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I do believe you think what now you speak,

But what we do determine oft we break.

Purpose is but the slave to memory,

Of violent birth, but poor validity,

Which now, like fruit unripe, sticks on the tree,

But fall, unshaken, when they mellow be.

Most necessary 'tis that the forget

To pay ourselves what to ourselves is debt.
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The main objetive of this paper is to analyze hypothesis tests for the stability parameter α of the
stable innovations, which determines the heaviness of the distribution’s tails. We will consider both
a simple z-test and also the likelihood ratio test. Power analysis for both situations will be studied as
well. Four estimators for the long-range dependence parameter d will be used, including parametric
and semi-parametric procedures with robust versions. Three different estimators for the tail index α
will be considered in this work. A Monte Carlo study will be presented, as well as an application to
real data.
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1. Introduction

In time series analysis, it is common to find studies where long-range dependence is
present. In fact, significant correlation between distant time periods can be found in
time series in different areas such as economics, hydrology and meteorology. Character-
istics of long memory time series are such that its autocorrelation function ρk decays
hyperbolically to zero and its spectral density function fX(·) is unbounded in the neigh-
bourhood of the zero frequency. Models for long-range dependence were first introduced
by the seminal work of Hurst (1951). One of the models capable of representing this
phenomena is the autoregressive fractionally integrated moving average, also known as
ARFIMA(p,d,q) process, introduced by Granger and Joyeux (1980) and Hosking (1981).
This model can represent the hyperbolic decay rate of the autocorrelation function in a
long memory time series, while an ARMA process can only represent a geometric decay
rate. In this model, d ∈ (−0.5, 0.5) is called the long-range dependence parameter, since
its value is closely related to the autocorrelation function decay rate.

Usually, time series models assume a Gaussian process as innovations. Several estima-
tion methods for the long-range dependence parameter d in the ARFIMA(p, d, q) process
consider this assumption to analyze the limiting distribution properties of the estimators.
However, this work will consider α-stable innovations for the time series. This class of
distributions can model several characteristics, and allows heavy tails to be introduced
on the innovation process. Therefore, it is rather interesting to analyze the performance
of the estimation methods under these circumstances. We refer the reader to Kokoszka
and Taqqu (1995, 1996) for a detailed study on α-stable innovations on long-range de-
pendence processes.

†Corresponding author. Email: silvia.lopes@ufrgs.br
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This paper consists in analyzing the estimation procedure in an ARFIMA(p, d, q) model
with α-stable innovations, specifically in estimating the stability parameter α. To achieve
this goal, hypothesis tests for the stability parameter α, which determines the heaviness
of the distribution’s tails, will be performed. We will analyze in which circumstances a
hypothesis test can detect non-Gaussianity in the innovations. For this, we will consider
both a simple Z-test and also the likelihood ratio test. Power analysis for both situations
will be studied as well. Four estimators of the long-range dependence parameter d will be
considered, including parametric and semi-parametric procedures with robust versions.
Three different estimators for the tail index α will be considered in this work. A Monte
Carlo study will be presented, as well as an application to a tree-ring measurements time
series.

2. Preliminary Concepts

2.1 ARFIMA(p,d,q) Model

An ARFIMA(p,d,q) process is the stationary solution to the equation

Φ(B)(1− B)d(Xt − µ) = Θ(B)εt, t ∈ Z, (2.1)

where B is the backward shift operator, Φ(·) and Θ(·) are the p and q order polynomials,
respectively given by Φ(B) =

∑p
i=0 (−φi)Bi and Θ(B) =

∑q
j=0 (−θj)Bj , where φi and θj

are real constants with φ0 = −1 = θ0, with roots outside the unit circle. The innovation
{εt}t∈Z is a white noise process with zero mean and variance equal to σ2

ε . When d ∈
(−0.5, 0.5), the process is both stationary and invertible. Moreover, when d ∈ (0.0, 0.5),
the process exhibits long-range dependence, namely the autocorrelation function has an
hyperbolic decay, slowly approaching zero.

2.2 Stable Distributions

A random variable X is stable if its characteristic function ϕX(·) is given by

ϕX(t) =

{
exp{−λα|t|α

[
1− iβ(tan πα

2 )(sign t)
]

+ iµt}, α 6= 1
exp{−λ|t|

[
1− iβ 2

π (sign t) log(t)
]

+ iµt}, α = 1.
(2.2)

The parameter α is the stability index parameter (0 < α ≤ 2), β is a symmetry param-
eter (|β| ≤ 1), λ is the scale parameter (λ > 0) and µ is the location parameter (µ ∈ R).
The word stable is used in this case because its shape remains unchanged - or stable -
under summation. Stable distributions also arise as a limit distribution of sums of i.i.d.
random variables, as shown by the Generalized Central Limit Theorem (see Lévy, 1924
for a complete study of these distributions).

The stability index α is the most important parameter to be estimated, since it is
related to the probability of ocurrence of extreme values, that is, P (|X| > x) ∼ Cx−α.
Therefore, its value may represent the existence of heavy-tailed data. The lack of closed
formulas for all but a few distributions in this class has been a drawback to models us-
ing this kind of random variable. Fortunately, the advance of numerical computing has
allowed the generation of densities, quantiles and random numbers from these distribu-
tions. Those computational programs made it possible to use stable models in several
practical problems.
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3. Long Memory Parameter Estimation

The literature on stochastic long-memory processes has presented several estimation
procedures for the fractional differencing parameter d. In this section we summarize four
of such methods that shall be used in this paper. Two of them are in the parametric
class, and the other two are in the semi-parametric class. For the latest, we also consider
their robust versions. They are:

• maximum likelihood estimator (MLE), proposed by Sowell (1992);
• parametric approximated maximum likelihood method (W), proposed by Whittle

(1953) and Fox and Taqqu (1986);
• semi-parametric regression method based on the periodogram function (GPH), pro-

posed by Geweke and Porter-Hudak (1983);
• semi-parametric regression method based on the smoothed periodogram which consid-

ers the Bartlett lag window (BA), proposed by Lopes and Mendes (2006).

3.1 Maximum Likelihood Estimator

Consider a stationary normally distributed fractionally integrated process {Xt}t∈Z, gen-
erated by the model in (2.1). Let {xt}Tt=1 be a sample of T observations. The normal
probability density function of this sample is given by

f(zt,Σ) = (2π)−T/2|Σ|−1/2 exp

{
−1

2
z′tΣzt

}
, (3.1)

where Σ is the covariance matrix of the observations. Sowell (1992) noted that stationarity
implies that this covariance matrix has a Toeplitz form as in Σ = [γ(i − j)], for i, j =
1, 2, · · · , T , where γ(·) is the autocovariance function of the process {Xt}t∈Z. The joint
estimation of the model parameters requires the specification and the estimation of the
above covariance matrix. For that, the author wrote the autocorrelation function in terms
of the model parameters and derived the autocovariance function

γ(s) =
1

2π

∫ 2π

0
fz(λ)eiλsdλ. (3.2)

The maximization procedure involves the evaluation of the likelihood function for a
global maximum for a given set of parameter values. The spectral density function of
{Xt}t∈Z is used in the specification of the autocovariance function and can be derived
using the spectral density of the diminished ARMA process. Details on the derivation of
the maximum likelihood function and the recursive algorithm implementation are also
available in Sowell (1992). We also refer the reader to Andrews et al. (2009) for an account
of the maximum likelihood estimation for α-stable autoregressive models, that is, only
short-range dependence is present on the process.

3.2 Whittle estimator

The Whittle (W) estimator, proposed by Fox and Taqqu (1986) is based on an approx-
imation of the likelihood function suggested by Whittle (1953). The authors considered
the function

Q(η) =

∫ π

−π

In(w)

fX(w,η)
dw, (3.3)
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where η denotes the vector of unknown parameters, fX(·,η) is the spectral density
function and I(·) is the periodogram function. The W estimator is the value of η which
minimizes the function Q(η). Here, η is the vector (φ1, · · · , φp, d, σε, θ1, · · · , θq).

3.3 Regression methods using the periodogram function

Let {Xt}t∈Z be an ARFIMA(p, d, q) process with d ∈ (−0.5, 0.5) given by equation (2.1).
Its spectral density function is given by

fX(w) = fU (w)
[
2 sin

(w
2

)]−2d
, 0 < w ≤ π, (3.4)

where fU (w) is the spectral density function of the ARMA process. We can rewrite (3.4)
as

log(I(wj)) = log(fU (0))− d log
[
2 sin

(wj
2

)]2
+ log

{
fU (wj)

fU (0)

}
+ log

{
I(wj)

fX(wj)

}
, (3.5)

where I(·) is the periodogram function of Xt, given by

In(w) =
1

2π

(
γ̂X(0) + 2

n−1∑
k=1

γ̂X(k) cos(wk)

)
, w ∈ [−π, π], (3.6)

where γ̂(·) is the sample autocovariance function of the process and wj is the j-th Fourier
frequency, for j = 1, · · · , g(n), with g(n) as the number of regressors. A semi-parametric
estimator may be obtained by applying a regression model to equation (3.5). In this
work, we will consider three different methods based on this regression:

• Ordinary Least Squares (OLS) method
• Least Trimmed Squares (LTS) method, proposed by Rousseeuw (1984).
• MM method, proposed by Yohai (1987).

3.4 Classical and Robust GPH estimators

Geweke and Porter-Hudak (1983) introduced the first estimation method based on the
periodogram function. The classical GPH estimator is given by

d̂GPH =

∑g(n)
j=1 (xj − x)(yj − y)∑g(n)

j=1 (xj − x)2
, (3.7)

where the trimming value g(n) is set to g(n) = bn0.85c in this work. To obtain the robust
versions of the GPH estimator, we apply the LTS and the MM methodologies to the used
regression model in (3.5) with m = g(n).

3.5 Classical and Robust BA estimators

Another estimator is obtained by considering the smoothed version of the periodogram
function, since the periodogram function is not a consistent estimator for the spectral
density function. By considering the Bartlett lag window, a consistent estimator for the
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spectral density function may be obtained, as seen in Lopes and Mendes (2006). The
smoothed version of the periodogram function is defined by

Is(w) =
1

2π

ν∑
j=−ν

κ

(
j

ν

)
γ̂X(j) cos(jw), (3.8)

where κ(·) is the Bartlett lag window given by

κ(x) =

{
1− |x|, if |x| ≤ 1

0, otherwise,
(3.9)

with ν being the truncation point of the weighted function. To obtain the robust versions
of the BA estimator we apply the LTS and the MM methodologies to the regression model
in (3.5) using the smoothed periodogram given by (3.8).

4. Stability Index Estimation

After estimating the fractional differencing parameter d the stability index α of the α-
stable distributions can be estimated from the residuals of the proposed model. This
paper will use three estimators:

• Hill-Hall estimator, proposed by Hill (1975) and denoted by α̂hh;
• empirical characteristic function (ecf) estimator, proposed by Press (1972) and denoted

by α̂ecf ;
• maximum likelihood estimator (mle), proposed by Nolan (2001) and denoted by α̂mle.

4.1 Hill-Hall estimator

Let X(1) ≤ X(2) ≤ · · · ≤ X(n) be the order statistics. Let m = bnrc be the truncation
point that considers only the extreme observations. The Hill’s estimator is given by

α̂hh =

(
m−1

m∑
j=1

lnX(n−j+1) − lnX(n−m)

)−1

. (4.1)

Hall (1982) established the asymptotic normality of this estimator and determined the
optimal choice of the truncation parameter m. However, it is given by a function of the
unknown parameters of the distribution. Therefore, it is common to use a different set
of values. In this work we shall consider r ∈ (0.5, 0.8). The asymptotic variance for this
estimator is given by

AV ar(α̂hh) =
α2

m
. (4.2)

4.2 Empirical Characteristic Function estimator

The empirical characteristic function (ecf) estimator is given by the equation

α̂ecf =
ln
(∣∣∣ ln ϕ̂X(t1)

ln ϕ̂X(t2)

∣∣∣)
ln
(
t1
t2

) , (4.3)

5



where ϕ̂X(t) =
∑n

j=1 e
itXj is the empirical characteristic function and t1, t2 ∈ (0, 1). Press

(1972) determines the asymptotic normality of the estimator, as well as its asymptotic
variance,

AV ar(α̂ecf) =
σ2
α̂ecf

n
, (4.4)

where

σ2
α̂ecf

=
1 + |ϕ̂X(2t1)| − 2|ϕ̂X(t1)|2

2[|ϕ̂X(t1)| ln |ϕ̂X(t1)| ln t1
t2

]2
+

1 + |ϕ̂X(2t2)| − 2|ϕ̂X(t2)|2

2[|ϕ̂X(t2)| ln |ϕ̂X(t2)| ln( t1t2 )]2

− |ϕ̂X(t1 + t2)|+ |ϕ̂X(t1 − t2)| − 2|ϕ̂X(t1)||ϕ̂X(t2)|
[|ϕ̂X(t1)||ϕ̂X(t2)| ln |ϕ̂X(t1)| ln |ϕ̂X(t2)| ln( t1t2 )]2

.

Besbeas and Morgan (2008) consider t1 = 0.2 and t2 = 0.8 as the optimal selection
values for t1 and t2 in (4.3).

4.3 Maximum Likelihood Estimator

Let {Xt}t∈Z be a vector of i.i.d. stable random variables. The maximum likelihood esti-
mator (mle) is the value α̂mle which maximizes the likelihood function, that is,

α̂mle = arg max
α∈Θ

L(α|x), (4.5)

where L(α|x) =
∏n
i=1 f(α|xi) and Θ is the parameter space. Since there are no closed ex-

pression for the stable density function, numerical algorithms must be used. The asymp-
totic variance for the α̂mle estimator is given by

V ar(α̂mle) =
σ2
α̂mle

n
, (4.6)

where σ2
α̂mle

is the first diagonal entrance of the Fisher information matrix.

5. Hypothesis Tests for the Stability Index

The main objetive of this paper is to test the hyphotesis that the residuals of the
ARFIMA(p, d, q) process follow an α-stable distribution with heavy tails, that is, α < 2.
The case α = 2 in expression (2.2) is equivalent to the Gaussian distribution. Therefore,
by using the stability parameter α of the stable distributions, the null and alternative
hypothesis may be presented as

H0 : α = 2 vs H1 : α < 2, (5.1)

that is, under the null hypothesis, the residuals follow a Gaussian distribution, and under
the alternative hypothesis, an α-stable distribution with large tails.
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5.1 Statistical Test Power

The power of a statistical test can be defined as the probability that it will correctly
lead to the rejection of a false null hypothesis. Formally, if ϕ(·) is a test function for the
problem (αs,Θ0,Θ1) - as the one established in (5.1) - , the power function βϕ(·) for the
test is given by

βϕ(θ) = Pθ{Reject H0|H0 is false}, (5.2)

where θ ∈ Θ and Θ0 and Θ1 are subsets of the parameter space Θ such that Θ0∪Θ1 = Θ.
One can notice that βϕ(·) is a function of the parameter value θ, which means that the
power of the statistical test depends on how close the evaluated value in Θ1 is close
to the value in Θ0. In our context, the power of the statistical test to evaluate the
hypothesis given in (5.1) is the probability that the test will detect non-Gaussianity
when the residuals are, in fact, non-Gaussian, namely α-stable with α < 2.

5.2 Z-test

For the α̂hh and α̂ecf estimators, we will consider the asymptotic normal distribution, as
shown in Hall (1982) and Press (1972), respectively. Thereby, the proper test statistic
for the problem is given by

Z =
α̂− 2√
V ar(α̂)

. (5.3)

Under H0, Z ∼ N (0, 1). For a 5% significance level, H0 will be rejected if Z < −1.64.

5.3 Likelihood Ratio Test

The α̂mle estimator allow us to consider the likelihood ratio test, which is the uniformly
most powerful test among all tests of a given size. The likelihood ratio is given by

Λ(x) =
sup {L(θ;x) : θ ∈ Θ0}
sup {L(θ;x) : θ ∈ Θ1}

, (5.4)

where Θ0 and Θ1 are subsets of the parameter space Θ such that Θ0 ∪Θ1 = Θ. The test
statistic D, defined as −2 log(Λ), is asymptotically χ2

k distributed, where k is the number
of degrees of freedom equal to the difference of parameters in Θ1 and Θ0.

In this paper, we shall estimate the parameter λ2
ε for the model under H0, where

the residuals are normally distributed with zero mean and σ2
ε variance, and α and λ

parameters of the stable distribution for the model under H1. Under this hypothesis,
the residuals follow an α-stable distribution with stability index α < 2, scale parameter
λ > 0, symmetry parameter β = 0 and location parameter µ = 0. Informally, this means
that we will test the hypothesis that the residuals are normally distributed with a large
variance or are, in fact, stable distributed, that is, they have heavy tails.
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6. Monte Carlo Simulations

In this simulation study we have considered Monte Carlo simulations for ARFIMA(p,d,q)
processes with α-stable white noise. The results were obtained by time series of size
n = 500, over re = 5000 replications. For the ARFIMA(p,d,q) model, we considered
d ∈ {0.2, 0.3, 0.45} and p = 0 = q. For the α-stable white noise process we considered
α ∈ {1.25, 1.5, 1.75}, β = 0 = µ and σ = 1. The truncation point used for the GPH and
BA estimators for the long-range dependence parameter d is g(n) = n0.85.

For the estimation of the stability parameter α, we considered r ∈ {0.7, 0.75, 0.8} for
the hh estimator, and t1 = 0.2 and t2 = 0.8 for the ecf estimator. The maximization
of the likelihood function for the mle estimator was performed using the Nelder-Mead
algorithm. The estimates of the stability index α, denoted by α̂, and the variance of this
estimates, denoted by σ̂2

α̂ are respectively given by

α̂ =
1

re

re∑
j=1

αj (6.1)

and

σ̂2
α̂ =

1

re

re∑
j=1

(αj − α̂)2, (6.2)

where αj is the estimation of α in the j-th replication for all three estimation procedures
presented in Section 4. For the mle estimator, the scale parameter λ was also estimated:
the estimates λ̂ and σ̂2

λ̂
are given by λ̂ = 1

re

∑re
j=1 λj and σ̂2

λ̂
= 1

re

∑re
j=1(λj − λ̂)2, respec-

tively. For the power analysis, we have computed the value

p̂ =
1

re

re∑
j=1

πj , (6.3)

where πj is given by

πj =

{
1, if H0 is rejected
0, otherwise.

(6.4)

Since H0 should be rejected in every situation, since we have α < 2 in every simulation
scenario, p̂ gives us an estimate of the probability given in equation (5.2) - the percentage
of times H0 was correctly rejected. The hypothesis tests were performed for a significance
level γ = 0.05.
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Table 1: Estimation Results when α̂ is the hh estimator and d = 0.2.

Statistic MLE W GPH GPHMM GPHLTS BA BAMM BALTS

α = 1.25

r = 0.7
α̂ 1.2891 1.2900 1.2939 1.2931 1.2943 1.2975 1.2994 1.3321
σ̂2
α̂ 0.0218 0.0229 0.0238 0.0239 0.0258 0.0253 0.0306 1.7396
p̂ 0.9990 0.9982 0.9984 0.9984 0.9982 0.9980 0.9974 0.9924

r = 0.75
α̂ 1.2075 1.2098 1.2119 1.2115 1.2121 1.2114 1.2141 1.2344
σ̂2
α̂ 0.0157 0.0165 0.0181 0.0177 0.0197 0.0216 0.0235 0.7519
p̂ 0.9992 0.9986 0.9986 0.9982 0.9980 0.9974 0.9970 0.9928

r = 0.8
α̂ 1.0414 1.0422 1.0424 1.0424 1.0414 1.0412 1.0425 1.0564
σ̂2
α̂ 0.0134 0.0140 0.0158 0.0157 0.0183 0.0221 0.0247 0.3795
p̂ 0.9968 0.9972 0.9950 0.9962 0.9958 0.9906 0.9930 0.9884

α = 1.5

r = 0.7
α̂ 1.8028 1.8048 1.8058 1.8050 1.8039 1.7979 1.8001 1.8036
σ̂2
α̂ 0.0458 0.0468 0.0479 0.0477 0.0482 0.0490 0.0488 0.0603
p̂ 0.7708 0.7670 0.7636 0.7636 0.7686 0.7730 0.7698 0.7638

r = 0.75
α̂ 1.6670 1.6689 1.6658 1.6663 1.6652 1.6550 1.6569 1.6579
σ̂2
α̂ 0.0281 0.0283 0.0294 0.0287 0.0292 0.0344 0.0343 0.0454
p̂ 0.9534 0.9508 0.9490 0.9526 0.9536 0.9470 0.9474 0.9418

r = 0.8
α̂ 1.3632 1.3651 1.3613 1.3628 1.3607 1.3490 1.3508 1.3529
σ̂2
α̂ 0.0195 0.0187 0.0199 0.0195 0.0212 0.0281 0.0279 0.0391
p̂ 0.9996 0.9994 0.9990 0.9992 0.9992 0.9976 0.9976 0.9924

α = 1.75

r = 0.7
α̂ 2.9249 2.9260 2.9085 2.9127 2.9033 2.8724 2.8725 2.8556
σ̂2
α̂ 0.1512 0.1516 0.1537 0.1530 0.1529 0.1565 0.1548 0.1649
p̂ 0.0006 0.0008 0.0010 0.0004 0.0014 0.0046 0.0046 0.0068

r = 0.75
α̂ 2.5714 2.5740 2.5559 2.5586 2.5509 2.5195 2.5194 2.4987
σ̂2
α̂ 0.0868 0.0870 0.0900 0.0889 0.0900 0.0974 0.0974 0.1056
p̂ 0.0116 0.0096 0.0152 0.0136 0.0176 0.0306 0.0286 0.0412

r = 0.8
α̂ 1.8863 1.8867 1.8758 1.8789 1.8747 1.8547 1.8549 1.8414
σ̂2
α̂ 0.0492 0.0480 0.0510 0.0503 0.0522 0.0596 0.0588 0.0646
p̂ 0.6640 0.6666 0.6788 0.6762 0.6882 0.7002 0.7026 0.7182
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Table 2: Estimation Results when α̂ is the ecf estimator and d = 0.2.

Statistic MLE W GPH GPHMM GPHLTS BA BAMM BALTS

α = 1.25

α̂ 1.2783 1.2785 1.2818 1.2814 1.2815 1.2851 1.2852 1.2833
σ̂2
α̂ 0.0068 0.0067 0.0067 0.0067 0.0072 0.0071 0.0074 0.0114
p̂ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998

α = 1.5

α̂ 1.5726 1.5728 1.5740 1.5738 1.5741 1.5742 1.5747 1.5735
σ̂2
α̂ 0.0067 0.0066 0.0066 0.0066 0.0066 0.0068 0.0067 0.0082
p̂ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9996

α = 1.75

α̂ 1.8661 1.8662 1.8665 1.8665 1.8665 1.8659 1.8661 1.8655
σ̂2
α̂ 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0055
p̂ 0.5454 0.5458 0.5462 0.5472 0.5462 0.5518 0.5506 0.5530

Table 3: Estimation Results when α̂ is the mle estimator and d = 0.2.

Statistic MLE W GPH GPHMM GPHLTS BA BAMM BALTS

α = 1.25

α̂ 1.2916 1.2912 1.2951 1.2939 1.2942 1.3012 1.3008 1.3031
σ2
α̂ 0.0048 0.0050 0.0050 0.0052 0.0054 0.0051 0.0052 0.0068
p̂ 1.0000 1.0000 1.0000 1.0000 0.9996 0.9998 1.0000 0.9996

λ̂ 1.1396 1.1329 1.1525 1.1468 1.1565 1.1959 1.1908 1.2238
σ̂2
λ̂

0.0106 0.0083 0.0106 0.0100 0.0190 0.0236 0.0232 0.0789

α = 1.5

α̂ 1.6017 1.6022 1.6019 1.6019 1.6019 1.6007 1.6011 1.6019
σ2
α̂ 0.0041 0.0041 0.0042 0.0042 0.0042 0.0045 0.0045 0.0051
p̂ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

λ̂ 1.1640 1.1628 1.1693 1.1677 1.1712 1.1844 1.1849 1.2006
σ̂2
λ̂

0.0032 0.0030 0.0033 0.0032 0.0037 0.0052 0.0059 0.0198

α = 1.75

α̂ 1.8654 1.8655 1.8652 1.8653 1.8652 1.8640 1.8640 1.8634
σ2
α̂ 0.0021 0.0021 0.0021 0.0021 0.0022 0.0023 0.0023 0.0024
p̂ 0.9912 0.9908 0.9910 0.9912 0.9912 0.9906 0.9910 0.9902

λ̂ 1.1206 1.1204 1.1237 1.1229 1.1244 1.1310 1.1314 1.1397
σ̂2
λ̂

0.0009 0.0009 0.0011 0.0010 0.0011 0.0014 0.0015 0.0052
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Table 4: Estimation Results when α̂ is the hh estimator and d = 0.3.

Statistic MLE W GPH GPHMM GPHLTS BA BAMM BALTS

α = 1.25

r = 0.7
α̂ 1.2923 1.2924 1.2974 1.2969 1.2985 1.2996 1.3028 1.3187
σ̂2
α̂ 0.0262 0.0280 0.0288 0.0294 0.0297 0.0338 0.0350 0.0946
p̂ 0.9960 0.9954 0.9952 0.9950 0.9946 0.9934 0.9936 0.9876

r = 0.75
α̂ 1.2115 1.2126 1.2158 1.2154 1.2170 1.2160 1.2182 1.2294
σ̂2
α̂ 0.0226 0.0239 0.0253 0.0259 0.0262 0.0317 0.0334 0.0631
p̂ 0.9934 0.9934 0.9930 0.9924 0.9926 0.9884 0.9898 0.9838

r = 0.8
α̂ 1.0453 1.0465 1.0495 1.0480 1.0486 1.0504 1.0512 1.0598
σ̂2
α̂ 0.0236 0.0232 0.0252 0.0262 0.0261 0.0354 0.0369 0.0645
p̂ 0.9862 0.9882 0.9864 0.9876 0.9862 0.9762 0.9802 0.9742

α = 1.5

r = 0.7
α̂ 1.7983 1.8004 1.7995 1.8012 1.7996 1.7937 1.7962 1.8017
σ̂2
α̂ 0.0452 0.0466 0.0475 0.0486 0.0470 0.0526 0.0543 0.1109
p̂ 0.7740 0.7718 0.7694 0.7692 0.7710 0.7702 0.7630 0.7636

r = 0.75
α̂ 1.6636 1.6662 1.6625 1.6642 1.6612 1.6516 1.6544 1.6545
σ̂2
α̂ 0.0311 0.0318 0.0330 0.0352 0.0326 0.0410 0.0417 0.0739
p̂ 0.9486 0.9474 0.9490 0.9460 0.9454 0.9412 0.9404 0.9370

r = 0.8
α̂ 1.3634 1.3651 1.3606 1.3622 1.3606 1.3511 1.3524 1.3515
σ̂2
α̂ 0.0242 0.0242 0.0263 0.0269 0.0257 0.0364 0.0382 0.0704
p̂ 0.9982 0.9982 0.9978 0.9982 0.9974 0.9952 0.9948 0.9902

α = 1.75

r = 0.7
α̂ 2.9101 2.9135 2.8976 2.9014 2.8933 2.8517 2.8533 2.8342
σ̂2
α̂ 0.1470 0.1463 0.1503 0.1507 0.1511 0.1612 0.1613 0.1719
p̂ 0.0020 0.0014 0.0020 0.0014 0.0020 0.0078 0.0080 0.0110

r = 0.75
α̂ 2.5699 2.5724 2.5519 2.5549 2.5477 2.5066 2.5065 2.4838
σ̂2
α̂ 0.0897 0.0869 0.0875 0.0874 0.0897 0.1062 0.1057 0.1170
p̂ 0.0120 0.0118 0.0170 0.0160 0.0214 0.0386 0.0384 0.0534

r = 0.8
α̂ 1.8850 1.8877 1.8752 1.8787 1.8746 1.8479 1.8472 1.8349
σ̂2
α̂ 0.0567 0.0539 0.0555 0.0558 0.0569 0.0717 0.0700 0.0788
p̂ 0.6616 0.6584 0.6794 0.6726 0.6752 0.6912 0.6918 0.7098
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Table 5: Estimation Results when α̂ is the ecf estimator andd = 0.3.

Statistic MLE W GPH GPHMM GPHLTS BA BAMM BALTS

α = 1.25

α̂ 1.2820 1.2818 1.2850 1.2843 1.2843 1.2894 1.2887 1.2866
σ̂2
α̂ 0.0082 0.0074 0.0077 0.0075 0.0083 0.0083 0.0078 0.0115
p̂ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9996

α = 1.5

α̂ 1.5723 1.5724 1.5737 1.5737 1.5741 1.5739 1.5740 1.5729
σ̂2
α̂ 0.0066 0.0066 0.0066 0.0065 0.0066 0.0070 0.0068 0.0085
p̂ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

α = 1.75

α̂ 1.8661 1.8662 1.8666 1.8664 1.8664 1.8657 1.8657 1.8646
σ̂2
α̂ 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0056
p̂ 0.5464 0.5470 0.5470 0.5474 0.5498 0.5606 0.5582 0.5654

Table 6: Estimation Results when α̂ is the mle estimator and d = 0.3.

Statistic MLE W GPH GPHMM GPHLTS BA BAMM BALTS

α = 1.25

α̂ 1.3017 1.2992 1.3011 1.3024 1.3033 1.3132 1.3112 1.3145
σ2
α̂ 0.0055 0.0060 0.0061 0.0061 0.0061 0.0062 0.0064 0.0082
p̂ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9996

λ̂ 1.1613 1.1502 1.1719 1.1661 1.1751 1.2222 1.2134 1.2444
σ̂2
λ̂

0.0224 0.0178 0.0207 0.0202 0.0237 0.0391 0.0326 0.0870

α = 1.5

α̂ 1.6006 1.6009 1.6009 1.6009 1.6010 1.6002 1.6002 1.6009
σ2
α̂ 0.0041 0.0042 0.0043 0.0043 0.0043 0.0045 0.0045 0.0050
p̂ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

λ̂ 1.1681 1.1663 1.1730 1.1714 1.1750 1.1912 1.1904 1.2065
σ̂2
λ̂

0.0040 0.0034 0.0037 0.0034 0.0040 0.0071 0.0071 0.0200

α = 1.75

α̂ 1.8651 1.8652 1.8649 1.8650 1.8646 1.8635 1.8636 1.8629
σ2
α̂ 0.0021 0.0021 0.0022 0.0022 0.0022 0.0023 0.0023 0.0025
p̂ 0.9926 0.9928 0.9924 0.9924 0.9922 0.9912 0.9914 0.9906

λ̂ 1.1235 1.1230 1.1263 1.1255 1.1273 1.1357 1.1360 1.1466
σ̂2
λ̂

0.0012 0.0012 0.0013 0.0013 0.0015 0.0020 0.0025 0.0086
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Table 7: Estimation Results when α̂ is the hh estimator and d = 0.45.

Statistic MLE W GPH GPHMM GPHLTS BA BAMM BALTS

α = 1.25

r = 0.7
α̂ 1.3073 1.3079 1.3137 1.3135 1.3123 1.3243 1.3315 1.3414
σ̂2
α̂ 0.0530 0.0577 0.0603 0.0679 0.0605 0.0779 0.3829 0.2831
p̂ 0.9726 0.9738 0.9720 0.9744 0.9746 0.9598 0.9642 0.9630

r = 0.75
α̂ 1.2262 1.2286 1.2323 1.2315 1.2308 1.2480 1.2498 1.2584
σ̂2
α̂ 0.0639 0.0670 0.0720 0.0738 0.0685 0.0924 0.2431 0.1681
p̂ 0.9640 0.9672 0.9652 0.9670 0.9668 0.9450 0.9546 0.9518

r = 0.8
α̂ 1.0737 1.0721 1.0770 1.0759 1.0738 1.0984 1.0944 1.0969
σ̂2
α̂ 0.0782 0.0802 0.0860 0.0865 0.0777 0.1096 0.1815 0.1543
p̂ 0.9404 0.9498 0.9458 0.9476 0.9490 0.9190 0.9290 0.9308

α = 1.5

r = 0.7
α̂ 1.7916 1.7933 1.7923 1.7937 1.7919 1.7929 1.7911 1.7942
σ̂2
α̂ 0.0672 0.0648 0.0797 0.0839 0.0717 0.0860 0.0819 0.1126
p̂ 0.7476 0.7604 0.7546 0.7532 0.7518 0.7320 0.7390 0.7368

r = 0.75
α̂ 1.6540 1.6584 1.6552 1.6577 1.6534 1.6549 1.6513 1.6497
σ̂2
α̂ 0.0618 0.0567 0.0750 0.0773 0.0652 0.0827 0.0788 0.1051
p̂ 0.9014 0.9094 0.9076 0.9110 0.9120 0.8782 0.8876 0.8882

r = 0.8
α̂ 1.3558 1.3598 1.3598 1.3603 1.3580 1.3653 1.3602 1.3623
σ̂2
α̂ 0.0653 0.0555 0.0704 0.0770 0.0630 0.0835 0.0788 0.0992
p̂ 0.9782 0.9824 0.9764 0.9776 0.9776 0.9474 0.9584 0.9526

α = 1.75

r = 0.7
α̂ 2.8857 2.8946 2.8729 2.8758 2.8702 2.8336 2.8383 2.8210
σ̂2
α̂ 0.1685 0.1657 0.1704 0.1682 0.1709 0.2008 0.1958 0.2179
p̂ 0.0064 0.0050 0.0068 0.0072 0.0088 0.0230 0.0178 0.0204

r = 0.75
α̂ 2.5407 2.5470 2.5252 2.5304 2.5221 2.4847 2.4893 2.4724
σ̂2
α̂ 0.1247 0.1156 0.1215 0.1196 0.1247 0.1621 0.1518 0.1680
p̂ 0.0422 0.0314 0.0438 0.0396 0.0442 0.0786 0.0688 0.0808

r = 0.8
α̂ 1.8726 1.8763 1.8610 1.8627 1.8608 1.8441 1.8450 1.8357
σ̂2
α̂ 0.0967 0.0845 0.0903 0.0890 0.0922 0.1244 0.1207 0.1325
p̂ 0.6354 0.6404 0.6572 0.6576 0.6558 0.6594 0.6692 0.6796
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Table 8: Estimation Results when α̂ is the ecf estimator and d = 0.45.

Statistic MLE W GPH GPHMM GPHLTS BA BAMM BALTS

α = 1.25

α̂ 1.2824 1.2809 1.2841 1.2838 1.2829 1.2862 1.2855 1.2838
σ̂2
α̂ 0.0102 0.0099 0.0102 0.0101 0.0107 0.0125 0.0120 0.0145
p̂ 1.0000 0.9988 0.9990 0.9990 0.9996 0.9992 0.9994 0.9988

α = 1.5

α̂ 1.5735 1.5734 1.5746 1.5742 1.5746 1.5748 1.5753 1.5743
σ̂2
α̂ 0.0071 0.0068 0.0069 0.0070 0.0068 0.0074 0.0071 0.0084
p̂ 1.0000 1.0000 0.9998 1.0000 1.0000 0.9998 1.0000 0.9990

α = 1.75

α̂ 1.8650 1.8650 1.8656 1.8654 1.8651 1.8649 1.8647 1.8632
σ̂2
α̂ 0.0050 0.0049 0.0048 0.0048 0.0049 0.0049 0.0050 0.0060
p̂ 0.5436 0.5440 0.5456 0.5460 0.5482 0.5570 0.5554 0.5624

Table 9: Estimation Results when α̂ is the mle estimator and d = 0.45.

Statistic MLE W GPH GPHMM GPHLTS BA BAMM BALTS

α = 1.25

α̂ 1.3294 1.3218 1.3262 1.3245 1.3240 1.3434 1.3358 1.3367
σ2
α̂ 0.0118 0.0114 0.0123 0.0119 0.0115 0.0156 0.0142 0.0153
p̂ 0.9996 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9996

λ̂ 1.2454 1.2191 1.2420 1.2330 1.2427 1.3139 1.2949 1.3167
σ̂2
λ̂

0.0897 0.0733 0.0856 0.0753 0.0798 0.1492 0.1334 0.1603

α = 1.5

α̂ 1.6070 1.6059 1.6064 1.6061 1.6057 1.6105 1.6085 1.6090
σ2
α̂ 0.0045 0.0046 0.0048 0.0047 0.0048 0.0056 0.0055 0.0063
p̂ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

λ̂ 1.1950 1.1878 1.1968 1.1934 1.1969 1.2285 1.2210 1.2372
σ̂2
λ̂

0.0130 0.0105 0.0129 0.0120 0.0113 0.0290 0.0237 0.0335

α = 1.75

α̂ 1.8635 1.8635 1.8636 1.8635 1.8632 1.8629 1.8627 1.8624
σ2
α̂ 0.0022 0.0022 0.0022 0.0022 0.0023 0.0023 0.0024 0.0025
p̂ 0.9916 0.9920 0.9920 0.9922 0.9926 0.9916 0.9918 0.9910

λ̂ 1.1332 1.1307 1.1342 1.1331 1.1355 1.1484 1.1471 1.1587
σ̂2
λ̂

0.0023 0.0020 0.0020 0.0019 0.0024 0.0045 0.0050 0.0160
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7. Application

In this section we present an application of the methodology developed in the previous
sections. The data consists of a 4500 observation time series of tree-ring measurements,
at Campito Mountain, in California. The tree-ring widths were observed from 3435BC to
1064AD. Telesca and Lovallo (2010) present a study on long-range dependence on tree-
ring measurements as well as its connection to weather behaviour. The graphics of the
time series and its periodogram, autocorrelation and partial autocorrelation functions
are shown in Figures 1 and 2.

Figure 1: Time series: (a) tree-ring width at Campito Mountain; (b) periodogram for the tree-
ring measurements time series.

Figure 2: (a) Auto-correlation; (b) Partial auto-correlation functions for the tree-ring width at
Campito Mountain.
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The results for the parameter estimates are shown in Table 10.

Table 10: Parameter estimates for the tree-ring measurements time series.

Estimate MLE W GPH GPHMM GPHLTS BA BAMM BALTS

d̂ 0.4305 0.4361 0.4333 0.4346 0.4323 0.4835 0.4822 0.4762
α̂hh;r=0.8 > 2 > 2 > 2 > 2 > 2 > 2 > 2 > 2
α̂hh;r=0.85 1.6379 1.6318 1.6336 1.6346 1.6370 1.6849 1.6773 1.6788
α̂hh;r=0.875 1.2508 1.2531 1.2564 1.2555 1.2574 1.2429 1.2397 1.2440

α̂ecf 1.2452 1.2452 1.2452 1.2452 1.2452 1.2305 1.2312 1.2338
α̂mle 1.8134 1.8134 1.8134 1.8134 1.8134 1.8136 1.8136 1.8135

λ̂mle 4.9953 4.9949 4.9950 4.9950 4.9951 5.0028 5.0023 5.0004

For all the long-range dependence parameter d estimators, we have performed the
Wald−Wolfowitz runs test for randomness. We refer the reader to Wald and Wolfowitz
(1943) for details on the procedure. Table 11 shows the p-values for the tests: the ran-
domness hypothesis was not rejected for neither of the procedures used, which indicates
that the residuals are, in fact, a white noise process.

Table 11: p-values for the Wald−Wolfowitz runs test for randomness.

Statistic MLE W GPH GPHMM GPHLTS BA BAMM BALTS
p-value 0.3165 0.4565 0.3846 0.4168 0.3603 0.9976 0.9970 0.9916

We have performed hypothesis tests for normality as well. The Z-tests were performed
for the hh and ecf estimates, and the likelihood ratio test was performed for the mle
estimates. The null hypothesis, given in expression (5.1), was rejected in most part of
the cases. The p-values for the tests results are shown in Table 12.

Table 12: p-values for hypothesis tests.

Estimate MLE W GPH GPHMM GPHLTS BA BAMM BALTS
α̂hh;r=0.8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
α̂hh;r=0.85 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
α̂hh;r=0.875 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

α̂ecf < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
α̂mle < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

In Figure 3 we present the residuals for the ARFIMA(0, 0.43, 0) model applied to
the tree-ring time series. In Figure 4 we present the auto-correlation and partial auto-
correlation functions for the residuals of the fitted model, and in Figure 5 we present both
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a comparison between the α-stable density function with α = 1.8 and λ = 5 - values
close to the mle estimates for all different estimators for the long-range dependence
parameter d - and a non- parametric estimate for the pdf of the residuals using a simple
kernel function and the confidence interval at 95% confidence level for the 5-step ahead
forecasting in the tree-ring time series based on the fitted model.

Figure 3: Residuals for the ARFIMA(0, 0.43, 0) model.

Figure 4: Autocorrelation function for the residuals of the fitted model.
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Figure 5: Fitted model: (a) Confidence interval at 95% confidence level for the 5-step ahead
forecasting in the tree-ring time series based on the fitted model; (b) Density comparison: α-stable
distribution with α = 1.8 and σ = 5 (solid line) and non-parametric estimate from the residuals
(dashed line).

8. Conclusions

In this paper, we have presented hypothesis tests for the stability parameter α of the
α-stable distributions. The objetive was to analyze in which cases the tests on the three
studied estimators were able to distinguish between an α-stable distribution and a
Gaussian distribution. We have performed both regular Z-tests and likelihood ratio test.
In this context, it is clear that the hh estimator is the most sensitive of the three selected
methods: the choice of the truncation point r is crucial to determine the precision of the
estimates and, therefore, the results of the hypothesis tests. Unfortunately, the proper
truncation point depends on prior knowledge of the data itself - fact that makes it
difficult to application in real data sets. The ecf estimator performed well in all of the
studied cases. A single choice of parameters is enough to provide precise test results. The
mle estimator performed better than the other three for the largest values of stability
parameter α and long-range dependence parameter d, in fact the most difficult cases
to study. In these cases, this method provided better test results than the other two
methods. Power analysis for the three procedures was also presented. The likelihood
ratio test proved to be the better option for the test problem, as we notice the largest
power estimates.

An application to real data was also presented. We have adjusted the proposed model in
a tree-ring measurements time series with 4500 observations and performed hypothesis
tests for normality. The estimates for the stability parameter α, as well as the tests
results, oscilated depending on the estimation method. Most of the hypothesis tests
rejected normality: only a few of the hh estimates could not reject H0. A comparison
between densities was also presented as a visual indication of the fitted model, showing
that the mle estimator provided the closest estimate for the residuals distribution.
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