dispositivos de canal tipo n e p podem ser descritos através do mesmo mecanismo. Através dos nossos 

resultados e do nosso modelo, nós mostramos que a densidade de armadilhas dos transistores de canal 

tipo p é fortemente dependente do nível de Fermi, enquanto para o transistor de tipo n a densidade de 

armadilhas pode ser considerada constante na energia. Também é mostrado e explicado, através do 

nosso modelo, o impacto do implante de halo nas estatísticas do ruído. Utilizando o modelo demonstra-

se porque a variabilidade, denotado por σ[log(SId)], do RTN/LFN não segue uma dependência 1/√área; 

e fica demonstrado que o ruído, e sua variabilidade, encontrado em nossas medidas pode ser modelado 

utilizando parâmetros físicos. Além disso, o modelo proposto pode ser utilizado para calcular o 

percentil do ruído, o qual pode ser utilizado para prever ou alcançar certo rendimento do circuito.   

Palavras-chaves: Ruído Flicker. Implantes de Halo. Ruído de Baixa Frequência (LFN). 

MOSFETs. Densidade Espectral de Potência (PSD), Random Telegraph Noise (RTN). Modelo 

Estatístico. Variabilidade. 
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1 INTRODUCTION 

Low Frequency Noise (LFN) is a serious performance limiter in mixed signal CMOS circuits 

such as RF mixers, voltage-controlled oscillators (VCOs), and time-to-digital A/D converters. 

Moreover, Random Telegraph Noise (RTN) is emerging as a potential yield hazard in the most 

advanced CMOS nodes, as it can for instance appear as a time dependent Static Noise Margin (SNM) 

limiter in SRAMs (Agostinelli, et al., 2005) (Toh, 2009). Therefore, providing adequate models for 

LFN/RTN average value and variability is essential for circuit reliability. 

 The Low Frequency Noise 

Mainly, there are three different behaviors of the noise in the low frequency domain of MOS 

devices. The power spectrum density (PSD) plot of Figure 1.1 shows two of these behaviors. At 

higher frequencies, the figure shows the white noise and at lower frequencies, it shows the flicker 

noise. The flicker noise is characterized by a 1/f or a pink spectrum behavior. Therefore, it is 

commonly named as 1/f noise or pink noise. In contrast, the white noise is characterized by its 

frequency independent behavior. 

Figure 1.1 – Representation of the noise power spectral density of an arbitrary MOS transistor 

 

In addition to the flicker and white noise, it is also very common to see bumps on the noise 

spectra, as shown in  

Figure 1.2. These bumps are the result of the prominence of the effect of individual defects in 

the device (Kirton & Uren, 1989).This effect adds Lorentzian-like spectrum (see Chapter 2) to the 

already existing noise PSD. This low frequency noise behavior is commonly referred to as Random 

Telegraph Noise (RTN) and it is often found on smaller devices (Hung, et al., 1990). On the analysis 

of the LFN of various different MOS devices it is common to see from almost perfect 1/f spectra 

(Section 1.2) to spectra that are totally dominated by Lorentzians (Section 1.3). 

1/f, flicker, 

pink noise…  

white noise 
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Figure 1.2 – Example of a bump present in the LFN spectrum.  

 

 LF Noise on Large Devices 

Figure 1.3 shows an example of the measured low frequency noise of a very large device with 

width (W) of 100 µm and length (L) of 8 µm on CMOS 140-nm technology. The noise spectrum in 

the figure shows a nice 1/f behavior. The notation SId is used to note that the measured power spectrum 

density of the noise is measured in the drain current of the devices. 

Figure 1.3 – Example of the LFN of large devices with WL = 100×8µm2. 

 

 

Figure 1.4 shows, from the noise measurement of 48 similar devices, that the noise variability 

for such large devices is small. Thus, the noise behaves more deterministically and is well-modeled 

using empirical models or using deterministic physics-based models – e.g. (McWhorter, 1957) and 

(Hung, et al., 1990).  
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Figure 1.4 – Noise spectra of 48 devices with WL = 100×8µm2. 

 

 LF Noise on Small Devices 

On small area devices, as shown in Figure 1.5, for three devices with WL = 1×0.06µm2 (CMOS 

65-nm technology), the noise has a completely different behavior than on very large devices, which 

makes the models used to predict the noise of large devices unable to properly address the behavior 

of small devices. From Figure 1.5, even among three devices with the same area, each noise spectrum 

has a different frequency behavior and a different noise magnitude. This is a characteristic of the RTN 

caused by the effect of individual defects, each of which adds a Lorentzian to the noise spectrum. 

Due to the difference between the noise spectra of large devices and small devices, some 

authors – e.g. (Kolhatkar, et al., 2003) – separate the analysis of the two noise behaviors and treat 

them as results of different effects. However, the findings of this work support the view in (Wirth, et 

al., 2009) and show that the noise can be modeled from the same effect for any device area. 

Figure 1.5 – Example of 3 noise spectra of small devices with WL = 1×0.06µm2. 

 

Figure 1.6 shows the noise measurement of 282 devices. As seen in the figure, the variability 

of such small devices is huge. Comparing, for a given frequency, the smallest noise magnitude with 

the largest noise magnitude there is a difference of almost four orders of magnitude. This large 



17 

 

 

variability imposes serious challenges on the usage of small devices in noise sensitive circuits. It also 

highlights the need to develop a stochastic model for such stochastic phenomena.  

Figure 1.6 – Noise spectra of 282 devices with WL = 1×0.06µm2. 

 

 Scaling of the Noise Variability with Device Area 

In this work, the useful quantity used to describe the variability of the LFN is the Standard 

Deviation of the natural logarithm of the noise, σ[log(SId)]. Sometimes, it will be only referred to as 

Standard Deviation or just variability. The reasons to use log(SId) will become clearer along the work. 

However, considering that the LF noise quantity is usually analyzed in the logarithm domain, the 

calculation of σ[log(SId)] should make the variability analysis easier and more meaningful. 

The variability of the LFN power spectral density depends strongly on the gate area of 

MOSFETs (Ghibaudo & Roux-dit-Buisson, 1994). LFN variability studies – e.g., (Lopez, et al., 

2011), (Ioannidis, et al., 2013) and (Ioannidis, et al., 2011) – generally propose an area scaling of the 

noise variability, σ[log(SId)], based on a 1/√area dependency. Figure 1.7 shows that the variability 

indeed depends strongly on the device area. However, according to our measurements, present in the 

Figure 1.7, the variability does not follow the 1/√area dependency. 

Figure 1.7 – Standard deviation of the logarithm of the noise for various device areas. 
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The work in (Yu, et al., 2012) reasons that LF noise variability deviates from the 1/√area 

dependency based on the statistics of sums of lognormal distributions, but eventually it relies on a 

rather arbitrary empirical function to fit the variability area scaling.  

Other works – e.g. (Higashi, et al., 2014) and (Nour, et al., 2016) – attempt to describe the 

noise in a transistor by modeling the very complicated trapping and detrapping mechanism of every 

trap in a transistor. The resultant noise is then found trough transient and Monte Carlo simulations in 

which every time step of the simulation complex calculations are needed. Therefore, this method is 

very time demanding and it is dependent on trapping-detrapping mechanisms that are not thoroughly 

understood. 

Since there is no satisfactory model that describes statistically the LFN from large devices to 

small devices and that could physically describe the scalability of the noise variability with the device 

area, in the following chapters of this work we are going to develop a new physics-based model. 

Using the model proposed in this work, we can better describe the statistic nature of the low frequency 

noise. 

 

Remark 

One could argue that the fitting of Figure 1.7 is not the best fitting possible, and that something 

as shown in Figure 1.8 is a better fitting. However, according to Pelgrom (Pelgrom, et al., 1989), 

hardly a physical mechanism that causes variability in the transistor parameter could create such 

behavior. Considering that the noise is given by two independent effects, each represented by a 

random variable (A and B). If the variance of A vanishes with the area, following the Pelgrom-

behavior, so σA
2 = α/WL and the variance of B doesn’t depend on the area due to distance variations 

in the wafer, so σB
2 = β, the standard deviation of the noise is calculated as 

 
WL


    , (1.1) 

and at its highest slope the tangent of the curve described by (1.1) should point towards the origin in 

the σ × 1/√WL plot, as shown in Figure 1.9. 
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 Relevance of the LFN 

The most obvious application in which the low frequency noise can limit performance is in 

circuits with low frequency applications. An example of such low frequency systems are the audio 

amplifiers. Moreover, sensor networks are playing more and more role in several applications such 

as healthcare wearables, agriculture, and environment monitoring (Mainetti, et al., 2011). In many 

cases, the sensors are monitoring low frequency signals, such as bio-chemical signals and movements.  

The LFN can also limit the performance of high frequency systems, due to the upconversion 

of the low frequency noise. The upconversion happens, for instance, in voltage-controlled oscillators 

(VCOs), causing phase noise. Phase noise can limit channel capacity and interfere in adjacent signals. 

This effect can pose a serious threat in the advance of wireless communication and in the advancement 

of the Internet of Things (IoT). As shown in Figure 1.10, the upconversion of the flicker noise results 

in the 1/f 3 component, whereas the white noise results in the 1/f 2 component. 

Figure 1.10 – Upconversion of the LFN. 

 

In the digital domain, the phase noise manifests itself as jitter. Jitter is an uncertainty in the 

period of the clock, as shown in Figure 1.11, and can cause timing violations in digital circuits.   

 

 

Figure 1.8 – Wrong method for fitting noise 

variability. 

 

Figure 1.9 – Ideal Pelgrom behavior of the 

standard deviation. 
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Figure 1.11 – Period Jitter. 

 

In very small area devices, Random Telegraph Noise (RTN) is emerging as a potential yield 

hazard, as it can for instance appear as a time dependent Static Noise Margin (SNM) limiter in 

SRAMs (Agostinelli, et al., 2005) (Toh, 2009), where the high current deviation present in such small 

devices can lead to read, write or data retention failures.   

Works on the literature that try to understand and model the low frequency noise in MOSFET 

circuits exist as early as 1970s – e.g. (Christensson, et al., 1968), (Christensson & Lundström, 1968), 

(Berz, 1970) and (Fu & Sah, 1972) –  and the LFN has been relevant since then. Nowadays, however, 

the relevance of the LFN has increased due to use of deeply scaled devices, use of lower supply 

voltages, and due to the popularization of wireless communication and sensor networks, among other 

factors. Conversely, present models are incapable of fully modeling the LFN characteristics in these 

devices. Therefore, LFN is not only a problem of the past but is also a problem of the present and a 

major issue for the near future. 

 

period jitter 

ideal period 
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2 A REVIEW ON LFN MODELS 

 The Random Telegraph Noise 

The random telegraph noise (RTN) is characterized by the fluctuation of the drain current 

between two fixed levels with stochastic low- and high-level times, resembling a random telegraph 

signal (RTS), as shown in Figure 2.1.These fluctuations are mainly caused by a defect in the gate 

dielectric or at the dielectric-silicon interface (Kirton & Uren, 1989). These defects, or traps, are 

known to capture and release carriers from the channel. Therefore, the two current levels, between 

which the current fluctuates, represent the state of the trap (empty or occupied). In the case of an 

acceptor like trap (negatively charged when occupied by a carrier and neutral when not occupied) the 

current of an n-channel device decreases when the trap captures a carrier and returns to its highest 

level when the carrier is released back to the channel.  

In the frequency domain, the RTN associated with a single trap is represented by a Lorentzian 

function. In the log-log domain, as shown in Figure 2.2, the Lorentzian is characterized by a plateau 

region and by a 1/f 2 region. 

Figure 2.1 – Illustration of the RTS given by the 

impact of a single defect in the oxide. 

 

Figure 2.2 – Illustration of a RTN spectrum in 

log-log domain. 

 
 

The power spectrum density (PSD) of the random telegraph noise, given by a single defect, is 

calculated as (Machlup, 1954) 
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where e and c  are the mean of the emissions and captures times respectively, and dI is the 

amplitude of the drain current fluctuation. 

With some algebra, equation (2.1) can be rewritten as 
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where e

c





  , 

1 1 1

e c  
   and, from detailed balance theory (degeneracy  g = 1) (Ralls, et al., 1984),  

( )F TE E kTe

c

e





 , where EF, ET , k and T are the Fermi energy, the trap energy, the Boltzmann constant 

and temperature respectively. In the form of (2.2), the Lorentzian formula evidently shows the plateau 

amplitude, given by 2

2
4

(1 )
dI








, and the corner frequency of the Lorentzian (transition between 

the plateau and the 1/f 2 region, 3dB drop), given by 1 2cf  . 

Another characteristic of the RTN is the time taken for a trap to capture an emit a carrier, τc 

and τe respectively. For a given trap, τc and τe have an exponential distribution, where the average 

capture and emission times, c  and e , are unique proprieties of a trap. Figure 2.3 shows the 

measured emission times of a single trap (Kirton & Uren, 1989). 

Figure 2.3 – Distribution of the emission time of a trap 

 

(Kirton & Uren, 1989) 

The exponential distribution of the capture and emission times arises from the stochastic 

nature of the trap, which behaves as a regeneration-generation center (R-G centers). From Shockley-

Read-Hall (SRH) model (Shockley & Read, 1952) (Hall, 1952) the possible transitions in R-G centers 

are: a) the capture of electrons from the conduction band, b) emission of an electron to conduction 

band, c) capture of a hole from valance band and d) emission of a hole to the valance band. In 

equilibrium and steady-state conditions, the average rate for these transitions are 
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  (2.3) 

where σn, σp, υth, n, p and ni are the electron capture cross section, the hole capture cross section, the 

carrier thermal velocity, the electron concentration, the hole concentration, and the intrinsic 

concentration of electrons respectively. 
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Combining the average rates that a trap captures an electron – (a) and (d) – and combining the 

average rates that a trap releases an electron – (b) and (c) – results in  
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Which gives  
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In a normal operation condition of a n-channel device, one can consider only the electrons capture 

rate. Therefore, 
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and  
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Bulk defects, depending on their nature, are known to have defined energies and defined cross 

sections due to the crystalline nature of the semiconductor. Therefore, it is not believed that they 

could be the responsible for Lorentzians with such different population of time constants (Kirton & 

Uren, 1989), as shown in Figure 1.6. Thus, it is believed that defects in the gate dielectric or at its 

interface are responsible for such noise behavior, where the amorphous nature of the dielectric allows 

a wide distribution of defect energy and cross section. 

The exact nature of the wide distribution of cross sections are unknown. Nevertheless, many 

different theories are present in the literature.  The tunneling theory correlates the position of the 

defect inside the dielectric with its cross section, by which the trap time constant can be approximated 

as (McWhorter, 1957) 

 
1

az

n

e



  ,  (2.9) 

where γa is the wave function attenuation constant and z is the trap distance from the interface. 

Another theory proposes a nonradiative multiphonon (NMP) capture cross section, in which the trap 
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cross section is proportional to an activation energy and that a wide distribution of such energies is 

responsible for the distribution of  . According to this theory (Kirton & Uren, 1989) 

 
/

0
BE kT
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 , (2.10) 

where σ0 is the cross section pre-factor that can include information about the tunnel interaction given 

by (2.9)and other gate voltage dependencies of the transitions (Palma, et al., 1997).  

Other works on the literature – e.g. (Grasser, 2012) and (Grasser, et al., 2009) –  propose more 

complex theories to explain the capture and emission mechanisms of a trap. These works extend the 

NMP model to account for metastable defect configurations, where after a capture or before an 

emission the trap changes to metastable states generating different electric field and temperature 

dependencies.   

 McWorther’s 1/f Model 

The McWorther model (McWhorter, 1957), also known as the carrier number fluctuation 

model, considers the flicker noise as a result of interactions between traps in the oxide and the carriers 

in the channel, as described in Section 2.1. According to the model the power spectral density of the 

mean-square fluctuations in the number of occupied traps over an elemental volume is given by 
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where Nt(x,y,z,E) is the trap density in the oxide and in the energy, τ(x,y,z,E) is the trap time constant, 

ft = [1+exp((E-Ef)/kT)]-1 and ω = 2πf the angular frequency. In our case, the elemental volume Δυ is 

given by Δυ = Δxdydz. 

The total PSD of the fluctuations in the number of occupied traps in a section of the device 

with area equal to WΔx is given by the summation of all the traps that contribute to the noise in this 

area, where ΔNt=ΔxWNt. Therefore, 
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 In the evaluation of (2.12) two assumptions are made: 1) the trap density has a uniform spatial 

distribution in the oxide near the interface. Hence, Nt(x,y,z,E) = Nt(E) and 2) the trap time constant is 

given by the tunneling theory, in which 

 0
a z

e
  ,  (2.13) 
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where γa is the attenuation factor of the electron wave function in the oxide. For a Si-SiO2 interface, 

the electron tunneling theory predicts that γa=108 cm-1 (McWhorter, 1957). Since ft(1-ft) behaves like 

a delta function around the quasi-Fermi level with area equal to kT, the integral in (2.12) results in 
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 From the number fluctuation model, the fluctuations of occupied traps induce a fluctuation on 

the carrier’s density, which in turn cause fluctuation on the drain current. Local fluctuations on the 

drain current of a section of the channel with width W and length Δx, are calculated as 
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where ΔN=WΔxN. In the original derivation in, McWorther (1957) considered that δΔN≈δΔNt, which 

is a good simplification in the strong inversion. Reimbold et al. (1984) derived a more complete 

relation in which the trapped charge not only impacts the inversion layer charge but it also impacts 

the depletion charges and the trapped charges (Reimbold, 1984). Therefore, 
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Now (2.15) can be written as  
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and the power spectral density of the local current fluctuation is 
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Finally, using Klaassen and Prins (Klaassen & Prins, 1967) and replacing (2.14) in (2.18) we have 
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 Correlated Mobility Fluctuation 1/f Model 

The correlated mobility fluctuation extends the carrier number fluctuation theory to account 

for the Coulomb scattering of free charge carriers at the vicinity of the trapped oxide charge (Hung, 
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et al., 1990). As a consequence, the trapped carrier will not only cause a fluctuation on the free carrier 

number but will also cause a fluctuation on the mobility. This model is widely used in modern 

compact models such as BSIM (Chauhan, et al., 2013) and PSP (Li, et al., 2008) models. 

According to the correlated mobility model, fluctuations on the drain current of a section of 

the channel with width W and length Δx, are calculated as (Hung, et al., 1990) 

 
1 1 eff

d d t

t eff t

N
I I N

N N N


 

  

 
       

,  (2.20) 

The next step to derive this model is to find the value of δμeff/δΔNt, using Mathiessen’s rule 

 
1 1 1 1

t

eff n ox n

N
   

    ,  (2.21) 

where μox is the mobility limited by oxide charge scattering, one can show that  

 

2

eff eff

tN W x

 




 
. (2.22) 

Using (2.22) in (2.20) the expression of the fluctuation on the drain current becomes 

 t
d d eff

N
I I

N W x


 

 
  

  
.  (2.23) 

Finally, the power spectral density of the mean-square fluctuations in the drain current is 
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 Hooge’s 1/f Model 

Hooge’s model considers the flicker noise is a result of fluctuation in the bulk mobility caused 

by phonon scattering (Hooge & Vandamme, 1978). According to Hooge’s model, the drain current 

noise is given by the following empirical equation: 

 

2

d H
Id

I
S

fWLN


 ,  (2.25) 

where αH is Hooge’s empirical parameter, f the frequency and N the carrier density. 

 Equation (2.25) is only valid when the carrier density is uniform across the channel. Therefore, 

to account for the noise with large drain bias applied the channel can be divided into infinitesimal 

uniform segments and the total noise is evaluated by 
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 For bulk devices, the αH parameter was found to have a constant value of about 2×10-3 (Hooge 

& Vandamme, 1978). However, for MOS devices αH is found to be several orders of magnitude below 

this value. Nevertheless, to explain the discrepancy between measurements and the expected noise 

using (2.25) a bias dependence of αH is often used, which apparently contradicts Hooge’s theory 

(Hung, et al., 1990). Despite this discrepancy, there are still authors that argue in favor of Hooge’s 

model, especially when modeling the 1/f noise of PMOS devices – e.g. (Vandamme, et al., 1994). 

 Figure 2.4 shows a comparison among the three flicker noise models, calculated for a NMOS 

transistor with Tox = 3 nm, Vth=0.5 V, Nt = 1.7×1017 cm-3eV-1. 

Figure 2.4 – Comparison among three flicker noise models. 

    

 NMOS versus PMOS Discussion 

Figure 2.5 shows an example of the noise power spectral density for both NMOS and PMOS 

devices (140-nm node, W×L = 8×1µm2), measured at 20Hz for different gate bias and Vds = 0.1V. 

Analyzing the noise in the figure one can clearly see that the noise of PMOS device has a weaker 

dependence with gate bias than the NMOS device. 

To explain this difference, many authors along the years have considered that the origin of the 

noise in PMOS devices is given by the phonon scattering theory (Hooge’s model) whereas the noise 

of NMOS devices has an origin in interface defects (Mcworther’s model). To understand this view, 

one can use the calculation of carrier density at strong inversion, given by Cox(Vgs−VT)/q (where Cox 

is the oxide capacitance, VT the threshold voltage and q the electron charge), then for a small drain 

bias (2.19) and (2.25) become 
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and 
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Equation (2.27) is inversely dependent on the square of Vgs while (2.28) is only inversely 

dependent on Vgs. Therefore, this difference for some authors in the past was a clear evidence that 

PMOS and NMOS devices have different noise origins. 

 

Figure 2.5 – Difference between the noise behavior of NMOS and PMOS devices. 

 

 With the introduction of the mobility correlated model (Hung, et al., 1990), the fitting of the 

noise of both PMOS and NMOS was possible by just adjusting the α and Nt parameters. However, if 

it is assumed that the trap density is constant as a function of the energy the α parameter assumes 

unphysical values for PMOS devices. Therefore, the discussion about the origins of the noise has 

continued, with some authors – e.g. (Scofield, et al., 1994) – arguing in defense of a varying trap 

density with energy for the PMOS devices while others – e.g (Vandamme, et al., 1994) – arguing for 

a phonon scattering mechanism to explain the noise of PMOS device. 

 In this work, using our proposed model and analyzing the Expected value, Variance and noise 

variability we show strong evidences in favor of the varying trap density viewpoint and that the noise 

origin from interface defects for both NMOS and PMOS devices.   

 

guide line 
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3 DERIVING A STATISTICAL MODEL 

 Oxide defects as the LFN origin 

In this work, the low frequency noise is treated as a consequence of the capture and emission 

of channel carriers from multiple oxide defects (or traps). The noise of multiple defects in the oxide 

is derived by discrete summation of the noise of each individual defect (assuming that they are 

uncorrelated), resulting in  

 
2

2 2 2
1

( ) 4
(1 ) 1

totN

i i
Id i

i i i

S I
 


  

 
 

 , (3.1) 

where Ntot is the total number of traps in the device oxide.  

When the characteristic time constant ( ) of the traps in a transistor is log-uniform distributed, 

in other words, when the corner frequency of individual Lorentzians are uniformly distributed in the 

log-scale, the total noise in the transistor will have a 1/f behavior, as shown in the Figure 3.1. 

Figure 3.1 – Illustration of the noise given by the summation of traps with log-uniformly distributed time 

constants.  

  
 

 

 

Figure 3.2 shows the average of the noise spectra previously shown in Figure 1.6. The figure 

demonstrates that the average of such large amount of spectra, formed by well-defined Lorentzians, 

has a 1/f behavior. This observation, combined with studies as for instance reported in (Wirth, et al., 

2009) and (Scholten, et al., 2003), supports our fundamental assumption that RTN effects dominate 

the LFN behavior and that   is indeed log-uniform distributed. Therefore, the RTN and the 1/f noise 

should be treated in a single model to describe the LFN variability. In addition, if the traps are 

uniformly distributed over the entire transistor area, this implicates that large area devices have many 

traps and have a LFN with a 1/f behavior, and that small area devices have few traps and have a LFN 

with a Lorentzian behavior.  

 

1/f 
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Figure 3.2 – Average of the noise spectra of a small area device.  

 

 Noise distribution 

According to our measurements, shown in Figure 3.3, the noise could be well described by a 

lognormal distribution for different device sizes. Other works in the literature already point that the 

noise distribution is lognormal (Lopez, et al., 2011) (Ioannidis, et al., 2011) (Srinivasan & Dey, 2012). 

However, for the first time this noise distribution characteristic is used to build a statistical LFN 

model.  

Figure 3.3 – Noise distribution for three different devices’ area. 

 

Using general statistics of the lognormal distribution, found in statistics textbooks (Johnson, 

et al., 1994), to calculate the standard deviation of the natural logarithm of the noise one has that 

  
 

 
2

Var ( )
ln ( ) ln 1

E ( )

Id

id

Id

S f
S f

S f


 
      
 

, (3.2) 

and the average of the natural logarithm of the noise is 

       
21

ln ( ) ln E ( ) ln
2

id Id idS f S f S         . (3.3) 
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Equation (3.2) will be the key equation for deriving our model. We demonstrate, using (3.2) 

and (3.3), along this work that our model is useful to calculate and predict the envelope of the 

RTN/LFN noise (e.g. µ ± 3σ), as shown in the Figure 3.4. 

Figure 3.4 – Example of the Noise Variability Model prediction. 

 

Therefore, the next two important quantities to calculate are the Expected value,  E ( )IdS f , 

and the Variance,  Var ( )IdS f , of the noise. 

 Expected Value and Variance 

From our first key assumption in Section 3.1, that the LFN is given by the summation of 

Lorentzians and it is described by (3.1), we can calculate the Expected value and the Variance of the 

noise. To accomplish it, the parameters in the equation are treated as random variables. A complete 

derivation of the Expected value and the Variance is given in Section 3.4 and 3.5. However, the key 

assumptions for the derivation are: 

 𝜏 is log-uniform distributed. 

 The total number of traps in a transistor, Ntot, is Poisson distributed with mean equal to 

Ntr×WL and Ntr is the trap density. 

 
2(1 )




 can be approximate by a delta function, at energy equal to EF, multiplied by kT. 

Therefore, there is no need to assume any particular distribution for ET. 

 ΔId is a random variable dependent on the random position of the trap along the channel 

(XT). However, as discussed later, the trap position is not the only source of ΔId variability 

and the expectation of ΔId is given by the law of total expectation: E[∆Id] = E[E[ΔId|XT]], 

where, E[ΔId|XT] is the conditional expectation of ΔId dependent on the value of the 

random variable XT.  

 XT is uniformly distributed along the channel. 



32 

 

From Section 3.4, the Expected of the LF noise is  

or 
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and, from Section 3.5, the Variance is  

or 
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. (3.5) 

Normalizing the Variance by the square of the Expected value we have 
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, (3.6) 

where ∆Ĩd = ∆IdWL/Id is the normalized current deviation, Ntr(ET) is the trap density as a function of 

the quasi-Fermi level [cm-2eV-1] and γ = ln(𝜏̅max/𝜏̅min). γ is a unitless constant that describes the density 

of traps in the log scale of time constants. Therefore, it is more meaningful to refer to the trap density 

as Ntr/γ per cm2 per eV per neper. In this work, when we refer to trap density we will always be 

referring to the Ntr/γ quantity. 

The normalized Variance (Var[SId]/E[SId]
2), described by (3.6) is used to calculate the standard 

deviation of the noise in (3.2). From (3.4) – (3.6), the last quantity to calculate, to have the full 

derivation of our LFN statistical model, is the statistic of the current deviation (ΔId). This statistic is 

derived in Chapter 4. 

 

 Expected Value Derivation 

The calculation of the Expected value, E[SId(f )], and the Variance of the LF noise, Var[SId(f 

)], is done using equation (3.1) in which ET, XT, 𝜏 and ∆Id are properties of each trap and are random 

variables. It is also necessary to consider that the total number of traps, Ntot, in a transistor is also a 

random variable.  Using the law of total expectation, E[Y] = E[E[Y|N]], one has that  

  
1 1

E E E E E
N N

i i

i i

X X N N X
 

    
        

    
  .  (3.7) 



33 

 

 

For N and X independents, 

   
1
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i

i

E X E N E X


 
 

 
 . 

Therefore, the Expected value of the noise described in equation (3.1) is 
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The expected value of a measurable function of X is given by:  E ( ) ( ) xg x g x f dx





  , where 

xf  is the probability density function of X. Using this, one has that the Expected value of the LFN is   
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where fEt, fτ and fΔId are the probability density function of the traps’ energy, time constant and current 

deviation respectively 

Figure 3.5 shows the behavior of 𝛽 (1 + 𝛽)2⁄  as a function of the trap energy (remembering 

that 𝛽 = 𝑒(𝐸𝐹−𝐸𝑇)/𝑘𝑇). From the figure, the behavior of 𝛽 (1 + 𝛽)2⁄  can be approximated as a delta 

function at 𝐸𝑇 = 𝐸𝐹, with an area equal to 
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Therefore, 𝛽 (1 + 𝛽)2⁄ ≈ 𝑘𝑇𝛿(𝐸 − 𝐸𝐹) and (3.9) becomes 
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Figure 3.5 – Plot of β/(β+1)2 as a function of the trap energy, for EF = 0.75 V. 

 
As ΔId is independent of 𝜏̅, one can solve separately  
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Considering that 𝜏 is a log-uniform distributed random variable in an arbitrary interval 

between 𝜏̅min and 𝜏̅max (where 𝜏̅min << 1/ω << 𝜏̅max) that contains a total number of trap given by Ntot, 

the probability density function of 𝜏 is 𝑓𝜏 = 1 𝛾𝜏⁄ , with γ = ln(𝜏̅max/𝜏̅min). Solving equation (3.11) with 

𝑓𝜏 = 1 𝛾𝜏⁄  one has 
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For an observation window where  𝜏̅min << 1/ω << 𝜏̅max, the Expected value is simplified to 
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or 
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Considering that Ntot is Poisson distributed with mean equal to 𝑁𝑡𝑟
′ 𝑊𝐿, where 𝑁𝑡𝑟

′  is the trap 

density per cm2, the Expected value is calculated as 
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Now, consider that the distribution of ∆Id is dependent on the random position of the trap 

along the length of the channel (XT) and it is also subject to other random factors, so  
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Consider, also, that the traps are uniformly distributed in the channel, 1/
TXf L  , so now 
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Substituting equation (3.17) into (3.15) and using 𝑁𝑡𝑟
′ fET(EF)/γ = Ntr(EF)/γ, the trap density per cm2 

per eV, 
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Finally, normalizing ∆Id, so d d

d

WL
I I

I
   , the Expected value of the LFN is given by (3.4). 

 (3.4):     
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 Variance Derivation 

To take into account that the traps’ proprieties (ET, XT, 𝜏 and ∆Id) and Ntot are random 

variables, the variance of  (3.1) is calculated using the law of total variance, 

  Var E Var Var EY Y N Y N                . (3.19) 

Hence, the variance of the random sum of a random variable is: 
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In our case, N is a Poisson random variable (since Ntot in (3.1) follows a Poisson distribution) 

then E[N] = Var[N].  Moreover, using    
22
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   2Var E E
N

i

i

X N X
 

    
 
 .  (3.22) 

Substituting 2
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, as in equation (3.1),  and E[N] = E[Ntot] = 𝑁𝑡𝑟

′ 𝑊𝐿, 

the Variance of the LF noise is 
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The function 𝛽2 (1 + 𝛽)4⁄ , also, behaves as a delta function at E = EF,  with area equal to 
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Therefore, 𝛽2 (1 + 𝛽)4⁄ ≈
𝑘𝑇

6
𝛿(𝐸 − 𝐸𝐹) and (3.24) reduces to 
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 As ∆Id is independent of 𝜏̅, one can solve separately 
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For  𝜏̅min << 1/ω << 𝜏̅max, the variance of the noise is approximated as 

   4

2

8 1
Var ( ) ' E ( )

6 TId tr E FS N WL I f E
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    , (3.28) 

or 

   4

2 2
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Var ( ) E ( )

3 T

tr
Id d E F

N WL
S f I f E

f 
     . (3.29) 

Again, considering the distribution of ∆Id dependent on the position of the trap along the 

length of the channel and considering the traps uniformly distributed in the device’s length, 
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Therefore, 
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Finally, using d d

d

WL
I I

I
   , the Variance of the LFN is given by (3.5). 

 (3.5):     
4

4

2 2 3 4

0

Var ( ) E ( )
3

L

d
Id d T tr Fn

IkT
S f I X x N E dx

f W L 
     .   

 Monte Carlo Comparison 

To show that the derivations of (3.4), (3.5) and (3.6) are correct, we compare their results with 

a Monte Carlo calculation applied to (3.1).  
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In this Monte Carlo calculation, we use the same distributions for the random variables used 

for the derivation of the model (i.e. 𝜏̅ is log-uniform distributed, the total number of traps is Poisson 

distributed and the traps are uniformly distributed in the device area). To show that the delta functions 

at E=EF multiplied by kT and kT/6 are good simplifications for β/(β+1)2 and β2/(β+1)4 respectively, 

we use an arbitrary distribution of the traps’ energies (ET) depicted in Figure 3.6. The temperature is 

300 K and the frequency is 20Hz. We also assume that the current deviation is given by an exponential 

distribution (the assumption of an exponential distribution is explained in Chapter 4), where E[ΔĨd|XT] 

= 2.8×10−13 cm2, E[ΔĨd
2|XT] = 1.57×10−25 cm4 and E[ΔĨd

4|XT] = 1.47×10−49 cm8 for all traps’ positions 

along the channel. An average of 620 traps was used per device with a hypothetical area of 1×1μm2 

and 𝜏̅ distributed from 𝜏̅min=2×10−9 s and 𝜏̅max=5×108 s, which gives the Ntr(EF)/γ depicted in Figure 

3.6. 

Figure 3.6 – Arbitrary trap distribution in energy used in the Monte Carlo simulation. 

 
Figure 3.7 and Figure 3.8 show the comparison between the calculated values using (3.4), 

(3.5) and 100000 Monte Carlo simulations, described above, for different quasi-Fermi levels. The 

figures show a good fitting between the proposed model and the Monte Carlo. This indicates that the 

model was correctly derived and the simplifications used just introduce some minor errors. 

Figure 3.7 – Expected value calculated using the 

proposed model (solid line) and Monte Carlo 

(symbols) for different quasi-Fermi levels.

 

Figure 3.8 – Variance calculated using the 

proposed model (solid line) and Monte Carlo 

(symbols) for different quasi-Fermi levels. 
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 Derivation using SRH Model 

In Sections 3.4 and 3.5, we derived the statistical model considering 𝜏̅ a random variable log-

uniform distributed. However, in Section 2.1, according to the SRH model, we derived that  

 
1

1n thn




  



,  (3.32) 

where, now, the log-uniform distributed random variable is the trap capture cross section (σn). 

 In this section, we show that using (3.32) we have the same results as in Sections 3.4 and 3.5.  

From (3.9), the Expected value is calculated as 
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After applying the delta function simplification and using (3.32), one has that 
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Solving the cross-section independent of ∆Id 
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where 

 max

min

ln






 
  

 
  (3.35) 

The new observation window to make the Expected value of the noise inversely proportional 

to the frequency is max min1 (2 ) 1 1 (2 )th thn n      . The observation window hence is dependent 

on the carrier density. This can make the observation window, depending on the bias, to reach a region 

where the cross section is no longer log-uniform distributed (beyond σmin and σmax) and can result in 

a 1/f α dependence of the Expected value. 

Restricting the observation window as max min1 (2 ) 1 1 (2 )th thn n      , then the Expected 

value is given by 

     2 1
E ( ) 4E E ( )

2TId tot E FS N I f E





 
     , (3.36) 

and it is the same as calculated in Section 3.4.  

 Equation (3.35) then suggests that, depending on the nature of the effect that dominates the 

cross section distribution (shown in Section 2.1), the Ntr/γ can be directly dependent on the 
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temperature (if energy activated, equation (2.10)), can be independent on the temperature (if purely 

tunnel assisted, equation (2.9)) or, as the mechanisms behind it are not totally understood, can have 

other temperature dependencies and also electric fields dependencies. Anyhow, in this work, we do 

not investigate the temperature dependency of the Ntr/γ, and all our measurements are done in the 

absolute temperature of 298 K. 

Using the same methods one can show that the same conclusion applies for the Variance. The 

Variance is calculated as 

  
max
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2 2
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After applying the delta function simplification one has that 
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Solving the cross-section independent of ∆Id 
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For the observation window max min1 (2 ) 1 1 (2 )th thn n       the Variance is given by 

   4

2

8 1
Var ( ) E ( )

6 TId tr E FS N WL I f E


    , (3.40) 

which is the same as shown in Section 3.5. 
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4 MODELING THE CURRENT DEVIATION 

The next step to evaluate the proposed model in (3.4), (3.5) and (3.6), is to calculate the 

statistics of the impact of a trap at a given position in the channel. To that end, we start by using the 

drift-diffusion theory as proposed by Klaassen and Prins (1967) – in the derivation of thermal noise 

(Klaassen & Prins, 1967) – to calculate the current deviation caused by a trap at the oxide-silicon 

interface and at position xt along the channel. After, we use a modified version of Klaasen and Prins 

to calculate the current deviation in non-uniform doped devices. Finally, we use these calculations as 

a start point to derive the full statistics of the trap impact at a given position along the channel.   

 

 The Charge Balance 

When a carrier is trapped in the oxide, all the charges present in a cross section of the device 

balance out, altering the inversion charge, depletion charge and the gate charge, hence the total charge 

remains unchanged, as depicted in Figure 4.1.  

Figure 4.1 – Charge balance in a small cross section of a NMOS transistor. 

  

The drain current of a MOS device is given by  

 
d inv

dV
I WQ

dx
  . (4.1) 

Hence, the current deviation caused by an occupied trap has a direct relation with the deviation in the 

inversion charge and with the deviation in the mobility.  

From the charge balance principle, 

 ( )g inv D tQ Q Q Q       . (4.2) 

The charges can be related to the capacitances using 

Δx 

S D 
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 (4.3) 

Where, Cinv, Cox, CD and φs are the inversion capacitance, oxide capacitance, depletion capacitance 

and surface potential respectively. Therefore, the change in the inversion charge due to a fluctuation 

in the trapped charge is given by (Reimbold, 1984) 

 inv inv inv

t G inv D inv ox D

Q Q C

Q Q Q Q C C C

 


   
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, (4.4) 

Using the simplification Cinv ≈ q2Ninv/kT, 
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 

 
. (4.5) 

 Trap Impact on a Uniformly Inverted Channel (Vds ≈ 0V) 

 

On a uniform channel, the resistance is given by 

 

0

1
o

L
R

g W
 , (4.6) 

where g0 is the channel conductivity. 

After a trap is occupied, the conductivity in the impacted area (Lt×Lt) will change to g’, as 

depicted in Figure 4.2, and the new equivalent resistance of the channel is calculated as 
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where Δg = g0 − g’ is the change in conductivity in the area impacted by the occupied trap 

Figure 4.2 – Change on the conductivity of a segment of a uniformly inverted channel device given by an 

occupied trap. 
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Therefore, the change in the channel resistance is 

 

2
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0

tR L g
R
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
  , (4.8) 

and the impact on the current given by the occupied trap can be calculated as 
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The conductivity in a MOSFET is given by 

 
invg Q   (4.10) 

and the change in the conductivity given by a change in both inversion charge and mobility is 
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 (4.11) 

 Carrier Number Fluctuation 

The carrier number fluctuation, or simply the number fluctuation, considers that there is only 

a change on the inversion charge. Hence, 

 
invg Q    .  (4.12) 

From the charge balance, the change in the inversion charge is given by 

  inv
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Q
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
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hence, for only one trapped electron, 
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Finally, using (4.12),  (4.14), (4.9) and considering a constant mobility along the channel, the current 

deviation (in a uniformly inverted channel) given by a fluctuation in the carrier density caused by an 

occupied trap is 

 d

d inv

I

I WLN

 
 . (4.15) 

and it is independent on the trap impacted area (Lt×Lt).  

Using (4.5), we obtain  
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 Mobility Fluctuation 

 If one considers that the occupied trap only changes the mobility of the device, 

invg Q    . 

Relating the mean scattering rate (1
sc

 ) with the mobility, one has that (Mueller & Schulz, 

1996)  

 
*

1 1
sc th sc

sc

q
N

m
 

 
  , (4.17) 

where m* is the conduction effective mass, υth the thermal velocity, σsc the cross section of the 

scattering centers and Nsc the density of scattering centers. 

From Matthiessen’s rule 
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
, (4.18) 

where μst is the mobility due to a single trap and μ+Δμ is the mobility due to all other scattering events. 

Substituting (4.18) into (4.17) and considering the mobility fluctuation due to only one trap, results 

in 

 
*

,2 2

1 1 1
sc st th

t

m
L q


 

   

  
   

  
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Following our nomenclature, the single trap cross section is ,sc st t
L  , and the mobility fluctuation is 

given by 
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From (4.9) the current deviation, given by a fluctuation in the mobility, is calculated as 
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Finally, substituting (4.20) into (4.21), 
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I WL q
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 Differently from the carrier number fluctuation, equation (4.16), the current deviation caused 

by a mobility fluctuation is dependent on the trap scattering cross section. A simple estimate for Lt is 

calculated by considering that the carrier is scattered once the interaction energy from the trap is 

larger than kT (Simoen, et al., 1992). The electrostatic potential from a point charge is given by 
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q
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r
  . (4.23) 

Therefore, the cross section where the potential is larger than kT/q is given by (Simoen, et al., 1992), 
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  . (4.24) 

For T = 300 K, one has that Lt = 8 nm. 

In strong inversion, the carriers charge decrease the trapped charge potential range (Simoen, 

et al., 1992), an effect named screening. Nevertheless, in thin oxide devices the gate charge also 

screens the trap potential [28], which makes the full calculation of the scattering cross section very 

complex, as the 2-D Poisson equation needs to be solved. In [28] the calculation of the cross section 

for thin oxide devices was done, and the authors concluded that the scattering cross section was 

weakly dependent on the carrier density and could be approximated as 1.6Tox. 

 In this work, the analyzed devices with oxides ranging from 2 nm to 5 nm. Therefore, we use 

* 1

t thL m q   as a constant fitting parameter. For instance, when Lt = 4 nm one has that α ≈ 1.3×10-15 

Vs. 

 Correlated Carrier Number and Mobility Fluctuation 

Combining the effects of a charged trap on the carrier number and on the mobility, one has 

that 
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Substituting (4.14) and (4.20) into (4.26), 
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For * 1

t thL m q    
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Figure 4.3 shows a comparison between the carrier number and mobility component of (4.28)

, for a typical NMOS transistor with  Tox = 2.9 nm , Vth = 0.5 V and α=0.8×10-15 Vs . From the figure, 

we can see that the mobility fluctuation component is only relevant at the strong inversion region. 

Figure 4.3 – Comparison between the mobility fluctuation and number fluctuation components. 

 

Using (4.5), we obtain 

 
2

1

( / )( )inv inv ox DN N kT q C C




 
. (4.29) 

Therefore, in weak inversion, Ninv << (kT/q2)(Cox + CD) and, as shown in Figure 4.3, equation (4.28) 

saturates at  
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I q
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 Trap Impact for a Non-uniformly Inverted Channel (|Vds| > 0 V) 

When |Vds| is larger than 0 V the conductivity of the MOSFET is a function of the channel 

position, thus 

 ( ) ( ) ( )invg x Q x x  (4.31) 

and   

 ( ) ( ) ( ) ( ) ( )inv invg x Q x x Q x x      . (4.32) 

Therefore, to calculate the impact of a trap on the drain current the full transistor equation has to be 

considered. This was deduced in the Klaassen and Prins paper (Klaassen & Prins, 1967) for thermal 

noise calculation. In the paper, the authors relate the current impact on the terminal of a transistor 

with the internal current impact on an infinitesimal uniformly charged transistor, as shown in Figure 

4.4. This relation is given by 
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d xI i x
L

    , (4.33) 

where  Δix is the impact on the current of the infinitesimal uniformly charged transistor with length 

equal to Δx.  

Figure 4.4 – Equivalent transistor for calculating the current deviation. 

 

As previously calculated in (4.28), the impact of a trap on the current of a uniform transistor 

with length equal to Δx is given by 
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 Therefore, using (4.33) and (4.34), the current impact on a transistor is dependent of the trap 

position (xt) and is equal to  
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Due to the infinitesimal uniform transistor approximation used in the derivation of (4.35), the 

result is an approximation where the channel potential between the positions xt–Lt/2 and xt+Lt/2 can 

be nearly constant, where Lt is the length under the influence of the trap.  

 

 Trap Impact for Non-Uniformly Doped MOSFETs 

For non-uniformly doped devices, the Klaassen and Prins calculation is incorrect and a more 

complete derivation was done in the work in (Roy, et al., 2007), which relates the current impact on 

the terminal of a transistor with the internal current impact on an infinitesimal uniform transistor by 
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where, 
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Therefore, 
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 Sources of the Current Deviation Variability 

From (4.38), one of the most evident sources of the current deviation variability is the trap 

position along the device channel. In order to account it without discarding other presumable source 

of variability, one can use the law of total expectation,  E =E Ed d TI I X      . For a uniform trap 

density from source to drain, 
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      . (4.39) 

 Another candidate source of ΔId variability is the trap distribution along the oxide thickness. 

If just the distribution of traps along the x (source to drain) and y (interface to gate) positions are 

considered as source of variability and if this distribution is uniform, we have 

  
0 0

1
( , )

L Tox

d d

ox

E I I x y dydx
LT

    , (4.40) 

where Tox is the oxide thickness. 

However, the position of the trap inside the oxide and along the channel are not the only 

sources of variability. Random dopant and fixed oxide charges are known to induce the current 

through percolation paths on the transistor channel (Mueller & Schulz, 1996) (Mueller & Schulz, 

1998) (Asenov, et al., 2003). This effect makes the local current density bellow the trap to be a random 

quantity, resulting in a high variability of ΔId. 

 Some works on the literature associate the variability of ΔId caused by the random dopants, 

the oxide charges and the position of the trap inside the oxide to an exponential distribution (Mueller 

& Schulz, 1998) (Asenov, et al., 2003) (Bukhori, et al., 2010) (Kaczer, et al., 2010). Based on this, 

we assume that for a given position along the channel the current deviation can be approximated to 

an exponential distribution. For exponential distributions, we can easily calculate its second and 

fourth raw moments as a function of the average, hence: 
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        

        

 (4.41) 

 We, now, further assume that for our proposed model, 

 ( )d d tT
E I X I x    , (4.42) 

with δĨd(xt) given by (4.38). 

Remark 

The exponential distribution is a special case of the Weibull distribution with the shape 

parameter kw = 1. Therefore, we can use a more generic form of (4.41). Using the Weibull distribution 

properties  

 

2
2

4
4

2
1 ,

4
1 ,

d dT T

w

d d TT

w

E I X E I X
k

E I X E I X
k

 
           

 

 
           

 

 (4.43) 

where Γ is the gamma function. 

According to our measurements present hereinafter we have a very good fitting of the model 

with the data using the exponential distribution, even though, a fine tuning can be achieved by the 

use of kw ≠ 1.  
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5 THE RTN STATISTICAL MODEL 

In this Chapter, we connect the statistical current deviation model derived above with the 

model derived in Chapter 3, to create the complete Statistical RTN Model for MOSFETs. We 

introduce the quantity K, which gives the area scalability of the LFN variability for different 

technologies. We show the implications of the proposed model when the devices are operated under 

uniformly charged channel and non-uniformly charged channel conditions. We also show that the 

proposed model can explain the differences in the behavior between the n- and p-channel devices. 

 Completing the Model 

Combining our proposed equations for the Expected value and the Variance of the LFN 

(equations (3.4) and (3.5) respectively) with  the statistics of the current deviation derived in (4.41) 

and (4.42), gives the Expected value of the LFN as 

  
2

2

2

0

( )
E ( ) 2 ( )

L

d tr Fn
Id d

I N EkT
S f I x dx

f WL



   (5.1) 

and the Variance as 

  
4

4

2 2 3 4

0

( )
Var ( ) 24 ( )

3

L

d tr Fn
Id d

I N EkT
S f I x dx

f W L


 
  ,  (5.2) 

where the normalized current deviation is given by (4.38), 

 

0

( ) ( ) ( )
( ) ( )

( )
( )

d t t t
d t tL

d inv t

t

I x f x x
I x WL L x

I N x
f x dx

 
 

 
 

       
 
 


. (5.3) 

From general statistics of the lognormal distribution, previously shown in (3.2), 

  
 

 
2

Var ( )
ln ( ) ln 1

E ( )

Id

id

Id

S f
S f

S f


 
      
 

. (5.4) 

If a K parameter is defined as 

    
2

Var ( ) E ( )Id IdK WL S f S f ,  (5.5) 

then (5.4) can be written as 
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  ln ( ) ln 1id

K
S f

WL


 
     

 
. (5.6) 

The theory that is developed in this work shows that, under certain simplifying conditions, K 

is a constant value for all device geometries, justifying our choice to take K as the key quantity to 

investigate in this study. K, as will become clear in this work, is a normalized quantity that allows 

comparing the behavior of the noise variability amongst different technologies, dimensions, and bias 

conditions. Using (5.1) and (5.2) in (5.5), the quantity that describes the variability of LF noise is 

calculated as 

 

4

0

22

2

0

( ) ( )

6
3

( ) ( )

L

d tr F

L

d tr F

I x N E dx
L

K
kT

I x N E dx








 
 
 





. (5.7) 

 From the lognormal statistics, we also have that 

       
21

ln ( ) ln E ( ) ln
2

id Id idS f S f S         . (5.8) 

Hence, the 99.7th percentile of SId(f ) (+3σ in a normal distribution) can be calculated from 

 
   

th
ln ( ) 3 ln

( )99.7 percentile
I d

id idS f S

fS e
 
   
   
   



 . (5.9) 

 Models Comparison 

For a uniformly doped MOSFET the current deviation is given by (4.35) and the Expected 

value of the noise in (5.1) becomes 

  
2

2

2

0

( )
( ) 2 ( ) ( )

( )

L

d
Id tr Fn

inv

IkT x
E S f x N E dx

f WL N x






 
  

 
 , (5.10) 

which is a similar equation as the total noise derived in the widely-adopted flicker noise model 

introduced by Hung et al (1990),  

 

2
2

2

0

( )
( ) ( ) ( )

( )

L

d
Id t Fn

a inv

IkT x
S f x N E dx

f WL N x






 
  

 
 . (5.11) 

 Despite the similarities, there are some fundamental differences in both equations. In Hung’s 

model derivation, equation (5.11) is the total noise given by the sum of all the traps in a transistor. 

However, in our model, equation (5.10) is the Expected value of the noise in a set of transistors. 

Therefore, our proposed model is a stochastic model in which Hung’s model is the special case when 
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WL is so large that [log( )] 0IdS   and  ( ) ( )Id IdE S f S f , it is also the special case when the 

transistor is uniformly doped and the current deviation is just a function of the trap position along the 

channel. While, in our Expected value calculation the factor 2 accounts for the exponential 

distribution of the current deviation. 

According to the derivation done by McWorther (1857) used by Hung et al (1990), τ is 

assumed to be associated with the depth location of the trap inside the oxide, and γa represents the 

attenuation coefficient of the electron wave function (γa≈108 cm). The log-uniform distribution of τ 

is attributed to a uniform distribution of traps inside the oxide. Campbell et al (2009) demonstrated 

that the elastic tunneling model underpinning this assumption is not realistic. In our approach τ is 

simply treated as a log-uniform random variable, implying that γ, in our model, represents the density 

of τ in the natural logarithm scale, hence γ=ln(τmax/τmin) and it is unitless. In Hung’s model the trap 

density, Nt(EF) has unit of cm−3eV-1 while in our derivation Ntr(EF) has unit of cm−2eV−1. However, it 

should be noted that despite these differences in the assumptions, the resulting Ntr/γ (cm−2.eV−1) and 

Nt/γa (cm−2.eV−1) have the same unit in both works. In a direct translation between the parameters of 

both models 

 
( ) ( )

2t Fn tr Fn

a

N E N E

 
  . (5.12) 

 The Uniformly Inverted Channel  

In the remainder of this work, the bias conditions that a device can be subject to are divided 

in two scenarios:  the uniformly charged (inverted) channel and the non-uniformly charged channel. 

In the latter scenario, the effects of the halo implants and the large carrier density gradient induced 

by Vds are substantial and the full calculation of the model equations must be done. In the first 

scenario, when Vgs is high and Vds is small, the channel can be assumed to be uniformly charged 

(inverted) from source to drain. Under this assumption, ∆Id and Ntr/γ can be assumed independent of 

the trap position, and the proposed model equations can be simplified into  

 d
d

d inv

I
I WL

I N

 
 

 
   

 
, (5.13) 

  
2

2 ( )
( ) 2 d tr Fn

Id

inv

I N EkT
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
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  

 
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  
4

4

2 2 3

( )
( ) 24

3 ( )

d tr Fn
Id

inv

I N EkT
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f WL N
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 

 
  

 
, (5.15) 
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and 

 
 

 
2 2

Var 2

( )E

Id

tr FId

S
K WL

N EkTS




  . (5.17)

  

Moreover, under this condition η ≈ 1 and Ninv ≈ Cox (Vgs – VT)/q, with VT representing the strong 

inversion threshold voltage. 

The above equations show that when the channel is uniformly charged and the trap density is 

independent of the transistor size, the Expected value of the LF noise is inversely proportional to the 

area (WL)−1, the Variance is inversely proportional to the cubic of the area (WL)−3 and K is area 

independent. The experimental results in Figures 5.1 −  5.3 confirm this behavior. In these figures we 

fit the extracted Expected value, Variance and K from the measured data and compare with the values 

calculated using (5.14), (5.15) and (5.17) respectively. For this fit we use Ntr(EF)/γ = 1.5×109 cm2eV-

1 and (η/Ninv + αμ) = 2.8×10−13 cm2 for all devices dimensions. We also plot the results from 100000 

draw Monte Carlo calculations applied to (3.1) (see Section 3.6), using a constant trap density in 

energy.  The measured devices were fabricated in a 140-nm CMOS technology with W×L (μm2) given 

by: 30×0.32, 8×8, 8×1, 8×0.336, 8×0.14 0.8×8, 0.8×0.32, 0.232×8, 0.232×0.32 and 0.232×0.14.  For 

each geometry, 43 devices were measured. 

For all the following analysis of this work, the Expected value, Variance and K are extracted 

from the measured data at 20 Hz, using the Maximum Likelihood Estimator of lognormal distribution 

(described in Chapter 9). The uncertainty bars are the 0.02th and 0.98th quantiles from a Bootstrap 

analysis (described in Chapter 9). The temperature used in all the following analysis is 298 K. 

Figure 5.1 – Area scaling of the Expected value of 

the LF noise, for n-channel devices in 140-nm 

technology. Vgs = 1.4 V and Vds = 0.1V. 

 

Figure 5.2 – Area scaling of the Variance of the LF 

noise, for n-channel devices in 140-nm technology. 

Vgs = 1.4 V and Vds = 0.1V. 

 

Eq. (5.14) Eq. (5.15) 

n-channel 

140-nm tech. 
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Figure 5.3 – K value for different area devices, for n-channel devices in 140-nm technology. Vgs = 1.4 V and 

Vds = 0.1V. 

 

In the calculations above, we assumed δĨd = (η/Ninv + αμ) to be the same value for all devices 

dimensions. However, this is not very accurate as VT and the mobility varies for different channel 

length devices. In the analyzed 140-nm technology the VT is expected to have values of 0.5 V and 0.6 

V for the long channel and the minimum length device respectively. Therefore, this VT variation in 

conjunction with a variation in the mobility can cause some deviation from the area dependency. 

However, this difference is very small compared to the span of orders of magnitude in the device 

area, shown in Figures 5.1 to  5.3. This deviation can be better seen in technologies with highly doped 

halo implants. The halo implants increase the Reverse Short Channel Effect (RSCE), which in turn 

increase the difference in VT values between devices with different channel length, and increase the 

mobility difference.  

The fact that a single value of K fits the variability for all device dimensions, as shown in 

Figure 5.3, and the dependence of K on the trap density given by (5.17), suggests that all devices have 

similar trap densities, despite their area. However, the high uncertainty in the small area devices data 

could be hiding a slightly higher trap density in the perimeter of the devices (e.g. along the Shallow 

Trench Isolation – STI – edges (Tuinhout & Duijnhoven, 2013)). Anyhow, one can conclude from 

these figures that the trap density should be roughly of the same order of magnitude for all device 

dimensions. 

According to our model, the fitting value of K from Figure 5.3 can be used in (5.6) to give the 

area scaling prediction of the noise variability (σ[ln(SId)]) for this technology. Figure 5.4 and Figure 

5.5 show how, in practice, the area scaling of the noise variability follows the predicted behavior of 

(5.6). The dashed lines represent the conventional 1/√area dependency when calculated using the 

large geometry devices (which gives the smallest statistical uncertainty). They clearly show the 

overestimation of the variability for small devices when the 1/√area relation is used. Moreover, Figure 

5.5 also demonstrates that the variability does converge to the conventional 1/√area model for large 

area devices.  

Eq. (5.17),  K = 5e-13 
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Figure 5.4 – Area scaling of the Standard Deviation 

of the logarithm of LF noise, for n-channel devices 

in 140-nm technology. Vgs = 1.4 V and Vds = 0.1V. 

 

 

Figure 5.5 – Same data as in Figure 5.4 now plotted 

on log-log scale, to demonstrate that the model 

converges to 1/√area for large devices and that no 

noise saturation occurs near the origin of Figure 5.4. 

 
 

Figures 5.6 and 5.7 demonstrate, for a large and a small device geometry, how well the 3-

sigma PSD predictions given by our noise variability model correspond with the observed variability 

of the LF noise spectra. The Standard Deviation was calculated using (5.6) with K = 5×10-13 m2 for 

both geometries and was plotted back into the original spectra using (5.9). Figure 5.6 shows that for 

large area devices the many individual Lorentzians are summed, implying that they are no longer 

discernible as individual bumps. The apparent larger spectrum noise in the lower frequency bands 

(>1 kHz and <100 Hz), in Figure 5.6, is due to the lower number over time traces used for the FFT 

averaging at lower frequencies.  

Figure 5.6 – Example of the LFN Variability 

model prediction for a population of large 

geometry devices plotted back into the original 

spectra using (5.6) with K = 5×10−13 m2. WL = 

30×0.336 m2, Vds = 0.1 V and Vgs =1.4 1V. 

 

Figure 5.7 – Example of the LFN Variability 

model prediction for a population of small 

geometry devices plotted back into the original 

spectra. K = 5×10−13m2. WL = 0.232×0.16 m2, 

Vds = 0.1 V and Vgs = 1.4 V. 

 
 

 

Figure 5.8 to Figure 5.11 demonstrate that, for p-channel devices in 140-nm technology, the 

proposed model also gives a good prediction of the noise statistics under the uniformly inverted 

channel assumption. The figures show the fittings using the proposed model for p-channel devices 

with Vgs = −1.4 V, Vds= −0.1 V and W×L (μm2) given by: 30×0.32, 8×1, 8×0.32, 8×0.14, 0.8×0.336, 

Eq. (5.6),  K = 5e-13 

Eq. (5.6),  K = 5e-13 
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0.232×0.336 and 0.232×0.14.  For each geometry 43 devices were measured. The extracted Expected 

value, Variance, K and σ[ln(SId)] are fitted using (5.14), (5.15), (5.17) and (5.6) respectively. A good 

fitting was achieved using Ntr(EF)/γ=13.1×109 cm2eV-1 and (η/Ninv + αμ) = 2.7×10−13 cm2 for all 

devices dimensions.  

Figure 5.8 – Area scaling of the Expected value 

of the LF noise, for p-channel devices in 140-

nm technology, Vgs = −1.4 V and Vds = −0.1V. 

 

Figure 5.9 – Area scaling of the Variance of the 

LF noise, for p-channel devices in 140-nm 

technology, Vgs = −1.4 V and Vds = −0.1V. 

 

Figure 5.10 – K value for different area devices, 

for p-channel devices in 140-nm technology, 

Vgs = −1.4 V and Vds = −0.1V. 

 

 

Figure 5.11 – Area scaling of the Standard 

Deviation of the logarithm of LF noise for p-

channel devices in 140-nm technology, Vgs= −1.4 

and Vds= −0.1V. 

 
 

Figure 5.16 to Figure 5.15 show applications of the model for n- and p-channel devices from 

two additional contemporary mixed-signal CMOS technologies. For all cases, the simplified model 

allows an excellent fit of the noise statistics with device area. Figures 5.12 – 5.15 show the fitting for 

40-nm technology with |Vgs| = 1.1, |Vds| = 50 mV and W×L (μm2) given by: 9×9, 0.9×0.9, 0.9×0.45 

and 0.9×0.04. For each geometry 54 devices were measured. Figures 5.16 – 5.19 extends the low Vds 

simplification to |Vds|= 0.5V for the 65-nm technology with a thicker oxide (here called 65-nm GO2) 

– which allows a gate voltage up to 2.5 V. The fitting still holds for this case when the Vgs is large 

(hence implying a similar gradient of carriers for different device lengths). For the 65-nm GO2 

technology 68 devices were measured for each geometry with W×L (μm2) given by: 10×10, 1×5, 1×2, 

1×0.5, 1×0.28, 0.4×5 and 0.4×0.28.  

p-channel 

140-nm tech. 

Eq. (5.14) 
Eq. (5.15) 

Eq. (5.17) 

Eq. (5.6),  K = 6×10−14 m2 
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Figure 5.12 – Area scaling of the Expected value 

of the LF noise, for devices in 40-nm technology. 

|Vgs| = 1.1 V and |Vds| = 50 mV. 

 

Figure 5.13 – Area scaling of the Variance of the 

LF noise, for devices in 40-nm technology, Vgs = 

1.1 V and Vds = 50 mV. 

 
 

 

Figure 5.14 – K value for different area devices, 

for devices in 40-nm technology. |Vgs| = 1.1 V 

and |Vds| = 50 mV. 

 

 

Figure 5.15 – Area scaling of the Standard 

Deviation of the logarithm of the LF noise for 

devices in 40-nm technology. Fitted using (5.6) 

with K=3.7×10−13 m2 for NMOS and 1.2×10−13 

m2 for PMOS.  |Vds| = 50mV and |Vgs| = 1.1V. 

 

 

Figure 5.16 – Area scaling of the Expected value 

of the LF noise, for devices in 65-nm GO2 

technology. |Vgs| = 2.5 V and |Vds| = 0.5 V. 

 

Figure 5.17 – Area scaling of the Variance of the 

LF noise, for devices in 65-nm GO2 technology. 

|Vgs| = 2.5 V and |Vds| = 0.5 V. 

 

 

 

 

 

Eq. (5.14) Eq. (5.15) 

Eq. (5.14) 
Eq. (5.15) 

Eq. (5.17) 

Eq. (5.17) 
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Figure 5.18 – K value for different area devices, 

for devices in 65-nm GO2 technology. |Vgs| = 1.1 

V and |Vds| = 50 mV. 

 

 

Figure 5.19 – Area scaling of the Standard 

Deviation of the logarithm of the LF noise for 

devices in 65-nm GO2 technology. Fitted using 

(5.6) with K = 1.9×10−12 m2 for NMOS and K 

= 5.4×10−13 m2 for PMOS. |Vds| = 0.5 V and 

|Vgs| = 2.5 V. 

 

 

Comparing different technology nodes 

Below, we show that we can use the uniformly charged channel condition and the proposed 

model to compare the parameters of different technology nodes. In the present work, we analyze the 

LF noise in three different technology nodes, 140-nm, 65-nm and 40-nm, all of them use silicon 

dioxide as dielectric and have polysilicon gate. Both NMOS and PMOS were measured. For the 65-

nm node, devices with two different oxide thickness were measured, 2.5 nm and 5.6 nm, named GO1 

and GO2 respectively. However, in this analysis of uniformly inverted channels the 65-nm GO1 

devices are not analyzed since we only have the measurements with high drain bias applied.  

Equation  (5.6) shows that as higher the K value for a certain technology is, the higher the 

variability of the low frequency noise will be. From (5.7), the factors that distinguish K for different 

technologies and device dimensions are the trap density (Ntr/γ) and the spread of ΔId values. As we 

show in the next section, the spread of ΔId values are primarily due to the non-uniformity of carriers 

caused by either the doping gradient or the lateral electrical potential gradient (induced by Vds). Using 

high gate bias and low drain bias voltages, we have a uniformly inverted channel, and the variability 

mechanisms of ΔId dependent on the position of the trap along the channel become irrelevant. Hence, 

as already discussed, for a uniformly charged channel the K value calculation is simplified to (5.17), 

 (5.17): 
2

2

( )tr F

K
kT N E




 ,  

and the Expected value is reduced to (5.14), where 
dI  can be further simplified to 

,( ) .d ox g eff effI q C V   Hence, 

Eq. (5.17) 

Eq. (5.17) 



58 

 

  

2

,

( )
E ( ) 2 tr Fn

Id eff

ox g eff

N EkT q
S f

WLf C V




 
   

 
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Equation (5.17) suggests that the trap density defines the variability in a uniformly inverted 

channel. Hence, the values of K used in Figures  5.3, 5.10, Figure 5.18 and  5.14 allow a comparison 

of the dielectric quality among the different technologies. The above equations show that the 

Expected value of the LF noise spectral density is directly proportional to the trap density whereas K 

(hence the variability) is inversely proportional to the trap density. Thereby, for a given technology, 

when the trap density is higher, K is lower and the Expected value is higher. When the oxide thickness 

(Tox), the effective mobility (µeff), the mobility degradation factor (α) or VT is higher, the Expected 

value of the noise is higher. 

In Figures 5.1 − 5.15, we have fitted the measured data of different technologies, for both n-

channel and p-channel devices, using the proposed model. Below, we use equations (5.17) and (5.18)

, the quantities used in the above fittings and the parameters of each technology to extract the Ntr/γ 

and the αµeff quantity. Hence, by assigning a mobility we can also extract the α parameter. Using this 

technique allows for some insights and comparison among the different technologies. 

In Figure 5.1 to Figure 5.3, we have shown the model fit for various n-channel 140-nm devices 

with Vgs = 1.4 V and Vds= 0.1 V. The fitting was done using a Ntr(EF)/γ = 1.5×109 cm−2eV−1 and  (η/Ninv 

+ αμ) = 2.8×10−13 cm2. The threshold voltage for this technology is assumed to be around 0.5 V and 

Tox = 2.9 nm. Hence q/(CoxVgeff) = 1.5×10−13 cm2 and we can extract that αµeff is around 1.3×10−13. 

For a mobility of 200 cm2Vs−1, α = 0.7×10−15 Vs. Moreover, using the extracted α and, from Chapter 

4, that
* 1

sc thm q    , the trap scattering cross section (σsc) is extracted to be about 2 nm. Hence, it is 

a reasonable physical quantity.  

 For the p-channel devices, in 140-nm technology, a good fitting was achieved using Ntr(EF)/γ 

= 13.1×109 cm2eV-1 and  (η/Ninv + αμ) = 2.7×10−13 cm2 for all devices dimensions (Figures 5.8 − 

5.11). The threshold voltage for the p-channel devices is also assumed to be around 0.5 V and Tox,eff 

= 2.9 nm. Hence, q/(CoxVgeff) = 1.5×10−13 cm2 and we can extract that αµeff is around 1.2×10−13 cm2. 

For a mobility of 150 cm2Vs−1, α = 0.8×10−15 Vs and the scattering cross section is also about 2 nm. 

We also apply this methodology to the 40-nm and 65-nm technologies, analyzed above. The 

result is shown in Table 5.1 and Table 5.2, for n-channel and p-channel devices respectively.  
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 Non-Uniformly Inverted Channel 

When the inversion layer charge density and electrical fields are a strongly varying function 

of channel position, the dependence of ∆Id on trap position will become appreciable. This makes K 

bias and length dependent (see equation (5.7) repeated below), which affects the noise variability 

given by (5.6), deviating its area scalability from the behavior predicted for uniformly charged 

channel, shown in Section 5.2. This length dependent behavior of K, for non-uniformly inverted 

channel devices, may increase the variability of large channel devices by more than an order of 

magnitude, which may, in some cases, cause the variability of long channel devices to be as large as 

that of short channel devices. Figure 6.20 shows an example of the loss of area scalability for devices 

with the same width (W = 8 μm) and with different lengths, for Vds = 0.5V and Vgs = 0.5V. Therefore, 

for low Vgs and/or high Vds, the full calculation of the proposed model equations ((5.1) − (5.7)) is 

required. 

 (5.7):     
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Table 5.1 – Extracted Model Parameters for n-Channel Devices 

Device Tox,eff 

(nm) 

Vg,eff 

(V) 

WL×E[SId/Id
2] 

(cm2 /Hz)  

(WL)3×Var[SId/Id
2] 

(cm6 /Hz2) 
K 

(m2) 

δĨd 

(cm2) 

Ntr/γ  

(cm−2eV−1) 

αμeff 

(cm2) 

α  

  (Vs) 

140-nm 2.9  0.9  3×10−19 4.8×10−46 5×10−13 2.8×10−13 1.56×109 1.3×10−13 0.7×10−15 

40-nm 2.4 0.7 3.1×10−19 3.65×10−46 3.7×10−13 2.4×10−13 2.1×109 1×10−13 0.5×10−15 

65-nm 

GO2 
5.6  2  4.3×10−20 3.5×10−47 1.86×10−12 2×10−13 0.42×109 0.7×10−13 0.4×10−15 

 

Table 5.2 – Extracted Model Parameters for p-Channel Devices 

Device Tox,eff 

(nm) 

Vg,eff 

(V) 

WL×E[SId/Id
2] 

(cm2 /Hz)  

(WL)3×Var[SId/Id
2] 

(cm6 /Hz2) 
K 

(m2) 

δĨd 

(cm2) 

Ntr/γ  

(cm−2eV−1) 

αμeff 

(cm2) 

α  

  (Vs) 

140-nm 2.9  0.9 25×10−19 3.6×10−45 0.6×10−13 2.7×10−13 13.1×109 1.2×10−13 0.8×10−15 

40-nm 2.7 0.7 16×10−19 2.5×10−45 1×10−13 2.8×10−13 7.8×109 1×10−13 0.7×10−15 

65-nm 

GO2 
5.6  2.1 5.7×10−19 1.5×10−45 4.6×10−13 3.6×10−13 1.7×109 2×10−13 1.3×10−15 
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Figure 5.20 – LF noise PSD variability of 43 n-channel devices with W = 8 μm, using Vds = 0.5 V and Vgs = 

0.5 V. 

 

Equation (5.6) and (5.7) predict however, that when changing the W with a fixed L, the model 

should keep scale for any bias combination. This is only possible if the traps are uniformly distributed 

along the width of the devices and if there is no considerable border effect such as an increase on the 

trap density at the edges of the STI. According to our measurements in Figure 5.21, the width 

scalability is confirmed and if there is any increase in the trap density at the edges of the device, its 

effects on the device variability are hidden within the uncertainty of the variability.  

Figure 5.21 – Variability as a function of the channel width for various bias configuration, L = 0.32 μm. 

 

The fitted K’s from this experiment (varying W, fixed L), for each bias combination, are 

summarized in Figure 5.22. The figure indicates a clear difference, between short and long channel 

devices, on the behavior of K relative to the drain bias and gate bias dependency. For long channel 

devices, Figure 5.22 shows that K is strongly dependent on Vgs and Vds, which can vary by more than 

2 orders of magnitude. For short channel devices, Figure 5.22 shows that the K dependence on Vgs is 

weaker than for the long channel device, and that K is practically independent on Vds. In addition, for 

both short and long channel devices, as Vgs increases, K approaches the value calculated for the 

uniform channel condition in Section 5.2. 
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Following our model, the change in K with Vgs could either be attributable to a gate bias 

dependency of Ntr(EF), or to an increase of E[∆Id
4]/E[∆Id

2]2 associated with a non-uniformity of the 

channel (e.g. non-uniform doping or source and drain potential effect). The difference in the behavior 

of long and short channels can be associated to the enhancement of the contribution of the halo-

implanted regions in long channel devices to the noise (Paydavosi, et al., 2013), hence for short 

channel this dependence with Vgs is weaker due to the overlap of the halo-implanted regions. 

Moreover, the different behavior with Vds can be attributed to the fact that the surface carrier 

concentration on the drain side of the channel is a function of Vds and, due to the velocity saturation, 

it is also a function of the channel length. Therefore, from (5.7), K – and thus the variability – will 

depend on the channel length, Vgs and Vds. 

Figure 5.22 – Difference between the K behavior for short and long channel devices. 

  

Figure 5.23 and Figure 5.24 then demonstrate how this increase on the K value is very 

significant for long channel devices. Figure 5.24 shows that the LF noise PSD of a large area device 

can easily vary by 2 orders of magnitude for certain bias configuration. 

Figure 5.23 – LF noise PSD of 43 NMOS 140-nm 

node devices, W = 8 μm, L = 8μm, Vgs=1.4 and 

Vds=0.5 V. 

 

Figure 5.24 – LF noise PSD of 43 NMOS 140-nm 

node devices, W = 8 μm, L = 8 μm, Vgs = 0.5 and 

Vds = 0.5 V. 

 

 

Therefore, when dealing with non-uniformly inverted channels, different device lengths have 

different electric field behaviors and different distribution of carriers along the channel. This leads to 

a different distribution of the current deviation as a function of the trap position in the channel. Hence 
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the integrals relation in (5.7) will have different values for different device lengths. Moreover, non-

uniformly doped devices will have different δId in different doped regions, which enhance the 

variability of the current deviation and thereby increases K. Figure 5.25 to Figure 5.32 show, for 4 

different technologies,  that this length and bias dependent behavior of K is consistent among different 

device geometries and technologies.  

These effects on K values will be discussed in detail in Chapter 6, where δId(xt) and K for 

different bias conditions will be calculated using the data extracted from TCAD simulations for long 

channel and short channel devices. 

Figure 5.25 – Extracted K of 43 n-channel devices 

in 140-nm technology with Vds = 0.1 V. W = 8 

μm and various channel lengths. 

 

Figure 5.26 – Extracted K of 43 n-channel 

devices in 140-nm technology with Vds = 0.5 V. 

W = 8 μm and various channel lengths. 

 

 

Figure 5.27 – Extracted K of 43 n-channel devices in 140-nm technology with Vds = 1.8 V. W = 8 μm and 

various channel lengths. 
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Figure 5.28 – Extracted K of 63 n-channel 

devices in 40-nm technology with Vds = 0.05 V. 

W = 0.9 μm and various channel lengths. For 9-

μm long devices, W = 9μm. 

 

 

Figure 5.29 – Extracted K of 63 n-channel 

devices in 40-nm technology with Vds = 0.55 V. 

 

 

 

Figure 5.30 – Extracted K of 63 n-channel devices in 40-nm technology with Vds = 1.1 V. 

 

 

Figure 5.31 – Extracted K of 282 n-channel 

devices in 65-nm GO1 technology with Vds = 0.5 

V. W = 1 μm and various channel lengths. For 

the 10-μm long devices, W = 10μm. 

 

Figure 5.32 – Extracted K of 68 NMOS 65-nm 

node GO2 devices with Vds = 0.5 V. W = 1 μm 

and various channel lengths. For 10-μm long 

devices, W = 10μm. 
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 n-Channel Versus p-Channel Devices 

In Section 2.5, we have discussed the difference on the behavior of the LF noise between n- 

and p-channel devices. We also commented that, to explain this difference, two schools of thought 

have emerged. One school of thought attributes the noise of NMOS transistors to trapping, and 

attributes the noise of PMOS transistors to a bulk mobility fluctuation (i.e Hooge model) (Vandamme, 

et al., 1994). The other school of thought considers the noise of both NMOS and PMOS transistors 

to be a consequence of the trapping mechanism, with the trap density constant for NMOS transistors 

and varying with the quasi-Fermi level for PMOS transistors (Scofield, et al., 1994). 

Figures 5.33 and 5.34 show the Expected value and K of short channel devices (L = 0.14 um) 

for n-channel and p-channel devices. The figures show that for high |Vgs| the p-channel device LF 

noise has a larger Expected value and a smaller K than that of the n-channel device. From our model, 

this strongly indicates that at energies accessible in the operation of p-channel devices the trap density 

is higher than the trap density at energies accessible in the operation of n-channel devices. This can 

be seen in Section 5.2, where for three different technologies - in uniformly inverted channel 

conditions - we show that p-channel devices have a higher Expected value and a smaller K and 

therefore we have extracted a higher trap density for p-channel devices in Tables 5.1 and 5.2.  

The figures also show that the Expected value of the p-channel devices has a weaker 

dependence on gate bias than of the n-channel devices, and K (hence the variability) of the p-channel 

devices has a larger dependence on gate bias than of the n-channel devices. In Figure 5.34 we can see 

that even within Vgs=1.8 V and Vgs 1.4 V, which meet the uniformly inverted channel conditions, the 

K value of p-channel device varies by almost three times. From the mechanism described above and 

from (5.7), this effect can only be explained by the dependence of the trap density with the quasi-

Fermi level, which supports the viewpoint of Scofield et al. (1994). This viewpoint considers the trap 

density to be weakly dependent on energy for n-channel devices and strongly dependent on energy 

for p-channel devices. 

For p-channel devices, decreasing |Vgs| therefore effectively reduces the trap density. This 

effect counteracts that of δId with Vgs, which increases with decreasing |Vgs|. Thus, due to these 

opposing effects, the dependence of E[SId(f)] with Vgs is reduced. In turn, the trap density reduction 

with decreasing |Vgs| increases the variability, as K is inversely proportional to Ntr/γ. This effect 

explains the smaller dependence of E[SId(f)] and the larger dependence of the K  value with the gate 

bias for p-channel compared to n-channel devices found in Figures 5.33 and 5.34. 
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Figure 5.33 – Expected value of 43 p-channel 

devices in 140-nm technology, with W×L = 

8×0.14μm2 and |Vds| = 0.1 V. 

 

Figure 5.34 – K value of p-channel devices in 140-

nm technology, with W×L = 8×0.14μm2 and |Vds| 

= 0.1 V. 

 
 

Figures 5.35 −  5.37  then show that the behavior described above is also found for p-channel 

devices with different geometries and drain biases. 

 

Figure 5.35 – Extracted K of 43 p-channel devices 

in 140-nm node, with W = 8 μm, Vds = 0.1 V and 

various channel lengths. 

 

Figure 5.36 – Extracted K of 43 p-channel devices 

in 140-nm node, with W = 8 μm, Vds = 0.5 V and 

various channel lengths. 

 

 

Figure 5.37 – Extracted K of 43 p-channel devices in 140-nm node, with W = 8 μm, Vds = 1.8 V and various 

channel lengths. 
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6 MODEL CALCULATION USING TCAD SIMULATIONS 

In section 5.2, we were able to calculate the statistics of the Low Frequency Noise for various 

different technological nodes under the uniformly-inverted channel simplification. The next step is to 

test the proposed model for all bias situations. In section 5.3, we have explained that when the 

inversion charge layer has a non-uniform distribution along the device channel the variability of the 

noise will have a different behavior among different channel lengths devices. To test this hypothesis, 

we need to properly calculate the current deviation as a function of the trap position along the channel 

given by (5.3). To that end, in this chapter we use a TCAD tool for extracting the trap impact at 

different channel positions. 

In this chapter, we show that with the help of a TCAD simulator we can analyze the influence 

of the halo-implanted regions and the bias on the LF noise statistics. We also show that we can 

properly calculate K, the Expected value and Variance of the noise using the quantities (δId, Ninv, μ, 

EF …) extracted from the TCAD simulator, with a TCAD deck carefully calibrated to reproduce the 

measured DC IV characteristics.  

 TCAD Deck Calibration          

To do this analysis, first we need to replicate the transistor characteristics in the TCAD 

simulator. The TCAD simulation is divided in two steps: the process simulation and the device 

simulation. The process simulation was done using the TSUPREM-4 tool. In this step, all major 

process steps were simulated in 2-D, such as oxidation, implantation, deposition, diffusion, etc.  After 

the process simulation, a 2-D cross section of the device containing the doping profiles and device 

structure is generated. Then, the generated 2-D structure is simulated in the MEDICI device simulator 

where the electrical transport models and related parameters are defined. The device simulation then 

gives the potentials and currents at the device electrodes. This information is compared to the 

measured data of real devices and the process information or the device parameters are tuned until 

the DC IV characteristics of the real devices are reproduced in the device simulator. Figure 6.1 

demonstrates a schematic of this calibration process. 
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Figure 6.1 – Schematic of the calibration process. 

 

After reaching a good process description, with the right doping profiles and device structure, 

we compare the CV and IV characteristics. This comparison not only allows us to check the process 

information but also allows us to calibrate some of the device parameters such as the mobility 

parameters, the gate workfunction and permittivity of the dielectric. All device simulations were done 

using the Modified Local Density Approximation (MLDA) quantum correction model – which gives 

a better estimation of the real carrier density in the device – and using the drift diffusion transport 

model. 

As demonstrated in Figure 6.2, we use the CV curve to check the doping profiles by comparing 

the depletion capacitance, given by the bottom part of the curve. We can also use the CV curve to 

compare the gate work function, the permittivity of the dielectric and the depletion of the polysilicon. 

Figure 6.2 shows an example of the CV curve of a long n-channel device in 140-nm technology, from 

the figure we see that we must increase the gate work function and must decrease the oxide 

capacitance to have a better fit. The gate work function was tuned by increasing the polysilicon 

electron affinity parameter, since the process simulation includes the polysilicon deposition step. The 

oxide capacitance was tuned by decreasing the oxide permittivity. The final result is also shown in 

Figure 6.2. 

Figure 6.2 – CV curve comparison for the n-channel 140-nm technology. 

 

After reaching a good CV curve fit, the next step is to check the Ids×Vgs curves to fine-tune the 

mobility parameters. The following mobility models were used in the simulation: Lombardi model 

TSUPREM-4 

Oxidation, diffusion 
Implant concentration, 
energy, tilt 

Mobility model, transport 
model, gate workfunction… 

Final 
device MEDICI 

doping profiles 

gate work function 

permittivity and 

 poly depletion  
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(which includes doping dependence and the transversal field dependence) and the High Lateral Field 

model (which accounts for velocity saturation). The steps used to check and tune the mobility 

parameters are as follows: 

1. Long channel device with low drain bias (Figure 6.3) – to check the surface roughness 

parameter and surface phonon degradation parameter. 

2. Short channel with low drain bias (Figure 6.4) – to check contact or/and lumped 

resistance. 

3. Short channel high drain bias (Figure 6.5) – to check high field mobility model. 

Figure 6.3 – IV curve of a large channel device with low drain bias. 

 

Figure 6.4 – IV curve of a short channel device with low drain bias. 

 

Figure 6.5 – IV curve of a short channel device with high drain bias. 
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 Current Deviation Extraction Method 

To extract δId(xt) using the MEDICI tool the following procedure is done: 

1. The current with no interface charge is evaluated, Id0. 

2. A small charge density Qt (C/cm2) is introduced between the interface nodes xn−1 and 

xn+1 

3. The new current is measured, Id. 

4. δId(xt) is then calculated as δId(xn) = q(Id-Id0)/(W×Qt×(xn+1−xn−1)). 

5. Repeat steps 2 to 4 for n = n + 1. 

 To understand step 4, let’s first understand what happens with the current when we introduce 

a small quantity of charge in a small rectangle region (Lt×Wt) of the Si-SiO2 interface, along the length 

(Lt) and width (Wt) of the device. Using (4.9) one has that in a uniform channel device with length 

equal to Δx, and width equal to W, 

 x t t t

x inv

i W L Q

i W x Q

  



. (6.1) 

Hence, the current deviation is directly proportional to the charged area, Lt×Wt, and the charge density 

introduced in this area, Qt.  

If the potential drop across Lt is negligible, we can generalize (6.1) for a non-uniformly 

inverted channel and non-uniformly doped channel using (4.36). 

 (4.36): 

0

( )

( )

d xL

f x
I i x

f x dx

   



.  

For only one captured electron, Qt = q/Lt
2, and (6.1) becomes (4.12), repeated below. 

 (4.12): x

x x inv

i

i W N





  

Therefore, comparing (6.1) with (4.12) one can normalize the current deviation for one 

electron using 

   
,,1-elec tdd

t t

Q

q
I I

QWL
  , (6.2) 

where δId,Qt is the current deviation extracted in the TCAD after the introduction of a charge density, 

Qt, in an area given by W×Lt (here we use Wt = W because in a 2-D device simulation the introduced 

charge is distributed in the whole width of the device). From step 2, the charge density is introduced 

between the mesh nodes xn+1 and xn−1. Hence, Lt = xn+1−xn−1 and (6.2) is the normalization used in step 

4. 
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Figure 6.6 and Figure 6.7 show the results of the normalization using (6.2) for various mesh 

sizes and charge densities respectively. The simulation was performed in a uniformly doped 2-μm 

long n-channel device, created for this experiment, with Tox = 2.5 nm, Na =3e17 and polysilicon gate. 

Figure 6.6 clearly shows that the normalization works independent of the mesh size as long as the 

mesh size is small enough to consider the potential drop across xn+1 and xn−1 negligible. When Vds is 

high, Figure 6.6 clearly shows that mesh size of 20 nm, 100 nm and 200 nm are too large to account 

for the large potential drop close to the drain side. Although, when the potential drop is small all the 

mesh sizes used gives similar results.  

Figure 6.7 shows the normalization result for different charge densities with a fixed 4-nm 

mesh. From the derivations of (6.1) in Chapter 4 the normalization should work as long as the 

introduced charge density can be considered to cause a small signal perturbation in the channel 

potential beneath it, otherwise the small signals simplification used in the derivation of (6.1) is no 

longer valid. The figure shows that the normalization works for different charge densities and does 

not work for Qt/q = 200×1010 cm-2. When the charge density is too small, the current deviation is so 

small that it can barely be detected because of the simulator resolution. This causes the normalized 

current deviation for one electron to show some quantization effects, as seen when Qt/q = 0.02×1010 

cm-2. 

Figure 6.6 – One-electron normalization of the current deviation for different mesh sizes. Qt/q = 2×1010 cm-2. 

 

Figure 6.7 – One-electron normalization of the current deviation for different mesh sizes. 

 

 

Channel position [μm] Channel position [μm] 
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Therefore, (6.2) can be used to calculate the current deviation for any mesh size – as long as 

the mesh is not so coarse that there is a large potential drop across its nodes – and for any charge 

density – as long as the charge density is small enough for the potential perturbation stays in the small 

signal regime and large enough so there is a measurable current deviation. 

The TCAD simulation does not account the mobility degradation when a charge is introduced 

in the Si−SiO2 interface.   Due to this limitation on the TCAD tool, only the number fluctuation part 

of the δId equation, (4.38), is extracted using the above methodology. In Chapter 4 we demonstrated 

that the mobility degradation caused by a trap is only relevant at strong inversion. As will become 

clear along this work, the term given by the non-uniformity of the doping, shown in Figure 6.8, is the 

responsible to increase δId in the halo-implanted regions. This term is larger in the halo-implanted 

regions when the channel is in weak inversion and can be approximated to 1/L for all channel 

positions when the channel is strongly inverted. 

Figure 6.8 – Description of the current deviation equation. 

 

In order to account for the mobility fluctuation in the calculation of the current deviation, we 

use the characteristics of the current deviation equation described above to approximate δId(xt)  as  

 

0

( ) ( )
( ) ( )

( )
( )

d t t d
d t tL

inv t

t t

I f x x I
I x x

W N x WL
f x dx


 

 
  

 


. (6.3) 

Where the effective µ(x) is also extracted from TCAD by  
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and the carrier density by 
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After extracting the quantities from the TCAD simulation, the only fitting parameters left to 

fit the measured data with our proposed model, equations (5.1) to (5.8), are the Ntr/γ and the α 

parameter. 

 Current Deviation 

In Section 5.4, we showed that there is a clear difference between the behavior of the 

variability of large and small channel devices. The variability of large devices has a larger dependence 

with both Vds and Vgs than the variability of short channel devices. We have addressed this difference 

in Section 5.4 as being caused by the difference in the carrier distribution along the channel and by 

the halo regions. This behavior of the variability is clarified when analyzing the current deviation 

extracted using the TCAD simulation and (6.3). 

We extracted the current deviation for long and short channel devices from the 140-nm TCAD 

deck, carefully tuned as demonstrated above. For this experiment, we simulate n-channel devices 

with L = 8 µm, L = 0.32 µm and L = 0.14 µm, to represent different device geometries. The current 

deviation is analyzed for four different bias configurations: linear region, weak inversion, saturation 

and weak inversion with high Vds applied.  

Long Channel (8 μm) 

Figure 6.9 shows the 2-D cross section of the net doping gradient of a long channel device. In 

the figure, the dark-blue regions are strongly doped regions. It demonstrates that the regions with halo 

implantation represent a small amount of the channel and are far apart. 

Figure 6.9 – 2-D cross-section of a long channel device (1 μm), showing the net doping gradient. Halo-

implanted regions are far apart. 

 

The current deviation extracted for the long channel device is shown from Figure 6.10 to 

Figure 6.13. Figure 6.10 shows that using high Vgs and low Vds, the impact on a large device is almost 

constant from source to drain, confirming the uniformly-charged channel consideration in Section 

5.2. Analyzing the equation in Figure 6.8, when Vgs is high, the term highlighted in blue, which 

long channel 
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accounts for the non-uniformity in the doping concentration, is almost constant along the channel and 

approximately 1/L. In addition, the term in the parentheses can also be considered constant, because 

Vds is low.   

Figure 6.11 shows a much larger impact at the halo regions when Vgs is low and the device is 

operated close to the weak inversion regime, where the term highlighted in blue increases the current 

deviation at highly doped regions.  

Figure 6.12 shows the device in the saturation regime, with high Vgs and high Vds. On this 

condition the trap with the highest impact is situated at the onset of the pinch-off region due to the 

small number of carriers at the drain side (η/Ninv is large) and because the drain-side halo region is in 

weak inversion (blue highlighted term is large).  

When decreasing Vgs and keeping Vds high, the term ( ) / ( )invx N x ≈   
1

2/ ( )ox DkT q C C


  

– according to Section 4.5 – hence it is saturated along the channel and the difference of δId as a 

function of the trap position is given only by the influence of the halo region, as shown in Figure 6.13.  

The figure also shows that the impact at the drain side halo is smaller; this is caused by the lowering 

of the halo-implanted region barrier induced by Vds.  

Therefore, the high impacts at small regions of the channel, shown in Figure 6.11 to Figure 

6.13, are the responsible for the strong increase in the K value – hence the variability – when the large 

channel device operates in weak inversion or in saturation. 

 

Figure 6.10 – Normalized impact vs. channel 

position, high Vgs, low Vds, L = 8 μm. 

 

Figure 6.11 – Normalized impact vs channel 

position, low Vgs, low Vds, L = 8 μm. 

 

L = 8 μm 

Vgs = 1.8 V 

Vds = 0.1 V 

Vgs = 0.4 V 

Vds = 0.1 V 
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Figure 6.12 – Normalized impact vs. channel 

position, high Vgs, high Vds, L = 8 μm. 

 

Figure 6.13 – Normalized impact vs. channel 

position, low Vgs, high Vds, L = 8 μm. 

 
 

Short Channel (0.32 μm) 

Figure 6.14 shows the cross section of the net doping gradient of a 0.32-μm device, 

representing a short channel device with the halo-implanted regions very close to each other.  

Figure 6.14 – 2-D cross-section of a 0.32-μm device showing the net doping gradient. Halo-implanted 

regions are very close to each other.  

 

The current deviation extracted for the short channel device is shown from Figure 6.21 to 

Figure 6.24. The current deviation as a function of the trap position is very similar to the 8-μm long 

device. However, it has two main differences. In weak inversion, the peaks in δId at the halo-

implanted regions represent a large percentage of the channel, which in turn makes K weaker 

dependent with Vgs than the 8-μm device. In saturation, Figure 6.17, the difference from the impact 

at the onset of the pinch-off to the impact close to the source are smaller than this difference in the 8-

μm long device. This is due to the velocity saturation, which makes the carrier’s density at the onset 

of pinch-off to be a function of the channel length (as shown in  

Figure 6.19). Therefore, the lower peak in the saturation condition and the fact that the peak 

also represents a large percentage of the channel makes the variability to also have a smaller 

dependency with Vds. 

 

0.32μm 

Vgs = 1.8 V 

Vds = 1.8 V 

Vgs = 0.4 V 

Vds = 1.8 V 
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Figure 6.15 – Normalized impact vs. channel 

position, high Vgs, low Vds, L = 0.32 μm. 

 

Figure 6.16 – Normalized impact vs channel 

position, low Vgs, low Vds, L = 0.32 μm. 

 

 

Figure 6.17 – Normalized impact vs. channel 

position, high Vgs, high Vds, L = 0.32 μm. 

 

Figure 6.18 – Normalized impact vs. channel 

position, low Vgs, high Vds, L = 0.32 μm. 

 

 

Figure 6.19 – Carriers density as a function of the normalized channel position for three different channel 

lengths. Vgs = 1.8 V and Vds=1.8 V. 

 

 

 

 

 

 

L = 0.32 μm 

Vgs = 1.8 V 

Vds = 0.1 V 

Vgs = 0.4 V 

Vds = 0.1 V 

Vgs = 1.8 V 

Vds = 1.8 V 

Vgs = 0.4 V 

Vds = 1.8 V 
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Short Channel (0.14 μm) 

Figure 6.20 – 2-D cross-section of a 0.14-μm device showing the net doping gradient. Halo-implanted 

regions are overlapped. 

 

The current deviation extracted for the short channel device is shown from Figure 6.21 to 

Figure 6.24. For the small channel device, the comparison between Figure 6.21 and Figure 6.23 shows 

that, the change of Vds cause a minor change on the impact of the trap close to the drain.  

In such small channel device, the halo regions are overlapped. Hence, we do not see the 

behavior of the current deviation present in the halo regions. However, for low Vgs the effect of the 

depletion region of the source and drain affects δId, creating the behavior shown in Figure 6.22 and 

in Figure 6.24, which slightly increases the value of K.  

Figure 6.21 – Normalized impact vs. channel 

position, high Vgs, low Vds, L = 0.14 μm. 

 

Figure 6.22 – Normalized impact vs channel 

position, low Vgs, low Vds, L = 0.14 μm. 

 
 

 

 

 

 

 

 

0.14μm 

L = 0.14 μm 

Vgs = 1.8 V 

Vds = 0.1 V 

Vgs = 0.4 V 

Vds = 0.1 V 
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Figure 6.23 – Normalized impact vs. channel 

position, high Vgs, high Vds, L = 0.14 μm. 

 

Figure 6.24 – Normalized impact vs. channel 

position, low Vgs, high Vds, L = 0.14 μm. 

 
 

 Model Fit for n-channel devices in 140-nm node 

The next step is to use the current deviations extracted with the help of the TCAD tool, shown 

above, to calculate the proposed model equations, (5.1) to (5.8), and to test the validation of the model 

for different bias configuration. After extracting the quantities from the TCAD simulation, there are 

two parameters left to be defined, Ntr/γ and α, which are carefully chosen to fit the model with the 

measured data. To test the validation of the proposed model we, compare the model with the measured 

data from devices with different channel lengths and using different gate and drain bias. Below we 

show the comparison of devices fabricated in a 140-nm CMOS technology with W×L (μm2) given 

by: 8×0.14, 8×0.32, 8×1 and 8×8. Each geometry has 43 measured devices. We chose wide devices 

with W = 8μm, to have a smaller uncertainty on the extraction of the Expected value, Variance, K and 

σ[ln(Sid)]. 

 

L = 0.14 µm 

 The comparison between the measurements and our model for devices with L = 0.14 μm is 

shown from Figure 6.25 to Figure 6.28. To calculate the model, we use a constant trap density of Ntr/γ 

= 1.3×109 cm−1eV−1 and a mobility degradation coefficient of α = 0.8×10−15 Vs. The extracted values 

from the measured data are represented by symbols and the values calculated – using the proposed 

model – are represented by dashed lines. Figure 6.25 show the comparison of the extracted K value 

from the measured data and the K calculated using (5.7).  Figure 6.26 shows the comparison of 

σ[ln(Sid)], calculated using (5.6). According to (5.6), K and σ[ln(Sid)] have similar behaviors. The 

figures show that the behavior of the current deviation shown above and the proposed model can 

nicely predict the behavior of the LF noise variability of the 0.14-μm device as a function of Vgs and 

Vds. 

Vgs = 1.8 V 

Vds = 1.8 V 

Vgs = 0.4 V 

Vds = 1.8 V 
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Figure 6.27 and Figure 6.28 show the comparison of the measured data and the calculated 

values using (5.1) and (5.2) for the Expected value and Variance of the LF noise respectively. The 

figures also show a good fit between the model and the measured data for both Expected value and 

Variance. 

 

Figure 6.25 – Measured versus calculated K. 

L=0.14 µm. 

 

Figure 6.26 – Measured versus calculated Standard 

Deviation. W = 8 µm, L = 0.14 µm. 

 
 

Figure 6.27 – Measured versus calculated Expected 

value. L=0.14 µm. 

 

Figure 6.28 – Measured versus calculated 

Variance. L = 0.14 µm. 

 

 

 

L = 0.32 µm 

For the 0.32-µm long device, the comparison between the measurements and our model is 

shown from Figure 6.29 to Figure 6.32. Using a constant trap density of Ntr/γ = 1.1×109 cm−1eV−1 

and a mobility degradation coefficient of α = 0.8×10−15 Vs our proposed model provides a very good 

prediction of the Expected value and Variability of the noise.  
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Figure 6.29 – Measured versus calculated Expected 

value. L=0.32 µm. 

 

Figure 6.30 – Measured versus calculated Variance. 

L=0.32 µm. 

 

  

Figure 6.31 – Measured versus calculated K. 

L=0.32 µm. 

 

Figure 6.32 – Measured versus calculated Standard 

Deviation. L=0.32 µm. 

 
 

L = 1 µm 

For the 1-µm long device, the comparison between the measurements and the proposed model 

is shown in Figures 6.33 − 6.36. The proposed model is calculated using a constant trap density of 

Ntr/γ = 1.1×109 cm−1eV−1 and a mobility degradation coefficient of α = 0.8×10−15 Vs.  

Figure 6.33 – Measured versus calculated Expected 

value. L=1 µm. 

 

Figure 6.34 – Measured versus calculated Variance. 

L=1 µm. 
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Figure 6.35 – Measured versus calculated K. L=1 

µm. 

 

Figure 6.36 – Measured versus calculated Standard 

deviation. L=1 µm. 

 
 

L = 8 µm 

For the 8-µm long device, the comparison between the measurements and the proposed model 

is shown in Figures 6.37 − 6.40 using the data of 43 devices with WL = 8×8µm2. The model provides 

a very good fitting using a constant trap density of Ntr/γ = 1.1×109 cm−1eV−1 and a mobility 

degradation coefficient of α = 0.8×10−15 Vs. Figure 6.37 and Figure 6.38 show the Expected value 

and Variance of the LF noise respectively. The dashed lines in the figures are the fitting calculated 

using (5.1) and (5.2). 

The behavior of δId described in Figure 6.10 to Figure 6.13 can explain the bias dependence 

of K for large devices shown in Figure 6.39. Analyzing Figure 6.39 one can see that for Vds = 0.1 V, 

when Vgs decreases the value of K increases due to the increase of the influence of the halo regions, 

as shown in Figure 6.13. For Vds = 0.5 V, K increases as Vgs decreases, first because of the decrease 

of the carrier concentration at the drain side and then, due to the influence of the halo regions as Vgs 

approaches the threshold voltage, as shown in Figure 6.12 and Figure 6.13. 

 

Figure 6.37 – Measured vs calculated Expected 

value. L=8 µm 

 

Figure 6.38 – Measured vs calculated Variance. 

L=8 µm 

 
 



81 

 

 

Figure 6.39. – Measured versus calculated K. L=8 

µm 

 

Figure 6.40 – Measured vs calculated Standard 

Deviation. L=8 µm 

 
 

 Model Fit for p-channel devices in 140-nm node 

As we already analyzed, the p-channel device has a different noise behavior than the n-channel 

device. Using the proposed model, we explain this difference with the trap density behavior as a 

function of the energy. For n-channel devices, the trap density can be considered constant and, for 

the p-channel, the trap density varies strongly with the energy. Moreover, Figure 6.41 shows that the 

difference between the K value for different channel length devices are not as large as the difference 

found in n-channel devices. We can understand this by analyzing Figure 6.42, which shows that the 

halo-implanted regions have a smaller impact when compared to the n-channel device in Figure 6.11. 

Figure 6.41 – Extracted K of 43 PMOS 140-nm 

node devices with Vds = 0.5 V. 

 

 

Figure 6.42 – Normalized impact versus channel 

position for an 8-μm long p-channel device with 

low Vgs and low Vds. 

 
To account the energy dependency, for all p-channel devices geometries analyzed, we assume 

that the trap density is given by 

 
( )/( )

chE E ltr
l h

N E
D D e



 
    (6.6) 

where, lc = (Em−Eh)/log(Dh/Dl), Dh = 6.5×1010 cm-2eV-1, Dl = 3.6×108 cm-2eV-1, Eh = −0.76 eV and Em 

= −0.54eV. The resultant distribution is shown in Figure 6.43. We also demonstrate in the figure a 
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comparison with the trap density used in the NMOS analysis. Moreover, the mobility degradation 

coefficient used for all dimensions is α = 1×10−15 Vs. 

Figure 6.43 – Trap distribution used for the calculation of PMOS devices. 

 

 Different authors did also observe an increased trap density close to the edges of the Si 

bandgap, leading to a defect band or U-shape trap distribution. For instance, it was observed in the 

context of NBTI in SiGe pFETs with a high-k stack (Scofield, et al., 1994), as well as it agrees to 

recent RTN noise measurements by other groups (Nour, et al., 2016). It was also observed in the 

context of transient capacitance spectroscopy (Wang, 1980), as well as in charge pumping in different 

technologies and using different techniques. See, for instance, the work of Kim et al. (2011) and 

references therein. 

To account the trap density as a function of energy in the integrals of (5.1), (5.2) and (5.7), 

the trap density must be converted as a function of channel position. An example of such translation 

is given in Figure 6.44, for three different bias configurations. The conversion is done by extracting 

the holes quasi-Fermi energy as a function of the channel position and then by applying it in (6.6).  

PMOS 

Donor like traps NMOS 

Acceptor like 

traps 
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Figure 6.44 – Conversion from trap density as a function of quasi-Fermi level to trap density as a function of 

channel position.

 

 

Using the parameters and the methodology explained above we compare our proposed model 

to the measured data. For this analysis, we use the measurements of 48 PMOS devices for each 

dimension (8×1µm2, 8×0.316µm2 and 8×0.14µm2). The results of this comparison are shown from 

Figure 6.45 to Figure 6.47 for the 1-μm, 0.32-μm and 0.14-μm long devices respectively. The 

comparison show very good agreement between our model and the measured data. In the figures, the 

dashed lines are calculated using our proposed model and the symbols are the data extracted from the 

LF noise measurements. 
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L = 1 µm 

Figure 6.45 – LFN Measurements versus proposed model, for p-channel devices with L=1µm. 

  

  
L = 0.336 µm 

Figure 6.46 – LFN Measurements versus proposed model, for p-channel devices with L=0.316µm. 
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L = 0.14 µm 

Figure 6.47 – LFN Measurements versus proposed model, for p-channel devices with L = 0.14 µm. 

  

  
 

Figure 6.48 shows that a better fit, for the 0.14-µm devices can be achieved by using trap 

density that is 20% higher than the one shown in Figure 6.43.  

Figure 6.48 – LFN Measurements versus proposed model using the trap density 20% higher, for p-channel 

devices with L=0.14µm. 

 

 Model Fit for n-channel devices in 40-nm node 

We also tested the model using the TCAD deck of the 40-nm technology. The results of the 

comparison between the measurements and the calculated values using the proposed model are shown 

in Figures 6.49 – 6.51. In the calibration process of the DC-IV characteristic of the 40-nm TCAD 

deck, we could not achieve a perfect calibration. Because of this, we believe that the proposed model 
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for the 40-nm technology does not give a fit as good as the fit achieved for the 140-nm technology. 

Anyhow, it predicts very well the behavior of the noise statistics, such as the increase in two order of 

magnitude of K when the 9-μm long device is operated in weak inversion.    The fittings were done 

using a constant trap density of Ntr/γ = 1.7×109 cm−1eV−1 and a mobility degradation coefficient of α 

= 0.8×10−15 Vs. 

 

L = 9 μm 

Figure 6.49 – LFN Measurements versus proposed model, for 9-µm long n-channel devices in 40-nm 

technology. 
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L = 0.9 μm 

Figure 6.50 – LFN Measurements versus proposed model, for 0.9-µm long n-channel devices in 40-nm 

technology. 

 

L = 0.04 μm 

Figure 6.51 – LFN Measurements versus proposed model, for 0.04-µm long n-channel devices in 40-nm 

technology. 
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 Discussion 

This chapter shows that our proposed model can be used to calculate the statistics of the LF 

noise for both large and small devices and is well suited for both 1/f like and Lorentzian dominated 

spectra. The fitting with the measured data was done using only two parameters, Ntr/γ and α. The 

other physical quantities, used to calculate δId, were extracted from TCAD simulations, which 

reinforce the physics-based characteristic of our proposed model.  

The difference in the behavior of LFN variability for small and large devices with the bias 

voltage was attributed to the presence of the halo implant and the different dependence of the carrier 

density at the drain side with Vds, for long and short devices. 

Moreover, the difference in the noise behavior for NMOS and PMOS devices is explained 

using our proposed model and considering the trap density of PMOS devices to be strongly dependent 

on the energy, while the NMOS device has a trap density that is weakly dependent on the energy. 

 To have a better fit, a 15%-30% variation on the trap density between large devices and short 

devices was considered in the 140-nm technology. This can be an evidence of a slightly increase on 

the trap density close to the source and drain.  Although, this small difference can be also explained 

due to discrepancies between the TCAD devices and the measured devices. 

Furthermore, despite our model be derived from RTN only, we do not mean that RTN is the 

only noise mechanism present in the transistor. However, the experimental results and analysis done 

in this chapter indicate that it is the major noise mechanism, and that it is adequate to explain and 

model the experimental observations. In Section 8.2 we briefly comment how other noise sources can 

possibly affect the left tail of the noise distribution in very small area devices. 

Finally, the proposed model can be easily transformed into a compact model, suited for circuit 

simulators, by just modeling the current deviation calculation in (5.3). In the next Chapter, we discuss 

some possibilities for implementing the proposed model in a compact model. 
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7 ANALYTICAL ANALYSIS & COMPACT MODELING 

In this chapter, we discuss the possibilities to formulate our proposed model into a compact 

analytical form that can be incorporated into standard compact electrical simulators. 

 Uniformly doped devices 

In Section 5.1 we have shown that the proposed model for the LFN Expected value in 

uniformly doped devices (Equation (5.10)) is similar to the proposed by Hung et al. (1990) (Hung, et 

al., 1990) for the total LFN (Equation (5.11)). The work of Hung et al. (1990) proposed an analytical 

and a compact calculation for (5.11). The same methodology can be used in our proposed model. For 

convenience (5.10) and (5.11) are repeated below. 

 (5.10):   
2

2
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( )
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d
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inv
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In the derivation of (5.10) we use that for a uniformly doped device the normalized current 

deviation is simplified to 

 
d d
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
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 
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. (6.7) 

We showed in (4.5) that η/Ninv ≈ 1/(Ninv + (kT/q2)(Cox+Cd)). Hence, in this section, for a matter of 

simplicity and consistency with the compact model proposed by Hung et al. (1990), we use that η/Ninv 

= 1/(Ninv + N*) with N* = (kT/q2)(Cox+Cd). 

Using our model, the Variance of the LF noise for a uniformly doped device is given by 

  
4

4

2 2 3 4

0

( )
Var ( ) 24 ( ) ( )

3 ( )
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Id tr Fn

inv
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 

 
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 
  . (6.8) 

In (Hung, et al., 1990) the following empirical relation is used, Nt(1 + αμeffNinv/η)2 ≈ A + BNinv + 

CNinv
2. Hence, 

      
2 22

( ) *inv t Fn inv inv invN N E N N N N     A B C   (6.9) 

where A, B and C are the model parameters. Analyzing (6.9) one can see that the empirical function 

must account for the trap density as a function of the quasi-Fermi level and also the normalized current 



90 

 

deviation (δĨd = η/Ninv + αμ) as a function of the carrier density. If the trap density is constant, A = Nt, 

B = 2Ntαμη−1 and C = Nt(αμη−1)2. Hence, for a constant trap density C = B2/(4A) and it is a redundant 

parameter. 

Substituting (6.9) in (5.11), 

    
2

22

2

0

( ) ( ) ( ) ( ) *

L

d
Id inv inv inv

a

IkT
S f N x N x N x N dx

f WL
    A B C . (6.10) 

Using Ids = WqNinvμeff dV/dx and the carrier density linearization, dNinv (q/aCox + Φt/Ninv) = dV, we 

can calculate the noise in all operation regions as 

    
02

2

2
( ) *

L

N

eff d
Id inv inv inv inv

ox a N

q kT I
S f N N N N dN

aC f L




    A B C , (6.11) 

where a is the slope factor that accounts the bulk charge effect on the threshold voltage, N0 and NL 

are the carrier density at the source side and drain side respectively. In the original derivation in 

(Hung, et al., 1990) the carrier linearization is not used and the calculation of the noise is divided in 

the linear region, saturation and weak inversion. One should note that for the calculation of (6.11) we 

use aCox = Cox+Cd hence (q/aCox + Φt/Ninv) = (q/aCoxNinv)(Ninv + N*). 

 The integral in (6.11) is readily evaluated in a closed form given by 
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It is straightforward to demonstrate that the same transformation used in (6.11) can be applied 

in the calculation of the Expected value and Variance of our proposed model. Which become 
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However, one cannot readily use (6.9) for the calculation of the Variance. First, the trap density term 

must be separated. For devices with a constant trap density, the Variance can be calculated using the 

same set of parameters A, B and C. For the Expected value Nt(1 + αμNinv/η)2 ≈ A(1 + (B/A)N + 

(C/A)N2) then for the Variance Nt(1 + αμNinv/η)4 ≈ A(1 + (B/A)N + (C/A)N2)2. However, as is shown 

in Section 5.4 and Section 6.5, to describe the behavior of p-channel devices we need to vary the trap 

density and for that we need to introduce a new set of parameters. In order that the integrals in (6.13) 

and (6.14) have a closed form, the traps density can be described as a polynomial,  
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Instead of using (6.9), the normalized current deviation can be calculated using one parameter for αμ. 

Hence,  
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Using Ntr = NTA and (6.16) in (6.13), and in (6.14), to calculate the Expected value and Variance 

respectively, one has that 
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Therefore, using only a set of two parameters we can describe in a compact form all the noise statistics 

(E, Var, K …) of a uniformly doped device with a uniformly distributed trap density in energy.  

Figures 7.1 and 7.2 show, respectively, the behavior of the LF noise Expected value and K  of 

uniformly doped devices with an ideal long channel (channel doping Na =6e17 and oxide thickness 

Tox = 3 nm and Vfb = −0.8V). The figures show a comparison between the original calculation of the 

model ((5.10) and (6.11)) and the compact form in (6.17) and (6.18), for Ntr/γ = NTA = 1×109 cm−2eV−1 

and αμeff  = NI=1×10−13 cm2. 

Figure 7.1 – Expected value of long channel and 

uniformly doped devices, calculated using the full 

model in (5.10) (solid lines) and the compact 

model in (6.17) (dashed lines). 

 

Figure 7.2 – K value of long channel and uniformly 

doped devices calculated using the full model in 

(6.11) (solid lines) and the compact model in 

(6.18) (dashed lines). 

 
As we have shown in Section 6.5 the halo implants of the p-channel devices in 140-nm 

technology does not cause a large impact on the statistics of the LF noise. Therefore, we use the N0 

 Vds=1.8 V 

 Vds=0.5 V 

 Vds=0.1 V 
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and NL extracted from the TCAD simulations, in Section 6.5, to calculate the Expected value and K 

using the compact form of the uniformly doped channel model.  In Figures 7.3 and 7.4 we compare 

the calculated values using the compact form with the measured data. The trap density of the p-

channel devices in 140-nm technology is a function of the Fermi-level hence in the derivation of the 

compact form we use that Ntr = NTA + NTB×Ninv.  

The compact form is calculated using N0 and NL extracted from the TCAD simulator, although 

in modern compact models such as BSIM6 (Chauhan, et al., 2013) and PSP (Aarts, et al., 2008) N0 

and NL can also be extracted taking into account short channel effects and velocity saturation. N0 and 

NL are extracted, from the TCAD, a few nanometers away from the source and drain. Hence the 

depletion region of the source and drain does not impact the extraction of N0 and NL. 

The full compact form using NTA and NTB is shown in (6.19) and (6.20). A good fitting was 

possible using NTA = 4.6×108 cm−2eV−1, NTB = 2.8×10−3 eV−1 and NI = 0.8×10−13 cm2. 

 

Figure 7.3 – Expected value of 8×1μm2 p-channel 

devices in 140-nm technology. Comparison 

between measured data (solid symbols) and 

calculated using the compact model (dashed lines). 

 

Figure 7.4 – K value of 8×1μm2 p-channel devices 

in 140-nm technology. Comparison between 

measured data (solid symbols) and calculated using 

the compact model (dashed lines). 
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 Halo-implanted Devices 

For devices with lateral doping gradient the current deviation caused by a trap at position xt 

along the channel is given by (4.38), repeated below. 
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( ) ( )
( ) ( )
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d t tL
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  (7.1) 

where, 
0

1
( ) exp

x
g

f x dx
g x

 
  

 
 , ( , ( )) ( , ( )) ( , ( ))g x V x x V x Q x V x is the channel conductance and 

the first parenthesis of the equation accounts for the lateral doping gradient.  

 In modern MOSFETs, the lateral doping gradient is introduced by the halo or pocket implants 

at the drain and source side of the transistor, as shown in Figure 7.5. In the figure, Lh is the extension 

of the halo-implanted region and Leff is the effective channel length. 

Figure 7.5 – Example of the lateral doping gradient introduced by the halo implants. 
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 In the form of (7.1) the current deviation of halo-implanted devices is very difficult to be 

analytically analyzed. Therefore, in this section, we propose some simplifications that allow us to 

quickly analyze the impact of halo-implanted regions in the statistics of the LF noise.   

In Figure 7.6, the long channel transistor (where Leff > 2Lh) is simplified by 3 different 

uniformly doped regions. Hence, the halo-implanted regions is described by an effective doping 

(Nah,eff) and an effective length (Lh,eff), and the channel region without halo-implants (we’ll call it 

channel region) is also described by an effective doping (Nach,eff) and an effective length (Leff – 2Lh,eff). 

Using these simplifications, the surface potential along the channel is given by three different regions 

with step transitions among them, as shown in Figure 7.6. The figure also shows the channel potential 

for this simplification, where V1 and V2 are the potentials at halo-channel transitions. In the following 

nomenclature, we use the index 1 to refer to the source-side halo region and 2 to refer to the drain-

side halo region. In this simplification, we also consider that the mobility is the same for all regions. 

Figure 7.6 – Simplification of the halo-implanted device in three different uniform regions. 
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where Nh1(V) and Nh2(V) are, respectively, the carrier density at the source and drain side halo as a 

function of the channel potential, and Nch(V) is the carriers density at the channel region as a function 

of the channel potential. The problem is now simplified in finding V1 and V2 potentials and then 
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calculate Nh1, Nh2 and Nch at these potentials. To simplify the nomenclature, in the following equations 

we use L and Lh instead of Leff and Lh,eff, hence one should remember that in this section L and Lh are 

actually effective lengths. 

 Using the proposed simplification, the calculation of the Expected value of the noise can be 

also separated in 3 different regions and it is given by:   
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 And the Variance,  
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  (7.4) 

By now, one can realized that the simplification in Figure 7.6 allows that the halo-implanted 

transistor be described by three transistors in series. In Section 7.3 we show the derivation of (7.3) 

and (7.4) using a three transistor model. Although, in this section we continue to analyze the model 

in the form of (4.38) and (7.2). 

In order to find an analytical expression for (7.3) and (7.4), we need to find and analytical 

expression for A and B. The dependencies with V1 and V2 turn this task very challenging. However, 

as is shown in Chapter 6, the halo-implanted regions influence is higher in weak inversion. This 

allows us to construct some simplifications to analyze the halo-implanted regions impact in the LF 

noise statistics.  

In weak inversion, the carrier density is approximated as 

   

( )

1
( ) 1

gb T cb

t t

V V V x

n
inv ox tN x n C e

q

 




   , (7.5) 

where n is the slope factor. Using (7.5) it becomes clear that in weak inversion A and B become 

independent of the channel potential (V1 and V2). A in weak inversion is given by 
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where nh, nch VT,h, VT,ch are the slope factor of the halo and channel region, and the threshold voltage 

of the halo and channel regions respectively.  To easy understand the behavior of the halo-implanted 

region in weak inversion, we rough approximate nh ≈ nch = 1+Cd/Cox. Hence, 
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Hence, the amplification of the current deviation at the halo-implanted region is given by the 

exponential of the difference between the threshold voltage from the halo region and channel region, 

and also by the exponential of the temperature. 

If the threshold voltage of the source-side halo is equal to the threshold voltage of the drain-

side halo (VT,h1 = VT,h2), an approximated condition where there is no barrier lowering on the drain-

side halo induced by Vds, one has that Bwi = 1. Using this condition, equation  (7.3) and the fact that 

in weak inversion η/Ninv + αμ ≈ q2/(kT(Cox+Cd)) (see Section 4.5) one finally has that the Expected 

value of the LFN in weak inversion is approximated as 
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and using the same condition in (7.4), one can calculate K in weak inversion as 
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 . (7.10) 

Therefore, in weak inversion, K becomes dependent on the channel length and (7.10) gives an 

analytical expression to analyze this dependency.  

Figures 7.7 – 7.10 show the Expected value normalized by the device area and K, calculated 

using (7.9) and (7.10) respectively, and compare with the measured data for three different channel 

lengths. Figures 7.7 and 7.8 show the comparison for n-channel devices in 40-nm technology and 

Figures 7.9 and 7.10 show the comparison for n-channel devices in 140-nm technology. The 40-nm 

devices fit was done using VT,h = 0.43 V, VT,ch = 0.3 V, Cd = 0.45Cox, Tox = 2.1 nm. Ntr = 1.7×109 
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cm−2eV−1 and Lh= 80 nm. The 140-nm devices fit was done using VT,h = 0.54 V, VT,ch = 0.45 V, Cd = 

0.3Cox, Tox = 2.9 nm, Ntr= 1.1×109 cm−2eV−1
 and Lh = 50 nm. 

 

Figure 7.7 – Weak inversion approximation for the 

Expected value of n-channel 40-nm devices. Vds = 

50 mV. 

 

Figure 7.8 – Weak inversion approximation for K 

value of n-channel 40-nm devices. Vds = 50 mV. 

 

 

  

Figure 7.9 – Weak inversion approximation for the 

Expected value of n-channel 140-nm devices. Vds = 

0.1 V. 

 

Figure 7.10 – Weak inversion approximation for K 

value of n-channel 140-nm devices. Vds = 0.1 V. 

 

 
 

Figure 7.11 show how in practice the σ[ln(SId)] as a function of the channel length is calculated 

using the K calculated from (7.10), for n-channel devices in 140-nm technology with Vgs=0.5 V and 

Vds = 0.1V. The figure shows a good fitting with the measured data, when using the same parameters 

as used in Figures 7.9 and 7.10. 
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Figure 7.11 – Comparison between the measured (solid symbols) and calculated (dashed lines) Standard 

Deviation of the logarithm of the LFN for different channel lengths. Vgs = 0.5 V and Vds = 0.1V. 

 

Figure 7.12 shows a comparison between the current deviation extracted from the TCAD 

simulation (same as in Section 6.4) and the current deviation calculated using (7.1) with the 

simplification in (7.2), for 1-μm long devices in 140-nm technology. For the calculation, the same 

parameters used in the fittings of Figures 7.9 and 7.10 were used (VT,h = 0.54 V, VT,ch = 0.45 V, Cd = 

0.3Cox, Tox = 2.9 nm, Ntr/γ=1.1×109 cm−2eV−1). Moreover, Figure 7.13 shows the effect of the barrier 

lowering at the drain-side halo when Vds is high. This effect decreases the threshold voltage of the 

drain-side halo, which makes Bwi ≠ 1. For the fitting in Figure 7.13 Bwi is calculated using VT,h2 = 0.49 

V. 

Figure 7.12 – Weak inversion approximation of the 

current deviation for 1-μm long devices in 140-nm 

technology with Vgs = 0.4 V and Vds = 0.1 V. 

 

Figure 7.13 – Weak inversion approximation of the 

current deviation for 1-μm long devices in 140-nm 

technology with Vgs=0.4V and Vds=1.8V. 

 
 

In strong inversion the carrier density can be approximated as 
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Using (7.11) it become clear that in strong inversion A and B become dependent of the channel 

potential (Vcb =V1 and Vcb=V2) and A and B is given by: 
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 Figure 7.14 shows a comparison between the A calculated using a 1D Poisson solver and using 

the weak inversion simplifications in (7.6) and (7.7), and the strong inversion simplification in     

(7.12).   

Figure 7.14 – A calculated using the proposed simplifications and calculated solving the 1D Poisson equation 

with Vfb = −0.82 V, Na,ch = 4.5×1017 cm−2, Na,h = 8×1017 cm−2 and Tox = 3 nm. 

 

Using the proposed simplifications in (7.2), the problem in finding a compact model of (7.3) 

and (7.4) is reduced in applying the methodology used in Section 7.1 to the three different integrals 

of (7.3) and (7.4), and finding an analytical expression for A and B that works from strong to weak 

inversion. In the next Section, we show that the LF noise statistics of the halo implanted device can 

be simulated in compact simulators using three uniform doped transistors in series, where the noise 

statistics of each individual transistor can be calculated using the compact form in Section 7.1. 

 The Three Transistors Model  

Using the simplifications of the previous section, the halo-implanted transistor can be 

described as three transistors in series (Mh1, Mch and Mh2) as shown in Figure 7.15.    

Figure 7.15 – Schematic of the three transistors model. 
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 In the schematic of Figure 7.15 the noise of each individual transistor is added to the current 

at the terminals S and D, and the Expected value of the total LF noise in the Id current can be calculated 

as a sum of the Expected value of each transistor noise given by 
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 (7.14) 

where gs,ch and gs,h2 are the source transconductance of the Mch and Mh2 transistors respectively; gd,ch 

and gd,h1 are the drain transconductance of the Mch and Mh1 transistors respectively. The 

transconductances are calculated by 
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  (7.15) 

where Ninv,Sch and Ninv,Dch are, respectively, the inversion carrier density at the source and drain side 

of the transistor Mch; Ninv,Dh1 and Ninv,Sh2 are the inversion carrier density at the drain of the transistor 

Mh1 and at the source of transistor Mh2, respectively.  

 Using some algebra one can show that (7.15) and (7.3) are the same and can be rewritten as 
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Therefore, the Expected value of the noise introduced by the transistors representing the halo regions 

is 
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and the Expected value of the noise introduced by the transistor representing the region without halo 

implants is 
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 The Variance can also be calculated using the methodology above. Therefore, 
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Hence, the Variance of the noise introduced by the halo region and channel region are, respectively, 
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Using the transistors transconductances, A and B can be calculated as  
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Using the method proposed above, the noise statistics of halo-implanted devices can be 

implemented in compact simulators. To that end, the calculation of the statistics of each equivalent 

transistor must be done by implementing the compact calculation of the uniformly doped transistor, 

described in Section 7.1, and by implementing (7.16), (7.19), (7.22) and (7.23). The drawback of this 

method is that each transistor is now modeled as three transistors and the equivalent halo-region and 

channel-region transistors must be fully modeled, not only to give good IV and CV curves of the 

complete transistor but also to properly characterize the noise effect. 
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8 DISCUSSIONS ON THE LFN DISTRIBUTION 

In the previous chapters, we have shown that the proposed model can predict the noise 

statistics. On this chapter, we take a more detailed look in the LF noise distribution and analyze if the 

assumptions used to derive the model combined with Monte Carlo (MC) simulations can also predict 

the LFN distribution shape. 

 Large area devices  

In Section 3.2, we have shown that the RTN (or LFN) distribution can be well approximated 

by a lognormal distribution. However, in weak inversion and in saturation conditions it is expected 

that the behavior of current deviation as a function of the trap position in the channel (shown in 

Figures 6.16 and 6.17), with high impacts at small regions of the channel, can cause some deviations 

in the distribution of the noise. Although the distribution can still be roughly simplified as a 

lognormal, as depicted in Figures 8.1 and 8.2, where the Q-Q plot is shown for 10×10 μm2 devices in 

65-nm GO1 technology with Vgs = 1.2 V and Vgs = 0.4 V respectively. In the Q-Q plot of the logarithm 

of the noise, the straight line fit shows that the distribution is lognormal and the derivative of this line 

is given by the standard deviation of the logarithm of the noise (σ[ln(SId)]). 

In Chapter 6 we showed that using our proposed model to calculated K and then applying it 

in a lognormal distribution to calculate σ[ln(SId)] gives a good prediction of the measured σ[ln(SId)]. 

However, as shown in Figure 8.2 the lognormal simplification (dashed line), in some cases, can 

underestimate the probability of high LFN values.   

Figure 8.1 – Q-Q plot of ln(SId) for 10×10 μm2 

devices in 65-nm GO1 technology with Vgs = 1.2 V. 

Dashed lines represent the lognormal fit, symbols 

represent the measured data. 

 

 

Figure 8.2 – Q-Q plot of ln(SId) for 10×10 μm2 

devices in 65-nm GO1 technology with Vgs = 0.4 V. 

Dashed lines represent the lognormal fit, symbols 

represent the measured data. 

 

 

Vgs=1.2 V 

Vds=0.5 V 

 

Vgs=0.4 V 

Vds=0.5 V 
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In Figure 8.3 we normalized the measured data to make the left tail of the two distribution (in 

Figures 8.1 and 8.2) to have the same values. Using this technique, the figure shows the distortion of 

the original lognormal distribution, this distortion is given by the high impacts at the halo-implanted 

regions, which introduce high SId values in the right tail of the distribution.  

Figure 8.4 shows that the distribution can be described by the sum of two independent 

lognormal distributions. In the simplifications used in Sections 7.2 and 7.3, we separated the device 

channel in three different regions, two regions representing the halo implants and the other region 

representing the channel without halo implants. From this simplification, one can infer that the final 

distribution is given by the sum of the lognormal distribution representing the halo regions and the 

lognormal distribution representing the channel without halo implants.  

Figure 8.3 – Q-Q plot of the normalized ln(SId). 

The normalization is done to coincide the left tails 

of both distributions. 

 

Figure 8.4 – Distribution made by summing two 

independents lognormal distributions with σ1 = 

0.16, μ1 = −55.35, σ2 = 1.1 and μ2 = −57.35. 

 
Since, in weak inversion, the current deviation can be separated in three uniform regions, as 

is shown in Figure 7.12, the K value of the lognormal distribution of each region will only depend on 

the trap density of each region. Considering the trap density the same for all the regions, the standard 

deviation (σ[ln(SId)]) of the lognormal distribution introduced by each region is determined by the 

length of the region. 

Considering the area of the channel region without halo implants to be approximated by W×L 

= 10×10 μm2, we can use the value of σ1 = 0.16 to extract the trap density Ntr/γ = 0.5×109 cm−2eV−1, 

using (5.6) and (5.17). Using σ2 = 1.1, equation (5.17) and that the trap density is the same in the halo-

implanted region, we can extract the area of the halo-implanted region as W×L= 10×0.86 μm2. Hence, 

we can extract that each halo has an effective length of approximately 43 nm. 

Using (3.3) and (7.9) one has that 
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Therefore, using (7.24), we can extract that Awi = 0.17. 
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 To test the extracted quantities, above, we use the Monte Carlo simulation described in 

Section 3.6. For this Monte Carlo simulation, we assume the average trap impact as a function of its 

position along the channel (δId(xt)) as given by Figure 8.5, and the traps are uniformly distributed 

from source to drain. As in Section 3.6, the trap impacts (ΔId) are exponentially distributed. 

Differently from Section 3.6, the energy of the traps are uniformly distributed, Ntr/γ = 0.5×109 

cm−2eV−1 at any energy. In Figure 8.6, we compare the distribution of the Measured Data and the 

distribution of the Monte Carlo simulation of 400 devices. The figure shows that the Monte Carlo 

simulation (with the same assumptions used in the derivation of the proposed model) fits well the 

measured distribution. 

 Moreover, using a constant current deviation along the channel, depicted in Figure 8.7, the 

Monte Carlo simulation can also fit well the distribution of the LF noise when Vgs = 1.2 V and Vds = 

0.5 V, shown in Figure 8.8. Figure 8.8 also shows that, using a constant current deviation along the 

channel, the Monte Carlo simulation results in a distribution that closely resembles a lognormal 

distribution. Some small deviation in the right tail of the measured distribution is expected since at 

Vds = 0.5 V the channel is not completely uniform as simplified in Figure 8.7. 

Figure 8.5. – Current deviation as a function of the 

trap position used in the Monte Carlo simulation, 

for Vgs=0.4 V. 

 

 

Figure 8.6 – Comparison of the measured data 

distribution and the generated distribution using 

Monte Carlo simulations for, 10×10 μm2
 devices 

with Vgs = 0.4V. 

 
 

 

 

 

 

 

 

1/Awi = 5.9 

43 nm 

Vgs=0.4 V 

Vds=0.5 V 
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Figure 8.7 – Current deviation as a function of the 

trap position used in the Monte Carlo simulation, 

for Vgs = 1.2 V. 

 

 

Figure 8.8 – Comparison of the measured data 

distribution and the generated distribution using 

Monte Carlo simulations, for 10×10 μm2
 devices 

with Vgs = 0.4V. 

 
 

 In Figures 8.9 – 8.14, the δId(xt) extracted from the TCAD simulation for the 140-nm 

technology, described in Chapter 6, is used in Monte Carlo simulations. Then, we compare the 

resultant Monte Carlo distribution with the distribution of the measured LFN. In these Monte Carlo 

simulations we use Ntr/γ = 1.1×109 cm-2eV-1. In Figure 8.10, we compare the Monte Carlo distribution 

with the measured distribution of W×L=8×1 μm2 devices with Vgs=0.4 V and Vds=1.8 V, where the 

δId/Id used in the Monte Carlo simulation is depicted in Figure 8.9. In Figure 8.12 we compare the 

distributions of W×L=8×0.14 μm2 devices with Vgs=0.4 V and Vds=0.1 V, and δId/Id depicted in Figure 

8.11. In Figure 8.14 we compare the distributions of W×L=0.8×8 μm2 devices with Vgs=1.8 V and 

Vds=1.8 V, and δId/Id depicted in Figure 8.13. 

 In Figure 8.10, despite the high impacts at the halo-implanted regions the noise distribution 

does not have two distinguishable lognormal distributions as shown in Figure 8.4. This happens 

because usually the sum of two lognormal distributions can be well approximated by one lognormal 

distribution (Beaulieu & Xie, 2004) and the effect shown in Figure 8.4 is given by a relation among 

the values of σ1, σ2, μ1 and μ2. 

 

 

 

 

 

 

 

Vgs=1.2 V 

Vds=0.5 V 
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Figure 8.9 – Current deviation used in the Monte 

Carlo simulation for 8×1 μm2
 devices in 140-nm 

node with Vgs = 0.4 V and Vds = 1.8 V. 

 

 

Figure 8.10 – Comparison of the Q-Q plot of 

measured and simulated ln(SId/Id
2), for 8×1 μm2

 

devices in 140-nm node with Vgs = 0.4 V and Vds = 

1.8 V. 

 
 

Figure 8.11 – Current deviation used in the Monte 

Carlo simulation for 8×0.14 μm2 devices in 140-nm 

node with Vgs = 0.4 V and Vds = 0.1 V. 

 

 

Figure 8.12 – Comparison of the Q-Q plot of 

measured and simulated ln(SId/Id
2), for 8×0.14 μm2

 

devices in 140-nm node with Vgs = 0.4 V and Vds = 

0.1 V. 

 
 

Figure 8.13 – Current deviation used in the Monte 

Carlo simulation for 0.8×8 μm2 devices in 140-nm 

node with Vgs= 1.8 V and Vds=1.8 V. 

 

Figure 8.14 – Comparison of the Q-Q plot of 

measured and simulated ln(SId/Id
2), for 0.8×8 μm2

 

devices in 140-nm node with Vgs= 1.8 V and 

Vds=1.8 V. 
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WL=0.8×8μm2 

Vgs=0.4 V 
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 Very small area devices 

As shown in Figure 8.15 in very small area devices the distribution of the LFN from the Monte 

Carlo simulation is no longer lognormal. However, as shown in the figure the distributions of the 

measured data are still lognormal. This causes a deviation, on the left tail of the distribution, between 

the Monte Carlo and the measured data.  

Very small area devices have a very small number of traps per neper (or decade). For instance, 

n-channel devices in 140-nm technology with W×L=0.232×0.14 μm2, have WL×Ntr/γ = 0.49 traps per 

eV, which translate in a trap density per decade per eV of 1.12. Therefore, there is a high probability 

that some devices will have no traps with a time constant close to the analyzed frequency (f = 20 Hz 

in our analysis). This effect makes some devices to have a very low noise PSD, distorting the left tail 

of the distribution in the Monte Carlo simulation. However, such effect is not visible in the measured 

data.  

There are some possible explanations from this deviation: in the measured devices, there are 

more traps with low noise power than simulated in the Monte Carlo; or there is another noise source 

in addition to RTN, which is responsible to increase the values of the left tail of the distribution hence 

making the final distribution lognormal. Figure 8.15 shows that neither the system noise floor nor the 

device white noise can explain these higher values.  

Figure 8.15 – Q-Q plot of 43 measured devices with W×L=0.232×0.14 μm2 and the Q-Q plot of 100,000 

Monte Carlo simulations with a constant trap density in energy of Ntr/γ = 1.5×109 cm−2eV−1 and δĨd = 

2.8×10−13 cm2 uniform from source to drain. 

 

Despite the possibility of this effect be a consequence of additional noise sources we keep our 

efforts in explaining this deviation, in the Monte Carlo simulation, in the context of RTN, by 

considering that in the simulations depicted in Figure 8.15 the number of traps with very low noise 

power used was lower than in the actual device. There are two possible explanations for the measured 

device to have more traps with a lower noise power than simulated.  

1) There is a high number of traps with energies away from the Fermi level. Traps with 

energies away from the Fermi level have a very low power due to the β/(β+1)2 relation. 
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Due to this, as we show in Section 3.2, the Expected value, the Variance and K can be 

calculated using the trap density at the Fermi-level with a good precision. However, the 

very low values at the left tail of the distribution are sensitive to the trap density at energies 

away from the Fermi-level (in the Monte Carlo simulations of Figure 8.15 the trap 

densities are uniformly distributed in energy). 

2) There is a higher number of traps with small ΔId than expected by the exponential 

distribution. 

The first explanation is tested in the Monte Carlo simulation shown in Figure 8.16. The trap 

density in energy used is depicted in Figure 8.17. At the Fermi-level used in this simulation, the trap 

density is the same as the one used in the simulation of Figure 8.15. Hence, the Expected value, 

Variance and K are effectively the same from the original Monte Carlo. This can be verified in Figure 

8.16 where the values of the right tail are approximately the same for the two different Monte Carlo 

simulations and for the measured data.   

Figure 8.16 – Q-Q plot of the MC simulation using 

a varying trap density in energy. 

 

 

Figure 8.17 – Distribution of the trap density in 

energy and the arbitrary Fermi-level used for the 

MC simulation of Figure 8.16. 

 
 

 The second explanation can be interpreted in two different ways. In one interpretation, there 

is another independent set of traps with a lower δId. This set of traps can be originated from the edges 

of the device or in a region in the oxide away from the Si−SiO2 interface (closer to the oxide-

polysilicon interface). This interpretation is shown in Figure 8.18, in which another set of traps with 

4 times the number of traps than the original set and δId 10 times smaller is added to the Monte Carlo 

simulation. 

 In the other interpretation, the nature of the ΔId distribution is not exponential but 

approximated as a Weibull distribution with the shape parameter (kw) smaller than one (in the 

exponential distribution kw = 1). In the derivation of K for the uniformly inverted channel we have  
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where the factor 6 comes from the relation between the fourth raw moment and the square of the 

second raw moment of the ΔId distribution, E[ΔId
4]/ E[ΔId

2]2, which is equal to 6 for the Exponential 

distribution.  

The Expected value is directly proportional to the second raw moment of the ΔId distribution 

(E[ΔId
2]), which is equal to 2E[ΔId]

2 for the exponential distribution. Moreover, in the derivation of 

the model we considered that E[ΔId] = δId, where δId is the current deviation calculated with a point 

charge at the Si−SiO2 interface in a homogeneous channel (no random dopants effects). 

Using (4.43), if kw = 0.51, E[ΔId
4]/E[ΔId

2]2 ≈ 60 and E[ΔId
2] ≈ 20E[ΔId]

2. By consequence the 

trap density extracted, using the Weibull distribution and (7.25), is 10 times larger than the one 

extracted by considering ΔId exponentially distributed. Therefore, in the Expected value equation the 

trap density used will be 10 times larger, also E[ΔId
2] = 20E[ΔId]

2 and as consequence E[ΔId] must be 

equal to δId/10 for the model to give the same Expected values. The result of the Monte Carlo 

simulation using kw = 0.51 and E[ΔId] = δId/10 is shown in Figure 8.19.  

Although there is a nice fitting between the measured distribution and the distribution given 

by the Monte Carlo simulation using the Weibull distribution for ΔId, there is no experimental 

evidence in the literature showing that ΔId follows a Weibull distribution with kw < 1. This can be 

explained in part because the measurement resolution used in the literature can be possibly incapable 

of measuring such large number of traps with such small ΔId, given by the Weibull with kw < 1. 

Moreover, there is a lack of physical meaning in using E[ΔId] = δId/10. Therefore, this is a topic that 

needs further investigations, especially in extracting the values and distribution of ΔId from 

measurements or from atomistic simulators. 

Figure 8.18 – Resultant MC distribution after 

adding another set of traps with 4 times the trap 

density and δId 10 times smaller. 

 

Figure 8.19 – Monte Carlo distribution considering 

ΔId with a Weibull distribution with kw=0.51. 
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It is important to note that all possible solutions shown above, to give the measured lognormal 

shape to the MC simulation of small area devices, does not affect the LFN distributions of large area 

devices shown in the previous section. It, also, does not change the values calculated, using the 

proposed LFN model, for the Expected value, Variance and K, shown in previous chapters, for any 

device size. 
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9 MEASUREMENT & DATA ANALYSIS  

 Low Frequency Noise Characterization 

In this work, in order to calculate the Low Frequency Noise statistics, we measured large 

populations of devices from different technologies, for various devices geometries and different bias 

configuration. All LF noise and DC measurements were done with the EDGETM system from Cascade 

Microtech depicted in Figure 9.1. The fully integrated measurement system provides the combination 

of LFN and DC IV measurements. It also offers an automatic multi-die and multi-site wafer stepping 

(Hansen, 2009). This provides a great automation of the LFN characterization and allows the 

acquisition of such large diversity of data.  

Figure 9.1 – EDGE Low Frequency Noise system. 

 

(Tuinhout & Duijnhoven, 2013) 

 

 

Figure 9.2 shows the configuration of the LF noise measurement. The Rload resistor provides 

a load for the device such that a voltage divider is constructed from the drain and the bias supply. The 

center of this voltage divider is the point where the voltage is measured by the LNA. Hence, the data 

in the FFT represents the voltage-squared data taken at the drain of the device. This data is then 

converted to the equivalent noise input current of the device using  

 

2
2

2
, load ds

load ds

R r
eq R r

eq

i R
R

 


    (8.1) 

and rds is the drain to source resistance of the MOS transistor. 
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Figure 9.2 – Schematic of the LFN test setup. 

 

 Adapted from (Hansen, 2009) 

The measurement setup includes the possibility to set the gate and drain bias, and the source 

resistor (Rs) and the load resistors. The load resistor in conjunction with the parasitic capacitances of 

the devices and of the measurement equipment determines the system roll-off frequency. The roll-off 

frequency is the frequency at which the frequency response of the system dominates the behavior of 

the noise PSD and can be calculated as 

 
1

2
rolloffF

RC
  , (8.2) 

where R is the Thevenin equivalent of the resistive loads and C is the capacitance of the measuring 

system and cables. Hence, the load resistor can be selected to optimize the roll-off frequency. 

However, it must still provide enough impedance to drive properly the drain current. Figure 9.3 

demonstrates an example of the roll-off frequency found in our measured noise PSD data. Figure 9.4 

shows an example of the frequency response of the system dominating the PSD characteristics and 

generating non-reliable data. 

Figure 9.3 – Roll-off frequency for 10×10 μm2 n-

channel devices with Vgs = 0.9 V, Vds = 0.5 V, rds ≈ 

14 KΩ and Rload =10 KΩ. 

 

 

Figure 9.4 – Roll-off frequency smaller than 10 

Hz. For n-channel devices with W×L = 8×30 μm2, 

Vgs = 1.8 V, Vds=0.1 V, rds ≈ 13 KΩ and Rload = 10 

KΩ. 

 
 The load resistor also defines how much of the system noise floor is added to the drain voltage 

noise, through (8.1). Figure 9.5 shows the system noise floor added to the drain voltage noise of the 

device under test. The figure shows that for a frequency around 10 Hz the system noise is around -
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150 dB. Then, for the setup in Figure 9.4, the converted current noise of the system noise floor is 

approximately 3×10−23A2/Hz, which is very close to the measured noise. 

Figure 9.5 – Noise floor of the low frequency noise measurement system 

 

(Hansen, 2009) 

 

One problem in looking at noise with an FFT is that the obtained spectrum is inherently noisy. 

Due to this problem, the system allows to use averaging in the FFT data. Averaging sacrifices the 

information of low frequencies to decrease the noise of the FFT data. This method divides the time 

domain in many windows of the same size and the FFT result of each window is averaged out, 

resulting in a smoother frequency domain response. In our analysis, averaging was commonly set as 

25× for 1 Hz to 100 Hz, 250× for 100 Hz to 1 KHz and 2500× for higher bands.  

From Parseval’s theorem, the resulting variance in the FFT spectrum is given by SId
2 divided 

by the averaging number. As instance, for an averaging set as 25× the variance in the FFT spectrum 

is 2
25IdS . For devices with very small LFN variability, this inherent variance in the FFT spectrum 

can interfere in the proper extraction of the LFN variability. Therefore, after acquiring the data from 

the measurement system we also treat the FFT data in MATLAB, using a smoothing function. The 

smoothing function also helps to smooth out spikes and some interferences found in the spectrum. 

Figure 9.6 and Figure 9.7 show examples of the data before and after smoothing. 
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Figure 9.6 – Smoothing function applied to four 

1×0.06 μm2 n-channel device with Vgs=1.2 V, 

Vds=0.5 V. 

 

Figure 9.7 – Smoothing function applied to a 

10×10 μm2 n-channel device with Vgs=1.2 V, 

Vds=0.5 V. 

 
 

 Lognormal Estimators 

In this section of the work, we are going to analyze three different ways to estimate the 

expected value, the variance and the normalized variance (variance/mean2) of a lognormal 

distribution. The three different methods are characterized by its bias and variance. From these 

analyses, we are going to discuss which estimator is more convenient to use in the low frequency 

noise analysis. 

The three different methods analyzed are as follow: 

Method 1 – Sample Mean and Variance 

Method 1 consists of the simple use of the sample mean and sample variance of the original 

data. Therefore, the estimated population mean, the estimated population variance and the estimated 

population normalized variance are given by 
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 and 2 2

1 1/s m respectively. Where, xi is the original ith observation, n is the size of the 

observation. 

Method 2 – Maximum Likelihood Estimator 

 Method 2 is given by the Maximum Likelihood Estimator (MLE), which calculates the mean 

and variance of the normal distribution and then transforms back to the lognormal distribution using 

the distribution properties. Using MLE we have: 

  
2 2
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Method 3 – UMVU Estimator 

 The method 3 is given by the Uniformly Minimum Variance Unbiased Estimator (UMVUE). 

As its name already says, this estimator is unbiased and it has the minimum variance. Using UMVUE, 

we have 
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Evaluation of the Methods 

The three methods are compared with respect to its mean, median and variance for each 

parameter estimated (mean, variance and variance/mean2). The variance of the parameter estimated 

is compared by the 2th and 98th percentile calculation. The influence of the sample size on these 

estimators is determined by swiping from 15 to 150 observations. To compare the three methods, 

100,000 Monte Carlo simulations were done, for each sample size, using Matlab for generating 

random variables from the lognormal distribution described in Table 9.1. Then for each sample size 

the mean, median and the 2th and 98th percentiles were calculated from the 100,000 simulations.  

Table 9.1 shows the statistics of a lognormal distribution found in our LFN measurements for 

a small area device.  

Table 9.1 – Statistics of the lognormal distribution used in the Monte Carlo simulation. 

Mean Variance Mean of log  (µ) SD of log  (σ) Variance/Mean2 

1.04×10−8 2.66×10−15 -20 1.8 24.53 
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Figure 9.8 shows the estimation of the mean for the three methods. In the figure, we can see 

that Method 1 and Method 3 are unbiased estimators for the mean, as their means of estimated means 

are equal to the distribution’s mean from Table 9.1. Method 2 is a biased estimator for the mean; 

however, it is symmetrical around the distribution mean. Hence, the median of the estimations is 

unbiased. Figure 9.8 also shows that Method 3 gives a smaller variability in the estimations. 

Figure 9.8 – Estimation of the Expected value of a lognormal distribution using three different methods. 

 

Figure 9.9 shows the estimation of the variance for the three methods. In the figure, we can 

see that Method 1 and Method 3 are also unbiased estimators for the variance, as their means of 

estimated variance are equal to the distribution’s variance in Table 9.1. Again, Method 3 gives a 

smaller estimations’ variability and Method 2 is a biased estimator for the variance. However, it is 

symmetrical around the distribution’s variance and the median of the estimations is unbiased. This 

symmetry is an important propriety for estimators of lognormal distributions as it gives the same 

probability to find lower and higher values than the distribution’s parameter. 

Figure 9.9 – Estimation of the Variance of a lognormal distribution using three different methods. 
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Figure 9.10 shows the estimation of the variance/mean2 for the three methods. In the figure, 

we can see that all three methods are biased estimators for the normalized variance. However, Method 

2 is symmetrical around the distribution’s normalized variance and the median of the estimations is 

unbiased.  

Because of the symmetry property of Method 2, in this work we use this method to evaluate 

the E[SId], Var[SId] and K. Section 9.3 shows how the bootstrap analysis behaves using the three 

methods and the reasons for choosing Method 2 may become more evident. 

Figure 9.10 – Estimation of the Variance/mean2 of a lognormal distribution using three different methods. 

 

 

 Bootstrapping 

Bootstrapping is a resampling method efficient for calculating the uncertainty and the 

confidence interval of an estimation. The method randomly samples the observations with repetition, 

keeping the original size of observations of the original population, repeating the process for 

thousands of times. Hence, for an original population of N observation the bootstrap creates M new 

populations of N observations and values of the original observations may appear multiples times in 

the new resampled population. For every population of N observations new means, variances and 

normalized variances are calculated. Therefore, from the M quantities of mean, variance and 

normalized variance calculated, one can calculate the uncertainties from the mean, variance and 

normalized variance estimations. 

In order to test the behavior of the three methods, described in Section 9.2, in the bootstrapping 

analysis, 20 populations of 50 observations (n = 50) were taken from the true lognormal distribution 

described in Table 9.1. For all the 20 populations the mean, variance and variance/mean2 was 

calculated using the three methods and for all the 20 populations a bootstrap analysis with 100000 
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draws was done to determine the uncertainty of the estimations. The uncertainty was calculated using 

2th and 98th percentiles and the results can be seen in Figure 9.11, Figure 9.12 and in Figure 9.13. 

From the figures bellow we can see that despites Method 2 has a larger variability than Method 

3 and be a biased estimator (Section 9.2) the symmetry propriety makes Method 2 a better estimator 

and the calculated uncertainty bars more often englobe the true distribution value, differently than 

what is seen for Method 1 and 3.  

Figure 9.11 – Bootstrapping analysis of 50 observations using three different estimation methods for the 

expected value. 

 

 

Figure 9.12 – Bootstrapping analysis of 50 observations using three different estimation methods for the 

variance. 
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Figure 9.13 – Bootstrapping analysis of 50 observations using three different estimation methods for 

variance/mean2. 

 

 

 

           Method 1             Method 2             Method 3 

V
ar

ia
n

ce
/m

ea
n

2
 



120 

 

10  CONCLUSION 

In this work, we proposed a new physics-based RTN model to describe the statistics of the 

low frequency noise in MOSFETs. Using the model, we explained the behavior of the LF noise 

statistics as a function of device biases, geometry and physical parameters. The applicability of the 

model is demonstrated through numerous results for n-channel and p-channel devices from different 

mixed-signal CMOS technology nodes. The model is well suited for both large and small area 

devices, and for both 1/f like and Lorentzian dominated spectra. Using the lognormal nature of noise 

distribution, we also explained why variability of RTN does not follow a 1/√area dependency, as it is 

still commonly assumed in literature.  

From our measurements, we show that the noise variability (σ[ln(SId)]) of long channel 

devices is a strong function of drain and gate biases, while the variability of short channel devices is 

weakly dependent on bias. Using the proposed model, we explain these observations. We, also, 

analyze and explain, using the proposed model, the effect of the halo-implanted regions in the LF 

noise statistics, which can considerably increase the noise variability of long channel devices under 

weak inversion operation. 

Furthermore, we showed that the statistics of the LF noise of n-channel and p-channel devices 

are different. We explained this difference using the proposed model and considering that the trap 

density of p-channel devices is a varying function of the quasi-Fermi level, while the trap density of 

n-channel devices can be considered constant in energy. 

Moreover, we introduced the normalized parameter K that allows us to compare the noise 

variability among different device technologies, geometries and biases. Under given bias condition, 

we demonstrated that this parameter is technology specific and can be used to compare the dielectric 

quality of different technologies. 

Finally, we showed that the proposed model can be transformed into a compact model, suited for 

circuit simulators and we analyzed some of the possibilities to implement it.  
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