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ABSTRACT 

The present work is concerned with the theory of optical 

and magnetic properties of deep centers in various III-V 

semiconductors. 2+ The localized impurity levels of GaAs:Cr , 

3+ 2+ I p R 2+ 2+ d 2+ GaAs:Cr f InP:Cr f n :. e , GaAs:Fe , an GaP:Fe 

materiais are analyzed in the framework of a molecular clus-

ter, taking into account the crystalline fields, Jahn-Teller 

i v 

distortion, and spin-orbit and spin-spin interac tions. Cluster 

wave functionsf compatible with tetrahedral and tetragonal 

symmetriesf are constructed, using the best available self-

consistent atomic wave functions for the impurity ion and the 

nearest-neighbors atoms. The multi-center integrals encoun-

tered in our calculations are evaluated using an . available 

expression for the expansion of Slater orbitals from one center 

onto another. 

A generalized treatment for electron-electron interactions 

of the impurity centers is presented f and the matrices for the 

d 2 f d 3 , d 4 f and d 5 configurations are explicitly listed for 

the irreducible representations of the cubic crystal field. 

The general matrices are used to calculate the energy split-

. 3+ 2+ tlngs of GaAs:Cr and GaAs:Cr Our calculated value of 

the energy of the 5 E- 5T 
2 

transi tion for GaAs: cr2+ is O. 65 eV f 

in good agreement with the experimental value, 0.68 eV. A 

comoarison with previous theoretical calculations for these 

systems is also made. Calculations of the spin-Hamiltonian 

- 2+ 2+ 
parameters are performed for GaAs:Cr and InP:Cr . We ob-

p 2+ ta in f for In. : Cr , g li 
-1 = 1 • 9 8 1 f g .L = 2 • O 1 O , D = -O • 9 7 9 em , 
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-1 
and a = 0.089 em f in good agreement with the experimental 

values of g /l 

-1 0.089 em 

-1 = 1. 9 81 f g _L = 2. O 1 O f D = -O. 9 6 7 em f and a = 
2+ 

For GaAs:Cr , our calculations result in gl\ 

v 

= 
-1 1.975, g~ = 1.995f and D = -1.865 c~ f co~pared to the values 

g I\ = l. 9 7 4, g 1. = 1. 9 9 7, and O = -1. 8 6 O em - 1 determined 

experimentally . Th e calculated value of a -1 = 0.0043 em , 

the other hand, is an arder of magnitude smaller than the 

on 

experimental value of a · = 0.031. An estimate of the tetragonal 

distortion on GaAs:cr 2+ is presented . ~he intensity ratio of 

two electric-dipole transitions in this system is predicted, 

using two contradictory sets of experimental values for the 

Jahn-Teller energies . The calculated ratios are found to be 

very different (1 35 .1 and 7.45) for the two sets of data, 

i~plying that an experimental determination of the transition 

intens ities could indicate which assignment is correct. Results 

are also presented for the case f 2+ . d o Fe 1n GaAsf GaP, an InP 

systemsf for which we calculate the transition energies between 

the states 5T2 and 5E, taking into account spin-orbit and spin­

spin interactions . 
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I . INTRODUCTION 

.. 
There 1s increasing interest in the III-V semiconductor 

materials containing transition-metal impurities , because of 

their important applications, such as in photoconductors , 

microwave detectors, and other optoelectronic devices. Chromium 

and iron doping of III-V semiconductors , such as GaAs, InP, 
I ,... 

and Ga~ is known to produce deep acceptor levels in the for-

bidden band-gap of these systems , which compensate for shallow 

donor impuritie s and produce s emi-insulating materials. 

Despite the great technological importance of Fe- and Cr- doped 

III - V compounds, little is known about the microscopic 

physical characteristics, such as the electronic structure of 

Fe and Cr impurities in GaAs, InP, and GaP . · Although much 

progress has been made in studies of Cr- and Fe-dooed III - V 

compounds, due to recent experimental work, there have been 

very few theoretical attemots to explain the experimental 

observations. 

The scarc ity of theoretical investigations on deep centers 

in III-V compounds has prompted us to make a systematic study 

of cr2+- and Fe 2+- doped GaAs, InP, and GaP. Th e theory of the 

electronic structure of the transition-metal ion impurities 

has not been well developed, because of the complexity of these 
/ 

' ., systems. The electronic structure o f the magnetic ion is 

" no longer like that o f a free ion, but is changed, due to in-

teractions with the solid in which it is present as an impurity . 

Also, many additiona l erectrons present in the solid interact 

with the magnetic ion , and among themselves, via various 
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interactions, such as electron-electron, spin-orbit, and spin-

spin interactions. These interactions are complicated to deal 

with. It is obvious that a magnetic ion inte racting with the 

solid constitutes a multi-particle system. Such a multi-par-

ticle problem cannot be solved exactly; therefore one has to 

r esort to suitable approximations. As our interest lies in 

the local ized impurity centers, we adopt a cluster approach, 

taking into account the crystal fields present in the solid, 

along with perturbations due to Jahn-Teller distortions and 

s pin-orbit and spin-spin interactions. 

h d 2+ d 2+ . . . For t e GaAs an GaP systems, Fe an Cr lmpurltles are 

substitutional on the Ga site , and for InP these impurities 

are substitutional on the In site. As the GaAs, GaP, and InP 

s y stems h ave a z inc-blende structure, the local s2~etry 

around the transition-metal ions is tetrahedral. We have built 

up symmetry-adopted electronic wave functions for tetrahedral 

symmetry , and also for t etragonal symmetry, which is useful in 

c ase of strong Jahn-Teller distortion in these materials. 

A generalized treatment for the d-electron interaction ma-

tric es is presented. 

d 5 configurations are explicitly listed for the irreducible 

represen t at ions of the cubic crystal field. Th e method 

f bt . . d6 10 or o a lnlng to d and the general formula relating 

n 10-n . d to d are glven. Th e interaction 

ma trices have been evaluate d for GaAs:Cr 2+ and GaAs:cr 3+, 

and compared with available experimental and theoretical re-

I ~ 
sults. The importance OÍ the general matrix elements for 

d es igna ting correctly the energy leve ls, d educing the values 

of Coulomb and exchange integrals, and removing accidental 

degen e rac y , is pointed out. Relative intensity calculations 
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for the Jahn-Teller split levels of GaAs:cr 2+ are presented, 

and an estimate of the Jahn-Teller tetragonal distortion is 

also made for this system . The explicit expressions for the 

spin - Hamiltonian parameters (g 11 , gL, D, anda) for systems 

with local tetragonal sy~~etry are presented , and their values 

2+ 2+ for GaAs :Cr and InP:Cr are calculated . The derived ex-

pressions for g 11 , g~, and D take into account the Zeeman and 

spin-orbit interactions· to the second orde r and spin-spin 

interaction to the first order in the ground state, including 

overlap and charge transfer. The expression for the cubic 

field oarameter a includes fourth-order effects of the spin-

orbit and second-orde r effects of the spin-spin interaction. 

The cubic crystal field and Jahn-Teller energy splittings 

are included in the present treatment. The transition energies 

between levels split by spin-orbit interaction to the second 

arder , and spin-spin interact ion in the first arder, are ob-

. d f 2+ G P ~ 2+ d 2+ . l d' ta1ne or GaAs : Fe , a :_ e , an InP:Fe , 1nc u 1ng over-

lap and charge transfer covalency effects. We h ave evaluated 

exactly the multi-center integrals, which appear in our expres-

sions for spin-orbit coupling constants, dipole transition 

moments, and in the cluster wave functions , using the available 

expression for the expansion of a function from one center onto 

the othe r. In our calculations of the several physical para-

meters mentioned above , we have used the best available self-

consistent atomic wave functions for the transition-metal ions 

and ligands. 

In Appendix I, we give details of Jahn-Teller interactions 

in tetrahedra l configurations. In Appendix II, we present the 
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explicit form of the coefficients encountered in the expression 

for the expansion of Slater-type orbitals from one center onto 

another. In Chapter II we oresent a review of the existing 

experimental and theo~etical results for III-V compounds doped 

with transition-metal ions. Chapter III contains the relevant 

theory needed to understand the systems under study. We 

construct wave functions of a cluster containing the central 

magnetic ion and the nearest neighbors, for both tetrahedral 

and tetragonal symmetries . The details of t he generalized 

treatment for d-electron interaction matrices are presented 

in Section III . A. In Section III . B. the spin-orbit and spin-

spin interactions are handled . In Subsection III . B. l the 

exoressions for the spin- Hamiltonian ~arameters g 11 , g~ , D, 

2+ 2+ and a pertinent to GaAs : Cr and InP : Cr are presented . In 

Subsection III . B.2 we present the energy splittings due to 

h . b' d . ' . . ' th G A F 2+ t e spln-or lt an spln-spln lnteractlons ln e a s : e , 

2+ 2+ . 
GaP : Fe , and InP : Fe mater1als . The expressions for the 

electric dipole transition moments , which are u seful for the 

ca l culation of intensity of transitions between the Jahn­

Teller split levels 5T2 and 5E of cr 2+ in III - V materials , 

have been developed in Section III . C. Chanter IV contai ns our 

calculations of the various physical quantities presented i n 

Chapter III . I n particular , i t contains the energy calcula-

. 2+ 3+ t1ons of GaAs : Cr and GaAs : Cr u sing the generalized d-electron 

interaction matrices , in Section IV . A, where our results are 

also compared with the previous theoretical calculations and 

available experimental results ; an estimate of t he Jahn- Tel l er 

d . . f c 2+ 1stort1on or GaAs : r i n Section IV . B; calculation o f 

, .•' 
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overlap integrals 1n Sec tion IV .C; calculation of s pin-sp in 

and spin-orbit constants in Section IV.D; spin -Hamiltonian 

2+ 2+ parameters g 1\ , g .L' D. and ~ , for GaAs: Cr and InP: Cr in 

Section IV.E and comparisons with experimental results; pre­

diction of relative intensities for GaAs : Cr 2+ in Section IV.F; 

2+ soin-orbit and spin- spin splitting energies of InP:Fe , 

2+ 2+ 
GaP :Fe ' and GaAs : Fe in Section IV . G. Chapter V conta i ns 

the discussion and conclusion of our work , an a n alys is of our 

results with the experimental data and the previou s theoretical 

calculations ; suggestions for future irnp rovernents are also 

indicated . 
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I I. REVIEW OF THE EXISTING EXPERIMENTAL 

AND THEORETICAL RESULTS 

The III-V semiconductor mater i als containing transition-

metal impurities h ave been the subject of a considerable number 

of experimental and theoretical investigations. Optical and 

electron paramagnetic resonance (EPR) experiments have been 

extensively done with these semiconductor materials . The ex-

perimental results for chromium-doped GaAs , using photolumi-

l-8 b t. 9 d h t d t. . 10 - 12 h . nescence f a sorp lOn f an p o ocon uc lVlty tec nlquesf 

have shown peaks near 0.57 eV f 0.7 eV, 0.84 eV f and 0 . 9 eV. 

Thes~ lines have not been properly identified for a variety of 

reasonsf such as the possible different charge states of Cr 

giving rise to mixed spectra f thereby making the analysis 

difficu1t . 

Recently , White 13 has proposed a model for the 0.84 eV 

3+ peak in GaAs:Cr as comprising a transition from a Cr donor 

. 2+ . . d d . palr to a Cr lOnlz e onor palr . The Zeeman studies by Killoran 

14 et al. seem to support White ' s model in GaAs:Cr, but still, 

the origin of the peak has not been clear . In factf it is 

generally believed that the 0 . 84 eV peak corresponds to a tran­

sition in cr2+ involving the ground state and the first excited 

statef with the spin S=2 as the ground state. 

As mentioned above f tra nsitions between dif ferent charge 

states of the impurity are possible , particularlyfin photoinduced 

. . 15-20 
transltlons . The origin of the peaks at 0 . 5 7 eV , 0 .7 eV , 

and 0.9 eV is debatablef since they may correspond to transi -
-., 

. 2+ . 3+ 
tions related to lntracenter Cr or Cr f or to transitions 
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from the bands of the solid to Cr impurity l eve ls. Electron 

P t . R . t 15 - 18 . d . th aramagne lC esonance exper1men s 1n 1cate at a strong 

- . 2+ 3+ J ahn - Teller effect lS present for the Cr and Cr impurity 

2+ states in GaAs. For GaAs :Cr , the impurity states undergo a 

t J h ll d . . 1 8 h . h h s rong a n - Te e r 1stort1on , c ang1ng t e symmetry at t e 

cr
2+ site from t etrahedral (Td ) to tetragonal ( D

2
d ), similar 

to the cr
2
+-doped II - VI compounds studied by Vallin et al . 21 - 23 , 

as depicted in Fig . II .1. The free-ion term e nergy 
5

D o f d
4 

is spli t 

5 by the tetrahedral crystal field into a ground state T2 and 

a n . d 5 exc1te state E . These l eve ls split further , because of 

the Jahn-Teller distortion : 5 the ground state T2 (in Td sym-

metry ) splits . t 5 d5 ( ' 1n o B
2 

an E 1n D2d s ymmetry ) , whereas t h e 

excited state 5 ( . ) E 1n Td symmetry l . . 5 d 5 (' sp 1 ts 1nto A1 an B
1 

1n 

D
2

d symmetry ). The magnitude of the Jahn-Teller splitting energy 

2+ 18 
for GaAs:Cr has been deduced by Krebs and Stauss by analyz-

ing stress measurements , by Tokumoto and Ishiguro 24 by u1trasonic 

25 
attenuation , and by Hennel et al . by optical absorption . Owing 

to the complexity of the s ystem, the results from various experi ­

me nts vary somewhat . Krebs and Stauss 18 h ave d educed a static 

Jahn-Teller distortion 

24 
guro h ave obtained 

-1 
energy EJT = 1500 em ; Tokumoto and Ishi-

EJT = 399 cm- 1 ; Hennel et a1 .
25 

have 

-1 
found that 360 em < EJT < 660 cm- 1 

3+ In GaAs : Cr there are some indicat i ons that an orthorhombic 

15 16 Jahn-Tell e r d i stortion may be present ' (s ee Fig. II.2). 

The lowe st-lying cr 3+ state under the cubic (Td) crystal field 

is 4T
1

. Th e ground state, 4T
1

, further splits i nto three leve ls, 

under an orthorhombic Jahn- Te 11er distortion . 
15 

Krebs and Stauss 

h ave interpreted the EPR spectrum by means o f the spin- Hami 1tonian 
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5E 
sal 

--------- 5AI À 

I A e 
tl A 

5E 

~ (f,77 ) 

tE1 c E3 
5g 2 

i-2 
y ' ~ 

TETRAHEDRAL TETR.l\GONAL 

FIC: . II . l 

Splitting of the cr2+ ( 3d 4 ) free - ion ground state 5D u nder com­

bined action of the tetrahedral crystal field and the t etragonal 

J ahn-Te ller di stortion . Th e one - electron orbitals ç , ~ ' n , 
e, and E in th e cubic fi e ld representation h ave been used to 

show the orbitals appropriate to the energy l evels . The symmetry 

d e signations for each l evel are also shown. 
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Splitting of the lowest states of cr3+ ( 3d 3 ) unde r the ac t ion 
. 2 2 2 

of tetrahedral a.nd orthorhorobic [A.f +B ( ,Q - J! )] crystal fie l ds-
Z X y 
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parameters gx , gy , g
2

, and zero- field splitting parameters D 

and E , estimating the Jahn- Teller energy to be approximately 

186 7 Cm- 1 . M 1 b d 16 ore recent y , Kre s an Stauss reported the 

10 

-1 
value of EJT = 2800 em , by ana1yzing stress measurements on 

3+ GaAs : Cr . 

For GaP : Cr, EPR and infrared 1uminescence experiments have 

26 been reported by Kaufman and Kosche1 . These authors have 

observed a 1 . 03 eV sharp line in photo1uminescence measure -

ments and an isotropi c electron spin resonance signal with g = 

1 . 999 in EPR measurements . 

Experimental s tudies on iron- doped GaAs have been carried 

2+ 3+ 
out for both Fe and Fe f using Acoustic Paramagneti c Reson -

27 28 . ance ' and other technlques , such as the Hal1 effect , optical 

. 28 - 30 absorption , and photolumlnescence In the photoluminescence 

28 29 and optical absorption spectra1 ' 0 . 32 eV and 0 . 5 eV peaks 

were observed for GaAs : Fe f giving an indication of intracenter 

transitions connected with the Fe impurity. Optica1 absorption 

experiments performed by Ippolitova et a1 . 30 in the r ange 0 . 37- 0 . 5 

eV have been attributed to i ntracenter transitions of Fe 2+ in 

GaAs : Fe . h d . 1 l 31 . 2+ T e EPR measurements an optlca resu ts ln GaAs : Fe 

and photoluminescence results 32 in GaP : Fe have been analyzed 

in t erms of an externally introduced factor k , which has been 

termed the "covalency reduction factor ". 

Concerning i ron- and chromium- doped InP , only a few experi-

33 ments have been performed . The EPR resu 1ts show a cubic sym-

3+ metry spectrum for InP : P~ f and a tetragonal Jahn- Teller distor -

. f c 2+ tlon or InP : r . As for the optical data for iron- doped InP , 

34 by Koschel et al . , the luminescence peaks near 0 . 35 eV were 
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attributed to the intracenter Fe 2+ transition, corresponding 

5 to transitions from the excited-state triplet ( T
2

) to the doub-

let (5
E) ground state (see Fig. II.3). The ground state of 

Fe
2+ in InP is split by the second-order effect of the spin-

orbit interaction. To analyze the experimental photolumines-

cense lines, Koschel et a1. 34 introduced two external para-

meters into th e expr ess ion that relates the split energy levels 

(see Fig. II.3) to the spin-orbit and spin-spin interactions 

without covalency and Jahn-Teller distortions 35 - 38 . One of 

34 the parameters introduced by Kosch e l et al . is a multiplica-

tion factor, q, which reduces the energy-level spacings and 

accounts for a possible Jahn-Teller distortion. The other fac-

tor is k, which has been introduce d to reduce the spin-orbit 

coupling associated with the impurity ions. The . reduction fac-

tors, q and k , have b een us P-d for interpre ting the experimental 

spe ctra , and do not give a clear indication of their physical 

2+ 
origin in InP:Fe and other related III-V compounds. 

All the magnetic and optical experiments on GaAs:Cr, GaAs:Fe, 

InP:Cr, InP:Fe, and GaP :Fe clearly show that the impurity cen-

ters are strongly covalent in nature . It is this covalency 

effect which i s roughly accounted for, by emp loyment of the 

. . 31 32 34 
reduction factor k , by varlous authors . ' ' Although this 

/ reduction factor is adjusted to explain the experimental data, 

it is not obvious how it appears as a simple multiplication 

factor. 

As for the theory o( deep- center impurity levels in semi-

conductors, not much progress h as been made . The l ack of know-

ledge of the correct wave functions for the transition-metal 
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ions ln a complex or a solid has been a s t umbling b1ock to real 

progress in the theoret i cal understanding of the experimental 

observations . 

. 39 40 41 Hemstreet and D1mmock ' and Sharma , Viccaro , and Sundaram 

2+ 3+ . have calculated crystal-field term states for Cr and Cr 1n 

GaAs , using an approach that is a modif i cation of the standard 

electron- electron interaction matrix elements , by introducing 

parameters (Ree ' Ret ' and Rtt ) accounting for the changes in the 

sing l e - particle electronic states in t he system . Th e parameter s 

were deduced from the Xa scattered wave cluster calculations 

f d b l 39 , 42 
per orme y Hemstreet et ~- , wh i ch could not alone account 

for t he electronic structure of Cr i n GaAs . Recently , Sharma a n d 

Sundaram43 have derived the explicit expressions fo r the genera l­

i zed electron- electron interactions in a cubic field for d n o rbi -

t al s , in the process of investigating the electronic structures of 

co
2+ and Mn

2+ in solids , and have been checked by Sharma , Viccaro , 

41 and Sundaram . Ref e rence [ 4 1] also g i ves the explicit expres -

sions for electron- electron interact i on rnatrices for electronic 

wave functions wh i ch are not o f " pure" d character . ~'Ji th t h e 

pure d electron orbitals , such matrix elements had previously 

44 been derived by Tanabe and Sugano . Sharma , Viccaro , and 

41 45 Sundaram ' h ave a l so presented e l ectronic energy levels ari s-

/ ing from the electron- e l ectron interactions in a cubic field 

in GaAs : cr2+ and GaAs:cr 3+ wh i ch also correct t he previous results 

. 39 40 obt ained by Hernstreet and D1mmock ' . This method , i ncorpora -

ting electron- electron ipteractions , has correctly predicted 

t he ground state of cr 2+ i n GaAs , and obtained 0 . 6 eV as the 

energy separation between the states 5T2 and 5E of cr
2

+ , compared 
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to the corresponding experimental value of 0.68 eV for the cubic 

field splitting. The effects of the Jahn-Teller distortion, 

howeve r, were not conside red in these calculations. 

41,43 
The general electron- electron interaction matrix elements 

have been shown to be useful for making the refined calculations 

of the trans ition-metal ions in solids , in arder to obtain 

correct group- theoretical assignments to the observed energy 

levels of the impurity in solids . The refined treatment of the 

electron- electron interac tion also predicts the values o f the 

Coulomb and exchange interactions, which otherwise cannot be ob-

tained from any othe r source. Also , the accidental degenera-

cy inherent in the B, C, 6 theory 44 ' 46 (where B and C are known 

as " Rac a h ' s parameters " and 6 is the crystal field splitting 

energy ) is automatically removed by this general -treatment. 

Th e charge statesof Mn in the photoluminescence spectra 

of GaAs : Mn werestudied by Srivastava , Sundaram , and Sharma 47 . 

These authors have performed multiple-scattered wave Xa calcu-

2+ 
lations on pure GaAs, n e utral Mn contained in GaAs, and GaAs:Mn , 

and have found that Mn
2+ is more strongly bound in GaAs than 

is neutral Mn . 2+ 
The binding energy of Mn as calculated in 

reference [47] turned out to be 0.106 ev , which agrees with 

. 48 49 
the photolumlnes cence ' value 0.113 eV, also in conformation 

with the EPR observations50 . 

Th e i mportance of covalency to the properties of transition­

metal ions has been stressed by ~arious authors . 51 - 5 3 Th e theo-

~etical calculations on impurity systems are extremely difficult, 

owing to the complic a ted n a ture of the system . Th e wave func-

tions of such systems are not exactly known , and only the 
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approximate me thods can be employed . 

Only recently , attempts have been made , by the present author 

54 - 58 and co - workers , to understand the overlap and charge -

transfer covalency mechanisms for the transition-metal ions in 

the III-V compounds. Since these ions forro deep center levels 

in the III-V semiconductors , a cluster approach to describing 

impurity state s seems to be very appropriate . Deep center energy 

levels can be explained by using electronic wave functions in-

volving the impurity and the surrounding atoms subjected to 

Jahn- Teller distortion , if present . In addition , owing to the 

inc lusion of the neighboring i ons along with the crystal fields , 

the method takes into account the influence of the surroundings 

not only on the optical levels but alsd on t he magnetic splittings 

of the impurity , if spin- spin and spin - orbit interactions are 

conside red . In other words , the important spin-Hamiltonian para -

meters g , g , g , zero field splitting parameter D, c ubic 
X y Z 

field parameter a , etc ., can be obtained by this treatment . 

Recently , the parameters g 11 , g~, D f anda associated 

2+-
with GaAs : Cr have been investigated theoretically by 

. s d d h Sd , SS . th l t d l V1ccaro , un aram , an s arma , us1ng e c us er mo e , 

where the symmetry adopted wave functions were constructed , in-

corporating Jahn- Te ller distortions . The calculations of the 

relat i ve optical intensities have also been reported by Viccaro 

et a1 . 56 in GaAs : cr2+ , considering the Jahn- Teller effect . 

2+ 2+ For InP : Cr f a . similar cluster method , used for GaAs : Cr f 

has also been reported hy Vi ccaro , Sundaram , and Sharma , 
5 7 

considering the cha rge transfer c ovalency eff e cts. Also , the 

34 2+ . observed optical spectra for InP:Fe have been stud1ed with 

this approach , with symmetry adopted wave functions , by these 
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The cluster approach, similar to the one used by Viccaro, 

54 55 57 . Sundaram, and Sharma ' ' ln the study of the spin-Hamil-

2+ 2+ tonian parameters g 
11 

, g ..L, D, and. a o f GaAs: C r and InP: Cr , 

was adopted previously by Vallin . 23 2+ and Watklns for Cr -doped 

II-VI compounds. However, one finds significant differences 

between the two treatments. For example , the s orbitals of 

the ligands have not been considered by Vallin and Watkins, 

and they h ave adopted an approximate treatment by taking a 

single parameter for estimating the orbital admixtures in-

volved in the wave functions . Also, they have taken only the 

"local" and "distant " contributions into account; the "nonlocal" 

terms should be included , as is clear from the formalism de-

53 veloped by Sharma . As far as the spin-orbit coupling con-

stants are concerned , for est imating the spin-Hamiltonian parameters, 

one is required to use the first-principles method given by 

- 52 59 
Sharma, Das, and Orbach , and Sharma . Also, for the overlap 

matrix eleme nts one may use a general analytical expression 

derived by Sharma60 , for the overlap integra ls between two 

Slater orbitals. 

In the following chapters, we present details of the theory 

. 2+ 3+ 2+ 2+ approprlate to GaAs:Cr f GaAs:Cr , GaAs:Fe , InP:Cr f 

2+ 2+ InP:Fe , and GaP:Fe The theory for these systems has not 

been available before . In chapter III , we present the theo-

r etical details of symmetry, crystal fields, spin-orbit and 

spin-spin interactions, the spin-Hamiltonian, the derivation of 

spin-Hamiltonian parameters, and Jahn-Teller distortion using 

the cluster approach. In chapter IV, the calculations and 
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comparisons with experimental results are presented. Chapter 

V contains the discussion and conclusion , and suggestions are 

made for further improvements. 
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In this chapter, we present a theory which we have developed 

to describe the optical and magnetic properties of transition-

metal-doped III-V compounds. We are interested in obtaining the 

energy levels and wave functions of magnetic impurities in semi-

conductors, and in deriving expressions for the spin-Hamiltonian 

parameters {g 11 , gL, D, anda) and electric dipole moments for 

intensity calculations . . 

As mentioned previously, the theory of the electronic struc-

ture of the transition-metal impurities in semiconductors has 

not been well developed, because of the complex nature of the 

problem. In these complex systems, the e lectronic environment 

of the magnetic ion is no longer like that of free ions, but is 

changed because of interactions with the solid in which the im-

purity ion is present . Many additional electrons are present in 

the solid, and they interact via various interactions, such as 

electron-electron interaction and spin-orbit and spin-spin inter-

actions . The abovementioned interactions are complicated. Fur-

thermore, the electrons interact with the nuclei present in the 

solid. It is obvious that such a multi-particle problem cannot 

be solved exactly, and therefore one has to resort to some suit-

able procedure. d . 161 d There are methods, such as pseu o-potent1a an 

62 Slater's self-consistent scattered wave X method , that concern 
a 

themselves with treating the multi-particle systems. The pseudo-

potential approximation uses a single particle potential deter-

mined by fitting with suitable data, usually optical exc itations. 

Thus, in arder to use this method, one is first required to 

determine pseudo-potentials. For magnetic ions in GaAs, GaP, 

and InP, the correct pseudo-potentials are not yet known. 
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The other approximate method , namely , the self - consistent scat­

tered wave x- method , requires t he assumption o f spherica l 
()'. 

average potential and a parameter known as the "a - parameter ". 

Although many authors have given the a - parameters for d i fferent 

atoms and ions , it is usually adjusted to get good agreement 

with exper i ment . Also, for the spherical average potential , 

it is necessary to divide the relevant space i nto different 

spherical regions , wh i ch makes the method somewhat approximate 

and therefore not suitable for treating magnetic i ons i n semi -

conductors . Both the methods (pseudo- potential and Xa ) are 

not expected to explain energy S?littings of magnetic ions 

with the accuracy one desires , because one i s involved i n ex-

plaining small magnetic spl i ttings as well as large splittings 

observed i n optical transiti ons . Also , becau se of the interac-

tions of the electrons on the magnetic impurity with the external 

environment in the solid , distortions of the immediate surround-

ings may occur f resulting in what i s known a s the " Jahn- Teller 

distortion". If one also has to include the Jahn- Te l ler distor -

tions , one is further requ i red to modify the theoretica l methods . 

For the reasons discussed above , the pseudo- potential and Xa 

methods do not appear to be good approxima t ions for app lication 

to transition- metal i ons in semiconductors . 

For calculations that consider finer details of the optical 

and electron paramagnetic resonance spectra , one may u se a 

l inear combination of atomic orbitals for the multielectronic 

systems . In th i s work , -we adopt a "cluste r" approach f in which 

the atomic wave functions of the magnetic ion and the s u rround-

ing atoms f constituting the cluste r , are combined to form t h e 
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electronic cluster wave functions . The observed results of 

optical and electron paramagnetic experiments in transition-

metal impur i ties in semiconductors GaAs , GaP , and InP are 

characteristic of the electrons present in the neighborhood 

of the transition- me tal impurities. A cluster approach , then , 

is appropriate for describing the optical and magnetic proper-

t i es of these systems , becau se of the l ocalized nature of the 

d - electrons, whi ch form. the outermost shell o f t h e transition -

metal impurities . We will include i n the cluster approach 

the effect of the crystal f i eld , electron- e l ectron interaction , 

spin- orbit , spin- spin , and Jahn- Teller effects f on the sys t ems 

under investigation . In the present work we wi l l deal s peci-

fically with GaAs : cr2+ , 

2+ 

3+ 2+ 2+ GaAs : Cr , GaAs : Fe f InP : Cr f and 

GaP : Fe materials . 

When atoms are brought together to form a solid f the a t omic 

energy levels mix and form bands. In semiconductors , usually 

energy gaps occur between the valence and conduction bands , 

and are of the arder of a few eV . In Table III . l energy gaps 

for some semiconductors have been listed . For the e n ergy gaps 

63 for other semiconductors f one can refer to the book by Bylander . _ 

For GaAs , the energy gap between the valence and the conducti on 

bands is 1. 4 eV ; for GaP it is 2 . 2 eV; and for InP it is 

1 . 2 eV . 

When transition-metal ions are added to the pure systems as 

impurities , the new energy levels characteristic of the im-

purities arise , in addition to the bands for the pure systems . 

These impurities in semiconductors (GaAs , GaP f and InP ) form 

discrete levels near the center of the gap . Being near the 

- ------------------------------------------
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Table III . l 

ENERGY GAPS FOR SOME SEMICONDUCTOR M~TERIALS 

Material Energy gap (eV) 

GaAs 1. 4 

GaP 2. 2 

InP 1.2 

ZnSe 2 . 6 

ZnTe 2 .2 

CdSe 1.7 

CdTe 1. 4 

Si 1.1 
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I center of the gap, these levels are referred to as "deep levels". 

The outermost electronic configuratio l s of different charge 

3+ 3 2+ 4 2+ 6 states of Cr and Fe are Cr (3d ) , Cr (3d ) , and Fe (3d ) . 

The electronic levels in the energy gap a l e characteristic 

of these d-elec trons, and are localized, r wing to the low 

electronic mobil i ty of the d-ele ctrons. ~he c r 3+ , cr 2+, .and 

Fe 2+ impurity ions act as acceptors in Ga~s , GaP, and InP semi-

conductors, because th~se transition-metal ions tend to accept 

electrons from the valence band to fill t e ir unfilled d-shells. 

Experimentally, doping is done the characteris-

tics (such as resistivity, and other pro erties) of semicon-

ductors. Such controlled properties are very important for 

industrial applications of s emiconductor materials. 

Theoretically, as discussed above, i ti is difficult to 

d · b th 1 · · · f .I · · . . escr l e e e ec tronlc lnteractlons o mpurltles ln semlcon-

ductors. Th e band theories used to expl in the e l ectronic 

structure of pure systems cannot be appl~ed to impure systems, 

because of the lack of translational sy~etry in the irnpure sys­

tems, and because the crystal environmentt affects the energy 

levels of the impurities, with the resul I that the observed 

spectra are very different from the pure ionic spectra. In 

fact, the electrons in the d-shell of the impurity ion t ake 

I part in bonding in the system, and are no longer pure d-electrons. 

Besides , the electron- electron interacti l ns between the elec-

trons of the impurity and those near the impurity in the solid 

b e come important . Furt~ermore, th e spin orbit and spin-spin 

interactions 

tions of the 

are significa nt for explaining the relative posi­

optical l evels and the spinl Hamiltonian parameters. 

-~ _ _L _ _ 
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The multiparticle Hamiltonian, for the interacting elec-

trons and nucle i present in the s y stem, may be written as 

H = H( a ) + H( B) + H( a , B) (1} : 

In this equation ,"a "designates the region in the n e ighborhood 

of the impurity , which may be a cluster comtaining the impurity 

and a limited number of surrounding i ons , and "B" designates t he 

r eg i on of the r est of the solid. The interactions occurring 

· h · h · · b I d 1n t e r eg1on near t e 1mpur1ty may e expresse as · 

I 

H Co<.) 

+ 

+ 
-J-2 2 n e 
Yr12c2 

= -h 2 ~ 'iJ : 
L_ 1 2 \11 

ié.ot. 

L ·- - 2 1 L.. o .. L, 
9 

, e -
2 r~ .i_ + 

qO( (~C( I R . ·' 
c<(.(, 

-'> 

I 
Zj Q::< e2 

1 

2 

rvc. 
l 

LI 
i , j E c< 

e.2 
Y' ' • lJ 

~ · 
~ _.,. -.:.,. __..,. 

{ si' ':li 3 ( si. r~·i )( si . r i J) } / 3 5 r ., f .. ' . 1J 1 , J E:CX. J: J 

( 2) 

The interac tion t erms of E (a ), d escr ibe d by equat ion (2 ) , con-

tain the kine tic energy of the e l ectrons (first term) , the 

attractive poten tial betWeen the electrons and the nuclei of 

charge Z e (second term), where e i s the absolute value of 
qa / 

the e l ectron charge , and r . is the distance between the 
Ct l 
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electron i and the nucleus q ; the nucleus-nucleus interaction 
a 

(third term), with a distance R , between nucleus q and nu-
aa a 

cleus q ,; the electron-electron interaction (fourth term), 

with r. ~ being the distanc e betwee n e l ectrj ns i and j (the 
lJ I 

factor l /2 appears to avo i d double counting, a nd the primed 

I 
summation sign implies tha t i # j); the spin-orbit interaction 

(fifth t erm), where ç ( ~. ) is the spin-orbit operator, 1. is 
l l 

the angular momentum of· elec tron i, + 
and s. is its spin; the 

l 

s p in-spin inte r a ction (sixth term) , where he electrons i and 

j interact v i a their spin, or magnetic dip · les, and the constant 

~ lS Planck 's constant divide d by 2 rr , e is the electronic charge, 

m is the e lectronic mass, and c is the velocity of light. 

An expression similar to Eq . (2) holds l for region B, 

with H( S ) conta i ning the inte ractions for í he electrons in 

the crys t a l exc luding the e l e ctrons and nuclei in the cluster 

containing the impurity . The interacti ons of the electrons and 

nucl e i n ear the impurity in r egion a with the electrons and 

nuclei of the r e st of the crys t a l in regian B is H( a , S ): 

1 E O( 
q, 
I f.J 

+ L_ 
-i c;~ 
J e.p 

+L c ç c r; ) + <; c ,~. ) 1 c i!~- . si 

+ 

l E: O( 

J(:. p 
~z "'z n r_ 

' .., h,- c -

~2 

r . . 
lJ 

-+ .... .P . s . ) .j • l 

( 3) 
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The interaction terms contained in H(a 1 6) have meanings similar 

to the ones described for Eq . (2) 1 but the interactions taking 

p1ace in Eq. ( 3) are among particles 1ocat ~ in different 

regions (a and 6) . 

We observe that the spin-orbit and spin-spin interactions 

of the electrons near the impurity with the e1ectrons of the 

rest of the crystal 1 in Eq. (3) [H( a 1 6 )] 1 are negligible com-

pared with the Coulomb interaction terms . Furthermore 1 as we 

are interested in the 1ocalized energy l eve1s corresponding to 

h · · ·d 1 · · t I t· · h 1 t e 1mpur1ty 1 we cons1 er e ectron1c 1n erac 1ons 1n t e c us-

ter of atoms containing the impurity 1 with the effect of the 

rest of the crystal accounted for appropri , tely . The effect 

of the crystal fields on the c1uster wi11 be accounted for in 

two steps 1 first by subjecting the cluster to the (cubic) crys-

tal field 1 and second by incorporating di ectly in calculations 

the Jahn-Teller splittings of the energy ]evels observed in 

crystals . Thus 1 the Hamiltonian can be w itten as 

t/· 
.., 

vt ... 
H -~ f - z e .... 

-L_ 
I. 2 J~,, Y'· 

l " .( 

+ 

.._, 
3 ( si. Í : .· \( ;;:J. ~ .. ) .! LI •.J"-" ''JJ 

I 
5 

ÍiJ 

( 4) 
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where Vc (;i ) represents the crystal fields
64 

and VJT accounts 

for a poss i ble Jahn- Teller inte raction64 • 6j· The Jahn- Teller 

effect distorts an orbitally d egenerated ground state and 

. t d . l . . t /. . f v removes l s 1generacy . For exp lCl express1ons o JT ' see 

Appendix I . 

Th e basic idea o f the crystal field , V (;.) in Eq. ( 4) , I l 

is that the tr a nsition- metal ion in crysta ls is subjected to 
. I 

an electric field originating in the res r of the crystal. 

Considering the environment to be represen, ed by a charge dis ­

tribution p , which is a general function o position , the 

-+ 
is potential energy V (r. ) c l 

-+ 

-+ 
ep ( R ) 

V (r .) c l -f IR - ;. I 
d ç (5 ) 

l 

-+ -+ 
where r. is the position of electron i , R is the position of a 

l 

g e neral point of the environment , as indi ,ated in Figure III .l, and 

the integra l is over the volume of the the crystal . The 

l/IR - ;. I ope r ato r may be expanded in terms of spherical har­
l 

monics , and depending on th e symmetry tha surrounds the tran­

sition- metal ion , the exoansion for the c t ystal field may be 

greatly simplified . For- tetrahedral symmbtry , the potent ial 

for i dent i cal nea r e st neighbors of transi ion- metal ions is , 

besides a constant factor , equal to 

-+ 
where r, 8 , and ~ are the spherical coordinates of r. . For 

l 

ionic materia ls , D4 can be estimated by point charge model . 

For semiconductors , however , accurate cha rge distribution 
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F IG . III . l 

Position vector of an el e ctron i,~ , and osition vector ~oca 
l 

general point of the environment . 
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has to be t ake n into account , and e stimation of the crystal 

fi e ld cannot be done straightforwardly . On e way to have infor-

mation about the strength of the crystal f" e ld is through ex-

perimental observations . Th e cubic crysta fi e ld-splitting 

energies of Fe
2+ and cr2+ in GaAs, GaP , and InP semi conduc -

. -1 
tors are on the order o f 3000 em . This is a strong interac-

tion , cornpared to other interact ions expressed in the Hamil-

toni an ( Eq . 4 ) • Th e el~ctron-electron interaction is of 

3 - 1 · I 
comparab l e order , 10 em , whereas the spin- orbit interaction 

is of the order of 10 2 cm- 1 , a n d the spin - l pin interaction is 

about 10 crn- 1 . 

As me ntioned previously, in orde r to ndle the Hamilton-

ian , Eq . ( 4 ) , we conside r an appropria te uster approach . 

Because of the localiz e d nature of rity leve ls , we con-

sider the cluster wave function as a linear cornbina tion of the 

atomic wave function of th e impurity and he surrounding atoms. 

I The one - e l e ctron cluster orbitals are , the n , expres s ed as 

N ( <P d + L c ~ ~i ) . (7 ) 
i , Q, 

wh e re N is a n orma li zati on constant, <P d is the impurity atomic 

1" • • h · f I · f d. . wave runctlon , XQ, i lS t e atomlc wave un~tlon o surroun lng 

atoms i with orb ita l Q, , c~ s tands for the admi xture coef ficients 

for the linear combination of atomic o rbi a ls . Th e atomic wave 

functions <P d and XQ, i with quantum numb e rs n, Q, , m, c a n b e e x ­

p r essed in terms of Slater - type orbitals with principa l quantum 

number n n . : 
. X- l )11 

~· (u, </--J 
( 8 ) 



Table III.2 

LIST FOR GaAs, GaP , AND InP F 

LATTICE CONSTANTS a AND THE NEAREST NEIGHIBOR DISTANCES R 

(see Fi gure III.2) 

Material 

GaAs 

~GaP 

InP 

o o 
[in Angstrom units (A); 

Ris also listed in units of Bohr radius (a
0

)) 

o o 
a (A ) R (A) 

5.635 2. 43 

5 . 436 2.36 

5.861 2.5 4 

R ( a ) 
----'---i)-

4.5918 

4 . 4596 

4 .7997 

29 



and the parameters C n 1 Çn I and Th
0

. can be obtained by nx,. )(,. )(, J. 

J. J. 66 ' 7 
self - consistent field calculations 1 b have used the 

best available self - consistent wave functio s calcu la t ed by 

Clementi
66 

and by Gilbert et a1 . 67 . The cluster wave func -

tionsl Eq . ( 7 ) I have to be built in such a way that they 

satisfy the symmetry requirements of t he en ironment . 

For GaAs and GaP 1 the Fen+ and Crn+ (n = 2
1

3 ) impuriti es 

are substitutional on the Ga site 1 and for InP these impuri-

ties are substitutional on the In site . A the GaAs
1 

GaP , 

and InP systems have a zinc - blende structu e , the loca l s ym-

30 

metry around the impurity is , t hen , tetrahedral (see Fi g . II I. 2 ). 

In Table III . 2 the crystal structure param ters are listed f o r 

GaAs , GaP , and InP . 

For convenience , we use real atomic wa e funct i ons
1 

to be 

combined in Eq . ( 7 ) to forro the cluster 

The angular part of the atomic orbitals 

combi nations of spherical harmonics ( Y~ ) 

<Pp 
y 

<Pp 
z 

. l - 1 . J 
=_.!.. [Y l (O , q;) + y l (f) , cp) 

l/2 

functions . 

be written as 

follows : 

( 9-a) 

( 9 - b ) 

( 9 - c ) 

( 9-d) 



<Pd 
xy 

<Pd 
xz 
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(9-e) 

( 9 - f ) 

( 9-g) 

(9-h) 

(9-i) 

For tetrahedral symmetry, the symmetric cambinations of atomic 

orbitals , according to Fig . III . 3 , are li ted in Table III.3. 

These s ymmetric combinations were obtained by using group-

. l h . 68 h theore tlca t ec nlques . For ot e r symmetry groups , one can 

68 I 
r e f er to Ballhausen and Gray. For the retrahedral sy~~etry, 

the anti - bonding cluster wave functions wh ich form the basis 
-

for the irreducible represen t ations E and T2 are 

I 
I 
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Zinc-b1ende structure.In GaAs , GaP , and I ~P compounds,the As and 

P atoms are 1ocated at (0,0,0) ;(O,l/2,1;( 2) ;(l/2 ,0, 1/2 ) :(1/2,1/2,0) 

the Ga and In atoms are 1 ocated at (1 /4 1/4,1/4 ); (l /4 , 3/4 , 3/4 ) 

(3 /4 ,1/4 , 3/4) ; (3/4 ,3 /4 ,1/4) . The 1attice constant a and the n earest 

n eighbor distance R,for the cowpounds m ntioned above , are 1i~ted 

in Tab1e III . 2. 

I 
I 
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FIG . IT.I.3 

Tetrahedral configuration , Hith li gand at , rns nufTlbered 1,2,3 and 4 , 

at alternate vertices of the cube; 

I 
I 
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~e NE { ~d(3 z2 -r2 ) - X l <X -X - X +X )} (lO) 
d,p1T2 

px 
f x 2 

px px 
l 3 4 

' I 

I 

'f E = NE { ~d(x2-y2) - À..' l <Xp -xp! -Xp +X )f (ll) 
d f p11' 2 Py y l J:i2 y3 4 

.; 

( 12) 
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-A 1 <X +X -X -X ) 
d , p~ 2 Pz Pz I Pz Pz 

1 2 3 4 

( 13) 

N T { <P d - À d s 1 ( X - X - X + X ) 
2 xy ' 2 5 

1 
5 

2 
5 

3 5 4 

-Àd <-1)<X +X +X +X )} (14) 
,p7T ~ Px Px px px 

1 2 3 4 

' I 
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Table III.3 

BASIS FUNCTIONS USED FOR FORMING LINEAR COMB NATIONS TO OBTAIN 

CLUSTER ORBITALS. ~ dj ARE THE 3d ORBITALS O THE CENTRAL MAGNETIC 

I ON ANO X . f X . ANO X .ARE TETRAHEORAL- ~YMMETRY COMBINATIONS 
SJ P~J P~J I 

OF s ANO p ORBITALS OF THE LIGAN DS, s. ,p A ~ D Py. DENOTE THE s, 
l x. 

P ANO p ORBITALS OF THE LIG AN DS AT SITEli. l 
X y 

j <P dj Xs . 
J 

e ~d(3z2-r 2 ) l(p -p -i +p ) 2 xl x2 x3 x4 

E: <Pd (x2 - y2) l(p -p -I v +py ) 2 yl y2 - 3 4 

<\) 
d !(sl- s2+s3-s4) 4 xl x2 x3 x4 l[p +p -1 -p 

l(p -p +p -p ) 
2 2 1 2 2 2 3 2 4 'f yz 2 

+ 1/3 ( - p •-J? + I +p ) 
Y1 Y2.·1y3 - Y4 

l 

~ <Pd !(sl+s2-s3-s4) 1Ú? -p +p -J l(p +p -p -p ) 

xz 2 4 xl x2 x3 ,x4 L 2 1 2 2 2 3 2 4 

+ v3 < P - P + P - P > J 
yl y2 ~ 3 y4 

'z; <Pd l(s 1-s 2- s 3+s 4 ) -l(p +p +p +p ) l(p -p -p +p ) 

xy 2 2 xl x2 x3 x4 L 2 1 2 2 2 3 2 4 

' ' 



The cluste r wave functions '!' 8 and '!'E (Eqs. 10 and 11) trans­

form like the irreducible r epr esentation s i~ tetrahedral 

37 

symmetryf and the wave functions '!'t;, f 1/Jn' and 1/Jç (Eq s. 12-14) 

transform like the irreducible repre s entatio T2 , in the same 

symmetry group. The c entral-íon atomic wave functions <P d 
I j 

[j := (3z
2 

- r 2
) f (x 2 

- y
2

) f yzf xzf xy] corne s pond to the 

x f y f z ax is system l oca t ed at the centra l ~ onf whereas the 

ligand X
8 

f X
0 

f Xp f 
i - xi yi 

to the loca l x . f y . f z. l l l 

and x atomic orbitals correspond 
Pz. I 

. lt . d t th .th 

ligand (see Fig. III.3) . 

axls s ys ems Sltuate a e l 

The numerica l fac l ors appearing in 

Eqs . (10)-(1 4) are included to have conveniently normalized 

symmetric combinations of orbita ls. In Eqs . (10)-(14) the 
I 

coeffic i ents Àd f Àd f Àd and À d are admixture co-
fs f pa f p1T , p 

efficients . The bonding orbitals may ·also be constructed in 

a similar way . The normalization constant NE and NT are 
2 

found upon integrati on of the wave functions f and are equal to 

\• 2 2 , , G ( d )] -1/2 
1\ d - 1\. d 'E 'Prr f pT( rPrr I 

( 15) 

N = [ 1 " 2 + 1 2 + À 2. - 2À G ( d s ) 
T 2 + I\. d f s /1.. d , Po- d. F' r. d , s 'T 2 ' 

, 
I 
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The group over1ap integra1s, G, in Eqs. (15) and (16) are, 

exp1icit1y , 

GE ( d, p 7T) = ( q> d ( 3 z 2- r2) I l ( X p - ;rp - ;<jllp + xp ) > 
2 x 1 x 2 x

3 
x

4 

( 17) 

GT ( d ' s) = < <P d ll ( X s - xs 2- )( + X ) > 
2 xy 2 1 5 3 5 4 

Because of the symmetry (see Fig. III.3), GE(d,pn), 

GT (d,p ) , and GT (d,p ) are reduced to 
2 0 2 TI 

GT ( d ' s ) = 2 < cp d I X s ) 
2 xy 1 

( 18) 

( 19) 

(20) 

GT (d, s) , 
2 

( 21-a) 

(21-b) 

( 21-c) 

I 
I 
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(21-d) 

which are two-center in n a ture . It is convenient to rotate 

the x , y r z coordinate s ystem into x ' y 'z' r sue that x'y'z' is 

paralle l to the coordinates x
1

y
1

z
1 

(see Fig. III.3 and Fig. III.4), 

and expres s the ~d . wave functions in terms of the rotate d 
J 

coordinates x ' y ' z' . This is achieved b y us i ng the rotation 

t . 1 69 .:. d f' d . I 7o ma rlx e ements , e lne ln terms of the Euler angles 

Q d h t . f th h . 1 h . . . 7 1 a , fJ , an y . T e ro atlon o e sp e rlca armonlcs lS glven 

by 

·' "'e .e / b I ( c( , f3r Y) Y~ ' < e ifJ') (22) 
m~=-.R. m ,m .-c. 

Th e Euler angle a is the c en t er o f rotation around the z-axis, 

S is the r otation angle around the new y-a is, a nd y is the 

rotation angle around the latter new z - axi / . The angles are 

h ere d e fin e d as positive when rota ted in tfue counterclockwi s e 

direction. The rotation matr i x e l ements cf> ~ , ' (a , S r y ) may b e 
m ,m 

expressed in t erms of the "reduce d" matrix elements d~ , ,m( y )
69

: 

where 

R. 
c.Ô m I , m (D<.,f3rY) 

im 1 Y e 
Jim o<. e 

de ( ) """ (-l)k (.f+m) ! U-m)! (f+m')! (t'-m1
) 

m1 ,mP=Lk k! (f+m- k) ! (f -m 1 - k ) '( k+m 1 -m) 

( 2 3) 

( cosft/2 ) 2P - 2k -~~+m (sinp/2)2k+m' - m (24) 

I 
I 
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y 

Trans formed coordinate system for eva luation of an over lap i ntegral . 

' I 
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Tab l e III.4 I 
REDUCED ROTAT ION MATR IX ELEMENTS ./d~ , , m( 6 ) 

[ wHERE s=sin p ANO t=cos~ J 

~ m 1 o 1-l 
1 1( 1+t) 1 s ] ( l-t) 

2 vrr i 
o -1s t 1s 

v2 \12 

-1 1 ( 1-t) - .l_s 
I 
~ ( 1 +t) 

2 V2 º I 

REDUCED 

Table III . S I 
ROTATION MATRX ELE.MENTS 

[ vmERE s=sinfo NJD t=cos f] 

I 
2 1 o I 

I 

l(l+t) 2 1 (l+t) l/6s
2 

4 2 4 I 
- ls(l+t) 1 (l+t) ( 2t-1) V6st 

f 
2 2 2 

v'6s2 - y6st 1(3t
2

-1) 
4 2 2 

-v.[ s t / -1s (1-t ) l(l-t) ( 2t+1 ) 
2 2 2 

1(1-t) 2 - 1s(l-t) V6 s 2 
4 2 4 I 

2 
d 1 (J3) m , m 

-1 

1s (1-t) 
2 

1(1-t) ( 2t+1) 
2 

v'G s t 
2 

1(1+t) ( 2 t-1) 
2 

-1 s ( 1+ t ) 
2 

41 

/ 

-2 

1(1-t ) 2 

4 

1s (1-t) 
2 

\Í6s 
2 

4 

ls (l+t) 
2 

l(1+t) 2 

4 
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Tab1e III. G 

J7-EDUCED ROTATION HATRIX ELEí\!ENTS d
3

, (A) 1 \.·iHERE s=sinf3 , t =cos[31 T =1+t 1 T =1-t. m 
1
m r + -

THIS HATRIX IS SYMHETRIC \HTH RESPECT TO THE ANTI-DIAGONAL 1THE SYMJv!P.TRIC MATRIX ELEMENTS 

ARE OMITTED. 

\rn 3 

~~ 
3 _+ 

8 

2 
2 I _ V6sT+' 

8 

1 1ill_s
2

T+ 
8 

o I -Yfj_s3 
8 

- 2 
-1 IV15s T -

T 

-2 I - l/6sT
2 

8 -

-3 I T3 

8 

2 

2 
y'6 sT + 
8 

T 2 -+ (T - 3s ) 
4 + 

Vlos (3s
2

- 2T+) 
8 

ffots 
2 

4 

- 2 
{ij_s(- 3s +2T _) 

8 

2 
T_ (3s - T 
4 

1 

. Ãr 2rr 
y.LS s " + 
- 8 

- 2 
- 1/1 O s ( 3 s - 2 T + ) 

8 

3 2 
~+-s (1+7t) 
8 4 

VJs(-4+Ss
2

) 
4 

3 2 T- -s (1-7t) 
8 4 

o 

~53 
8 

~ts 2 

4 

-V3s ( - 4+Ss
2

) 
4 

2 
t(2 -5s ) 
~ 

-1 -2 

VfSs
2

T _ v'6sT
2 

8 8 -

- {[õs( - 3s
2

+2T ) 
- 8-

2 
T ( 3 s - T ) 
4-

3 2 
T_ - s (1-7t ) 
8 -4-

' • 

-3 

T3 

8 

~ 

N 
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Th e sum ln Eq . {24) spans all integral values of k for which 

the d e nominator is not i nfinite {the factorial of a negative 

intege r is taken to be infinite ) . The reduced matrix elements 
9., 

d 1 {B) are tabulated for B = 1, 2, and 3 , in Tables III . 4 , m , m 

III.S, a nd III.6. At present , 9., we will make use of the d 
1 

{ B) · 
m , m 

matrix element for 9., = 2 {Table III . S) , in orde r to express the 

~d. wave functions in terms of a rota ted frame of reference. 
J 

In Section C, when we deal with transition moment calcu l ations , 

we will make use of the matrix 9., 
e l emen t s d 1 { B ) for 9., = 1 m , m 

and 9., = 3 {Tables III . 4 and III.6 ) , to perform rotations o f 

spherical harmonics i nvolving 9., = 1 and 9., = 3 values . The 

spherical harmonics with 9., = 2 , of which the ~d. are linear 
J 

combina tions {see Eq . 9 ), transform under rotation according 

to Eq . {22 ), as fo l lows : 

2 l 1 I ,-;-2 - l I .1: 
+ .81 , 2 < oc ' P , Y ) Y 2 < o ' ,,., ) +.v -l , 2 < «, f3 'n Y 2 < e ' '+') 

( 25 - a ) 

( 25-b ) 

I 
I 



44 

-2 ( ~ <P) = 0 2 ( I' y o o' i n 2 . . Yr},,..2 . -2 I I 
y 2 t; 1 r.D O 12 rxl _o,. ) y 2 ( ' ) +.;ç 2

1
-2 (c< 1p ,Y) 1'f.t:J_2 

1
-2 ( cX,_~, () y 2 ( e,c/>) 

(2 5-c) 

( 25-d) 

q~ 2 ( Q 1 >'} I .•• 1 ~ 2 -1 I • I + •V 1 I -1 :.( I I' I y) y 2 ( (; 1 'f" ) + <V -1 I -1 (c( I r })') y 2 (O, c)' ) ( 25 - e ) 

One notic e s that for the symme try disp1ayed in Fig. III.4, it 

lS always possibl e to obtain the rotated axe s x ' y ' z ' para11e1 

t o the ligand ' s axes x.y.z. (see Fig. III.3) 1 with the Euler 
l l l 

angle y =O (a # O, B #O). Taking advantage of this simp1i ­

fication 1 we c a n express the functions ~d . [j = (3z
2 

- r
2

) 1 

2 2 J 
(x - y ) , yz, xz , xy] in t erms of rotate d functions ~d 

i' 
[i' _ ( 3z ' 2 - r • 2 ) 1 (x ' 2 - y ' 2 ), y ' z ', x ' z ' 1 x ' y '] and coeffi-

cie nts A .. ,( a , B) 1 using Eqs. ( 9 ) and (25 ): 
J 1 l , 

= L 
i' 

A. . , (a , B ) ~d 
J f l • 1 

1 

( 26 ) 

I 
I 
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Table III .7 

' . ,y~.r--.------
• 1- • ~ : .. ~---. 

"-· 

COEFFICIENTS A . . 1 (cX 1 0) ( VJHERE o< Al'JD f> ARE EULER ANGLES ) OF THE TRNTSFOR1'11\'J'ION cpd = 
J 1 l j 

lrJ11ERE s=sinf3 1 t=cosp 1 so(=sino.. 1 to(=cos o<. 

'-.""-.. 4) di I 

cpd. 
J 

1) d(3z 2-r2 ) 

.h 2 2 
'f--"d(x - y ) • 

cf)d 
xy 

cp 
dyz 

~d 
xz 

cpd(3z 12 - r 12 ) 

(Gt
2
-l) 

2 

2 2 2 Vj_ s ( t~ - se< ) 
2 

- 2 V3 s se<. t~ 

{3 s tsc<. 

v'3stto<. 

<Pd(x l 2_y 12) 

{Ss 
2 

2-

2 2 2 
( l+t ) (tccso<-) 

2 

2 
( l+t ) soc to<. 

- stsc<. 

- st t<X. 

~ xly l cPd 
ylz l 

o o 

- 2ts,toc -:-2ss<XtQ( 

t (t~ - s~ 2 2 
s(tC( - s<X) 

- s te<. ttO( 

sso<. - tsD( 

-,.­
./. --'( 

L A .. I (c<,J3)sbcJi I 
• I J I l . 
l 

' -

cpdx lzl 

- 3st 

2 2 
st(t~ - sD( 

2sts(;( t.x 

2 
-( l -2t )se<. 

2 
- (l - 2t )to<. 

.!» 
V1 
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The coefficients A .. 1 (a , 6 ) are obtaine d upon substitution 
J,l 

of thec5
2

r (a , 6 , o) matrix elements (s ee Eqs . 9, 23, 25, and m ,m 
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Table III.S), andare listed in Table III.7. The central ion's 

atomic wave functions which contribute to the overlap inte-

grals expressed by Eqs. (21-a) through (21-d), are expressed 

in terms of the rotated wave functions and the Euler ang l es 

a and 6 as (see Table III.7) 

- v'3 sin ~cosj) ~ f d r r 
X Z 

( 2 7) 

+cosj3(cos~ -sin~ )~d · +sinj3(cos~ -sin~)~d 
xryr yrzr 

+2 sinpcosp sinc:(cos:<~ d 
x rzr 

( 2 8) . 

The Eul e r angles a and B ( y = O),required for the rotation 

of the axes xyz into x ry rz r as illustrated in Fig. III.4, are 

3rr 
(29-a ) a = 

4 

- 6 r (29-b) 

J 
I 



- .. 

r 

J . 

4 7 

y = o (29 - c ) 

where (see Fig . III.4 ) B1 is such that 

cos B1 1 = --
'{3 (30 - a ) 

sinB1 2 = --
{3 (30-b) 

Equations ( 27) and (28 ) are simp lifie d ~hen one substitutes 

the Euler angles a , B, as given by Eqs . ( 29 ) and (30 ), i nto 

the fo llowing expressions : 

th 2 2 =ltt, 2 2 + \[2 A-. 'l.ld (3z -r ) - 't'd (.x 1 - y 1 ) , r::; '~1 d l/3 y3 X I z I 

( 31 ) 

( 32 ) 

With Eqs . ( 31) and (32 ), the over lap integrais expressed by 

Eqs . ( 21 - a ) through (21-d ) are reduced to 

(33) 

' / 
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( 3 4) 

( 3 5 ) 

+ 2 f ~ dx ' z ,j X p x ) 
l 

( 3 6 ) 

Some of the integrals containe d in Eqs . ( 33 ) - (36 ) are equal 
. 

to zero , as one can verify by direc t integration , or simply by 

u sing symme try arguments . Spe cifically , thes e integra l s are 

( 3 7- a) 

' I 
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~ 
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~d (x ' 2 _y ' 2)1 Xsl) =O ( 37-b ) 

1 I X ) -o dx ' z ' · s l - ( 37-c ) 

(<P d ( X ' 2 -y ' 2 )I Xp ) =O ( 37- d ) 
. z l 

( 3 7- e ) 

=O ( 37- f ) 

To simpli fy t he notation , we define the i n t egra l s which appear 

in Eqs . ( 33 )-( 36 ) as 

riNSTITUTo DE FfSIC _I 
BIBLIOTE:C 

(38 - a ) 

( 38 - b ) 

( 3 8 - c ) 

I 
I 



The overlap integrals (eqs . 33-36 ) are s i mplified , us i ng 

eqs . (37 ) and (38) , to 

GT (d,s)=2 sd 
2 . ' s 

V'J 

G T ( d , P,..) = 2_ S d 
2 v V3 'PO' 

50 

( 39 ) 

( 4 o) 

( 41 ) 

(42 ) 

Th e ove rlap integrals Sd , S 
, s d , p 

(J 

(see Eq. 38 ) 

are t wo - center integrals, wi th one wave function centered at 

the central ion with the x ' y ' z ' coordinate system, which is paral-

le1 to (and z - colinear with ) the coordinate syste m x 1y 1z 1 (see 

Fig . III . 4 ) at ligand s i te 1, where t h e othe r function is cen-

tered . These two-cente r integra ls can be evalua t e d using the 

a - function t echnique . 60 ' 7 2- 75 Th e d e t a ils of such calculations 

will be made clear in Chapt er IV , wh e re the r e sults of various 

. 2+ 2+ overlap 1ntegrals Fe and Cr in GaAs , Ga P , and InP will also 

be presented . Th e substitution of the group over lap integrals , 

Eqs . (39 )-( 42 ), into th e normalizat ion con s t a nts (Eqs . 15 and 

16) of the cluster wave _function s resul ts in th e expressions 

' I 
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= [ 1 + À' 2 - 4 VT A s ] -1 I 2 
d,p~ fj d,p~ d,p~ 

(43) 

N T = [ l + À~ + ) 
2 

+ .:\? ·-=A_ À S 
2 1 s , 'd , Pa- d , Prr VJ â , s d , s 

·- 4 À S -:-4 IÍ2 /~ S ] -l/ 2 
V3 â , p c.r d 1 Per - 3- d , p11 d , P1r 

( 4 4) 

We have presented , so far 1 a cluster wave function for a 

transition-me tal ion surrounded by the four nearest neighbors , 

in a tetrahedral symmetry . Equations (10)-(14) were deduced 

by group-theoretical t echniques . Another, alternative method 

76 for deriving cluster wave functions 1 developed by Sharma , 

is by direc tly investigating the symmetry of the overlap inte-

grals between the central ion ' s wave functions and the orbi-

tals of the various ligands . This method, which will be 

t ermined the "over l ap-symmetry" method, allows more generality 

tha n the previous one, because the linear combination of the 

atomic orbitals can be expressed in terms of the rotation 

Qatrice s. The explicit depe ndence of the cluste r wave func-

tion on the Euler angles allows for deviations from the cubic 

symmetry . For example , in the c a se of an elongation or con-

traction of the tetrahedron, the angle 8 ' (see Fig. III . 4 ) is 

no longer given by sinS' = 12!13 and cos S ' = 1/ /3 . We shall 

- 76 
use the over lap-symmetry method to consider a cluster com-

posed of the central ion (d-orbitals) and the four surrounding 

' I 
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atoms ( s and p orbitals) 1 which will be useful for evaluating 

the transition matrix elements for obtaining optical intensi-

ties in Section c. According to this method 1 the linear com-

bination of the d-orbitals' wave functions ~j [j = d( 322 

d(x2 _ y2 ) 1 dyzl dx 2 1 dxy) and the surrounding atomic wave func­

tions x ik (wh e re i = 1,2,3,4 designates the position of the 

~ surrounding atoms , as in Fig . III.3 1 and k designates the s 1 

px , py, and p 2 orbitals) is first expressed as 

y. 
J 

( 4 5) 

i Nj is the normalization constant , and Ckj is the coefficient 

that mixes the wave functions of the surrounding atoms with 

the wave functions of the centra l ion. One may also write the 

bonding orbitals in a manner similar to that of the antibonding 

orbitals of Eq . (4 5 ). Subject to the condition that the bond-

ing and antibonding orbitals are orthogonal 1 one obtains 1 in 

h . t d . . 76 t e f1rs -or e r approx1mat1on , 

l where yk . is the corresponding coefficient for the bonding 
I J 

orbital, and is known as "charge transfer" . Equation (4 6 ) 

that the l coefficient transforms as the overlap me ans ckj 

( X ki, ~ j) . This in forma t·ion is helpful in building UD the 

symmetric combin a tions o f the ligands and the central ion's 

(46 ) 

orbitals. To investiga te the various overlap integrals, one 

' I 
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has to make use of rotations (through the Euler angles) 
1 

so 

tha t the coordinate system of the rotated wave functions of 

the c entra l ion is parallel to and z-colinear \vith the coor-

dinate system of the ligand i . Relative to the four ligands 

(see Figs . III . 3 and III.4) 1 th e Euler angles are 

ct:, 3;;' p. "' ( 4 7-a) : ---rr ::- p yl ::: o 

11 f3 z = -{lí-/3 ') c(., = Y'z ::: o (47-b ) .... 
t.j 

0(3 :::: 37í 
/33 {""' nl) r?= o --:r =- /f-/) ( 4 7-c) 

r" ::::: o ( 4 7-d) 

The central ion ' s · atomic function ~d 
2 2 

[j = 
( 3z - r ) 

d( 32 2 _ r2) in Eq . ( 45 )] can be obtained in terms of a rotated 

s y stem parallel to x.y .z. (i= 1 1 2 1 3 1 4 ) 1 by the us e of Table III .7 
l l l 

and Eq . (47). The contributing coeff icients (which wou1d lead 

to a non-zero over l ap ) for the admixtu re of the ~d 
2 2 

( 3z - r ) 
and the xs. wave funct i ons are 

l 

= 
2 3cos B. - 1 

l 

2 

where Ad i s an admixture coefficient . 
I S 

A 
d 1 s 

Similar ly 1 for the 

ffiiXtUre Of the ~d 2 2 OrbitalS With the Xp 1 Xp 1 and 
( 3z -r ) z x 

ligand orbitals 1 oRe obtains 

(48) 

' I 



.. 

c i 
p ,d(3 2 2) z z - r 

i 
c d 2 2 

Px ' (3z -r ) 

c i 
p , d(. 3 2 2) 

y z - r 

3cos 
= 

2 

= o 

A d , o 
• (J 

54 

( 49 ) 

( 5o ) 

( 51 ) 

By substitution of Eqs. ( 48 ) - ( 51 ) into Eq . ( 45 ) the cluster 

wave function can b e explicitly written , because the Euler 

angles for the different ligands are listed in Eq· (47). 

The same procedure can be followed to derive the c ombinations 

of the ~d 
2 2 

, ~d , ~d , and ~d with the surrounding 
( x - y ) yz xz xy 

atomic orbitals . The derived expressions are, in terms of 

the angle 6 ' (see Fig . III.4 ), 

- ( 3 co s ~I -1) /\ ( X + X + X + X ) 
2 d , p Pz Pz Pz Pz 

l 2 3 4 

' I 



.. 

, 

( . 2 ' 2!3, - s1n 8 -cos 
{2 

'o/n= Nn{<Pd - V6 cosfl'sinJ3';\d (X +X - )( -X ) 
l l xz 2 1 s s 1 s 2 s 3 s 4 

( . 2_,; 2 1 
-s1n n -cos /2 

V2 

55 

(53) 

(54) 

(55) 

I 
I 



-, 

56 

- <- sinp'cosp' ) lld P c X P + XP + XP x + XP )} C5 6 ) 
1 rr X X X 

1 2 3 4 

In Eqs. ( 52 )-( 5~ ) 1 N8 , NE , N~ , Nn , and N~ are obtained upon 

norma1ization of these wave function s. The normalization con-

stants , in t erms of the angle B' and the over1ap integrals 

Sd , Sd , and s as defined in Eq. {38) are 
,S , p0 d,p TI 

N8 = {1- ( 3cos~' -1) [2 1\.d sd +2 lld sd - Jld
2 

- j\d
2 J , s , s , pu , Pa- , s , Po-

• 1 I ) 2 [ !\ A 2 1 } -1/2 -12 (slnp cosp 2 d Sd - lld P _ 
- , P.,. , P1( ' 11 

{57) 

(5 8) 

' J 
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N~=N 11= { l-6sin
2

A' cos
2
;:3' [ 2 1\d sd +2 i\d sd - 11

2 
, · ' r 1 s 1 s 1 P fJ' 1 Po- ll d 1 s 

( 59) ' 

Nl"' = {l- 3sin j3' [ 2 /\d sd +2 Ad sd - /\d
2 

- )\d
2 

"' . , s , s , Pa- , Po- I s , PO' 

( 6 o ) 

We notice that the cluster wave functions (52 )-( 56 ) are a l so 

valid for tetragonal (D2d ) symmetry , as the angle S' may be 

such that sin S ' # 12!13 and cos S ' # 1/ /3 . In the more general 

case , the wave functions ~e and ~E (Eqs . 52 and 53 ) are no 

longer degenera t e , and t h i s i s --conf irmed by group theory . 

In the limiting case of sin S ' = 12! 13 and cos S ' = 1 / /3 , ~e 

and ~ become degenerate , as required by t etrahedra1 sym­
E 

metry . Also , the ~~ and ~n functions remain degenerate (Eqs . 

54 and 55 ), but not ~ ( Eq . 56 ), and t h i s i s consistent wi t h ç 

the group-theoretical treatment of D2d sy~~etry . In t he limit-

ing case of tetrahedra l symmetry , as expected , ~é ' ~ , and ~ 
s n ç 

become degenerate . Comparing Eqs . (52 )-( 56 ) with Eqs . (1 0 )-

(1 4 ), one sees that in the proper limit (sin S ' = ./2!13 and 

cos S ' = 1/ /3) both sets give the same symmetric combi nat i ons , 

and the adrnixture cciefficients \ s of Eqs . (10 )-(1 4 ) are re1a-

-
ted to the admixture coefficients f\s of Eqs . (52 )- (56 ) as 

follows : 

, 
I 
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À 2 A --d , s /3 d , s (61) 

( 62 ) À 2 
A --

d , p /3 d,o 
(J ~ cr 

À 212 A d,p 
3 

d , p 
TI TI 

( 6 3 ) 

À I 212 
A = c'l,p /3 d , p 

TI TI 

( 6 4 ) 

Actually , Eqs . (63) and (64) show that the admixture coefficients 

À' d and Àd of Eqs . (10)- (14 ) are not independent, but are 
, p TI , p1T 

related by a 13 factor : 

À I 

d , p 1T 
13À d , p 1T 

( 6 5 ) 

Group theor y alone does not predict a proportionality between 

À' and À , although such proportionality has its roots c'l , p d , p TI 1T 
in symme try properties (which we have investigate d through the 

overlap integr a ls ). Indeed , one expects À' and Àd 
d , pTI , p'IT 

to b e proportional , since both admixture coefficie nts des -

cribe a chemical bond of the same nature (TI -bonding ) . 

At this point , we are equipped with the multi - electronic 

Hamiltonia n {Eq . 4) , and the cluste r orbitals (Eqs . 10 -1 4 

or Eqs . 52-5 6 ) . In the following sections , we will work out 

the dif ferent inte ractions in the Hamiltonian. In Se ction A, · 

we will focus our atte ntion on the e lectron-e l ec tron interaction 

t erm of th e Hamiltonian . The effect of the cubic crystal fi e ld 

' I 
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inte raction will also b e included in this s ec tion, as part 

of th e treatment of the Coulornb interaction terrns of the 

Harniltonian. 

A. Electron-electron interac tions: Generalized d-electron 

matrices 

In arde r to exp l a in the spectra of fr ee ions , Racah 77 in-

troduced three basic Electron Coulomb repulsion parameters, 

A, B , and C , for pure d - electrons . 
44 Tanabe and Sugano 

extende d Racah ' s treatment to the c ase of transition- rnetal ions 

in s o lids and complexe s , by considering the effect of the crys-

t a l field in t erms of the splitting pararneter 6 , assurning that 

the electrons r etain their pure d - character . In the absence of 

a more nearly exac t theory , the mo d e l above has bee n used to 

interpr e t the optical spec tra of transition- rnetal ions in solids 

and c omplexes . It h as the o bvious advantage of involving only 

three parameters , B, C, and 6 (the pararnete r A represe nts an 

ove rall shift of the energy leve ls ) . Whil e this the ory brings 

forth us eful simp lifications , , it suffers from th e serious draw-

back of n eg l e cting the i mport a nt solid- sta t e e ffects , such as 

the modifications o f the electron wave functions from the pure 

d - character. 

In arder t o obtain a more n ear ly exact theory , one has to 

r e move the restriction of the oure d-nature from the electronic 

wa ve functions. Thi s improvement h as been made r ecently by 

43 Sharma and Sundaram , and the resulting the ory h as been 

checked a nd compared with ex isting results by Sharrna , Viccaro, 

4 1 
and Sunda ram . To this end , one rnay conce ive of the one -

' I 
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electron orbita ls a s sets of orbitals which form bases for 

irreducible r e presentations of the symmetry group of the crys-

tal potential . 46 64 In the strong field coupling scheme ' , 

where many physical cases of interest occur, the functions 8 , 

E , s, n, a nd Ç are us e d to d e no t e the s e t of one - e l e ctron or-

bitals in the cubic field represe ntation . These orbitals are 
I 

no longer of the pure d-cha r a cte r , if cluster wave functions 

are employed . In a cubic crystal field , the sets {8 , E} 

and { ~ , n , ç } are split by the crystal field parameter 6 (s ee 

Fig. III.l for Td symme try ), and forma basis for the irredu-

cible r e presentations E and T2 , respectively. Employing the 

strong- fi e ld scheme, the allowed terms for all possible confi-

9, m n 
gurations e t 2 of d (where n = 9, + m) can be obtained by group 

64 theory , and are listed in Table III.B. As the allowed terms 

we r e obtaine d b y group theory, there is no restriction to pure 

d-orbital s , and Ta bl e III.8 can be used for the more general 

cas e of non-pure d - electrons . 

The Coulomb repulsion is a two-electron interaction term, 

which operates on the wave functions of electrons i and j. 

Thi s el e ctron-e l ectron inte raction is give n by 

v 
n 

n 

L 
i >j 

2 
e 
r .. 
lJ 

(6 6 ) 

To evalua te the ene r g y eige nvalue s of the Coulomb inte raction , 

one is requir e d to e valua t e the ma trix eleme nts of V . Th e 
n 

ma trix eleme nts of the electron-e l e ctron interaction can be 

e xpre sse d in t e rms of the integrals 

' I 
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Table III . S 

DISTRIJ3UTION OF dn LI':V.C LS IN STRONG CEY.STJI.LLINE FIELD.S 64 . 

d e 2E 

t2 2T 
2 

d2 2 1 3 lE e Jl. l + p_ 2 + 

et
2

; l T + 3T + 1 + 3T 
1 1 T2 2 

.. ( '- ) 2 . l A + lE + 3T + 1 
'· 2 • 1 1 T2 

d3 3 2E e 

2 
2

2
T 

L1 
+2

2 T e t
2 + -Tl 1 2 

2 '2. 2 
+ 22E 22T + e ( t 2 ) : A

1 + A2 + 1 
3 4A 2E + ? 2T ( t2) : + - T + 

2 "1 2 

d4 4 l A e 
1 

3 . e ( t
2

) . 
1 3 1 3 1 3 5 

A1 + A1 + A2 + A
2
+ E+ 2 E+ E 

( t2 ) 4 : lA + l E + 3T + lT 
1 1 2 
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2 
V = (f ( i ) g ( j ) I _e-=-----·1 h (i) k ( j ) ) 

r .. ( 67) 
lJ 

where f (i), h(i), and g (j), k(j) are one-electron wave functions 

o f electrons i and j. For cubic symmetry , ·in the most general 

c a s e of non-pure d - e l ectrons, the one - e l e ctron b a sic orbitals 

e , E , ~ , ~ , and ç are us e d , and there are ten non-vanishing 

..; . d d . l 46 ln epen ent lnte gra s (a , b, c, .. ., j) of the type ex -

pressed by Eq . ( 6 7) . Omi tting the i and j indices from the one-

electron wave functions in Eq . (67 ), the independent integrals 

can be written as 

2 
(~~ ~ 

e 
I ~~) a = r .. (68-a ) 

l] 

2 
b <~ ~' 

e 
~ ~ ~> = r . . (68-b) 

l] 

2 

<e ~ I e l s~) c = r . . (6 8-c) 
l] 

2 
d {s~ ·1 e I s~ ) r . . (68-d) 

l] 

~ 

2 
{ee l e I e e) e = r .. 

lo- l] 
( 6 8-e) 

t . 2 
f (e o I e lss) r . . (6 8-f) 

l] 

2 
g <e e I e 

r . . I~~> ( 6 8-g ) 
lJ 

2 
h <e c: I e 

1-~ ~) r . . (68 -h) 
l] 
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2 

<en I e I ss) l = 
r . . (68-i ) 
lJ 

2 

Ús I e I nn) J = r ·.- . ( 68-j ) 
l] 

One way to obtain the matrix e l ements of the electron-

electron interact ions is to use the wave functions directly 

for each irreducible reoresentation (see Table III.8) of every 

electronic configuration e ~t~. 

pressed as 

These ma trix e l ements are ex-

\vhere 

n 

2 e 
r .. 
l] 

m + ~ = m' + ~ ' 

( 6 9) 

( 7 o) 

are wave functions which transform accord i ng to the irreducible 

r epresentation f. Th e symbols r 1 , r 2 , r 3 , a nd r 4 a lso denote 

irreducible r~presentations , and r is generated by the group-

theoretica l d irect products f l X f 2 and f 3 X f 4 . S is the tota l 

spin , consistent with the addition of s 1 and s 2 as well as with 

s 3 and s 4 spin states . This me thod of d e rivation of the e l ec ­

tronic matrix e l ements has been descr ibed in d e tail by Griffith. 46 

44 Tanabe and Sugano have u sed a recurrence relation b e tween 

matr ix e l e ments of a dn configuration and those of a dn - l 

configuration , to generate the e l ectron-e l ectron matrix e l e -

ments for d-electron s in a cubic field symme try. The matrix 
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elements of v (see Eq . 66) can be gene r ated by t he re c urren ce 
. 44 46n 

r e l at l on ' : 

= vYP 
n-2 

L_ <e f s 2 r2 { I e .e -l ( s I T' I ) e) <s l s ' s I r I e ( s 2 r; ) s 7' I 
S 1 S"S 
T'

1 r " fi 

ltm
1 

(S r )ei-l( S "r") S 1 T'' ) /s fl S "fl"( S f )es -rl 
2 3 3 ~-3 3 

I ( 

I s 3 r 3 ' s " T"' e ( s 4 f'4 ) s r) <e e -l ( s " r" ) e I } e f s 4 74 > 

lt s "r" (s r ) s r s r ) (t tm
1

-
1 ( s "r") s r I} tm

2
.s

3
í'

3
) 

2 3 3 4 4 2 ' 2 3 3 
( 7 1 ) 



• 

In order to calculate this matrix e l ement for the n-electron 

syste~ , it is necessary to know , in addit ion to the matrix 

elements for the (n -1)-e l ectron system , the transformation 

matrices of the type <s
1

r 1 ,s' f'e (s
2

r
2

)srJ s
1

r
1

s 'r' (s f )esr) 

and the coefficients of fr ac tiona l parentage of the type 

65 

Both transformation matrices a nd the 

coefficients of fractional parentage are available in the form 

of t ables .
44

'
46 

Th e laborious work of deriving the matrix elements given 

b y Eq . (71) in t erms o f the general two-e l ectron matr i x ele-

ments a , b , c, ., j (see Eq. 68) was done by Sharma and 

S d 
4 3 d . -'~ b Sh . d d 4 1 un aram , an r ev1 ewe u y arma, V1ccaro, an Sun aram 

1t Was Shown 41
r
43 t h t th l" d . f th a e genera 1ze express1ons or e 

electron- electron int e ractions have important c onsequences , 

such as the r emova l of accidental dege neracies in the energy 

spectrum , and the poss i bility of d educing the Cou lomb and ex-

change parameters in conjunction with experimenta l optical 

spectra . Th e d e rived results of the electron-electron matr i x 

n e l ements for d e l ectrons (n = 2 , 3, 4, and 5), in t erms of 

the generalized parameters a , b, c, ., j, are listed in 

Tables 111. 9-1II.1 2 . 

As expected , the ma trix eleme nts in Tables 111.9-12 reduce 

44 to the Ta nabe-Sugano matrix e l ements in the limiting condi-

tion that the 8 , E r E; ' n, and ç orbitals are pu re d-type 

orbitals . Those matr i x elements in Tab l es I1I.9-12 which, on 

reduction to the pure d~orbital case, di ffer in sign from 

44 
th e corresponding matrix e l ements by Tanabe and Sugano- (o r 

by Griffith
46

), have been Qarked by an asterisk . Although 
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Griffith's phase conventions have been followed consistently, 
.; 

Griffith's 46 matrix I we have not been able to trace out why 

elements dis agr ee 1n sign with ours. 

In the limiting case o f pu r e d-orbitals, the ten inde-

pendent integrals (a , b, c, . . • f j ) are reduced in to Racah's 

three parameters A, B, and C, as follows 46 
: 

.; 2 
<~~I e - I ~~> = A + 4B + 3C (72-a) a = r .. 

lJ 

2 
l ~n) b (~n I e A - 2B + c (7 2-b) r .. 

lJ 

(e~ I 
2 

= e I E~> = 2/3B ( 7 2-c) c 
r . . 
lJ 

2 
d <E~ I e I E~) = A - 2B + c (72-d) = r .. 

lJ 

2 
I e e) <eel e e = r .. = A + 4B + 3C (72-e) 

lJ 

2 
f <e e I e I EE) 4B + C (72-f) = r .. 

lJ 

2 
= <e e I e lnn) B + c (72-g) g = r . . 

;.- lJ .. 
2 

h = (e E I e lnn) /:rB (72-h) r .. 
lJ 

<enl 
2 e l ~s) n B (72-i) l = = r .. 
lJ 

<ç~ I 
2 

j = e llln) = 3B + c (72-j) r .. 
_) lJ 
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Table III . 9 

ELECTRml - ELECTRON MATRIX ELEMENTS FOR d
2 

ELECTRONS IN TERMS OF 
THE COULOI'IB ANO EXCHANGE INTEG FALS a , b , •....•.• , j . ASTERISK DENOTES 
THE CHANGE IN SIGN HITH RESPECT I2 TANABE - SUGJI . .NO MATRIX E LEM..ENTS 
BECAUSE OF THE PHASE CONVENTIONS . 

1.t11 (d~) e2(t,1,) fi( 1r1 1) 

e 2( 1A 1) e +f .rGg+.f2Jz 

d<'A,) ..fGg +·.f'SJz a +2j 

1E(d2) e 2('E) d<'El 

e 2(1E) e-f 21z * 
fl<'El 21z . a- j 

' T,(dz) tl<'Tz) t,eT,)e( 2E) 

d< 1Tz) b +j - 2i~ 

l ze7'2le( 2El -2i * d + g+.f3Jz 

3y,(d2). 

der,, 
lze 

-c /13 

tWT 1l t2e 

b- j -2 .fJ; · 

- 2/3;. d - g + v3c +id./3 

3Az(e 2) =e -3f 

3T 2klz) ·~ d- g- (1 /vJ)c- Y3Jz 

17' 1(c1 2) = ri+ g~.f3c- (1/.fJ)Jz 
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Table III.lO 

ELE-CT~ON-ELE CTRON HATRIX ELEMEN'I'S FOR d
3 

ELECTRO.JS . ASTERISK DF. 1C_)TES 
TliE Clll\NGE I N SIGN WITH RESPEC'l' TO GRIFFITH 1 S MATRIX ELEMENTS 4 1 . 

2E d( 2E)c\ 1A 1) d( ', l ,k 1( 2E) 

I ~(1 ,,.).:: c( I.· I ,l 

1;( 1, \ 1)e
1{'E) 

I ;('E)e i(:E) 

d a+ 2b- 2j 

fl (2T 1).? 

a + 2b 

31.1 -2 ./G"; - /Gi• o 
-2 /Gi n + (2//J)c + 2d (1//J)c + (2//J)II. 

- g -(l j-.{3)11 +2j 

_.;r;, · 4c /IJ + (2/f:i)ll • n + (2 //})c +2d 
- g -(l /13)11-j 

o IJg+ h 

'J t 2( T 1) e 

-/3i" 

b + (4//J)c + 2d 
+g- j 

fi( 1T 2)e 

l3i ~ 

- IJII 

2/z. 

o 
-./3; 

b + Zd - g - -./3; 
-(2//J)h +j 

2h * . 

3e - Sf 

-2h 

3i ~ 

-i * 

(2//})c + 2d +e +2h • 
- 3f +g+(l/f3)h 

tl( 2T 1le d( 1T 2)e t 2e 2( 1A 1) 

- 3i -Si* 2r;+21!/IJ 

b- j +2d + g 1"311. - 3i 
+2/; //3 

b +4c!/3 +2d -i* 
- g+j 

/; H c 1/:J' '2tl 
- 2g - j 

2v'3i 

e +2tf +2c /f3 
-~:'f -h !/3 

d( I E)c: 2
, \ 1 ~ fl - 2c f /:J > :!.d - g - J3h - j 

tj( 1 
};).:: : 

2
/\ 2 = u + 2 J3c + '2tl- g + lz /IJ- j 

d: 4J1 1 ~ 3IJ -3j 

/ ~( 3 T 1 )c: 41'2 = 1J + '2d-'!.g-4h/-':i-j 

e • 2d + (2 /J3)c 
- g -(lz/.f3) - f 

211 N3 

- 3i 

+i ... 

1c /v'3 +21z/v'3 

2cf,r3 +2d +e -f 

-~;.· -!; !/} 

2c /IJ > '.!../ + e 
- 3/- 2~: 
- 2/,j,·"J 
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T ab l e III .ll 

EL F. CTSO='! - ELE CTRON MATRI X ELE fvi.F.NTS FOR d
4 

ELECT RONS . .li.STEP.I ~Y DE NOTES 
CH NJ GE I N SI GN WITH RESPE CT TO GRI PFI TH 1 S MAT R I X ELEMENTS . 

" JTI I~ ~~ ~T1 ) c 1 ~ ( 2 1'2 )e 1~[3T1 ) c2 ( 1 , 1 1 ) ti h't )l!1 (1 E) tj ~ 7'1 )<:2 e A1 ) 12i'fEJ 

11 a + Gb - 3} - v~i - lGi. ..f2, + ,'?, " ... 
z;.; _ __;,;:h .. o o -~ IJ v:J 

l?<> r 1)r n + 2b + /Jc 2c +h + ; * ·• FJi -/2h - Z 

+ 'Jd - 2g 

- l Jh - 2.i 
.- /~( ~ T~)c a+ 2b + /3c - IJ i* - l'Si* S i + l2g 

+ 3d - 2g 
1 

I ~e T I k ' (I , ,) 
- /3' " 

4 4 2 
/J + .fJC + 1d - -I'Jc - 73" o -/Gi * 

+ e + f - 2g 
? 

- ;, h - j 

'i e r 1 J L; <
1 EJ 

v3 

b + ~c + 4d - 2h ""' - -/Gi* v3 
+ e - f - 2g 

2 

t )<
1 r,>c=e.·~.: > 

- .[J h-j 

b + ~-C + 4d l2 i 
' '3 

+e - 3/- 2g 

2 I . 

/2c l ( E) 
- -13 l+J 

1 
n c +3 d + 3e 

2 
- 5( - 2g - -h 

- ,/3 . 

trl 14 ~ ~ (21'z)e 1~(2 7'2)'-' ~~eTt lc ·l<JA 1 J ~~( I T2) c2 (1 E ) t i (1T 2)e2eA1) 
2 

12c J 

l l n + Sb- j ,rc,· - 5 .f2i 2 ,'2 • . ,f"ll ... l o - 7J" -/Zg + i3 " o 
,?e '/'I )c n + 2b + l:fc - 2c - h * -I'Ji - -/3 i - i-~ i - .f'l.h ' 'i 

+ 3d - ..fJ/c - 2j .. 
li(-T1)c 

n + 2 b + ,r:Jc 
,. 

+5i* 2/2 - 3 i s ·* -I /2,: + ""7.1 " 
+ 3d + ,rJ/c 

I i (' 7'1 ) L= (''I,) b + ~ -- C + ~d + C 
\ I :J 

- 3f+ ~~;; + JJ" - 2 /3/i o - 3 ['!. ;* 

-j 
"> ~~( I 1'2)1-2 (I f:.) 1 4 2 

ú+ J jc + •ld + r - f"Jc - f"j h + ..[2; * 
.-; 

2 
-f- 2 ~,; - --,-. /c . VJ 
+j 

tj (l 7', ),1 ~ ;\ 1) 
~ + r.)· • b +,fj. c +4d v_, 

+ c +f- 2g 
2 . 

/ ,.: l - -/:3' " +] 
s 

13
c + 3rl + 3r. 

·I 
- Sf + .f'j " 
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ti 
t? (-E)e 

t?(-E)c 

ti (IE)e:(t A t) 

Table III . ll 

I~ 
2 

2a + 1b 

2a+4h-3j 

3b + .J'Jc +3d 
+ 2/'JII 

2 v'3i 

3b +l3c+ 3d 

( Continued) 

l ~( t .·l t) t:2( tAI) lj~E)el(IE) 

2./7 
212g+ IJ" 

')r.'f 

+ -{J- !t* 
-4 ,r:J; - 2.f'Ji .. 

4 8 4 * a+ ,[Jc + 'ld + ,f"jc + .r;r;" 
+ e +( -2g 

2 . 
- .. r-xll+2; 4 

a+
13

c+4d+e 
2 

-j-2g- ~h 
. ,f;j 

-; 

e• 

o 

o 

IGr;+ /211 

+ 21211 . 

Ge - 10( 

1 * 
~ /311 

o 
4 

a+.(Jc+4<f 
4/2 2 / 2 

-l}c-,[Jh 
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Table III.ll ( Continued ) 
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For the matrix elements of the complementa ry states 

dlO-n (n = 2 , 3, 4, 5), the nondiagonal matrix elements r emain 

the same as in dn matrices. The diagonal matrix elements of 

dlO-n states differ from the corresponding ones of dn by a 

function which is a linear combination of a , b , c , ... , j, 

as derived by Sharma and Sundaram41 : 

(3-m)a + 4(3 - m)b + (24-4m-6i) Cc/VJ + d) 

+ (6-3f)e + (Sf -lO) f + (2m+3f-l2)g 

+ (2 m+3.f' -l2)h/V3- 2(3-m)j ( 7 3) 

where the integers m and ~ are connected to n by the relation 

m + ~ = n or 10-n (74) 

In Eq. (7 3 ), t 2 represents the orbitals E, , n, and r, , ande 

r ep r esents the orbitals e and €. S. and S are the total spin 
l 

quantum numbers and ~he r. and r are the irreducible represen­
l 

tations of the cubic group . Th e difference between the diagon-

n 10-n al element of d and that of d as given by Eq . (73) 
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reduces, as expected , for the pure d-electron case to 

= (45 A,.. 70 B + 35 C) -

(9 A - 14 B + 7 C) (rn +f) (75) 

where A, R, and C are the standard Racah parameters . One 

notes that in the case of pure d - orbitals, expression (75) 

depends only on the sum (m + ~ ), which , according to Eq . (7 4 ), 

is n or 10 -n , and h e nc e , for a given n (with whatever appro -

priate values of th e s et m, ~ ) , the difference between the 

diagonal elements in Eq . (7 5 ) is constant . Th e formula above, 

Eq . (7 3 ), is particularly significant because it reveals tha t 

the diagonal elements of the dlO - n configuration change b y 

different amounts from the corresponding ones for the dn con­

figuration . As an example , for the configura tion d 3 the dia-

gonal element 
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and the corresponding one in the configuration d 7 differ by 

the amount 

[-12(c/ /3 + d) - 6e + lO f + 6g + 2/3 h] 

whereas the diagonal element 

in the configuration d 3 differs from the corresponding one 1n 

the d 7 configuration by 

[-3a- 12b ~ 6(e//3 + d) + 3e - Sf + 3g + 13 h+ 6j]. 

Also, in the configuration d 3 the diagonal element 

differs from the corresponding diagonal element in the d 7 

configuration by 

[-a- 4b- lO(c//3 + d) - 3e + Sf + Sg + Sh//3 + 2j]. 

It is clear from the examples above that the various diagonal 

elements are changed by different amounts in going from the 

d n h dlO-n f' . to t e con 1gurat1on. On the other hand, if pure d-

orbitals are involved, all the diagonal elements of the d 3 

configuration differ from the corresponding diagonal elements 

of the d 7 configuration by the constant amount (-l 8A + 28B 

- 14C) , which agrees with the result given by Griffith
46

. 

Thus, in general, the present results from the improved treat-

ment differ from the corresponding results in the simplified 
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theory of the pure d-orbitals. In particular, the extended 

theory shows that the matrix elements of complementary con-

figurations are not related by a constant factor. 

It must be recalled that in cubic-crysta l fields the 

diagonal matrix elements for the states 
. 1) 

Jt; e are further ad-

mixed , as usual, by the crysta l field term (0.4 1 - 0.6m) 6 , 

where 6 = lO Dq is the cubic-field splitting parameter. The 

splitting parameter 6 is positive for the octahedral symmetry, 

and in that case the t 2 level lies belovr the e level in energy . 

On the other hand , in the case of tetrahedral symmetry it has 

been shown by Griffith46 that the parameter 6 changes sign, 

th ereby inverting the t 2 and e levels. Also , the diagonal 

matrix elements of the dn configuration are related to those 

of the dlO - n configuration in a given symmetry (octahedral 

or tetrahedral ). This is a very important result concerning 

the improved theory, since the diagonal elements no longer change 

by the same amount , as shown by Eq . {7 3). Thus, in several 

cases, based solely on this type of change in the diagonal 

e l ements , the energy levels in the new treatment are expected 

to be different , and certain levels which are degenerate in 

the old treatment are oredicted in the extended theory to 

have split components. 

At first g l ance , the full import of the generalized ma-

trices (Tab l es III . 9- 12) may not be obvious, owing to the fact 

that one now has eleven parameters (a , b , c, ., j, and 6 ) 

replacing four parameters (A, B , C , and 6 ) of the old theory. 

The large number of parameters makes the theory apparently l ess 

attractive, but it is important to note that it includes the 
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effect of the surroundings in the correct way. Th e new theory, 

however, is very significant, since it has been able to test 

the calculations 39 • 40 made on GaAs:Cr 2+ and GaAs:cr 3+ and make 

comparisons, which we will discuss in detail in Chapter IV. 

Also , this generalized treatment gives correct group-theoretical 

assignments to the observed energy levels of the impurity in 

solids. Furthermore, using this refined treatment, Sharma and 

Sundaram43 have shown the importance of these matrices by using 

it for the prediction of the Coulomb and exchange interaction 

constants for MgF
2

:co2+(d7 ) and MgF 2 :Mn 2+ (d5 ), which turn 

out to be significantly different from the free-ion values. 

Moreover, the general treatment is h elpful for r emoving the 

accidental degeneracy observed in c ertain areas. 41 • 43 

We now proceed , in Section B, to consider the other inter-

action terms c ontained in the Hamiltonian (Eq . 4), namely, the 

spin-orbit and spin-spin interactions. Also, the spin-Hamil-

tonian parameters will be derived in the next section, making 

use of the cluster wave functions already present ed (Eqs . . 10-14). 

B. Spin-orbit and spin-spin irttéractions 

This section will be separated into two parts. In subsec-

tion B.l we will discuss the spin-Hamiltonian parameters for 

2+ 2+ . the GaAs:Cr and InP:Cr materlals. In subsection B.2 we 

will discuss the energy splittings due t o the spin-orbit and 

2+ 2+ 2+ 
spin-spin inte rac tions in the GaAs:Fe , GaP:Fe , and InP:Fe 

materials. 

B.l 
. ' 2+ 2+ 

Spin-Hamiltonian parameters for GaAs:Cr and InP:Cr 

2+ 4 2+ 4 For the GaAs:Cr (3 d ) and InP :Cr (3d ) semiconductors, 
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18. 22 . 

the localiz e d irnpurity energy levels ' . are shown i n 

the d i agrarn depicted in Figure II . l . In 

~ , and ~ are 
n ç 

a cubic crystal field , the wave funct i ons ~~ ' 

degenerate cluster orbitals represen t ing t h e 5 ground s t ate T2 

(for Td syrnrnetry) , and the cluster orbitals ~e and ~E represent 

5 
the degenerate excited state E . Because.the ground state is 

orbitally degenerated , the system undergoes a Jahn- Teller dis -

. 64 , 6S ( d " ) tor tlon see Appen lX I . Experimental evidence i n t h e 

2+ EPR spectra of GaAs : Cr : (Ref. 18 ) and InP : cr 2+ (Ref. : 

33 ) i ndicates that a tetragonal Jahn-Tel l er distortion occurs 

in these rnaterials . The tetragonal J ahrr- teller distorti on 

lowers the local syrnrnetry frorn tetrahedral (Td ) to t e t ragonal 

5 Consequently , t he ground state T2 ( in Td s yrnrnetry ) 

sp li ts i nto SB 2 and 5E (in o 2d syrnrnetry ), whereas t he exc i ted 

state SE (in Td syrnrnetry ) splits into SA1 and 5B1 (i n o2d s ym­

metry ), as explained i n Appendix I and depicted in Fi g . II .l. 

We may assume , as a first approx i mation , that the wave func -

tions of the cluster are not altered significantly i n going 

fr om tetrahedral to tetragonal syrnrnetry . This assumpt i on i s 

valid i n the case of a small tetragona l distortion , so t hat 

the angl e B' (see Fig . III.4 ) does not deviate appreciably 

f r om the values of cosB ' = 1/ /3 and s i nB ' = 12!13 . . I n Chap-

ter I V, we give the estimate of the Jahn- Teller distortion 

2+ for GaAs : Cr . The main effect of this i nteraction , h owever 

sma ll i ts effect on the wave f u nctions might be , i s t o s plit 

the energy levels of T2 _and E syrnrnetry of the tetrahedron in 

the manner mentioned previously . With the energy- levels dia -

gram , incorporat i ng t he effects of c rystal - f i eld and Jahn-
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Teller distortionf and the c luster wave functions f we can pro-

2+ ceed to analyze the magnet i c properties of GaAs :Cr and 

2+ 
InP : Cr . Although the spin - orb i t and spin-spin interactions 

a r e small in the 3dn s ystems f their presence has sign i ficant 

c onsequences for the single-ion magnetic propert i es f such as 

th e g - factors and the zero- f i eld and cubic-field parametersf 

as measured by EPR . 

For a system with axial symmetry (such a s D
2

d ) f the spin­

Hamiltonian is expressed by 64 f 78 

HS = fC [ g S H + g ( S H + S H ) ) 
B 11 Z Z .L X X y y 

+ D[s 2
- l S(S+l)) 

z 3 
+ a 

6 
( 7 6) 

where uB is the Bohr magneton ( UB = Me/2mc) f Sxf Syf and S
2 

are the x -f y -f and z-components of the tota l spin S of the 
-+ 

s ystem . H is an externally applied magnetic field, with com-

ponents H f H f and H . 
X y Z The g -factors are designated with a 

paral l e l subscript for the g tensor-component and with a zz 

Perpendicu l ar subscript for the g or g tensor-components 
XX yy 

The parameter D is known as 

the " zero- field spl i tt i ng parameter " f and ~f as the "cubic -

field parameter ". In order to obta in the gf Df and ~para-

meters in t he spin-Hamiltonian (Eq . 76) 2+ for GaAs :Cr and 

2+ 5 
InP:Cr one perturbs the ground state B2 (see Fig. II.l) 

by the spin-orbitf Zeeman f and spin-spin interactions : 



... 

L 
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where g (= 2 . 0023 ) is the free-electron g-factor . o 
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(77) 

( 7 8) 

(7 9) 

ívithin a manifold of states originating from a 2S+lL term 

(5D in our 

spin (v 8 8 ) 

case ), the spin-orbit (V80 ), Zeeman (Vz) , and spin-

7 8 t erms can be represen t ed by the equivalent operators 

vso = À I: ··s ( 80 ) 

-+ -+ -+ 
vz ]..IB (L + g S ) · H o ( 81 ) 

-+ -+ 2 1 -+ -+ 1-+2-+2 ] 
vss = - p [(L· S ) + -L • S - -=-L S 

2 3 
( 8 2 ) 

L and S are the total angular momentum and spin operators . 

In Eq . (80 ) À is the effective spin- orbit coupling of the sys-

tem , and for systems which obey Hund ' s rule , it is related to 

. b . 1 . by7 8 f 7 9 the one-electron spln-or lt coup lng constant ç 

À=±-- (83) 
2S 

In Eq . (83 ) the positive sign stands for a confiquration of a 
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l ess than half-filled shell (i . e ., ct 1 , d 2 , d 3 , d 4 ) f and the negative 

sign for a more than hal f -fill e d she11 79 (i. e ., d 5 , d 6 , d 7 f 

d 8
). The ground t erm of d 5 is 6sf a nd this cannot be s p lit by spin­

orbit coupling operato~ alone to any orde r (similarly for the ct 10 

configuration) . Th e d - electron spin-spin parameter p f in 

eq . (82 ), fo r a 2S+lL t erm which obeys Hund ' s rule is given 

80 
by Pryce to be 

where 

p = 

p 
n f m 

4 p ~- { ( 4 s + 5 ) p 1 f 2 + 1 ( l o o - 6 2 s ) p 3 f 4 } 
7S(2L+l) 7 

r 

5 
o 

( 8 4) 

(85) 

and ~d ( r ) is the radial wave function o f the magnetic ion . In 

Eqs . ( 8 4 ) 'd d 52 and (85 ) f only the "local " t erms are cons1 ere . 

One obtains the g-factors f Df a nd a parameters of the spin-

Hamiltonian (eq . 7 6 ) by treating the spin-orbit f Zeeman f and 

spi~ -spin interactions by perturbat ion theory . In the c ase of 

2+ . 2+ 
GaAs : Cr and InP:Cr f th e ground state ~ O = ~s (see Fig. II.l) 

is non - degenerate (in o2d symmetry ) f and in first - order per-

turbation theory one obtains 

(8 6 ) 
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since 

<'±'oiLxl'±'o) = o ( 8 7-a ) 

('±'o I LY I 'l' o> o (87-b) 

<'l'oiLz l 'l'o? o (87-c) 

In the second-order perturbation of the spin~rbit and Zeeman 

interactions we get , calling the excited states 'f' ( 'l' = 
n n 

'l'; , 'l'n , 'l-' 8 , '±'E in Fig . II.l), a correct ion to the e n e rgy: 

E(l)=- :L I (Y~Ii\t . s• + PB<L' + g 0St) .KI'f'n) 1
2 ( 88 ) 

n~O En-EO 

By collect ing the terms in first - and second-order (Eqs. 86 

and 88, respectively) which are linear in S.H. (i, j = x, y , z), 
l J 

we obtain 

(8 9 ) 

The t erm in parentheses in Eq . (89) is the tensor component 

gij . In axial symmetry (such as D2à), one can write 

(90 - a ) 

(90-b) 

the other tensor componehts being zero . By com?a rison of Eq . 

(89 ) with the spin-Hamiltonian (Eq . 7 6 ), and with Eqs . (90), 
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one identifi e s th e g -factors as 

a = go - 2 L <Y'o I ;\ Lz I \f n > <rn l Lz l ·\f o> ( 91) 
~ li 

n:tO 

g .L go -2 L (YoiA Lx l'fn><·YniLxl ~;o> ( 9 2) 

n=tO . En Eo 
.. 

By collecting the first-order perturbation of the spin-spin 

interaction (see Eq . 86) and the second- orde r perturbation term 

of the spin- orbit interaction which is prooortional to s.s. 
- l J 

(see Eq. 88), one obtains, after some mathematical manipulation, 

the following expression for the zero-field splitting: 

< I .... -? 2 l -rL· 2 -s> 2 I "';o ' D = - .P ·''F o ( L • s ) - 't I 
j 

( 9 3) 

In orde r to der ive an e~plicit expression for the cubic term 

in the s pin-Hamiltonian, ~' one has to consider the fourth -rder 

ef f ec ts of the spin-orbit interaction and the s econd-order 
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effects of the spin-spin interaction . 

2+ 2+ 
For GaAs:Cr and InP:Cr , the ground state ~O is given 

by ~ç ' and the excited states ~n are given by ~~ ' ~n ' ~e ' 

and ~E (s ee Fig. II .l), with the energy separations , En - E
0

, 

between the excited states and the ground state indicated in 

Fig . II.l. The equations (91)-( 93 ) are greatly si~plified 

for the c ase o f 0 2d symmetry, for which the wave functions ~ 
Ç, ' 

~,; ' ~ 
n ' ~e ' and ~ 

E 
transform like the orthogonal sets xy, yz, 

3z 2 2 and 2 2 
r espectively , where the xz, -r ' X - y x, y, z are 

coordinates of the central system of reference (see Fig. III.3). 

The application of the L and L operators upon these ortho-z X 

l l . 64 gona sets resu ts ~n 

(94-a) 

= -Lx ( yz ) ~ = i(xz) 
n (94-b) 

From Eqs . (94 - a ) and (94-b), one sees that the L operator 
z 

mixes the ground state ~ç with the ~E excited state only, and 

Lx mixes the ground state ~ç with the ~n state only . Upon 

substitution of the ground st~te ~O and the excited states ~ 
n 

in Eqs . (91)-(93) by the corresponding states ~ç and ~~ ' ~n ' 

~e ' and ~E states , the expressions for g 11 , gl., and Dare 

reduced to 

gll = go -2 ('v:.; 1 ALZ rr~ > ( Yt:: 1 Lzl Y~) 
E 3 

(95) 

g..L = go -2 < ·'J?-s I À L~, I 'Kt> < Y;, I L I '"'V) 
E 

X -.;_ 

l 

( 9 6) 
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( 9 7) 

2+ 2+ 
For both GaAs:Cr and InP:Cr , the energies E

1 
and E

3 
are 

indicated in Fig. II.l, and the d-electron spin-spin parameter 

5 
p , according to Eq . (84) f for the D term state (L = 2, s = 2) is 

where p 1 f 2 and p 3 f 4 are defined as beforef in Eq. (85). 

simplify the nota tion in Eqs . ( 95)- ( 97 ) f we define 

{ \jl r I ÀL I IJ' ) /i 
'"' x n 

<IJ'riÀL 1\j/ '; /2i 
c, Z E 

(IJ'EILz i iJ'ç> /(-2i) 

and Eqs. ( 95 )-( 97 ) can be written in the compact form 

D 

= g -o 

- 3p 

(98) 

To 

(99-a) 

(99-b) 

(99-c) 

(99-d) 

(100) 

(101) 

(102) 
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(lo 3) 

23 It has been demonstrated that second-order spin-orbit coup-

ling between different LS terms provides an additional inter-

~ action with the ground state. vallin and Watkins 23 have deduced 

the contribution to the D and ~ spin-Hamiltonian parameters 

due to the spin-orbit coupling of the ground state with the 

triplet excited states , for a d 4 configuration . Including 

these second- order spin- orbit coupling to the triplet states, 

23 one has 

+ f 2 
E i + 2 "$'2 -s'1 f E l ( l + SE l) + ~i f E 2 } 

E 

where the energy E is the difference of the average energy 

of the triplet states and the ground-state energy . The spln-

( lO 4) 

(lOS) 
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spin interaction and the spin-orbit coupling to the triplet 

states make a very small contribu tion to the spin- Hami l tonian 

parameters D and ~ · The order of magnitude of E1 , E2 , and E3 

is 10 2 to 10 3 cm- 1 , whereas Eis of the order of 10 4 cm- 1 . 

The order of magnitude of the spin-spin parameter P is 10 - 1 

-1 2 - 1 em , and ç 1 and ç 2 are of the order of 10 em . Although 

the spin-sp in and spin - orbit coup 1ing to the triplet excited 

states result in a very sma l l contribu tion to D and ~ , we 

will i nclude the m in our calculations , so tha t more accurate 

estimates of the spin- Hamiltonian parameters can be made . 

To obtai n the expres sions o f g 11 , g L' D , and a for 

2+ 2+ 
GaAs : C r and InP : Cr 1 we calcu l a te the i ntegral s ç 

1 
I s

1 
1 

s
2

1 and s 2 (see Eq · 99 ) using the cluster wave functions 

For IJ' ç ' IJIE,; , IJ'n , IJI 8 , and IJ's as expressed by Eqs . (1 0 ) - ( 14 ). 

the matrix elements of the L operator b e tween l i gand wave 

functions 1 one has to express this operator i n terms of each 

ligand ' s own coordinate system x . y.z . . 
l l l 

The pos i tion vector 

f l l d h .th 1 ' d . d b o an e e ctron ocate at t e 1 1gan lS expresse y 

-+ -+ 
r = R. 

l 

-+ 
+ r . 

l 

h -+ . h . . f h .th 1 ' d d -+ w ere R. lS t e pos1t1on vector o t e 1 1gan an r. 
l l 

. . f h 1 1 . h . t h is the pos1t1on vector o t e e ectron re at1ve to t e 1 

nucl ea r position (see Fig . III . S ). h . t h t f th T e J componen o e 

angular mome ntum ( j = X 1 y 1 z ) is then expressed in terms of 

.th 
the coordinate system cente r ed at the 1 l igand : 

L . 
J 

-+ -+ 
(( R. +r .) X 

l l 

-+ 
p. ] . 
- l J 

-+ 
[ L. ] . 

l J 
. ( -+ l R. X 

l 

-+ 
v. ) . 

l J 
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/ 

o 

FIG . III . S 

o o t ~ f 1 t 1 d th oth 1 ° ~ Po s ltlon vec or r o an e_ec ron acate at e l lgand.Ro 
l 

h o o t f h . th 1 . d -4 o h o . t e oosltlon vec or o t e l lgan. and r. lS t e oosltlon 
J.. l .. 

of the electron r e lative to the ith nuclear position . 

is 

vector 
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For tetrahedral syrnrnetry defined by four ligands, and the 

coordinate systems as shown in Fig. III.3, we obtain the 

following expressions for the L
2 

operatorf expressed in terms 

of operators defined relative to each of the ligand coordinate 

systems: 

L ( l) 
z 

L ( 2) 
z 

L (3) z 

Using the cluster wave functions (Eqs . 10-14) and the equations 

above when the ligand wave functions are involved in the 

matrix el ements (see Eq. 39) f we obtain the expressions of ç 1 f 

2+ 2+ s 1 f ç 2 , and s 2 for CaAs:Cr and InP:Cr . Since the cluster 

wave functions are written in terms of the admixture coefficients 

Àd 
8

, Àd , and Àd f -the expressions derived for ç 1 , s 1 , 
' , p(J ,p1f 

ç 2 , and s 2 will also depend on these coefficients, and are 

given by 

, 
I 
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( 106 - a ) 

+ V2 .1_ .:\_ - /\.
2 

/2-2AR /t À. 1} 
d I p /7' d I Po- d I p 77' d I P;y d ' s -

(1 06 - b ) 

(1 0 7- a ) 

s = N N { 1- [4 À / cjl I X ) + ;{ /cp I v ) + 
2 E T2 d I P rr "'-' ct 5 Py(CJ d , p<r ""-. d't;) A- po- '15 

;;\. <'<P I X )l + [ lld Àd I V2+ À. d2 /2 - A.R t\d À d ] ] 
d 1 s " d l) s S J , p 7r 1 Per 1 p ir , pi/ 1 s 

(1 07 - b) 
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where (83} was used in arder to express ç 1 and ç 2 in 

terms of the one-electron spin-orbit constant ç. The symbols 

sd,d and sp ,p are, respectively, the spin-orbit coupling con-

2+ stants associated with the d-electrons of Cr and with the 

p-electrons of the ligands (4p electrons of As , in the case of 

2+ 2+ GaAs:Cr , and 3p electrons of P, in the case of InP:Cr } . 

The spin-orbit coupling constants sd,d and sp,p can be evalua­

ted by means of the integral 

~ 17 ? ::: r )..(. I1 .( ( f ) <;; ( r) M. tl e ( r) cL r 
-'\. > t. • 

(108} 

where ~ni(r) is r times the radial orbital (with quantum num­

bers n, ~ } of the atam or ion concerned, and p (r} is the r-

dependent spin-orbit coupling operator: 

-t;Cr) d V(r> 

dr 
(109} 

In Eq. (109}, the potential , V(r}, experienced by an electron 

is given by 

V< rJ (110} 

where En t is the orbital energy . Since p (r}, in Eq· (109}, 

depends on dV(r}/dr, En i in Eq . (110} effectively does not 

contribute to the spin-orbit coupling constant. The matrix 

eleme nts such as < <D d I p (r} lx ) , in Eqs . (100} and (107}, 
r; - PITÇ 

are two-center integrals of the spin-orbit coupling operator 

2+ ( Eq . 10 9 ) between the Cr wave functions (such as ~d } and 
ç 
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the ligand ' s wave functions (such as X ) . In 
p7TÇ 

Eqs . (106-b ) 

and (107-b ), 

i on, and A is 

A = 

R is 

the 

1 

12 

the distance o f a ligand from the central 

integral 

( 111) 

The integral A originates from the action of the L operator 

on the l igand wave fu.nctions . 

In arriving at the expressions (106 )-( 10 7) we have retained 

a11 the "local " , "non - local ", and "distant " t erms . The local 

terms are defined as those elements which contain only the wave 

function of the central ion ; the distant terms are the ones 

which contain only the wave funct i ons of the ligands; and the 

non - local terms contain not only the wave functions of the 

c e ntral ion , but also those of the ligand ions . For the spin - spin 

inte ractions, only the local terms have been retained . Also , 

the ligand- ligand interaction terms arising from the spin-

orbit effect , and the ligand-ligand overlaps, have been neglected . 

The numerical values of the various integrals , such as p , 

A, Çd d ' Ç , and overlaps discussed in this section wil l , p , p 

be given in Chapter IV . The numerical va l ues for g 11 , g .L' 

D, a , and t he admixture coefficients Àd , Àd , and Àd 
2+ , s , p\J ,p7T 

for GaAs : Cr and InP : cr2+ will also be presented (and com-

pared with the available experimental r esults) in the next 

chapter . 

B.2 
2+ 2+ 2+ 

Energy splittings in GaAs : Fe , GaP : Fe , and InP : Fe 

2+ 2+ d 2+ . d t th ~or GaAs : Fe , GaP : Fe , an InP:Fe sem1con uc ors , e 
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h l . t 28-32,3 4 f d h'b' f p oto umlne scence spec ra were oun to ex l lt our 

well -resolved lines. To explain these lines, one has to con-

side r the crystal field, spin-orbit, and spin-spin interactions. 

The 5 D free-electron level of Fe 2+(3d 6 ) is split by the cubic 

crysta l fi e ld into the l eve ls ST 2 and SE (see Fig. II.3). Th e 

ground state SE is not split by first-order of the spin-

orbit interaction, as can be seen by direct application of 

-+ 
the L operator on the angular parts of the ~e and ~E wave 

functions. s The degenerate ground state E splits under 

second-order of the spin-orbit interaction and first-order 

f h . . . . 7 8 h d t t \li o t e spln-spln lnteractlon. T e egenera e s ates r 
E 

and ~e are also mixed under these perturbations. Low and 

Weger 37
r

38 have calculated the energy level splittings of the 

ground state SE of the d 6 configuration in a cubic field, on 

the approximation that the wave functions are of pure d-charac-

ter. 37 38 We have modified Low and Weger's ' results , by con-

sidering the cluster wave functions . This modification is re-

flected in the spin-oribt coupling parameter , which in our 

case is expressed by ç 2 (see Eq. 99) instead of the pure d-

electron spin-orbit coupling parameter. Table III.13 lists 

the wave functions and the energy splittings due to first -

order spin-spin interaction and second-order spin-orbit in-

t e raction. Th e energies in Table III.13 are given in terms 

of the crystal field splitting parameter ~ , the spin-orbit 

coupling constant ç 2 , and the spin-sp in parameter p . The 

energy values given in ~able III.l3 properly r e duc e to the 

v a lues given by Low and Weger in the limit of pure d - e l ectrons . 

2+ 2+ 
To obtain the energy splittings for GaAs:Fe , GaP:Fe , 
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Tab1e 111 . 13 

ENERGY LEVELS AND STATES FOR THE ORBITAL DOUBLET E WITH SPIN 

S=2. TI-IE NOMENCLA'J'URF. l 1]1 ,b) REPRESENTS AN ORBITAL STATE 'V a · a 
AND A SPIN STATE b , 2 5 AND 2a. STA.NDS FOR. SYMMETRIC AND ANTI -

SYMHETRIC COMBINATIONS 

(1 2
5
)= !{1+2)+!- 2)}, 

V2 

Energy Sp1ittings 

o 

2 -18(p+'.)) 
)__1 

D. 

OF THE m
5

=2 AND m
5

=-2 QUANTUM NUMBERS 

l2 a )= _l_{ I +2) - 1-2)} ) . 
1/2 

States 

· 1 {I 'H 2
5 > - I ·~ o> } \ff 9' E' 

1 I ~,+1) -i I \j-'B ,-1) 

I ~,~ , 2 a) 

-VI I '\jlG f -1> +! I 'ff) f + 1 > 
2 2 

k{ l ''t-'9,2
5 > +I ttlé,o>f 

_L [ I "~ , 2 s) - I "~e , o / } 
V2 

1 1 ·~ , + 1 ) +VI_ I "f0 , - 1 > 
2 .2 
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and InP : Fe 
2+ 

rnake o f expression (107 - a) for with , we use 1;;2' 

the atomic functions <Pd for F e 
2+ 

and and wave ' Xs ' Xp ' xP 
(J 1í 

for the wave functions o f As and P . The spin - orbit interaction 

taken to first and second order splits the excited triplet 

state 5T2 into three levels, with eigenvalues J' = 1, 2 , 3 

35 - 38 7 8 of an effective angular momentum operator J. ' The 

energy 1evels , up to second order in the spin- orbit interac ­

tion , and the eigenfunctions of the ct 6 configurat i on ( in c ubic 

symmetry ) have been given by Low and Weger 37 , in the case of 

pure d - electrons . Making use of the c1uster wave functions 

( ~~ ' ~n ' ~z;; ) , the energy contribut i on of the 5T2 state of 

the cluster with J ' = 1 (see Fig . II . 3 ), due to firs t- and 

second- order effects, the spin-orbit interaction is given by 

L'IE 
18 

= - 3 Z:l + 5 

z;; 2 
2 (112) 

where z;; 1 and ~;; 2 are our derived expressions g i ven by Eqs. (106 - a ) 

and (107 - a ), and 6 is the crystal field splitting . In the 

1imi t of pure d - electrons , Eq . ( 112 ) properly reduces to the 

37 value given by Low and Weger . 

There is no al l owed electric dipole transition from the 

5 5 excited state T2 with J ' = 2 , 3 to the ground state E . The 

allowed electric dipole transitions are the ones from the state 

ST 5 . . with J ' = 1 to the four lowest levels of E , as lndlcated 
2 

in Fig . II.3 . This selection rule can be obtained from the 

direct product of the ir_reducible representations in the Td 

group , of the irreducible representations of the involved eigen -

functions (see Fig . II . 3 ) and the e l ectric dipole moment 

----------~--------------------------------------------~ 
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o perator (T2 ). The final result of these direct products 

mus t contain the tota lly symmetric representation A
1

. For 

th e electric dipole transitions, the energies for the tra nsi­

tion between 5T2 [leve l (6) in Fig. II.3] and t he l eve l SE 

[ split state s ( 4 ) r ( 3 ) r ( 2 ) r and (l) in Fig . I I. 3 ] are 

2 

E (6- 4 ) 6 3Çl +1& c;;2 
+ K = - s 6 (113-a) 

c;;2 
2 

E(6-3) 6 3çl 
18 

2K = - + + s 6 (113-b) 

E(6-2) 6 3ç 1 + 
18 ç22 

+ 3K = - 5 6 (113-c) 

c;;2 
2 

E(6-1) 6 3ç1 + 
18 

+ 4K = - 5 --6- (113-d) 

wh e re K is the energy s pacing between the SE split leve ls 

(see Table III.13): 

(114) 

Th e equ a l spacing K of the energy levels were obtained b e -

c ause the effects up to second-order of the spin-orbit interaction 

were conside red. If the spin-orbit coupling effects are t aken 

to third-orderr one obtains unequal spacings for the split 

SE 1eve l s . 3 2 Here , we wil l not consider this higher-order 

effec t, which ma kes a contribution to K of about 1 cm- 1 , as 

. 28-32 34 one can infer from the experlmenta l results r for 

2+ 2+ . - 2+ 
GaAs :Fe , GaP : Fe r and InP : Fe , as compared to the values 

- 1 of about 15 em given by Eq . (11 4 ) for the same s y stems . 
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The evaluation of the energy transitions for GaAs:Fe , 

2+ 2+ GaP : Fe , and InP:Fe , using expressions (113) and (114), 

togeth er with Eqs . (10 6-a ) and (107-a) for z:; 1 and z:; 2 , will 

be presented in Chapter IV. 

C. Electronic transition moment 

In the study of optical transitions, intensity is one of 

the physical quantities which is commonly measured. The inten-

sity irradiated by an electric dipole moment can be expressed 

in terms of the probability per unit time, C , for a transi­mn 

tion to occur, from the state m to the state n 81 : 

I = N hv C m mn mn (115) 

N is the number of particles in the m state, and h v is m mn 

the energy differenc e between states m and n . For emission , 

the transition probability C is given by mn 

c mn ( 116) 

~here Amn is the coefficient of spontaneous emi ssion, p (vmn ) 

is the density of radiation 81 ' 82 , and B is the coefficient mn 

of stimulated emission. The transition probability is propor~ 

tional to the square of the dipole matrix element
82

: 

64n 4 3 
I P 1

2 
A = 

3c 3h 
\) (117-a) 

mn mn mn 

Bn 3 
rp 1

2 
B = 

3h
2 mn mn 

The dipole matrix elements, Pmn' are commpnly referred to as 
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"electronic dipole transition moments", or simply as "transi-

tion moments". As one can see from Eqs . (115) to (117), the 

quantity to be calculated is the transition moment, as far 

as intensities are concerned . 

The dipole moment operator is e;, where ; is the position 

vec~or of an electron , relative to the c e ntral coordinate sys-

tem of th e complex. The compone nts of the transition moment, 

with e = l, are given by 

Pm,n = <IJ1 lx ! IJ1 ) 
X n m (118-a) 

Pm,n <ljl IY !IJ' ) y n m 
(118-b) 

Pm,n 
<IJ1 nl z11J1m) z 

(118-c) 

\vhere the superscripts m,n correspond to the subscripts in 

Eq. (1 17). The x , y, and z coordinates can be expressed as r 

times a linear combination of spherical harmonics 64 , Y~ of 

arder Q, = 1. The cluster wave functions , IJ1 and IJ1 , to be m n 

used in Eqs . (118-a) to (1 18-c), can be written as products 

of the radial wave functions and sphe rical harmonics . To 

evaluate the matrix elements Pm , n Pm,n and Pm 1 n we make use 
X I y I 2 f 

of the addit ion o f angular mome nta, to expres s the product of 

two s pher ical h armonics in t e rms of Clebsh-Gordon coefficients 

and single spherica l harmonics : 

m1 f n~o 

< i 1 f 2 111J m 2 t .C1 i2_1 , m lt 111~) ~ ( 0,~) ( j 1 9 ) 
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The index ~ , und e r the summation sign , spans the values ~ 

·, ( ~ 1 - ~ 2 ). Table III.14 lists 

the product of the spherical harmonics needed for the calcu-

. mn mn T'ln l atlons of P ' , P ' , and P ' , when the orbitals ~ and ~ x y z m n 

are substituted for by the cluster wave functions ~s ' ~e ' 

~ç f ~ f and ~ (Eqs . 10-14 or 52-56). Table III .1 4 was ob-
s 1l ç 

tained using Eq . (119) and the C1ebsh- Gordon coeffic ients 
.;, 

83 given by Rotenberg et al. . 

When we substitute ~ and ~ ln Eqs . (11 8- a )-(11 8-c ) f the m n 

tr an sition moment matrix elements contain one-center, two-

center, and three- center integrals. The one-center integrals 

are the ones in which the c entral ion atomi c orbitals are 

The two-ce nter integrals are the ones in 

which the central ion atomic orbital is t aken for one state, 

and the ligand atomic orbitals (X ) are taken for the other 
n 

state , so that the matrix element is of the type (xnlxl~m) . 

Also, two-c ent er i ntegrals arise when the ligand atomic or-

bitals are taken for both states, excluding the matrix elements 

of different ligands. Three-ce nter integrals arise when the 

l igand atomic orbitals are taken for both sta t e s m and n , 

and different ligands are considered . We will n eg l ect the 

three-center integra ls, under the assumption that they are 

small compared to the two - center integrals. 

In order to solve two - center integra ls, we perform rotations 

on the central - coordinate syste m, transforming it into a 

s ystem of coordinates which is 
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z-co1inear with and parallel to the liqand's svstem of 

reference. The spherical harmonics (in the x y z system) is 

then expressed in terms of rotation matrix elements and spheri-

cal harmonics which are functions of the rotated coordinates 

(x ' y ' z '), as explaine d earlier in this chapter. Equation (2 2 ) 

expresses the transforma tion of a spherical harmonic Y~ ( 8 , ~ ) 

into functions of the rotated frame of angular coordinates O' 

and cp ' • The calculation of Pm ,n, Pm,n, and Pm,n, using clus-
x y z 

ter wave functions , involves spherical harmonics with ~ = 

1, 2 , 3 (see Table III.14). To rotate these spherical harmonics, 

we use the rotation matrices for ~ = 1, 2, 3 (s ee Tables III.4 

toiii.6 ). 

To calculate the transition moments, one has to use the 

wave functions W and W for the states m and n respectively. m n 

We will consider transitions from the ground state m to the 

excited states 2+ n of GaAs :Cr . Fig. II.1 shows the energy dia-

gram for these systems, with the ground state described by 

the cluster wave function Wç and the excited states by W~ , 

~n ' w8 , and WE . Whe n we calculate P:'n, p;'n, 

using the cluster wave functions (Eqs . 52-56), 

and Pm,n 
z 

we observe that 

the one - center integrals , coming from the d-wave functions of 

C 2+ 
r ' are vanishing . More specifically, these matrix elements 

are 

o 
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T able III .l5 

DI POLE TRANSITION MOMENTS BET~'-lEEN THE GROUND STATE m= 'c; Al'lD THE 

EXCITED STATES n= f 1 1 1 (] and E' , FOR SYSTEt-1S WITH LOCAL TETRAGONAL 

SY lJ1ET RY(SEE FIG . II.l) . 

~ Pm 1 n Pm ,n pm 1 n 
X y z 

~ 
o p ':S1f o y 

p -s, '~-l o o 1( X 

o o pS1 e 
e z 

E o o o 



.. 
.. 

106 

In other words, dipole transitions in these systems would not 

be observed if only pure d-electrons were involved in such 

transitions. The contribution to the dipole transition moments 

comes from the two-center integrals of the type 

where ~ i s a function of the central ion's coordinates 

(r, 8 ' , <P ' ,l , which are parallel to the ligand' s coordina te system 

(R, QD , ~ ). Table III.l5 lists the dipole transition moments 

between the states m = Ç and n = ~ ' n, 9 , and E . The x, y, 

and z compone nts of Pm,n, listed in Table III.lS, with the 

notation s = sin B' and t = cosB' (where B' i s as shown in 

Fig. III.4), are given by 

+ 

+ 



. 2 2 } 
+ J\ d J\. d 4 .. /I s t R1

1 

2 ' Per ' Pu Vs 

....,. e 
p'='• = 

z 

+ 1\ ~ 1
1
1 

1 - v2_ (-32+4Ss
2

) 1
3
1 

1
] 
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( 120) 

+ 1\ d I\ d 4 ( 3 s 
2 

- 1) R 11 1 + 1\ d Ad .1_ ( 3 s 
2 

- 1 ) R 11 2 ( 12 1) 
' s i l ' P7( 1/3 . I p(J" ' p'TT '{5 
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where the various integra1s I~~', r· ~~ ,, R~~,, and R'~~· are 

... 
I 

( 122-a) 

(122-b) 

( 122-c) 

( 122-d) 

( 122-e) 

( 122-f) 

( 122-g) 

(122-h) 

~ o 'tf R12= rY 
1 

(8, ) R~ ( R) Y ~ (G,cf~ (122-i) 

~ 

- /.. o ,• ' 
R11- 'fy 1 (&,<P) R

5 
( R) Rp (R) Y ~ (e.,J>t> (122-j) 

..)-
I -~ 1 '<f;' R11- rY 1 <e, ) R ( R) R ( R) Yi (G>,.f-)) . s p 

(122-k) 

~ l I I R~ ( R) Y; (·B,i-)) (122-l) R]_ 2= rY 1 (0, •/' ) ,_ 

i 
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Expressions (120) and (121) were deduced using the cluster 

wave functions (52)- (5 6 ) which are appropriate for a tetra-

gonal local symmetry (or a tetrahedral symmetry, for which 

cos B' = 1//3 and sin B' The numerical values appear-

ing in Eqs . (1 20 ) and (121) originated from the rotation of 

the central ion wave functions and from the Clebtsh-Gordon 

coefficients in the process of combining two soherical harmon-

ics. The matrix elemerits defined in Eqs . (122-a) to (122-l) 

are written in terms of integrals involving radial atomic 

functions and spherical harmonics. Rd(r) is the radial wave 

function of the central ion [in particular, we will be con-

c erned with the cr2+(3d 4 ) wave function]. As was mentioned 

early in this chapter, the radial atomic wave functions can 

be expressed in terms of Slater-type orbitals (see Eq. 8), 

obtained by self-consistent calculations66 ' 67 . One notices 

that the matr i x elements , Eqs . (122-a ) to (122-l), are of the 

form of overlap integrals, which one can evaluate using the 

f . h . 60 d . f . h a- unctlon tec nlque an approprlate wave unctlons. T e 

r esu lts for dipole transitions for GaAs:Cr 2+ will be presented 

in the following chapter, a1ong with ca1culations of pertinent 

physical parameters using the theory outlined in this chapter. 
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IV . CALCULATION AND COMPARISON WITH EXPERIMENTS 

This chapter presents the results of calcu l ations based 

2+ 3+ on the theory previously described for GaAs:Cr , GaAs : Cr , 

2+ 2+ 2+ 2+ GaAs : Fe , InP : Cr , InP:Fe , and GaP : Fe . Th e values of 

overlap integrals , as wel l as spin - spin and spin- orbit coup1ing 

constants for the materials mentioned above, are al s o p r esen-

~ ted . An estimate for Jahn-Teller distortion i s g i ven for 

2+ GaAs : Cr , and the values o f t he spin- Hami l t onian parameters 

g
11 

, g~ , D, and ~for GaAs : cr2+ and I nP : Cr 2+ are obtained and 

compared with experimental results . Estimates of i ntensity 

ratios for GaAs : cr2+ are discussed in conjunctio n wi th experi-

me ntally determined va1ues of the Jahn- Tel1er energy . The 

best values obtained for the admixture coefficients (Àd ' , s 

Àd , and Àd P ) , and consequently the charge transfers , of 
, p,., ' -Tf 

v I 2+ 2+ 2+ 
the cluster wave functions of the GaAs : Cr , GaAs : Fe , InP:Cr , 

2+ 2+ InP : Fe , and GaP : Fe semiconductors are a l so presented. 

A. 
2+ 3+ 

GaAs : Cr and GaAs : Cr energies 

. 39 40 As me nti oned in Chapter II , Hemstreet and Dlmmock ' h ave 

recently calculated electroni c energy l evels for GaAs doped with 

c r 3+ and cr2+ , u sing a modificat i on of the free - ion one- electron 

orbitals of t 2 and e symmetry . The resultant wave function nor -

malization constants obta i ned in this way were described in 

terms of the parame ters Ree ' Rt t ' and Ret (= /ReeRtt ), deduced 

. 40 42 from X calculatlons · ' . We have obtained the electronic 
a 

energy levels for these two systems us i ng the matrix elements 

l isted in Tabl e s rrr : 1o and III . 11 for d 3 (GaAs : cr 2
+ ) and 

4 2+ d (GaAs : Cr ) electrons in order to compar;- the results from 

- ----~--------------------------------
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their ca1culations and the extended theory presented here. 

d D ' k39 , 40 To repeat the calculations done by Hemstreet an 1mmoc , 

we have used the same parameters Ree ' Rt t' and Ret' to relate 

thetenindependent integra ls (a , b , ... , j ) [refer to 

Chapter III, Se ction A] to the free -ion Racah parameters A, 

B, and C , as follows : 

a = R2 (A + 4B + 3C) 
tt (1 23 - a) 

b 2 
(A - 2B + C) Rtt 

i 
(12 3-b ) 

R2 
I 

c = (2/3 B) et (1 23 -c) 

d = R2 (A - 2B + C) e t (1 23-d) 

e = R2 (A + 4B + 3C ) e e (123-e) 

f = R2 (4B + C) e e (123-f) 

g = R2 (B + C) et (1 23-g) 

h = R2 ( /3 B) et (123-h) 

i = RetRtt ( /3 B) (1 23-i ) 

j 2 
( 3B + C) = Rtt (12 3~j ) 

The values we h ave us ed for Ree' Rtt ' Ret' A, B, C, and 

th e crystal field parameter 6 are the same as th e ones us ed by 

2+ 3+ He mstreet and Dimmock, for GaAs : Cr and GaAs:Cr , and are 

listed in Table IV .l. To solve for the eigenvalues in both 

c a ses , we diagona lize a 20 x 20 and a 43 x 43 matrix (see Tables 

III.10 and III.11). 
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TABLE IV .1 

Ree, Rtt , Re t , A , B , C , .6. PARAMETERS USED IN ENER.GY C.l'ILCULATIONS FOR 

GaAs :cr2+ and GaAs:cr3+ 

Parameter 

A 

B 

c 

3+ 
Ga.A.s :Cr 

0.63 

0 .21 

0.36 

-0.09 ev 

0.098 eV 

0.312 eV 

0.5 ev 

2+ 
GaAs:Cr 

0 . 63 

0.21 

0.36 

-0.09 ev 

0.098 eV 

0 . 312 ev 

0.27 ev 
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The energy 1eve1s obtained for GaAs:cr 2+ are shown in 

3+ Fig. IV.1, and for GaAs:Cr f in Fig. IV.2. The results of our 

calculations are comparedf side by side, with those of Hemstree-

and Dimmock in Figs. IV.1 and IV.2. Although there lS general 

agree ment betwe en the two, as can be observed f there are some 

2+ minor differences for GaAs:Cr , which are these: 

(i) their two 1T
1 

levels of energies 0.74 and 0.84 eV 

have energies 0.80 and 1.02 eV by our calculations; 

(ii) the level designated 5T1 by Hemstreet and Dimmock 

3 should have been T1 ; 

(iii) our calculations show that the 1E level, with energy 

1.45 eV, and 3T1 f with energy 1.33 eV, originate from the con­

figuration e
2

t 2 instead of the configuration t 4 assigned by them. 

3+ Our results for GaAs:Cr (see Fig. IV.2) are in 

with those of Hemstreet and Dimmock, except that 

2 level at 0.7 eV and T2 f at 0.95 eV f should both 

good agreement 

h 
. 4 

t elr T
1 

2 be T1 . 

The value obtained for the energy difference between states 

5 E and 5T2 of GaAs:Cr 2+ (see Fig. IV.1) is 0.65 eV . The present 

calculations do not include the Jahn-Teller and spin-orbit 

interactionsf which are expected to increase the energy dif-

5 5 ference between the E and T2 states. This value of the 

5T 5 t .t. h 1 d 'th th h T ll 
2

- E ransl lOn energy , w en coup e Wl e Ja n- e er ener-

18 
gy splittings determined by Krebs and Stauss (EJT = 0.188 eV ), 

2 4 
is in good agreeme nt with the 0.84 eV photoluminescence peak f 

observed for Cr-doped GaAs. 

2+ B . Estima te of the Jahn~Te ller distortion for GaAs : Cr 

Krebs and Stauss 18 have determined the value of the Jahn-
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FIG . IV . l Shows t he energy l eve l s of GaAs:Cr 2+ 

( a ) calculations by Hemstreet and Dimmock (ref . 40) an d 

(b) present calculations em~loying d 4 matri ces f r om 

Table III . 11 . The val ues o f the para:rrteters A f B f C f ..6, 

R f Rtt and R t i n both cases are kept the same as ee e . -
i n Ref . 40 . 

f 

( 
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FIG . IV . 2 3+ Energy levels of GaAs : Cr 

( a) Hemstreet and Dimmock ' s calcul a t ions ( Ref . 40) and 

(b) present calculations using d 3 matrices from 

Table I II . lO. The val ues o f the parai'leters A , B , C , 4 1 

Ree ' R.tt and Ret are those of Ref.40 . 

.... 



.. 
• 

> 
Q) ...__, 

>-
0 
CC 
w 
z 
L!J 

1.6 

1. 4 

1.2 

1.0 

0. 8 

0. 6 

0. 4'-

0. 2 

FI G . IV . 2 

2 T 2 -----...._ 
.... .... 

........... 
/ 

/ 
/ 

..... / 

2E 

2 T .....-====== ,. ==-=-----=-=-:.~:~:::::: ----- :~ 
_.., . ...... 1 

4A2 -----

2T 
2 ------.... -.... 

----

2 
2

E ', 

T 1' ' ', 
...... ..... ' 

2A '::: , ', ' 
2 ''::::.. ....... ' ' '' 

2 - ...... ~ ..... ' 
T 2 ..... ',' ............ ...... ' 

...... ...... ' 2 2
r 2 '--:~~ et 

4 T \ - - - - ---:..~_; 2 , _____ , ---...:=--:--~/ 

T2_ _.\;;:---..-..,.../ 
2E--- _\...-_...- ..--,-

_,...... \ / / 

2------ )." 
A 1 _.....-- \ 

4 T ..- \ 
2 \ 

\ 
\ 

\ 
4T \ 

1 \ 

2T ' \ 2----.......... ..... ..... \ 
...... ........... \ 

...... ........ \ 
..... ..... ..... \ 

........... \ 
''::..., \ 

'~ e 2 t } 
/I 

/I 
//I 

/ I 
/ I 

/ I 
/ / I 

/ I 
/ I 

2 "'/ I 
r,----~ / 

( a) 

I 

I 

I 
I 

---

I 
I 

-- --- e3 

.... 

r---- 2T. 

v------ 2 ;-~ 

I 
I 
I 
I 

r---- 2T 
---- 2 \ Ir r 2 .I/ 

// 
li I 

I // 
;/ 

I f/ 
li 
( ,, 

\ \ ,. \ 
\ \ 
\ \ 
\ \ 

\ \ 
\ \ 
\ \ 

' \ 
\ 
\ 
\ 
\ 
\ 
\ 

(b) 

117 



118 
2+ 

Teller distortion for GaAs :Cr to be EJT = 0.188 eV, and the 

value o f the coupl ing coe ff icient v1 to b e -0.85 eV. These 
o 

values give a value of a 8 = - 0 . 44 A for the nuclear displace-

me nt (see Appendix I). For a fourfold t e trahe dra l coordina tion , 

the vibrational mode Q8 is r e lated to the tetragonal strain 

84 e 8 as d erived by Ham : 

( 124) 

where R is the n ear es t - neighbor distance , and the tetragonal 

strain e 8 is related to the strains in the x , y , and z direc­

tions as 84 

1 e = e = - e e XX yy 3 (1 25 - a ) 

2 e = e e zz 3 ( 125-b) 

o 

Wi th the value of 61: 8 = - 0 . 44 A and the nearest-ne i ghbor dis-
o 

t ance R= 2 . 43 A for GaAs , Eqs. ( 125 ) and ( 125) give us the 

values of exx = eyy = 0 . 064 and e zz = - 0 .1 28 . As one can see 

from the sign of e , this t e tragonal distortion corresponds to zz 

a c omp r es sion along the z - axis . Th e angle (3 ' ( s ee Fig. III . 4 ) 

f or the distorted t e trahedron is given by 

1 c os(3 ' = 
2 

a(1+ e ) zz 

R 
( 126 ) 

where a is the l ength of th e sides of the undistorted cube 

[a= ( 2//3)R] . The value of e = -0 .1 28 a nd Eq . ( 12 6 ) give zz 

us an estimate of the angle B' : 
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cos B' 0 . 872/h (1 27-a ) 

sin B' = 0 . 864 (1 2i-b ) 

From the estimate of the ang1e B' given by (1 27 - a) and (127-b ) 

2+ for GaAs : Cr , we can see that this distortion does not signi-

ficantly affect the wave functions (see Eqs . 10-14 and 52 - 56), 

and the main effect of the Jahn -Teller distortion is the split-

ting of the energy l eve1s . 

c. Over lap integrals 

. th f . t h . 6 o f 7 2 - 7 5 s 1 t t b . Us1ng e a- unct1on ec n 1que f a a er - ype or 1-

tal (STO ) centered ata ligand site , with coordinates R, dV f ~ ' 

dis?laced by a distance a from the origin of the central ion's 

coordinate system, with coordinates r , 8 , ~ (see Fig . IV . 3 ) f 

may be expanded as 

Sharma 60 derived a closed form for ~1 ( N LM/ar ) and obtained 

the following expression for a two-center over lap integral 

between (unnormalized) STOs: 

S aN+N ' +l 
M I ,M 

~. 
k ' =O 

kl'\'li>~ 

+ (-l) k ' gn[a(~ '-~ ift{~~f+lFk(~L 'LM) 
k =o· 

( 12 8) 

where 

n =N '-L' +k ' 



A x ' x. 
l 

120 

z ' f z' 
l 

y ' 

FIG . IV.3 

Coordinate systems us ed for expansion of a wave function 

c en t e r ed at i f in terms of a s e t of r adial functions 

~( NLM/a f r) and spherica l harmonics centered at O , which 

i s at a distance a along the common z - axis . 
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where gn ' hn , and Fk'k are 1isted in Appendix II. 

With Sharma 's
60 

expression for overlap between STO (Eq . 128) 

and Cleme nti's
66 

wave functions (which are g iven in terms of 

expansion of STO) 2+ 2+ . 
for Cr , Fe , As , and P, we obtalned the 

overlap integrals Sd s' Sd 
0 

, and sd (s ee Eqs . 8 and 38) 
' ' -a , pn 

2+ ~ 2+ 2+ 2+ 2+ for GaAs : Cr , GaAs: Le , InP:Cr , InP:Fe , and GaP:Fe . 

The overlap integr a ls which are listed in Table IV.2 will be 

used in the following sections in the calculations 

of severa l physical parame t ers, such as g 11 , g
1

, 

D, ~, and spin- orbit s plitting energi es . 

Th e integrals r 22 ,, I' 22 ,, R~ ~ '' and R' ~~ '' us ed in the 

c a lculations of dipole transition moments , as d e fined in Eqs. 

(1 22 - a ) to (1 22 -l), are a lso of th e forro of two-center overlap 

. t l w h l t d th . 1 f 2+ ln egra s . e ave eva ua e e se lntegra s or GaAs :Cr , 

using Eq. (12 8 ) and Clementi's 60 wave functions for cr2+ and 

As , and the values obtained are liste d in Tabl e IV.3. 

D. Calculation of s p in-spin and spin-orbit constants 

In arde r to eva luate the spin-Hamiltonian paramet ers g lt, 

gL, D, and a ( Eqs . 100-105), and the spin-orbit and spin-spin 

energy splittings ( Eq . 113), we must first evaluate the various 

integrals involved in th e expressions of the phy sical parameters 

me ntioned above . To calcula te the spin-orbit coup ling constan ts 

2+ 2+ 2+ 2+ 2+ for GaAs:Cr , GaAs :Fe , InP:Cr , InP:Fe , and GaP:Fe , we 

have us e d Eq. (1 08 ) and Cl ementi's 66 wave functions for cr 2+, 

As , a nd P. Also , the integra l A ( Eq . 111) was calculated using 

Cl ement's wave f unctions for As and P . The spin-s~in parameter 
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Table IV . 2 

2+ 2+ OVERLAP INTEGRALS (Sd , Sd , Sd ) for GaAs : Cr , GaAs:Fe , 
2+ , prr 2s , p~ 2+ 

InP : Cr , InP : Fe + and GaP:Fe . 

.. Material s d , p rr s d , s s 
d , Pcr 

GaAs : Cr 2+ 0 . 06181 0 . 06857 - 0. 0 8488 

GaAs : Fe 2+ 
0 . 04802 0 . 05358 - 0 . 06899 

• 

InP : Cr 2+ 
0 . 05000 0 . 06021 - 0 .07 976 

InP : Fe 2+ 
0 . 03756 0 . 04522 -0 . 06342 

GaP : Fe 2+ 
0 . 04944 0.05711 -0 . 07288 

' ' ~ 
I • 

,,. 



Type of Integral 

I ff' 

I 

l _ee' 

R u ' 

I 

R e .e ' 

1 23 

Tab1 e I V. 3 

' R JU' 

N' f 

1 

3 

1 

3 

1 

1 

2+ ( see Eqs .l 22 ) for GaAs:Cr 

o 1 2 

0.1 5 1 8 - 0 . 2249 --

0. 06852 -0.0 562 2 --

0. 08842 --

0. 08346 --

8 . 0076 2 .1 5 7 3 o 

8 . 0076 2 . 1 573 o 
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2+ 2+ 
p was ea1eulated for Cr and Fe using expression (98) and 

Clementi ' s wave funetions . Th e results of these integrals are 

listed in Table IV . 4 , where our resu1ts are eomoared with values 

from other sourees whenever they were available . The two­

eenter spin-orbit matrix elements 1 of the type < ~d!ç (r) lx) , 

(s ee Eqs . 106 and 107) , are about two orders of magnitude lower 

than the relevant one-eenter spin - orbit matrix elements and 

therefore have not b een listed. Our ealeulated values of 

Çd d ' ç , and p are in reasonably good agreement with the 
I P I P 

published results 1 as one ean see from Table IV . 4 . 

E . Spin - Hamil tonian parameters g li _r__!ll1 D 1 and a 1 for 
2+ 2+ GaAs:Cr and InP:Cr 

The expressions (100)-{107), for the spin-Hamiltonian para-

me ters 1 are appropriate for tetragonal symmetry. They depend 

on the various one- and two-eenter matrix elements 1 sueh as 

çd dI ç I A I I p l p 
P1 and overlap integrals. We have us ed our 

ealeulated values of these integra ls 1 whieh were presented in 

the preeeding seetion 1 in order to obtain values for g 11 1 g .L' 

2+ 2+ 
D1 and ~for GaAs:Cr and InP : Cr . As for the energy values 

-1 -1 
(Fig. 11.1), we have taken E1 = 4500 em 1 E2 = 7300 em 1 and 

-1 2+ 18 E3 = 9700 em for GaAs:Cr , as dedueed by Krebs and Stauss 

and the average energy E of the triplet states relative to the 

ground state has b een estimated23 to be on the order of 201000 

-1 2+ em For InP:Cr , the energy values are not available 1 and 

-1 
we have us ed the values ~ 1 = 1200 em 1 E2 

- 1 = 2200 em , and E3 
-1 = 5800 em , whieh we obtained by fitting the experimental 

33 va1ues for g \l , g 1_, D, and ~, and are eonsistent with an 

-- ---------~------------------------------------------------



Tab1e IV. 4 

SPIN-ORBIT AND SPIN-SPIN PARAMF. TE RS . 

I ON -1 
s d ,dem ) * 

-1 
Sd , d (em ) [Re f.] p (em - 1 ) * 

-1 p (em ) 

cr2+ 303.415 236 [7 8] 0.128 0.12 

Fe 2+ 503 456 [7 8 ] ,412 [3 4] l. 04 7 l. 04 

-1 · 
'1-" (em ) * 
':l p ,p 

-1 [ -,... (em ) Re f .J ";) p , p 

As 1 256 .253 1273.33 [8 5] l. 733 

p 252.623 244.67 [85 ] l. 85 8 

* This work 
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energy splitting 6 on the arder of 3000 cm- 1 found for similar 

. 30-35 sem1eonduetors . 

The evaluation of the s p in-Hamiltonian parameters, aeeord-

ing to E<Js. (100)-(107), requires the use of the values of Àd , 
's . 

Àd 0 , and Àd Sinee they are unknown, we fol1ow the proee-
'" a fp 1T 

dure of determining them from the available experimental data. 

To this end f we vary Àd , Àd , and Àd 
0 

, and obtain g ll , g l' 
_,s ,p a ,,_ 1T 

D, anda from Eqs. (100)-(107). Fig. IV.4 illustrates the vari-

ation of the spin-Hamiltonian parameters as a funetion of 

. 2+ 
À values, for GaAs:Cr . The dotted lines d fp1T 

Àd f Àd , and 
,s fPa 

(in Fig . IV.4) have been drawn to mark the experimental values. 

The value of IDI inereases monotonically with Àd , while g
11 fp1T 

and g l inerease if À 
dfp a 

< 0.3 and deerease if Àd > 0.3 (see 
, s 

Fig. IV.4). Also, when Àd inereases, the ,s value of IDI neereases , 

whereas the values of gll and g..L inerease . The values of a are 

not signifieantly altered by the variations of Àd , Àd , and 
's ,p a 

Àd . The set of value s of the admixture eoeffieients, for ,p 1T 

GaAs: cr
2

+, whieh explains best the experimental data for the 

spin-Hamiltonian parameters lies close to Àd 
,s 

0 .8, and Àd 
,p 1T 0.08, whieh eorrespond to the ealeulated 

= 

values gl\ = 1.975, gl. = 1.9 95 , D 1 -1 = -1.865 em- f a = 0.0043 em 

(the experimenta l values 18 are g 11 = 1.974 ± 0.003, g..L = 

1.997 ± 0.002, D = -1.860 ± 0.0016, anda= 0.031 ± 0.013). 

The values of Às as dedueed above would appear to be toa large . 

In an attempt to seareh for a better set, we have s e leeted other 

values of the admix ing parameters, viz., Àd,s = 0.369, Àd 
0 

' - a 
0.509, and Àd 

, p1T 
= 0 . 045 (see Table IV.S), with only a fair 

= 

agreement with the experimental data . This new set yields the 

' I 



1 27 

FIG .IV. 4 Shows the variations of the spin-Hamiltonian ~ararneters 

D,g 11 ,g.L,and ~ , for GaAs : cr
2

+ , with the admixture coefficients .Àd, s ' 

Àd ~ and Àd . Only the curves for Àd =0.4,0. 6 and 0 . 8 are shown 
I ::-'~ f P-;-; 1 s 

for re~resentative purposes . The curves marked I,II,II I and IV 

corres9ond to the values of ~d equal to 0.0,0.04,0.08 and 0.1, 
, p iT 

re~ectively . The dashed lines represent the experimental values 

( Ref .1 8 ) of the spin-Hamiltonian pararr.ete rs. 
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TP.BLE IV . 5 

S PIN -H Ai"!I LTONIAl."\1 Pl-,.RAMETER ( g , g .L , D and a ) and ADMIXTURE 
11 2+ 2+ 

COE FFI CIENTS ()., ~ , A a , a nd À d ) for GaAs : C r · and In P : C r 
as ~v- :?u 

Material Admixture Coeff i cients Spin-Hamiltonian Parameters 

~ 

;\ ds Àdp À do 
-1 -I 

g 11 gl D ( eM ) a (em ) 
-o' ~ n 

0 . 6 o. 8 0.0 8 l. 9 75 l. 995 -1. 865 0 . 0043 

GaAs : Cr 
2+ o 0. 9 0,07 1. 9 6 8 l. 9 90 -1 . 879 0.005 

0 . 369 0 . 509 0.0 45 l. 966 1. 988 -1. 860 0.01 

Expe riment 1 8 l. 9 7 4 ( 3 ) l. 9 9 7 ( 2) -1. 8 6 o ( 16 )lo . o 31 ( 13) 
I ) 

-1 -1 

1\ds ,\dp Àdp n 
. g 11 91. 

D( t..v\1) a (C h~ ) 

2+ -v 
InP:cr 

0. 45 0.47 0. 45 1. 9 81 2 . 010 -0. 979 0.08 9 

. 33 
E xpe rlme nt ·1. 981 2 . O lO -0.9 67 0 . 089 

·• 

' I 
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calculated values g I\ = 1.966, gl = 1.988f D = -1.860f and a = 

O.Olf which are not in as good agreement with the experimental 

values as those from the previous set (see Table IV.5). The 

new set still gives a high value of Àd . It seems that with 
. ,po 

the ex~erimental data at handf it is hard to obtain acceptable 

86 values of the admixing parametersf although Krebs claims that 

for the present system, the values of Às are, indeedf high. 

2+ The same proceduref described above for GaAs:Cr , was 

followed to interpret g 11 f g .lf D f and a of InP: cr2+. The set 

2+ of values of Às for InP:Cr which best explain the ex~erimen-

tal data for the spin-Hamiltonian parameters (see Table IV.5) 

are Àd = 0.45f Àd = 0.47, and 
,s ,po 

the calcula ted val ues g 1\ = 1. 9 81, 

À 
dfp 

1T 

= 0.45, which give 

gj_ = 2.010, D 
-1 = -0.979 em , 

a O. 089 cm- 1 (the experimental values 33 are g 11 = 1. 981, gl 

-1 -1 
2.010, D = -0.967 em anda = 0.089 em ) . One notices 

that high values of À and Àd 
0 

, comparable to the value 
d,s '~TI 

of Àd , were required to explain the fact that g.L , for 
, po 

2+ InP:Cr , is greater than g
0 

(= 2.0023). 

h f 1 f 2+ d 2+ h' h l . T e best set o AS or GaAs :Cr an InP:Cr w 1c exp a1ns 

the experimental data 18 f 33 may be usedf in a first-order approxi-

mation (see Eq . 46) f to deduce the charge transfer covalencies 

(s ee Table IV.6). The calculated values of the charge transfer 

covalencies turn out to be Yds = 
2+ 

0.0217 for GaAs:Cr , and 

= 0.8988f and 

= 0.56, and 

. 2+ 
vd 0.40 for InP:Cr . As mentioned beforef the experimental 
~ .P 1T 

data we have used for GaAs:cr 2+ and which give rise to our rathe r 

18 
large admixture coefficients are those of Krebs and Stauss f 

who deduce E1 , E2 , and E3 from uniaxial stress measurements. 

' I 
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T ABLE IV . 6 

ADi'li XTURE COEFFICIENTS (;\' ) and CHARGE T RAl'JSFER COVA.LENCIBS (Y' ) 
s 2+ s 2+ 

WHICH BEST EXPLAIN THE EXPERI~ffiNTAL DAT A FOR GaAs : Cr and InP:Cr 

l·laterial .A ds 
À .. 

~PiT Yd s ydp (Í ydPrr dp(j' 

GaAS:Cr 
2+ o. 6 0 . 8 o·. o 8 0 . 522 0.8988 0.0217 

In P : Cr 
2+ 

0.45 0.47 0.45 0.38 0.56 0.40 
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They estimate E1 = 3EJT (5T2 ) by using their measured Jahn-
o 

Teller coefficient VE = - 0 . 85 eV /A. Then they obtain E2 and 

21 E3 by employing the mode1 calcu1ations of Va1lin et al . , in 

which E2 is given by the peak of the 5E- 5T2 optieal transition 

at 7300 em- 1 and E3 is related to E1 and the zero-phonon 1ine 

at 6760 - 1 
em 25 Hennel et al . , on the other hand , have ob-

~ served a new set of zero- phonon . lines around 6620 .cm- 1 which 

they have identified as due to the isolated cr 2+ eenter in 

GaAs . Accounting for this observation, and bas e d on their d e -

t ailed optieal absorption measurements at 1ow temperatures with 

different amounts of n and p doping in s amples , Hennel et a1 . 25 

have 5 -1 concluded that EJT( T2 ) < 660 em ; eonsequently, E1 ~ 

2000 - 1 E E 320 - 1 E 6620 - 1 d h E em , 
3 

- 2 ;;: em , 2 ;;: em . , an enee 
3 

;;: 

694 0 
-1 

em Clearly, the Ei values d e dueed by Hennel e t al. 

are eonsiderab l y lower than the values given b y Krebs and 

1 8 Stauss . The reduetion faetors for E1 , E2 , and E3 are 0.44, 

0.91, and 0.71, respectively . If the energy values are, indeed , 

redueed , it is obvious from Eqs. (100)-(105) that the resu1ting 

admixture eoeff ieients in our mode1 would also be reduced. 

This fact a1one , howeve r, is not suffieient to resolve whieh 

of the two experimental assignments is indeed correct . 

F . Estimate of intensi t y ratios 

In Section C of Chapter III we discussed the dipo1e tran-

s i tion moments appropr i ate to systems with local tetragonal 

symmetry . We have predicted that i f the admixture coefficients 

Àd , Àd , and Àd are non - zero , then eleetrie dipo le 
, s , pcr , pn 

transitions may oeeur between the exeited l eve ls n, ~ , and 8 , 
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and the ground state ç (s ee Fig. II . l) . In Section C of the 

present chapter , the values of the integrals I ~~ ·' I ' ~~ ,, 

R~.Q., 1 and R ' .Q..Q. , (needed for the transi tion- moment calcula tions ) 

. f c 2+ were glven or GaAs : r With those values of the integrals 

mentioned above , and the set of admixture coefficients Àd 
's 

0 . 6, Àd 
0 

= 0.8, and Àd 
'~a ,pn 

= 0 . 08 (see preceding section) , we 

obtain the following values for dipole transition moments for 

2+ 
GaAs : Cr : 

0.075 a 0 

With the values above of Pn;ç X I . 

~ . e 
P ..., ' ç and P ' ç , we calcula te the 

y ' z . 

ratio of the two allowed transitions (wit0 energy separations 

E1 and E2 as shown in Fig . II . l) for the different values of 

18 energies E1 and E2 as given b y Krebs and Stauss and by Sennel 

25 
et al. . Table IV .7 sur.unarizes these results . Our predicted 

values could not be compared with experimental values of relative 

intensities , because of the lack of experiment al data. 

However , we can say that the predicted value for rela -

18 
tive intensity using the E1 and E2 values of Krebs and Stauss 

are much too high (1 35 .1). The predicted value for the inten-

sity ratio (7. 45 ) using Hennel ' s values for E1 and E2 seems 

more likely. 

G . Spin- orbit and spin~spin splittings of energy l eve ls of 
2+ 2+ 2+ InP : Fe , GaP:Fe , and GaAs:F e 

In order to evaluate the spin-orbit and spin - spin splitting 
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Tab1e IV . 7 
2+ 

1NTENS1TY RAT10S FOR GaAs :Cr . 1
1 

JIND 1
2 

STJIND FOR 1 NTENS ITIES 

R1\01ATED DUE TO A TRA..N'S1T10N BETPEEN THE STA.TES (~,~) ANO '$ 

íHTH ENERGY SEPARJ..T ION E 1 (SEE Fig . II . 1) , JIND BE'TI'IEEN THE STA TE S 9 
Ai\J D '5 í'liTH ENERGY SEPARAT10N E

2 1 RESPECT1VELY . 

Ca1 cu1 ated 11/12 -1 
Pef . -1 

Ref E1 ( em ) 
j E2 (cn ) 

) 

1 35 .1 45 00 1 8 7300 18 

7 . 45 1 98 0 25 6619 25 
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energies , we use the spin-orbit and spin-spin coupling para-

meters p resente d in Section D. According to Eqs . (113) and (11 4 ), 

the evaluation of these splitting energi es a lso requires the 

values of the a dmixture coefficients Àd , Àd , and Àd 
' 5 · , pa ,prr 

through expressions (10 6-a ) and (107-a ) for ç 1 and ç 2 , r espec -

tively . These energy splittings are also a function of the 

crystal f i e l d parameter 6 . Since the admixture coefficients 

2+ 2+ 2+ are unknown for InP:Fe , GaP : Fe , and GaAs:Fe , we deter-

mine them fr om the availab le experimental data, which give the 

valu e s of the crys t a l field s ~ litting parameter 6 and the ener­

gies of the four al l owed transitions from the 5T2 state to th e 

ground state 5E (see Fig. II.3), name ly, E(6-1), E(6-2), E(6-3), 

and E(6-4). The four lines obs erved experimental ly give the 

energy spa cings K and E (6-5) [not an allowe d transition], where 

K and E (6- 5 ) are shown in Fig . II.3. We h ave , then , the values 

of 6 , E( 6-5), and K , d educ e d from available experime nta l data, 

from which the three unknown admi x ture coefficie nts must be 

d e termined. To thi s end , we vary Àd 
5

, Àd , and Àd , and 
' , po ,p rr 

select the s e ts o f admixture coe ffic ients consistent with the 

exper imenta l results. Tab l e IV.8 lists th e s e l e cted sets of 

2+ 2+ 2+ 
~s obta ine d in this way for InP:Fe , GaP:Fe , and Ga As:Fe .· 

Also , calculated va lues of the energy separations K and E(6-5) 

are li sted for the case where over lap only (no charge transfer ) 

is considered and for the case where neithe r charge transfer nor 

overlap is taken into account. In the latte r case, the expres-

sions g i ven in Eq s · (11 ~ ) and (114) reduce to those derived b y 

37 Low and Weger . 

One notices tha t the energy splittings E(6-5) and K in 
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Table IV. 8 

ENERGY SEPARATIONS A, E ( 6- 5) , K AND ADMIXTURF. COEFFICIENTS FOR 
2+ 2+ 2+ InP:Fe , GaP : Fe and GaAs:Fe 

Material Àd s À Àc_, Prr 
-1 - 1 E ( 6 - 5) (em ) K (em ) 

f d , pO" 

0 . 1 0 . 6 -0. 4 27 89 15.2 

InP:Fe 2+ 
0.05 - 0 .07 0.04 2720.5 28.9 

o. o 0.0 o. o 2 72 3 . 3 2 8 . 4 

2789 1 4+4 

0 . 0 o. o -0. 4 3293.2 13.77 

GaP : Fe 2+ 
0.07 - 0 . 08 0.05 3229 .2 25 . 98 

0 . 0 o. o 0.0 3232.2 25.9 

3290 . 3 1 3+3 

0.1 o. 5 -0. 3 2949.6 ll.l 

GaAs : Fe 2+ 
0.06 - 0 . 08 0.05 2663 29.4 

o. o o. o o. o 2664 . 8 29.2 

2950 13 +4 

* This work : Overlap and Charge Transfer 

** This work : Overl ap on l y 

*** This work : No Overl ap and no Charge Transfer 

-1 L1 (em ) 

3040 * 

3040 ** 

3040 *** 

3040 
311 Exp . -

355 9 . 4 * 

3 559 .4 ** 

3559.4 *** 

3559.4 32 Exp . 

2995 * 

2995 ** 

2995 *** 

29 95 30 Exp. 
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Table IV.B for the case when overlap and charge transfers are 

neglected, are much diffe rent from the experimental values . 

If overlap only is conside r e d , neglecting charge transfer , the 

results do not imp rove . This implies that charge transfer ef-

fects are necessary to the explanation of the experimental data . 

2+ 
For InP:Fe , the set of admixture coefficients which is consis -

tent with the experimental data is approximately Àd 
,s = 0 . 1 , 

Àd = 0 . 6 , and Àd 
,pa , pTI 

- 0 . 4. 2+ For GaAs : Fe , the best set i s 

the one with values near Àd 0 . 1 , Àd 0 . 5 , and Àd P 
15 1 Pa ' -n 2+ For GaAs : Fe , the set which is consistent with the 

= 

- 0.3 . 

experimenta l data is in the neighborhood of Àd 
I S 

= 

O, and Àd = - 0.4 . The small values of Àd and 
, pTI , s 

GaP : Fe 2+ are consistent wi th the fact tha t t he energy K, 

which depends on ç 2
2 /6 1 is of the same magnitude for all three 

2+ compounds , whereas 6 is larger for Fe -doped GaP . In other 

words 1 if 6 is larger , ç 2 must also be larger i f K rema i ns t he 

same . A larger va l ue f f 
2+ . . " f h " o ç 2 or GaP:Fe lS conslstent l t l S 

system is less highly 2+ 2+ covalent than InP : Fe and GaAs: Fe . 

The calculated values of the energies of the al l owed transi -

tions , E(6-4) , E (6- 3 ), E ( 6- 2 ), and E (6- l ) , with the values 

of the admixture coefficients obtained as d e scribed above for 

2+ 2+ 2+ InP : Fe 1 GaAs:Fe 1 and GaP : Fe 1 are listed in Table IV . 9 , 

along with the experimental values . Table IV.lO lists the ob-

tained admixture coeff icients, along with the calculated values 

of the corresponding charge transfers . 

We have not considered Jahn-Te lle r distortions in the cal -

culations of the spin - orbit and spin-spin splitting energies 

2+ 2+ 2+ for InP : Fe , GaP : Fe , and GaA s : Fe . These materials are 
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T able IV . 9 

CALCUL ATED VALUES OF ENERGIES OF THE ALLO\tJED TRANSI T IONS , 
2+ 2+ 

CONSIDERING OVERLAPS AND CHARGE TRANSFERS FOR InP :Fe , Ga.P :Fe 
2+ 

and GaA s : Fe , AND COMPARISON WITH EXPERI~ENTAL RESULTS . 

.; l l 1 l 
Material E ( 6 - 4) (em 

-
) E ( 6-3) (em 

- ) E ( 6-2) ( em 
-

) E ( 6- 1) (em 
-

) 

InP : Fe 
2+ 

2804 . 2 2 819 . 4 2 834 . 6 2 84 9 . 8 

(À C\5 = 0 . 1 

lld =0 . 6 
Pcr 

À =- 0 . 4) 
dpf( 

Exp . 
3 4 

2802 2820 2830 2845 

GaP:Fe 
2+ 

3306 . 9 7 3320 . 74 3334 . 5 1 3 3 48 . 28 

(). d;; = O. O 

'\:'11~0 . o 
À = - 0 . 4) 

c1P rr 

Exp . 
32 

3303.6 3319 . 6 3330 .7 3 343 . 5 
~L 

,.... 

GaAs : Fe 
2+ 

2960 . 7 2971.8 2982 . 9 2994 

( i\ds =O . l 

Àdpü 
=0.5 

,1\d =- 0 . 3 ) 
.Pir 

Exr:> . 
30 

2962 29 79 2988 3002 
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Tab l e IV . lO 

ADMIXTURE COEFFICIENTS ANO CH ARGE TRANSFERS , OBTAINED FROM 
2+ 2+ 2+ EXPEP.IMENTAL DATA OF InP : Fe , GaAs : Fe and GaP:Fe . 

Material 
i\d ' s À 

d , po-
À 

d,p11 
y: 
â. , s 

y 
d I p (J. 

y: 
d , p i( .. 

I n P : Fe 2+ 0 . 1 0. 6 - 0 . 4 0. 05 o. 7 - -0. 4 3 

.-~ 

GaP : Fe 2+ o. o o. o -0 . 4 -0.0 7 0 . 08 -0. 44 

GaAs : Fe 2+ 
0 . 1 0 . 5 - 0 . 3 0 . 04 0 . 58 - 0 . 34 
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expected to undergo a Jahn-Teller distortion, but the r e is no 

experimental evidence , at this moment, that such distortions 

indeed occur for Fe
2
+-doped InP , GaP, and GaAs . West et a1 . 32 

estimated the value of the Jahn- Teller energy for t he SE level 

of GaP : Fe
2

+ as EJT = 0 . 0024 cm- 1 , confirming tha t the Jahn­

Te ller effect is small . I f the Jahn-Teller effect o n the SE 

levels of Fe
2

+-dope d InP, GaP , and GaAs is indeed small , the 

reduction of the energy separation K obs e rved experimentally , 

from the corre sponding fr ee- ion va l ues , is due main l y to co -

v a lency effects . 
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V . DISCUSSION AND CONCLUSION 

The present work has been concerned with the electronic 

structure of chromium- and iron-doped GaAs, InP, and GaP 

materials. A generalized treatment of the electron- electron 

interaction matrice s has been presented , and the result of 

. l' . 2+ d 3+ . ltS app lcatlon to GaAs:Cr an GaAs : Cr systems lS com-

pared with the experimental results and the previous estimates 

b d . k40 y Hemstreet an Dlmmoc . Calculations of intensity ratios 

f l t . d. l t . o o 
2+ h b or two e ec rlc lpo e ransltlons l n GaAs:Cr ave een per-

formed , including the J ahn-Teller s p litting energies . Also , 

the Jahn-Tel l e r distortion has been estimated for the s ys tem 

mentioned above . The spin-Hamiltonian parameters g 11 , g .L' 
2+ 2+ D, and a have been calculated for GaAs : Cr and InP :Cr , 

and compared with experimental results. 2+ For the GaAs:Fe , 

2+ 2+ InP : Fe , and GaP : Fe systems , we h ave calculated t he energi e s 

5 of the transitions from the excited state T2 to the ground 

state 5E, the l evels being split by spin-spin and spin- orbit 

in teractions. We now discuss the important points pertinent 

to the physical quantities calcula t ed for the various systems 

mentioned above . 

Sharma and Sun daram
43 

h ave derived , using group-theoretical 

t echniques , gene ral ma trices for th e d- e l e ctron interaction 

ma trices appropriate to d - e lectron transition-me tal íons in 

solids and complexes . Their generalized electron- electron 

i nteraction matrices eliminate the defects present in the 

. 44 46-preVlOUS treatme nts ' based on the approximation that the 

d-e lectrons in the transitio n - metal ions contain pure d-orbitals . 
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Sharma and Sundaram have shown that their generalized treat -

ment is very useful. They have deduced for the first time 

the values of - the d-electron Coulomb and excha nge integrals 

2+ 2+ 
for MgF 2 :co and MgF 2 : Mn using the generalized treatment in 

conjunction with detailed experimenta l optica l d a t a . Their 

theory is very significant, since it is able to give correct 

group- theoretical ass i gnments to the observe d energy levels 

of the impurity in solids , predict the values of the Coulomb 

and excha nge interaction~,which it is otherwise not possible to 

know from any other source, and remove the accidental de -

generacy inhe r e nt in the free - atom type B , C , 6 , theory . 

The generalized d-electron interaction matrices have 

been checked and compared with existing results by Sharma, 

41 
Vicc a ro, and Sundaram . In Section III . A the explicit ex-

pressions of th e new matrix elements were give n (Tables III.9-

12) for the irreducible representations of the cubic crystal 

field , and were used in Section IV.A to check the approxi-

- 40 
mate calculations of Hemstree t and Dimmock , who deduced 

2+ 3+ th e electronic energy levels of GaAs:Cr and GaAs:Cr . 

Hemstreet and Dimmock have c a lculated crystal - field 

2+ 3+ . t erm states for Cr and Cr 1n GaAs , for which they modified 

the standard electron-electron interaction matrix e l eme nts by 

introducing the parameters Ree ' Rtt' and Re t (= IReeRtt) , 

d educed from X a 
. 40 42 

calculat1ons . ' We have obtained the elec -

tronic energy leve ls for the se two systems , using the genera l-

ized matrix elements listed in Tab les III . 10 and III . 11 for 

d 3 (cr 3+ ) and d 4 (cr 2+ ) electrons , in arder to compare them 

1 
. 40 

with the r esults from their calcu at1ons . The comparison 
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has been presented in Figs . IV . 1 and IV . 2. We have found that 

although there is general agreement between the twol Hemstreet 

and Dimmock ' s results dif fer from ours. The notable 

differences are these (See Figs . IV.1 and IV . 2) 

1 2+ (i) their two T1 1eve1s of GaAs:Cr with 

energies 0.74 and 0.84 eV should have energies 0.80 and 1.02 

eVI as given by our calculations; (ii) the level 5T
1 

assigned 

~ by Hemstreet and Dimmock in GaAs:cr2+ should have ·been 3T
1

; 

1 . 3 
(iii) the E level with energy 1 . 45 eV 1 and T

1 
with energy 

1 3 3 V . G A C 2 + . . t f th f . . · 2 2 . e I ln a s: r orlglna e rom e con lguratlon e t 
1 

instead of the configuration t 4 obtained by Hemstreet and 

Dimmock; (iv) forGaAs :Cr
3

+ 1 the levels 4T
1 

at 0.7 eV and 2T
2 

at 0 . 95 eV assigned in Ref. 40 should both be 2T
1

. These 

differences are suspected to be due to some errors in the ex-

pressions for the d-electron interaction matrix elements in 

Ref. 40. The matrices of Hemstreet and Dimmock have not been 

published 1 and consequently we were unable to compare theirs 

with the ones us ed in Section IV.A . The obtained value of 

5 5 2+ the energy of the E- T2 transition for GaAs:Cr is 0 . 65 eV 

18 (s ee Fi g . IV.l) 1 in good agreement with the experimental value , 

0 . 68 eV . 

In arder to investigate the electronic structure of tran-

sition-metal ions in III-V compounds 1 we have used the cluster 

approach with s ymmetry adopted e l ectronic wave functions which 

include the impurity and the surrounding atoms . We have used 

the best availab l e wave functions 1 obtained by self-consis­

tent calculations
66

1 for· the atomic orbitals of the impurity 

. d f h . . . G A C 2 + ions and llgan s o t e magnetlc lOns ln a s: r , 2+ InP : Cr 1 

2+ 2+ 2+ 
InP:Fe 1 GaAs:Fe , and GaP : Fe . For these systems 1 the 
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. . 2 + d 2 + b . . l h . magnet1c 10ns Cr an Fe are su st1tut1ona at t e Ga s1te 

in GaAs and GaP f and at the In site in I nP f and possess a 

local tetrahedral symmetry ( in the absence of the Jahn- Tel l er 

effect ). The effect of the environment has been account ed for 

by subjecting the cluster to the cubic crystal field and by 

incorporating the effects of the Jahn-Teller distortion pre -

sent in these systems . 

2+ For GaAs : Cr f the impurity states undergo a strong Jahn-

T ll d . t t ' 18 h · th t of t he c r 2+ ' t e er lS or 10n , c ang1ng e symme ry s 1 e 

from tetrahedral (Td ) 

5T2 (in Td ) symmetry ) 

to tetragonal (D2d ). The ground state 

l . . 5 d 5 sp 1ts 1nto B2 an E 

as shown in Fig . II . l f and t he excited state 

(in D2d s ymmetry ), 

SE (in Td s ymmetry ) 

splits into 5A1 and 5B1 (in D2d symmetry ). We have estimated f 

in Section IV . B, values of the distortion of t he ligand i ons 

due to the Jahn- Teller effect in this system , relative to t he 

experimental values of the Jahn- Te l ler energies given by Krebs 

18 and Stauss . vle found that the angle S ' (see Fig . III.4 ) is 

such that cosS ' = 0 . 8 7 //3 f as compared to the values of t he 

und i s t orted t etrahedron , for which cosS ' = 1/ IJ. We have also 

performed intensity c alculations (Sec . IV . F ) for electric -

. l . . . 2+ b h l l l. b d1po e trans1t1ons 1n GaAs : Cr f etween t e eve s sp 1t y 

5 5 the Jahn - Teller effect on the T2 and E levels . We h ave 

found that the transitions between t h e ground state s and the 

excited states ~ f n, and e (see Fig . I I .1) are possible because 

of the presence of sign i ficant over l ap and charge transfer co-

valencies in this system . Thus f these intensity calcu l ations 

have revealed one more aspect of the importance of overlap 

and charge transfer effects f since for the pure d - electrons 



•• 

> 

•• 

.. 

145 

the transitions above would be completely absent. We pre-

dicted the intensity ratio relative to the transition with 

energy E1 and the transition with energy E2 {see Fig. II.l). 

With the values of E1 and E2 given by Krebs and Stauss 18 

{see Table IV .7), we calculated the intensity ratio to be 

25 135.1, whereas with the values of E1 and E2 of Hennel et al. 

we predicted a value of 7.45. This implies that an experimen-

tal determination of the transition intensities could indicate 

which assignment is cor.rect. 

2+ In order to understand the electronic structure of GaAs :Cr 

2+ 
and InP:Cr , we have first deduced the expressions for the 

spin-Hamiltonian parameters {eqs . 100-107), taking into account 

overlap and charge transfer effects and the crystal fields 

present in the solid . The expressions for g 11 , g~, and D were 

deduced by considering the perturbations on the ground state 

of the Zeeman and spin- orbit interact i ons in the second order 

and the spin-sp in interaction in the first order. For the 

cubic field parameter ~ , fourth-order effects of the spin~orbit 

interaction and second-order effects of the spin-spin interac-

tion were considered . The cubic crystal field and the Jahn-

Teller splitting energ i es were accounted for in the energy 

separations between the ground and excited states , which were 

mixed by the spin-orbit and spin-spin interactions. Our ex-

pressions for the spin-Hamiltonian parameters contain expli-

citly the overlap aDd charge transfer contributions. The 

local, non-local, and distant contributions to the spin-orbit 

coupling constants have been retained in our expressions . 

The local terms arise when the central - ion wave functions alone 
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are involved in the matrix elements; the non-local are the 

terms which involve the atomic wave functions of the ligands 

as well as the central ion's; and the distant terms involve 

the ligands' wave functions alone . The two-center integrals, 

such as the non - local spin - orbit term and overlap integra ls , 

h ave been accurately evaluated using Sharma's 50 formula for 

the expansion of Sla ter-type orbitals. from one certter 6nto 

another (see Sec. IV . C) . Our calculated values of the local, 

non-local, and distant terms of the spin- orbit constants, in 

Section IV.D , using accurate atomic wave functions obtained by 

66 self - consistent methods , have shown the relative importance 

of th ese terms . As is clear from Table IV . 4 and eqs . . (106 ) 

and (107) , the loca l and distant terms are the dominant con -

tributors to the spin-order coupling constant . The non- local 

term of the spin- orbit coupling constant is two orders of mag -

nitude lower than the others. 

The values of overlap and charge transfer in our cluster 

2+ 2+ treatment of GaAs:Cr and InP:Cr have bee n obtained in 

Section IV . E by calculat ions involving the spin-Hamiltonian 

parameters g 11 , g 
1

, D, and ~' as a function o f the admixture 

coefficients Àd s' Àd , and Àd . The values of the admix -
' ,p cr ,pn 

2+ 2+ ture coefficients were obtained for GaAs:Cr and InP : Cr 

and are listed in Tab le IV.5, where the calculated values of 

the spin-Hamiltonian parameters are also compared with the 

experimental values . · 2+ For InP:Cr , the calculated values 

- 1 -1 g 
11 

= 1.981 , g.L = 2 . 010;- D = -0 . 979 em , anda= 0.089 em 

obtained with the set of admixture coefficients À = 0 . 45, d,s 

À = 0 . 47 , À 
d,pcr d , pn 

O. 4 5 are in good agr~ement wi th the 
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experimental values 33 g
11 

= 1.981 , g .L = 2 . 010 , D = - 0 . 96 7 cm- 1 

- 1 2+ and a = 0 . 089 em . For GaAs : Cr our calculations result in 

g ll 1 . 975 , g j_ = 1 . 995 , and D = - 1 . 865 - 1 em Àd = 0 . 6 , 
f s 

with 

Àd = 0 . 08 , and Àd = 0 . 8 , compared to the experimental 
, p , po 

TI 18 . - 1 
values g 11 = 1.974 , g .L = 1.997 , and D = -1.860 em . The 

cubic field parameter was explained only in sign , and its cal ­

culate d value a= 0 . 0043 cm- 1 is an arder of magni tude t oo 

l d h · · 1 1 8 l O 031 Th ow , compare to t e experlmenta va ue a = . . e 

values of covalencies for GaAs : cr2+ were obtained by using 

the v a lues of the Jahn- Teller splittings g i ven by Krebs and 

18 Stauss . These values of splitting energies have recently 

been criticized by Hennel et a1 . 25 , i n view of new estimate s 

from optica l absorption measu rements . In future work , it 

would be interesting to examine whether the new values can 

explain the experimental data , including the magnitude of the 

spin - Hami ltonian parameter ~ · 

Vallin and Wa tkins 23 have interpreted the spin- Hamiltonian 

d f 2+ . d ( parameters g 11 , g .L' D, an ~ or Cr l n I I - VI compoun s ZnS , 

ZnSe , ZnTe , and CdTe ) in the framework of the l igand field 

theory . Although the compounds are different from t he semi -

conductors with which we have been concerned , i t is interesting 

to compare our results with those of Vallin and Watkins . It 

must be note d that they have completely neglected the s-orbi-

t a ls of the ligands , and as far as the formalism is concerned, 

they have not include d the non-local terms in the expressions 

of the spin- Hamiltonian parameters . Also , they have restric -

ted themselves to a single parameter approximation to est i mate 

the admixture coefficients , assuming the same charge transfer 
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for all the compounds. In our treatment, we have taken into 

account the s - orbitals of the ligands and have also calculated 

exactly the overlap integrals . Also, we did not restrict our-

selves to a single parameter approximation in arder to deter -

mine the admixture coefficients . 
2+ 

Our results for Cr - doped 

GaAs and InP show that the s-orbitals of the ligands contri -

bute significantly to the covalency effects on the spin- Hamil -

tonian paramete rs , and consequently , these orbitals should 

not be neglected . We have obtained t h e values of Àd 
, p7T 

o. 08 ' À = d , s 0.6 , and À 
d , po 

= 0 . 8 for GaAs : Cr
2+ and Àd 

, p7T 

The ·values 0 . 45 , À = d , s 
2+ 

0 . 45 , and Àd = 0 . 4 7 for InP : Cr . 
, po 

o f admixture coefficients obtained by Vallin and Watkins for 

2+ . d \ Cr ln II - VI compoun s are Ad 

( Àd was assumed to be zero ). 
's 

, p7T 
= - 0 . 248 and À = 0 . 2 7 4 d , p a 

Al though one is not justi fied 

in making rigorous comparisons among the results above (because 

of the approximations assumed by Vallin and Watkins ), one notes 

that the covalency effects are also significant for c r 2+ in 

II-VI compounds . Further comparison indicates that c r
2+ in 

III - V systems is more strongly covalently bonded than ln II -

VI systems . 

In arder to keep the problem calculationally t ractable , 

in our theoretical treatment of the spin- Hamiltonian parameters 

2+ 2+ of GaAs : Cr and InP : Cr we have neglected the direct effect 

of the Jahn-Teller distortion on the cluster wave functions . 

This is justifiable , since the direct effect of this distar-

tion on the wave functiops is very small . However , the indirect 

effect on the wave functions has been appropriately taken 

into account by use ofthe Jahn - Teller splitt i ng of the energy 
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levels 1 as shown in Fig. II.1. For future improvement 1 how-

ever, one should use the wave funetions 1 like the ones we have 

derived in Chapter III 1 eompatible with the distorted geome-

try of the eluster . 

2+ 2+ 2+ For the GaAs : Fe 1 GaP:Fe 1 and InP:Fe systems 1 we have 

also adopted the cluster wave funetions 1 taking into aecount 

the erystal fields and the spin-orbit and spin-spin interac-

tions. We dedueed 1 in Seetion III . B.2 1 the expressions of 

energy splittings due to the spin-orbit and spin-spin inter-

aetions 1 ineluding the effeets of overlap and charge transfer 

(eqs . 113-a to 114). Figure II . 3 shows the energy diagram 

for these systems 1 as well as the al1owed eleetrie dipole tran-

sitions . We have eonsidered perturbations up to seeond- order 

5 due to the spin-orbit interaetion on the ground state E and 

the exeited state 
5

T2 1 and also first - order perturbation due 

to spin- spin interaetion on the ground state. 

Our caleulations 1 inc1uding overlap and charge transfer 1 
. 30 32 34 have explained the four lines observed exper1mentally 1 1 

2+ 
for Fe - doped GaAs 1 GaP 1 and InP 1 as it i s elea r from Table 

IV.9. 2+ 
For InP:Fe 1 we obtained the transition energies 

(s ee Fig. II.3) E(6-1) = 2849.8 em- 1
1 

-1 E(6-2 ) = 2R34.6 em 1 

E(6-3) = 2819 . 4 -1 
em E(6 - 4) = -1 2804.2 em 1 eompared to the 

experimental values 34 E(6-1) 2845 em- 1
1 E (6-2) = 2830 em- 1 

E(6-3) = 2820 em- 1
1 E{6-4) = 2802 em- 1 . 2+ For GaP:Fe , our 

-1 ealeulated values are E(6-l) = 3348.28 em 1 E(6-2) = 3334 .51 

em-l , E{6-3) = 3320 .7 4 em- 1
1 E(6-4) = 3306.97 cm-l 1 eompared 

32 to the experimental values E(6-1) -1 
3343.5 em , E(6-2 ) = 

3330.7 em-
1

1 E(6-3) = 3319.6 em- 1 , E(6-4) . = 3303.6 -1 
em For 
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GaAs:Fe 2+ , we obtained E (6-1) = 2994 cm- 1 , E(6-2) = 2 98 2.9 

-1 -1 -1 em f E (6- 3 ) = 29 71. 8 em f E(6-4 ) = 2960.7 em , compared 

to the values E(6 - 1) = 3002 cm- 1 , E(6-2) = 2988 cm- 1 f E(6 - 3) 

= 29 7 9 cm- 1 f E (6 - 4 ) = 2962 cm- 1 ob t ained experimentally30 . 

We have found that these systemsf alsof are strong1y covalent. 

~ve have obtained the values of admixture coefficients in the 

neighborhood of Àd 
' s 

= 0.1, Àd = 0 . 6, 
f Pa 

À = -:-0.4 for d , p 

InP:=e 2+ ; Àd = 0.1, 
f s 

À d,p a 
= 0.5 , 

Àd = 0.0, Àd = 0.0, Àd 
f s f Pa , pn 

and 

1T 2+ 
Àd = -0.3 for GaAs:Fe ; 

, p1T 

= -0.4 for GaP :Fe 2+ 

Ou r l . d. h 2 + o r esu ts 1n 1cate t at Fe 1n GaP i s relativ e l y l ess 

2+ 2+ . covalent than Cr and Fe 1n GaAs and InP . 

2+ Previous1 y f the exper imental spectra of Fe -doped III-V 

ma t erials had been roughly interpreted b y introducing two 

t d k 31 , 32 ,3 4 parame ers , q an . The parameter q h ad been intro-

duced as a reduction factor, mu1tip1ying the free -ion (sub -

j ected to a crystal field) formula for the energy spaicng K, 

due to spin-spin and spin-orbit interactions , of the split 

5 ground state ( E) 1eve ls. The parameter k was also introduced 

as a r eduction paramet er of the spin-orbit coup 1ing constant, 

associated with the impurity ion , from the free-ion va1ue. 

These reduction factors , q and k f introduced in an ad h oc 

way , do not provide in formation about the ir origin , nor , more 

important f about the electronic structure of the impurity 

2+ o d Fe 1n III-V compoun s . Our treatment provides a better in-

sight into the covalency effects of the e 1ectroni c structure 

of these systems f since .~e h ave derived th e express ions of 

energy transitions u sing the wave functions of the cluster. 

This work has been a first attempt to calculate the s p in-
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Hamiltonian parameters , transition energies , and transition 

intensities of the localized impurities in the III-V semicon-

ductor systems , taking into account , explicitly , the effects 

of the overlap and charge transfer covalencies effects . The 

overlap and charge transfer effects reveal the nature of the 

defect centers , which are otherwise difficult to understand , 

since these systems involve large numbers of electrons , and 

consequently the exact wave functions are unknown . A similar 

approach could also be beneficial i n explain i ng the experi -

mental data for other impurities in III - V semiconductors . 

One could also follow the present treatment to calculate 

energy states for different charge states of Mn in GaAs , 

and for comparison with the X ca l culations performed by a 
47 

Srivastava , Sundaram , and Sharma 

For future improvement , we suggest an extension of the 

present cluster calculations . One should i nvolve more a t oms 

in forming the cluster wave functions . With larger clusters , 

one can expect not only a better agreement with the experimen-

tal data , but also a more realistic estimat e o f actual c h arge 

transfers . For large cluster calculations , however , one is 

required to expend considerable computationaleffort , which 

could be very costly . Also , one should inc l ude ligand-ligand 

interactions for overlao effects and spin- orbit interactions . 

Furthermore, the contributions arising from the non - local and 

distant terms due to spin- spin interactions should be included . 

Although such effects a~e expected to inf luence the cova l ency 

effects only slightly ( less than 10% ), their inclus i on , fol -

52 
lowing the procedure developed by Sharma , Das , and Orbach , 
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would be an improvement on the present treatment . For further 

improvement of the generalized treatment of d-el ec tron inter­

action matrices, one should include the spin-orbit and spin-

spin interactions. The generalized treatment of the e l ectron-

electron interaction matrices would also be usefu l for exten-

ding calculat ions appropriately to other s ystems . Also, it 

is expected that this work will provide the necessary stimulus 

to experimentalists to observe more refine d and abundant lines 

in the spectra , and to theorists to make the first -princip l es 

c alcu lations to compare with our results and explain the 

experimental data . 
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APPENDIX I 

Jahn-Teller Distortion on Tetrahedral Configurations 

87 According to a theorem by Jahn and Teller , when the 

orbital ground state of an ion in a solid is degenerate for 

reasons of symmetry, the ligands of this ion experience forces 

which act to displace them from their symmetry positions. 

As a result, a loca l distortion is induced which lowers the 

symmetry of the site, and the ion assumes an e lectronic con-

figuration of lower symmetry and of lower energy, thereby 

removing the- degeneracy. 

The Hamiltonian, H, fo r the stationary states of a molecule 

contains as parameters the various nuclear coordinates . For 

small displacements of the nuclei from the symmetric configura-

tion, we can expand H in a Taylor s eries in terms of the 

generalized coordinates ~ which describe the displacements: 

+ l 
2 L + .... (A-l) 

j , k 

where H0 is the Hamiltonian of the unperturbed symmetry state 

of the molecule, with an orthonorma l set of degenerate wave 

o functions 11'
1 

. 
o 

• I!' • 
n 

placement coordinates and 

tronic coordinates only. 

~. i s 
J<m o 
a~. 

J 
Both 

a function of the nuclear dis-

is a function of the elec­
aH0 

~. and a~. must transform 
J J 

in the same way, since the Hamiltonian is invariant under all 

symmetry operations . Taking the set 1!' .
0 

(i= 1, 
l 

zero-arder wave functions, and the linear term in 

. , n) as 

ót. in 
J 

Eq. (A-1) as the first-order perturbation , we must eva1uate 
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(A-2) 

I f the initial degeneracy is retained, a ll the ma trix elements 

V . vanish. 
ln 

If this is not the case, a lifting of the degenera-

cy will occur . 

terms linear in 

not stable . 

Also, if V. is non-zero, the energy contains 
ln 

dt., and hence the initial configuration is 
J 

o 
The d egenerate set ~ . spans the irreducible representation r' 

l -
3H 0 of the point group of the site in the molecule, and a ~ . trans­

J 
The condition for a nonvanishing matrix forms like d: .. 

J 
2 element V. is, the r e fore, tha t the symmetry product [ f ] 

ln 

contain a r epresentation also found in the normal vibrational 

mod e s . J a hn and Teller 87 we re able to show , by going through 

all of the possible 34 mol e cular point groups , that in all 

cases where a degenerate electronic state can occur, there 

will always exist a vibrational mode which will destroy the 

degeneracy. The nuclei will be displaced in such a way as to 

r e move the dege n e r a cy; the s ymmetry of the molecule is lowered • 

In the tetrahedral group, the symmetry species of the vi-

brationa l mode , apart from the totally symmetric mode (A 1 ), 

are the E and T2 mode s. Th e doubly dege nerate mode (E) is 

the only active mode for a doubly deg e nerated level, as one 

can see by simple group-theoretical arguments. The degenerate 

electronic l evel T2 , on -the other hand, may be split up by 

both E and T2 vibrational mode s . Under the vibra tional mode 

E , the t e tragonal symme try (Td) will distort in such a way as 



~. 

.. 

..., _. 

.. 

to preserve its fourfold rotation-reflection syrnmetry axis . 

This distortion corresponds to an elongated or cornpressed 

tetrahedron , with axial syrnrnetry (D 2d). The Jahn-Teller 

interaction du e to the vibrational rnode E rnay be expressed 

23,64 , 84 as 

where v1 and v2 are coupling coefficients of the lattice to 

the orbital electronic states T2 and E , respe ctively . 

~ E are normal coordinates of nuclear displacernent . 
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(A-3) 

Qe and 

s e and ~ are electronic operators acting only on the orbi­
E 

tal T2 wave functions . 1L e and 1LE, sirnilarly, apply to the 

orbital E wave functions . The rnatrix representations of 

r;; c: '1 1 1 1 23 , 64 
L e ,G E., U...~ , and LlE. are 

1 o o 2 

s~ - o 1 o (A-4 ) -
2 

o o - 1 



r 
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1 56 

(A- 6 ) 

(A -7) 

where the representation of [ 8 and ~E i s the T
2 

electroni c 

state (s , n , ç ) which transforms like (yz , xz , xy ) respectively , 

and 11 8 and 1lE are given in terms of the electronic state 

E1 ( 9 , E) which transforms like ( z 2 , x 2- y 2 ) respect i ve l y . The 

last term of Eq. (A- 3 ) is the elastic energy associated with 

the distortion ; kE is the elastic constant ; and i i s t he unit 

matrix . 

For the state ç , t he minimization of Eq . (A- 3 ), 

= O, = o 

leads to a stable energy minimum in Gt space at 

( A - 8 ) 

& =o 
E 

(A - 9 ) 

which i s a pure tetragonal distortion a l ong the z ax i s . The 

energy at this distortion has been l owered by the Jahn-Teller 

23 energy 

= 
v 2 

1 

The l ocal symmetry is reduced to D2d and the ground state 

( A-1 0 ) 
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I: is 5 of synunetry B2 . The electronic wave functions ~ and n 

remain degenerate with synunetry 5 E1 and 'are 3 EJT(E) higher 

in energy with respect to the state ç , as one can verify 

upon substi tution o f Eqs. (A-8) and (A-9) in Eq. (A-3) 

and by making use of Eqs. (A-4) and (A-5) for f_ 
8 

and 8. 
E 

Fig. II.1 illustrates this Jahn-Teller splitting. The states 

e and E are also split by the tetragonal distortion. Upon 

substitution of Eqs . (A- 8 ) and (A-9) into Eq. (A-3) and 

using Eqs . (A-6) and (A-7) for 1L e a nd 1L E, one verifies that 

the electronic state e is lowered by the amount v
1
v

2
/kE' where­

as the state E is raised by this same amount (s ee Fig. II.1). 

For the T2 vibrational mode, the Jahn-Teller interaction 

distorts the tetrahedron along one of the threefold axes, 

the energy of the system being lowered b y 64 

2 
= 3 

v 2 
3 

(A-11) 

where v3 is the e l ectron-lattice coupling coeff icient for the 

mode T2 , and kT is the elastic constant for this mode. The 
2 

trigonal (D 3d) configuration is stable over the tetragonal 

(D 2d) if the energy gained by the system under o
3

d distortion 

is l arger than for the one under D2d distortion. Or, from 

Eqs. (A-10) and (A-11), one has 

> 3 
4 

The tetragonal configuration is the stable one if 

(A-12) 
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(A-13) 

If by accident the two stabilization energies (A-10) a nd (A-11) 

are equal , the cornplex will oscillate back and forth between a 

tetragonal and a trigonal configuration. 
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APPENDIX II 

Sharma ' s express ion for overlap integrals between 

Slater- t yoe orbitals . 

1 59 

Sharma 
60 

de ri ved the following expression for a two-cen ter 

integral between unnormalized Slater- type orbitals: 

c)M I I'-1 , 
N+N'+ l a 

k X k+l 

( !.:__) Fk ' k(NL ' LM) ya , 

~x ( -1 )k+lFk' k (NLLM)] 
~ ~a , 

where 

and 

n=N'-L ' +k ' 

k 2L ' +L+N - k ' max 

h (x) 
n 

n 

L 
t=O 

n! 
(n-t) 

n+l - x g ( x) = n ! /x - e h ( x) . n · n 

-
V.Jhen x is zero or very small , i t is more accurate to use the 

limitting forms 
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.. 

1/ (n+l) if x=O 

~ (-x) t 
6-o t! (n+t+ l) 

i f X lS small . 

F k I , k ( NL I LM) = 
L'+L 

~ 
Ymax 

L 
y=O 

by(sL'LM) (2s-L+N)! 
(k 1 - 2 y) ! ( 2s -L+N - k-k 1 +2)1) 

with 

Y =min(L '+L-s, k 1 /2 
max 

b y ( sL 1 LM) = ( -1) L 
2 ~ 

) ) 

5 

L 
q'=q 1 min 

p 

,Y-q-p ') ~ foL -M(p,s-p-ql ,q) 
p=O ' 

where ,in general 

J31 (p,q, k ) = [(2f+l) U~-m) '] l/2 C2E-2p) 12 2 (p-.t) (-l)P 
,m (.e+m) ! p! (f-p) ! q ! k ! (f-m-2p-q-k)! 

and the various limits are: 

p 1 = mi n ( L 1 
, Y) 

max 
q 1 

• =max(O ,s-L-M) , mln 

qmin=max(O , p 1 +q 1 ·+~-L 1 +M) q =min(Y-p 1 ,L+M-s+q 1
) 

max 

and 

P =min(s-q 1 L+M-s+q'-q) 
max ' · 
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