UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMATICA
PROGRAMA DE POS-GRADUACAO EM COMPUTACAO

OSCAR MAURICIO CAICEDO RENDON

An Effective Approach for Network
Management based on Situation

Management and Mashups

Thesis presented in partial fulfillment
of the requirements for the degree of

Doctor of Computer Science

Advisor: Prof. Dr. Lisandro Zambenedetti
Granville

Porto Alegre
January 2015

CIP - CATALOGING-IN-PUBLICATION

Caicedo Rendon, Oscar Mauricio

An Effective Approach for Network Management based on
Situation Management and Mashups / Oscar Mauricio Caicedo
Rendon. — Porto Alegre: PPGC da UFRGS, 2015.

2?21l

Thesis (Ph.D.) — Universidade Federal do Rio Grande do Sul.
Programa de P6s-Graduagdo em Computacao, Porto Alegre, BR—
RS, 2015. Advisor: Lisandro Zambenedetti Granville.

1. Mashment. 2. Mashup. 3. Network Management Situation.
4. Situation Management. 5. Web-based Network Management.

I. Granville, Lisandro Zambenedetti. II. Titulo.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Reitor: Prof. Carlos Alexandre Netto

Vice-Reitor: Prof. Rui Vicente Oppermann

Pro-Reitor de P6s-Graduagdo: Prof. Vladimir Pinheiro do Nascimento
Diretor do Instituto de Informadtica: Prof. Luis da Cunha Lamb
Coordenador do PPGC: Prof. Luigi Carro

Bibliotecdria-chefe do Instituto de Informatica: Beatriz Regina Bastos Haro

“He aprendido que el mundo quiere vivir en la cima de la montana,
sin saber que la verdadera felicidad esta en subir la escarpada.”
— GABO

ACKNOWLEDGEMENT

Acknowledgments are written in Spanish because of my family. En primer lugar quiero
agradecer a Nina y Edgar por sus ensenanzas y apoyo incondicional en cada etapa de mi vida;
su dedicacidn y sacrificio han sido la base para mi progreso. Sin lugar a duda estas palabras se
quedan cortas para expresarles mi amor y gratitud. A Marce y Samuca por ser mi inspiracion;
ustedes son mi motivo para mejorar dia a dia. A Lore por ser el amor que facilita todo; sin ti

lograrlo hubiese sido més dificil, gracias totales.

También quiero agradecer a todas las excelentes personas del grupo de redes con quienes
comparti mis triunfos y derrotas en este duro camino doctoral. A Arthur y Felipe por ayudar en
el desarrollo de mi investigacion. A Ricardo, Wanderson, Cadori, y Javier por la amistad, el café
y las innumerables conversaciones compartidas. A Esteves, Jedi, Weverton, Dalmazo, Roben,
Lucas, Vinicius, Marcelo, Raniery, Jefferson, Juliano, Guilherme, y Glederson por facilitar mi
adaptacion al grupo y POA. A Ganso y Rodolfo por sus singulares ocurrencias. A los purinhos

I, IL, Il y IV por proporcionar todo el café necesario para investigar.

Finalmente, a los profesores del grupo mi agradecimiento por la oportunidad brindada de
pertenecer a tan selecto colectivo. Especialmente agradezco a mi tutor, Prof. Lisandro Zam-
benedetti Granville, por la confianza depositada, la transmision de conocimiento y experiencia,
los invaluables consejos y la exigencia de progreso continuo; indudablemente por su influencia

hoy soy mejor investigador.

CONTENTS

LIST OF ABBREVIATIONS AND ACRONYMS 9
LISTOFFIGURES. i e e e e e e e e e e 13
LISTOFTABLES @ i e e e e e e e e e 15
ABSTRACT i i e et e e e e e e e e e 17
1 INTRODUCTION i e e e e e e e e e 19
1.1 Contributions 20
1.2 Methodology and organization 21
2 STATEOFTHE ART @ it e e e e e e e e e 23
2.1 Situation management 23
2.2 Mashuptechnology 28
2.3 Networkmanagement 33
24 Finalremarks 37

3 CARRYING OUT NETWORK MANAGEMENT USING SITUATION MAN-

AGEMENT ANDMASHUPS it e it e e e e e e 39
3.1 Fundamentalconcepts 39
3.1.1 Network management situation 39
3.1.2 Mashment L 42
3.2 Mashmentecosystem 42
3.2.1 Resources 44
322 Stakeholders 46
3.2.3 Activities and interactions Lo 47
324 Softwareentities L .. e e e 49
3.3 Process for addressing nmsits by mashments 50
3.3.1 Overall functioning e 50
332 Complexity e e e 51
333 Time-consSuming e e e e e 54
3.4 Mashment system architecture 56
34.1 Managed resources layer 57
342 Adaptationlayer L 58
343 Compositionlayer Lo 60

344 Presentationlayer L L 67

3.5 Finalremarks e 68

4 EVALUATING THE MASHMENT-BASED APPROACH 69
4.1 Reference implementation00 69
4.1.1 Managed resourceso e e e 69
4.1.2 Mashment SyStem SEIrver v vt i e e e e e 70
4.1.3 Mashment maker prototype 71
4.1.4 Runtime environmentst e 73
42 CasestudyonSDN 73
4.2.1 Complexity: results and analysis 74
4.2.2 Time-consuming: results and analysis 78
4.2.3 Time-response: results and analysis 82
424 Traffic: resultsand analysis L oo 84
43 Casestudyonvirtualnodes 87
4.3.1 Complexity: results and analysis 88
4.3.2 Time-consuming: results and analysis 92
4.3.3 Time-response: resultsand analysis L. 95
434 Traffic: resultsand analysis Lo 97
4.4 Case study for dynamic mashments 99
4.4.1 Time-recognition: results and analysis 100
442 Time-composition: results and analysis 102
443 Complexity: results and analysis 103
444 Time-consuming: results and analysis 105
45 Finalremarks 107
5 CONCLUSIONS it e e e e e e e s s e e e 109
5.1 Answer for the fundamental questions 109
5.2 Contributions L 111
53 Futurework 111
REFERENCES e e e e e e e e e e e e 113
APPENDIX A - SCIENTIFIC PRODUCTION 121
A.1 Papers: accepted and onreviewing L. 121

A.2 Collaborations: accepted and on reviewing 124

LIST OF ABBREVIATIONS AND ACRONYMS

AJAX Asynchronous JavaScript and XML

AMR Analytics Management Resource

AMRP Analytics Management Resource Provider
AMRS Analytics Management Resource as a Service
API Application Program Interface

BGP Border Gateway Protocol

BPM Bussiness Process Management

CEP Complex Event Processing

CLI Command Line Interface

CSS Cascading Style Sheet

CHS Contextual Help System

DBMS DataBase Management System

DRL Drools Rule Language

DSO Distribution System Operator

ERP Enterprise Resource Planning

ForCES Forwarding and Control Element Separation
GUI Graphical User Interface

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

ISP Internet Service Provider

ITIL Information Technology Infrastructure Library

ITSM IT Service Management

JSON
KLM
MRTG
NMR
NMRP
NMRS
NOS
NSR
NSRP
NSRS
NVE

OLAP

OpRP
OpRS
PMM
REST
RSS
SDN
SEP
SLA
SM
SME

SMR

JavaScript Object Notation
Keystroke-Level Mode

Multi Router Traffic Grapher

Network Management Resource
Network Management Resource Provider
Network Management Resource as a Service
Network Operating System

Network Situational Resource

Network Situational Resource Provider
Network Situational Resource as a Service
Network Virtualization Environment
On-line Analytical Processing

Operator Resource

Operator Resource Provider

Operator Resource as a Service
Performance Monitoring Mashment
REpresentational State Transfer

Rich Site Summary

Software-Defined Networking

Software Entity Provider

Service Level Agreement

Situation Management

Small and Medium Enterprise

Situation Management Resource

SMRP

SMRS

SNMP

SOA

SOAP

URI

VNMM

WMR

WMRP

WMRS

XML

Situation Management Resource Provider
Situation Management Resource as a Service
Simple Network Management Protocol
Service Oriented Architecture

Simple Object Access Protocol

Uniform Resource Identificator

Virtual Node Monitoring Mashment
Web-based Management Resource

Web-based Management Resource Provider
Web-based Management Resource as a Service

eXtensible Markup Language

1.1

2.1

3.1
32
33
34
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17

LIST OF FIGURES

Thesisphases e 21
Situation management aspectso e e e 23
Network management situationmodel 40
Mashment concept e 42
Mashment ecosystem Lo 43
Process to develop and launch mashments 51
Mashment system architecture 56
Managed resources layero Lo 57
Adaptation layer L. 59
Maker modules 60
Designer services for static mashments 63
Designer elements for dynamic mashments 64
Automatic recognizer of nmsits Lo 65
Dynamic composer of mashments 66
Executormodules 66
Presentationlayer Lo 67
User interface of the Mashment Maker 72
Testenvironmenton SDN L. 74
PMM - development and launch 76
PMM - user interface of traffic 76
Complexity on NMSit-SDN oo 77
BeaconWebTool L 78
PMM - user interfaces of switches, links, and flows 80
Time-consuming on NMSit-SDN 81
Time-response on SwitchesList 82
Time-response on LinksList 83
Time-reponse on FlowsList. 84
Traffic on SwitchesList, 85
Trafficon LinksList. o 86
Trafficon FlowsList 87
Test environment on virtual nodes 88
VNMM - development and launch 90

VNMM - user interface of guest 90

4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29

Complexity on NMSit-VNo oo 91
oVirt WebTool 93
Time-consuming on NMSit-VN o oo, 95
Time-response on NodeStructure 97
Network traffic on NodeStructure 99
Test environment - dynamic mashments 100
Example of nmsit fortesting L. 100
Time-recognition behavioro L. 101
Example of composition template and generated mashment 102
Time-composition behavior Lo 103
Complexity - dynamic mashments 104

Time-consuming - dynamic mashments 106

2.1
2.2
2.3
24

3.1

4.1
4.2

LIST OF TABLES

Research on situation management 27
Researchonmashups L o L. 31
Mashups for network management L. 33
Research on network management 36
KLMactions e 54
Time-response of VNMM and Monitoring Script 96

Network traffic of VNMM and Monitoring Script 98

ABSTRACT

The Situation Management discipline is intended to address situations happening or that
might happen in dynamic systems. In this way, this discipline supports the provisioning of
solutions that enable analyzing, correlating, and coordinating interactions among people, in-
formation, technologies, and actions targeted to overcome situations. Over recent years, the
Situation Management has been employed in diverse domains ranging from disaster response
to public health. Notwithstanding, up to now, it has not been used to deal with unexpected,
dynamic, and heterogeneous situations that network administrators face in their daily work; in

this thesis, these situations are referred to as network management situations.

The mashup technology also allows creating solutions, named mashups, aimed to cope with
situations. Mashups are composite Web applications built up by end-users through the combi-
nation of Web resources available along the Internet. These composite Web applications have
been useful to manage situations in several domains ranging from telecommunication services
to water floods. In particular, in the network management domain, the mashup technology has
been used to accomplish specific tasks, such as botnet detection and the visualization of traffic

of the border gateway protocol.

In the network management domain, large research efforts have been made to automate and
facilitate the management tasks. However, so far, none of these efforts has carried out network
management by means of the Situation Management and the mashup technology. Thus, the goal
of this thesis is to investigate the feasibility on using the Situation Management and mashups as
an effective (in terms of complexity, consuming of time, traffic, and time of response) approach

for network management.

To achieve the raised goal, this thesis introduces an approach formed by mashments (special
mashups devised for coping with network management situations), the Mashment Ecosystem,
the process to develop and launch mashments, the Mashment System Architecture, and the
Mashment Maker. An extensive analysis of the approach was conducted on networks based
on the Software-Defined Networking paradigm and virtual nodes. The results of analysis have
provided directions and evidences that corroborate the feasibility of using the Situation Man-

agement and mashups as an effective approach for network management.

Keywords: Mashment. Mashup. Network Management Situation. Situation Management.

Web-based Network Management.

19

1 INTRODUCTION

The Situation Management (SM) discipline is intended to address situations happening or
that might happen in dynamic systems (JAKOBSON et al., 2005). In particular, this disci-
pline aims to provide solutions that enable analyzing, correlating, and coordinating interac-
tions among people, information, technologies, and actions targeted to overcome situations
(KOKAR; MATHEUS; BACLAWSKI, 2009) (JAKOBSON, 2014). SM is based on the follow-
ing foundations (JAKOBSON; BUFORD; LEWIS, 2007) (JAKOBSON, 2013): (i) a situation
that is modeled as a collection of entities in a domain, their attributes, and relationships in a
time interval, (if) the investigative aspect related to retrospective cause analysis of situations,
(iii) the control aspect devised to change or preserve situations; and (iv) the predictive aspect

aimed to foresee situations.

SM has been employed in diverse domains, such as satellite networking (GOPAL, 2007),
disaster response (GEORGE et al., 2010), smart power grids (MAGOUTAS; MENTZAS; APOS-
TOLOU, 2011), aviation (KOELLE; TARTER, 2012), civil crisis (HEIN et al., 2012), public
health (PEREIRA; COSTA; ALMEIDA, 2013), electric power systems (KROHNS-VALIMAKTI;
STRANDEN; SARSAMA, 2013), and emergency medical assistance (BRUNS et al., 2014).
Notwithstanding, up to now, SM has not been used to deal with unexpected, dynamic, and het-
erogeneous situations that network administrators face in their daily work; in this thesis, these
situations are referred to as network management situations. Some examples of network man-
agement situation are: (i) a sudden failure in the packet transmission of heterogeneous network
devices; and (ii) an unforeseen slowness in a link formed by two virtual routers. It is important
to highlight that this thesis does not affirm that network management situations have never been

investigated, but such investigation has not been made from SM perspective.

The mashup technology also allows creating solutions, named mashups, aimed to cope
with situations. Mashups are Web applications built up by end-users through the combina-
tion of Web resources available along the Internet (SIMMEN et al., 2008) (LAGA et al., 2012).
Mashups have been useful to manage situations in several domains, such as project manage-
ment (OZKAN; ABIDIN, 2009), water floods (TOSTI; SMARI, 2010), fire emergencies (MA-
JCHRZAK; MORE, 2011), telco services (GEBHARDT et al., 2012), data integration (HAN et
al., 2013), immersive mirror worlds (STIRBU et al., 2013), and music (DAVIES et al., 2014).
Furthermore, this technology has been analyzed as a feasible mechanism to accomplish specific
tasks for network management (BEZERRA et al., 2010) (SANTOS et al., 2010b). Nevertheless,
until now, the mashup technology has not been investigated to address network management sit-

uations.

In the network management domain, large research efforts (CHEN et al., 2010) (KIM; KIM,
2011) (MATTOS et al., 2011) (SANTANNA; WICKBOLDT; GRANVILLE, 2012) (MON-

20

SANTO et al., 2013) (KIM; FEAMSTER, 2013) (SMITH et al., 2014) have been made to
automate and facilitate the management tasks. However, so far, none of these efforts has carried
out network management by means of SM and mashups. Therefore, the goal of this thesis is
to investigate the feasibility of using SM and mashups as an effective approach (i.e., in terms
of complexity, consuming of time, traffic, and time of response) for network management. To

achieve this goal, this thesis raises the following hypothesis.

Hypothesis: The employment of SM and mashups provides an effective approach for net-

work management.

The below fundamental questions, associated with the afore raised hypothesis, guide the

investigation conducted in this thesis.

e What is the performance, in terms of the complexity and consuming of time, of solutions
that use SM and mashups for network management?

e What is the performance, in terms of traffic and time of response, of solutions based on
SM and mashups for network management?

e Which mechanisms could be employed to improve the performance of solutions that use

SM and mashups for network management?

1.1 Contributions

The investigation about the feasibility of using SM and mashups as an effective approach

for network management led to the following major contributions.

e The network management situation concept and its data model that introduce a novel
way to characterize unexpected, dynamic, and heterogeneous situations in the network
management domain.

e The mashment concept and its data model that present the use of mashups for carrying

out the investigative and control aspects of SM in the network management domain.

e A new mashup ecosystem that defines the resources, stakeholders, software entities, ac-
tivities, and interactions involved in addressing network management situations.

e A groundbreaking process formed by high-level tasks that presents how to deal with net-
work management situations by developing and launching mashments.

e An assessment model that allows measuring the complexity and time of addressing net-

work management situations with and without a mashment-based approach.

21

e A mashment system architecture that supports the carrying out of the ecosystem and the

process aforementioned.

e A rule-based mechanism for automatic recognition of network management situations.

e A template-based mechanism for dynamic composition of mashments.

1.2 Methodology and organization

Figure 1.1 depicts the phases of the scientific research process followed in this thesis: Prob-

lem Definition, Hypothesis Construction, Experimentation, Conclusion, and Publish Fundings.

In Problem Definition, the research question has been identified and defined. In Hypothesis

Construction, the hypothesis and associated fundamental questions have been formulated. Fur-

thermore, in such phase, the conceptual and technological proposals have been defined and

carried out. In Experimentation, the hypothesis and evaluation results have been tested and

analyzed, respectively. In Conclusion, conclusions and future works have been outlined. Note

that Hypothesis Construction has been refed after Experimentation and Conclusion. In Publish

Findings, papers for renowned conferences and journals have been submitted and published.

This document was also written during such last phase.

] |

Hypothesis

- Conclusion
Construction

Experimentation [

\ 4

Problem Definition

-

Publish Findings

eHow feasible is to oThe employment of the eTest of the hypothesis ¢ Major results

use the situation situation management eAnalysis of the test e Future works
management discipline and the results
discipline and the mashup technology
mashup technology provides an effective
as an effective approach for network
approach for network management
management? eFundamental
questions
eConceptual and

The organization of this document reflects the phases outlined above.

technological proposal

Figure 1.1 — Thesis phases

e 1Journal A1
e 1 Conference A1
e 2 Conferences A2

e This introductory chapter presents the problem definition, raises the hypothesis, sum-

marizes the contributions, and describes the overall structure of this thesis.

e Chapter 2 reviews research about SM, mashups on situations and network management,

and handling situations in the network management domain.

e Chapter 3 introduces in detail the major contributions accomplished with this thesis.

22

e Chapter 4 describes the experiments conducted to test the hypothesis, discusses the cor-
responding results, and presents implementation highlights.

e Chapter 5 presents conclusions about the hypothesis and the fundamental questions as
well as opportunities for future works.

e Appendix includes the list of papers in which the major results obtained during the de-

velopment of this thesis have been published.

23
2 STATE OF THE ART

The goal of this chapter is to present the background of the main research topics touched in
this thesis. In this way, this chapter starts presenting the SM discipline and its use on different
application domains. After, this chapter reviews mashups and their use in diverse domains,
including network management. This chapter finishes discussing some research works aimed

to facilitate network management tasks.
2.1 Situation management

In a broad sense, SM is an emerging discipline, born in the US military, that provides a
framework of concepts, models, and enabling technologies to design and develop situational
solutions (KOELLE; TARTER, 2012). In a more specific definition, this discipline allows ana-
lyzing, correlating, and coordinating interactions among people, information, supporting tools,
and actions targeted to overcome situations happening or that might happen in dynamic systems
(JAKOBSON; BUFORD; LEWIS, 2007). In this sense, SM-based solutions deal with situations
that are composite entities in a particular application domain whose components are other enti-
ties, their attributes, and relationships in a time interval (KOKAR; MATHEUS; BACLAWSKI,
2009) JAKOBSON, 2014).

Investigative What is happening? What is going to happen? Predictive
Aspect Aspect

How to solve?

Control
Aspect

Figure 2.1 — Situation management aspects

SM includes three aspects (see Figure 2.1) always linked to the time axis (JAKOBSON;
BUFORD; LEWIS, 2007) (JAKOBSON, 2013): investigative, control, and predictive. The
investigative aspect aims to retrospective cause analysis of situations. Thus, this aspect is related
to carrying out actions intended to comprehend situations (i.e., to respond the question: what
is happening?). For instance: (i) finding the root cause of transmission failure on voice packets
in telecommunication networks; and (ii) monitoring of Service Level Agreements (SLAs) in

network service providers.

The control aspect is directed to change or preserve situations (i.e., to respond the question:

24

how to solve a situation?). In this way, this aspect is related to plan and implement actions
aimed to overcome situations. For instance: (i) the planning of opening and closing hospitals
during social emergencies; and (i) rescheduling the job of personnel to improve its performance

during the execution of technological projects.

The predictive aspect is related to project possible situations (i.e., to respond the question:
what is going to happen?). Therefore, this aspect is about the prediction of future situations
taking into account past situations. For instance: (i) the launching of alerts notifying potential
water floods, (i) the throwing of warnings to announce possible cybernetic attacks; and (iii)
the emission of alerts indicating when a server that hosts several virtual routers needs to be

migrated.

In order to carry out the above aspects, usually, SM-based solutions conduct the following
general management process (JONES et al., 2006): (i) they collect information of state and
time about situations from many and heterogeneous sources, (i) they correlate and fuse multi-
source information to assist the recognition and comprehension of situations and, so, support
the timely and correct making-decision when situations happen, (iii) they analyze past situations
in order to predict future ones, (iv) they reason, plan, and implement actions to tackle situations
within some predefined constraints; and (v) they present situational information aiming at the
human comprehension maximization. In the literature, if a solution implements one or more

SM aspects, it is considered as a situational solution.

In consonance with the aforedescribed aspects, the core theory of SM includes: Situa-
tion Modeling, Situation Recognition, and Situational Reasoning (JAKOBSON et al., 2005)
(JAKOBSON, 2014). The Situation Modeling is to represent situations by considering the in-
volved entities and the attributes, relations, and behavior of such entities. Examples of lan-
guages for modeling situations are the Web Ontology Language (GRAU et al., 2008) and
the Unified Modeling Language (RUMBAUGH; JACOBSON; BOOCH, 2004). The Situation
Recognition is to detect when situations happen in dynamic systems. The Situational Reason-
ing is related to plan, control, predict, and explain situations that happen or might happen in
these systems. Examples of approaches that allow to implement both Situation Recognition
and Situational Reasoning are the Case-Based Reasoning (SQUICCIARINI et al., 2014) and
the Complex Event Processing (CEP) (RAYMUNDO et al., 2014).

Although research on SM has been mainly focused on military applications, over recent
years, SM-based solutions have been used in diverse domains, such as satellite networking, dis-
aster response, smart power grids, civil crisis, aviation, public health, electric power systems,
and emergency medical assistance. For instance, in the domain of polyester film base manufac-
turing, a complex situational management application employing expert systems was proposed
for monitoring the non-steady state events and assisting human operators with the event tasks
(ADAMS; REYNOLDS, 2000).

25

In the satellite networking domain, a model-based framework for implementing situation
management infrastructure was proposed to monitor and control satellite networks (GOPAL,
2007). This solution is based on the On-line Analytical Processing (OLAP), the DataBase
Management Systems (DBMS), and the Simple Object Acces Protocol (SOAP). OLAP is used
to generalize and summarize the large amount of data generated by satellite networks. DBMS
is employed to store terminal configuration, payload configuration, and network administrator
requests. SOAP is used to offer service interfaces targeted to facilitate the interaction among

the proposed infrastructure and network management external systems.

In the disaster response domain, the architecture DistressNet was proposed to assist the dis-
aster responders in correct making-decision (GEORGE et al., 2010). DistressNet is formed by
wireless sensor networks and a set of delay-tolerant networking protocols. The wireless sen-
sors allow to collect in site data. In turn, the delay-tolerant protocols enable to transfer critical
messages from a network core to disconnected networks. The joint use of these sensors and
protocols allows sensing, collecting, merging, and timely delivering high volumes of accurate

information to the responders.

In the domain of smart power grids, a dynamic and flexible architecture was presented to
meet proactively and intelligently the continuous changes in the electricity usage patterns of
customers (MAGOUTAS; MENTZAS; APOSTOLOU, 2011). This architecture is based on the
Service Oriented Architecture (SOA), the linked open data, and the publish-subscribe paradigm.
The SOA concepts are used to facilitate the flexible integration of services. The linked open data
is employed to connect heterogeneous information sources referenced by Uniform Resource
Identifiers (URIs). The publish-subscribe paradigm is used to conduct push of information

from linked data.

In the civil crisis management domain, a secure mobile agents platform was introduced
to provide timely and protected access to situational information for emergency responders,
such as the on-site personnel, the tactical crisis command, and the off-site strategic command
centre (HEIN et al., 2012). This platform is based on: (i) a secure agent infrastructure to
construct modular cooperative services in charge of collecting crisis information, (ii) a trusted
docking station to enforce integrity guarantees; and (ii7) a secure docking module to authenticate

emergency responders and verify software.

In the aviation domain, an approach was proposed to support the design and development
of distributed systems intended to support the timely and correct making-decision during air
security incidents (e.g., sudden flight maneuvers, trajectory deviation, and terrorist attacks) in
SESAR and NextGen (KOELLE; TARTER, 2012). SESAR and NextGen are european pro-
grams intended to reduce air traffic delays and improve air safety. This approach is based on
ontologies and software agents. Ontologies are used to model incidents as situations, situational

elements, actors and the relations between all them. In turn, software agents are employed to

26

collect, fuse, and share heterogeneous information about the modeled situations.

In the public health domain, a rule-based platform for situation management was introduced
to monitor suspicious cases of tuberculosis (PEREIRA; COSTA; ALMEIDA, 2013). This plat-
form, named SCENE, supports the development of situation-aware applications by means of
situational design artifacts and a situation runtime. These artifacts are Situation Classes and
Situation Rules written in the Drools Rule Language (DRL). Classes and Rules are used to
define/specify the tuberculosis disease and its symptoms. The situation runtime manages the

lifecycle of situation-aware applications by controlling artifacts in a CEP-based engine.

In the domain of electric power systems, a situation awareness solution was proposed to
face major disturbances (e.g., snow storms and fires) suffered by different distribution system
operators (DSOs) in Finland (KROHNS-VALIMAKI; STRANDEN; SARSAMA, 2013). This
solution is a Web composite application that presents information about disturbances in the
electric power supply by combining data from several DSOs, public actors (i.e., municipality
and police), and map services. It is important to mention that such application was built by

expert programmers and not devised to be extended or improved by end-users.

In the domain of emergency medical assistance, an approach based on the Finite State Ma-
chines and CEP was proposed for reducing the wait time of patients by improving the effec-
tiveness in the ambulance fleet coordination (BRUNS et al., 2014). The Finite State Machines
were used to model the operational states of ambulances and their corresponding state transi-
tions. CEP was used to provide situation awareness by supporting the detection of changes in
states of ambulances. Such detection was carried out using intelligent mechanisms of fusion

and analysis of data streams emitted by the ambulance fleet.

Table 2.1 presents the aforecited works about the SM discipline, revealing that most of them
focuses on the investigative and control aspects; it is because these aspects are foundations to
conduct the predictive aspect. Furthermore, it is important to note that none of these works
has employed the fundamentals of the SM discipline to cope situations in the network manage-
ment domain. Consequently, there is a chance to innovate in the research gap located at the

intersection of SM and network management. This gap is later leveraged in this thesis.

In order to close this brief introduction to the SM discipline, it is to noteworthy that in
the literature, there are diverse management frameworks that despite using different termi-
nology could be used for achieving the goals raised by SM. One of such frameworks is the
Information Technology Infrastructure Library (ITIL) (OGC, 2011) that proposes a set of high-
level guidelines for IT Service Management (ITSM). In particular, ITIL introduces several IT
processes, such as the Event Management, Incident Management, Problem Management, and

Change Management, that could be employed for managing generic situations.

27

Table 2.1 — Research on situation management

Aspect

Research Work Domain Investigative Control Predictive
(GOPAL, 2007) Satellite networking v v v
(GEORGE et al., 2010) Disaster response v v v
(MAGOUTAS; MENTZAS; APOSTOLOU, 2011) Smart power grids v v

(HEIN et al., 2012) Civil crisis v v

(KOELLE; TARTER, 2012) Aviation v v

(PEREIRA; COSTA; ALMEIDA, 2013) Public health v v v
(KROHNS-VALIMAKI; STRANDEN; SARSAMA, 2013) Electric power systems v v

(BRUNS et al., 2014) Emergency med assistance v v

According ITIL definitions (OGC, 2007a), the Event Management is the service operation
process responsible for dealing with events. An event is any detectable or discernible ocurrence
that has significance for the management of IT infrastructures or the delivery of IT services.
The Incident Management is the service operation process in charge of coping with incidents.
An incident is any event causing unplanned interruption of an IT infrastructure/service or re-
duction in the quality of such infrastructure/service. Considering these definitions, when the
Event Management is used to detect events that trigger the registration of major incidents (i.e.,
incidents with shorter timescale and greater urgency) and hence the Incident Management, the
Event Management could be matched to the Situation Recognition. In the same direction, if the
Incident Management is used to address major incidents, this process might be assimilated to

the part of the Situational Reasoning responsible for planning and controlling of situations.

The Problem Management is defined as the service operation process in charge of dealing
with problems (OGC, 2007a). A problem is a cause of one or more incidents. In this way,
when the Problem Management is used to diagnose the root cause of major problems and to
determine the resolution of underlying incidents, this process might be equated to the part of

the Situational Reasoning in charge of explaining/investigating situations.

The Change Management is the service transition process responsible for controlling the
lifecycle of changes (OGC, 2007b). A change is the addition, modification, or removal of any-

thing that could affect an IT service/infrastructure. As this process can be triggered by the

28

Incident Management when a plan built for addressing a major incident includes emergency
changes (i.e., changes that are time sensitives and hence must be implemented as soon as pos-
sible) to be carried out in any element of an IT infrastructure or an IT service, the Change
Management could be also involved in the part of planning and controlling of the Situational

Reasoning.

Although the above paragraphs reveal that some goals of several ITIL processes (or dis-
ciplines) could be assimilated to diverse aims of the SM discipline, there are also important
differences among these processes (and ITIL as a whole) and SM. Unlike ITIL that defines
concepts like event, incident, and problem, SM just considers the concept of situation. In this
direction, it is to accentuate that the Event Management, Incident Management, and Problem
Management are generic processes and thus they can be used for managing any type of event,
incident, and problem, respectively. In contrast, SM is focused on managing situations that

could be equated to major incidents and their associated problems.

The Event Management, Incident Management, and Problem Management do not model, in
a formal way, events, incidents, or problems as the SM discipline does with situations. In par-
ticular, in SM, the Situation Modeling defines the model of situations (simple and compound)
that includes their structure and dynamism as well as their context. Regarding dynamism, it
is to note that a distinguishing characteristic of SM is the issue of time: (i) the aspects of in-
vestigation, control, and prediction are always linked to the time axis; and (ii) the evolution of

situations (including their attributes, constraints, and relationships) over time.

The above mentioned ITIL processes consider several activities for carrying out the recog-
nition, reasoning, and learning of events, incidents, and/or problems. However, such processes
do not center in these activities as SM does. In this sense, it is significant to underline that
the SM discipline includes in its core theory and general management process: the Situation

Recognition and Situation Reasoning for recognizing, learning, and reasoning about situations.

2.2 Mashup technology

Mashups are composite Web applications centered in end-users and created by combining
different resources available along the Web (MAXIMILIEN; RANABAHU; TAI, 2007) (CAP-
PIELLO et al., 2010). End-user centric means that mashups may be developed by users who
usually do not have advanced programming skills (LAGA et al., 2012). Furthermore, mashups
encourage the cooperation among end-users and the reuse of existing Web applications (SIM-
MEN et al., 2008) (HUANG; FAN; TAN, 2012).

The mashup technology is fundamentally characterized by resource abstraction and service

composition models (YU et al., 2008). The resource abstraction model hides the technical

29

details of underlying resources for end-users. This hiding is mainly carried out by means of
Application Programming Libraries (APIs) and widgets. APIs (WEISS; GANGADHARAN,
2010) provide well-defined interfaces to bidirectionally interact with Web resources, such as
Web feeds using the Rich Site Summary (RSS) format and Web services based on SOAP. Wid-
gets (LAGA et al., 2012) operate in a more high-abstraction level than APIs and usually offer
graphical mechanisms to interact, in a simple and efficient way, with APIs and specific con-
tent. Examples of widgets are visual boxes offering specific content about network speed and

memory consumption on personal computers.

The service composition model allows end-users to develop mashups by blending resources
represented as services. These resources are offered by multiple companies, such as providers
of Web services and widgets. Furthermore, such resources are available at various levels (e.g.,
data, presentation, and logic) of Web applications. For instance, the housingmaps application
that combines geographic location from Google Maps with house prices from Crailglist is a

classical mashup, which involves integration at levels of data and presentation.

The service composition model of mashups is assisted by systems that offer visual tools
(e.g., widgets and wire features) to combine, store, and execute services in a high-abstraction
level. Moreover, these systems are responsible for supporting the reuse and improvement of
existing compositions, promoting the generation of more sophisticated and innovative mashups.
It is relevant to mention that, in the literature, such systems are indistinctly known as mashup

systems, mashup tools, mashup makers, and mashup development environments.

Over the last decade, two important things have contributed to disseminate the use of
mashups (MAXIMILIEN; RANABAHU; TAI 2007): (i) the number of available services, wid-
gets, and online APIs has significantly increased; and (ii) new usability-oriented technologies,
such as the Asynchronous JavaScript and XML (AJAX) and Macromedia Flash, emerged to al-

low the creation of more dynamic applications and advanced Graphical User Interfaces (GUIs).

In the literature, if a mashup is developed for coping rapidly with an immediate need of
one or a small set of end-users, it is considered as a situational solution (LATIH et al., 2011).
Nevertheless, in this regard, it is important to highlight that such definition of mashups does
not formally consider the SM discipline. In fact, such definition does not take into account
any foundation of SM (i.e., situation, aspects - investigative, control, and predictive -, Situation

Modeling, Situation Recognition, and Situation Reasoning).

The mashup technology has been used as situational solution in many diverse domains, such
as project management, water floods, fire emergencies, telco services, data integration, immer-
sive mirror worlds, and music. For instance, in the project management domain, a mashup
system was proposed to support management tasks on situational projects (OZKAN; ABIDIN,

2009) that involve a small number of users and have a short lifespan. Using such mashup sys-

30

tem, project managers were enabled to quickly visualize, filter, and share information about

their projects by developing mashups.

A software architecture was introduced to facilitate the carrying out of emergency man-
agement operations in water floods (TOSTI; SMARI, 2010). This architecture uses Web 2.0
technologies, SOA concepts, and wireless sensor networks to support the estimation of the wa-
ter speed and timing of possible floods. A flood monitoring mashup was used to illustrate the
functioning of such an architecture. This mashup collected, correlated, and presented data from

multiple wireless sensors deployed in a simulated environment.

During a fire emergency happened in the city of San Diego (California, USA), a mashup
was developed by volunteers to provide to population the information about active fires, evac-
uation routes, working hospitals, and available refuges (MAJCHRZAK; MORE, 2011). This
mashup retrieved, integrated, and presented information from multiple services, such as maps,
geographic information systems, and wikis, offered by civil organizations, private companies,

and the government.

In the domain of telecommunication advanced services, a reference architecture was pro-
posed to facilitate the provisioning of telco mashups for end-users (GEBHARDT et al., 2012).
A telco mashup is a composite service that combines functionalities from telecomunication net-
works (e.g., streaming, quality of service, and billing) and device capabilities (e.g., geographic
location and health information) with services (e.g., instant messaging and IP telephony) avail-
able along the Web. Until now, in the literature, there is not evidence about a prototype of a

mashup system or a telco mashup that implements/follows such reference architecture.

In the domain of data integration, a mashup development environment called Mashroom
was introduced to solve the transient and ad-hoc data integration problem of bussiness users
(HAN et al., 2013). Such development environment is based on the resource abstraction model
of mashups and the spreadsheet programming paradigm (BURNETT et al., 2001). Using Mash-
room, bussiness users (i.e., an end-user working in a company) who have little programming
expertise can develop situational data mashups. The spreadsheet-based development is per-
formed on the fly and interactively by aggregating heterogeneous data sources represented as

services.

In the immersive mirror worlds domain, a lightweight platform for mashups was presented
to enable Web developers to create, in a mashup manner, realistic and immersive street-level
representations of the physical world (STIRBU et al., 2013). The Acme Tours & Travels Inc
built by using this plaftorm a mashup called Cloud City Scene. This mashup integrates geo-
graphical tagged data with street-level panorama images to provide live and three dimensional
information about routes, stops, arrivals, and departures of buses in several cities around the

world.

31

In the ITSM domain, a methodology, a model, and a set of mashup patterns (SANTOS et
al., 2011b) (SANTOS et al., 2013) were introduced for measuring, preventing, and eliminating
inefficiencies and errors caused by humans in the Request Fulfillment process. This process
is part of service operation processes defined by ITIL and deals with service requests (i.e.,
requests that do not represent a disruption to a service) from the users (OGC, 2007a). The
referred inefficiencies (i.e., suboptimal execution of activities due to their intrinsic complexity
and manual execution) were quantitatively evaluated and analyzed from a time productivity
perspective. In turn, human errors (i.e., activity defects introduced by operators) were assessed

and studied in a quantitative way from a probabilistic point of view.

In the music industry domain, the AutoMashUpper system was introduced to offer new pos-
sibilities for musical creation (DAVIES et al., 2014). Using AutoMashUpper, music enthusiasts
and professional DJs are able to build up novel musical content (i.e., music mashups) by mixing
different songs at different regions of an input song. In this system, a music mashup can be
built considering harmonic compatibility, rhythmic compatibility, and spectral balance of each

component song.

Table 2.2 — Research on mashups

Evaluated characteristic
Time Time Error
Research Work Domain Extensibility | Flexibility | Complexity of of of
task response task
(OZKAN; ABIDIN, 2009) Project management v v v
(TOSTI; SMARI, 2010) Water floods v v
(MAJCHRZAK;MORE, 2011) | Fire emergencies v v
(SANTOS et al., 2011b) ITSM v v v
(GEBHARDT et al., 2012) Telco services v v
(HAN et al., 2013) Data integration v v v
(STIRBU et al., 2013) Immer mirror worlds v v
(SANTOS et al., 2013) ITSM v v v
(DAVIES et al., 2014) Music v v
This thesis Netw management v v v v v

32

Table 2.2 presents the aforedescribed works about the mashup technology, revealing diverse
facts, first, most of such works was more concerned about qualitative aspects than quantitative
ones. In this way, these works mainly studied characteristics such as flexibility and extensibility.
Second, unlike this thesis, such works did not quantitatively analyze the complexity that users
perceive when conducting tasks assisted by mashups. Third, some research on the mashup
technology assessed the time that users spend to carry out tasks by using mashups but such
research did not evaluate the time of response of mashups themselves. It is to point out that this
thesis is not interested in measuring errors that a network administrator might make in his/her

daily work.

In the network management domain, a mashup-based approach was proposed to deal with
the security problem of botnets, in an more flexible, extensible, and usable way (SANTOS et al.,
2010a). This approach was carried out in a mashup. The mashup built integrates dinamically
botnet information collected from existing mitigation tools, such as sandboxes and antiviruses,

with geographic location retrieved from online mapping and geolocation APIs.

In the same direction of the work about botnets, a mashup system was introduced to evaluate
qualitatively the feasibility of using Web 2.0 technologies on the network management domain
(BEZERRA et al., 2010). In the prototype of proposed system, a mashup was built in order to
monitor the traffic of the Border Gateway Protocol (BGP) among two autonomous systems by
integrating traffic router information. This integrated information was collected by using the
Simple Network Management Protocol (SNMP) and presented by combining images retrieved

from a generator of traffic graphs and maps generated from a mapping service.

As a continuation of the last two works above cited, a generic architecture was proposed to
support the composing of network management applications (SANTOS et al., 2010b). This ar-
chitecture allows network administrators to design their own management applications through
the composition of external resources. The qualitative evaluation of the proposed architecture
was carried out by means of a mashup system prototype. In such prototype were developed the

BGP peering mashup and the botnet mashup previously referred.

As an extension of the formerly mentioned generic architecture, the Maestro architecture
(SANTOS et al., 2011a) was presented for providing data confidentiality in mashups that are
developed to assist daily activities of network administrators. An instance of Maestro was
implemented in a proof-of-concept prototype in which was built the network traffic monitoring
mashup. A quantitative evaluation was conducted to measure the overhead of time caused
in such mashup by the modules added in Maestro for achieving data confidentiality. It is to
highlight that such evaluation was not focused on measure the overall time of response of the

built mashup.

33

Table 2.3 reveals several facts, first, none of the aforecited research works focused on net-
work management by jointly using SM aspects and mashup concepts. Actually, research on
mashups for network management did not consider the investigative, control, and/or predictive
aspects of SM. Second, similarly to research that employs mashups in other domains, research
that uses mashups to manage networks neither evaluates the complexity nor the time involved
in the conducting of management tasks on situational scenarios. Three, the traffic generated by
mashups conducting network management tasks was also not assessed. Fourth, the time of re-
sponse of mashups for network management was not deeply evaluated; just a concise evaluation
of time-overhead was performed. It is to noteworthy that the above facts externalize a research
gap located at the intersection of the SM discipline, the mashup technology, and the network
management. This thesis leverages such gap to propose an innovator approach aimed to carry

out network management by SM and mashups.

Table 2.3 — Mashups for network management

Evaluated characteristic

Time Time
Research Work SM Extensibility | Flexibility Traffic Complexity of of

task response
(SANTOS et al., 2010a) v v
(BEZERRA et al., 2010) v v
(SANTOS et al., 2010b) v v
(SANTOS et al., 201 1a) v v v
This thesis v v v v v v v

2.3 Network management

So far, in the literature of network management, there is not an approach that uses the
SM discipline and the mashup technology with the goal of facilitating the management tasks.
However, there is a lot of research works that address such goal from other points of view. The

next paragraphs review the most relevant of such works.

The COOLAID (CHEN et al., 2010) is a data-centric framework focused on automatic
and declarative configuration of complex and dynamic networks. This framework automates
operations related to setting networks and their devices, aiming to reduce the involvement of
network administrators. COOLAID is formed by a data abstract model, a distributed database,

and a database query language. The data abstract model represents a network of interconnected

34

devices. The distributed but centrally managed database stores such a model. With COOLAID,
network administrators can conduct configuration operations by using specific database queries

(e.g., select, insert, and update), which are called primitives.

Lattice (CLAYMAN; GALIS; MAMATAS, 2010) is a framework for monitoring virtual
network resources, such as virtual machines, virtual routers, and virtual links. This framework
focuses on providing functionalities to properly monitor any virtual resource that moves from a
virtual system to another. A Lattice prototype was developed for monitoring virtual machines
that execute under hypervisor control. An important shortcoming of this framework is that it
is centered on network programmers. Thus, it was not conceived to allow its adaptation or

customization by network administrators.

Libvirt and Libvirtd (BOLTE et al., 2010) are solutions aimed to allow the implementation
of several architectures for remote management of arbitrary virtualization technologies. Drivers
forming an abstraction layer of virtual environments are provided, as an Open Source API,
written in the C Language. At first, commercial virtualization platforms, such as VMware ESX
and Microsoft Hyper-V, were supported by the Libvirt library. Afterwards, other platforms as
OpenVZ, VirtualBox, and KVM/QUEMU were also covered. Libvirt is centered on network
programmers and not on network administrators. As a consequence, the Libvirt customization
and extensibility is constrained because it cannot be easily integrated or extended by network

administrators.

The Information Management Overlay (IMO) (CLAYMAN et al., 2011) system is aimed to
allow the efficient and scalable collection of data about a running virtual network. This system
is based on a decentralized architecture formed by Information Collection Points, Information
Aggregation Points, and a Controller, which are able to monitor virtual network elements (e.g.,
routers and switches running on a virtual machine). IMO is a low-level monitoring solution that
does not offer a front-end. In fact, IMO Controller was conceived to be handled by network
programmers and not by network administrators. Thus, only network programmers can directly
use, customize, extend, and enhance the IMO system.

NetOpen (KIM; KIM, 2011) is a solution that employs composite applications to moni-
tor and configure OpenFlow-based networks. Such composite applications are based on SOA
and referred as to networking services. In this solution, expert network programmers are re-
sponsible for developing networking services by combining primitives (i.e., networking basic
services). NetOpen considered, among others, the following primitives: (i) to retrieve informa-
tion of switches, link states, and flow tables; and (ii) to configure network devices. An example
of NetOpen networking service is the L2-Switching Service. This service provides network

connectivity between end-hosts connected to OpenFlow networks.

The OpenFlow MaNagement Infrastructure (OMNI) (MATTOS et al., 2011) is a solution

35

intended to control and monitor OpenFlow-based networks. OMNI is formed by a set of NOX
controller applications, a multi-agent system, and a friendly Web user interface. The NOX-
based applications, released as APIs, provide functionalities to: (i) reconfigure, after migration,
a flow going across a set of switches to another group of switches; and (ii) to retrieve statistics
about OpenFlow switches. The multi-agent system offers features to autonomously conduct
management on OpenFlow networks. The Web interface allows network administrators to ac-
cess easily functionalities of NOX-based applications. It is to highlight that only advanced

network programmers can extend or improve the OMNI applications.

The Management Environment of Inter-domain Circuits for Advanced Networks (MEICAN)
(SANTANNA; WICKBOLDT; GRANVILLE, 2012) is a solution devised to support the provi-
sioning of virtual inter-domain circuits. MEICAN is formed by a Bussiness Process Manage-
ment (BPM) system, a network middleware, and a front-end system. The BPM system allows
network administrators to take part in the decision-making process to establish and manage the
above mentioned circuits. The middleware is responsible for configuring network resources by
using information read from BPM workflows. The configuration of these resources results in
the creation of virtual inter-domain circuits. The front-end system is a set of friendly Web user

interfaces that allow to design, administrate, and run the workflows.

Pyretic (MONSANTO et al., 2013) is an imperative and domain-specific language embed-
ded in Python that aims to support the building up of solutions for managing OpenFlow net-
works. Pyretic is based on three elements: an abstract packet model, an algebra of high-level
policies, and network objects. The abstract model and the algebra assist to compose policies
for monitoring and controlling. These policies allow to create modular applications that are
executed on network objects, such as switches and ports. When developing these applications,
advanced network programmers are able to manage OpenFlow-based networks in a higher-

abstraction level than when programming rules on particular controllers.

Procera (KIM; FEAMSTER, 2013) is a control framework aimed to manage networks that
follow the Software-Defined Networking (SDN) paradigm. This framework is formed by a
policy language based on functional reactive programming and a policy engine. Such a policy
language provides for expert network programmers a set of control domains. These domains
support the creation of monitoring and configuration policies. This creation of policies operates
in a higher-abstraction level than the development of rules intended to particular network op-
erating systems. The policy engine is in charge of translating high-level policies to rules to be

executed on specific SDN-based networks.

OrchSec (ZAALOUK et al., 2014) is an architecture intended to enhance network secu-
rity by leveraging the SDN paradigm. The main components of this architecture are: Network
Monitor and Orchestrator. The Network Monitor offers functionalities to inspect network traf-

fic, apply traffic filters, and trigger events when a particular traffic pattern happens. The Or-

36

chestrator supports the development of composite applications for coping with security attacks
such as spoofing of the Address Resolution Protocol and Distributed Denial of Service. These
applications are built by combining, in an API level, SDN capabilities (e.g., network-visibility

and centralized management) and Network Monitor functionalities.

Table 2.4 — Research on network management

Research Work Mashup SM Agent Rule Policy SOA BPM
(CHEN et al., 2010) v

(CLAYMAN; GALIS; MAMATAS, 2010) v

(BOLTE et al., 2010) v

(MATTOS et al., 2011) v

(CLAYMAN et al., 2011) v

(KIM; KIM, 2011) v
(SANTANNA; WICKBOLDT; GRANVILLE, 2012) v v
(MONSANTO et al., 2013) v

(KIM; FEAMSTER, 2013) v

(ZAALOUK et al., 2014) v

This thesis v v v v

Table 2.4 presents the aforedescribed research works, revealing that none of them has used
SM and mashups for carrying out network management as this thesis does. In COOLAID
(CHEN et al., 2010), Lattice (CLAYMAN; GALIS; MAMATAS, 2010), Libvirt (BOLTE et al.,
2010), IMO (CLAYMAN et al., 2011), NetOpen (KIM; KIM, 2011), Pyretic (MONSANTO et
al., 2013), Procera (KIM; FEAMSTER, 2013), and OrchSec (ZAALOUK et al., 2014), the net-
work administrator is responsible for writing or programming policies, queries, rules, or basic
services in specific languages, APIs, and/or controllers. Therefore, when using such proposals
the work of network administrator remains complex and consumes a lot of time, which makes
difficult their use as situational solutions. In turn, OMNI (MATTOS et al., 2011) and MEICAN
(SANTANNA; WICKBOLDT; GRANVILLE, 2012) provide friendly GUIs to facilitate several
network management operations. However, these proposals were not conceived to be extended
or enhanced by network administrators. Thus, OMNI and MEICAN also offer a constrained

response capacity to be used as situational solutions.

37

Finally, regarding all the aforecited proposals, it is important to point out that they were
evaluated using metrics, such as traffic, time of response, and/or code lines. However, none of
them has jointly assessed the complexity and the consuming of time of network management

tasks fulfilled daily by network administrators.

2.4 Final remarks

Initially, in this chapter, the main concepts of the SM discipline and relevant research em-
ploying SM in diverse application domains were described. Subsequently, fundamental con-
cepts about the mashup technology and important research that uses mashups in different do-
mains were introduced. Afterwards, several research works that aim to facilitate the daily work

of network administrator were presented.

Unlike the works presented in this chapter, this thesis considers concepts from the SM dis-
cipline and the mashup technology for proposing an approach (see Chapter 3) that focuses on
carrying out network management tasks in an effective way. Furthermore, complementarily to
these works that have been evaluated using metrics, such as traffic, time of response, and/or
code lines, this thesis is also concerned with the complexity and the consuming of time of the
work conducted by network administrators when coping with unexpected, dynamic, and het-

erogeneous situations (see Chapter 4).

38

39

3 CARRYING OUT NETWORK MANAGEMENT USING SITUATION MANAGEMENT
AND MASHUPS

This chapter provides an extensive study about how to network administrators participating
in a service ecosystem are able to address network management situations. In this sense, this
chapter starts proposing the innovative concepts of network management situation and mash-
ment. Next, this chapter presents a new service ecosystem based on such concepts. After, this
chapter introduces and discusses a novel process that network administrators must follow in the
ecosystem to deal with network management situations by mashments. This chapter finishes
presenting a new architecture that supports the operation of the ecosystem and process above

mentioned.

3.1 Fundamental concepts

This thesis defines two fundamental concepts for carrying out network management using
SM and mashups. The following subsections detail the network management situation concept

and its datamodel, describe several motivating scenarios, and present the mashment concept.

3.1.1 Network management situation

A network management situation is an unexpected, dynamic, and heterogeneous situation
happening or that might happen in the network management domain. Hereinafter, for the sake
of brevity, network management situations are called nmsits. Examples of basic nmsits include:
(7) a router has a sudden loss of received packages; and (i7) a switch has an unforenseen loss of
transmitted packages. Two or more nmsits form a complex one. For instance, first, a link formed
by two virtual switches has an abrupt and intermittent performance degradation. Second, a set

of routers/switches has an unexpected traffic overload.

Figure 3.1 presents the conceptual model of nmsits. Such model encoded in the JavaScript
Object Notation (JSON) is: [{NAMESIT : namesit, NMSIT : [{nmsit,}, {nmsit,}|}].
Where, NAMESIT is the generic name of the set of NMSIT and nmsit, is given by:
[{SITUATION : situation, EAC : [{eacy, eac,}]}]. Here, SITUATION is the specific
name of nmsit and £ AC represents the collection of entities, attributes, and constraints in-
volved in such nmsit. The structure of eac,, is: [{ENTITY : entity,, AC : [{ac,ac,}]}]-
Where, ENTITY is any entity involved in a nmsit and AC represents the set of attributes and
constraints of such entity. Here, ac,, is: [{ATTRIBUTE : attribute,, CONSTRAINT :

constraint, }]. In the rest of this thesis, JSON is used to represent data and metadata because

40

it is more lightweight than the eXtensible Markup Language (XML) (PAUTASSO; ZIMMER-
MANN; LEYMANN, 2008). In such data and metadata, capital and lowercase letters indicate

names and values of JSON properties, respectively.

Complex nmsit

header nmsit nmsit nmsit

NAMESIT SITUATION EAC SITUATION EAC SITUATION EAC

_ 0

AC
[ATTRIBUTE | CONSTRAINT |

ENTITY

|ATTRI.B"UTE| CONSTRAINT |

| |
| |
AC

[ATTRIBUTE] CONSTRAINT |

ENTITY

|ATTRI.B"UTE| CONSTRAINT |

Figure 3.1 — Network management situation model

Examples of nmsits encoded in JSON are:
(-) namesit = {drop of received packages}, situation = {sudden drop of received pack-
ages in a virtual router}, and eac = [{ENTITY : vyattaRouter,ac : [{ATTRIBUTE :
receivedPkg, CONSTRAINT :< 95%}]}]
(-) namesit = {drop of transmitted packages}, situation = {unexpected drop of sent pack-
ages in a virtual switch}, and eac = [{ENTITY : cyscoSwitch2960, ac : [{ATTRIBUTE :
sentPkg, CONSTRAINT :< 90%}}].

An example of a nmsit formed by two ones is:
namesit = {link has an unexpected overload in memory and processor}, situation; = {a
switch has an unforeseen overload in both memory and processor}, eacy = [{ENTITY :
cyscol00,ac : [{ATTRIBUTE : processor, CONSTRAINT :> 97%},{ATTRIBUTE :
memory, CONSTRAINT > 95%}|}, situationy = {a switch has a sudden overload in
both memory and processor}, and eaco = [{ ENTITY : openvswitch,ac : [{ATTRIBUTE :
proces, CONSTRAINT :> 91%},{ATTRIBUTE : mem,CONSTRAINT :> 91%}}].

A first example of scenario in which one or more nmsits happen is: let’s suppose that a
team of network administrators is responsible for managing a large company. In this company,
the communication between the Pin Pads shops and the Enterprise Resource Planning (ERP)
system is provided by an outsourced Internet Service Provider (ISP). If a sudden failure on

packet transmission occurs in the ISP or an internal connection error happens in the border

41

router of one or more shops, the company might lose a huge amount of revenues, since the

payment by cards becomes inoperative.

A second example of scenario in which one or more nmsits happen is: let’s suppose that a
group of network administrators is in charge of managing a Network Operator. This operator
provides network infrastructure to Small and Medium Enterprises (SMEs) using resources, such
as virtual switches and virtual routers, supplied by several Virtual Network Providers (e.g.,
VNP,, VNP, and VNPF,). If an abrupt performance degradation occurs in virtual links of
one or more SMEs, generated by unidentified errors in the virtual switches that connect VN P,
V NP, and V N P,, the operator might infringe the SLLAs established with SMEs and, as result,
lose a lot of money.

A third example of scenario in which one or more nmsits happen is: let’s suppose that a
team of network administrators is responsible for managing the network of a University. Such
network is composed of several campus networks handled each one by a different controller. If
an unforeseen loss/duplication of packets occurs in the Open vSwitches that communicate the
campus networks, the network as a whole may collapse. This collapse might generate severe
and unexpected failures in the financial and academic systems of the University that are located

at different campus.

In the aforedescribed scenarios, network administrators require investigating and compre-
hending nmsits as easy and fast as possible. In particular when coping with nmsits, network
administrators face mainly the following challenges: (i) the intricacy and heterogeneity to con-
duct situation management operations (e.g., to collect, split, filter, add, and merge information)
on multiple devices/networks involved in nmisits, (ii) the need by functionalities that enable to
rapidly and easily create tunable and composite situation solutions; and (i) the necessity by

visualization functionalities that provide situational information in a very understable way.

Currently nmsits and their associated challenges can be addressed by following, among
other, the next approaches. The first one is to use several mismatched network management so-
lutions, such as ZenOSS (BADGER, 2008), OpenNMS (CHIANG et al., 2009), and proprietary
Command Line Interfaces (CLIs), but it hinders and overloads the work of network administra-
tors. In this sense, a shortcoming of this approach is that it is more complex and requires more
time than using an integrated solution. The second approach is to use home-brewed scripts
that integrate two or more network management solutions. The shortcomings of this approach
are the difficulty and time required to program and run these scripts. These shortcomings are
because the development of scripts is a daunting and complex task for non-programmers as
network administrators who usually do not have deep knowledge in programming. Since when
using the above approaches, the work of network administrators remains complex and time
consuming, this thesis introduces an effective approach based on SM and mashups for network

management.

42

3.1.2 Mashment

In a broad sense, a mashment (see Figure 3.2) is a solution based on the SM discipline and
the mashup technology for carrying out network management in an effective way. In particu-
lar, a mashment is defined as a tunable mashup that combines diverse types of resources from
multiple providers and automates the investigative and control aspects of SM, aiming to facili-
tate the work of network administrators. In this definition, first, tunable means that mashments
are extendible and customizable. Second, as mashments are based on the mashup technology,
they can be created/composed and launched by a network administrator because they inherit the
abstraction model, composition model, and focus on end-user of mashups. Third, facilitate is
associated with the complexity/difficulty perceived and the time spent by network administra-

tors to carry out situational management tasks.

Goal: provide an
+ II» effective approach for
network management

Figure 3.2 — Mashment concept

Mashups

~ - Composition model *
- Abstraction model
.- Focus on end-users

Situation Management

/- Situation |
- Investigative aspect
_ - Control aspect

Regarding the mashment concept is worth noting, it is innovative because, first, the con-
duction of network management tasks has not been up to now investigated or addressed using
foundations of the SM discipline and the mashup technology. Second, it leads network man-
agement towards a novel environment focused on network administrators in which they are able
to satisfy their situational needs by themselves. Third, unlike previous solutions used to handle
situations in the network management domain that are concerned about traffic and/or time of
response, the solution proposed in this thesis further considers the complexity perceived and the

time needed by network administrators to conduct tasks aimed to face nmsits.

3.2 Mashment ecosystem

The concept of ecosystem in the software industry arose with the increasing number of
companies that embraced the deployment of SOA-based architectures to obtain new composite
applications from the combination of several atomic services (HUANG; FAN; TAN, 2012). Ina

43

broad sense, a service ecosystem is formed by services, providers of services, and relationships
among providers and services (BARROS; DUMAS, 2006). In particular, when acting as a
single unit, providers supplying resources (e.g., data, GUIs, and application logic), end-users
and developers building up mashups by combining resources, and end-users using mashups
form a service ecosystem, called mashup ecosystem (HUANG; FAN; TAN, 2012) (ENDRES-
NIGGEMEYER, 2013). In this sense, the natural way to present the mashment-based approach

introduced in this thesis is from a service ecosystem point of view.

Cope with nmsits by mashments 6 I
@ N i - G _, PO0C0000oD \ /\ nmsits
o ‘4.--':.’[0.".'(!9._.-»1%) Runtime >

'
. — '
NMR CoNSUMS Mashment :g;iiﬁ':g - o N
U Creator *"J /‘Mashment Executor -+ y -
- Publishing {) ([HHU“ UI 0 /
Network Management - Mashment M ‘ | 1“”1”““) | an Mashment
Resource Provider (NMRP) I C eatln ~ Mashment \ / Marketplace |
/ Y \ Instances | Mashment \
@ ! @ b A_*I (”mmm} ‘ Mashment Repository
WMR ([amw mashment R = Store) \ “
“a S mashment Instantiate 5 L) J
Web-based Management \ '_:‘ i J N Mashmenthg w
Resource Provider (WMRP) \ mashment @“—Hﬂ Tt T Amnounce . i
=i AN Mashmenthg ,“
- mashment L
- Design Time - ¢~
i - Creatllng Sellmg
- Releasing - Reusing - Buying
Analytics Management Provide Brevics - Publishing f}f - Sharing
. Resource Provider (AMRP) ,‘é?ﬁsﬁ?n'e-» ""dgn‘s'u‘rﬁé': - Launching ﬁ)
4 Resource ; AdN(?t\{m:rkt - >M(a:shn:ent
minjstrator <@--=----====c--- reator
it i Commercialize
B 1
as s (O () | & situation & :
= - ~ ~ & |/ Network | Management :
= Operator =~ | - gjtuational ~ | Resource as a !
Activities Resource (OPR) | Resource (NSP) | Service (SMRS) E Occur &
......... Interactions Software Entity Provider (SEP)) Re-isiie--4@) nmsits

Figure 3.3 — Mashment ecosystem

The Mashment Ecosystem (see Figure 3.3) aims to provide an effective approach for net-
work management and is based on: (i) the abstraction model, composition model, and focus
on end-users of mashups; and (ii) the investigative and control aspects of SM. This ecosystem
is formed by: resources (including mashments), stakeholders, software entities, activities per-
formed by stakeholders and software entities, and interactions happening among stakeholders
and software entities. In a general way, in the proposed ecosystem, Network Administrators
and Mashment Creators build up mashments by using the Mashment Maker. This Maker is also
responsible for automatically creating mashments. These mashments are made up of resources
from different providers and are executed in the Mashment Executor. Such resources are re-
leased by the Resource Creator. In the Marketplace, Network Administrators and Mashment

Creators share, sell, and purchase mashments.

From a high-level point of view, Network Administrators participating in the Mashment
Ecosystem can address nmsits as follows. First, they obtain mashments in four ways: (i) buy-

ing mashments in the Marketplace, (ii) getting mashments free of charge in the Marketplace,

44

(iif) creating mashments in the Mashment Maker; and (iv) selecting mashments generated by
the Maker. Second, they launch mashments by the Maker. On runtime, a launched mashment
copes with one or more nmsits. It is important to highlight that the proposed ecosystem can
evolve over time because of the emergence and perishing of resources, the sharing and com-
mercialization of mashments, and the dynamic interactions among stakeholders. The following

subsections explain in detail the Mashment Ecosystem.

3.2.1 Resources

In the Mashment Ecosystem, the Situation Management Resources (SMR) are entities clearly
identifiable in a time interval that provide access and communication to and from network ele-
ments or entire networks involved in nmsits. There are seven types of SMR: Network Manage-
ment Resource (NMR), Web-based Network Management Resource (WMR), Analytics Man-
agement Resource (AMR), Network Situational Resource (NSR), Operator Resource (OpR),
Situation Management Resource as a Service (SMRS), and Mashment.

A NMR is any entity intended to conduct network management operations. Examples of
NMR are Ganglia (MASSIE; CHUN; CULLER, 2003), Nagios (BARTH, 2008), and ZenOSS
(BADGER, 2008) to manage traditional networks, Citrix Center (WANG et al., 2011) for mon-
itoring virtual resources, NetOpen (KIM; KIM, 2011) and OMNI (MATTOS et al., 2011) to
control OpenFlow-based networks, network monitoring systems based on SNMP, and all APIs

that provide interaction with network elements.

A WMR is any entity, available along the Web, conceived or that can be used to perform
network management tasks. Examples of WMR are the Multi Router Traffic Grapher (MRTG)
(OETIKER, 1998) to generate Web pages with images presenting the traffic of network links,
the RRDTool (OETIKER, 2001) to display over time the performance data of routers, the Yahoo
Maps API (LIN; GAO; XU, 2009) and the Google Maps API (TERESCO, 2012) to show the
geographic location of several network devices, and the Google Chart API (RUTHKOSKI,

2013) to show the memory consumption of virtual switches.

An AMR is any entity intended to analyze network management information. Examples
of AMR are the Management Traffic Analyzer (SALVADOR; GRANVILLE, 2008), the Junos
Network Analytics Suite (NETWORKS, 2014), and the Sandvine Network Analytics (ULC,
2014). The Management Traffic Analyzer is useful to interpret the functioning of network
devices supporting SNMP. The Junos Network Analytics Suite is helpful to understand what
is happening on networks using Junos proprietary devices. The Sandvine Network Analytics

allows getting right-time information of networks regardless of underlying technologies.

A NSR is any entity that provides functionalites aimed to automate and carry out the aspects

45

of SM. These functionalities are of three types: (i) Collecting that is to retrieve information
about nmsits, (ii) Fusing&Correlating that is to merge and correlate the retrieved information
by Collecting, Fusing&Correlating and Collecting support the creation of investigative plans
that are useful to determine the cause of nmsits; and (iii) Resolving that enables to perform
network management operations aimed to control (change/preserve) nmsits, consequently, Re-
solving supports the creation of resolutive plans. Examples of NSR are the JESS (HILL, 2003),
JBOSS Drools (BROWNE, 2009), and Apache Camel (IBSEN; ANSTEY, 2010). The JESS is
a general-purpose platform that permits to detect and control situations by rules (defined using
XML or the JESS Rule Language) and Java applications. The JBOSS Drools is a generic plat-
form that allows to recognize and control generic situations by rules (defined using DRL) and
Java applications. The Apache Camel enables to process events (i.e., general situations) from

mutiple sources by means of a CEP-engine based on the Java Language.

An OpR is any entity suitable to combine resources and, so, to build up and generate mash-
ments. There are three types of OpR: (i) control patterns (e.g., sequential, parallel, conditional,
and templates) that allow defining the control flow of mashments, (ii) structures for configur-
ing (e.g., functionalities to set the security credentials needed to monitor a virtual router) and
invoking the resources that form mashments; and (iii) structures for receiving, sorting, and fil-
tering (e.g., functionalities to perform information selection on text-plain containing data of
network devices running on virtualized environments) the retrieved information from any type

of resource.

A SMRS is any entity that offers as a service network management operations of one or
more NMR, WMR, AMR, NSR, and OpR, aiming to hide the complexity of these resources.
The representation of resources as services consists on defining and providing a common data-
format to interchange information of resources, a well-known interface to each resource, and a
common protocol to communicate with such interfaces. There are five types of SMRS: NMR
as a Service (NMRS) provides functionalities of NMR, WMR as a Service (WMRS) offers
operations of WMR, AMR as a Service (AMRS) supplies functionalities of AMR, NSR as a
Service (NSRS) provides operations of NSR, and OpR as a Service (OpRS) offers function-
alities of OpR. An example of NMR is the Floodlight Controller (FLOODLIGHT, 2013) that
handles switches OpenFlow-enabled, the associated NMRS is the Floodlight REST API that
provides, via requests-and-responses HTTP, monitoring information of these switches includ-

ing their flows and links.

A mashment is also a resource of the Mashment Ecosystem, which means that mashments
can be used to create another ones. It is to note that by considering mashments as a type of
resource, their reuse is promoted and, as a consequence, the growth of the proposed ecosystem
itself is also encouraged. Mashments can be static or dyamic. Static ones are characterized by:

(i) they are not able to recognize nmsits; and (ii) their plans (i.e., execution flows to investigate

46

and control nmsits) are defined by Network Administrators in the Mashment Maker. Unlike
static mashments, dynamic ones are able to recognize nmsits and their plans are automatically

generated (i.e., without direct intervention of Network Administrators) by the Maker.

3.2.2 Stakeholders

In the Mashment Ecosystem, a stakeholder affects and is affected by activities and inter-
actions carried out by other one. There are six types of stakeholders: Network Management
Resource Provider (NMRP), Web-based Management Resource Provider (WMRP), Software

Entity Provider (SEP), Resource Creator, Mashment Creator, and Network Administrator.

NMRP, WMRP, and AMRP are in charge of supplying NMR, WMR, and AMR, respec-
tively. Examples of NMRP are, first, the Citrix Systems Inc that offers solutions and program-
ming interfaces to manage virtual servers. Second, the Cisco Systems Inc that provides tools
and libraries to monitor and configure network devices. An example of WMRP is a big player
as the Yahoo Inc that provides visualization libraries and map services useful to present net-
work management information. Another example of WMRP is the Oetieker&Partners Inc that
provides Web solutions intended for network monitoring, such as RRDTool and MRTG. An
example of AMREP is the Juniper Networks Inc that offers the Junos Network Analytics Suite.

A SEP is responsible for providing one or more software entities. In general, the Mashment
Maker (containing visual representations of resources), Mashment Executor, OpR, NSR, and
SMRS are provided, in an unified way, by the same SEP. In turn, the Mashment Repository and
Mashment Store are usually offered, in a distributed way, by different SEP. It is to point out that

in an ecosystem as the proposed can exist several Makers, Executors, Repositories, and Stores.

Before being used in the building up of mashments, many WMR, NMR, AMR, OpR, and
NSR need of adaption, in data format and/or communication protocol. The Resource Creator
is responsible for carrying out this adaptation called releasing. Since such a releasing requires
strong programming skills, Resource Creators are usually software companies and professional
developers. An example of Resource Creator is the Open Software community that provides
APIs to interact via standardized protocols with network devices and servers containing virtual

routers.

The Mashment Creator is in charge of: (i) creating, reusing, and publishing mashments
by the Mashment Maker, (ii) defining nmsits (i.e., nmsit patterns that are instances of nmsit
model) that will be automatically recognized, (iii) creating composition templates intended to
dynamically generate mashments that will be responsible for dealing with the recognized nm-
sits; and (iv) sharing, selling, and buying mashments in the Marketplace. The Creator can

obtain economic benefits by commercializing (selling and buying) mashments. Examples of

47

this stakeholder are software companies and professional developers with deep knowledge in

network management.

The Network Administrator is responsible for, first, coping with nmsits by using mashments.
Second, he/she can create, reuse, publish, and launch mashments by the Mashment Maker
and the Mashment Executor. The creation, reuse, and publication of mashments support the
continuous improvement of workspaces used in the network management domain. Third, he/she
can commercialize mashments in the Marketplace for getting profits. It is noteworthy that
as mashments are a special type of mashup, they inherit its ease of development (LIU et al.,
2007)(CAPPIELLO et al., 2011)(SANTOS et al., 2013). As a result, Network Administrators

do not need advanced technical skills about Web programming for developing mashments.

3.2.3 Activities and interactions

In the Mashment Ecosystem, activities are actions conducted by stakeholders and software
entities in order to deal with nmsits. The stakeholders perform activities by using software
entities. In turn, software entities are able to automatically carry out some activities. Eight
activities are considered in the proposed ecosystem: Releasing, Creating, Reusing, Publishing,

Launching, Selling, Buying, and Sharing.

When carrying out the activity of Releasing, Resource Creators convert SMR (by adapting
data format and communication protocol of NMR, WMR, AMR, NSR, and OpR) in mashu-
pable resources called SMRS. Such an adaptation enables the combination of resources and it
is needed because there is not a common format neither a standardized interface/protocol to
retrieve and/or bidirectionally interact with data, application logic, and user interfaces of SMR

involved in nmsits. After Releasing, the adapted resources can be used to build up mashments.

The Mashment Maker, Mashment Creator, and Network Administrator perform Creating.
When conducting this activity, first, Creators and Administrators can build up static mashments.
From a high-level point of view, the static creation involves the next steps: (i) discover the
available resources, (ii) select the suitable resources to address nmsits; and (iii) orchestrate
plans (i.e., the execution flows of mashments) targeted to cope with nmsits, by combining the
previously selected resources. Second, when Creators carry out this activity, they can build
up nmsit models and composition templates that are key elements for dynamically generating

mashments.

The Mashment Maker automatically carries out Creating in order to generate dynamic mash-
ments. In a general way, the dynamic creation involves: (i) recognize automatically nmsits by
using models/patterns defined by Mashment Creators, (ii) select resources involved in the recog-

nized nmsits, (ii7) define plans (i.e., customize the composition templates defined by Mashment

48

Creators) in an automatic way by using the previously selected resources, (iv) monitor if the
resources used in these plans are available and flawless; and (v) reconfigure such plans if any

resource is in flaw or unavailable.

The Mashment Creator and Network Administrator also conduct the activities: Reusing,
Publishing, Sharing, Selling, and Buying. When carrying out the activity of Reusing, Creators
and Administrators take advantage of existing mashments, aiming to create more complex and
innovative mashments. Furthermore, this activity supports the growth over time of the proposed

ecosystem.

When conducting the activity of Publishing, the Mashment Creator and Network Adminis-
trator package and put mashments in the Mashment Repository. After Publishing, mashments
can be shared, sold, and purchased. The activity of Sharing enables to offer and get mashments
free of charge. The activities of Selling and Buying allow commercializing mashments. Shar-
ing, Selling, and Buying promote the reuse of mashments and encourage the evolution over

time of the proposed ecosystem.

The Network Administrator conducts the activity of Launching. When performing this ac-
tivity, he/she requests to the Mashment Maker for executing static and/or dynamic mashments.
After a mashment is launched, on runtime, it is called Mashment Instance. Note that mashments
are always launched by the Network Administrator, it is because the proposed ecosystem is not

intended to substitute him/her else to support his/her daily work.

In the Mashment Ecosystem, the interactions take place in the relationships stakeholder /
stakeholder, software entity / software entity, and stakeholder / software entity. Seven inter-
actions are considered in the proposed ecosystem: Provide, Consume, Instantiate, Announce,

Commercialize, Occur, and Cope.

Provide and Consume are interactions that occur from the need of consumption and supply
of NMR, WMR, AMR, NSR, OpR, and SMRS, during: (i) the building up of the Mashment
Maker; and (i7) the carrying out of Releasing, Creating, and Reusing. Provide and Consume take
place among, first, Resource Providers, Resource Creators, Mashment Creators, and Network

Administrators. Second, Resource Providers and the Maker.

Instantiate is an interaction that happens among the Mashment Maker and the Mashment
Executor when a Network Administrator requests the execution of one or more mashments.
Announce is an interaction that takes place among the Maker and the Marketplace when a
Network Administrator or a Mashment Creator asks for publishing one or more mashments
that can be later shared, purchased, and sold in Commercialize. This commercialization occurs

among Mashment Creators and Network Administrators.

Occur and Cope are special interactions defined to represent the happening of nmsits and the

49

corresponding responses offered by Mashment Instances. When one or more nmsits Occur, Net-
work Administrators obtain (Buying, Creating, or Reusing) and run (Launching) mashments.
During Cope, to deal with nmsits, Mashment Instances delegate their situational management

operations to SMRS that, in turn, delegates these operations to SMR.

3.2.4 Software entities

In the Mashment Ecosystem, the software entities are responsible for supporting and au-
tomating the activities and interactions aforedescribed. The proposed ecosystem considers three

types of software entities: Mashment Maker, Mashment Executor, and Mashment Marketplace.

The Mashment Maker assists the activities Creating, Reusing, Publishing, and Launching.
Furthermore, it is involved in the interactions Provide, Consume, Instantiate, and Announce.
To aid handling of nmsits, the Maker supports: (i) a lightweight process for developing and
launching mashments (see Section 3.3), (ii) mechanisms to automatically recognize nmsits and
dynamically generate mashments (see Section 3.4); and (ii7) high-level programming tools (see

Section 4.1) providing visual functionalities to create and run mashments.

The Mashment Executor is involved in the interactions Instantiate and Cope. The Executor
is responsible for controlling the execution flow of Mashment Instances that handle nmsits.
As mashments are formed by two or more resources that function in back-end or front-end,
the Executor is also a lifecycle manager that enables to create, destroy, and cache Mashment

Instances into Web servers and Web/mobile clients. The Section 3.4 details the Executor.

The Mashment Marketplace allows to establish a new value chain in which revenues are not
shared only by WMRP, AMRP, NMRP, and SEP but all stakeholders. Marketplaces involving
end-users (as Network Administrators) and professional developers (as Mashment Creators)
have proved valuable to promote the evolution over time of service ecosystems (as the Mash-
ment Ecosystem). The Android Market (BUTLER, 2011) and the Apple Store (COGET, 2011)

are successful examples of application marketplaces.

The Marketplace is made up of the Mashment Store and the Mashment Repository. The
Store supports the carrying out of activities Selling, Sharing, and Buying, assisting in that way to
the Commercialize interaction. In turn, the Repository is involved in the Announce interaction.
As result of Announce and in order to be sold or shared, MashmentPkgs are stored in the
Mashment Repository. It is to point out that the Repository (see Section 3.4) and the Store

encourage the expansion over time of the proposed ecosystem.

50

3.3 Process for addressing nmsits by mashments

The process to develop and launch mashments defines how to address nmsits in the pro-
posed ecosystem. The following subsections describe the overall functioning, complexity, and

consuming of time of such process.

3.3.1 Opverall functioning

Considering the ecosystem above described, the set of mashments is expressed as follows.
MASHMENT = {mashment,|mashment, = (Rysed; Troot, 0, NMSIT, q4-)}. Where: (i)
Ryseq 18 the set of resources used to build up the mashment,, (ii) r,., 1S the root resource
(€ Ryseq) that starts the execution of such mashment,, (iii) ¢ is the execution flow (i.e., an
investigative/resolutive plan that defines how R,..q are logically combined/linked to handle
NMSIT, q4) of the mashment,; and (iv) NMSIT,,q, is the set of one or more nmsits ad-

dressed by the mashment,.

Regarding the set M ASHMFENT, it is relevant to mention, first, NMSIT, 44 C of all
unexpected, dynamic, and heterogeneous situations that may happen in the network manage-
ment domain. Second, if the mashment, is static, the Network Administrator is responsible
for developing it by using the Mashment Maker. Such development implies the definition of
Ruyseds Troots 0, and NM SIT, 4. Third, if the mashment, is dynamic, the Maker is in charge
of generating it by customizing a composition template that predefines a specific ¢ for dealing
with a particular NM SIT, 4. Such generation also involves the definition of R, scq, "roots 0,
and NMSIT, 4.

The process to develop and launch the mashment, is formed by the following high-level
tasks (see Figure 3.4): Select, Configure, Combine, Launch, and Tune. Select, Configure,
Combine, and Tune can be conducted by the Mashment Maker, Network Administrator, and
Mashment Creator. Launch can be carried out by the Network Administrator. The tasks of this
process are related to activities of the Mashment Ecosystem as follows: Select, Configure, Com-
bine, and Tune that form Develop are associated with the activities of Creating and Reusing. In

turn, Launch corresponds to the Launching activity.

e Select Resources. This task is to define R4 by selecting resources available in the
Mashment Ecosystem. This selection may include the choosing of, first, a mashment,
ready to be used (i.e., there is a mashment that handles NM SIT,44.). Second, one or
more mashments (i.e., there is a mashment, that faces a similar N M SIT,4q4,) to be mod-
ified/enhanced. Third, resources to create the mashment, from scratch. Fourth, a com-

position template (i.e., there is a predefined ¢ for coping with a particular NM SIT,44,)

51

that will be customized for generating the mashment,.

o Configure Resources. This task is to define the set of resources configured, called R, .
This set is defined by providing all functioning settings of one or several resources be-
longing to Rycq. Note that R.onp C Ryseq-

e Combine Resources. This task is to create (from scratch) or customize (from a compo-
sition template) the o of the mashment, by combining/linking selected and configured
resources. Such creation or customization includes, first, the choosing of 7,,,.. Second,
the specification of the data propagation between the resources involved in the building
up of the mashment, by correlating their outputs and inputs.

o Tune Mashment. If the mashment, needs to be modified/enhanced, its § can be tunned.
Such tuning may imply the selection, configuration, and combination of new resources or
simply the rearrangement of previously selected resources.

e Launch Mashment. This task is to request the execution of the mashment,. As a

result, an instance of the mashment, is created. On runtime, such an instance copes
with NMSIT, 4.

Occurring
m = ﬁf Network

: Administrator

Creating + Reusing = Develop
e e D S L =
Available

|
Resources |
|
|

Select

Selected |
Resources :

Resources i

A A 4

Configure Configured l
| Tuning Resources Resources |

‘Mashment N -

| mashment
- Tuning Combine - - Design Time -
: Mashment Resources :

|

|
|
I ! v
|

Tune > mashment | Launch Coping ‘m
i Mashment | ; Mashment |[Mashment Instance |

- Runtime -

Figure 3.4 — Process to develop and launch mashments

3.3.2 Complexity

The complexity (i.e.,) to develop and launch the mashment, is computed by summing
the complexity of tasks forming the process aforedescribed. It is because the tasks Select,
Configure, Combine, and Launch are independent. In the equation 3.1, Cser5 Ceons Ceom»> and Craq

represent the complexity of Select, Configure, Combine, and Launch, respectively. In turn, 7,

52

7, k, and o denote the number of times that such tasks are conducted, allowing to consider the

complexity of Tune.

(J k o
C = Z Csel + Z Ccon + Z Ccom + Z Clau (31)
1 1 1 1

The following paragraphs define Cse;, Ceons Ceom» and (jq,. These definitions are based on
per-task metrics for IT Service Management (ITSM) processes (DIAO; KELLER, 2006). Such
metrics are used as foundation because, first, they allow quantifying the complexity perceived
by human beings (as Network Administrators) participating in a particular process formed by
several tasks. Second, they permit identifying tasks to be automated. Third, they enable to

establish basis for measuring improvements between versions of a process.

The complexity of Select is expressed as follows:

M
Csel = Z Sm + (nAvailable Resources — 1) x gF * cF' (3.2)
m=1

In the equation 3.2, M is the total number of elements being part of R,s.q and ¢, is the
complexity of selecting the m-resource. ¢,, can take one of three values depending on the au-
tomation of m-selection: 0 - if m-selection is fully automated (e.g., there is a tool that selects au-
tomatically the resources needed to build up the mashment,). 1 - if m-selection is manual but
tool-assisted (e.g., there is an integrated development tool to select the resources required to cre-
ate the mashment,). 2 - if m-selection is manual (e.g., writing code). nAvailable Resources
is the number of resources available to build up the mashment, (i.e., more available resources
result in higher complexity of selection). gF' is the grade of guidance provided to select the
resources needed to form the mashment,, which can take one of three values: 1 - if correct
guideline about resources to be selected is offered. 2 - if general information about each avail-
able resource is supplied. 3 - if information is not provided. cF' represents the impact of wrong
selection of resources, its value can be: 0 - if negligible impact. 1 - if moderate impact. 2 - if

severe impact.

The complexity of Configure is defined in the following way:

N
Coon = Y _ Sn- (3.3)
n=1

In the equation 3.3, IV is the total number of resources belonging to R.,,s (note that as
Reont € Rysed» 50, N < M) and g, = Z;;l sourceParameter(p) is the complexity of

configuring the n-resource. In ¢,, P is the total number of parameters to be configured and

53

source Parameter(p) can take one of seven values: 0 - if the p-parameter value is produced
from automation (e.g., there is a tool that automatically generates the configuration parameters).
1 - if the p-parameter value may be chosen freely (e.g., a new password). 2 - if the p-parameter
value is taken from task documentation (e.g., set up port = 8080 for a HTTP server). 3 - if the
p-parameter value is extrapolated from task documentation (e.g., define a range of IP addresses).
4 - if the p-parameter value is not trivial for unexperienced Network Administrators (e.g., set up
the url = hitp : //1PAddressO f XenServer /rrdUpdates?host = true to retrieve statistics
of virtual machines running on a determined XenServer). 5 - if the p-parameter is fixed by
the environment to a specific value that is defined by Network Administrators after additional
research (e.g., set up the smnpQOid = 1.3.6.1.4.1.9.9.91.1.1.1.1.4 to obtain the temperature of
the Catalyst Cisco Switch). 6 - if the p-parameter value is constrained by the environment to a
limited set of possible choices where Network Administrators need to infer the right choice (e.g.,

set up the type of server virtualization technology to be monitored: virtTech = V Mware).

The complexity of Combine is expressed as follows:

L
Ceom = ZQ + (M — 1) * goF * coF (3.4)
=1

In the equation 3.4, L is the total number of links (logical connections) created to build
up the mashment, and g represents the complexity of creating the [-link that connects two
elements of R, s.4. 5 can take one of four values: 0O - if the [-link is automatically created (e.g.,
there is a tool that generates automatically the of the mashment,). 1 - if the [-link is manually
created by a support tool and data transferred among resources connected must not be adapted.
2 - if the [-link is manually created and data transferred among resources connected must not be
adapted. 3 - if the [-link is manually built and data transferred among resources connected must
be adapted. M is the total number of elements of R, .4 (i.e., more selected resources result in
higher complexity of combination). gof" is the grade of guidance provided to link the selected
resources, it can take one of three values: 1 - if correct guidance is provided. 2 - if general
information about links that can be established is offered. 3 - if information is not supplied.
coF' represents the impact of wrong combination of resources, its value can be: 0 - if negligible

impact. 1 - if moderate impact. 2 - if severe impact.

The complexity of Launch ((;,,) can take one of three values depending on the automation
for launching the mashment,: 0 - if entirely automated, for instance, an autonomous mashment
system that launches on demand the mashment,. 1 - if manual but tool-assisted, for example,
using a graphical launching environment to start the mashment,. 2 - if manual, for instance,

programming or customizing a script every time the mashment, needs to be executed.

Regarding the above complexities (i.e., Csers Ceons Ceom» and (jqy,) 1S important to note that they

54

are defined in a general way. This generic definition aims to allow quantifying the complexity

of conducting the proposed process in an automatic, tool-assisted, and manual way.
3.3.3 Time-consuming

In the same way that the calculation of complexity, the consuming of time to develop and
launch the mashment,, hereinafter called time-consuming (i.e., T'), is computed by summing
the time of conducting the tasks forming the process aforedescribed. In the equation 3.5, T,
Trons Teom, and Ty, represent the time-consuming of Select, Configure, Combine, and Launch,
respectively. In turn, ¢, j, k, and o indicate the number of times that such tasks are carried out,

permitting to take into account the time of Tune.

7 7 k o
T = Z Tsel + Z TCOn + Z Tcom + Z 7ﬁlau (35)
1 1 1 1

The following paragraphs define 7’s.;, Tons 1iom, and Tj,,. These time-consuming defini-
tions are based on the Keystroke-Level Model (KLM) (KIERAS, 2001). KLM is used because
it is useful to estimate the time that end-users (as Network Administrators) spend to carry out
tasks supported on computer keyboard and mouse. In KLLM, each task is modeled as a sequence
of actions. Table 3.1 presents the original KLM-actions (KIERAS, 2001) and some helpful
extensions (TTAN; WEBER; LUTTEROTH, 2011) found in the literature.

Table 3.1 — KLLM actions

Action Description

k Press and release a key

ncx k Type a string

p Point the mouse

b Hold or release the mouse

h Move the hand from mouse to keyboard
dnd Drag-and-drop a visual element

wire Wire two visual elements

55

The time-consuming of Select is defined in the following way:

M
Tt = T (3.6)
m=1

In the equation 3.6, M is the total number of elements being part of R, .. and 7, is the
time required to select the m-resource. Such 7, can take one of three values depending on
the automation of m-selection: 0 - if m-selection is completely automated, for instance, a tool
that automatically defines R,,.q4. dnd - if m-selection is manual but tool-assisted, for example,
a development integrated tool supporting the definition of R, s.q. h + p + 20 + nc x k - if

m-selection is manual, for instance, writing code in a specific programming language.

The time-consuming of Configure is expressed as follows:

N
Teon = ZTn (37)
n=1

In the equation 3.7, N is the total number of elements belonging to R, and 7, is the time
required to configure the n-resource. Such 7, can take one of two values depending on the
automation of n-configuration: 0 - if the n-configuration value is produced from automation.

h + p + 2b + nc * k - if operational settings must be manually written.

The time-consuming of Combine is defined in the following way:

L
Toom = Y 70 (3.8)
=1

In the equation 3.8, L is the total number of links created to build up the mashment, and 7;
represents the time required to create the [-link that connects two elements being part of R, scq.
Such 7; can take one of three values depending on the automation of [/-link creation: 0 - if the
[-link is automatically created (e.g., there is a tool that generates the ¢ of the mashment,).
wire - if the [-link is manually created by means of a support tool. i + p + 2b + nc * k - if the
[-link is manually created/codified.

The time-consuming of Launch (7},,) can take one of three values depending on the au-
tomation of requesting the execution of the mashment,: 0 - if entirely automated, for instance,
an autonomous mashment system that launches mashments on demand. h + p + 20 - if man-
ual but tool-assisted, for example, using an execution environment to start the mashment,.
h + p + 2b + nc * k - if manual, for instance, programming/customizing a home-brewed script

every time the mashment, must be launched.

Regarding T, Teons Teom, and Tj,, 1s important to note that they are defined in a general

56

way. This generic definition aims to allow quantifying the time required to carry out the process

to develop and launch mashments in an automatic, tool-assisted, and manual way.

3.4 Mashment system architecture

The Mashment System Architecture is intended to support: (i) the carrying out of the Mash-
ment Ecosystem; and (ii) the process to develop and launch mashments. This architecture (see
Figure 3.5) uses a layered architectural pattern (KESHAV, 1997) that operates as follows. The
lower layer (Layer,) provides services to the upper layer (Layer, 1) through decoupled inter-

faces. In turn, the upper layer consumes services from the lower layer.

Presentation
Layer Web Client |- —-—-—-—- = ﬁi ——————————— ™ Mobile Client
Web Runiime Network Administrator Mﬁz'ﬁirw:b
(WRT) (MWRT)
Environment Sec e Tﬁ Environment
Mashment Creator

Composition
Layer [I Mashment System |

[Dispatcher }

Mashment Maker Mashment Executor
Adaptation
Layer (Mediator Bus
1%:] (WMRS) <NMRS> (AMRS) (OpRS) (NSRS)
Resource | ™
Creator

Managed
Resources SMR
Layer (WMR)(NMR)(AMR)(OpR)(NSR>

|

I

Managed Networks

Network
Virtualization
Environment

Traditional SDN-based
Network Network

Figure 3.5 — Mashment system architecture

57

The layers and elements of the Mashment System Architecture are: The Managed Resources
Layer made up of networks and SMR, the Adaptation Layer comprised of a collection of SMRS,
the Composition Layer formed by the Mashment Maker, Mashment Executor, and Dispatcher,
and the Presentation Layer made up of runtime environments. In a broad sense, in the proposed
architecture: (i) the Adaptation Layer hides the complexity and heterogeneity of the Managed
Resources Layer, (ii) the Composition Layer supports the build up of static and dynamic mash-
ments; and (iii) the Presentation Layer assists the client-side execution and display of mash-
ments. The following subsections present in detail the proposed architecture from bottom to
top.

3.4.1 Managed resources layer

Figure 3.6 depicts the Managed Resources Layer. This layer is formed by a collection of
SMR, traditional networks, SDN-based networks, and Network Virtualization Environments
(NVEs). Considering that, first, this thesis already discussed SMR (see Subsection 3.2.1). Sec-
ond, traditional networks are widely known. The next paragraphs introduce just concepts about
SDN-based networks and NVEs, these concepts are useful to understand the case studies con-

ducted to evaluate the mashment-based approach (see Chapter 4).

Mashment System
Upper
7y - 7y Layers
Proprietary, SNMP, OpenFlow
Y Y
Situation Management Resources
CWMR) CNMR) CAMR)()()
‘t Proprietary, SNMP, OpenFlow ‘ Proprietary, SNMP, OpenFlow ‘t Managed
R
SDN-based Network Network Virtualization Environment esotg;?r
Network Services Layer Virtual Networks Layer
Traditional Network
Network Operating System Layer Virtualization Layer
Packet Forwarding Layer Physical Infraestructure Layer

Figure 3.6 — Managed resources layer

In the field of computer networks, the SDN paradigm has emerged as an important trend
that proposes an architecture for future networks in which data and decision policies are sep-
arated in order to simplify the network operation (NATASHA et al., 2008). In a general way,
SDN-based networks are formed by three architectural layers (LANTZ; HELLER; MCKE-
OWN, 2010) (LARA; KOLASANI; RAMAMURTHY, 2013): the Packet Forwarding datapath
(e.g., switches and routers passing packets), the Network Operating System (NOS) that controls

58

such datapath by using a vendor-independent protocol, and the Network Services (e.g., a new

routing protocol) running on the top of NOS.

There are different proposals for deploying the SDN paradigm, such as the Forwarding and
Control Element Separation (ForCES) framework (DORIA et al., 2010) and OpenFlow (MCK-
EOWN et al., 2008). In the ForCES framework, the Control Elements (i.e., NOS) and Forward-
ing Elements (i.e., the datapath) communicate by the ForCES protocol. In such a framework,

the Network Services can be developed as distributed features running on the Control Elements.

In OpenFlow, the Controller (i.e., NOS), such as POX (POX, 2013), Beacon (ERICKSON,
2013), NOX (NOX, 2013), and Floodlight (FLOODLIGHT, 2013), uses the OpenFlow protocol
to handle network devices (i.e., the datapath). Furthermore, the Controller supports deploying
new-centralized Network Applications (i.e., the Network Services), such as groundbreaking

applications to path selection and novel multicasting protocols.

In the context of SDN-based networks, examples of NMR (i.e., a specific type of SMR) are
tailored libraries, such as the Java Beacon API and the NOX C++ API. The Java Beacon API
allows conducting management operations on the Beacon Controller. In turn, the NOX C++

API allows carrying out network management tasks on the NOX Controller.

The Network Virtualization is also an important topic trend in the computer networks, which
fundamentally proposes sharing a network physical infrastructure among several virtual net-
works (CHOWDHURY; BOUTABA, 2009). A NVE is formed by a Physical Infrastructure
Layer, a Virtualization Layer, and a Virtual Networks Layer. The Physical Infrastructure Layer
provides resources (e.g., servers, routers, and links). The Virtual Networks are formed by vir-
tual resources (e.g., virtual routers/switches and network slices) allocated by the Virtualization

Layer (e.g., Xen, VMware, OpenVZ, and Flow Visor) from the Physical Infrastructure Layer.

In the context of NVE-based networks, examples of NMR are libraries such as the Vyatta
Remote Access API (VYATTA, 2013) and Libvirt (BOLTE et al., 2010). The Vyatta Remote
Access API allows conducting network management operations on the Vyatta Virtual Router.
In turn, Libvirt enables to manage different virtualization servers (e.g., Citrix XenServer and

VMware ESX) and virtual networks using bridging.

3.4.2 Adaptation layer

Figure 3.7 presents the Adaptation Layer. This layer is responsible for hiding the complexity
and heterogeneity of the Managed Resources Layer by a collection of SMRS called Mediator
Bus. SMRS is in charge of grouping, integrating, and homogenizing one or more SMR involved

in the investigation and resolution of nmsits. The interaction between SMRS and SMR (i.e.,

59

NMR, WMR, AMR, OpR, and NSR) internally occurs in a Wrapper accessed via UWrapper
and depends on protocols (e.g., SNMP, SOAP, HTTP, OpenFlow, and Proprietary) provided by

network vendors for managing their solutions.

The Wrappers are services based on the Representational State Transfer (REST) architec-
tural model. In REST (FIELDING; TAYLOR, 2002), services are represented by URIs. These
URIs are invoked through HTTP(S) requests, such as GET and POST. The replies of services
are HTTP(S) responses, such as 200 OK and 404 Not Found. Therefore, in the proposed archi-
tecture, the collection of SMRS provides a Mediator Bus in which the communication is based
on the request-response model of HTTP(S). This bus enables the interaction between the layers

of Adaptation and Composition.

Maker and Executor "
Composition
Layer
HTTP(S) § ’
f{ Mediator Mediator]
SMRS s SMRS UG SMRS
UWrapper UWrapper RS Adaptation
[[‘ Layer
Wrapper Wrapper Wrapper
~ A A .
v Proprietary, SNMP, OpenFlow Y Managed
SMR SMR Resources
Layer

Figure 3.7 — Adaptation layer

The Adaptation Layer responds to HTTP(S) requests from the Composition Layer as fol-
lows. First, the requests are targeted to UWrappers that are URIs pointing to Wrappers. Sec-
ond, Wrappers invoke one or more SMR. Third, SMR carries out the requested functionalities.
Fourth, Wrappers receive responses from SMR. Fifth, Wrappers encode SMR results on JSON
data and put such data on HTTP-responses. Sixth, Wrappers send their HTTP-responses to the
Composition Layer.

An example of UWrapper is http : //MashmentSys/Wrapper/Beacon/getSwitches
that offers to the Composition Layer, a list of switches handled by a Beacon OpenFlow Con-
troller. The Wrapper, pointed by the afore exemplified UWrapper, provides the switches list by
the next JISON structure: [{/PCTRL : ipCtrl, LIST : [{IDSWITCH : id,,IPSWITCH :
ip }, {IDSWITCH :id,, IPSWITCH : ip,}|}]. In this structure,] PCTRL is the IP ad-
dress of the Beacon Controller and L1S7 is the corresponding switches list. Such list is formed
by a set of identifiers (/ DSW ITCH) and IP addresses (I PSW ITC H) of switches.

Another example of UWrapper is http : //MashmentSys/Wrapper/serv/getInf. By

60

means of this UWrapper, the Adaptation Layer offers to the Composition Layer, general infor-
mation about servers that host virtual network elements. After invoking one or more SMR (e.g.,
Libvirt), the Wrapper - pointed by the above exemplified UWrapper - returns general server
information by the next structure encoded in JSON: [{IDSERV :id, NAME : name,OS :
08, STATE : st, MEMORY : mem,CPU : ncpus}|. In this structure, I DSERV, NAME,
OS, STATE, MEMORY , and C PU represent the identifier, the name, the operating system,
the state (e.g., running, turned off, and interrupted), the available memory, and the number of

processors of the hosting server, respectively.

Regarding the Adaptation Layer is relevant to highlight, first, Network Administrators never
access it directly. This access is always conducted by the layers of Presentation and Compo-
sition. Second, the Resource Creator is responsible for providing SMRS by using different
development environments. Since these environments are out of the scope of the Mashment

System Architecture, they are not presented in this thesis.

3.4.3 Composition layer

In order to support the building up of static and dynamic mashments, the Composition Layer
consumes services from the Adaptation Layer and offers services to the Presentation Layer. The
Composition Layer is architecturally formed by the Mashment Maker, Mashment Executor, and

Dispatcher. These architectural elements are described below.

(Mashment Maker)
(Designer)
> N ™) N N\ (C N)
Visual Resources
. Dynamic (Visual-SM) Contextual
AL Mashment Help
NMSit Recognizer Composer (Visual-BI) System
C Visual-Mashment)
\. J \\ VAN) \ J
NMSit Mashment LA Device User
Rule Repository Repository T Repository Repository
L Repository))
|\ J

Figure 3.8 — Maker modules

From a high-level point of view, the Mashment Maker offers two functionalities: (i) it al-
lows Mashment Creators and Network Administrators to create mashments (i.e., static com-

position of mashments); and (if) it automatically generates mashments (i.e., dynamic compo-

61

sition of mashments). The Maker (see Figure 3.8) provides its functionalities by using the
following modules: User Repository, Device Repository, NMSit Rule Repository, Mashment
Repository, Mashment Resource Repository, Automatic NMSit Recognizer, Dynamic Mash-
ment Composer, Visual Resources, Designer, and Contextual Help System (CHS).

Mashment Maker - modules for overall functioning. The modules supporting the gen-
eral functioning of the Maker are the User Repository, Device Repository, Mashment Resource
Repository, Mashment Repository, and CHS. The User Repository stores data of Network Ad-
ministrators and Mashment Creators. Such a data is used to conduct the access control to the
Maker.

The Device Repository stores information about capabilities of devices in which mashments
can be presented. In this way, this repository assists in the presentation of mashments on multi-
ple terminals, such as smartphones and tablets. Examples of repositories useful to carry out the
Device Repository are the User Agent Profile (MATSUYAMA et al., 2004) and the Wireless
Universal Resource File (SALOMONI et al., 2007).

The Mashment Resource Repository stores metadata that describes and points functional-
ities offered by SMRS (i.e., NMRS, WMRS, AMRS, OpRS, and NSRS). The metadata of a
SMRS is: [{IDRES : idres, RESNAME : resname, OPERATION : [{op1,op,}|}].
Here, IDRES and RESNAMFE are the unique identifier and the name of the resource, re-
spectively. In turn, OPERATION is the collection of operations offered by the resource. An
opn is: [{OPNAME : opname, PARAM : [{pari,par,}|, PROD : produce}]. Where,
OPNAME is the name of the operation, PARAM is the set of parameters need to invoke
such operation, and PROD is the data type that the operation returns/produces.

The following metadata, for instance, describes two operations (i.e., get the list of virtual
switches and get the statistics of a virtual switch) provided by a specific NMRS to retrieve
situational management information from a NVE (i.e., a virtualized OpenFlow-based envi-
ronment): [{IDRES : /path,/,RESNAME : nmrs;, OPERATION : [{OPNAME :
SwitchList, PARAM : [{IPCTRL : ipcontrol, PORT : port, USER : user, PWD :
pwd}], PROD : json},{OPNAME : SwitchStatistics, PARAM : [{IDSWITCH
ids,USER : u, PWD : p}|, PROD : json}|}].

The Mashment Repository stores metadata of mashments. This metadata is: [{/ DM ASH :
id, MASHNAME : name, o : [{delta}], NMSIT,qqr : [{nmsiteqar})}]. Here, IDMASH,
MASHNAME, NMSIT,u-, and ¢ are the unique identifier, the friendly name, the set
of nmsits addressed, and the execution flow of the mashment, respectively. In turn, ¢ is:
{IDD :idd, RES : [{res},{res,}], CONN : [conni,conn,]}]. Where, I DD is the unique
indentifier of 9, RES is the set of resources forming the mashment, and CON N is the set of

logical connections/links created among these resources for handling N M SIT, 44,

62

Connections define the propagation of data between resources by specifying which outputs
of a resource are supplied to inputs of other one. A conn,, is given by: [{IDC' : idc, SRC' :
[{idresS,idparS}], DES : [{idresD,idparD}|}]. Where, I DC'is the unique identifier, S RC
is the source, and DE'S is the destination of the connection, respectively. In turn, SRC and
DES are represented by the identifiers of the resource (idresS and idresD) and the parameter

(¢dparS and tdpar D) connected.

CHS is in charge of providing contextual guidance to support the selection, configuration,
and combination of resources available in the Mashment Maker. Contextual guidance means
that help information is presented in accordance to current action being performed by Network
Administrators and Mashment Creators. Furthermore, CHS is responsible for offering to these

stakeholders general guidelines about functioning the Maker.

Mashment Maker - modules for static composition. The Network Administrator and the
Mashment Creator can carry out static composition of mashments by using the Designer and
the Visual Resources exposed on it. Visual Resources represent to GUI, SMRS, and even
mashments in a high-level abstraction, aiming to diminish the complexity perceived and the
time required by Administrators and Creators to build up new mashments or enhance existing
ones. The metadata of Visual Resources is stored in the Mashment Resource Repository and
follows the next structure: [{IDVISRES : idvisres,TY PE : type, VISRESNAME :
name, IDRES : idrepres}]. Where, IDVISRES, TY PE, and VISRESNAME are the
identifier, the type, and the name of the Visual Resource, respectively. In turn, /DRES is the

identifier of the resource represented by the Visual Resource.

There are three types of Visual Resources (see Figure 3.9): Visual-SM, Visual-BI, and
Visual-Mashment. Visual-SM represents SMRS in a graphic way. There are five types of
Visual-SM: (i) Visual-NMRS (e.g., a box offering management functionalities of a Vyatta Vir-
tual Router) represents NMRS, (ii) Visual-WMRS (e.g., a box providing functional features of
the RRDTool) depicts WMRS, (iii) Visual-AMRS (e.g., a box supplying services of the Man-
agement Traffic Analyzer) represents AMRS, (iv) Visual-MO (e.g., a box providing a dashboard
that hides the collection, correlation, and fusion of monitoring information from heterogeneous
NOS) depicts OpRS; and (v) Visual-NSRS (e.g., a box offering functionalities of the Apache
Camel) represents NSRS.

Visual-BI represents basic GUISs that are useful to define the composite and advanced GUIs
of mashments. For instance, the GUI of a mashment can be created by inserting network traffic
images built using JavaScript Charts into a sandbox implemented with YUI Yahoo. Finally,
regarding the Visual Resources is important to note that after a mashment has been created, it
is represented as a Visual-Mashment. Such representation aims to facilitate the enhancement,

improvement, and launching of mashments.

63

The Designer allows Network Administrators and Mashment Creators to develop and launch
mashments. To achieve this goal, the Designer supplies the Mashment Designer (see Fig-
ure 3.9): (i) it provides the Dragging-and-Dropping service to select Visual Resources (i.e., to
define R, ..q), (ii) it offers the Wiring service to combine Visual Resources (i.e., to create ¢), (iii)
it uses the Helping service to invoke CHS that offers guidance about the selection, configura-
tion, and combination of Visual Resources (i.e., to define R, ¢), (iv) it provides the Launching
service to invoke the Mashment Executor; and (v) it offers the services Saving, Loading, and
Deleting that aim to facilitate the reuse, tuning, and enhancement of mashments. In particular,
Saving enables to write metadata of mashments in the Mashment Repository. Loading is in
charge of reading such metadata and exposing Visual-Mashments. Deleting allows removing
the metadata of mashments. It is important to highlight that the above services of the Mash-
ment Designer are intended to allow Network Administrators to customize and improve their

workspace when addressing nmsits.

(i) s B
Washment Designer Visual Resources
Select Drag-and-Dropping \| Select Visual-SM
Service
(visualBl)
Combine Wiring Combine -
Service (VlsuaI-Mashment)
Network Administrator N\)
& Launch Launching Request (R
Mashment Creator Service Execution Mashment Executor
N Y,
Help Helping Request (" Contextual Help h
Service Guidance (_ System
Reuse Saving, Loading,
Deleting
\. Y,
Insert
Read
Remove
Update
Mashment
Repository

Figure 3.9 — Designer services for static mashments

Mashment Maker - modules for dynamic composition. The automatic generation of mash-
ments operates in two phases: (/) when < nmsits > - mechanism for automatic recognition of
nmsits; and (2) then < mashments > - mechanism for dynamic composition of mashments.
In a broad sense, these phases involve the following functionalities: (i) the definition of nmsits
that will be recognized, (i) the recognition of nmsits, (iii) the specification of composition tem-
plates for generating mashments; and (iv) the dynamic composition of mashments that will face

nmsits. These functionalities are provided by the modules: NMSit Rule Repository, Mashment

64

Repository, Designer, Automatic NMSit Recognizer, and Dynamic Mashment Composer.

The NMSit Rule Repository stores nmsit patterns that are instances of the nmsit conceptual
model described in the Subsection 3.1.1. Each one of these patterns defines a collection of
entities, attributes, and constraints in which constraints are conditions (i.e., rules) defined in
attributes of entities for detecting nmsits. In this way, this repository stores nmsits that will
be recognized and later handled by dynamic mashments. An snippet of rule encoded in JSON
is: [{ Router, [{ PkDrop, >= 5%}, { Pkt Error,>= 3%}]}]. Another snippet of rule is given
by: [{V Switch, [{ Processor, < 5%},{Mem, < 5%}, { Pkt Drop, >= "%}, { Pkt Error, >=

570} H-

The Mashment Repository in addition to store metadata of mashments also stores meta-
data of composition templates. The composition templates are skeletons useful to dynamically
compose mashments. A composition template is: [{IDTEMPLATE : id, NAMESIT :
namesit, o : delta}]. Where, IDTEM PLATE is the unique identifier of template and 0 is a
predefined workflow (i.e., an investigative and/or resolutive plan formed by combining mashu-
pable situational resources) to deal with one or more nmsits identified by NAM ESIT (see
Figure 3.1).

The Designer besides to support the development and launching of mashments allows Mash-
ment Creators to define: (i) nmsits that will be recognized/detected; and (i7) composition tem-
plates that will be used for generating mashments and, ultimately, for addressing recognized
nmsits. In this way, the Designer is also responsible for supporting the management (i.e., cre-
ate, read, update, and delete) of metada of nmsits and composition templates by handling the
NMSit Rule Repository and the Mashment Repository, respectively (see Figure 3.10). Specifi-
cally, the NMSit Designer is to manage nmsits patterns, the Template Designer is to manipulate

templates, and the above described Mashment Designer aids to enhance mashments.

Designer

% Mashment Designer) (Template Designer) [NMSit Designer J ﬁ
Mashment
Mashment NMSit Rule
Repository Repository

Creator
Figure 3.10 — Designer elements for dynamic mashments

Network
Administrator

The mechanism for automatic recognition of nmsits is conducted by the Automatic NM-
Sit Recognizer (see Figure 3.11). The Recognizer detects when nmsits happen by using the
modules: Sensing and Matching Mechanism. The Sensing is in charge of retrieving network

management information by the Mediator Bus and delivering this information as a streaming

65

to the Matching Mechanism. Such retrieving of information depends on communication (pull-
based or push-based) provided by SMRS forming the Mediator Bus.

The Matching Mechanism recognizes nmsits as follows, first, it reads rules (nmsit patterns)
from the NMSit Rule Repository. Second, it obtains information about managed networks and
their devices by Sensing. Third, it constantly conducts a matching operation (i.e., in a general
way, comparison of samples with patterns) among network information and rules to determine
if one or more nmsits happen. This matching operation can be carried out by using RETE
(DOORENBOS, 1995) (HILL, 2003) and PHREAK (BROWNE, 2009) that are recognition
pattern algorithms currently offered by rule-based engines, such as JBOSS Drools and JESS.
Fourth, it defines NM SIT, 44 and invokes the Dynamic Mashment Composer every time a

nmsit is detected (i.e., there is a matching).

[Dynamic Mashment Composer]

4. Invoke

4 N\
Automatic NMSit Recognizer

1. Read 2. Obtain
NMSit Rule Repository Matching Mechanism Sensing

{ |3. Match

NG J

[Mediator Bus

Figure 3.11 — Automatic recognizer of nmsits

The mechanism for dynamic composition of mashments is conducted by the Dynamic
Mashment Composer that automates the tasks Select, Configure, and Combine. These tasks
are part of the proposed process to develop and launch mashments (see Subsection 3.3.1). Sum-
marizing, Select is to define the resources (i.e., RE.S formed by SMRS and Visual Resources) to
be used to generate a mashment. Configure is to provide all functioning settings of selected re-
sources. Combine is to define how a particular mashment will deal with a specific NM SIT, 4,

by creating connections (i.e., CON N) among selected and configured resources.

The Dynamic Mashment Composer (see Figure 3.12) is formed by: Selector and Generator.
The Selector operates as follows. First, it receives N M SIT, 4 from the Automatic NMSit
Recognizer. Second, it retrieves NAM ESIT from NMSIT, 4. Third, it retrieves composi-
tion templates by reading the Mashment Repository. Fourth, it selects a composition template,
which includes a specific 6 (RES and CON N), for such N M SIT, 4. This selection is carried
out by calculating the highest linguistic similarity among the N AM ESIT of composition tem-

66

plates and the retrieved from N M SIT, .. Such calculation is conducted with the linguistic
similarity algorithm (GRIGORI et al., 2010) that is based on NGram (ANGELL; FREUND;
WILLETT, 1983), CheckSynonym (MILLER, 1995), and ElementMatch (PATIL et al., 2004).
Fifth, it invokes the Generator.

Dynamic Mashment Composer

CETET . Selector Generator
NMSit Receive | |. Retrieve NAMESIT Invoke | . Generate mashment metadata Mashment
R - - Retrieve template - Store mashment metadata Designer
ecognizer - Compute similarity - Publish mashment
Read Write
Mashment]

Repository

Figure 3.12 — Dynamic composer of mashments

The Generator functions as follows: (i) it receives o and N M SIT, 4, from the Selector, (ii)
it generates a mashment (i.e., an instance of mashment metadata) by customizing the selected
6 with the information of entities involved in nmsits as well as their attributes and constraints,
(7ii) it stores in the Mashment Repository the generated mashment by writing the correspond-
ing metadata; and (iv) it publishes such a mashment in the Mashment Designer as a Visual-
Mashment. It is to noteworthy that the Network Administrator can further improve and run the

generated mashment by using the Mashment Designer.

(Mashment Executor h
......................... MashmentEngine {h8
Mashment Router
: ~_______________________!\{I_ashment Instances
_

Figure 3.13 — Executor modules

In addition to the Mashment Maker, the Composition Layer is formed by the Mashment
Executor and the Dispatcher. The Executor (Figure 3.13) is made up of the modules: Mash-
ment Router and Mashment Engine. The Router is responsible for coordinating the execution
of ds that are the core of mashments. Thus, the Router on runtime: (i) it receives mashments
invocations from the Engine, which means that the Router is called by the Engine to select
a mashment to service an initial request, (ii) it selects and links multiple resources (includ-
ing mashments into other mashment) to attend invocations, by reading information from the
repositories of Mashments, Resources, and Users; and (iii) it calls the Engine to request the in-

stantiation of mashments and their elements. In the literature of service composition, software

67

entities providing similar functionalities to the Router are referred as to Application Routers
(CHEUNG; PURDY, 2008) and Web Service Orchestrators (ESCOBEDO et al., 2010).

The Mashment Engine is a lifecycle manager responsible for creating, deleting, and caching
instances of mashments. When initial requests to execute mashments are received from Web
and/or Mobile Clients, the Engine invokes the Router. Afterwards, the Engine waits indica-
tions from the Router in order to create, cache, or delete instances of mashments and their
resources. These resources can be one or more NMRS, WMRS, AMRS, OpRS, NSRS, and
their corresponding Visual Resources. Furthermore, when Network Administrators and Mash-
ment Creators need to develop and request the execution of mashments by Web Clients, the

Engine is in charge of creating, caching and deleting instances of the Mashment Maker.

The Dispatcher is responsible for adapting and sending content (i.e, mashments and the
Mashment Maker) to the Presentation Layer (see Subsection 3.4.4). When requests to display
content arrive from devices Client (e.g., tablets, laptos, and smartphones) via the Engine, the
Dispatcher: (i) it reads the HTTP-header of each one of these requests in order to identify
devices in which content will be presented, (i7) it queries the Device Repository to establish the
capabilities of devices that carry out these requests, (iii) it adapts content by using such devices

capabilities; and (iv) it sends adapted content to the Presentation Layer.

3.4.4 Presentation layer

Figure 3.14 depicts the Presentation Layer that communicates with the Composition Layer
by JSON/HTTP(S). This layer is responsible for executing and presenting, in the client-side,
GUIs of the Mashment Maker and mashments; called Mashment Maker GUI and Mashments
GUI, respectively. It is important to highlight that the Mashment Maker GUI includes the GUIs
of the Mashment Designer, NMSit Designer, and Template Designer.

Mashments GUI Mashment Maker GUI _\'-_\ ________ | % 9 _______ Mashments GUI
"~ . Network Administrator Presentation
ey Layer
Web Client \ﬁe Mobile Client
A Mashment Creator A
JSONHTTP(S) JSONHTTP(S)
y Composition
[Mashment System] el

Figure 3.14 — Presentation layer

The Presentation Layer is formed by the Web Client and the Mobile Client. The Web

68

Client has a runtime environment in charge of presenting the Mashment Maker GUI and the
Mashments GUI to Network Administrators and Mashment Creators. The Mobile Client has

a runtime responsible for showing the Mashments GUI to Network Administrators. As the

Mashment Maker GUI is not enabled to be presented in the Mobile Client, mashments cannot

be developed by using this type of client.

3.5 Final remarks

This chapter presented a groundbreaking approach that uses the SM discipline and the

mashup technology for carrying out network management in an effective way. The contri-

butions achieved in this thesis with the introduced approach can be divided into: conceptual

and specific ones.

e Conceptual contributions are:

The nmsit concept that introduces a novel way to characterize unexpected, dynamic,
and heterogeneous situations in the network management domain by using SM.
The mashment concept that presents how to employ the SM discipline and the

mashup technology for carrying out network management.

e Specific contributions are:

The Mashment Ecosystem that presents the resources, stakeholders, software enti-
ties, activities, and interactions related to handling nmsits.

The process to develop and launch mashments that introduces how to deal with nm-
sits by conducting a simple set of high-level tasks (i.e., Select, Configure, Combine,
Launch, and Tune).

The model of complexity and time-consuming that permits assessing the complex-
ity as well as the consuming of time of addressing nmsits with and without the

mashment-based approach.

The Mashment System Architecture that supports the making of both the ecosystem
and the process aforementioned and, thus, the making of the mashment concept too.
The mechanism for nmsits automatic recognition that presents how to detect nmsits
on the fly by using rules and matching algorithms.

The mechanism for mashments dynamic composition that introduces how to gener-

ate mashments in an automatic way by using composition templates.

69

4 EVALUATING THE MASHMENT-BASED APPROACH

This chapter provides an extensive evaluation about the feasibility of using the mashment-
based approach for effectively carrying out network management. Specifically, this chapter
presents the Reference Implementation and three case studies carried out for evaluating the

addressing of specific nmsits with and without using the proposal introduced in this thesis.

4.1 Reference implementation

The Reference Implementation of the mashment-based approach is formed by: Managed
Resources, Mashment System Server, Mashment Maker, and Runtime Environments. The fol-

lowing subsections describe these elements.

4.1.1 Managed resources

In the Reference Implementation, the Managed Resources are elements of virtual nodes,
SDN-based networks, and the corresponding SMR. The elements of virtual nodes are Xen
servers, VirtualBox servers, virtualized Open vSwitches, and Linux-based virtual machines.
Xen (BARHAM et al., 2003) is a virtualization platform, distributed by Citrix Systems, Inc.,
that directly executes on server hardware without requiring an operating system (i.e., stan-
dalone monitor mode). Xen was used as Host Computer System (supplier of physical resources)
and Virtualization Layer (lifecycle manager of Hosted Virtual Computer Systems). VirtualBox
(WATSON, 2008) is a virtualization system, distributed by Oracle, Inc., that runs on operating
systems (i.e., hosted monitor mode) such as Windows, Linux, and Mac OS X. Linux Debian was
used as Host Computer System of VirtualBox that, in turn, was used as Virtualization Layer.
It is important to note that in virtual nodes, virtual network elements (e.g., virtualized Open
vSwitches) and virtual machines (e.g., Linux-based VMs) are considered as Hosted Virtual

Computer Systems.

The Reference Implementation includes the following elements of SDN-based networks:
(i) Floodlight (FLOODLIGHT, 2013) that is an OpenFlow Controller developed in the Java
Language and deployed as Hosted Virtual Computer System, (ii) Beacon (ERICKSON, 2013)
that 1s an OpenFlow Controller implemented in the Java Language and deployed as Hosted Vir-
tual Computer System, (iii) POX (POX, 2013) that is an OpenFlow Controller developed in the
Python Language and deployed as Hosted Virtual Computer System, (iv) Open vSwitch that is
a Hosted Virtual Computer System handled by Floodlight, Beacon, and POX, (v) Virtual Links

that communicate Open vSwitches, (vi) Flows that contain rules to control the communication

70

in OpenFlow-based networks; and (vii) Mininet (LANTZ; HELLER; MCKEOWN, 2010) that

is a software used to emulate OpenFlow networks and deployed on VirtualBox.

The Managed Resources Layer of the Reference implementation includes the following
SMR: (i) XenSDK that enables the comprehensive remote management (including Hosted Vir-
tual Computer Systems) of Xen servers, (ii) VirtualBox Web Service that lets to thoroughly
manage, in a remote way, VirtualBox servers (including Hosted Virtual Computer Systems);
and (iii) Floodlight Web Service, Beacon Web Service, and POX Web Service that permit the
remote management of OpenFlow-based networks (including flows, links, and Open vSwitches)
controlled by Floodlight, Beacon, and POX, respectively. In the Reference Implementation, all

SMR were only used for monitoring purposes.

4.1.2 Mashment system server

The Mashment System Server deploys the Adaptation Layer and several elements of the
Composition Layer. The Adaptation Layer is formed by XenService, VBoxService, Flood-
lightService, BeaconService, and POXService. These services implement SMRS (specifically
NMRS) for XenSDK, VirtualBox Web Service, Floodlight Web Service, Beacon Web Service,
and POX Web Service. Each SMRS was created by using RESTful that is a REST imple-
mentation on the Java Language. In particular: (i) XenService was implemented by using the
XenSDK API 6.0, (if) VBoxService was developed with the VirtualBox SDK API 4.1; and (iii)
FloodlightService, BeaconService, and POXService were built by using the Java Jersey API 2.3
and the Java Socket API 1.0. It is important to note that by developing SMRS the complexity
of Managed Resources and their underlying technologies is hidden for Network Administrators

and Mashment Creators.

The Mashment System Server deploys the following elements of the Composition Layer:
Automatic NMSit Recognizer, Dynamic Mashment Composer, Mashment Executor, Dispatcher,
Mashment Resource Repository, Mashment Repository, and NMSit Rule Repository. The Au-
tomatic NMSit Recognizer is a Java-based application that uses for detecting nmsits the im-
plementation of the PHREAK algorithm offered by the JBOSS Drools engine. It is relevant to
point out that, first, nmsit patterns are defined by the Mashment Creator in the NMSit Designer
and, thereupon, stored in JSON format in the NMSit Rule Repository. Second, as nmsit patterns
are in JSON, before being passed to matching, they are translated to DRL by the Recognizer.

The Dynamic Mashment Composer is a Java-based application that customizes the com-
position templates defined in the Template Designer by Mashment Creators. It is important to
stand out that, first, these templates are stored in JSON format in the Mashment Repository.

Second, once a template has been customized, it is stored as a mashment metadata in the Mash-

71

ment Repository and automatically exposed in the Mashment Maker as a Visual-Mashment.

The Executor is a Web application, based on Java Servlets and AJAX, that implements the
Mashment Router as well as the Mashment Engine. Internally, the Executor is in charge of
invoking by HTTP, SMRS (e.g., FloodlightService, POXService, and XenService) needed to
build up and execute static and dynamic mashments. The Executor outputs are offered to the

Dispatcher by means of JSON objects transported in HTTP responses.

The Dispatcher is a Web application, based on AJAX and Java Servlets, that sends for the
Runtime Environments (see Subsection 4.1.4) the result of compositions conducted by the Ex-
ecutor. These results are displayed by using JavaScript and the Google Visualization API. This
API renders its visual components through the HyperText Markup Language (HTML) version
5. Accordingly, the Reference Implementation provides cross-browser and cross-platform com-

patibility to run mashments on smartphones, tablets, desktops, and laptops.

The Mashment Resource Repository, Mashment Repository, and NMSit Rule Repository
were implemented in a unique database by using a MysqlServer. These repositories are here-
inafter named MashmentDB. The metadata of every mashment and resource is stored into the
MashmentDB for promoting their reuse and allowing the extension and improvement of the
Reference Implementation. It is relevant to highlight that the metadata of every nmsit pattern
is stored in the MashmentDB using JSON and not a specific rule language (e.g., DRL) for

facilitating the change of rules engine and, thus, of matching algorithm too.

4.1.3 Mashment maker prototype

Figure 4.1 depicts the GUI of the Mashment Maker Prototype that is formed by Visual
Resources, Buttons (New, Load, Save, Delete, and Run), CHS (Help), and Designer. The Visual
Resources, Buttons, and CHS are Web components developed by using Cascading Style Sheets
(CSS) and JavaScript. Some Visual Resources implemented are Beacon, Floodlight, POX, OF
Monitor, Virtual Box Server, Xen Server, Monitoring Panel, Integrator, Open vSwitch, and
Switch Traffic Grapher. Beacon, Floodlight, and POX are the visual representation (i.e., a
high-level encapsulation of network technologies) of controllers Beacon, Floodlight, and POX,

respectively.

OF Monitor 1s a collection of views and operations used to present, in a graphic way, in-
formation about networks (including flows, switches, links, and traffic) handled by one or more
of the above mentioned OpenFlow controllers. Every operation (e.g., traffic of an OpenFlow-
enabled switch) of OF Monitor can easily be applied to controllers by drawing visual connec-

tions in the Designer.

72

Virtual Box Server and Xen Server are the visual representation (i.e., a high-level encap-
sulation of system virtualization solutions) of Xen server and VirtualBox server, respectively.
Monitoring Panel is a collection of views and operations used for graphically presenting in-
formation about Host Computer Systems and guests (i.e., a common term used for referring
to Hosted Virtual Computer Systems) running on them. Every operation of Monitoring Panel
(e.g., present statistics) can easily be applied to virtual nodes based on Xen and VirtualBox by
drawing visual connections in the Designer. Integrator integrates Visual Resources (i.e., aggre-
gation in the GUI level) and can readily be applied, for instance, to attach the outputs of OF

Monitor and Monitoring Panel.

Mashment Maker Prototype *

% Beacon Open vSwitch
% Floodlight

% POX
% Open vSwitch
% Vyatta Virtual Router

IPAddr [143.54.12.23

Port B633
PAddr [143.54.12.45 —

Open vSwitch

Port 5633

% Virtual Box Server S

% VMware Server N
% Xen Server N
% Google Maps Designer: space for developing mashments Add

% Monitoring Panel

% Switch Traffic Grapher
% RRDTool

% OF Monitor

% Integrator

Figure 4.1 — User interface of the Mashment Maker

Open vSwitch is a visual resource that illustrates the high-level encapsulation of a specific
network element. Switch Traffic Grapher is a collection of views and operations used for graph-
ically presenting information about switches. Similarly to OF Monitor, the operations (e.g.,
present percentages of transmitted and received packages) of Switch Traffic Grapher can read-

ily be applied to switches by drawing visual connections in the Designer.

The Designer is a Web application that includes the Mashment Designer, Template De-
signer, and NMSit Designer. This application was built by using YUI 2.7 and Wirelt 0.5. YUI
is an open source framework based on CSS and JavaScript. YUI was used to implement the
Drag-and-Drop Service. Wirelt is a set of open source JavaScript libraries. Wirelt was used to

implement the Wire Service.

Finally, regarding the Mashment Maker Prototype is important to highlight that, first, all its
functionalities are supported by the MashmentDB deployed in the Mashment System Server.
Second, the prototype helps in its own extension by assisting the building up and improve-

ment of mashments that are simply carried out by dragging-and-dropping and wiring Visual

73

Resources. In turn, such extension assists in the upgrade of workspaces used by Network Ad-

ministrators.

4.1.4 Runtime environments

Every standardized Web browser that supports HTML version 5 and AJAX can be used
as Runtime Environment to access and execute: (i) the Mashment Maker GUI that can be
customized and extended during the development of mashments by Mashment Creators, (ii) the
Mashments GUI that can be invoked by Network Administrators from the Mashment Maker or
directly using URIs; and (iii) SMRS (including Wrappers) that can be requested by Resource
Creators and Mashment Creators via URISs (i.e., UWrappers), for instance, during the integration

of a new OpenFlow controller or a novel system virtualization technology.

It is relevant to stand out that Runtime Environments can exchange JSON data with the
Mashment Maker and the Mashment System Server by using a synchronous and/or asynchronous
communication model. For instance, when storing mashments, the HTTP synchronous model
is used to block the Mashment Maker GUI. Instead, during the performing of mashment oper-
ations (e.g., to retrieve and show a Host Computer System list or a Open vSwitches list), the

AJAX asynchronous model is used to avoid the blocking of Mashments GUI.

4.2 Case study on SDN

The case study on SDN is formed by a test environment (see Figure 4.2), a nmsit called
NMSit-SDN, and experiments conducted to evaluate the addressing of such a nmsit with (i.e.,
Performance Monitoring Mashment - P M M) and without (i.e., Situational Script) the mashment-
based approach. Regarding this case study, it is also important to mention that four metrics are

measured in the experiments: complexity, time-consuming, time-response, and network traffic.

Test environment. Every OpenFlow controller (i.e., Beacon, POX, and Floodlight) was ex-
ecuted on a machine with 2.33 Ghz core 2 duo processor, 2 GBytes RAM, and 160 GBytes
hard disk. The Mashment System Server, Mashment Maker and MashmentDB were deployed
on a machine with Linux Ubuntu O.S., 2.53 GHz Intel Core i5 processor, 4 GBytes RAM, and
250 GBytes hard disk. The virtual Open vSwitches (handled by the above referred OpenFlow
controllers) were deployed on a server with 8§ GBytes RAM and 3.4 GHz core i7 processor.
The user interfaces of the Mashment Maker, PM M, and Situational Script were executed on a
Client with 2 GBytes RAM and 2.53 GHz core 2 duo processor.

NMSit-SDN. Let’s suppose the following nmsit: A Network Administrator needs to inves-

74

tigate/identify which are the Open vSwitches that are causing sudden performance degradation
in the OpenFlow-based networks of the test environment. In this way, he/she requires a situ-
ational solution that presents, in an integrated, visual, and intelligible way, information about
Open vSwitches, links, and flows handled by Beacon, POX, and Floodlight. In order to get such
a solution and deal with this nmsit, the Network Administrator tests two options: (i) without
the proposed approach, creates, launches, and uses the Situational Script; and (ii) with the pro-
posed approach, develops, launches, and uses PM M by the Mashment Maker. The following

sections present the results and analysis of experiments conducted to evaluate such options.

MashmentDB
(MySQL 5.1)

Mashment Maker and Mashment
System Server
Open vSwitches 1.4 o (Tomcat 7.0)
/Mininet

Floodligth 0.9

Open vSwitches 1.4 o Client Open vSwitches 1.4
/Mininet /Mininet

Figure 4.2 — Test environment on SDN

4.2.1 Complexity: results and analysis

Addressing without Maker. To start the evaluation, it is proceeded to measure the com-
plexity of addressing the NMSit-SDN when the Network Administrator follows the proposed
process to deal with nmsits but does not use the Maker. In a workspace without the Maker, the
Network Administrator develops and executes the Situational Script that retrieves network traf-
fic information from switches handled by Beacon, POX, and Floodlight. This Situational Script
presents the retrieved information in a user interface formed by HTML tables and chart images.

According the equation 3.1 and considering the no conducting of Tune (= j = k = 0 = 1),

Cnomaker - Csel:nomaker + Ccon:nomak:er + Ccom:nomaker + Clau:nomaker-

Select without Maker. The Network Administrator conducts the selection of controller tools
(i.e., Beacon Tool, POX Tool, and Floodlight Tool), specific commands of such tools, and
visualization tool (i.e., RRDTool) that allow to monitor Open vSwitches. An example of spe-
cific command is to retrieve statistics of Open vSwitches handled by Floodlight: curl http :

//IPController : port/wm/core/switch/switchld/statType/json. This selection is no

75

simple because it is not tool-assisted and guidelines about advanced commands of controller and
visualization tools are scattered on the Internet. In this way, ¢,, = 2, gF' = 3, and ¢/’ = 1. Using
these values in the equation 3.2, (sernomaker = an:l 2 + (nAvailable Resources — 1) * 3 x 1.
Where, considering nAvailable Resources = 14, (sei:nomaker = 47. Such value of available

resources was used in order to facilitate the comparison with the Maker prototype.

Configure without Maker. The Network Administrator carries out the configuration of con-
troller tools by providing their corresponding functioning parameters. According the equa-
tion 3.3, Ceonmnomaker = Sconzbeacon T Sconipor T Scon:floodlight + Scon:rrd- Since the Network
Administrator obtains the configuration information of controller tools from documentation
easy to find on the Internet and defines specific statistic commands after conducting addi-
tional search, source Parameter(statisticCommand) = 5 and sourceParameter(login) =
source Parameter(key) = source Parameter(ip) = sourceParameter(port) = 2. Further-
more, since the Network Administrator extrapolates the configuration information of RRDTool

from documentation simple to find on the Internet, <.y,..r¢ = 3. Using the above values and

COHSlderlng Scon:beacon = Scon:pox = Scon:floodlights <con:nomaker = 42.

Combine without Maker. The Network Administrator manually creates (i.e., writes pro-
gramming code) one logical link among each controller tool and RRDTool. Regarding this
creation of links, it is to point out that: (i) the Network Administrators is responsible for adapt-
ing the retrieved data because controller tools, involved in the NMSit-SDN, use different data
types (e.g., Beacon and POX employs data types based on Java and Python, respectively); and
(if) the Network Administrator neither has explicit nor centralized guidelines to develop these
links. Therefore, | = 4, (; = 3, goF’ = 3, and coF" = 1. Using these values in the equation 3.4,

Ccom:nomaker = 21.

Launch without Maker. As the Network Administrator requests the execution of the Situa-
tional Script by typing a specific command in a Linux Command Line, (jqu.nomaker = 2. After
launching the Situational Script, the Network Administrator is able to find the Open vSwitches
involved in the NMSit-SDN by analyzing RRDTool images and HTML tables.

Addressing with Maker. Once computed the complexity of facing the NMSit-SDN without
the Maker, it is proceeded to evaluate the complexity of developing and launching PM M.
In a broad sense, in the Maker, the Network Administrator builds and requests the execution
of PM M (see Figure 4.3) by dragging-and-dropping, wiring, and clicking Visual Resources
and Buttons. The Maker also assists such a process by providing contextual guidelines for the

Network Administrator. According the equation 3.1 and considering the no carrying out of

Tune, Cpmm = Csel:maker + Ccon:maker + Ccam:make'r + Clau:maker-

Select on Maker. The Network Administrator uses the Drag-and-Drop service (i.e., a Maker-
assisted way) to select the Visual Resources (M = 5) that form PMM. Thus, Ryseq =

76

{Beacon, POX, Floodlight, RRDTool, OF Monitor}. Furthermore, to facilitate such selection,

the Maker via CHS provides contextual guidance about each available resource. Therefore,

Sm =1, gF = 2, cF = 1, and nAwvailable Resources = 14. Using these values in the equa-

tion 3.2, Csel:maker = 3L

Mashment Maker Prototype

@ Delete

Visual Resources

% Beacon

% Floodlight

% POX

% Open vSwitch

% Vyatta Virtual Router
% Virtual Box Server

Floodlight

IPAddr [143.54.12.38
Port 633

% VMware Server

% Xen Server

RDDTool

% Google Maps

% Monitoring Panel Ref
po

Beacon
IPAddr [143.54.12.23
Port [6633
IPAddr [143.54.12.45 Login oot
foit o33 == Beacon - OF Monitor
jin oot J \
IS POX-OF Monitor ||
~= "\
. . R \
=== Floodlight— OF Monitor = \
] —— ~ —
o ey e
R — —

RRDTool - OF Monitor

% Switch Traffic Grapher 3 m&
% RRDTool
% OF Monitor Available Resources = 14
Rused = Beacon, POX, Floodlight, RRDTool, OF Monitor
% Integrator ‘ Rconf = Beacon, POX, Floodlight, RRDTool ’
A pam 'PMM = Performance Monitoring Mashment
Figure 4.3 — PMM - development and launch
Switches
Switch Id IP Address Port Connected Controller IP Controller Port Controller Type
00:00:00:00:00:00:04:4d 192.168.210.30 48209 2013-03-08 08:13:05 143.54.12.23 6633 beacon
00:00:00:00:00:00:04:0e 192.168.56.2 46521 2013-03-08 10:09:24 143.54.12.45 6633 pox
00:00:00:00:00:00:03:e9 192.168.1.48 50102 2013-03-08 08:22:42 143.54.12.38 6633 floodlight
(Flows J (Tables J (Ports J (Traffic J
beacon_00-00-00-00-00-00-04-4d % pox_00-00-00-00-00-00-04-0e x|l E(x
Traffic on Switch 00:00:00:00:00:00:04:4d Traffic on Switch 00:00:00:00:00:00:04:0e Traffic on Switch 00:00:00:00:00:00:03:e9
from beacon from pox from floodlight

500 400 600
500
300
n
© 400
) U
£ & 2
X 200 Y 300
® v
& &
200
100
100
° — ° —— ° ——
10:05 10:10 10:15 10:05 10:10 10:15 10:05 10:10 10:15
ErxPackets WtxPackets ErxDrops mtxDrops ErxPackets mtxPackets ErxDrops WtxDrops ErxPackets mtxPackets ErxDrops WtxDrops
ErxError @txError @rxOverrunError ErxError OtxError @rxOverrunError ErxError OtxError @rxOverrunError
@rxCrcError Ocollisions MrxFrameError @ArxCrcError Ocollisions MrxFrameError @ArxCrcError Ocollisions MrxFrameError

Figure 4.4 — PMM - user interface of traffic

Configure on Maker. The Network Administrator configures (N = 4) Visual Resources
(i.e., Reong = {Beacon, POX, Floodlight, RRDTool}) by providing the corresponding func-

tioning settings. According the equation 3.3, Ceonmaker = Sbeacon T+ Spox + Sfloodlight + Srrd-

Where, Sheacon = Spor = Sfioodlight = source Parameter(login) + sourceParameter(key) +

source Parameter(ip) + source Parameter(port) and .. = source Parameter(refreshT).

77

As the Network Administrator obtains configuration guidelines about Visual Resources from the

Maker via CHS, Gpeqcon = 8 and ,..,q = 2. Using these values, C.on:maker = 26.

Combine on Maker. The Network Administrator uses the Wire Service (i.e., a Maker-
assisted way) to create (L = 4) links: Beacon - OF Monitor, POX - OF Monitor, Floodlight -
OF Monitor, and RRDTool - OF Monitor. Regarding these links, it is to stand out that: (7) the
Network Administrator does not need to adapt the data transferred because the Maker is respon-
sible for hiding the data mapping (it is internally carried out by the Mediator Bus); and (ii) the
Network Administrator obtains guidelines about links creation from the Maker via CHS. There-

fore, (; = 1, goF’ = 2, and coF’ = 1. Using these values in the equation 3.4, (.om-maker = 12.

Launch on Maker. As the Network Administrator requests the execution of PM M from the
Maker by clicking the button Run, (j4u:maker = 1. After launching, in the Traffic GUI of PM M
(see Figure 4.4), the Network Administrator can identify the three Open vSwitches involved in
the NMSit-SDN by analyzing, in an integrated way, RRDTool images and HTML tables.

50 T T T T
Without Maker ===
With Maker

Bl

R

K

T

25

Complexity

20

e

Launch

Select Configure Combine

Task

Figure 4.5 — Complexity on NMSit-SDN

Figure 4.5 depicts the obtained results in the complexity assessment when the Network
Administrator faces the NMSit-SDN with and without using the Mashment Maker. According
these results: (i) the complexity of Select on Maker ((sei.maker = 31) 1S less than without Maker

(Cset:nomaker = 47), attained by the services Drag-and-Drop and CHS, (ii) the complexity of

78

Configure on Maker (Ceon:maker = 26) is less than without Maker (Ceon:nomaker = 42), reached
by CHS, (iii) the complexity of Combine on Maker (C.om:maker = 12) is less than without Maker
(Ceommomaker = 21), achieved by the Wire service and the Mediator Bus; and (iv) the complexity
of Launch on Maker ((qy:maker = 1) 18 less than without Maker ((uu:nomaker = 2), Obtained by

the Designer.

Since in a Mashment Maker-based workspace the complexity of each task carried out to
address the NMSit-SDN is less than the corresponding complexity when the Maker is not used,
Comm = 70 is also less (about 37.5%) than Comaker = 112. This global result and the per task
results demonstrate that, in terms of complexity, it is feasible to use the proposed approach for
addressing nmsits like the raised NMSit-SDN.

4.2.2 Time-consuming: results and analysis

Addressing without Maker. To continue the evaluation, it is proceeded to measure the time-
consuming of addressing the NMSit-SDN when the Network Administrator does not use the
Maker. This time-consuming (i.e., 1},omaker) Was computed by using the time-average of KLM
actions (see Table 3.1). The time-average for each KLM action is (KIERAS, 2001) (TTAN;
WEBER; LUTTEROTH, 2011): (i) k = 0.2s, (ii) p = 1.1s, (iii) b = 0.1s, (iv) h = 0.4s, (v)
dnd = 1.3s; and (vi) wire = 4.1s.

(
(
(@ ;
BEAGCON
~ Core Overview | OSGi
Controls the core Welcome - Switches -
components of Beacon. Thanks for using Beacon! P A
Id - " Port ¢ Connected ¢ Actions
Address
» Device Manager OpenFlow Packet Listeners - Flows
OpenFlow Packet Type ~ Listeners ¢ 00:00:00:00:00:00:03:e9 143.54.12.22 43239 07(07, Tables
» Topolo 1:30:14 oo
pology PACKET_IN topology devicemanager routing switch ==
AR Dpeedy Cevicemanager 00:00:00:00:00:00:03:ea 143.54.12.22 43240 07/07 :’IOI:IJS
Showing 1to 2of2entrles R € T 11:30:14 Pgnses

07/07

00:00:00:00:00:00:03:eb 143.54.12.22 43241 11:30:14

07/07 bz

00:00:00:00:00:00:03:ec 143.54.12.22 43242 11:30:14

www.beaconcontroller.net

Figure 4.6 — Beacon Web Tool

(ERICKSON, 2013)

Without the Maker, the Network Administrator can investigate the NMSit-SDN by using a
monitoring Web-based tool per OpenFlow controller, such as Beacon Web Tool (ERICKSON,
2013), POX Web Tool (POX, 2013), and Floodlight Web Tool (FLOODLIGHT, 2013). As these

79

tools Operate similarly, their time-consuming is TbeaconW@bTool = TpoxWebTool = TfloodlightWebTool~

The Network Administrator retrieves information in HTML tables about the packet traffic
of a switch from the Beacon Web Tool (see Figure 4.6) by the following actions: (i) point the
mouse to Core Components tab, (ii) press and release the mouse to select the Core Components
tab, (iii) point the mouse to the Overview tab that presents a switches list, (iv) press and release
the mouse to select the Overview tab, (v) point the mouse to select a switch, (vi) press and
release the mouse to select a switch, (vii) point the mouse to the Ports link; and (viii) press
and release the mouse to select Ports of switch. Considering the above actions, Theqconw ebTool =
h+4p+8b = 5.6s and the time of separately using the above mentioned tools is T,on rntegrated =
16.8s.

In order to obtain in a unique GUI, the retrieved information by using the aforementioned
Web-based tools, the Network Administrator writes the Situational Script that generates HTML
tables and three RRD images in an integrated way. The time-consuming to develop and execute
such Situational Script is expressed as follows: Tieripr = They + Tiau. Where, The,, = Tigpie +
T rarmages- Considering only the time to type the code that generates the tables and images,
Taev = (h + 290k) + (h 4+ 1200k) = 298.8s. In turn, T}y, = h + p + 2b + 11k = 3.9s.
Therefore, Tscipe = 302.7s and, so, the time-consuming without the Maker is T omaker =
Thonintegrated + Lseripp = 319.5s.

Addressing with Maker. Once calculated 7),,qker, it is computed the time-consuming
of dealing with the NMSit-SDN by developing, launching, and using PM M. Such time-
consuming 18 Tiaker = Taevimaker T Tiaumaker + Tusepmm- According the equation 3.5 and
considering the no conducting of Tune (i = 7 = &k = 0 = 1), Tievmaker = Lset:maker +

Tcon:maker + Tcom:maker‘

Select on Maker. The Network Administrator defines R,s.q by selecting the Visual Re-
sources that form PM M as follows: (i) drag-and-drop Beacon, (ii) drag-and-drop POX, (iii)
drag-and-drop Floodlight, (iv) drag-and-drop RRDTool; and (v) drag-and-drop OF Monitor. In
this way, considering the equation 3.6, Tsei.pmaker = Zi’ dnd = 6.5s.

Configure on Maker. The Network Administrator defines R, by providing the func-
tioning parameters of Beacon, POX, Floodlight, and RRDTool. As the Network Administrator
writes manually these parameters, Theacon = Tpox = Tfioodiight = |4 * (p + h + 2b) + (16 + 8 +
8+5)*x k| =14.2s and 7., = p + h + 2b + 3k = 2.3s. Using these values in the equation 3.7,
T ron:maker = 44.9s.

Combine on Maker. The Network Administrator creates the o of PM M as follows: (i) wire
Beacon - OF Monitor, (ii) wire POX - OF Monitor, (iii) wire Floodlight - OF Monitor; and (iv)
wire RRDTool - OF Monitor. Therefore, according the equation 3.8, T’.o.maker = Z? wire =
16.4s.

80

Launch on Maker. Before requesting the execution of PM M, the Network Administrator
conducts the following actions sequence to save it: (i) point the mouse in the Save button and
click it, (ii) point the mouse in the dialog that asks for the mashment name and click it; and (if)
type the string “PM M”. Once PM M has been saved, the Network Administrator launches it
by clicking the button Run. Thus, Tj4umaker = 3(h + p + 2b) + 3k = 5.7s.

On runtime, PM M allows Network Administrators to retrieve information about the NMSit-
SDN. Using PM M, the Network Administrator carries out the following actions sequence to
obtain general information of switches (see Figure 4.7 (A)) or Links (see Figure 4.7 (B)) in three
different controllers: (i) point the mouse to the Controllers list, (ii) press and release the mouse
to select three distinct controllers, (iii) point the mouse to the button Switches or Links; and
(iv) press and release the mouse to click the button Switches or Links. In addition, to retrieve
information about flows (see Figure 4.7 (C)), tables, ports, or traffic (see Figure 4.4) of three
switches, the Network Administrator: (i) press and release the mouse to select three switches
each one in a different controller, (ii) point the mouse to the button Flows, Tables, Ports, or
Traffic; and (iii) press and release the mouse to click the button Flows, Tables, Ports, or Traffic.

Considering jointly the above sequences, T'se.pmm = I + 3p + 160 = 5.3s.

Controllers Controllers
Sevice P ServicePort Type Listen Address Listen Port Service P ServicePort Type Listen Address Listen Port
1 1ER168210.78 oa1 beacon ay 33 11821021076 toa beacan any 6633
2 meEszaiTs e pax any = 2 192168210175 081 pa any =
3 1216821088 som1 focdight -y =N L 1a2108 21088 som1 laosdight any =
Switches Devices Links Switches Devices u
Switches Links
" 1P Addrsss Port Eomnected Controlier 1P Controter Port EontrelluTyps. Soures I Sourca Pt Destination k Destination Port Cantralor 1P Controliss Port ComtrolkeTyps
COUDTONOIN000D 1921821000 43781 201B0NET 1BITIT 192 IEBZI0TE 8633 beacon D0/0000:00:00:00:0009 1 00:D0:00:00,00.00:00:0 a 192.168.210.75 6633 Beacon
0000D00000000009 192 168.56.101 43495 201301-27 15654 12 168.210.175 6633 pe 00/00:00.00:00:00.00.03 2 0:00:00:00:00.00:00:08 3 182.188.2710.75 6833 e
} OGOOOTONO00:0000 192168210138 £3459 20130137 18T 16296821080 = foadight 00000 D0-00: 00000 1 D0-D00-00 000 000 3 102 168.210.178 6633 pa
4 DGOOOUDN0KO00008 192 168210.90 42784 20130127 1SSTET 18216821076 o33 bescon 00:00:00-001:00:00,0108 2 0000006000001 00:0 3 2.168,210.175 L o
DOOOOD000000:000a 152 18005101 43405 20130127 130654 15218210173 6633 pox 0000000 D0-00-00-001 08 00100:00:00:00:00:00:08] 192.168.210.88) flootight
© 00.OO0000:00:00000 18218210138 43161 20130127 15T 11 1216821088 6633 r— DO/C0I00 00:00:00:0009 1 000:00:00,00.00:00:0 3 182.168.210. 89 6833 faadight
7 OGOOODONOKOC0000 192168210.00 £I7RS 20130037 1BSTIT A62.96B.210.76 6633 bascon 00:00:00:00:00:00:00:0a 1 00:D0:00:00:00:00:0006 3 192.168.210.76 e baazon
£ D000 000000000 1216850001 4SBT 20130127 155654 182 168.210.17 6633 pos 00:00:00-00:00:00.0108 3 00000060000 00:0% 1 52.168,210.76 6633 beacon
00:000000:00:00:00.00 192.168.210.108 43157 20130027 135711 162.168.210.09 63 foodight 00:00:00:00:00:00:00:0a z 00000000000, 00:0] 192.168.210.75 225 Eeacon
10 DROOGI 0006000006 192 183 210.30 42T 20130127 1S5TIT 182 18821076 = basen 10 DO/00000:00:00:0008 3 000:00:00,00.00:00:08 1 182.168.210.175 = e
- (&) - (B)
Switches
1a IPAddress Pot Connected ControlariP Controlie Port ControliType
9 00:00:00000000:00:01 15216021000 &27BZ 20130127 1XI72T 182 16A.Z10.76 33 beacon
0 00:00:0000.00:00:0001 192.168.56.101 43501 20130127 155654 192168200175 &3 Do
2 O0:00:000000:00:00:0 152 164210438 43135 20130027 1547-11 162.188.210.00 o33 Rocclign
«
Flows Tables parts Traffi
Flows
in DataLayar Datalayer Datalayer Network Nebwork Metwork Transport Tramsport o - Time e Hard . out o
Part Source Destination Type Source Destination Protocel Source Destinabion o Bytes 5 TimeDwt TimeOut Kot Ports.
2 000000OCO008 CGOCODODOGDT 2M8 G000 10004 4 o 0 o 04 3 Tmms o o o 3 ONDIO000ON0N00TE
2 000000000000 COCODONOODT 20M 0.008 10001 2 o o a 2 nssez o ° o 3 00.00:00:0000.00:0000
2 000OODOOOO08 CGOCOTONONDT M 0008 10001 0 0 0) TosEs o ° o 3 ODNOODODION0OTH
1 68534 ODOUOOOOONGN COOOIONOODS S84 10008 10008 2 o o ' 2 wire o o o 3 000000000000 0000
6953 00000O0OGO008 CGOGODODOO0S M8 1000 10005 o o ' 04 3 emme o o o 3 OUDEO00CON0000TE
© 63934 DIOO0OOOO000 OKOVCO0OGES 0S4 10008 10005 o o 1 P wes o ° o 3 00.00:00:0000.00:0000
2 00OCODOOO008 CGOCOTONONDY O 0000 0000 ° 0 o Zaerz | om 6 ewmIn 0 0 sooTiGEsaTiDNGE 00:00:00:00:00.00 0000
2 OODIOHOOO00N DO-OODO0D0LS O 0000 6000 o o o ez 3w 4 s2ms o 0 cOMBaSATANEY 3 DOOG00:0000000000
1 0O0000OCO0OT KECODONONCE O 0000 0000 o o o x®oaT2 3 4 e:e o 0 OTINISTAONGZ 3 OODO00OCONO0COTE
63534 000000000005 OG0OOTOI0006 M 10005 10008 2 o o 1 P seas o ° o 2 00.00:00:0000.00:00:00
. (©)

Figure 4.7 — PMM - user interfaces of switches, links, and flows

Taking into account the values of Tycymakers Tiaumakers Ad Tysepmm, it is expected that the
Network Admistrator spends T;,,qker = 78.85 to deal with the NMSit-SDN by using the proposed
approach. Once computed 75,4k, it is proceeded to measure 1,,qker Ezperimental DY conducting

a test with end-users. In such test participated 30 Network Administrators whose age ranged

81

from 22 to 35. Although all participants frequently had used Web-based tools, none of them had
used a mashup tool before. In this way, each participant was trained to use the Maker during
45 minutes. About this test, it is also important to mention that the time-consuming average in

seconds was took with a 95% confidence level.

Figure 4.8 depicts the obtained results in the time-consuming assessment when the Network
Administrator addresses the NMSit-SDN with and without the Maker. According these results:
(i) the time-consuming of Develop on Maker (Tycv:maker = 67.85 — Tgepmaker Ezperimental =
71.1s) is less than when the Maker is not used (7 e nomarer = 298.85), attained by the services
Drag-and-Drop and Wire, (ii) because every mashment must be saved in the Maker before being
executed, the time-consuming of Launch on Maker (1}qu:maker = 9.75 — Tiqu:maker Ezperimental =
6.6s) 1s greater than without Maker (1}, nomaker = 3.95); and (iii) the implementation of the
Maker has a good behavior in front of KLM-based computations, it is because the evaluation
with Network Administrators (i.e., Experimental with Maker) corroborated the time-consuming
computed with KLM (i.e., With Maker).

360 T T

Without Maker ===
With Maker
Experimental With Maker &xxxxx

1 N ONNNGN .

240 | B -

L] -

Time-consuming (s)

L .

L RS oo [RS, .

0 e I SR
Develop Launch Address
Task

Figure 4.8 — Time-consuming on NMSit-SDN

Considering the above results, the time-consuming to address the NMSit-SDN with the
Maker (Trnaker = 78.85 — Thaker Baperimentar = 8D.0s) is less (about 75.3% - 73.4%) than
without the Maker (7},omaker = 319.55). This global result and the per task results demonstrate

82

that, in terms of time-consuming, it is feasible to use the proposed approach for handling nmsits
like the raised NMSit-SDN.

4.2.3 Time-response: results and analysis

PMM and Beacon Web Tool. To continue the evaluation, it is proceeded to measure the
time-response of PM M and Beacon Web Tool when conducting SwitchesList, LinksList, and
FlowsList. In this and the next evaluations involving the average time-response in milliseconds

(ms), 30 measurements were took with a 95% confidence level.

200 T T T T T
Beacon Web Tool on Linear ===
Beacon Web Tool on Tree =1
PMM on Linear
PMM on Tree XxXxxxx
£ T R -
%%
T b5
150 | B
0598
059
050
[$0088
o% [96%
%S %%
b BR
& % B
125 [% 0% (%%
%%
—_ 35 [So%9 9598
% 55 ks 5
£ %0393 [ote%e (292
9% %% %%
- 4329 008 2o}
o o308 RS P35
@ 5K RXS [S0098
13 93059 RS 9598
S {00 | 5089 %% %0508
o (%% RS 020!
a PR K [ote!
8 K3 3
9998 okl
5 K & K3
£ B o0 BR
S 55 et K
%05 0362 B
KX 039 95959
B 5 &3 K
9359 %6362 00,
[$%%9 008 2o}
490 R RS
(4339 %0002 B
B 0008 [20%!
0229 [S0%e! 20062
%% RS B
50 [R %020 0%
BRS 0008 2o}
k5 5 2
£ g (S [200%
%303 o305 KX [ofse
[So%8 [ofels 36568 o308
X [ods%e XX o555
[S9%3 03059 RS BR
196% 2%% 1% 15%%
25 [fodose RS & XS
RS KRS 0598
[0%% o008 0%
[959% KX 0%t
[$%%s 0%} ok
93059 63! PSS
RS 20088 RS
2%% £X 9%
RS [035% 4359
0% 0295 [$%%9
0 o553 RS [S%88

60

Switches

Figure 4.9 — Time-response on SwitchesList

In the time-response evaluation of the operation SwitchesList, the number of Open vSwitches
was varied from 20 to 100 in each OpenFlow-based network. Thus, the total number of switches
in each evaluation was 60, 120, 180, 240, and 300. Figure 4.9 presents the corresponding re-
sults. Considering that the time-response (7 in ms) of Web systems can be ranked as optimal
(r <100), good (100 < r < 1000), admissible (1000 < r < 10000), and deficient (r > 10000)
(JOINES; WILLENBORG; HYGH, 2002), the time-response results reveal: (i) SwitchesList
of PM M has a good r that grows negligibly (less than 1 ms per switch) when the number of

switches is increased in linear and tree topologies; and (ii) r is ranked as optimal for Beacon

83

Web Tool and as good for PM M:; this result was expected because Beacon Web Tool works
with one type of controller and PM M with three different types of controller.

In the time-response evaluation of the operation LinksList, the number of links was varied
from 50 to 250 in each OpenFlow-based network. Therefore, the total number of links in each
evaluation was 150, 300, 450, 600, and 750. Figure 4.10 depicts the corresponding results that
reveal: (i) LinksList of PM M has a good r that grows negligibly (less than 1 ms per link) when
the number of links is increased in linear and tree topologies; and (ii) 7 is ranked as optimal for
Beacon Web Tool and as good for P M M ; again, this result was expected because Beacon Web

Tool works with one type of controller and PM M with three different types.

175 T T T T T -
Beacon Web Tool on Linear ===
Beacon Web Tool on Tree ==
PMM on Linear
PMM on Tree XXXXXX
1 OO OO OS OO W OO .
XS
90 %
PR 5
02! RS
P K RS
[95% L 9%
125 | o S S N o500 I .
[90.'e? 0302 PRI [96%
5 5
[050% o0 0008 [2%0%
B 20592
RS BRS 2652 RS
[4%6% [039% %% o358
9o% RIS R 000
= K 5
€ 1 3 5 5
e A e JERNY MERS IXRN R -
= 10 :::’: [939% X5 059
@ B [039% 93039
7] 9393 208 [0%6% RS
= R % XS PSR
203! [$9%08 [Se%!
Q okl 0392 [0t B35 99099
g K3 (s
X PO 13%%
2 K K
%
g 75 5 5o 50 2 B 55 -
B b %% k 9595
= BRX 90393 6%6% XS
(=] 0% 00! B2 0%
R S 0% RS RS
ROKS RS [Se%s o858 p333S
RIS PSS 908 B $0388
B 30593 [939% 086! (9363
5 (2 b B3 5
9363 RS o208 B %%
X 9% RS R RS
0% (8 RS 30 B
o203 RS [ofs%e R
B0 oo e (50 I B s e I
9992 [9%¢
s 5
RS IR R %% R
RSKL 0% [$%0% 95904 R
RS R [Seds 03939 009!
oo 3003 o503 %508 Podode
ot} KX 053 %% B
6% [96% o%%% 0% KL
Lo XA T [96% R 0% % IUUN A -
25 599% (5 RS (5 RS
PR [%6% PR 6% BRR
B %% 90088 50393
BXX BR 59398
9308 [96%° 9308
505, 4365 RRX
$9%9; 03039 395
B 0% R
PR 0% 0%e%
0 l| o [o0ss Soves
150 300 450 600 750

Links

Figure 4.10 — Time-response on LinksList

In the time-response evaluation of the operation FlowsList, the number of flows was varied
from 2000 to 10000. Figure 4.11 presents the corresponding results that reveal: (i) FlowsList of
PM M has an admissible r that grows less than 1 ms per flow in tested topologies; and (ii) r
of PM M and Beacon Web Tool is located at the same ranking for FlowsList. As in a network
the number of flows may be large, in practice, PM M is constrained to retrieve 1000 flows per
block, getting so a good r. Such constraint is not relevant because the use of a unique GUI to
display all flows is not a good usability practice. Furthermore, using a mechanism of pagination,

flows can be suitably retrieved and displayed for Network Administrators.

84

Although PM M uses several software modules (e.g., NMRS like BeaconService and Vi-
sual Resources like OF Monitor) to integrate and present monitoring information from different
controllers, its behavior on time-response is good for the most of operations and regardless
of controllers, topologies, and number of switches, links, and flows. Such behavior is be-
cause the Mediator Bus hides the heterogeneity of controllers and the centralized-nature of
controllers handles the number of network elements. In sum up, the time-response evaluation
results demonstrate that, in terms of such metric, it is feasible to use the proposed approach for
dealing with nmsits like the raised NMSit-SDN.

5400 T T T T T -
Beacon Web Tool on Linear ===
Beacon Web Tool on Tree =1
PMM on Linear s
PMM on Tree RXXXXX]
[0z
[
B500 [008
o029
%%
o029
RS
R
o029
%%
£ ¢
B B
590 PO
[96%2 [95%
B e B3
[056%9 939
s P
RS (8
KX 20008
—_ 908 0008
» [000% 202!
£ RS PSS
= [[$99% [%6%!
15%% [99% 199%
@ 205! 0% 908
b 039
1] B [o505¢ [o29%
s (8 (58 0%
e R BN [96%¢
2 2700 (s RS g5
[":‘ 505 [030%
¥ BXX KX B
> B o%6% 0%} 0303
£ PR KX 30388
= 92059 RS %6362
= B B 5% B
[939%9 ot oo KX
BXX ot PR o202
0259 RS o059 %%
2020 RS Q020! PRI
= o0, [0%% XS K
1800 [[€500s SERREREEEEN BXS £ (%%
[ods%s [S9%3 [og5¢ [oSo%s
0% 50 £ B
o Yo% #3020 KX 0593
202! 2023 R 9508 %%
RS okt o229 RS 0509
BRI Q0% R BRX. RS
200! [20%¢ %% 0%} %%
05089 03039 39598 03009 0393
03! 0093 %% 952 o029
XS IS ROKS %6802 %%
2000} IS R KRS 0259
0% Sotet PR RS [039%
B Sosos RN [$%e%0 KA 035
[20%! [20%? R [26%! %%
R, 203! R 0%} [o50%¢
%% 3622 (%% R 03839
Q2! [Se%! RKL 96569 [626%
BRI Q0% R 94969 620%
RS 90% RS 060 0262
(o308 o558 [S9%3 [od05¢ [o0%s
[930% [ofo%s %0393 [o30%¢ 3008
o005 o305 005 0o
%526} B 08! %
o262 [956% 3059, 05
505% 305 o008 oo
KX S0 5594 e
Flows

Figure 4.11 — Time-reponse on FlowsList

4.2.4 Traffic: results and analysis

PMM and Beacon Web Tool. To continue the evaluation, it is proceeded to measure the
network traffic generated by PM M and Beacon Web Tool when carrying out SwitchesList,
LinksList, and FlowsList. In this and the following evaluations, the traffic is expressed in Bytes
or K Bytes.

In the traffic evaluation of the operation SwitchesList, the number of Open vSwitches was

varied from 20 to 100 in each OpenFlow-based network. Thus, the total number of switches in

85

each evaluation was 60, 120, 180, 240, and 300. Figure 4.12 presents the corresponding results
in which there is not discrimination by topology because, the traffic generated by SwitchesList
of PM M and Beacon Web Tool is independent of topologies (linear and tree) tested. In addi-
tion, these results reveal: (i) the traffic generated by SwitchesList of PM M grows negligibly
(approx 112 Bytes per switch) when the number of switches is increased, (if) in relation to this
operation, PM M generates more traffic than Beacon Web Tool; and (iii) the additional traffic
generated by PM M is always less than 10%. Considering that Beacon Web Tool works with
just one type of controller and PM M integrates data from three different types, the above facts
corroborate that SwitchesList of PN M has a good behavior on network traffic.

40 T T T T

T
Beacon Web Tool ===
PMM oo

BB .

B [| .

L i, - s

20 [R S - s

Traffic (KBytes)

60 120 180 240 300
Switches

Figure 4.12 — Traffic on SwitchesList

In the traffic evaluation of the operation LinksList, the number of links was varied from 50 to
250 in each OpenFlow-based network. Therefore, the total number of links in each evaluation
was 150, 300, 450, 600, and 750. Figure 4.13 depicts the corresponding results in which there
is not discrimination by topology because the traffic generated by LinksList of PM M and
Beacon Web Tool 1s independent of topologies tested. Furthermore, these results reveal: (i) the
traffic generated by LinksList of PM M grows negligibly (approx 129 Bytes per link) when
the number of links is increased, (ii) regarding this operation, PM M generates more traffic
than Beacon Web Tool; and (iii) the additional traffic generated by PM M is always less than
5%. Since the Beacon Web Tool works with just one type of controller and PM M integrates

86

data from three different types, the above facts corroborate that LinksList of PM M has a good

behavior on network traffic.

105 T T T T T
Beacon Web Tool ===
PMM s

B | . -

] oo - .

B0 L | . -

Traffic (KBytes)

L | o | -

BO [S | R o . g

15 [| S | R o . g

150 300 450 600 750
Links

Figure 4.13 — Traffic on LinksList

In the traffic evaluation of the operation FlowsList, the number of flows was varied from
2000 to 10000. Figure 4.14 presents the corresponding results in which there is not discrimina-
tion by topology because the traffic generated by FlowsList of PM M and Beacon Web Tool is
independent of topologies tested. Additionally, these results reveal: (i) the traffic generated by
FlowsList of PM M grows negligibly (approx 328 Bytes per flow) when the number of flows is
increased, (ii) FlowsList of PM M generates more traffic than the corresponding operation of
Beacon Web Tool; and (iii) the additional traffic generated by PM M is always less than 10%.
As the Beacon Web Tool works with one type of controller and PM M integrates data from
three different types, the above facts corroborate that FlowsList of P M M has a good behavior

on network traffic.

Regarding the results obtained in the network traffic evaluation of the operations Switch-
esList, LinksList, and FlowsList of PM M, it is important to mention: (i) JSON was used to
decrease the size of information exchanged between the layers (Adaptation, Composition and
Presentation) of PM M because JSON is less verbose than XML (PAUTASSO; ZIMMER-
MANN; LEYMANN, 2008); and (ii) the size of Visual Resources is too small to impact the
quantity of traffic generated by PM M.

87

4200 T T T T T
Beacon Web Tool ===
PMM o

BBOD [R .

1y DN | e—— .

D0 [T DU | [N | e .

Traffic (KBytes)

TAO0 |- e B R R s

(/)] S E— o R R .

2000 4000 6000 8000 10000
Flows

Figure 4.14 — Traffic on FlowsList

Although P M M integrates monitoring information from different controllers by using sev-
eral additional software modules (e.g., Mediator Bus), the traffic extra generated by its opera-
tions is always less than 10% (worst operation - FlowsList). Summarizing, the traffic evaluation
results corroborate that, in terms of such metric, it is feasible to use the proposed approach for
coping with nmsits like the raised NMSit-SDN.

4.3 Case study on virtual nodes

The case study on virtual nodes is formed by a test environment (see Figure 4.15), a nm-
sit called NMSit-VN, and experiments conducted to evaluate the addressing of such a nmsit
with (i.e., Virtual Node Monitoring Mashment - VN M M) and without (i.e., Monitoring Script)
the mashment-based approach. Regarding this case study, it is also important to mention that
four metrics are measured in the experiments: complexity, time-consuming, time-response, and
traffic.

Test environment. Every Xen, VirtualBox, and Repository of Xen Guests was executed on a
machine with 2.33 Ghz core 2 duo processor, 2 GBytes RAM, and 160 GBytes hard disk. The

Mashment System Server, Mashment Maker, and MashmentDB were deployed on a machine

88

with Linux Ubuntu O.S., 2.53 GHz Intel Core i5 processor, 4 GBytes RAM, and 250 GBytes
hard disk. Virtual machines of Open vSwitch and Linux Ubuntu were deployed on Xen and
VirtualBox. The virtualized Floodlight and the handled virtual Open vSwitches were deployed
on a server with 8 GBytes RAM and 3.4 GHz core i7 processor. The user interfaces of the
Mashment Maker, VN M M, and Monitoring Script were executed on a Client with 2 GBytes
RAM and 2.53 GHz core 2 duo processor.

- s =

Linux Ubuntu VM/
VirtualBox 4.1 NS MashmentDB
Mashment Maker and (MySQL 5.1)
(—(Mashment System Server
L (Tomcat 7.0)
B |
Xen Guests (IP Network O)

Repository 5.6 |

g%
<> Floodligth 0.9
E NirtualBox4.1
Open vSwitch VM / 3

XenServer 5.6 = - .
Open vSwitch VM/ Client Linux Ubuntu VM/ Open vSwitches 1.4
VirtualBox 4.1 XenServer 5.6 /Mininet

Figure 4.15 — Test environment on virtual nodes

NMSit-VN. Let’s suppose the following nmsit: In the virtual infrastructure of the test envi-
ronment, the Network Administrator needs to investigate/identify: (7) the Host Computer Sys-
tems and guests suffering unexpected overload in processor, memory, and/or network; and (ii)
the Open vSwitches that are causing sudden performance degradation in an OpenFlow-based
network handled by Floodlight. Therefore, he/she requires a situational solution that presents,
in an integrated, visual, and intelligible way, information about Xen, VirtualBox, guests, and
Open vSwitches (including links, flows, ports, and traffic). In order to get such a solution and
cope with this nmsit, the Network Administrator tests two options: (i) without the proposed ap-
proach, creates, launches, and uses the Monitoring Script; and (ii) with the proposed approach,
develops, launches, and uses V' N M M by the Mashment Maker. The following sections present

the results and analysis of experiments conducted to evaluate such options.

4.3.1 Complexity: results and analysis

Addressing without Maker. To start the evaluation, it is proceeded to measure the complex-
ity of addressing the NMSit-VN when the Network Administrator follows the proposed process
to deal with nmsits but does not use the Maker. Without the Maker, the Network Administra-

tor develops and executes the Monitoring Script that retrieves information about: (i) the use of

89

memory, processor, and network from guests (virtual machines and/or virtual switches) hosted
by XenServer and VirtualBox; and (i7) the network traffic, ports, and flows from switches han-
dled by Floodlight. This Monitoring Script presents the retrieved information in a user interface

formed by HTML tables and chart images. According the equation 3.1 and considering the no

COHdUCtlng of Tune’ Cnomaker = Csel:nomak’er + Ccon:nomaker + Ccom:nomaker + glau:nomak:er-

Select without Maker. The Network Administrator conducts the selection of controller tool
(i.e., Floodlight Tool), virtualization tool (i.e., XenSDK and VirtualBox SDK), visualization
tool (i.e., RRDTool), and specific commands of such tools that allow to monitor heterogeneous
virtual nodes. This selection is complex because it is not tool-assisted and guidelines about
advanced commands of controller, virtualization, and visualization tools are scattered on the
Internet. In this way, ¢,, = 2, gf' = 3, and ¢/’ = 1. Using these values in the equation 3.2
and considering nAvailable Resources = 15 (it grows up from 14 to 15 due to the creation of
PM M carried out in the previous case study), Csernomaker = 90.

Configure without Maker. The Network Administrator carries out the configuration of se-
lected tools by providing their corresponding functioning parameters. According the equa-
tion 3.3, Ceon:nomaker = Scon:wen + Scon:vbox T Scon: floodlight + Scon:rra- Since the Network Adminis-
trator obtains general information about configuration of virtualization and controller tools from
documentation easy to find on the Internet and defines specific statistic commands after addi-
tional search, source Parameter(statisticCommand) = 5 and sourceParameter(login) =
source Parameter(key) = sourceParameter(ip) = sourceParameter(port) = 2. Fur-
thermore, since the Network Administrator extrapolates the configuration information of RRD-

Tool from documentation simple to find on the Internet, ¢.,,..r¢ = 3. Using these values,

Ccan:nomaker = 42.

Combine without Maker. The Network Administrator manually creates one logical link
among the tools of: (7) virtualization and visualization; and (i7) controller and visualization. This
creation is complex because, first, the Network Administrator is responsible for adapting the
retrieved data (tools involved in the NMSit-VN use different data types, for instance, Floodlight
Tool and XenSDK use data types based on JSON and Java, respectively). Second, the Network
Administrator neither has explicit nor centralized guidelines to develop these links. Therefore,

[=4,¢ =3,goF = 3, and coF’ = 1. Using these values in the equation 3.4, Ccom:nomaker = 21.

Launch without Maker. As the Network Administrator requests the execution of the Moni-
toring Script by typing a specific command in a Linux Command Line, (jqu-nomaker = 2. After
launching the Monitoring Script, the Network Administrator is able to investigate the NMSit-
SDN by analyzing RRD images and HTML tables that present information about the elements

forming the virtual nodes.

Addressing with Maker. Once computed the complexity of facing the NMSit-VN without

90

the Maker, it is proceeded to evaluate the complexity of developing and launching VN M M.

In a general way, in the Maker, the Network Administrator builds and requests the execution of
VNMM (see Figure 4.16) by using the services Drag-and-Drop, Wire, CHS, and Launching.

According the equation 3.1 and considering the no conducting of Tune, Cynmm = Cselzmaker +

Ccon:maker + Ccom:maker + Clau:maker-

RRDTool

Floodlight

IPAddr [143.54.12.35
ot 5633

Floodlight — OF Monitor OF Monitor

e
! = Controller 1

RRDTool - OF Monitor [Add
iTraffic Graph Tool

| I wired]

| OF Monitor - Integrator

Xen Server
IPAddr [143.54.12.23
Port | 8080
Virtual Box Server1 Login foot Integrator

IPAddr [143.54.12.45

Xen Server — Monitoring Panel —
TN

=) Serverl Add

Port | 18083

IPAddr [143.54.12.38

Server2 Add

7

Monitoring Panel

P

Monitoring Panel - Integrator

Port | 18083
Login foot Virtual Box Server — Monitoring Panel
Key freeess Server3 Add
Figure 4.16 — VNMM - development and launch
Name Type IP Address
1linx xen 143541254 NodelList
2 Linux vbox 143541243
3 Linux vbox 1435412204
4 Linux floodlight 14354.12.44 Control domain on host: | NodeStructure
localhost Jocaldomain
r T T T T T 1
XenServer SDK
Ubuntu-il J Ubuntuvi J DebianRevir_l I 6.0.0-50762p Ubuntu-v J Ubuntu-vil J DebianRevir-Il J UbuntuV] Ubuntu- J DebianRevir-lll Ubuntu-ll I
import
Feature Value
Uuid 7a42403-1428-2c89-6c13-caS28c145e4b
Name DebianRevir-1
State Running
1P Address 14354.12.107 GuestFeatures
Install Time Mon Feb 13 15:18:48 BRST 2012
Last Update ‘Wed Dec 31 21:00:00 BRT 1969
Start Time Thu Feb 23 16:08:24 BRST 2012
#CPUs 1
Static Memory - Mbytes (Max/Min) 256/128
Dynamic Memory - Mbytes (Max/Min) 256/256
VM CPU Usage VM Memory Behaviour WIF Usage
9.6 W cpo 00 W ol 1.000 Vi1
I Baloon Wvi_1x
®3 . R PP
g § GuestStats
g %0 & 0 g
b 3 g
87 150 E o

AR R T

Mins

° 600
AR R AR RN I T
Mins Mins

» o

Figure 4.17 — VNMM - user interface of guest

Select on Maker. The Network Administrator uses the Drag-and-Drop service to select
the Visual Resources (M = 8) that form V NM M. Thus, Rys.q = {Xen Server, Virtual Box
Serverl, Virtual Box Server2, Monitoring Panel, Floodlight, RRDTool, OF Monitor, Integra-
tor}. As the definition of R, is assisted by CHS, ¢,,, = 1, gF' = 2, and ¢F' = 1. Furthermore,

91

after creating PM M, the nAvailable Resources = 15. Using these values in the equation 3.2,
Csel:maker = 36.

Configure on Maker. The Network Administrator defines R,y = {Xen Server, Virtual Box
Serverl, Virtual Box Server2, Floodlight, RRDTool} by providing the corresponding operation
settings. In this way, according the equation 3.3, Ceon:maker = 2Svboz + Swen T Sficodlight + Srrd-
Where, Supor = Swen = Sfioodiight = sourceParameter(login) + sourceParameter(key) +
source Parameter(ip) + source Parameter(port) and ¢,.q = sourceParameter(refreshT).
As the Network Administrator obtains configuration guidelines about R, ¢ from CHS, G p0p =

8 and ¢, = 2. Using these values, Ccon:maker = 34.

Combine on Maker. The Network Administrator uses the Wire Service to create (L = 7)
links: Xen Server - Monitoring Panel, (2) Virtual Box Server - Monitoring Panel, Floodlight
- OF Monitor, RRDTool - OF Monitor, OF Monitor - Integrator; and Monitoring Panel - In-
tegrator. As the Network Administrator does not worry about the data mapping (because the
Maker carries it out) and obtains guidelines about links creation from CHS, (; = 1, goF' = 2,

and coF' = 1. Using these values in the equation 3.4, Ceom-maker = 21.

55 T T T T
Without Maker ===
With Maker
1 T e R -
Q5 el -
e 1 e T .
35 | I -
B30 [i I -
3
o
£
S 2B | - R R .
20 [[I .
15 e L Y ol kI -
10 f ol]| I .
5 T R O O -
o]
Select Configure Combine Launch

Task

Figure 4.18 — Complexity on NMSit-VN

Launch on Maker. As the Network Administrator requests the execution of VN M M from
the Maker by clicking the button Run, (j4y.maker = 1. After launching, in the GUI of VN M M,

92

the Network Administrator can investigate the elements involved (Figure 4.17 presents details
about guests in a virtual node) in the NMSiz-VN by analyzing, in an integrated way, chart images
and HTML tables.

Figure 4.18 depicts the obtained results in the complexity assessment when the Network
Administrator faces the NMSit-VN with and without the Mashment Maker. According these
results: (i) Csei:maker = 36 1s less than (ser.nomaker = D0, attained by the services Drag-and-Drop
and CHS, (i) Ceon:maker = 34 18 less than Ceon-nomaker = 42, reached by CHS, (ii7) Ceom:maker =
21 is equal than Ceom:nomaker = 21, achieved by the Wire service and the Mediator Bus; and (iv)

Clau:maker = 11is less than Clau:nomaker = 2, obtained by the DeSignel‘-

Since in a Mashment Maker-based workspace the complexity of each task carried out to
address the NMSit-VN is less (or equal in Combine) than the corresponding complexity when
the Maker is not used, Cynmm = 92 is also less (about 20%) than C,omarer = 115. This global
result and the per task results demonstrate that, in terms of complexity, it is feasible to use the

proposed approach for addressing nmsits like the raised NMSit-VN.

4.3.2 Time-consuming: results and analysis

Addressing without Maker. To continue the evaluation, it is proceeded to measure the
time-consuming of addressing the NMSit-VN when the Network Administrator does not use the
Maker. This time-consuming was also computed by using the time-average of KLM actions
(see Table 3.1).

Without the Maker, the Network Administrator can investigate, in a non integrated way,
the NMSit-VN by using oVirt (OVIRT, 2014) and the Floodlight Web Tool (FLOODLIGHT,
2013). Using oVirt (see Figure 4.19), the Network Administrator obtains information about
the memory, processor, and network interfaces of a guest by conducting the following actions:
(i) point the mouse to the drop down list System, (ii) press and release the mouse to select
the System list, (iif) point the mouse to the drop down list Data Centers, (iv) press and release
the mouse to select the Data Centers list, (v) point the mouse to the drop down list Local Data
Center, (vi) press and release the mouse to select the Local Data Center list, (vii) point the mouse
to the drop down list Clusters, (viii) press and release the mouse to select the Clusters list, (ix)
point the mouse to the drop down list Local Cluster, (x) press and release the mouse to select the
Local Cluster list, (xi) point the mouse to the drop down list Hosts, (xii) press and release the
mouse to select the Hosts list, (xiii) point the mouse to a particular Host, (xiv) press and release
the mouse to select such particular Host, (xv) point the mouse to a specific guest, (xvi) press and
release the mouse to select such specific guest and, so, to obtain general information about it,

(xvii) point the mouse to the tab Network Interfaces; and (xviii) press and release the mouse to

93

select the Network Interfaces tab. Considering the above actions 7}, = h+9p+ 180 = 12.1s.
Carrying out a similar analysis, the time-consuming to retrieve information in HTML tables
about the packet traffic from the Floodlight Web Tool is T'fjo0d1ightw ebToor = h+4p+8b = 5.6s.

In this way, Thonrntegrated = 17.75.

In order to obtain in an integrated GUI, the retrieved information by using the aforemen-
tioned Web-based tools, the Network Administrator writes the Monitoring Script that generates
HTML tables and RRD images. The time-consuming to develop and execute such Monitoring

Script is expressed as follows: T\ script = Taeo + Tiau. Where, Tye, = Tiapie + Tiraf fictmages +

Tyuestimages- Considering only the time to type the code that generates the tables and images,
Taev = (h+290k)+(h+1200k)+(h+1200k) = 419.2s. In turn, T},, = h+p+2b+11k = 3.9s.
Therefore, Tmscript =423.1 and Tnomaker — L nonIntegrated + Tmscript = 440.8s.

OV“’t Open Virtualization Manager: Logged in user: admin | Configure | Guide | About | Sign Out
Search: [Vms: cluster = local_cluster x J5eN o |
Virtual Machines
System c New VM Edit) v @ Migrate A > v 1.2
Expand Al Collapse All >
Name Host IP Address FQDN Cluster Data Center
v @ System .
Sy 4 =] jocal_vm local_host local_cluster local_datace!
v Data Centers
8 P
» [B Default
v (8 local_datacenter
» (3 Storage A
» <. Networks
Templates I = | B
v OCIuslers . o . o i
General Network Interfaces Disks Snapshots | Applications | Affinity Groups | Permissions Sessio
v () local_cluster
N Statistics Guest Agent Data
v () Hosts New S Ed <
0 local_host . RX (Mbps) TX (Mbps) Drops (pits)
< <
wal N a 1 1 0
» &JdExtenal Providers
Bookmarks
Tags =)

Last Message: 2014-Jul-30, 09:51 User engine failed to log in. LS S Events |{&

Figure 4.19 — oVirt Web Tool

(OVIRT, 2014)

Addressing with Maker. Once calculated 7,4k, it 1S computed the time-consuming
of dealing with the NMSit-VN by developing, launching, and using VNM M. Such time-
consuming i8 Trnaker = Taev:maker + Liawmaker + Tuse:onmm. According the equation 3.5 and

COHSidering the no COHdUCting of Tune, Tdev:maker = Tsel:maker + Tcon:maker + Tcom:makeT-

Select on Maker. The Network Administrator defines R,..q by selecting the Visual Re-
sources that form VNMM: (i) drag-and-drop Xen Server, (ii) drag-and-drop Virtual Box
Server, (iii) drag-and-drop Virtual Box Server, (iv) drag-and-drop Monitoring Panel, (v) drag-
and-drop Floodlight, (vi) drag-and-drop RRDTool, (vii) drag-and-drop OF Monitor; and (viii)

94

drag-and-drop Integrator. In this way, considering the equation 3.6, T maker = Z? dnd =
10.4s.

Configure on Maker. The Network Administrator creates ., by providing the functioning
parameters of (2) Virtual Box Server, Xen Server, Floodlight, and RRDTool. As the Network
Administrator writes manually these parameters, Tybor = Tzen = Tfioodiight = |4% (p+h+2b) +
(16 + 8+ 8+ 5) x k] = 14.2s and 7,,¢ = p + h + 2b + 3k = 2.3s. Using these values in the
equation 3.7, Teon.maker = 99.1s.

Combine on Maker. The Network Administrator defines the 6 of V. NM M as follows: (i)
wire Virtual Box Serverl - Monitoring Panel, (ii) wire Virtual Box Server2 - Monitoring Panel,
(iii) wire Xen Server - Monitoring Panel, (iv) wire Floodlight - OF Monitor, (v) wire RRDTool
- OF Monitor, (vi) wire OF Monitor - Integrator; and (vii) wire Monitoring Panel - Integrator.

Therefore, according the equation 3.8, T¢om:maker = ZI wire = 28.7s.

Launch on Maker. Before requesting the execution of VN M M, the Network Administrator
conducts the following actions sequence to save it: (i) point the mouse in the Save button and
click it, (ii) point the mouse in the dialog that asks for the mashment name and click it; and
(iii) type the string “VNMM?”. Once V NM M has been saved, the Network Administrator
launches it by clicking the button Run. Thus, T}4u.maker = 3(h + p + 2b) + 4k = 5.9s.

On runtime, VNMM allows Network Administrators to retrieve information about the
NMSit-VN. The Network Administrator conducts in V NM M the following actions sequence
to obtain detailed information about a guest (see Figure 4.17): (i) point the mouse to the Nodes
list, (ii) press and release the mouse to select a node, (iii) point the mouse to a guest of the Node
structure, (iv) press and release the mouse to retrieve general information about such guest, (v)
point the mouse to the identifier of the guest selected; and (vi) press and release the mouse
to obtain details about the memory, processor, and network of the selected guest. According
this sequence, Tyyest:onmm = h + 3p + 6b = 4.3s. Carrying out a similar analysis, the time-
consuming to obtain traffic information about a switch handled by Floodlight is T3, f fic:onmm =

h + 3p + 60 = 5.3s. Because Tiyqf fic:onmm 18 greater than Tyyest-onmm» Tuseronmm = 9.38.

Figure 4.20 depicts the obtained results in the time-consuming assessment when the Net-
work Administrator addresses the NMSit-VN with and without the Maker. According these
results: (i) Tiepmaker = 98.2s is less than when the Maker is not used 1y nomaker = 419.2s,
attained by the services Drag-and-Drop and Wire (ii) because every mashment must be saved in
the Maker before being executed, 7}4y.maker = D.9s 1s greater than without Maker (77,4:nomaker =
3.9s); and (iii) Tyharer = 109.4s is less (about 75.1%) than T},maker = 440.8s. This global re-
sult and the per task results demonstrate that, in terms of time-consuming, it is feasible to use

the proposed approach for handling nmsits like the raised NMSit-VN.

95

Without Maker ===
With Maker

B0 [B -

360 oo R i SRR s

300 oo L i SRR s

B NGNS .

Time-consuming (s)

L e .

L e .

B0 - | R -

Develop Launch Address
Task

Figure 4.20 — Time-consuming on NMSit-VN

4.3.3 Time-response: results and analysis

VNMM and Monitoring Script. To continue the evaluation, it is proceeded to measure
the time-response of VN M M (see Figure 4.17) and Monitoring Script when carrying out the
operations NodeList, GuestFeatures, GuestStats, and NodeStructure. It is important to note that
the operations SwitchesList, LinksList, and FlowsList were already evaluated in the previous
case study. In this time-response evaluation, measurements were took in virtual nodes with all

virtual switches and virtual machines in active (i.e.,running on) state.

Table 4.1 presents the time-response evaluation results of the operations NodeList, Guest-
Features, and GuestStats of VN M M and Monitoring Script when used to monitor three hetero-
geneous virtual nodes. The first one, a xenpool formed by two XenServers that support seven
virtual machines of Linux Ubuntu O.S. and three Open vSwitch/Debian. Each one of others vir-
tual nodes was composed of a vbox/Debian that supports two guests: one Open vSwitch/Debian
and a virtual machine of Linux Ubuntu O.S. Considering again the ranking (optimal, good, ad-
missible, and deficient) of time-response (r in ms), these results reveal about VNMM: (i)
NodeList and GuestStats (i.e., GuestStatsXen or GuestStatsVB) have a good r for virtual nodes

based on XenServer and VirtualBox; and (ii) GuestFeatures (i.e., GuestFeaturesXen and Guest-

96

FeaturesVB) has an optimal r for virtual nodes based on XenServer and VirtualBox. As ex-
pected, NodeList has the highest r because this operation integrates information of all virtual
nodes rather than GuestStats and GuestFeatures that retrieve information from only one type of

virtual node.

The evaluation results (see Table 4.1) also disclose that in relation to the operations NodeList,
GuestStats, and GuestFeatures, Monitoring Script has better r (approx 10%) than VN M M,
this result was expected because mashments use additional software layers to collect, aggre-
gate, and present monitoring information from different virtual nodes. Notwithstanding this

result, VN M M has a good behavior in time-response because its 7 is still ranked as optimal or

good.
Table 4.1 — Time-response of VNMM and Monitoring Script
XenServer-based Node VirtualBox-based Node
Operation VNMM (ms) Monitoring Script (ms) VNMM (ms) Monitoring Script (ms)
NodeList 788 + 30 725 + 35 788 £+ 30 725 + 35
GuestFeatures 190+ 3 174+ 4 63+ 3 61+ 2
GuestStats 372+ 4 340 £ 13 600 + 15 550 + 14

Once assessed the time-response of the operations NodeList, GuestStats, and GuestFeatures
of VN M M and Monitoring Script, it is proceeded to evaluate the time-response of the opera-
tion NodeStructure of V N M M. In this evaluation, in each virtual node, the number of guests
was varied from 1 to 64. When the number of guests was < &, all guests were used in active
state, otherwise, 8 guests were used in such a state and the others in inactive (i.e., turned off)

state.

Figure 4.21 depicts the time-response of the operation NodeStructure of V.NMM. Ac-
cording these results, NodeStructure has a good r for virtual nodes based on XenServer and
VirtualBox. This operation has better r for xenpool than vbox/Debian when the number of
guests is increased from 32 to 64. r of NodeStructure for xenpool increases 3.1 ms per guest,
and, for vboxr/Debian, it grows 5.9 ms. In this way, if the number of guests is equal or greater
than 48, r for zenpool is better than for vbox/Debian. This behavior of r occurs because, when
there is a large number of guests in the Managed Resources Layer, HTTP connections of the
XenSDK are more efficient than SOAP/HTTP connections of the VirtualBox Web Service.

Although VN M M uses additional software modules (e.g., Mediator Bus) to retrieve, in-

tegrate, and present information from non homogeneous virtual nodes, its worst behavior in

97

time-response is still ranked as good. Furthermore, it is important to highlight that such behav-

ior is similar (extra time < 10%) to that of Monitoring Script. Summing up, these time-response

behaviors corroborate that, in terms of this metric, it is feasible to use the proposed approach

T T T T T T T T T

: PRIXIILLRILLIILLLXLLLXILLIILLLILLIILLLILLLLILLIILLLLLLLLLL LSS

: R IR

55 R
22 BRXRRAXRRRRXRRRRRRRXERRARXRRXRRRRXRRRERRRXRRREXRRAXRRRIERRARIARKK,
— !

0 .

S= | :

== :

== | ;

=> : :

> : : : : : : :

: : PRELRILLRILLRIILLILLLLILLIILLLILLLILLLILLLR

: : R I IKKIS,

: : R R IRLLRRRIIIIILLLLRKS

: | PV P99 99.9.99.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.:9.9.9.9.4

: : | RRRRIILIIRIIILLLLLLIIRIIIILLLLLLIITIIILLL

R R IIEIK KIS

: : 000 RRIIIIIILLLRKKKS

: : S LLLLL LI LLLL.0.0.0.889.9.0.0.0.83.9.9.9.0.9.0.9.9.9.9.9.4

: : RRRILLIILLRILLILILLRILLILLLLIIILL L

; ; B R IIIIKIIK,

: : oS00 IRIEIRIEIRIIIIKEKK

: H LGV LV 009.9

1 ' '
98] ; ; [ERRILZRILLRILLLILLLILLLKLLLRILL

: : R IR KKK,
< | | R R}

| | [RRRRRRLRELRRRLLRRLLRRLLRRRIRRKK,
O : :

2] ! :
= : : :

: ; IRLS IS, RIS
= i : ooess RIS
(] : : RRXXX ZRRRRRRRRRARRRARRKS
— I~ H H
(D] | |

) i i
— : :
Z : : ST IT T ILLLLS
= ” ” S
m : ; [:0.9.8.9:
= : : : :
S
o v— 1 1 1 1 1 1 1 1 1
< o (= o (=] o =] o =] o o =}
> S D =3 7] S] S o S [
) < < @ ® ~ « - -
«m (sw) asuodsai-awi]
G

64

Guests

Figure 4.21 — Time-response on NodeStructure

1S

4 Traffic: results and analys

4.3

VNMM and Monitoring Script. To continue the evaluation, it is proceeded to measure the

network traffic generated by V NM M (see Figure 4.17) and Monitoring Script when used to

monitor the virtual nodes before described. In this evaluation, the measurements in the virtual

nodes were took with all virtual switches and virtual machines in active state.

Table 4.2 presents the traffic evaluation results of the operations NodeList, GuestFeatures,
and GuestStats of V NM M and Monitoring Script. These results reveal about VN M M: (i)

NodeList and GuestFeatures generates low traffic for virtual nodes based on XenServer and

VirtualBox; and (ii) GuestStats generates more traffic for XenServer than VirtualBox; it is be-

cause the XenSDK provides statistics by using a large XML document that contains information

about all guests, instead, VirtualBox Web Service provides information in a XML document that

98

contains only information about a specific guest.

As expected, the traffic evaluation results (see Table 4.2) also discloses that in relation to the
operations NodelList, GuestStats, and GuestFeatures, V N M M generates more network traffic
than Monitoring Script. Although mashments use additional data to aggregate information from
different virtual nodes, the difference of traffic generated by Monitoring Scrip and VN M M 1is
less than 10%. In this way, the evaluation results of the above operations confirm that V' N M M

has a good behavior in traffic.

Table 4.2 — Network traffic of VNMM and Monitoring Script

XenServer-based Node VirtualBox-based Node
Operation VNMM (Bytes) Monitoring Script (Bytes) VNMM (Bytes) Monitoring Script (Bytes)
NodeList 487 450 487 450
GuestFeatures 459 456 351 318
GuestStats 3061 2800 155 153

Once assessed the traffic generated by NodeList, GuestStats, and GuestFeatures of VN M M
and Monitoring Script, it is proceeded to evaluate the traffic generated by the operation Node-
Structure of V. N M M. In this evaluation, in each virtual node, the number of guests was varied
from 1 to 64. If the number of guests was < 8, all guests were used in active state, otherwise, 8

guests were used in such a state and the others in inactive state.

Figure 4.22 depicts the traffic results of the operation NodeStructure of VNMM. Ac-
cording these results, this operation generates more traffic for vbox/Debian than xenpool when
the number of guests is increased from 32 to 64. The traffic generated by NodeStructure for
xenpool increases 93.2 Bytes per guest, and, for vbox/Debian, it grows 97.2 Bytes. Then, if
the number of guests is equal or greater than 52, the traffic generated for xenpool is less than
for vbox/Debian. This traffic behavior occurs, because for a large number of guests, the XML
codification, used by Web Services based on SOAP in the Managed Resources Layer, is more
verbose than JSON codification used by RESTful-based Web Services.

Although V NMM uses data additional to aggregate information from different virtual
nodes, the evaluation results reveal that it has a good behavior in network traffic. Furthermore,
it is relevant to mention that such behavior is similar to that of Monitoring Script. Summarizing,
the traffic evaluation results corroborate that, in terms of such metric, it is feasible to use the

proposed approach for coping with nmsits like the raised NMSit-VN.

99

7200 T T T T T

VNMM on VBox
VNMM on Xen XXXXXX|

BAOD [

XY
o
tatotesy
KR

R
K
XXX

e
X

o

%%

50
%
<

KR

Nl

XK
R
Cootetets

v
0%

K
o

XL

0%
X

~

S0
28
XXX

%X
X

%S

X

BB -

X
K
XX

TSSO
SRR
Satotetet

RRRRR

3

X
%

R
2622

5
%
3%

BOOD. [+

e
X

%

2%

X
o%

35
X

XXX,
&5
XX

RXLE
5
XXX

~

Traffic (Bytes)

v
X
X
35
2%

B0

v

2
X

090!
0%

KRR

X
%S

098

X

XX
2%
%

K

XXX,
555
XXX

v
0%

K
%

XL

A0 [

~

0%
oS
%%
RS

=
&
XX

3
<
%
o
%
XX

e
X

%

R

X
2%k

%
$95%8
0%}
5
%
%
%

%

e
X

%

2%

L D A

X
XK
o

-
%
s

oo

XX
XX
o
0208

XX
KK
0%
oo

e

X
KL

R

T

o
LK
S5
KRR

o2

J
=
2>
X
o
olole

~

<

5%
5

29358

RX

X

%%
%
S
=

X
&
0%
ro%s
7
2>
o
X

e

X
%

v
=

3%

58
XXX,
S
XX

2
8
%
K
2!

o
5
XXX

%

X5
%55
KRR

XX
X

e
R
0000
ptototolets
TS
X XK
tototole!
o2620%0%%
T
R
SRR

=
5%
RS
=
2
%
o
2!
5
%
9%
%

X
%
35
5

L

K

1 2 4 8
Guests

64

Figure 4.22 — Network traffic on NodeStructure

4.4 Case study for dynamic mashments

The case study for dynamic mashments is formed by a test environment (see Figure 4.23),
several nmsit patterns (i.e., instances of nmsit model), and experiments conducted to evaluate:
(i) the time that the Mashment Maker takes for detecting nmsits (i.e., time-recognition), (if)
the time that the Maker takes for customizing composition templates (i.e., time-composition);
and (iii) the impact, in terms of complexity and time-consuming, of mechanisms for automatic

recognition of nmsits and dynamic composition of mashments in addressing NMSit-SDN.

Test environment. Every OpenFlow controller (i.e., Beacon 1.0.2, POX 1.0.0, and Floodlight
0.9) was executed on a machine with 2.33 Ghz core 2 duo processor, 2 GBytes RAM, and 160
GBytes hard disk. The Mashment System Server and Mashment Maker were deployed on a
Tomcat using a Web engine 7.0.26 and a Drools engine 6.1. The MashmentDB was deployed
using a MySQL Server 5.5. The Mashment System Server, Maker, and MashmentDB were
executed on a machine with Linux Ubuntu O.S., 2.53 GHz Intel Core 15 processor, 4 GBytes
RAM, and 250 GBytes hard disk. The virtual Open vSwitches 1.4 (running on Mininet and
handled by the above referred controllers) were deployed on a server with 8 GBytes RAM and

3.4 GHz core 17 processor. The test applications used in this case study were deployed on a

100

Client with 2 GBytes RAM and 2.53 GHz core 2 duo processor.

MashmentDB
(MySQL 5.5)

Mashment System Server & Mashment Maker
(Tomcat: Web Engine 7.0.26 and Drools Engine 6.1)

Open vSwitches 1.4
/Mininet

Open vSwitches 1.4 e Client Open vSwitches 1.4
/Mininet Mininet

Figure 4.23 — Test environment - dynamic mashments

4.4.1 Time-recognition: results and analysis

{"SITUATION":"nmsit-test",
"EAC":
[{"ENTITY":"openflowController","PROPERTY":[{"ATTRIBUTE":"ip","CONSTRAINT":"192.168.210.45 or 192.168.210.74"},
{"ATTRIBUTE":"port","CONSTRAINT":"8082 or 8083"},{"ATTRIBUTE":"type","CONSTRAINT":"pox or floodlight"},
{"ATTRIBUTE":"openflowElement","CONSTRAINT":"openflowSwitch"}]},

{"ENTITY":"openflowSwitch", "PROPERTY":[{"ATTRIBUTE":"dpid", "CONSTRAINT":"all"},
{"ATTRIBUTE":"openflowSwitchComponent", "CONSTRAINT":"openflowPort"}]},

{"ENTITY":"openflowPort", "PROPERTY":[{"ATTRIBUTE":"number","CONSTRAINT":"all"},
{"ATTRIBUTE":"percentTransmittedDropped","CONSTRAINT":"> 5"}]}]} i JSON

package net.mashment.drools.rules DRL
import net. mashment.drools.entities.*
import net. mashment.drools.DynamicMashmentComposer
rule "nmsit-test"
when
$e0 : OpenflowController(ip == "192.168.1.2" || == "192.168.1.3", port == "8082" || == "8083", type == "pox" || == "floodlight")
$e1 : OpenflowSwitch(openflowController == $e0)
$e2 : OpenflowPort(openflowSwitch == $e1, percentTransmittedDropped > 5)
then
DynamicMashmentComposer($e0,$e1,$e2)
end

Figure 4.24 — Example of nmsit for testing

The time-recognition is the time that the Mashment Maker takes for detecting nmsit pat-
terns. In the time-recognition evaluation, two different controllers (i.e., POX and Floodlight)
were used; each one handling a datacenter network topology with 259 switches distributed in

4 levels of depth (i.e., layers of access, aggregation, core, and edge) and 6 servers per rack.

101

Summarizing, in total, 2 controllers, 518 switches, and 3626 ports were used in this evaluation.

In the time-recognition evaluation, by using the NMSit Designer, a nmsit pattern was de-
fined for recognizing when any port of any switch handled by POX or Floodlight had more
than 5% of dropped packets. Figure 4.24 depicts such pattern encoded on JSON and DRL. It
is important to highlight that the translation from JSON to DRL is conducted by the Automatic

NMSit Recognizer and hidden for Network Administrators and Mashment Creators.

In the time-recognition evaluation, initially, only one nmsit pattern was loaded (i.e., there
is just one rule in the Drools Engine) and the number of generated nmsits was varied from 250
to 1750 in each OpenFlow-based network. Thus, the total number of generated nmsits in each
evaluation was modified from 500 to 3500. Afterwards, the number of loaded rules was varied

from 1 to 400 and once again the amount of generated nmsits was modified from 500 to 3500.

Figure 4.25 presents the time-recognition results. These results reveal that the Mashment
Maker is able to recognize nmsits in a short time; in the worst behavior approximately 30.3 ms
for detecting 3500 nmsits having 400 loaded rules/patterns. Furthermore, the time-recognition
is negligibly increased with the growth of the generated nmsits and the loaded rules. Conse-
quently, the above results corroborate that, in terms of time-recognition, it is feasible to use the

mashment-based approach for coping effectively with nmsits.

40 T T T T T

T
1Rule ==-9%--

100 Rules &

200 Rules -:-© -

300 Rules +='de:-
T 400 Rules —w— |

Time-recognition (ms)

500 1000 1500 2000 2500 3000 3500
amount of nmsits

Figure 4.25 — Time-recognition behavior

102

4.4.2 Time-composition: results and analysis

The time-composition is the time that the Mashment Maker (i.e., specifically, the Dynamic
Mashment Composer) spends for customizing composition templates and, so, generating dy-
namic mashments. In the time-composition evaluation, three different controllers (i.e., POX,
Floodlight, and Beacon) were used; each one handling a datacenter network topology with 259
switches distributed in 4 levels of depth and 6 servers per rack. Summarizing, in total, 3 con-

trollers, 777 switches, and 4662 ports were used in this evaluation.

{"RES":
[{"config":{"position":[474,173]},"name":"OpenflowMonitor","value":{"graphTool":"[wired]","nos 1":"[wired]","nos 1params":"","nos2":

"[ered] , nOSZpal'amS"Z"","ﬂOS3"Z"[Wired] i nOS3paramS"Z""},

{"config":{"position":[340,10]},"name":"OpenflowController","value":{"ip":"","port":"" "type":""}},

{"config":{"position":[126,16]},"name":"OpenflowController","value":{"ip":"","port":"","type":""}},
{"config":{"position":[44,80]},"name":"OpenflowController","value":{"ip":"","port":"","type":""}},
{"config":{"position":[253,418]},"name":"RRDTool","value":{"refreshTime":""}}],"properties":{"desc":"","name":"template1","nmsit-test":""},
"CON":

[{"src":{"moduleld":1,"terminal":"out"},"des":{"moduleld":0,"terminal":"nos 1"},
{"src":{"moduleld":2,"terminal":"out"},"des":{"moduleld":0,"terminal":"nos2"}},
{"src":{"moduleld":3,"terminal":"out"},"des":{"moduleld":0,"terminal":"nos3"}},

{"src":{"moduleld":4,"terminal":"out"},"des":{"moduleld":0,"terminal":"graphTool"}}]} i Composition template

{'RES": Generated mashment

[{"config":{"position":[474,173]},"name":"OpenflowMonitor","value":{"graphTool":"[wired]","nos 1":"[wired]",'nos1params":
{"openflowSwitch":{"dpid":"00:00:00:00:00:00:01:15","openflowPort":{"number":"1","percentTransmittedDropped":"5"}}},"nos2":"[wired]",
"nos2params":{"openflowSwitch":{"dpid":"00:00:00:00:00:00:01:15","openflowPort":{"number":"1","percentTransmittedDropped":"5"}}},"
nos3":"[wired]","nos3params":{"openflowSwitch":{"dpid":"00:00:00:00:00:00:01:15","openflowPort":{"number":"1",
"percentTransmittedDropped":"5"}},
{"config":{"position":[340,10]},"name":"OpenflowController","value":{"ip":"192.168.1.10","port":"8082","type":"pox"}},
{"config":{"position":[126,16]},"name":"OpenflowController","value":{"ip":"192.168.1.9","port":"8081","type":"floodlight"}},
{"config":{"position":[44,80]},"name":"OpenflowController","value":{"ip":"192.168.1.7","port":"8083","type":"beacon"}},
{"config":{"position":[253,418]},"name":"RRDTool","value":{"refreshTime":""}}],"properties":{"desc":"","name":"template1","nmsit-test":""},
"CON":

[{"src":{"moduleld":1,"terminal":"out"},"des":{"moduleld":0,"terminal":"nos1"}},
{"src":{"moduleld":2,"terminal":"out"},"des":{"moduleld":0,"terminal":"nos2"}},
{"src":{"moduleld":3,"terminal":"out"},"des":{"moduleld":0,"terminal":"nos 3"},
{"src":{"moduleld":4,"terminal":"out"},"des":{"moduleld":0,"terminal":"graphTool "}}]}

Figure 4.26 — Example of composition template and generated mashment

In the time-composition evaluation, by using the Template Designer, composition templates
were defined for monitoring when ports of switches handled by POX, Floodlight, and/or Beacon
had more than 5% of dropped packages. Figure 4.26 depicts a snippet of a composition template
and the corresponding dynamic mashment generated by the Mashment Maker.

In the time-composition evaluation, initially, the number of resources forming the composi-
tion templates was varied from 2 to 8; it is to noteworthy that more than 60% of mashups consist
of 3 — 8 modules/resources (HUANG et al., 2014). Subsequently, the number of templates was
also modified from 10 to 50; it is important to highlight that the amount of templates defines the

number of simultaneously generated dynamic mashments.

103

Figure 4.27 presents the time-composition results. These results reveal that the Mashment
Maker is able to generate mashments by customizing composition templates in a short time; in
the worst behavior, approximately 14500 ms for composing 50 dynamic mashments formed by
8 resources. Furthermore, the time-composition is linearly increased with the growth of both the
number of simultaneously generated mashments and the amount of resources per composition

template.

Considering, first, the above results. Second, the mechanism for generating dynamic mash-
ments had similar time-composition behavior to composition proposals introduced on other
application domains (ORDONEZ et al., 2014). It can state that the time-composition evaluation
corroborates, in terms of such metric, the feasibility of using the mashment-based approach for

dealing effectively with nmsits.

18000 T : | | |
2 Resources -=-%¢--

4 Resources £+

e 6 Resources = -© =
8 Resources ==

15000
13500
12000
10500
9000

7500

Time-composition (ms)

6000

4500

3000

1500

amount of rich dynamic mashments

Figure 4.27 — Time-composition behavior

4.4.3 Complexity: results and analysis

The NMSit-SDN was once again raised in order to evaluate the complexity when the mashment-
based approach uses the mechanisms for automatic recognition of nmsits and dynamic compo-
sition of mashments. To deal with the NMSit-SDN, the Network Administrator tests several

104

options: (i) Situational Script, (it) PM M; and (iii) the dynamic mashment of performance,
hereinafter called RDM P. In brief, the Situational Script is an application programmed and
executed by the Network Administrator in a low-abstraction level. PM M is a composite situa-
tional solution developed and launched by the Network Administrator in the Mashment Maker.
RDMP is a dynamic mashment generated by the Maker and launched by the Network Admin-
istrator. Regarding RD M P is to noteworthy that, on runtime, it offers the same functionalities
as PMM.

Addressing without Maker. The whole process of measuring the complexity on handling
NMSit-SDN by Situational Script was detailed in the Subsection 4.2.1. In this way, in this
evaluation, the corresponding complexity results are directly brought: (i) Cser-nomaker = 47, (if)

Ccon:nomaker = 42’ (”l) gcom:nomaker = 2]-’ and (lV) Clau:nomaker = 2.

Addressing with PMM. The entire process of assessing the complexity on addressing NM Sit-
SDN by PM M was also presented in detail in the Subsection 4.2.1. Thus, in this evaluation,

the respective complexity results are directly retrieved: (i) Cser:pmm = 31, (i) Ceonspmm = 26,

(lll) Ccom:pmm = 12; and (lV) Clau:pmm =1.

50 T T T T
Without Maker ===
With PMV - oo
With RDMP RXXXxx]
BB e .
QO [e I -
B5 [l -
B0 [I -
=2
3
B 25 [Il I -
£
[=3
o
e L e I | B .
L e L | e O I SIS -
10 fo] I I .
5 T e L -
0 I (355
Select Configure Combine Launch
Task

Figure 4.28 — Complexity - dynamic mashments

Addressing with RDMP. Once calculated the complexity on addressing NMSit-SDN without
the Maker and with PM M, it is proceeded to compute the corresponding complexity with

105

RDMP. As RDM P is generated by the Mashment Maker: (i) Cser:rdmp = 0, (i) Ceonsrdmp = 05
and (711) Ceom:rdamp = 0. Furthermore, since RDM P is automatically stored by the Maker, the
Network Administrator is able to launch this dynamic mashment simply by clicking the button

Run anda SO, Clau:rdmp = 1.

Figure 4.28 depicts the results of the complexity evaluation carried out in this case study.
These results reveal: (i) the complexity that the Network Administrator perceives in devel-
oping (i.e., Select, Configure, Combine) RDM P is less than in PM M and the Situational
Script, attained by mechanisms for automatic recognition of nmsits and dynamic composition
of mashments; and (ii) as every generated mashment is ready to be launched by the Mash-
ment Maker, the complexity perceived in launching RDM P ((au:rdmp = 1) is equal than in
PMM (Cau:pmm = 1) and less than in Situational Script ((aynomaker = 2). Summarizing,
the complexity for addressing NMSit-SDN with RDM P ((ygmp = 1) is less than with PAM M
(about 99.98%) and with Situational Script (about 99.99%). This global result and the results
per task corroborate that, in terms of complexity, the mechanisms for automatic recognition of
nmsits and dynamic composition of mashments improve the effectivity of the mashment-based

approach.

4.4.4 Time-consuming: results and analysis

The NMSit-SDN was once again raised in order to evaluate the time-consuming when the
mashment-based approach uses the mechanisms for automatic recognition of nmsits and dy-
namic composition of mashments. To deal with the NMSit-SDN, the Network Administrator
tests several options: (i) Situational Script, (it) PM M ; and (iii) RDM P.

Addressing without Maker. The whole process of measuring the time-consuming on ad-
dressing NMSit-SDN with the Situational Script was detailed in the Subsection 4.2.2. In this
way, in this evaluation, the corresponding time-consuming results are directly brought: (i)
Tevinomaker = 298.85, (ii) Tiaunomaker = 3.95, (iii) Tusemomaker = 16.8s; and (iv) Tromaker =
319.5s.

Addressing with PMM. The entire process of assessing the time-consuming on coping with
NMSit-SDN by PM M was also presented in detail in the Subsection 4.2.2. Thus, in this eval-
uation, the respective time-consuming results are directly retrieved: (i) Tyeppmm = 67.8s, (if)
Tiaupmm = 5.78, (iii) Tyse:qpmm = 5.35; and (iv) Ty, = 78.8s.

Addressing with RDMP. Once calculated T},opqker and Ty, it is proceeded to compute
the time-consuming of dealing with NMSit-SDN by RDM P. As RDM P is generated by the
Mashment Maker, T,.4mp = Tiaurdmp + Tuserdmp- Considering that RDM P is automatically
stored by the Maker, the Network Administrator is able to launch this mashment simply by

106

clicking the button Run and, thus, 7}4y.rdmp = h+p+2b = 1.7s. Furthermore, since on runtime
RDMP and PM M provide identical functionalities and show the same GUI (see Figures 4.4

and 4.7), Tyse:ramp = 9.35. Taking into account 7jqy:rdmp and Lyse:rdmp> Lrdmp = 6.

420 T T

Situational Script ===
PMM e
RDMP RXXXZX)

. .

BOD oo gttt R s

| -

L] -

Time-consuming (s)

L 11 | -

| S -

Develop Launch Address
Task

Figure 4.29 — Time-consuming - dynamic mashments

Figure 4.29 depicts the results of the time-consuming evaluation carried out in this case
study. These results reveal that: (i) the time that the Network Administrator takes in developing
RDMP is less than in PM M and the Situational Script, attained by mechanisms for auto-
matic recognition of nmsits and dynamic composition of mashments; and (ii) because every
dynamic mashment is ready to be launched by the Mashment Maker, the time for launching
RDMP (Tiqu:ramp = 1.7s) is less than for the Situational Script (Tiqu:nomaker = 3.95) and
PMM (Tiqupmm = 5.75). In sum up, the time-consuming for coping with NMSit-SDN by
RDMP (T,4mp = 6s) is less than by PM M (about 92.3%) and the Situational Script (about
98.1%). This global result and the results per task corroborate that, in terms of time-consuming,
the mechanisms for automatic recognition of nmsits and dynamic composition of mashments

enhance the effectivity of the approach proposed in this thesis.

107

4.5 Final remarks

This chapter presented the evaluation and analysis of addressing, with and without the
mashment-based approach, diverse nmsits raised in three case studies. Such evaluation and
analysis was carried out in terms of following metrics: (i) complexity and time-consuming that
are related to the process defined for facing nmsits, (i7) time-response and traffic that are associ-
ated with the behavior on runtime of solutions used to handle nmsits; and (iii) time-recognition
and time-composition that are related to the mechanisms for automatic recognition of nmsits

and dynamic composition of mashments, respectively.

The evaluation results revealed several facts. First, if Network Administrators coping with
nmsits (e.g., NMSit-SDN and NMSit-VN) by developing and launching static mashments, the
complexity and time-consuming are decreased. Second, such decreasing is greater when mech-
anisms for automatic recognition of nmsits and dynamic composition of mashments are used
(e.g., RDMP). The above facts demonstrate that the mashment-based approach allows Net-
work Administrators to address and overcome the complexity and time-consuming of nmsits.
Third, although mashments (e.g., PM M and V' N M M) use extra software layers to face nmsits,
such layers generate few additional time-response and traffic in relation to Web-based network
management tools (e.g., Beacon Web Tool) and proprietary scripts. This last fact demonstrates

that the proposed approach has a good behavior in terms of time-response and network traffic.

In sum up, the evaluation results demonstrate that, in terms of complexity, time-consuming,
time-response, and traffic, it is feasible to use the proposed approach for dealing effectively with
nmsits. In this sense, such results confirming the relevance of: the concepts of mashment and
nmsit, the Mashment Ecosystem, the process to develop and launch mashments, the Mashment
System Architecture (including mechanisms for automatic recognition of nmsits and dynamic

composition of mashments), and the Mashment Maker.

From a qualitative point of view, the main characteristics provided by the proposal in-
troduced in this thesis are the flexibility and extensibility. The flexibility refers to that the
mashment-based approach allows Network Administrators by themselves to customize and im-
prove their workspace. They do not require a lot of Web programming skills to create situational
management capabilities (e.g., PM M,V N MM, and RD M P) because the proposed approach
provides a high-level abstraction of system and network virtualization technologies as well as of
situational management operations; these technologies and operations are represented in a vi-
sual way as mashupable components. Furthermore, unlike traditional composition technologies,
such as the Business Process Execution Language and the Web Service Conversation Language,
that are developer-centric, the mashup technology provides a flexible and easy-to-use way for

user-centric service composition (LIU et al., 2007).

108

Regarding the extensibility, with the proposal introduced in this thesis, Network Administra-
tors can create, by conducting a simple process and using existing mashments, novel, advanced,
and complex situational composite services targeted to overcome nmsits. It is possible because
the mashment-based approach leverages the composition, abstraction, and reusing models from
mashups as well as allows to implement the investigative and control aspects of SM. In this
regard, it is important to higlight that, in a general way, building up a mashup from existing ap-
plications is easier than developing it from scratch (TATEMURA et al., 2007) (HASAN et al.,
2008). About the extensibility is also relevant to mention that Mashment Creators are also able
to extend the Mashment Ecosystem by aggregating resources, such as mashments, nmsit pat-
terns, and templates, to the Mashment Maker. Such extension, in turn, leads to the improvement
of workspaces of Network Administrators.

According the evaluation results and the qualitative characteristics of the proposed ap-
proach, it can be considered as a step forward in the network management, the SM discipline,
and the mashup technology. In this regard, the network management is driven towards an en-
vironment focused on situations, composite situational solutions, and network administrators.
The mashup foundations are brought up to SM to carry out its investigative and control aspects.
The mashup technology is led to a novel application domain located in the intersection of SM

and network management.

109

5 CONCLUSIONS

This chapter starts summarizing the research work carried out in this thesis. Then, answers
are provided for the fundamental questions raised to guide the verification of the hypothesis
defended in this thesis. Afterwards, the main contributions achieved when conducting such

verification are presented. Finally, directions for future work are outlined.

This thesis presented the investigation carried out to verify the hypothesis: '"The employ-
ment of SM and mashups provides an effective approach for network management''.
Based on the hypothesis, an approach that uses the SM discipline and the mashup technology
to enable the fulfillment of network management tasks was proposed. Such approach is formed
by the concepts of nmsit and mashment, the Mashment Ecosystem, the process to develop and
launch Mashments, the Mashment System Architecture (including mechanisms for automatic

recognition of nmsits and dynamic composition of mashments), and the Mashment Maker.

This thesis also presented the Reference Implementation of the mashment-based approach
as well as an extensive evaluation and analysis about effectively addressing diverse nmsits with
and without it. In particular, nmsits were raised in different case studies conducted in realistic
scenarios, based on SDN and virtual nodes, and in addition the effectivity was evaluated and
analyzed in terms of the complexity, consuming of time, traffic, and time of response. The
evaluation results demonstrated that the proposed approach is effective for network management
because: (i) when mashments were developed/generated and launched for carrying out network
management tasks, both the complexity and the consuming of time of the work performed by
network administrators were decreased; and (ii) on runtime, mashments had good behavior on

the time of response as well as on the network traffic.

5.1 Answer for the fundamental questions

At beginning of this thesis, three fundamental questions were defined in order to guide the
investigation about the feasibility of using SM and mashups as an effective approach for net-

work management. Such questions are revised and answered in the following paragraphs.

Fundamental question 1. What is the performance, in terms of the complexity and consum-

ing of time, of solutions that use SM and mashups for network management?

Answer: The work carried out by network administrators to address unexpected, dy-
namic, and heterogeneous situations that happen in the network management domain is

complex and consumes a lot of time. The proposed approach permitted network adminis-

110

trators to overcome such complexity and time, confirming the importance of the concepts
of nmsit and mashment, the Mashment Ecosystem, the process to develop and launch
Mashments, the Mashment System Architecture, and the Mashment Maker. Using per-
task metrics (KIERAS, 2001) (DIAO; KELLER, 2006) for ITSM, it is demonstrated that
in terms of complexity and consuming of time, the mashment-based approach has a good
performance. In fact, the proposed approach is less complex and consuming of time than
proprietary and incompatible CLIs and GUIs currently used for coping with nmsits like
the raised in the case studies. In particular, with the mashment-based approach the com-
plexity was decreased approximately 37% in the case study on SDN-based networks and
20% in the case study on virtual nodes. In turn, in both case studies, the consuming of
time was diminished about 75%.

Fundamental question II. What is the performance, in terms of traffic and time of response,

of solutions based on SM and mashups for network management?

Answer: Although the mashment-based approach employs additional software entities
and layers to handle unexpected, dynamic, and heterogeneous situations that happen in
the network management domain, it has a good behavior in terms of time of response. In
fact, in the case studies on SDN-based networks and virtual nodes, the time of response of
mashments was according the performance analysis for Java-based Web sites (JOINES;
WILLENBORG; HYGH, 2002) ranked as optimal or good. Similarly, the proposed ap-
proach has a good behavior in terms of network traffic because its additional entities and
layers generate few extra traffic in relation to the solutions currently (multiple and incom-
patible Web-based network management tools and proprietary scripts) used for coping

with nmsits. Specifically, in both case studies, the additional traffic was less than 10%.

Fundamental question III. Which mechanisms could be employed to improve the perfor-

mance of solutions that use SM and mashups for network management?

Answer: The mechanisms for automatic recognition of nmsits and dynamic composition
of mashments automate the Select, Configure, and Combine tasks of the proposed process
for developing and launching mashments. As these mechanisms are able to recognize
nmsits and compose mashments in a short time, they help to address the complexity and
time involved in the carrying out of the above mentioned tasks. In particular, when the
mechanisms for automatic recognition of nmsits and dynamic composition of mashments
were jointly used in a SDN-based test environment, the complexity was approximately

99% and the consuming of time was about 92% less than when such mechanisms were not

111

used. Consequently, it can state than these mechanisns improve, in terms of complexity
and consuming of time, the performance of solutions that use the SM discipline and the

mashup technology for network management.

5.2 Contributions

This thesis investigated the feasibility of using the SM discipline and the mashup technology
as an effective approach for network management. The carrying out of such investigation led to

the following major contributions.

e The nmsit concept. This concept introduced how to characterize unexpected, dynamic,
and heterogeneous situations in the network management domain by SM.

e The mashment concept. This concept presented how to use mashups for carrying out
the investigative and control aspects of SM in the network management domain.

e The mashment ecosystem. This ecosystem defined the resources, stakeholders, software
entities, activities, and interactions involved in addressing nmsits.

e The process to develop and launch mashments. This process encompassed a simple
set of high-level tasks (Select, Configure, Combine, Launch, and Tune) for facing nmsits.

e The model of complexity and time-consuming. This model allowed to measure the
complexity and time of addressing nmsits with and without the proposed approach.

e The mashment system architecture. This architecture supported the carrying out of the
ecosystem and the process aforementioned and, therefore, the making of mashments.

e The mechanism for automatic recognition of nmsits. This mechanism introduced how
to detect nmsits on the fly by using rules and matching algorithms.

e The mechanism for dynamic composition of mashments. This mechanism presented

how to dynamically generate mashments by using composition templates.

5.3 Future work

During the carrying out of this thesis, interesting opportunities for further research were

observed. These opportunities are outlined below.

e Distributed approach. The mashment-based approach was implemented and analyzed in
a centralized setting. Therefore, there is an opportunity to extend it by adding support for
detecting nmsits and composing mashments in a distributed environment, in which, for

instance, wrappers will be located near to resources implicated in addressing nmsits.

112

e Deployment cost model. The mashment-based approach was analyzed in terms of the
complexity, consuming of time, traffic, and time of response, but it was not analyzed
from a cost point of view. Thus, there is a chance to propose its deployment cost model,
which should consider among other issues the cost of all resources involved in nmsits.

e Reference implementation extension. The current reference implementation of the ap-
proach based on mashments provides features for conducting monitoring tasks. There-
fore, there is a chance to enhance and improve such implememtation for supporting other

management tasks, such as configuration and accounting.

In addition to the research opportunities presented in the above list, around the mashment-
based approach there are other investigation chances to be explored. First, the evaluation of
the performance of such approach in the Network Function Virtualization and the Cloud Net-
working. Second, the use of big data techniques, such as Neural Networks and Exploratory
Data Analysis, for automatic recognition of nmsits. Third, the use of other mechanisms, such
as Hierarchical Task Networks and, in general, Artificial Intelligence planners, for dynamic

composition of mashments.

113

REFERENCES

ADAMS, J.; REYNOLDS, C. A Complex Situational Management Application Employing
Expert Systems. In: International Conference on Systems, Man, and Cybernetics.
Nashville, USA: IEEE, 2000. v. 3, p. 1959-1964.

ANGELL, R. C.; FREUND, G. E.; WILLETT, P. Automatic Spelling Correction Using a
Trigram Similarity Measure. Information Processing & Management, Elsevier, New York,
USA, v. 19, n. 4, p. 255-261, 1983. ISSN 0306-4573.

BADGER, M. Zenoss Core Network and System Monitoring. Birmingham, UK: Packt,
2008.

BARHAM, P. et al. Xen and the Art of Virtualization. SIGOPS Operating System Review,
ACM, New York, USA, v. 37, n. 5, p. 164-177, October 2003. ISSN 0163-5980.

BARROS, A.; DUMAS, M. The Rise of Web Service Ecosystems. IT Professional Magazine,
IEEE Computer Society, Los Alamitos, USA, v. 8, n. 5, p. 31-37, September 2006. ISSN
1520-9202.

BARTH, W. Nagios: System and Network Monitoring. 2nd. ed. San Francisco, USA: No
Starch Press, 2008. ISBN 1593271794.

BEZERRA, R. et al. On the Feasibility of Web 2.0 Technologies for Network Management: A
Mashup-based Approach. In: Network Operations and Management Symposium (NOMS).
Osaka, Japan: IEEE, 2010. p. 487-494. ISSN 1542-1201.

BOLTE, M. et al. Non-intrusive Virtualization Management using Libvirt. In: Design,
Automation & Test in Europe Conference & Exhibition (DATE). Dresden, Germany: IEEE,
2010. p. 574-579. ISSN 1530-1591.

BROWNE, P. JBoss Drools Business Rules. Birmingham, UK: Packt, 2009. ISBN
1847196063, 9781847196064

BRUNS, R. et al. Using Complex Event Processing to support data fusion for ambulance
coordination. In: International Conference on Information Fusion (FUSION). Salamanca,
Spain: IEEE, 2014. p. 1-7.

BURNETT, M. et al. Forms/3: A First-order Visual Language to Explore the Boundaries of the
Spreadsheet Paradigm. Journal of Functional Programming, Cambridge University Press,
Cambridge, UK, v. 11, p. 155-206, 3 2001. ISSN 1469-7653.

BUTLER, M. Android: Changing the Mobile Landscape. IEEE Pervasive Computing, IEEE
Computer Society, Los Alamitos, USA, v. 10, n. 1, p. 4-7, January 2011. ISSN 1536-1268.

CAPPIELLO, C. et al. Information Quality in Mashups. IEEE Internet Computing
Magazine, IEEE Computer Society, Los Alamitos, USA, v. 14, n. 4, p. 14-22, July-August
2010. ISSN 1089-7801.

CAPPIELLO, C. et al. DashMash: A Mashup Environment for End User Development. In:
AUER, S.; DiAZ, O.; PAPADOPOULOQOS, G. (Ed.). Web Engineering. New York, USA:

114

Springer Berlin Heidelberg, 2011, (Lecture Notes in Computer Science, v. 6757). p. 152-166.
ISBN 978-3-642-22232-0.

CHEN, X. et al. Declarative Configuration Management for Complex and Dynamic Networks.
In: Conference on emerging Networking EXperiments and Technologies (Co-NEXT).
New York, USA: ACM, 2010. p. 6:1-6:12. ISBN 978-1-4503-0448-1.

CHEUNG, E.; PURDY, K. An Application Router for SIP Servlet Application Composition.
In: IEEE International Conference on Communications (ICC). Beijin, China: IEEE, 2008.
p. 1802-1806.

CHIANG, C.-Y. et al. Enabling Distributed Management for Dynamic Airborne Networks. In:
International Symposium on Policies for Distributed Systems and Networks (POLICY).
London, UK: IEEE, 2009. p. 102-105.

CHOWDHURY, N. M. M. K.; BOUTABA, R. Network virtualization: State of the Art and
Research Challenges. IEEE Communications Magazine, IEEE Communications Society,
New York, USA, v. 47, n. 7, p. 20-26, July 2009.

CLAYMAN, S. et al. Monitoring, Aggregation and Filtering for Efficient Management of
Virtual Networks. In: International Conference on Network and Service Management
(CNSM). Paris, France: IEEE, 2011. p. 1-7.

CLAYMAN, S.; GALIS, A.; MAMATAS, L. Monitoring Virtual Networks with Lattice. In:
Network Operations and Management Symposium (NOMS). Osaka, Japan: IEEE, 2010. p.
239 -246.

COGET, J.-F. The Apple Store Effect: Does Organizational Identification Trickle Down to

Customers? The Academy of Management Perspectives, Academy of Management, New
York, USA, v. 25, n. 1, p. 94-95, 2011.

DAVIES, M. et al. AutoMashUpper: Automatic Creation of Multi-Song Music Mashups.
IEEE/ACM Transactions on Audio, Speech, and Language Processing, IEEE, v. 22, n. 12,
p. 1726-1737, Dec 2014. ISSN 2329-9290.

DIAO, Y.; KELLER, A. Quantifying the Complexity of IT Service Management Processes. In:
. Berlin, Heidelberg: Springer-Verlag, 2006. (International conference on Distributed Systems:
operations and management (DSOM)), p. 61-73. ISBN 3-540-47659-8, 978-3-540-47659-7.

DOORENBOS, R. B. Production Matching for Large Learning Systems. Thesis (PhD),
Pittsburgh, USA, 1995. UMI Order No. GAX95-22942.

DORIA, A. et al. Forwarding and Control Element Separation (ForCES) Protocol
Specification. 2010. RFC 5810. Available from Internet: <http://datatracker.ietf.org/doc/
rfc5810/>.

ENDRES-NIGGEMEYER, B. The Mashup Ecosystem. In: ENDRES-NIGGEMEYER, B.
(Ed.). Semantic Mashups. New York, USA: Springer Berlin Heidelberg, 2013. p. 1-50. ISBN
978-3-642-36402-0.

ERICKSON, D. Beacon Home. 2013. [Accessed july 20, 2013]. Available from Internet:
<https://openflow.stanford.edu/display/Beacon/Home>.

http://datatracker.ietf.org/doc/rfc5810/
http://datatracker.ietf.org/doc/rfc5810/
https://openflow.stanford.edu/display/Beacon/Home

115

ESCOBEDQO, J. et al. Testing Web Service Orchestrators in Context: A Symbolic Approach.
In: IEEE International Conference on Software Engineering and Formal Methods
(SEFM). Pisa, Italy: IEEE, 2010. p. 257-267.

FIELDING, R. T.; TAYLOR, R. N. Principled Design of the Modern Web Architecture. ACM
Transactions on Internet Technology, ACM, New York, USA, v. 2, n. 2, p. 115-150, May
2002. ISSN 1533-5399.

FLOODLIGHT. Floodlight Home. 2013. [Accessed july 20, 2013]. Available from Internet:
<http://floodlight.openflowhub.org/>.

GEBHARDT, H. et al. From Mashups to Telco Mashups: A Survey. IEEE Internet
Computing Magazine, IEEE Computer Society, Los Alamitos, USA, v. 16, n. 3, p. 70-76,
May-June 2012. ISSN 1089-7801.

GEORGE, S. et al. DistressNet: a Wireless ad hoc and Sensor Network Architecture for

Situation Management in Disaster Response. IEEE Communications Magazine, IEEE
Communications Society, New York, USA, v. 48, n. 3, p. 128-136, 2010. ISSN 0163-6804.

GOPAL, R. Model based Framework for Implementing Situation Management Infrastructure.
In: Military Communications Conference (MILCOM). Orlando, USA: IEEE, 2007. p. 1-7.

GRAU, B. C. et al. OWL 2: The Next Step for OWL. Web Semantics, Elsevier, Amsterdam,
The Netherlands, v. 6, n. 4, p. 309-322, November 2008. ISSN 1570-8268.

GRIGORI, D. et al. Ranking BPEL Processes for Service Discovery. IEEE Transactions on
Services Computing, IEEE Computer Society, Los Alamitos, USA, v. 3, n. 3, p. 178-192,
July 2010. ISSN 1939-1374.

HAN, Y. et al. Situational Data Integration with Data Services and Nested Table. Service
Oriented Computing and Applications, Springer-Verlag, New York, USA, v. 7, n. 2, p.
129-150, 2013. ISSN 1863-2386.

HASAN, R. et al. Please Permit Me: Stateless Delegated Authorization in Mashups. In:
Annual Computer Security Applications Conference (ACSAC). Washington, USA: IEEE
Computer Society, 2008. p. 173-182. ISBN 978-0-7695-3447-3.

HEIN, D. M. et al. Securing Mobile Agents for Crisis Management Support. In: Workshop
on Scalable Trusted Computing (STC). New York, USA: ACM, 2012. p. 85-90. ISBN
978-1-4503-1662-0.

HILL, E. F. Jess in Action: Java Rule-Based Systems. Greenwich, USA: Manning
Publications Co., 2003. ISBN 1930110898.

HUANG, G. et al. Assisting Navigation and Complementary Composition of Complex Service
Mashups. IEEE Transactions on Services Computing, IEEE, Los Alamitos, USA, PP, n. 99,
p- 1-1,2014. ISSN 1939-1374.

HUANG, K.; FAN, Y.; TAN, W. An Empirical Study of Programmable Web: A Network
Analysis on a Service-Mashup System. In: International Conference on Web Services
(ICWS). Honolulu, HI: IEEE, 2012. p. 552-559.

http://floodlight.openflowhub.org/

116

IBSEN, C.; ANSTEY, J. Camel in Action. 1st. ed. Greenwich, USA: Manning Publications
Co., 2010. ISBN 9781935182368.

JAKOBSON, G. On Conceptualization of Eventualities in Situation Management. In:
International Inter-Disciplinary Conference on Cognitive Methods in Situation
Awareness and Decision Support (CogSIMA). San Diego, USA: IEEE, 2013. p. 75-82.

JAKOBSON, G. On Modeling Context in Situation Management. In: International
Inter-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision
Support (CogSIMA). San Antonio, USA: IEEE, 2014. p. 1600-166.

JAKOBSON, G.; BUFORD, J.; LEWIS, L. Situation Management: Basic Concepts and
Approaches. In: Information Fusion and Geographic Information Systems. New Yor, USA:

Springer Berlin Heidelberg, 2007, (Lecture Notes in Geoinformation and Cartography). chp. 2,
p. 18-33. ISBN 978-3-540-37628-6.

JAKOBSON, G. et al. Overview of Situation Management at SIMA 2005. In: Military
Communications Conference (MILCOM). Atlantic City, USA: IEEE, 2005. v. 3, p.
1630-1636.

JOINES, S.; WILLENBORG, R.; HYGH, K. Performance Analysis for Java Websites.
Boston, USA: Addison-Wesley Longman Publishing Co., Inc., 2002. ISBN 0201844540.

JONES, K. et al. Biology-inspired Architecture for Situation Management. In: Military
Communications Conference (MILCOM). Washington, USA: IEEE, 2006. p. 1-7.

KESHAYV, S. An Engineering Approach to Computer Networking. Boston, USA:
Addison-Wesley Longman Publishing Co., Inc., 1997.

KIERAS, D. Using the Keystroke-Level Model to Estimate Execution Times. University of
Michigan, Ann Arbor, USA, 2001.

KIM, H.; FEAMSTER, N. Improving Network Management with Software Defined
Networking. IEEE Communications Magazine, IEEE Communications Society, New York,
USA, v.51,n. 2, p. 114-119, 2013. ISSN 0163-6804.

KIM, N.; KIM, J. Building NetOpen Networking Services over OpenFlow-based
Programmable Networks. In: International Conference on Information Networking
(ICOIN). Barcelona, Spain: IEEE, 2011. p. 525 -529. ISSN 1976-7684.

KOELLE, R.; TARTER, A. Towards a Distributed Situation Management Capability for
SESAR and NextGen. In: International Conference on Networking and Services (ICNS).
Herndon, USA: IEEE, 2012. p. O6—-1-06-12. ISSN 2155-4943.

KOKAR, M. M.; MATHEUS, C. J.; BACLAWSKI, K. Ontology-based Situation Awareness.
Information Fusion, Elsevier, Amsterdam, The Netherlands, The Netherlands, v. 10, n. 1, p.
83-98, January 2009. ISSN 1566-2535.

KROHNS-VALIMAKI, H.; STRANDEN, J.; SARSAMA, J. Improving Shared Situation
Awareness in Disturbance Management. In: International Conference on Electricity
Distribution (CIRED). Stockholm, Sweden: IET, 2013. p. 1-4.

117

LAGA, N. et al. Widgets and Composition Mechanism for Service Creation by Ordinary Users.
IEEE Communications Magazine, IEEE Communications Society, New York, USA, v. 50,
n. 3, p. 52-60, 2012. ISSN 0163-6804.

LANTZ, B.; HELLER, B.; MCKEOWN, N. A Network in a Laptop: Rapid Prototyping for
Software-defined Networks. In: ACM SIGCOMM Workshop on Hot Topics in Networks.
New York, USA: ACM, 2010. p. 19:1-19:6. ISBN 978-1-4503-0409-2.

LARA, A.; KOLASANI, A.; RAMAMURTHY, B. Network Innovation using OpenFlow: A
Survey. IEEE Communications Surveys & Tutorials, [IEEE Communications Society, New
York, USA, PP, n. 99, p. 1-20, 2013. ISSN 1553-877X.

LATIH, R. et al. Whip: A Framework for Mashup Development with Block-based Development
Approach. In: International Conference on Electronics Engineering and Informatics
(ICEEI). Bandung, Indonesia: IEEE, 2011. p. 1-6. ISSN 2155-6822.

LIN, S.; GAO, Z.; XU, K. Web 2.0 Traffic Measurement: Analysis on Online Map Applications.
In: International Workshop on Network and Operating Systems Support for Digital
Audio and Video. Williamsburg, USA: ACM, 2009. p. 7-12. ISBN 978-1-60558-433-1.

LIU, X. et al. Towards Service Composition Based on Mashup. In: Congress on Services. Salt
Lake City, USA: IEEE, 2007. p. 332-339.

MAGOUTAS, B.; MENTZAS, G.; APOSTOLOU, D. Proactive Situation Management in
the Future Internet: The Case of the Smart Power Grid. In: International Conference on
Database and Expert Systems Applications (DEXA). Toulouse, France: IEEE, 2011. p.
267-271. ISSN 1529-4188.

MAIJCHRZAK, A.; MORE, P. H. B. Emergency! Web 2.0 to the rescue! Communications of
the ACM, ACM, New York, USA, v. 54, p. 125-132, April 2011. ISSN 0001-0782.

MASSIE, M. L.; CHUN, B. N.; CULLER, D. E. The Ganglia Distributed Monitoring System:
Design, Implementation And Experience. Parallel Computing, Elsevier, New York, USA,
v. 30, p. 2004, 2003.

MATSUYAMA, K. et al. A Path-based RDF Query Language for CC/PP and UAProf. In:
Pervasive Computing and Communications Workshops (PERCOMW). Orlando, USA:
IEEE, 2004. p. 3-7.

MATTOS, D. et al. OMNI: OpenFlow MaNagement Infrastructure. In: International
Conference on Network of the Future (NOF). Paris, France: IEEE, 2011. p. 52-56.

MAXIMILIEN, E. M.; RANABAHU, A.; TAI, S. Swashup: Situational Web Applications
Mashups. In: Conference on Object-oriented Programming, Systems, Languages,
and Applications (OOPSLA). Montreal, Canada: ACM, 2007. p. 797-798. ISBN
978-1-59593-865-7.

MCKEOWN, N. et al. OpenFlow: Enabling Innovation in Campus Networks. Computer
Communications Review ACM, ACM, New York, USA, v. 38, n. 2, p. 69—74, March 2008.
ISSN 0146-4833.

MILLER, G. A. WordNet: A Lexical Database for English. Communications of the ACM,
ACM, New York, USA, v. 38, n. 11, p. 39-41, November 1995. ISSN 0001-0782.

118

MONSANTO, C. et al. Composing Software-defined Networks. In: Symposium on
Networked Systems Design and Implementation (NSDI). Berkeley, USA: USENIX
Association, 2013. p. 1-14.

NATASHA, G. et al. NOX: Towards an Operating System for Networks. Computer
Communications Review ACM, ACM, New York, USA, v. 38, n. 3, p. 105-110, July 2008.
ISSN 0146-4833.

NETWORKS, I. J. Juniper Home. 2014. [Accessed may 20, 2014]. Available from Internet:
<http://www.juniper.net/us/en/products-services/network-edge-services/network-analytics/>.

NOX. NOX Home. 2013. [Accessed july 20, 2013]. Available from Internet: <http:
/[www.noxrepo.org/nox/about-nox/>.

OETIKER, T. MRTG: The Multi Router Traffic Grapher. In: Systems Administration
Conference (LISA). Boston, USA: USENIX, 1998. p. 141-148. ISBN 1-880446-40-5.

OETIKER, T. Monitoring Your IT Gear: The MRTG Story. IT Professional, IEEE Educational
Activities Department, Piscataway, USA, v. 3, n. 6, p. 44—48, november 2001. ISSN 1520-9202.

OGC. Information Technology Infrastructure Library: Service Operation Version 3.0.
London, Inglaterra: Office of Government Commerce, 2007.

OGC. Information Technology Infrastructure Library: Service Transition Version 3.0.
London, Inglaterra: Office of Government Commerce, 2007.

OGC. Information Technology Infrastructure Library (ITIL). [S.1.]: Office of Government
Commerce, 2011. Disponivel em: <http://www.itil-officialsite.com/>. Acesso em: Jan. 2011.

ORDONEZ, A. et al. Automated context aware composition of Advanced Telecom Services
for environmental early warnings. Expert Systems with Applications, Elsevier, New York,
USA, v. 41, n. 13, p. 5907 — 5916, 2014. ISSN 0957-4174.

OVIRT. OVIRT Home. 2014. [Accessed july 20, 2014]. Available from Internet:
<http://www.ovirt.org/Home>.

OZKAN, N.; ABIDIN, W. Investigation of Mashups for Managers. In: International
Symposium on Computer and Information Sciences (ISCIS). Guzelyurt, Turkey: IEEE,
2009. p. 622-627.

PATIL, A. A. et al. Meteor-s Web Service Annotation Framework. In: International
Conference on World Wide Web. New York, USA: ACM, 2004. p. 553-562. ISBN
1-58113-844-X.

PAUTASSO, C.; ZIMMERMANN, O.; LEYMANN, F. Restful Web Services vs. "Big"” Web
Services: Making the Right Architectural Decision. In: International Conference on World
Wide Web. New York, USA: ACM, 2008. p. 805-814. ISBN 978-1-60558-085-2.

PEREIRA, I.; COSTA, P.; ALMEIDA, J. A Rule-based Platform for Situation Management.
In: International Inter-Disciplinary Conference on Cognitive Methods in Situation
Awareness and Decision Support (CogSIMA). San Diego, USA: IEEE, 2013. p. 83-90.

POX. POX Home. 2013. [Accessed july 20, 2013]. Available from Internet: <https:
//github.com/noxrepo/pox>.

http://www.juniper.net/us/en/products-services/network-edge-services/network-analytics/
http://www.noxrepo.org/nox/about-nox/
http://www.noxrepo.org/nox/about-nox/
http://www.ovirt.org/Home
https://github.com/noxrepo/pox
https://github.com/noxrepo/pox

119

RAYMUNDOQO, C. R. et al. An infrastructure for distributed rule-based situation management.
In: International Inter-Disciplinary Conference on Cognitive Methods in Situation
Awareness and Decision Support (CogSIMA). San Antonio, USA: ACM, 2014. p. 202-208.

RUMBAUGH, J.; JACOBSON, I.; BOOCH, G. Unified Modeling Language Reference
Manual, The (2Nd Edition). London, United Kingdom: Pearson Higher Education, 2004.
ISBN 0321245628.

RUTHKOSKI, T. L. Google Visualization API Essentials. Birmingham, UK: Packt, 2013.
ISBN 1849694362.

SALOMONI, P. et al. Profiling Learners with Special Needs for Custom e-learning
Experiences, a Closed Case? In: International Cross-disciplinary Conference on Web
Accessibility (W4A). New York, USA: ACM, 2007. p. 84-92. ISBN 1-59593-590-8.

SALVADOR, E.; GRANVILLE, L. Using Visualization Techniques for SNMP Traffic
Analysis. In: International Symposium on Computers and Communications (ISCC).
Marrakech, Morocco: IEEE, 2008. p. 806—811. ISSN 1530-1346.

SANTANNA, J. de; WICKBOLDT, J.; GRANVILLE, L. A BPM-based Solution for
Inter-domain Circuit Management. In: Network Operations and Management Symposium
(NOMS). Maui, USA: IEEE, 2012. p. 385-392. ISSN 1542-1201.

SANTOS, C. dos et al. Botnet Master Detection Using a Mashup-based Approach. In:
International Conference on Network and Service Management (CNSM). Niagara Falls,
Canada: 1IEEE, 2010. p. 390-393.

SANTOS, C. dos et al. On Using Mashups for Composing Network Management Applications.
IEEE Communications Magazine, IEEE Communications Society, New York, USA, v. 48,
n. 12, p. 112-122, December 2010. ISSN 0163-6804.

SANTOS, C. dos et al. A data confidentiality architecture for developing management
mashups. In: International Symposium on Integrated Network Management (IM). Dublin,
Ireland: IEEE, 2011. p. 49-56.

SANTOS, C. dos et al. Performance management and quantitative modeling of IT service
processes using mashup patterns. In: International Conference on Network and Service
Management (CNSM). Paris, France: IEEE, 2011. p. 1-9.

SANTOS, C. dos et al. Quality Improvement and Quantitative Modeling - Using Mashups for
Human Error Prevention. In: IFIP/IEEE International Symposium on Integrated Network
Management (IM). Ghent, Belgium: IEEE, 2013. p. 143-150.

SIMMEN, D. E. et al. Damia: Data Mashups for Intranet Applications. In: Special Interest
Group on Management of Data (SIGMOD). Vancouver, Canada: ACM, 2008. p. 1171-1182.
ISBN 978-1-60558-102-6.

SMITH, P. et al. Management patterns: SDN-enabled network resilience management. In:
Network Operations and Management Symposium (NOMS). Krakow, Poland: IEEE, 2014.
p. 1-9.

120

SQUICCIARINI, A. C. et al. Situational Awareness Through Reasoning on Network Incidents.
In: Conference on Data and Application Security and Privacy. Santo Antonio, USA: ACM,
2014. p. 111-122. ISBN 978-1-4503-2278-2.

STIRBU, V. et al. A Lightweight Platform for Web Mashups in Immersive Mirror Worlds.
IEEE Pervasive Computing, IEEE Computer Society, Los Alamitos, USA, v. 12, n. 1, p.
34-41, 2013. ISSN 1536-1268.

TATEMURA, J. et al. Mashup Feeds: Continuous Queries over Web Services. In: Special
Interest Group on Management of Data (SIGMOD). New York, USA: ACM, 2007. p.
1128-1130. ISBN 978-1-59593-686-8.

TERESCO, J. D. Highway Data and Map Visualizations for Educational Use. In: Technical
Symposium on Computer Science Education. Raleigh, USA: ACM, 2012. p. 553-558. ISBN
978-1-4503-1098-7.

TIAN, S.; WEBER, G.; LUTTEROTH, C. A Tuplespace Event Model for Mashups. In:
OZCHI. New York, USA: ACM, 2011. p. 281-290. ISBN 978-1-4503-1090-1.

TOSTI, E.; SMARI, W. Sensors integration in a grid-based architecture for emergency
management systems. In: International Conference on Digital Ecosystems and
Technologies for Complex Systems, Environment, and Service Engineering (DEST).
Dubai, United Arab Emirates: IEEE, 2010. p. 435-442. ISSN 2150-4938.

ULC, S. I. Sandvine Home. 2014. [Accessed may 20, 2014]. Available from Internet:
<https://www.sandvine.com/products/network-analytics/>.

VYATTA. Vyatta Home. 2013. [Accessed july 20, 2013]. Available from Internet:
<http://www.vyatta.org/>.

WANG, J. et al. Application of Server Virtualization Technology based on CitriX XenServer
in the Information Center of the Public Security Bureau and Fire Service Department. In:
International Symposium on Computer Science and Society (ISCCS). Kota Kinabalu,
Malaysia: IEEE, 2011. p. 200-202.

WATSON, J. VirtualBox: Bits and Bytes Masquerading as Machines. Linux Journal, Belltown
Media, Houston, TX, v. 2008, n. 166, February 2008. ISSN 1075-3583.

WEISS, M.; GANGADHARAN, G. R. Modeling the Mashup Ecosystem: structure and
growth. R & D Management, Blackwell Publishing Ltd, Oxford, UK, v. 40, n. 1, p. 4049,
2010. ISSN 1467-9310.

YU, J. et al. Understanding Mashup Development. IEEE Internet Computing Magazine,
IEEE Computer Society, Los Alamitos, USA, v. 12, n. 5, p. 44-52, September-October 2008.
ISSN 1089-7801.

ZAALOUK, A. et al. OrchSec: An orchestrator-based architecture for enhancing network-
security using Network Monitoring and SDN Control functions. In: Network Operations and
Management Symposium (NOMS). Krakow, Poland: IEEE, 2014. p. 1-9.

https://www.sandvine.com/products/network-analytics/
http://www.vyatta.org/

121

APPENDIX A - SCIENTIFIC PRODUCTION

The research work presented in this thesis was reported to the scientific community through
paper submissions to renowned conferences and journals. The process of doing research, sub-
mitting paper, gathering feedback, and improving the work helped to achieve the maturity

hereby presented.

A.1 Papers: accepted and on reviewing

The list of accepted papers to date is as follows.

1. OSCAR MAURICIO CAICEDO R., Carlos Raniery P. dos Santos, Arthur Selle Jacobs,
Lisandro Z. Granville. Monitoring Virtual Nodes Using Mashups. Computer Networks
(COMNET), v. 64, pp. 55-70, May 2014. ISSN 1389-1286.

e Status: Published.
e Qualis: Al.
e Contribution: Mashment System Architecture.

e Abstract: The use of virtualization technologies is one of major trends in computer
networks. Up to now, most of monitoring tasks on Virtual Nodes, made up of sev-
eral system virtualization environments and network virtualization environments,
require manual intervention via non-standardized interfaces. Although monitoring
based on proprietary command lines and graphical user interfaces may be enough
for homogeneous Virtual Nodes, it is certainly not suitable for monitoring, in an
integrated way, Virtual Nodes in which, the aforementioned environments use het-
erogeneous virtualization technologies, both in networks and systems. In this paper,
we demonstrate that the mashup technology can be used to carry out the integrated
monitoring of heterogeneous Virtual Nodes. In this sense, we present a mashup-
based architecture targeted to monitor such type of Virtual Nodes, we introduce a
reference implementation of the mashup-based architecture, and we develop on it,
three monitoring mashups. The quantitative assessment of these mashups corrobo-
rates that they generate low traffic and have short response time. Furthermore, their
qualitative assessment reveals that it is feasible to provide flexible and extensible

mashups for monitoring Virtual Nodes.

122

2. OSCAR MAURICIO CAICEDO R., Felipe Estrada-Solano, Lisandro Z. Granville.

An Approach to Overcome the Complexity of Network Management Situations by
Mashments. The 28th IEEE International Conference on Advanced Information Net-
working and Applications (AINA 2014), 13-16 May 2014, Victoria, Canada.

e Status: Published.
e Qualis: A2.

e Contribution: Process to develop and lunch mashments, Mashment System Archi-

tecture, and complexity assessment model.

Abstract: The work performed by network administrators to address sudden, dy-
namic, heterogeneous, and time specific situations that happen in the network man-
agement domain is complex. In this paper, we introduce an approach that allows net-
work administrators to overcome the complexity of handling these network manage-
ment situations. The approach is made up of Mashments that are special mashups
used to cope with nmsits, the process to develop and execute Mashments, and the
Mashment Maker that supports such model and process. We use IT Service Man-
agement metrics to evaluate our approach, measuring the complexity of facing, with
and without the Maker, a specific nmsit that occurs in several networks based on the
Software Defined Networking paradigm. The evaluation results demonstrate that
the complexity decreases when network administrators use our approach to handle

nmsits.

3. OSCAR MAURICIO CAICEDO R., Felipe Estrada-Solano, Lisandro Z. Granville. A

Mashup Ecosystem for Network Management Situations. The IEEE Global Commu-
nications Conference (GLOBECOM 2013), 9-13 December 2013, Atlanta, United States.
e Status: Published.
e Qualis: Al.

e Contribution: Concepts of mashment and nmsit, Mashment Ecosystem, and time-

consuming assessment model.

Abstract: Current network management approaches and their implementations are
not intended to address dynamic situations that need rapid delivery of good-enough
and comprehensive solutions. In this paper, we introduce a novel mashup ecosys-
tem, called Mashment Ecosystem, that allows Network Administrators to conduct
on a Mashment Maker the activities and interactions necessary to provide Mash-
ments. Mashments are mashups aimed to tackle network management situations.
We evaluate the Mashment Ecoystem by estimating with the Keystroke-Level Model
and measuring in a test scenario the time that Network Administrators take to per-
form the activities of creating, launching, and publishing Mashments. Similarly, we

evaluate the time for retrieving information about a network management situation

123

by using or not Mashments. The evaluation results corroborated that Network Ad-
ministrators, in our ecosystem, need short-time to deal with network management

situations.

4. OSCAR MAURICIO CAICEDO R., Felipe Estrada-Solano, Lisandro Z. Granville. A
Mashup-based Approach for Virtual SDN Management. The 37th IEEE Annual Inter-
national Computer Software & Applications Conference (COMPSAC 2013), 22-26 July
2013, Kyoto, Japan.

e Status: Published.
e Qualis: A2.
e Contribution: Mashment System Architecture.

e Abstract: The Software Defined Networks paradigm aided by the Network Virtual-
ization is a key driver to cope the Internet ossification. There are different proposals
to deploy this paradigm, but there is not an integrated or standardized way for the
management of networks built with such proposals. In this sense, the network man-
agement becomes too complex because multiple solutions must be used by Network
Administrators to perform their tasks. In this paper, we introduce a mashup-based
approach that allows Network Administrators to customize and combine manage-
ment solutions, in order to they build composite applications aiming the integrated
management of Virtual Software Defined Networks in heterogeneous environments.
We evaluate our approach by building a SDN Mashup for the management of a
network slice that uses three distinct Network Operating Systems and by running

performance tests, corroborating that the mashup built has small response time.

There is other paper that is still under reviewing.

1. OSCAR MAURICIO CAICEDO R., Felipe Estrada-Solano, Vinicius Guimaraes, Liane
M. R. Tarouco, Lisandro Z. Granville. Rych Dynamic Mashments: An Approach for
Network Management Based on Mashups and Situation Management. IEEE Trans-
actions on Computers (TC). ISSN 0018-9340.

e Status: Submitted.

e Qualis: Al.

e Contribution: Mechanisms for automatic recognition of nmsits and dynamic com-
position of mashments.

e Abstract: In the network management domain, large research efforts have been
made to automate and facilitate the daily tasks conducted by network administra-

tors. However, so far, none of these efforts has carried out network management

124

using jointly the Situation Management discipline and the mashup technology. This
paper introduces an approach called Rich Dynamic Mashments that aim to deal in an
effective way with unexpected, dynamic, and heterogeneous situations (named nm-
sits - for instance, a sudden packet loss in a core router of a network backbone and
an unforeseen slowness in data transmission over a link between two virtual routers)
faced by network administrators in their everyday work. The proposed approach is
formed by mechanisms for automatic recognition of nmsits and dynamic composi-
tion of mashments (tunable mashups that use Situation Management for conducting
network management tasks) and an architecture supporting these mechanisms. We
further implement a prototype of the proposed architecture and conduct an exten-
sive analysis on networks based on the Software Defined Networking paradigm.
The analysis results have provided directions and evidences that corroborate the ef-
fectivity, in terms of time-recognition, time-composition, and time-consuming, on

using Rych Dynamic Mashments for network management.

A.2 Collaborations: accepted and on reviewing

There is other peer-reviewed publication that, although not directly related to this thesis, is

linked to the design of network management solutions.

1. Wanderson Paim de Jesus, Ricardo L. dos Santos, OSCAR MAURICIO CAICEDO
R., Lisandro Zambenedetti Granville. A Platform for Programmable Virtual Network
Management. The 31st Brazilian Symposium on Computer Networks and Distributed
Systems (SBRC 2013), 6-10 May 2013, Brasilia, Brazil.

e Status: Published.

e Qualis: B2.

e Abstract: With the evolvement of virtualization and network programming tech-
niques, high-level applications can be used to define the behavior of network traffic
while keeping isolation. However, to ensure a harmonious relationship between
users, network applications and virtual networks, considerable management efforts
are needed. In this paper we propose the ProViNet platform, a solution for manag-
ing the deployment of network applications in Programmable Virtual Networks. In
addition to the management facilities, ProViNet contributes with an architecture that
allows sharing the control plane of PVN in a scalable way. During the development
of this work we identified the need for a standard representation of programmable
virtual infrastructures, so it is also proposed an extension of the programmable vir-

tual networks description language VXDL. In order to verify the feasibility of the

125

proposed platform, we implemented a prototype, which is analyzed and evaluated

in this paper.

There are other two collaboration papers that are still under reviewing.

1. Jose A. Ordoiies, Vidal Alcazar, OSCAR MAURICIO CAICEDO R, Paolo Facarin,
Juan C. Corrales, Lisandro Z. Granville. Towards Automated Composition of Conver-
gent Services: a Survey. Computer Communications (COMCOM), ISSN 0140-3664.

e Status: Submmitted.

e Qualis: A2.

e Abstract: A convergent service is defined as a service that exploits the convergence
of communication networks and at the same time takes advantage of features of the
Web. Nowadays, building up a convergent service is not trivial, because although
there are significant approaches that aim to automate the service composition at
different levels in the Web and Telecom domains, selecting the most appropriate
approach for specific case studies is complex due to the big amount of involved
information and the lack of technical considerations. Thus, in this paper, we iden-
tify the relevant phases for convergent service composition and explore the existing
approaches and their associated technologies for automating each phase. For each
technology, the maturity and results are analysed, as well as the elements that must
be considered prior to their application in real scenarios. Furthermore, we provide

research directions related to the convergent service composition phases.

2. Ricardo L. dos Santos, OSCAR MAURICIO CAICEDO R., Juliano A. Wickboldt,
Lisandro Z. Granville. App2net: A Platform to Transfer and Configure Applications
on Programmable Virtual Networks. The IEEE International Conference on Commu-
nications (ICC 2015), 8-12 June 2015, London, United Kindong.

e Status: Submitted.

e Qualis: A2.

e Abstract: In programmable virtual networks, simple tasks, like installing a software,
can be extremely complex. This complexity occurs mainly because the code trans-
ference and initial functional settings in network execution environments are not
automated. In addition, the same tasks have different requirements in each service
lifecycle stage. In this sense, we propose the App2net platform that allows to trans-
fer and configure network applications over programmable virtual networks with
heterogeneous execution environments. We also propose a taxonomy for grouping

code transfer techniques and, based on such techniques, we develop models for code

126

transfer. A prototype has been implemented and tested on realistic network topolo-
gies commonly found on the Internet. Results allow us to identify which models
improve the code transfer and consume more resources, according to the require-

ments of service lifecycle stages and realistic network topologies.

Computer Networks 64 (2014) 55-70 127

Contents lists available at ScienceDirect

Mput
et

Computer Networks sk

journal homepage: www.elsevier.com/locate/comnet

Monitoring Virtual Nodes using mashups

@ CrossMark

Oscar Mauricio Caicedo Rendon *™*, Carlos Raniery Paula dos Santos?, Arthur Selle Jacobs?,
Lisandro Zambenedetti Granville **

4 Institute of Informatics, Federal University of Rio Grande do Sul, Av. Bento Gongalves, 9500 - Porto Alegre, RS, Brazil
b Telematics Department, University of Cauca, St 5 # 4 - 70, Popaydn, Cauca, Colombia

ARTICLE INFO ABSTRACT

Article history:

Received 1 May 2013

Received in revised form 6 December 2013
Accepted 5 February 2014

Available online 13 February 2014

The use of virtualization technologies is one of major trends in computer networks. Up to
now, most of monitoring tasks on Virtual Nodes, made up of several system virtualization
environments and network virtualization environments, require manual intervention via
non-standardized interfaces. Although monitoring based on proprietary command lines
and graphical user interfaces may be enough for homogeneous Virtual Nodes, it is certainly
not suitable for monitoring, in an integrated way, Virtual Nodes in which, the aforemen-
tioned environments use heterogeneous virtualization technologies, both in networks
and systems. In this paper, we demonstrate that the mashup technology can be used to
carry out the integrated monitoring of heterogeneous Virtual Nodes. In this sense, we
present a mashup-based architecture targeted to monitor such type of Virtual Nodes, we
introduce a reference implementation of the mashup-based architecture, and we develop
on it, three monitoring mashups. The quantitative assessment of these mashups corrobo-
rates that they generate low traffic and have short response time. Furthermore, their
qualitative assessment reveals that it is feasible to provide flexible and extensible mashups
for monitoring Virtual Nodes.

Keywords:

Mashups

Monitoring mashups
Network virtualization
System virtualization
Virtual Node

Virtual Node Wrapper

© 2014 Elsevier B.V. All rights reserved.

1. Introduction Administrator competences), who are many times forced

to employ multiple monitoring tools, which may lead to

Although the research on network virtualization is quite
active today [1], little research was found concerning the
integrated monitoring of physical and virtual resources
that form part of Virtual Nodes. In order to monitor virtual
resources of systems and networks, virtualization vendors
are primarily providing proprietary and incompatible
Command Line Interfaces (CLIs) and Graphical User Inter-
faces (GUISs). This lack of compatibility and standardization
inevitably hinders the work of Virtual Infrastructure
Administrators (including both network and system

* Corresponding authors at: Institute of Informatics, Federal University
of Rio Grande do Sul, Av. Bento Gongalves, 9500 Porto Alegre, RS, Brazil.
Tel.: +55 5130281095 (O.M.C. Rendon).

E-mail addresses: omcrendon@inf.ufrgs.br (O.M.C. Rendon), crpsantos@
inf.ufrgs.br (C.R.P. dos Santos), asjacobs@inf.ufrgs.br (A.S. Jacobs), granville@
inf.ufrgs.br (L.Z. Granville).

http://dx.doi.org/10.1016/j.comnet.2014.02.007
1389-1286/© 2014 Elsevier B.V. All rights reserved.

serious consequences (e.g., erroneous actions and increase
of operating costs) for the organizations.

Even though monitoring based on proprietary and
non-standardized CLIs and GUIs may be enough to
homogeneous Virtual Nodes, it is certainly not suitable
for monitoring, in an integrated way, Virtual Nodes formed
by different Virtual Management Interfaces (VMIs), System
Virtualization Environments (SVEs) [2], and Network
Virtualization Environments (NVEs) [3]. For instance,
Virtual Infrastructure Administrators are forced to employ
multiple tools to monitor a Virtual Node made up of: (i)
one or more virtual machines running on Xen, VMware,
and VirtualBox (e.g., Citrix XenCenter and VMware vCenter
Operations Management Suite); and (ii) several virtual
network elements, such as Open vSwitch (e.g., sFlowTrend)
and Vyatta Router (e.g, NetFlow Analyzer). This

56 128

multiplicity of tools leads to an overload on the monitoring
tasks to be conducted by Virtual Infrastructure Administra-
tors in the Virtual Nodes [4].

In our previous work [5], we analyzed the feasibility of
using the mashup technology to manage traditional com-
puter networks. It was observed that mashups are able to
integrate information from multiple network resources,
such as devices and services. We concluded that mashups
enable network Administrators to accomplish very specific
tasks (e.g., botnet detection) [6] and to create customized
management applications (e.g., displaying the traffic of
the border gateway protocol between two autonomous
systems) [7]. Notwithstanding all the benefits of using
mashups in network management, we have not observed
their employment for monitoring the aforementioned Vir-
tual Nodes yet.

In this paper, we extend our previous work in order to
provide a mashup-based mechanism able to monitor heter-
ogeneous Virtual Nodes. We argue that the composition
model of mashups allows to deal with the heterogeneity,
complexity, and stiffness of any VMI, SVE, and NVE. This
model enables any Virtual Infrastructure Administrator to
adapt, customize, and combine existing monitoring tools
in order to improve system and network monitoring tasks
on virtualized environments. In addition, the employment
of mashups also supports the integrated monitoring of both
system and network virtual elements, abstracting all tech-
nical details related to the interaction with these elements.

The key contributions of our research are:

e Demonstrate that it is feasible the use of the mashup
technology for monitoring, in an integrated way, heter-
ogeneous Virtual Nodes made up of several SVEs, NVEs,
and their corresponding VMISs.
Present a reference implementation of a mashup-based
architecture for integrated monitoring of Virtual Nodes
in which, the above mentioned environments use heter-
ogeneous virtualization technologies, both in networks
and systems.
e Demonstrate that, in realistic scenarios, monitoring
mashups - built by using the implemented architecture
- are flexible, extensible, do not consume bandwidth
intensively, and have short response times.

The remainder of this paper is organized as follows. In
Section 2, we present the mashup technology background.
In Section 3, we review the related work about the virtual
network monitoring. In Section 4, we introduce a mashup-
based architecture for integrated monitoring of Virtual
Nodes. In Section 5, we present the reference implementa-
tion of such an architecture. In Section 6, we describe and
discuss the case study raised to evaluate our proposal. In
Section 7, we provide some conclusions and implications
for future work.

2. Mashups background

Mashups are Web applications created by combining
different resources available on the Web [8]. They have
been considered a fundamental piece of the Web 2.0,
allowing end-users, who are not expert programmers, to

O0.M.C. Rendon et al./ Computer Networks 64 (2014) 55-70

create their own customized applications. Furthermore,
mashups also encourage reusing pre-existing applications
and cooperation among end-users.

Two important things contributed to dissemination of
mashup technology usage. First, the number of available
services and online APIs has increased, and second, new
usability-oriented technologies (e.g., AJAX and Macromedia
Flash) allowed the creation of more dynamic applications
and sophisticated GUIs [9,10]. Online APIs and usability-
oriented technologies are the fundamental basis for sup-
porting mashups creation.

The mashup technology is mainly characterized by a sim-
ple composition model, which enables customized applica-
tions to be easily and rapidly developed and executed by
end-users [11,12]. The use of the mashup technology en-
ables, for example, the integration of information from mul-
tiple sources at various levels (i.e., data, presentation, and
logic). The process of developing new mashups is conducted
by mashup systems, which are also responsible for storing
and executing these mashups. Mashup systems employ
high-level abstractions in order to hide technical details for
end-users. Another important characteristic of mashup sys-
tems is to support the reuse and extending of existing com-
positions for generating more sophisticated applications.

Nowadays, mashups are being used in many and dis-
tinct domains [13], ranging from simple weather reports
[14] to project [15] and network management [5]. In the
network management domain, for example, we have
observed in a previous work [5] that network Administra-
tors rely on several incompatible tools to manage their net-
works. Considering that such tools usually expose their
results through Web interfaces, these results can be in-
cluded as part of more complex management mashups.
For example, graphs of the Multi Router Traffic Grapher
(MRTG) could be displayed within a Google Maps Web
page in order to create a monitoring tool able to display
the current network status taking into account the geo-
graphical location of network elements. Mashups also en-
able network Administrators to address punctual needs,
such as the exhibition of the border gateway protocol traf-
fic exchanged between two autonomous systems [7], that
otherwise would be very costly to resolve.

Despite all the benefits of using mashups in network
management, their employment for monitoring virtual
environments has not been observed yet. Thus, in this pa-
per, we focus on analyzing the feasibility of using mashups
to integrate disparate management information sources in
virtualized environments of systems and networks. We
highlight that our goal is not to observe how easy the
employment of mashups for management is, because the
easy-of-use is an intrinsic characteristic [11,12,16] of
mashups. In order to define a mashup-based solution for
monitoring Virtual Nodes, we review, in the next section,
some of most important virtual network monitoring solu-
tions found in the literature.

3. Virtual network monitoring

Although issues such as the heterogeneity, complexity,
and stiffness of nodes monitoring on virtual environments

O0.M.C. Rendon et al./ Computer Networks 64 (2014) 55-70

have not been directly addressed by mashups, some
research has tackled one or more of these issues. Most sig-
nificant development regarding research on virtual net-
work monitoring are reviewed in this section.

The Web-based customer management system [17] is
based on a two-layer architecture, targeted to monitor
and control Virtual Private Networks (VPNs). The resource
management layer hides the physical network elements
through agents that use MIBLets (a logical part of a man-
agement information base). In the network management
layer, by interacting with agents, a Customer Network Re-
source Management System (CNRMS) manages VPNs.
Although CNRMS is not directly intended for monitoring
virtual networks or systems, it is discussed because of its
interesting proposal for hiding managed resources.

Lattice [18] is a framework for monitoring virtual net-
work resources, such as virtual machines, virtual routers,
and virtual service elements. This framework focuses on
providing functionalities to properly monitor any virtual
resource that moves from a virtual system to another. A
Lattice prototype was developed for monitoring virtual
machines that execute under hypervisor (ie., virtual
machine manager) control. An important shortcoming of
the Lattice framework is that it is centered on network pro-
grammers. Therefore, it was not conceived to allow its
adaptation or customization by network Administrators.
Moreover, features such as flexibility and extensibility
were not considered in Lattice either.

Libvirt and Libvirtd [19] are aimed to allow the imple-
mentation of several architectures for remote management
of arbitrary virtualization technologies. Drivers forming an
abstraction layer of virtual environments are provided, as
an Open Source API, written in the C Language. At first,
commercial virtualization platforms, such as VMware ESX
and Microsoft Hyper-V, were supported by the Libvirt
library. Afterwards, other platforms as OpenVZ, VirtualBox,
and KVM/QUEMU were also covered. Libvirt is centered on
network programmers and not on network Administrators.
As a consequence, the Libvirt customization and extensi-
bility is constrained because it cannot be easily integrated
or extended by network and system Administrators.

The Information Management Overlay (IMO) [20] sys-
tem is aimed to allow the efficient and scalable collection
of data about a running virtual network. This system is
based on a decentralized architecture formed by Informa-
tion Collection Points, Information Aggregation Points,
and a Controller, which are able to monitor virtual network
elements (e.g., routers and switches running on a virtual
machine). IMO is a low-level monitoring solution that does
not offer a front-end. In fact, IMO Controller was conceived
to be handled by network programmers and not by net-
work Administrators. Thus, only network programmers
can directly use, customize, extend, and enhance the IMO
system.

In-Network Management (INM) is a clean-slate pro-
posal for distributed management of future computer net-
works (e.g., virtual and cloud networks). This proposal
defines conceptual elements to facilitate the embedding
of management functionalities inside the network and its
devices. INM concepts were used to implement two proto-
types: (i) the first aimed to supervise peer-to-peer (P2P)

129 57

environments [21]; and (ii) the second to monitor, using
a GUI, the performance of a network that supports the Net-
work as a Service (NaaS) concept [22]. Up to now, there is
no prototype of INM targeted to integrated monitoring of
nodes on virtual environments.

It is important to highlight that traditional OpenSource
monitoring solutions, such as Nagios [23], MonalLisa [24]
and Ganglia [25], use diverse plug-ins to supervise differ-
ent network elements like virtual switches and virtual
machines. Unlike, we propose the use of the mashup tech-
nology to allow Administrators (networks, systems, and
virtual infrastructures) to extend and improve their work-
space by themselves.

4. Architecture for Virtual Nodes Monitoring based on
mashups

Profiting the main characteristics of mashups, we pres-
ent an architecture for monitoring heterogeneous Virtual
Nodes that support the integration of management infor-
mation from disparate sources. We define such an archi-
tecture by using a layered architectural pattern [26]. In
this way, in our architecture, the lower layer provides ser-
vices to the upper layer through decoupled interfaces, and
the upper layer, in turn, consumes services from the lower
layer. Fig. 1 depicts layers and elements of the mashup-
based architecture that is structured as follows: a Managed
Resources Layer, an Adaptation Layer, a Composition Layer,
and a Presentation Layer. In a broad sense, the complexity
of the Managed Resources Layer is hidden by the Adapta-
tion Layer. The Composition Layer allows to build up mon-
itoring mashups for Virtual Nodes, mainly through
combining resources of the Adaptation Layer and the Inter-
action Elements. The monitoring mashups are displayed
and executed in the Presentation Layer.

In the next subsections, we first present the actors that
represent the roles played by human beings involved in the
monitoring of Virtual Nodes. Second, we introduce the lay-
ers and elements used to accomplish such a monitoring.

4.1. Actors

There are six actors involved in the monitoring of Vir-
tual Nodes. They are the Mashup Resource Builder, the
Mashup Developer, the Mashup Analyst, the Network
Administrator, the System Administrator, and the Virtual
Infrastructure Administrator.

The Mashup Resource Builder is expected to be a T.I.
Developer with significant knowledge about Web pro-
gramming, network monitoring, and virtualization solu-
tions. This actor is in charge of creating and publishing
wrappers of virtual resources to be monitored. A wrapper
[27] permits accessing a resource, retrieving and filtering
data, and presenting such data in a well-known format.
Hence, wrappers are used to deal with the heterogeneity
of monitored resources. If a new virtualization technology
arises, the Mashup Resource Builder must develop and de-
ploy the corresponding wrapper, allowing such type of
technology can be monitored through mashups.

58 130

O0.M.C. Rendon et al./ Computer Networks 64 (2014) 55-70

Presentation
Layer JSON/HTTP JSON/HTTP Administrators
Mashup Mashup of
== Development Runtime &= Networks,
Environment Environment Systems, and
Virtual
Mashup
Developer Infrastructures
Composition
Layer Mashup System
| Publisher | P —
Composer XML
<o Engine Interaction Elements -
XML HTTP Devices
o s Repository
7 L o
i ‘ C_ o HTTP
Virtual Node p =4 5 XML
LUEIIER - w JSON
Repository
Mashups
Repository
7;&d;;;t;t;o?177777777777777777777777777$F’fﬂ° 7777777777777777 %ﬁﬁ 7777777777777777777777777777
Layer Virtual Node Wrapper Virtual Node Wrapper
Development I UVirtualWrapper I UVirtualWrapper | Development
-y i Environment
Mashu Environment - -
Resour cg I VirtualWrapper | VirtualWrapper I
Builder
Managed ' R 717 ~ Proprietary, SNMP, ... \i 77777777
ﬁesources Virtual Node Virtual Node
i -
. | Virtual Management Interface | Virtual Management Interface |
I System Virtualization Environment I Network Virtualization Environment I

Fig. 1. Architecture for Virtual Nodes Monitoring based on mashups.

The Mashup Analyst is expected to be a T.I. Professional
with excellent skills about software engineering and com-
puter networks. This actor is in charge of defining require-
ments for monitoring Virtual Nodes by using mashups. The
mashups Analyst translates the necessities of Administra-
tors (networks, systems, and virtual infrastructures) for
both the Mashup Resource Builder and the Mashup Devel-
oper. Some examples of monitoring requirements are: (i)
adding a new system virtualization technology, (ii) incor-
porating a novel network virtualization technology, (iii)
improving a supervision functionality; and (iv) appending
a modern and integral GUI.

The Mashup Developer is responsible for creating and
publishing monitoring mashups by combining resources:
visual elements, data sources, control elements, and even
mashups. These resources may be internal or external. A
resource is external if it is located in a third-party, other-
wise it is internal. An example of internal resource is a vi-
sual element that represents a specific virtualization
technology. An external resource, for instance, is a Google
or Yahoo library used online to display a visual interface,
such as an organizational chart or a map. Accordingly,
the Mashup Developer would need to have technical skills
on Web programming.

The Network Administrator is in charge of both the mon-
itoring of NVEs by using mashups, and the development of

mashups to assist his/her daily activities. These mashups
may be composed of basic resources (e.g., datasources,
GUIs, and Web Services) and mashups provided by the
Mashup Developer. To accomplish that composition, the
Network Administrator does not need technical skills
about Web programming, since mashups tools function
in a high-level abstraction.

The System Administrator is responsible for two things,
the monitoring of SVEs by means of mashups and the cre-
ation of mashups to support his/her everyday work. Like-
wise to the Network Administrator, the System
Administrator does not require technical skills to compose
mashups.

The Virtual Infrastructure Administrator is in charge of
both, the monitoring of Virtual Nodes (involving SVEs
and NVEs) through the use of mashups and the building
up of mashups to facilitate his/her quotidian work. The Vir-
tual Infrastructure Administrator does not need technical
knowledge to create monitoring mashups.

It is noteworthy that, later (Section 5), we provide to
Mashup Developers, Network Administrators, System
Administrators, and Virtual Infrastructure Administrators
a customizable, user-friendly, and high-level development
environment. Using such environment, these actors can
quickly and conveniently create, adapt, and execute any
monitoring mashup. In this sense, the above mentioned

O0.M.C. Rendon et al./ Computer Networks 64 (2014) 55-70

actors are able to extend their monitoring solutions
(improving their workspace) devoted to Virtual Nodes.

4.2. Layers and elements

Table 1 introduces the most important abbreviations
used in the description of the proposed architecture. In
the following paragraphs, the architectural layers and ele-
ments are described from bottom to top.

Fig. 2 depicts, using the Common Information Model
(CIM), the Virtual Nodes that are located in the Managed
Resources Layer. In a general way, Virtual Nodes are made
up of SVEs/NVEs and their corresponding VMIs. According
the Distributed Management Task Force (DMTF), a SVE [2]
is formed by: one or more Host Computer Systems (HCSs),
a Virtualization Layer (VL) (e.g., Xen, VMware, VirtualBox,
and OpenVZ), and Hosted Virtual Computer Systems
(HVCSs). HCS supplies physical resources and VL manages
the lifecycle of one or more HVCS. HVCS is composed of vir-
tual resources allocated or assigned by VL from HCS.

In our architecture, we consider two types of Hosted
Virtual Computer Systems: (i) NVEs such as the Vyatta
Network OS that may be installed on VMware and Xen-
Server, the Open vSwitch that may be operated on Virtual-
Box and Proxmox VE, and the Mininet OpenFlow VM that
works on QUEMU and KVM; and (ii) Virtual Machines of
traditional operating systems as Linux and Windows.

A VMI represents one or more tailored APIs used to
manage SVEs/NVEs and their constitutive elements. For

Table 1
Abbreviations.

131 59

instance, in the case of XenServer, the VMI can be proprie-
tary (e.g., XenSDK supplied by Citrix Systems) and/or open
(e.g., Libvirt, a free software available under the GNU Lesser
General Public License - GPL). Another example of VMI is
the Remote Access API of the Vyatta Network OS.

Fig. 3 presents the Adaptation Layer that hides the com-
plexity and heterogeneity of the Managed Resources Layer,
using a collection of Virtual Node Wrappers. Such collec-
tion is in charge of grouping, integrating, and homogeniz-
ing the VMIs. The interaction between each Virtual Node
Wrapper and its VMI internally occurs in a Virtual Wrapper
and depends on protocols (e.g., SNMP, SOAP, HTTP, and
Proprietary) provided by virtualization vendors of net-
works and systems for monitoring their solutions. The
Adaptation Layer interacts via the HyperText Transfer
Protocol (HTTP) and/or HTTP Secure (HTTPS) with the
Composition Layer.

The Virtual Node Wrappers are structured like services,
based on the Representational State Transfer (REST)
architectural model, that communicate following a re-
quest-response model. In REST [28], services are repre-
sented by Uniform Resource Identifiers (URIs). These URIs
are invoked through HTTP(S) requests, such as GET and
POST. Likewise, the replies of every service are HTTP(S)
responses.

The Adaptation Layer is able to reply to HTTP(S)
requests from the Composition Layer. Specifically, these re-
quests are targeted to URIs pointing to Virtual Wrappers
(i.e., implementations of REST-based services) that offer

Abbreviation Meaning

Explanation

HVCS Hosted Virtual Computer System
UHVCS URI of Hosted Virtual Computer System
HCS Host Computer System

UHCS URI of Host Computer System

NVE Network Virtualization Environment
SVE System Virtualization Environment

VMI Virtual Management Interface

VL Virtualization Layer

It is any virtual machine, virtual network, or virtual network element
A URI that points to a monitoring operation on a HVCS

A host supporting hosted virtual computer systems

A URI that targets a monitoring operation on a HCS

It is any network built by using virtualization techniques

It is any system built through the use of virtualization techniques

An interface to manage NVEs and/or SVEs

A virtualization solution, such as Xen, VMware, VirtualBox, and so on

Virtual Node 1 Virtual Node n
Virtual Management Interface Virtual Management Interface
(VMII) (VMI)
I
System Virtualization Environment - NVE:
(SVE) i Nt el | Hosted Virtual Computer System
Virtual Machine: L VitualMemory | GiES)
Hosted Virtual Computer System | VirtualNetworkInterface | N—
(HVCS) T ualDiok Virtualization Layer
| -| irtualDis I (VL)
i izati Processor ‘
VII’tualIZ?/tII_OH Layer M | Host Computer System
(|) H Memory | (HCS)
Host Computer System —H___ Networkinterface | ErEeo
1) H Disk] Resources
Layer

Fig. 2. Virtual Nodes in the Managed Resources Layer - Adapted from DMTF.

60 132 0.M.C. Rendon et al./Computer Networks 64 (2014) 55-70

Mashup System Composition
Layer
¢ HTTP(S) : HTTP(S)
Virtual Node Wrapper Virtual Node Wrapper
UVirtualWrapper i UVirtualWrapper

URI of HVCS URI of HCS | URIof HVCS URI of HCS Adaptation
(UHVCS) (UHCS) ‘ i (UHVCS) (UHCS) Layer

\ [{ 1

| Virtual Wrapper | | Virtual Wrapper |

A
v Proprietary, SNMP

1 Proprietary, SNMP Managed

Virtual Node

Virtual Node Resources

Layer

Fig. 3. Virtual Node Wrappers model.

monitoring operations. Each URI that targets a monitoring
operation on a Host Computer Systems is called UHCS. An
example of UHCS is the URL http://MashupSys/VNWrap-
per/typeSve/getHCS. With this URL, the Adaptation Layer
offers to the Composition Layer the list of Host Computer
Systems. The Virtual Wrapper, pointed by the above UHCS,
provides such a list with the next structure codified on the
JavaScript Object Notation (JSON): [{IDHCS :id, NAME :
name, IP : ip, OS : os},. .., {IDHCS : id, NAME : name, IP : ip,
OS : os}]. Where, IDHCS, NAME, IP, and OS represent the
identifier, the name, the IP address, and the Operating
System of Host Computer System. Capital and lowercase
letters indicate names and values of J[SON object proper-
ties, respectively.

Each URI that points to a monitoring operation on a
Hosted Virtual Computer System is named UHVCS. The
set formed by UHCS and UVHCS is called UVirtualWrapper.
An example of UHVCS is the URL http://MashupSys/VNW1-
apper/typeSve/getInfHVCS. Through this URL, the Adapta-
tion Layer offers to the Composition Layer general
information about a specific Hosted Virtual Computer Sys-
tem. The Virtual Wrapper, pointed by the above UHVCS, re-
turns the information as a JSON object with the following
structure: [{IDHVCS : id, NAME : name, OS : os, STATE : st,
MEM : memory, CPU : ncpus, LASTUPD : dateupd}]. Here,
capital and lowercase letters also indicate names and
values of JSON object properties. Furthermore, IDHVCS,
NAME, OS,STATE,MEM, CPU, and LASTUPD represent the
identifier, the name, the Operating System, the State (run-
ning, turned off, and so on), the assigned static memory,
the assigned CPUs number, and the date of last update of
Hosted Virtual Computer System, respectively.

The Composition Layer is responsible for integrating,
building, and offering Virtual Node monitoring resources
to the Presentation Layer. The Composition Layer is formed
by the Mashup System, the Virtual Node Wrappers Repos-
itory, the Mashups Repository, and the Devices Repository.
The Mashup System is made up of the Composer, the En-
gine, the Publisher, and the Interaction Elements (i.e., Vi-
sual, Data, Control, and Mashup). The Composer
coordinates the invocation of the Interaction Elements
and performs Operations (e.g., sorting, filtering, and aggre-
gating) over the information retrieved (JSON Objects) in
such invocations. A Visual Element (e.g., Google Chart and

Yahoo Map libraries) is an API that provides mechanisms
to build simple and efficient GUIs. A Data Element repre-
sents a mashup datasource (e.g.,, a document containing
monitoring information about a virtual router). A Control
Element, for instance a management dashboard, deter-
mines when, where, and how the Data, Visual, Operation,
and mashups are combined and triggered.

The Engine is the lifecycle manager of monitoring
mashups and the Mashup System as a whole. In this way,
when an initial request to execute a particular monitoring
mashup is received, the Engine invokes the Composer (it is
responsible for coordinating the functioning of such a
mashup). Afterwards, the Engine waits indications from
the Composer in order to create, cache, or delete instances
of the corresponding mashup (including its elements). Fur-
thermore, when Virtual Infrastructure Administrators re-
quire to develop monitoring mashups, the Engine is
responsible for creating, caching and deleting instances of
the Mashup Development Environment.

In a broad sense, the Publisher is in charge of providing
the adaptation/publication of content (i.e, Interaction Ele-
ments — comprising the monitoring mashups - and the
Mashup Development Environment) that is offered to Vir-
tual Infrastructure Administrators by the Presentation
Layer. In this sense, when a request to display content ar-
rives from the Engine, first, the Publisher reads the HTTP-
header of such a request to identify the features of client
device in which the content is going to be presented. Sec-
ond, the Publisher queries the Devices Repository to estab-
lish the corresponding device capabilities. Third, using
these capabilities, the Publisher adapts and publishes the
content. Fourth, the Publisher asks to the Mashup Runtime
Environment to present the adapted content.

The Virtual Node Wrappers Repository stores metadata
that describes and points each monitoring operation of-
fered by Virtual Node Wrappers. For instance, the follow-
ing stored metadata describes the operations (get a list of
Host Computer Systems and get statistics of a Hosted Vir-
tual Computer System) of a Virtual Node Wrapper that
interacts with a SVE: [{PATH : /location/getHCS/,
PAR: /ip/port/user/key/,PRODUCE:json}, {PATH: /location/
statsHVCS/,PAR: /id/,PRODUCE :json}]. Thus, in this Reposi-
tory, every Virtual Node Wrapper is represented by its
operations (PATH indicating its location in the Mashup

O0.M.C. Rendon et al./ Computer Networks 64 (2014) 55-70

System and its name), the parameters (PAR) needed to in-
voke such operations, and the data type that each opera-
tion produces/returns.

The Mashups Repository keeps metadata of mashups
built in the Mashup System. This metadata is structured
by means of JSON notation as follows. [{IDRESOURCE : id,
NAME : name, PAR : parameters, TO : reSrc, FROM : reDes},
Idots, {IDRESOURCE : id, NAME : name, PAR : parameters, TO :
resSrc, FROM : resDes}]. Therefore, in the Mashups Reposi-
tory, a mashup is represented by one or more resources
identified by IDRESOURCE and NAME, the functioning
parameters of these resources defined by PAR, and the rela-
tionships among resources defined by TO and FROM. In this
metadata, lowercase letters indicate values of properties.

The Devices Repository is based on the User Agent Pro-
file [29] and the Wireless Universal Resource File [30]. This
repository stores, by using the eXtensible Markup Lan-
guage (XML), the information about capabilities of mobile
devices. These capabilities are used by the Publisher to
facilitate the presentation of monitoring mashups on di-
verse terminals as smartphones and tablets.

The Presentation Layer permits to build and extend Vir-
tual Nodes Monitoring solutions, by means of the Mashup
Development Environment and the Mashup Runtime Envi-
ronment. Using, the Mashup Development Environment
that is based on visual and drag-and-drop mechanisms,
the Network Administrators, System Administrators, Vir-
tual Infrastructure Administrators, and Mashup Developers
can combine Interaction Elements in order to create, adapt,
and customize monitoring mashups. The Mashup Runtime
Environment represents browsers, which are software
entities in charge of showing and executing, anywhere
and anytime, the monitoring mashups.

5. Reference implementation

The reference implementation is composed of four ele-
ments: the Managed Resources, the Mashups System Ser-
ver, the Mashup Development Environment, and the
Mashup Runtime Environment. These elements are de-
tailed in the following subsections.

5.1. Managed resources

SVEs, located in the Managed Resources Layer, include:
(i) XenServer used as Host Computer System and Virtual-
ization Layer. XenServer [31] is a virtualization platform
distributed by Citrix Systems, Inc., that executes directly
on server hardware, without requiring an operating system
(i.e., standalone monitor mode), (ii) VirtualBox used as Vir-
tualization Layer. VirtualBox [32] is a virtualization sys-
tem, distributed by Oracle under the terms of GPL, that
runs on operating systems (i.e., hosted monitor mode) such
as Windows, Linux, and Mac OS X. Here, we use Linux De-
bian as Host Computer System of VirtualBox, (iii) Open
vSwitch (i.e., a virtual switch) is a Hosted Virtual Computer
System; and (iv) Linux-based virtual machines are also
Hosted Virtual Computer Systems.

NVEs, located in the Managed Resources Layer, include:
(i) Floodlight [33] is an OpenFlow Controller developed in

133 61

the Java Language and deployed as Hosted Virtual
Computer System, (ii) Open vSwitch is a Hosted Virtual
Computer System handled by Floodlight, (iii) Virtual Links
communicate Open vSwitches and are managed by Flood-
light, (iv) Flows contain rules to control the communica-
tion in OpenFlow-based networks and are handled by
Floodlight; and (v) Mininet used as Host Computer System
of Open vSwitches. The Mininet [34] is a software to emu-
late OpenFlow networks and use VirtualBox as Virtualiza-
tion Layer. Concerning Links and Flows, it is important to
point out that they are particular elements of the Hosted
Virtual Computer Systems forming part of NVEs.

In the Managed Resources Layer, VMIs are: (i) the
XenSDK (xensdk), a virtual machine that enables the com-
prehensive remote management (including Hosted Virtual
Computer Systems) of the XenServer hosting it, (ii) the Vir-
tualBox Web Service (vboxws) that lets to thoroughly man-
age, in a remote way, any VirtualBox server (including
Hosted Virtual Computer Systems); and (iii) The Floodlight
Web Service (floodlightws) that permits the management of
an OpenFlow network controlled by Floodlight, including
flows, links, and virtualized Open vSwitches. In the Refer-
ence Implementation, the VMIs were only used for moni-
toring purposes.

5.2. Mashups system server

The Mashups System Server includes the Adaptation
and the Composition Layers, the Virtual Node Wrappers
Repository, and the Mashups Repository. These reposito-
ries are hereinafter named mashupsdb. The Adaptation
Layer is formed by three services: xenservice, vboxservice,
and floodlightservice. The xenservice implements the Virtual
Node Wrapper for SVEs based on XenServer, using RESTful
that is a REST implementation on the Java Language. Sim-
ilarly, vboxservice is the RESTful implementation of the Vir-
tual Node Wrapper for SVEs based on VirtualBox.
Monitoring operations of xenservice are innerly performed
by the XenSDK API (version 6.0). Likewise, monitoring
functionalities of vbhoxservice are internally carried out by
the VirtualBoxSDK API (version 4.1). The floodlightservice
implements the Virtual Node Wrapper for NVEs based on
the Floodlight Controller. The monitoring operations of
floodlightservice are conducted by the Floodlight REST API
(version 1.0). It is important to note that by developing
Virtual Node Wrappers as services the complexity of Vir-
tual Nodes and their virtualization technologies is hidden
for Administrators of networks, systems, and virtual
infrastructures.

The Composition Layer is formed by: composer and pub-
lisher. The composer is a Web application, based on Java
Servlets and AJAX, that implements both the Composer
and the Engine of our architecture. Internally, the composer
is in charge of invoking, via HTTP, the Virtual Node Wrap-
pers (i.e., xenservice, vboxservice, and floodlightservice)
needed to build the workflow and to execute the mashups
defined by Network Administrators, System Administra-
tors, Virtual Infrastructure Administrators, and Mashup
Developers. The results of composer are offered to publisher
by means of JSON objects transported in HTTP responses.

62 134

The publisher is also a Web application based on AJAX
and Java Servlets, that sends for the Mashup Runtime Envi-
ronment the results of the composition conducted by com-
poser. These results are displayed by using JavaScript and
the Google Visualization API. This API renders its visual
components through the HyperText Markup Language
(HTML) version 5. Accordingly, the Reference Implementa-
tion provides cross-browser and cross-platform compati-
bility to run mashups on smartphones, tablets, desktops,
and laptops.

The metadata of monitoring mashups and their
resources (e.g., one URL targeting floodlightservice) is stored
into the mashupsdb for promoting their reuse and allowing
the extension and improvement of the Reference
Implementation. The mashupsdb was implemented using
a MysqlServer version 5.1.

5.3. Mashup Development Environment

The Mashup Development Environment is a Web
application based on the frameworks: YUI and Wirelt.
The former is an Open Source, JavaScript and Cascading
Style Sheets (CSSs) framework for building highly interac-
tive applications. The latter is a set of Open Source Java-
Script libraries used to create wirable interfaces for
dataflow applications, visual programming languages,
graphical modeling, and graph editors.

Fig. 4 depicts the Mashup Development Environment
that is formed by six visual components:
xen, vbox, dashboard, floodlight, ofmonitor, integrator, and
designer. The first two components, xen and vbox, are the
visual representation (i.e., a high-level encapsulation of
system virtualization technologies) of SVEs based on
XenServer and VirtualBox, respectively. The dashboard is

O0.M.C. Rendon et al./ Computer Networks 64 (2014) 55-70

a collection of views and operations used for graphically
presenting information about Host Computer Systems
and guests (i.e., a common term used to refer a Hosted
Virtual Computer Systems) running on them. Every dash-
board operation can easily be applied to every Virtual Node
by drawing visual links into the designer. In this way, the
complexity of monitoring operations is hidden for Mashup
Developers, Network Administrators, System Administra-
tors, and Virtual Infrastructure Administrators. The opera-
tions encapsulated by dashboard are, mainly, to retrieve
the Host Computer System list, retrieve the guest list for
each Host Computer System, retrieve statistics for each
Host Computer System and its guests, and start, stop, and
resume guests.

The floodlight is the visual representation of a NVE (i.e., a
high-level encapsulation of network virtualization technol-
ogies) based on Floodlight Controller running on a Virtual-
ization Layer, such as VirtualBox and Xen. The ofmonitor is
a collection of views and operations used to present, in a
graphic way, information about Floodlight-based NVEs.
The operations provided by ofmonitor are, primarily, to
retrieve list of virtual flows, virtual Open vSwitches, and
virtual links, to retrieve details about each of these virtual
elements, and to retrieve packet traffic information on
each Open vSwitch. The integrator is a visual component
that allows to integrate two monitoring mashups in a
GUI-level.

The designer allows Network Administrators, System
Administrators, Virtual Infrastructure Administrators,
and Mashup Developers to create, save, load, delete,
and run monitoring mashups. It is important to stand
out that, first, the building up of mashups is based on
a development process aided by dragging-and-dropping
and wiring of available elements on the designer. Second,

[{3 htp: inf.ufrgs.

+ @) (38~ coogle Q) ﬁ ®

o
DE New

EE

Reference Implementation | back

3

voies ___H
Dashboard A

Floodlight
Port (18083
Integrator

Login (asiacobs

IP (143.54.12.204

Passwd

Type (VBox 2 |

P (143541243 |

Pot 18083 |
Login [omcaicedo |
Passwd \m‘

Type | VBox 2
c

D

1P (143.54.12.54

Logn [root
R e——

Type (Xen 2|

Virtual Nodes Monitoring Mashup
- Dasign Time -

e

-
>l @

Fig. 4. Mashup Development Environment and Virtual Nodes Monitoring Mashup on runtime.

O0.M.C. Rendon et al./ Computer Networks 64 (2014) 55-70

all designer operations (e.g, save, load, and delete) are
supported by the mashupsdb. Third, the combination of
these elements assists the enhancement of monitoring
mashups. Fourth, such an enhancement supports the
improvement of the designer and, consequently, the up-
grade of workspace used by the above mentioned
Administrators.

5.4. Mashup Runtime Environment

Every standardized Web browser that supports HTML
version 5 and AJAX can be used as Mashup Runtime Envi-
ronment to access and execute: (i) the dynamic GUI of the
Mashup Development Environment that can be custom-
ized and extended during the mashup creation (design
phase) by Mashup Developers, (ii) the monitoring mashups
that can be invoked by Administrators (networks, systems,
and virtual infrastructures) from the Mashup Development
Environment or directly using URIs; and (iii) the Virtual
Node Wrappers that can be requested by Mashup Resource
Builders and Mashup Developers via URIs (e.g, UHCS and
UHCVS), for instance, during the integration of a new virtu-
alization technology.

It is to stand out that the Mashup Runtime Environment
exchanges JSON data with both the Mashup Development
Environment and the Mashups System Server by using a
synchronous and/or asynchronous communication model.
For instance, in the GUI of the Mashup Development Envi-
ronment, the HTTP synchronous model is used to save a
mashup. Instead, during the performing of all monitoring
mashup operations (e.g., to retrieve and show a Host Com-
puter System list), the AJAX asynchronous model is used to
avoid the blocking of GUIs.

6. Case study

Fig. 5 presents the test environment of the case study
used to evaluate our proposal. This environment supports
the deployment of the Reference Implementation, the vir-
tual infrastructure (SVEs and NVEs), and the mashups
developed to monitor such an infrastructure. Every Xen,
VirtualBox, and Repository of Xen Guests was executed

Xen Guests ||

7 VirtualBox 4.1
Repository 5.6 HI

[N

IP Network

XenServer 5.6

VirtualBox 4.1

Client NirtualBox4.1
(Mozilla Firefox)

135 63

on a machine with 2.33 GHz core 2 duo processor, 2 GBytes
RAM, and 160 GBytes hard disk. Both the Mashups System
Server and the MashupsDB (i.e., the mashupsdb instantia-
tion) were deployed on a machine with Linux Ubuntu
0.S, 2.53 GHz Intel Core i5 processor, 4 GBytes RAM, and
250 GBytes hard disk. The virtualized Floodlight and the
virtual Open vSwitches handled by it, were deployed on a
server with 8 GBytes RAM and 3.4 GHz core i7 processor.
The Client was run on a personal computer with 2 GBytes
RAM and 2.53 GHz core 2 duo processor.

Fig. 6 depicts the relationships between the Managed
Resources Layer, the Adaptation Layer, the Virtual Nodes
Monitoring Mashup (VNMM), the Floodlight Monitoring
Mashup (FMM), and the Integrated Monitoring Mashup
(IMM). VNMM allows System Administrators to monitor
three heterogeneous SVEs. The first one, a xenpool formed
by: two XenServers that support seven virtual machines
of Linux Ubuntu OS and three Open vSwitch (deployed
on a virtual machine of Linux Debian OS). The other two
SVEs are based on vbox/Debian. Each vbox supports two
guests: one Open vSwitch (deployed on a virtual machine
of Linux Debian OS) and a virtual machine of Linux Ubuntu
0S. The VMIs of xenpool and vbox are xensdk and vboxws,
respectively. FMM permits Network Administrators to
monitor a NVE based on Floodlight/vbox and Open
vSwitch/Mininet/vbox. This NVE is an OpenFlow-based vir-
tual network that uses Floodlight in the control layer and
Open vSwitch in the datapath. The VMI of such a NVE is
floodlightws. IMM allows Virtual Infrastructure Administra-
tors to monitor the aforementioned SVEs and NVEs, by
integrating VNMM and FMM.

In the next subsections, VNMM, FMM, and IMM are de-
tailed and evaluated. Furthermore, these three mashups
are quantitatively and qualitatively analyzed.

6.1. Virtual Nodes Monitoring Mashup

In the case study, we used the Reference Implementa-
tion to build up VNMM (Fig. 4) that allows to monitor
non-homogeneous SVEs. On runtime, VNMM offers the fol-
lowing operations (Fig. 7): (i) nodeList retrieves a list
with basic features (e.g., name, node type, ip address) of

MashupsDB
(MySQL 5.1)

System Server
(Tomcat 7.0)

Floodligth 0.9

Open vSwitches 1.4
/Mininet

Fig. 5. Test environment.

136

64 O0.M.C. Rendon et al./ Computer Networks 64 (2014) 55-70
Upper
Layers
Virtual Nodes Monitoring Mashup Integrated Monitoring Mashup Floodlight Monitoring Mashup
A A
| JSON/HTTP S s |
JSON/ \ JSON/ Adame;uzr:
HTTP : HTTP Y
> | xenservice | | vboxservice | |ﬂoodligh!sen/ice| -
Iy
Proprietary, SNMP, HTTP Rf::j%‘:g
v v V V Layer
[xensdk vboxws vboxws floodlightws
Open vSwitch Linux Open vSwitch Linux Open vSwitch Linux Open vSwitch Floodlight
/DebianRevir VM Ubuntu VM /DebianRevir VM | Ubuntu VM /DebianRevir VM | Ubuntu VM Mininet Controller
xen guests repository vbox1 vbox2 vbox3
xen1 [xen2 = = : = - =
Xenpool Linux Debian Linux Debian Linux Debian

Fig. 6. VNMM, FMM, and IMM on the architecture.

SVEs forming a Virtual Node, shown in the welcome page,
(ii) nodeStructure retrieves the structure of a selected
Host Computer System, shown by an organizational chart,
(iii) guestFeaturesXen retrieves basic features of a se-
lected Hosted Virtual Computer System (e.g., Open
vSwitch/ DebianRevir) running on XenServer, presented
in a data table, (iv) guestFeaturesVB retrieves basic fea-
tures of a selected Hosted Virtual Computer System run-
ning on VirtualBox, presented in a data table, (v)
guestStatsXen retrieves statistics (in the last hour)
about performance of memory, processor, and network
interfaces for a guest on XenServer, depicted by using a line
chart, (vi) guestStatsVB retrieves the behavior (instanta-
neous) of memory and processor for a guest on VirtualBox,
displayed through a bar chart; and (vii) control starts,
stops, and resumes guests from XenServer and VirtualBox.

In VNMM, initially, we evaluated both the response
time and the network traffic of three operations (i.e., nod-
eList, guestFeatures (Xen,/VB), and guestStats
(Xen/VB). In such an evaluation, we performed the mea-
surements of time and traffic with all virtual switches
and virtual machines running on. In this and the following
evaluations that involved the average response time in sec-
onds, we took 30 measurements with 95% confidence
level.

According the performance analysis of java Web sites
[35], the response time (r in seconds) of this kind of system
can be ranked as: optimal when r<0.1, good for
0.1 <r<1, admissible for 1 <r <10, and deficient if
r > 10. Considering these thresholds, Table 2 reveals that
nodeList, guestStats, and guestFeatures had a good
or admissible response time average for SVEs based on

‘- [{1 | hitp://networks.inf.ufrgs.br/mashupsys/vnmm v C] [?l v Google Q] e ®
£} masmup)
Virtual Nodes Monitoring Mashup
Name Type P Address B Run Tlme 3
1 Linx xen 143.54.12.54 nodeList nodeStructure
2 Linux wbox 1435412204
3 L wox 143541243
Control domain on host:
localhost.localdomain
r T T T T T 1
Ubuntu-ll l Ubuntu-vil I - ’s"‘f"Ks:'»_.'F' Ubuntu-V] Ubuntu-vi I DebianRevir-il I Ubuntu-IV] Ubuntu-1] DebianRevir-1il] Ubunt-il
Feature Value
Uuid 7db42403 1428 2c89-6043-ca528c145e4b
Name DebianRevir-| e gUCStF eatures
State Running
IP Address 14354.12.107
Install Time Mon Feb 13 15:18:48 BRST 2012
Last Update Wed Dec 31 21:00:00 BRT 1969
Start Time: Thu Feb 23 16:08:24 BRST 2012
#CPUs 1
Static Memory - Mbytes (Max/Min) 256/128
Dynamic Memory - Mbytes (Max/Min) 256/256
VM CPU Usage VM Memory Behaviour VIF Usage
013 How 600 o 3.000 Wviix
Il Balloon | LR
010 50 2000
" . b W usd % b guestStats
g
g o007 & 30 1000
® b 5
004 150 3 0
001 o ~1.000
ST U YR e DI R R SR AR L RO R R A
M-IS Mms. Mns

Fig. 7. Virtual Nodes Monitoring Mashup on runtime.

O0.M.C. Rendon et al./ Computer Networks 64 (2014) 55-70

137 65

450 7000

400 | VBox B VBox
a @ Xen 6000 B
£ 350 — — Xen
> 300 | @ 5000 —
£ 5
= 250 r- - g 4000 —
Q fe—
@ 200 — - £ 3000 —
o | ©

150
2 - 2000 -
9 100 —
(4 5 1000 B

5 I I B oimll mi HE l , ,
1 2 4 8 16 32 64 1 2 4 8 16 32
Guests # Guests

(a) response time analysis

(b) network traffic analysis

Fig. 8. VNMM - nodeStructure.

XenServer and VirtualBox. As expected, nodeList had the
highest response time. This operation integrates informa-
tion of all SVEs rather than, for instance, guestStats
(ie., guestStatsXen or guestStatsVB) that retrieves
information from only one SVE. The operations gues-
tFeaturesXen and guestFeaturesVB behaved like
guestStats.

Table 2 also discloses that proprietary scripts (executed
by command line) had better response time than nodel-
ist, guestStats, and guestFeatures. Since the extra
time of guestStats and guestFeaturesXen is less than
10%, we strengthen the statement that they have a good
behavior on response time. As expected, the response time
of nodeList was the highest because mashups use addi-
tional layers to collect, aggregate, and present monitoring
information from different SVEs. Being that the additional
time on nodeList is closing to 48%, in a future implemen-
tation of the Mashups System Server, we must carry out
information collection in a more efficient way. We consider
that such additional time is not a relevant constraint of
VNMM (admissible behavior), which aims to instantiate
the mashups monitoring concept and non-present a com-
mercial solution.

Table 2
VNMM and proprietary scripts — response time.

Regarding network traffic, Table 3 reveals that VNMM
generated low traffic to retrieve information about hosts
(i.e., nodeList) and features of guests (ie., gues-
tFeaturesXen and guestFeaturesVB). In guestStats,
because of implementation differences in XenSDK and Vir-
tualBox Web Service, the statistics for a specific guest in
xenpool are formed by using a large number of JSON objects
that show the guest behavior during the last hour. How-
ever, in Nodes based on VirtualBox, this operation only
shows a snapshot, so few objects are required.

Table 3 also discloses that nodeList, guestStats, and
guestFeatures generated more network traffic than pro-
prietary scripts (developed and executed on Linux Ubuntu
0S). Since, the additional network traffic is less than 10%,
we bolster the statement that such operations have a good
behavior on network traffic. In this sense, it is important to
highlight that we used JSON in order to decrease the size of
information exchanged between the Adaptation, Composi-
tion, and Presentation Layers.

In VNMM, we also conducted the assessment of the re-
sponse time on the operation nodeStructure, modifying
at each SVE, the number of guests from 2° to 2. If the num-
ber of guests was < 8, we used all guests in active state

Operation XenServer-based SVE VirtualBox-based SVE
VNMM (ms) Script (ms) VNMM (ms) Script (ms)
nodelList 1408 + 110 725 +35 1408 + 110 725 +35
guestFeatures 190 + 3.69 174+ 4 63+3 61+2
guestStats 372 +4.71 340+ 13 600 + 15 550+ 14
Table 3

VNMM and proprietary scripts — network traffic.

Operation XenServer-based SVE VirtualBox-based SVE

VNMM (Bytes) Script (Bytes) VNMM (Bytes) Script (Bytes)
nodeList 487 450 487 400
guestFeatures 459 456 351 318
guestStats 3061 2800 155 153

66 138 0.M.C. Rendon et al./Computer Networks 64 (2014) 55-70

Floodlight

IP | 14354.12.84
Port | 6633
Login | omcaicedo

Passwd

OF Monitor

Fig. 9. FMM on design time.

Mashup - Mozilla Firefox

+¢ 8-

ufrgs.be

Floodlight Monitoring Mashup

-Runtime-
Floodlight General Information
Service P ServicePort Type Listen Address Listen Port
1 143.54.12.84 8083 floodlight any 6633

getVirtualSwitches Virtual Switches || End Devices || Virtual Links getVirtualLinks

Switches on Floodlight
Id IP Address Port Connected
1 00:00:00:00:00:00:00:06 192.168.56.2 55638 2013-09-16 22:55:39
:05 192.168.56.2 55637 2013-09-16 22:55:39
:07 192.168.56.2 55639 2013-09-16 22:55:39

getVirtualFlows Flows on Switch | Tables on Switch | | Ports on Switch

Flows on Switch (ID = 00:00:00:00:00:00:00:06)

In Datalayer DataLayer Datalayer Network Network Network Transport Transport . Time Idle Hard 3 Out
Port Source Destination Type Source Destination Protocol Source Destination Wikicards _ Bytes. Packets (s) TimeOut TimeOut Cookie Ports
12 00:00:00:00:00:02 00:00:00:00:00:04 0 0.0.00 0.000 0 0 0 2629872 0 0 1.7% 10 30 9007199254740992 3
2 3 00:00:00:00:00:03 00:00:00:00:00:02 0 0.0.00 0.0.0.0 0 0 0 2629872 98 1 3.34 10 30 9007199254740992 2
3 1 00:00:00:00:00:01 00:00:00:00:00.04 0 0.0.00 0.000 0 0 0 2629872 0 0 4461 10 30 9007199254740092 3
4 3 00:00:00:00:00:04 00:00:00:00:00:01 0 0.0.00 0.000 0 0 0 2629872 9% 1 4455 10 30 9007199254740092 1
5 3 00:00:00:00:00:04 00:00:00:00:00.02 0 0.0.00 0.000 0 0 0 2629872 9 1 1.791 10 30 9007199254740992 2
6 2 00:00:00:00:00:02 00:00:00:00:00:03 0 0.0.00 0.00.0 0 0 0 2629872 42 1 3.355 10 30 9007199254740992 3
Fig. 10. FMM on runtime.
800 800
uFMM 1 u FMM s
_. 700 —: _. 00 —
M GUI Applet I » GUI Applet L
E 600 — E 600 -
g 500 I — g 500 I —
[= -
o 400 — o 400 —
2 2
8. 300 - — 8. 300 = =
2 200 — 8 200 —
"l W I [l
gl 'H 'H 'H '} o W
50 100 150 200 250 100 200 300 400 500
Virtual Switches # Virtual Links
(a) getVirtualSwitches (b) getVirtualLinks

Fig. 11. FMM - response time.

(running), otherwise, we used 8 guests in such a state and
the others turned off. The results (Fig. 8(a)) depict that for
SVEs based on XenServer and VirtualBox, nodeStructure
had a good response time average (r < 1). This operation

had better response time average for xenpool than vbox/De-
bian when the number of guests was increased from 32 to
64. The response time average of nodeStructure for
xenpool increases 3.1 milliseconds per guest, and, for vbox/

O0.M.C. Rendon et al./ Computer Networks 64 (2014) 55-70

Debian, it grows 5.9 milliseconds. Then, if the number of
guests is equal or greater than 48, the response time aver-
age for xenpool is better than for vbox/Debian. This behav-
ior of response time average occurs because, as there is a
large number of guests in the Managed Resources Layer,
HTTP connections of the XenSDK are more efficient than
Simple Object Access Protocol (SOAP)/HTTP connections
of the VirtualBox Web Service. Regarding visual elements,
it is meaningful to state that their response time is too
small to impact the performance of VNMM as a whole.

In VNMM, finally, we evaluated the network traffic gen-
erated by the operation nodeStructure, varying at each
SVE, the number of guests from 2° to 2°. If the number of
guests was < 8, we used all guests in active state, else,
we used 8 guests running and the rest turned off.
Fig. 8(b) depicts that this operation generated more traffic
for vbox/Debian than xenpool when the number of guests
was increased from 32 to 64. The traffic generated by
nodeStructure for xenpool increases 93.2 Bytes per
guest, and, for vbox/Debian, it grows 97.2 Bytes. Then, if
the number of guests is equal or greater than 52, the traffic
generated for xenpool is less than for vbox/Debian. This
traffic behavior occurs, because for a large number of
guests, the XML codification, used by Web Services based
on SOAP in the Managed Resources Layer, is more verbose
than JSON codification used on RESTful Services. Regarding
visual elements, it is relevant to point out that their size is
too small to impact the quantity of traffic generated by
VNMM.

6.2. Floodlight Monitoring Mashup

In the case study, we also used the designer to build up
FMM (Fig. 9), by dragging-and-dropping and wiring flood-
light and ofmonitor. FMM allows the integrated monitoring
of switches, links, and flows that are part of a Floodlight-
based NVE by providing the following operations
(Fig. 10): (i) getVirtualSwitches retrieves a list with
information (e.g, mac address -id-, ip address, and port)
about Open vSwitches handled by Floodlight, (ii) getVir-
tualLinks retrieves a list that includes information (e.g.,
source id, source port, destination id, and destination port)
of virtual links established among virtual switches; and
(iii) getVirtualFlows retrieves a list that contains
information (e.g., network source, network destination, net-

80
uFMM
70
GUI Applet
w 60 —
£
@ 50 —
< 40
(&)
& 30
©
E 20 +———
10 N 1
JHE BT N
50 100 150 200

Virtual Switches
(a) getVirtualSwitches

139 67

work protocol, and outports) associated to flows responsible
for controlling the behavior of a specific Open vSwitch.
FMM uses HTML tables to present the information re-
trieved by the above mentioned operations.

In FMM and the Floodlight GUI Applet (i.e., a Web
application for Floodlight monitoring), we assessed the re-
sponse time average of operations getVirtual-
Switches and getVirtualLinks. In this assessment,
we varied the number of Open vSwitches from 50 to 250
and the quantity of virtual links from 100 to 500. Fig. 11
depicts the assessment results, disclosing that FMM had
a behavior on the response time average: optimal for get-
VirtualLinks and good for getVirtualSwitches. This
behavior is always better than the behavior reached by the
GUI Applet. As a consequence, we can state that it is feasi-
ble to use FMM for monitoring NVEs based on Floodlight.

In FMM and the GUI Applet, we also evaluated the net-
work traffic generated by operations getVirtualS-
witches and getVirtualLinks, modifying the number
of Open vSwitches from 50 to 250 and the quantity of vir-
tual links from 100 to 500. Fig. 12 depicts the evaluation
results of these operations, in which, FMM and the GUI Ap-
plet use about 8.7 KBytes and 13.75 KBytes per 50 virtual
switches, respectively. Also, FMM and the GUI Applet use
about 19.06 KBytes and 27.49 KBytes per 100 virtual links.
Thus, such results reveal that FMM had better behavior on
network traffic than the GUI Applet. As a consequence, we
strengthen the assertion that it is feasible to use FMM for
monitoring NVEs based on Floodlight. In the same direc-
tion, the evaluation results of VNMM and FMM demon-
strates the practicality of applying mashups for
monitoring Virtual Nodes.

6.3. Integrated Monitoring Mashup and qualitative analysis

In the case study, we also used the designer to build up
IMM (Fig. 13). In this sense, first, we dragged-and-dropped
three visual components: vnmm, fmm, and integrator. It is
important to mention that existing monitoring mashups
(VNMM and FMM) are represented as visual components
in order to facilitate their reuse. Second, we wired two
links ynmm — integrator and fmm — integrator. On runtime,
IMM offers to Virtual Infrastructure Administrators the
operations of VNMM and FMM: nodeList, nodeStruc-
ture, guestFeatures, guestStats, controlGuests,

160
uFMM
140
GUI Applet
w 120 f—
£
@ 100 —
< 80 |
[$)
£ 60 —
o
s a0 —— -
20 N 1 B
O-J T T T T
100 200 300 400 500

Virtual Links
(b) getVirtualLinks

Fig. 12. FMM - network traffic.

\

O0.M.C. Rendon et al./ Computer Networks 64 (2014) 55-70

Floodlight Menitoring Mashup | % |
Virtual Nodes Monitoring Mashup IES
o
Integrator | x|

Fig. 13. IMM on design time.

getVirtualSwitches, getVirtuallinks, and getVir-
tualFlows. Therefore, using IMM, such Administrators
are able to monitor heterogeneous Virtual Nodes formed
by both, the SVEs based on Xen/VirtualBox and NVEs sup-
ported on Floodlight.

As we already analyzed quantitatively the operations
provided by VNMM and FMM, which compose IMM. Next,
we analyze IMM in a qualitative way in order to define the
main characteristics (ie., flexibility and extensibility)
provided by monitoring mashups. These characteristics
are described in the following paragraphs, in which, Net-
work Administrators, System Administrators, and Virtual
Infrastructure Administrators are simply referred like
Administrators.

Flexibility. Monitoring mashups allow Administrators to
customize and improve their workspace by themselves.
Administrators do not require a lot of Web programming
skills to create monitoring capabilities, like IMM, targeted
to SVEs and/or NVEs because, designer provides a high-
level abstraction of system/network virtualization technol-
ogies and monitoring tasks; these technologies and tasks
are represented in a visual way as mashup-able compo-
nents. Furthermore, unlike traditional composition
technologies, such as the Business Process Execution Lan-
guage and the Web Service Conversation Language, that
are developer-centric, the mashup technology provides a
flexible and easy-of-use way for user-centric service com-
position [12,16].

Extensibility. Leveraging the composition, abstraction,
and reusing models inherited from the mashup technol-
ogy, Administrators can create, using existing monitoring
mashups (like VNMM and FMM), novel, advanced, and
complex virtual monitoring composite services (like
IMM) devoted to SVEs and/or NVEs. As a consequence,
Administrators who develop monitoring mashups are able
to extend the Mashup System (specifically, designer) and,
therefore, enhance/improve their workspace. In a general
way, building up a mashup from existing applications is
easier than developing an application from scratch [36,37].

On the other hand, doing a qualitative comparison with
the Reference Implementation, Lattice is less extensible
and flexible because it does not permit its customization
by Administrators themselves. The major difference from
the IMO system is that our proposal works in a high-level
abstraction, regardless of system and network virtualiza-
tion technologies. Libvirt is a low-level API that facilitates
the building up of monitoring systems directed to SVEs
but not to NVEs. Thus, in the Reference implementation,

Libvirt is constrained to be used like VMI of SVEs. For
monitoring NVEs, it is necessary the use of specific APIs
like the Floodlight REST API employed in the case study.
Regarding traditional OpenSource monitoring solutions,
our proposal must be considered as an alternative, based
on mashups and non-on plugins, devoted to add system/
network virtualization support and a complement to reach
integration and not like a surrogate.

7. Conclusions and future work

In this paper, we proposed the monitoring of Virtual
Nodes by mashups. Using concepts like composite applica-
tions, Virtual Node Wrappers, monitoring mashups, and
Mashup Development Environment, we demonstrated that
it is feasible to build a flexible and extensible system
intended to monitor SVEs and/or NVEs. Virtual Node Wrap-
pers provide the abstraction of SVEs, VMIs, and NVEs. This
abstraction offers the flexibility to add new network and
system virtualization technologies as they arise. Further-
more, the Mashup Development Environment allows Net-
work Administrators, System Administrators, and Virtual
Infrastructure Administrators without advanced program-
ming skills, to create, in a high-level abstraction and
through a user-centric service composition model, their
monitoring mashups. Consequently, these Administrators
can themselves customize, extend, enhance, and integrate
their monitoring solutions. This is essential to solutions
of monitoring devoted to Virtual Nodes because of contin-
uous changes occurring in virtual environments.

We also presented realistic monitoring scenarios, in
which, multiple Interaction Elements were combined to
build up monitoring mashups, namely VNMM, FMM, and
IMM. These mashups were aimed to meet three particular
challenges: the overall monitoring of non-homogeneous
SVEs based on Xen and VirtualBox, the whole monitoring
of a NVE supported on the Floodlight OpenFlow Controller,
and the integrated monitoring of such SVEs and NVE. The
Reference Implementation and the mashups built were
able to overcome the raised challenges, demonstrating
the relevance of our proposal. Considering the results of
quantitative and qualitative evaluations performed in
these scenarios, we can state, first, monitoring mashups
have short response time, good on NVEs and good or
admissible on SVEs, and generate low traffic. Second, mon-
itoring mashups are flexible and extensible.

From an implementation point of view: (i) to reduce the
encode and decode time of HTTP messages, we developed

O0.M.C. Rendon et al./ Computer Networks 64 (2014) 55-70

Virtual Node Wrapers as RESTFul Web Services handling
and generating JSON objects, (ii) we also used simple and
light JSON objects to decrease the transferred information
between the Adaptation, Composition, and Presentation
Layers, (iii) in order to enrich the mashups interaction,
we developed the Mashup Development Environment by
using programming tools supported by AJAX; and (iv) we
built VNMM, FMM, and IMM, by means of visual elements,
drag-and-drop, and wiring capabilities offered by the
Mashup Development Environment, illustrating the easi-
ness of creating the monitoring mashups.

In next research steps, we plan to extend and enhance
the Reference Implementation to support other integrated
management tasks (e.g., faults, configuration, and perfor-
mance) on traditional and/or virtual networks. Finally, we
also are interested in add a recommender system in order
to expedite the development of monitoring mashups.

Acknowledgements

The research of PhD (c) Caicedo is supported by the
PECPG (Agreement Program Students Graduate) of the
CAPES (Brazil) and the University of Cauca (Colombia).

References

[1] P. Jianli, S. Paul, R. Jain, A survey of the research on future internet
architectures, Commun. Mag. 49 (7) (2011) 26-36.

[2] Distributed Management Task Force, CIM System Virtualization
Model White Paper, November 2007.

[3] NNML.M.K. Chowdhury, R. Boutaba, Network virtualization: state of
the art and research challenges, Commun. Mag. 47 (7) (2009) 20-
26.

[4] EF. Daitx, R.P. Esteves, L.Z. Granville, On the use of SNMP as a
management interface for virtual networks, in: IM, 2011, pp. 177 -
184.

[5] C. dos Santos, R. Bezerra, J. Ceron, L. Granville, L. Rockenbach
Tarouco, On using mashups for composing network management
applications, Commun. Mag. 48 (12) (2010) 112-122.

[6] C. dos Santos, R. Bezerra, J. Ceron, L. Granville, L. Tarouco, Botnet
master detection using a mashup-based approach, in: CNSM, 2010,
pp. 390-393.

[7] R. Bezerra, C. dos Santos, L. Bertholdo, L. Granville, L. Tarouco, On the
feasibility of web 2.0 technologies for network management: a
mashup-based approach, in: NOMS, 2010, pp. 487-494.

[8] C. Cappiello, F. Daniel, M. Matera, C. Pautasso, Information quality in
mashups, Internet Comput. 14 (4) (2010) 14-22.

[9] J. Yu, B. Benatallah, F. Casati, F. Daniel, Understanding mashup
development, Internet Comput. 12 (5) (2008) 44-52.

[10] H. Gebhardt, M. Gaedke, F. Daniel, S. Soi, F. Casati, C. Iglesias, S.
Wilson, From mashups to telco mashups: a survey, Internet Comput.
16 (3) (2012) 70-76.

[11] C. dos Santos, L. Zambenedetti Granville, L. Shwartz, N. Anerousis, D.
Loewenstern, Quality improvement and quantitative modeling -
using mashups for human error prevention, in: IM, 2013, pp. 143-
150.

[12] C. Cappiello, M. Matera, M. Picozzi, G. Sprega, D. Barbagallo, C.
Francalanci, DashMash: a mashup environment for end user
development, in: S. Auer, O. DAaz, G. Papadopoulos (Eds.), Web
Engineering, Lecture Notes in Computer Science, vol. 6757, Springer,
Berlin, Heidelberg, 2011, pp. 152-166.

[13] K. Huang, Y. Fan, W. Tan, An empirical study of programmable web:
a network analysis on a service-mashup system, in: ICWS, 2012, pp.
552-559.

[14] A. Majchrzak, P.H.B. More, Emergency! web 2.0 to the rescue!,
Commu ACM 54 (4) (2011) 125-132.

[15] S. Mohammadi, A. Khalili, S. Ashoori, Using an enterprise mashup
infrastructure for just-in-time management of situational projects,
in: ICEBE, 2009, pp. 3-10.

[16] X. Liu, Y. Hui, W. Sun, H. Liang, Towards service composition based
on mashup, in: [EEE Congress on Services, 2007, pp. 332-339.

141 69

[17] R. Boutaba, W. Ng, A. Leon-Garcia, Web-based customer
management of VPNs,]. Netw. Syst. Manage. 9 (1) (2001) 67-87.

[18] S. Clayman, A. Galis, L. Mamatas, Monitoring virtual networks with
lattice, in: NOMS, 2010, pp. 239-246.

[19] M. Bolte, M. Sievers, G. Birkenheuer, O. Niehorster, A. Brinkmann,
Non-intrusive virtualization management using libvirt, in: DATE,
2010, pp. 574-579.

[20] S. Clayman, R. Clegg, L. Mamatas, G. Pavlou, A. Galis, Monitoring,
aggregation and filtering for efficient management of virtual
networks, in: CNSM, 2011, pp. 1-7.

[21] D. Dudkowski, M. Brunner, G. Nunzi, C. Mingardi, C. Foley, M. de
Leon, C. Meirosu, S. Engberg, Architectural principles and elements
of in-network management, in: IM2009, 2009, pp. 529-536.

[22] D. Dudkowski, B. Tauhid, G. Nunzi, M. Brunner, A prototype for in-
network management in NaaS-enabled networks, in: IM, 2011, pp.
81-88.

[23] W. Barth, Nagios: System and Network Monitoring, Second ed., No
Starch Press, San Francisco, CA, USA, 2008.

[24] H.B. Newman, I. Legrand, P. Galvez, R. Voicu, C. Cirstoiu, MonALISA:
A Distributed Monitoring Service Architecture, CoRR c¢s.DC/
0306096.

[25] M. Massie, The ganglia distributed monitoring system: design,
implementation, and experience, Parallel Comput. 30 (7) (2004)
817-840.

[26] S. Keshav, An Engineering Approach to Computer Networking,
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1997.

[27] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, R. Rosati, Data
integration in data warehousing, IJCIS: Int. J. Coop. Inform. Syst. 10
(3) (2001) 237-271.

[28] R.T. Fielding, R.N. Taylor, Principled design of the modern web
architecture, ACM Trans. Internet Technol. 2 (2) (2002) 115-150.

[29] K. Matsuyama, M. Kraus, K. Kitagawa, N. Saito, A path-based RDF
query language for CC/PP and UAProf, in: PERCOMW, 2004, pp.
3-7.

[30] P. Salomoni, S. Mirri, S. Ferretti, M. Roccetti, Profiling learners with
special needs for custom e-learning experiences, a closed case?, in:
W4A, ACM, 2007, pp 84-92.

[31] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.
Neugebauer, 1. Pratt, A. Warfield, Xen and the art of virtualization,
SIGOPS Operat. Syst. Rev. 37 (5) (2003) 164-177.

[32] J. Watson, VirtualBox: bits and bytes masquerading as machines,
Linux]. 2008 (166).

[33] A. Lara, A. Kolasani, B. Ramamurthy, Network innovation using
OpenFlow: a survey, Commun. Surv. Tutor. PP (99) (2013) 1-20. IEEE.

[34] B. Lantz, B. Heller, N. McKeown, A network in a laptop: rapid
prototyping for software-defined networks, in: Proceedings of the
9th ACM SIGCOMM Workshop on Hot Topics in Networks, ACM,
New York, NY, USA, 2010, pp. 19:1-19:6.

[35] S. Joines, R. Willenborg, K. Hygh, Performance Analysis for Java
Websites, Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2002.

[36] J. Tatemura, A. Sawires, O. Po, S. Chen, K.S. Candan, D. Agrawal, M.
Goveas, Mashup feeds: continuous queries over web services, in:
SIGMOD, ACM, New York, NY, USA, 2007, pp. 1128-1130.

[37] R. Hasan, M. Winslett, R. Conlan, B. Slesinsky, N. Ramani, Please
permit me: stateless delegated authorization in mashups, in:
ACSAC, IEEE Computer Society, Washington, DC, USA, 2008, pp.
173-182.

Oscar Mauricio Caicedo Rendon is a Ph.D.
candidate in computer science at the Institute
of Informatics (INF) of the Federal University
of Rio Grande do Sul (UFRGS), Brazil. In 2006
he received a M.Sc. degree in telematics of the
University of Cauca, Colombia, from which he
also held a degree in electronics and tele-
communications engineering (2001). His
topics of interest include network manage-
ment, Web services-based management, and
Web 2.0/3.0 technologies.

70

142

O0.M.C. Rendon et al./ Computer Networks 64 (2014) 55-70

Carlos Raniery Paula Dos Santos received the
M.Sc. and Ph.D. degrees in computer science
from the Institute of Informatics (INF) of the
Federal University of Rio Grande do Sul
(UFRGS), Brazil, in 2008 and 2013, respec-
tively. In 2005 he received a degree in tele-
matics from the Federal Center of
Technological Education of Ceara (CEFET-CE).
His topics of interest include network man-
agement, Web services-based management,
P2P-based systems, and Web 2.0/3.0 tech-
nologies.

Arthur Selle Jacobs is a B.Sc. student in
computer science at the Institute of Infor-
matics (INF) of the Federal University of Rio
Grande do Sul (UFRGS), Brazil. His topics of
interest include network management and
Web 2.0/3.0 technologies.

Lisandro Zambenedetti Granville received
the M.Sc. and Ph.D. degrees in computer sci-
ence from the Institute of Informatics (INF) of
the Federal University of Rio Grande do Sul
(UFRGS), Brazil, in 1998 and 2001, respec-
tively. Currently, he is a professor at INF-
UFRGS. Lisandro is co-chair of the Network
Management Research Group (NMRG) of the
Internet Research Task Force (IRTF) and vice-
chair of the Committee on Network Opera-
tions and Management (CNOM) of the IEEE
N Communications Society (COMSOC). He was
also technical program committee co-chair of the 12th IEEE/IFIP Network
Operations and Management Symposium (NOMS 2010) and 18th IFIP/
IEEE International Workshop on Distributed Systems: Operations and
Management (DSOM 2007). His research interests include network and
services management, software defined network, network virtualization,
information visualization, and network programmability.

143

2014 TIEEE 28th International Conference on Advanced Information Networking and Applications

An Approach to Overcome the Complexity of
Network Management Situations by Mashments

Oscar Mauricio Caicedo Rendon*T,Felipe Estrada—SolanoT, and Lisandro Zambenedetti Granville*
*Computer Networks Group - Institute of Informatics - University Federal do Rio Grande do Sul
Telematics Engineering Group - Telematics Department - University of Cauca
Email: omcrendon,granville@inf.ufrgs.br - omcaicedo,festradasolano @unicauca.edu.co

Abstract— The work performed by network administrators
to address sudden, dynamic, heterogeneous, and time specific
situations that happen in the network management domain is
complex. In this paper, we introduce an approach that allows
network administrators to overcome the complexity of handling
these network management situations (called NMSits). The ap-
proach is made up of Mashments that are special mashups used to
cope with NMSits, the process to develop and execute Mashments,
and the Mashment Maker that supports such model and process.
We use IT Service Management metrics to evaluate our approach,
measuring the complexity of facing, with and without the Maker,
a specific NMSit that occurs in several networks based on
the Software Defined Networking paradigm. The evaluation
results demonstrate that the complexity decreases when network
administrators use our approach to handle NMSits.

Keywords-Complexity; Mashment; Mashup; NMSit, Situation
Management; Web-based Network Management;

1. INTRODUCTION

The Situation Management (SM) discipline provides so-
Iutions that enable analyzing, correlating, and coordinating
interactions among people, information, technologies, and ac-
tions intended to overcome situations happening or that might
happen in dynamic systems [1] [2]. SM foundations are [3]:
(i) a Situation that is modeled as a collection of entities in a
domain, their attributes, and relationships in a time interval, (i7)
the investigative aspect related to retrospective cause analysis
of Situations, (iii) the control aspect devised to change or
preserve Situations; and (iv) the predictive aspect aimed to
predict Situations.

SM has been used in domains such as disaster response [4],
smart power grid networks [5], security crisis management [6],
and public health [7]. However, to the best of our knowledge,
there is no SM-based approach to address the complexity of
sudden, dynamic, heterogeneous, and time specific Situations
that network administrators face in their daily work. An
example of network management Situation is the unexpected
failures in the packet transmission of virtual routers belonging
to a slice made up of SDN (Software Defined Networking)
networks handled by different NOS (Network Operating Sys-
tems). Hereinafter, we will refer to this type of Situations in
the network management domain as NMSits [8].

We argue that the work conducted by network administra-
tors to address NMSits is complex. This complexity exists
because, first, although large research efforts have been made
to deal with the intricacy of network management [9] [10]

1550-445X/14 $31.00 © 2014 IEEE
DOI 10.1109/AINA.2014.142

875

[11] [12] [13] [14], they do not focus on handling such a
complexity when Situations arise unexpectedly. Thus, they
have a constrained response capacity to meet NMSits. Second,
to face sudden Situations, network administrators must handle
and rely on a vast amount of non-integrated tools (e.g., tracer-
oute, ZenOSS, OpenNMS, and so on), which hinders their
work. Third, to cope with situational requirements, network
administrators are usually forced to develop low-level scripts;
developing these scripts itself is also complex because network
administrators may not be experienced programmers.

Mashups are Web applications built up by end-users through
the combination of Web resources available along the Internet
[15] [16]. The mashup technology has been employed to
manage Situations in many domains, such as project manage-
ment [17], telco services [18], immersive mirror worlds [19],
and data integration [20]. In our previous work, we analyzed
mashups as a feasible mechanism to accomplish specific tasks
for network management in both traditional [21] and SDN-
based networks [22]. Nevertheless, we have not addressed
how to overcome the complexity of tasks fulfilled by network
administrators dealing with NMSits. We refer to mashups used
to cope with one or more NMSits as Mashments [8].

In this paper, we take a step further, proposing a novel
Mashment-based approach that assists network administrators
to overcome the complexity of NMSits and, consequently,
facilitates their work. The key contributions from this paper
are: (i) a conceptual model that presents how to address
NMSits by Mashments, (ii) a process to develop and execute
Mashments, targeted to surpass the intrincacy of tasks carried
out by network administrators to handle NMSits, (iii) a Mash-
ment Maker prototype that supports the model and process
abovementioned; and (iv) a Mashment that faces a NMSit on
SDN, demonstrating the decrease of complexity when network
administrators use our approach to deal with NMSits.

The remainder of this paper is organized as follows. In Sec-
tion II, we review both the background and the related work.
In Section III, we introduce the Mashment-based approach. In
Section IV, we describe and discuss the case study raised to
evaluate our approach. In Section V, we provide conclusions
and implications for future work.

II. BACKGROUND AND RELATED WORK

In this section, we describe research concerning SM,
mashups, and mashups on network management. We also

ﬁ:‘colr%EpEuter
= society

144

present the related work about handling the complexity of
network management.

A. Situation Management

The goal of SM is to provide solutions aimed to investigate,
control, and predict Situations that are composite entities
whose components are other entities, their attributes, and
relationships in a time interval [1] [2]. To accomplish such a
goal, SM-based solutions offer a global vision of Situations by
collecting, correlating, and merging information from multi-
entities, seeking to maximize the user comprehension and, so,
supporting the opportune and correct decision making.

SM has been used in diverse domains. In the disaster re-
sponse [4], a situation-aware architecture and a set of protocols
support the timely delivery of high volumes of accurate data
that the disaster responders need to make correct decisions. In
the smart grid power networks [5], an architecture, based on
semantics, linked open data, and complex event processing,
enables to respond intelligently to the active power demand
of end-users. In the security crisis management [6], a mobile
agents platform allows providing timely information to the
on-site personnel, the tactical crisis command, and the off-
site strategic command centre. In the public health [7], a
platform permits the development of situation-aware appli-
cations targeted to monitor suspicious cases of tuberculosis.
To the best of our knowledge, up to now, SM has been not
used to handle the complexity of Situations in the network
management domain.

B. Mashups

Mashups are Web applications formed by combining Web
resources available on the Internet [15] [16]. This combination
is mainly achieved by a simple composition model, which
allows end-users the development of customized applications,
in an easy and rapid way [23].

The mashup technology has been employed to manage
Situations in several domains. In the project management [17],
a mashup system allows managers to easily compose small
solutions for displaying and filtering information about their
projects. In the telco services [18], a reference architecture
facilitates the provisioning of telco-mashups for end-users; a
telco-mashup is a composite service that combines functional-
ities from telecom networks like streaming, quality of service,
and billing. In the immersive mirror worlds [19], the Cloud
City Scene platform enables end-users to create, in a mashup
manner, realistic and immersive street-level representations
of the physical world. In the data integration [20], Mash-
room, a spreadsheet-like programming environment allows
non-developers to create composite services, by aggregating
data sources on the fly and interactively.

In our previous work, we analyzed the mashup technology
as a feasible mechanism to carry out specific tasks in the
network management domain. Initially, we used mashups to
accomplish the botnet detection [24] and the traffic monitoring
of the border gateway protocol among two autonomous sys-
tems [25]. Afterwards, we introduced a generic architecture to

876

support the composing of network management applications
[21]. Recently, we leveraged the features of the mashup
technology to conduct the integrated monitoring of SDN-
based networks [22] and identified a mashup ecosystem around
NMSits [8]. However, we have not addressed how to overcome
the NMSits complexity.

C. Complexity of Network Management

There is a lot of research works about addressing the
complexity of network management. COOLAID [9] automates
network configuration by queries performed on an abstract
database containing network information. NetOpen [10] allows
to build up SOA services for monitoring and configuring
OpenFlow networks by networking primitives. OMNI [11] is
a solution based on a multi-agent system that allows network
administrators to control and monitor OpenFlow networks via
a Web user interface. MEICAN [12] uses the business process
management for permitting network administrators take part
in the decision-making process of provisioning virtual inter-
domain circuits. Pyretic [13] enables network programmers
to build SDN applications using an abstract packet model,
parallel and sequential composition operators, and topology
abstraction. Procera [14] permits to manage SDN networks by
expressing event-driven and reactive policies based on control
domains. In the aforecited works, the network administrator
is responsible for manually writing policies, queries, rules,
or primitives in specific languages and/or controllers. Thus,
his/her daily work to overcome sudden Situations of network
management remains complex.

Unlike the above works, we consider concepts from SM
and mashups, to propose an approach (section III) that acts
in a more high-abstraction level and focuses on decrease the
complexity of tasks fulfilled by network administrators when
facing NMSits. Furthermore, as opposed to these works that
have been evaluated using metrics, such as bandwidth, re-
sponse time, and code lines, we concern about the complexity
perceived by network administrators (section IV).

III. MASHMENTS COMPLEXITY & NMSITS

To better explain our approach, at start, we present a
conceptual model about how to address NMSits by Mash-
ments. Afterwards, we introduce the process and complexity
to develop and execute Mashments. At last, we present the
Mashment Maker.

A. Addressing NMSits by Mashments

A NMSit is a sudden, dynamic, heterogeneous, and time
specific Situation happening or that might happen in the
network management domain. Examples of NMSits, that may
be faced by network administrators in their daily work, are:
in Faults, to find the cause root of unexpected and multiple
packet transmission failures in network slices formed by
several OpenFlow networks. In Performance, (i) to control
the abrupt performance degradation of one or more nodes
(switches, routers, and so on) on networks that use diverse
virtualization environments; and (i) to monitor, nearly real

time, sudden violations in service level agreements. NMSits
as the aforementioned may be addressed by using mismatched
tools but it overloads and becomes complex the work of
network administrators. Also, network administrators may
develop home-brewed situational scripts. However, such a
development is daunting and complex for non-programmers.

The Figure 1 depicts the conceptual model for addressing
NMSits by Mashments. If a NMSit happens, the network
administrator: (i) orchestrates a Mashment (i.e., combines
services, processes, user interfaces, and mashup operations to
define a plan and deal with such a NMSit), or (if) reuses
a Mashment (i.e., takes advantage of existing plans to face
the NMSit). Then, he/she executes the Mashment; on run-
time, it performs Network Management Operations targeted
to investigate/resolve the NMSit. These Operations are inter-
nally conducted via Network Situational Processes, Situation
Management Resource as a Service (SMRS), Mediating, and
Situation Management Resources (SMR).

: mw
Graphical User |(~_Washup Saving Handling NISit
w@ Operations &g S IsAd:‘n?:rs::tw
Reusing Handling !
NMsits |
) Investigat
Plans

Network Situational Processes

Situation Management

Resource as a Service (SMRS) [~ Collecting —

Network Management
Resource as a Service (NMRS)

Fusing
s H—

Resolutive Executing

—— . Conslating - Design Time -
jeb-based Management
Resource as a Service (WNRS) ‘ ([—— j—}j Network
— Resolving Handling NMSits ~ Administrator
= Runtime -
Resource as a Service (AMRS)
Situation Management Resources
SWR) NNISits

Hapoening

WManaged
Networks

Network Management Resources
(NMR]
‘Web-based Management Resources
(WNR)
Analytics Management Resources
(WMR)

Addressing NMSits by Mashments: Conceptual Model

Network

Wediating

Washup Processes.
Figure 1.

A SMR is any solution that provides access and commu-
nication to and from network elements or entire networks
involved in NMSits. There are three types of SMR: Network
Management Resources (NMR) are solutions, like ZenOSS,
Citrix Center, OMNI, and Nagios, intended to conduct network
management operations. Web-based Network Management
Resources (WMR) are tools available in the Internet, such
as the Multi Router Traffic Grapher (MRTG) and RRDTool,
useful to perform network management tasks. Analytics Man-
agement Resources (AMR) are solutions, like Junos Network
Analytics Suite, Management Traffic Analyzer, and Sandvine
Network Analytics, suitable to analyze network management
information.

A SMRS is a software entity that offers the network
management operations of a SMR to the Network Situational
Processes, aiming to hide the complexity of NMR, WMR,
and AMR. Specifically, a Network Management Resource as
a Service (NMRS) is responsible for providing functionalities
of NMR, a Web-based Management Resource as a Service
(WMRS) is in charge of offering capabilities of WMR, and
an Analytics Management Resource as a Service (AMRS) is
responsible for supplying functionalities of AMR.

The Network Situational Processes help to automate and

877

145

carry out the investigative/control aspects of SM by using
NMRS, WMRS, and/or AMRS. There are three Network Situ-
ational Processes: (i) Collecting allows to retrieve information
about NMSits through SMRS, (i) Fusing&Correlating permits
to merge and correlate the information retrieved by Collecting.
Fusing&Correlating and Collecting aid in the creation of
investigative plans that are useful to determine the cause of
NMSits; and (iii) Resolving enables to perform, by using
SMRS, network management operations aimed to control
(change/preserve) NMSits. Consequently, Resolving supports
the building up of resolutive plans.

The Mashup Processes provide the automation needed to
orchestrate, save&reuse, and execute Mashments that are
composite and customisable situational solutions which allow
network administrators to deal with NMSits. In particular, Or-
chestrating includes selecting, configuring, and connecting the
resources that form Mashments: SMRS, Network Situational
Processes, GUI, Mashup Operations, and even Mashments.

The GUI are internal and external libraries helpful to gen-
erate advanced and integrated Mashment interfaces targeted
to network administrators. An external GUI is an Application
Program Interface (API), such as Yahoo Maps and Google
Chart, provided by a third-party and that may be used to
display composed information about networks and their de-
vices. An internal GUI is, for instance, a specific user interface
developed to show, correlatively, network traffic information.

The Mashup Operations are: (i) control patterns (e.g., se-
quential, parallel, and conditional) that allow to define the
process flow of Mashments and, consequently, investigative
and resolutive plans, (i7) structures for configuring and invok-
ing the resources that form Mashments; and (iii) structures for
receiving, sorting, and filtering information from any SMRS.

Executing enables network administrators to run Mash-
ments. On run time, all Mashments delegates their man-
agement operations to one or more SMRS via Network
Situational processes. In turn, each SMRS carries out its
operations through Mediating, which is a process always
hidden for network administrators. To assist Executing and
Orchestrating, Mediating offers SMRS to Network Situational
Processes and delegates network management operations to
SMR. This mediation is needed because there is not a common
format neither a standardized interface/protocol to retrieve
and/or bidirectionally interact with data, application logic, and
user interfaces of SMR involved in NMSits. Saving&Reusing
permits network administrators to store Mashments for their
later reuse. Thus, Mashments can be extended and improved to
create other ones or customized to handle analogous NMSits.

Leveraging the automation of Network Situational Procesess
and Mashup Processes, our approach enables network admin-
istrators to: (i) collect, correlate, and fuse information about
NMSits, (ii) present information related to NMSits, in a visual
and comprehensible way, (iii) perform network management
operations to resolve (change or preserve) NMSits, (iv) build
up composite situational solutions, in a Mashment manner,
targeted to address NMSits; and (v) as a global result, to
overcome the complexity of network management tasks in

146

front of NMSits.

B. Process and Complexity in the Development and Execution
of Mashments

Considering the above conceptual model, the
set of Mashments is formally expressed as:
Mashment = {mashment,|mashment, =

(Ruseds Troots 0y NM Siteqar)}. Where, Ryseqa is the set
of resources (SMRS, GUIs, Mashup Operations, and
Mashments) used in the mashment, creation, 7., is the
root resource (€ Ry seq) that starts the mashment, execution,
0 is the execution flow (i.e., investigative and resolutive plans)
of resources that make up the mashment,, and N M Sit,qq,
is the set of one or more nmsits addressed by the particular
mashment,. Tt is noteworthy to mention that N M Sit is
the set of Situations happening in the network management
domain and N M Sit,qq, € NMSit.

| Administrator

Select Selected

Configure
Tuning Resources
Mashment| S =

Available
Resources

Configured
Resources
p

N
.| Combine

Resources

L J

a . - N
Tune as T Execute
Mashment | Mashment

Tuning

Mashment Mashment

Addressing,_ PV

Figure 2. Process to Develop and Execute Mashments

In our approach, network administrators are able to tackle
nmsits by following the process (see Figure 2) to develop
and execute mashments. Such a process is formed by the
tasks: Select, Configure, Combine, Execute, and Tune.

Select Resources. The network administrator defines the
Ry,seq from Available Resources. This task is divided in
two: (i) The network administrator selects the SMRS, GUIs,
and Mashup Operations needed to create the mashment,.
(ii) If it is feasible (there is a mashment, that addresses
similar nmsits), the network administrator chooses one or
more elements of the set Mashment (it is part of available
resources) to reuse them. Configure Resources. The network
administrator provides the functioning settings of one or sev-
eral elements belonging to R, 5.4, defining the set of resources
configured Reonf C Ryseq. Combine Resources. The network
administrator defines the 6 of mashment, that is formed
by combining (connecting/linking) the selected resources. It
is important to highlight that the § creation includes the
definition of r,,.¢. Execute Mashment. The network admin-
istrator launches the mashment,. Tune Mashment. If it is
needed, the network administrator tunes the ¢ of mashment,
under construction, which may imply the selection, configu-
ration, and combination of new resources or simply the re-
arrangement of R, seq-

The complexity of mashment, (i.e., ¢) is calculated by
computing the individual complexity of tasks forming the

878

process aforedescribed. In this way:

i J k e
C = Z Csel + Z Ccon + Z Ccom + Z geace (1)
1 1 1 1

Where, Csets Ceons Ccoms and (eqe represent the complexity
of Select, Configure, Combine, and Execute, respectively. In
turn, 4, j, k, and e denote the number of times that such tasks
are conducted, allowing to consider the complexity of Tune. In
the next paragraphs, these complexities are expressed by using
per-task metrics defined for IT Service Management processes
[26].
The complexity of Select is expressed as:

M
Csel = Z Gm + (nAvailable Resources — 1) x gF cF (2)
m=1

Where, M is the total number of elements on R,s.q and
Sm selType(m) is the complexity of selecting the m-
resource. Here, selType(m) can take one of three values
depending on the automation of m-selection: 0 - if fully
automated, 1 - if manual but tool-assisted, or 2 - if manual.
nAvailable Resources is the number of resources available
to build up the mashment, (i.e., more available resources
result in higher complexity of selection). gF' is the grade of
guidance provided to select the resources needed to form the
mashment,. gF can take one of three values: 1 - if correct
recommendation about resources to be selected is offered,
2 - if general information about each available resource is
supplied, or 3 - if information is not provided. cF' represents
the impact of wrong selection of resources and its value is: 0
- if negligible impact, 1 - if moderate impact, or 2 - if severe
impact.

The complexity of Configure is defined as:

N
Ccon = Z Sn-
n=1

Where, N is the total number of resources on Riony
and ¢, is the complexity of configuring the n-resource.
Note that as Reony € Ruysed, 50, N < M. g,
25:1 sourceParameter(p). Here, P is the total num-
ber of parameters to be configured in the n-resource and
sourceParameter(p) can take one of seven values: 0 -
if the p-parameter value is produced from automation, 1
- if the p-parameter value may be chosen freely (e.g., a
new password), 2 - if the p-parameter value is taken from
task documentation (e.g., set up port=8080 for a HTTP
server), 3 - if the p-parameter value is extrapolated from
task documentation (e.g., define a range of IP addresses),
4 - if the p-parameter value is not trivial for unexperi-
enced network administrators (e.g., set up the URL=http :
//IPAddressO f XenServer /rrdUpdates?host = true to
retrieve statistics of virtual machines running on a determined
XenServer), 5 - if the p-parameter is fixed by the environment
to a specific value that is defined after additional research
(e.g., set up the SNMP OID=1.3.6.1.4.1.9.991.1.1.1.14 to

(&)

obtain the temperature of Catalyst Cisco Switch), or 6 - if

the p-parameter value is constrained by the environment to a

limited set of possible choices where network administrators

need to infer the right choice (e.g., set up the type of server

virtualization technology to be monitored: virtTech=VMware).
The complexity of Combine is expressed as:

L
Ceom = Z linkType(l) + (M — 1) x goF x coF (4)
=1
Where, L is the total number of links (logical connections)
created to build up the mashment,. linkType(l) represents
the complexity of creating the [-link that connects two ele-
ments of R,s.q and can take one of four values: O - if the
[-link is automatically created, 1 - if the [-link is manually
created by a support tool and data transferred among resources
connected must not be adapted, 2 - if the [-link is manually
created and data transferred among resources connected must
not be adapted, and 3 - if the [-link is manually built and data
transferred among resources connected must be adapted. M is
the total number of R, .4 (i.e., more selected resources result
in higher complexity of combination). goF' is the grade of
guidance provided to link the selected resources and can take
one of three values: 1 - if correct guidance to link the selected
resources is supplied, 2 - if general information about the links
that can be established is offered, or 3 - if information is not
provided. coF’ represents the impact of wrong combination of
resources, its value is: 0 - if negligible impact, 1 - if moderate
impact, or 2 - if severe impact.

Cexze can take one of three values depending on the automa-
tion of mashment, execution: 0 - if entirely automated (e.g.,
an autonomous mashment system that executes mashments
on demand), 1 - if manual but tool-assisted (e.g., using an
execution environment to start the mashment,), or 2 - if
manual (e.g., programming/customizing a script every time the
mashment, needs to be executed).

C. Mashment Maker Architecture

The Mashment Maker is defined to accomplish the fol-
lowing goal: to support the conceptual model of Mashments
and, consequently, their developing and executing process.
Therefore, the Maker is targeted to decrease (sei, Ceons Ceoms
Cexe, and the intricacy of Tune (i.e., re-performing the other
tasks). The Figure 3 depicts the Mashment Maker Architecture
that is formed by: SMRS, Mashment Operations, Mediator
Bus, Visual Resources (i.e., Visual-SMRS, Visual-BI, Visual-
MO, and Visual-Mashment), Designer, Contextual Help Sys-
tem (CHS), Mashment Router, Mashment Engine, Mashment
Repository, and Users Repository.

The Mediator Bus provides as a service the Mediating
Process and enables the communication among all elements
of the Maker Architecture. Mashment Operations are services
that supply the functionalities of both Network Situational
Processes and Mashup Operations. The functioning of SMRS
(NMRS, WMRS, and AMRS), Network Situational Processes,
Mashup Operations, and Mediating Process was already de-
scribed in the subsection III-A. Here, it is important to point

879

147

Contextual Help System Mashment Maker
(CHS)

Visual Resources
Visual-SMRS
Visual-Bl
Visual-MO

Designer
Wire
Service
Drag-and-Drop
Service

Situation
Management
Resource as

aService

(SMRS)

Mashment = Mashments = Users | Mashment Mashment
Operations | Repository Repository| Router | Engine
Visual-Mashment

I | | |

Mediator Bus.

é Situation Management Resources (SMR)
Managed Network Management Web-based Analytics Management

Network Networks
Administrator

Resources

Ll (WMR)

(AMR)

Figure 3. Mashment Maker Architecture

out that, first, the Bus, Mashment Operations, and SMRS are
key to achieve the Maker goal because these architectural ele-
ments drive the intricacy of underlying technologies involved
in the investigation and resolution of NMSits. Second, network
administrators never have direct access to these three elements.
This access is always conducted through Visual Resources.

The Visual Resources represent SMRS, GUI, Mashments
Operations, and Mashments, in a high-level abstraction, in
order to hide complexity for network administrators. Visual-
SMRS includes: (i) Visual-NMRS (e.g., a box offering man-
agement functionalities of Vyatta Virtual Router) represents
NMRS, (ii) Visual-WMRS (e.g., a box representing functional
features of RRDTool) represents WRMS; and (iii) Visual-
AMRS (e.g., a box providing functions of the Management
Traffic Analyzer) represents AMRS.

Visual-BI represents basic user interfaces that are useful
to create the composite and advanced GUIs of Mashments.
For instance, a Mashment GUI can be composed by inserting
network traffic images (from MRTG) into a map (from Google
Maps). Visual-MO represents Mashment Operations. A box
offering a dashboard (it hides the collection, correlation,
and fusion of network management information) to monitor
heterogeneous OpenFlow Controllers is an example of Visual-
MO. On design time, to facilitate the reuse, each existing
Mashment is depicted as a Visual-Mashment.

The Designer allows network administrators to develop and
execute Mashments. Accordingly, first, it provides services
for the ¢ definition by means of Dragging-and-Dropping and
Wiring of Visual Resources. Second, it offers capabilities for
saving, deleting, loading, and launching Mashments. In this
sense, on design time, Saving permits to write in the Mashment
Repository the § of Mashments. Deleting allows to remove a
specific d. Loading is responsible for reading ¢ and generating
Visual-Mashments. Launching permits to request to the Engine
the execution of a determined Mashment. Third, it uses
CHS to offer guidance about Visual Resources, Mashments,
and the Maker as a whole. All Designer functionalities are
targeted to facilitate the creation, re-usage and execution of
Mashments and, as a consequence, to reduce Cse;, Ceons Ceoms
and (... Also, such functionalities are key to permit network
administrators to customize their workspace when addressing
NMSits.

The Mashment Repository stores the metadata of Mash-
ments built in the Designer. The metadata of Mashments

148

are objects containing the information/definition of Js. If a
Mashment is formed by one or more Mashments, its metadata
includes the metadata of these Mashments. This inclusion
means that a § can encompass other ds. The Users Repository
stores the data of Network Administrators; this data is used to
perform the access control to the Maker.

The Mashment Router is responsible for performing the §
of Mashments. Thus, on run time, the Router: (i) receives
Mashments invocations from the Engine, which means that
the Router is called by the Engine to select a Mashment
to service an initial request, (ii) selects and links multiple
resources (including Mashments into a Mashment) to attend
invocations, by reading the needed information from reposi-
tories of Mashments and Users; and (iii) calls the Engine to
request the instantiation of Mashments and their elements. It
is to point out that the Router is required by the Engine to
function, but the Router is a separate architectonic element.

The Mashment Engine is a lifecycle manager, responsible
for creating, deleting, and caching instances of Mashments and
their resources. The Engine is splitted in two: (i) the Server-
Side is a Web engine that supports the execution of SMRS,
Network Situational Processes, and Mashup Operations; and
(i) the Client-Side is a Web browser engine that supports Web
2.0 technologies to be able to run the integrated and advanced
user interfaces of Mashments.

Concerning the Maker, it is important to highlight that: (i)
the Drag-and-Drop Service assists Select, aiming to reduce
selType(m), (ii) CHS provides guidelines for supporting
Select, Configure, and Combine, which is targeted to diminish,
respectively, gF, sourceParameter(f), and goF, (iii) the
Wire Service, that does not require data mapping, bears
Combine, aiming to cut down linkType(l), (iv) the high-level
launching mechanism, integrated in the Designer, expedites the
running of every mashment, seeking to decrease (...; and
(v) high-level Visual Resources allow the flexible construction
of Mashments, in a designer-assisted way, which is directed
to cut down Csel, Cco’m and Cewe-

IV. CASE STUDY

To assess our approach, first, we performed a test envi-
ronment made up of the Maker prototype, three SDN-based
networks built using OpenFlow, and a NMSit that happens in
these networks. Second, we conducted experiments to measure
the complexity of addressing such a NMSit when the network
administrator follows the proposed process with and without
the Maker. Below, we describe the test conditions, present the
experiments, and analyze the obtained results.

A. Test Environment

Mashment Maker Prototype. The Figure 4 depicts the Maker
GUI that is formed by the Designer, the Buttons (New, Load,
Save, Delete, Help, and Run), the Visual Resources (Beacon,
Floodlight, POX, Open vSwitch, Vyatta Virtual Router, Virtual
Box Server, VMware Server, Xen Server, Google Maps, Mon-
itoring Panel, Switch Traffic Grapher, RRDTool, OF Monitor,
Virtual Servers Monitor, and the Performance Monitoring

880

Mashment - after described), and CHS. The Designer is a
Web application built using YUI 2.7 and Wirelt 0.5. YUI
is an open source, CSS and javascript framework, used to
implement the Drag-and-Drop Service. Wirelt is a set of open
source javascript libraries, used to create the Wire Service.
The Buttons and Visual Resources (e.g., the Switch Traffic
Grapher) are javascript components, implemented on YUIL
CHS is a GUI component developed using CSS and javascript.

J New | [3Load | ;Save | @ Dete | Hep o Run [ES

Mashment Maker Prototype

% Beacon

% Floodlight

% POX

 Open vSwitch

¥ Vyatta Virtual Router
% Virtual Box Server

% VNiware Server

* Xen Server

¥ Geogle Maps

* Monitoring Panel

% Switch Traffic Grapher
% RRDTeol

* OF Wonitor

% Virtual Server lonitor |

Flaodlignt

35123

=, Beacon - OF Wonitor

bt \ OF Neritor
: — < ‘ “)) hdd

Switeh Trafic Grapher (EM S —— [Kad

= Swich Trafic Grapher - OF Monitor |
LSS [T
Avallable Resources = 14

Rused =Beacon, POX. Floodlight, Switch Traffic Grapher, OF Wonitor
Reonf = Beacon, POX, Floodlight, Switch Treffic Grapher |

_POX-OF Monitor |
Fleodight - OF Monitor

1 P ‘PMM

Figure 4.
ment

Mashment Maker Prototype and Performance Monitoring Mash-

The Mediator Bus, SMRS, and Mashment Operations are
Web Services based on the Representational State Transfer
(REST) architectural style. We use REST-based services be-
cause they are suitable to achieve integration and interoper-
ability in heterogeneous environments. Each Web Service that
interacts with Beacon, Floodlight, and POX was created using
the Java Jersey API 2.3, the Floodlight REST API 1.0, and the
Java Socket API 1.0, respectively. In turn, each Web Service
that communicates with VirtualBox, Xen, and VMware was
correspondingly implemented using the VirtualBox SDK API
4.1, the XenSDK API 6.0, and the VMware WebServices
SDK 5.1. The Mashment Router was built with Java Servlets
and the Asynchronous Javascript and XML (AJAX). We use
Servlets and AJAX because they allow the interactive and
asynchronous interaction among the Maker GUI and the REST
Web Services.

The Maker prototype was unfolded (see Figure 5) in the
Apache-Tomcat Server 7.0 and the MySQL Server 5.1. In
the Apache-Tomcat were deployed the Designer, Buttons,
Visual Resources, CHS, SMRS, Mediator Bus, and Mashment
Operations. In the MySQL were installed the Users Repository
and Mashments Repository. The browser Mozilla Firefox was
the client used to run the Maker GUI.

OpenFlow Networks. Three OpenFlow networks (see Fig-
ure 5) were built using, in the control tier, Beacon 1.0,
Floodlight 0.9, and POX 1.0. Each OpenFlow controller was
deployed to handle 27 Open vSwitches located in the datapath
tier. These switches were deployed, in a tree topology, on
Mininet that is an emulation platform for OpenFlow networks.
The communication among the controllers and their switches
was made by the OpenFlow protocol 1.0.

Open vSwitches
(Mininet Emulator)

Mashment Maker
(Apache-Tomcat & MySQL)

Client

Beacon
Controller

Il
Fantiolsr Floodlight

Controller

Figure 5. Test Environment

NMSit-SDN. Let’s suppose the following Situation: the
network administrator needs to identify which are the Open
vSwitches that are causing sudden performance degradation
on the OpenFlow networks described earlier. Thereby, he/she
requires a situational solution that presents, in an integrated,
visual, and intelligible way, network traffic information of
Open vSwitches handled by Beacon, POX, and Floodlight.
To get such a solution and deal with the NMSit-SDN, the
network administrator has two options: (i) Without the Maker,
to create and launch a Situational Script; or (ii) With the
Maker, to develop and execute the Performance Monitoring
Mashment. These options are evaluated and analyzed in the
next subsection.

B. Complexity: Evaluation and Analysis

To evaluate our approach, initially, we measured the com-
plexity of addressing the NMSit-SDN when the network ad-
ministrator follows the proposed process to tackle NMSits
but does not use the Maker. In a workspace without the
Maker, he/she develops and executes a Situational Script that
retrieves network traffic information from the switches handled
by Beacon, POX, and Floodlight. Such a Script presents the
information retrieved in a user interface formed by text-plane
tables and chart images. According to the equation (1) and
considering the no conducting of Tune (1 = j =k =e = 1),
Cnomaker = Csel:nomak‘er + Ccon:nmnaker + Ccom:nomaker +
Ceze:nomaker~

Select without Maker. The network administrator
performs the selection of controller tools (BeaconTool,
POXTool, and FloodlightTool) and their specific commands
that allow to monitor Open vSwitches. An example
of specific command is to retrieve the statistics
of an Open vSwitch controlled by Floodlight: curl
http://IPCtrller:8080/wm/core/switch/switchld/statType/json.
This selection is complex because it is not tool-assisted and
guidelines are scattered on the Internet. In this way, ¢, = 2,
gF =3, and cF = 1. Using these values in the equation (2),
Csel:nomaker = anzl 2+ (nAvailable Resources — 1) *3* 1.
Where, considering nAvailable Resources = 14, we use this
value to facilitate the comparison with the Maker prototype,
Cscl:nomakcr = 47.

Configure without Maker. The network administrator
configures BeaconTool, POXTool, FloodlightTool, and YUI
Chart API by providing their corresponding functioning
parameters. Thus, in accordance to the equation (3),
Ccon:nomakcr = SbeaconTool T SpoxT ool + SfloodlightT ool + Syc-

881

149

Where, SheaconTool = SpoxTool = SfloodlightTool =
sourceParameter(login) + sourceParameter(key) +
sourceParameter(ip) + sourceParameter(port) +

sourceParameter(statisticCommand). As he/she takes
the configuration information of controller tools from
documentation easy to find on the Internet and defines
the specific statistic commands after additional search,
sourceParameter(login) source Parameter(key)
source Parameter(ip) = sourceParameter(port) = 2 and
sourceParameter(statisticCommand) = 5. Furthermore,
since he/she extrapolates the YUI Chart configuration
information from documentation simple to find on the
Internet, g, = 3. Using these values, Ccon:nomaker = 42.

Combine without Maker. The network administrator man-
ually develops (writes programming code) one logical link
among each of controller tools and the YUI Chart API. Re-
garding these links, it is to point out that: (i) he/she adapts the
data retrieved because controller tools, involved in the NMSit-
SDN, use different data types (e.g., Beacon employs data type
in Java and Floodlight uses JSON); and (ii) he/she neither
has explicit nor centralized guidelines to support the links
development. Thus, linkType(l) = 3, goF = 3, and coF' = 1.
Using these values in the equation (4), Ccom:nomaker = 21.

Execute without Maker. As the network administrator
launches the Situational Script by typing a specific command
in a Linux Command Line, (eye:nomaker = 2. After executing
this Script, the network administrator is able to find the Open
vSwitches involved in the NMSit-SDN, by analyzing YUI
Chart images and text-plane tables.

Once computed the intricacy of facing the NMSit-SDN
without the Maker, we proceed to evaluate the complexity of
developing and executing the Performance Monitoring Mash-
ment. In a broad sense, in the Maker, the network administrator
builds and launches this Mashment (see Figure 4) by dragging-
and-dropping, wiring, and clicking Visual Resources and But-
tons. The Maker also assists such a process by providing
contextual guidelines for the network administrator. In accor-
dance to the equation (1) and considering the non performing
of Tune, Cpmm = gsel:mak:e'r + Ccon:mak:e'r + Ccom:mak:er +

Ceze:'maker-

Select on Maker. The network administrator uses the Drag-
and-Drop service (i.e., a Maker-assisted way) to select the
Visual Resources (M = 5) that form the Performance Mon-
itoring Mashment. Thus, Ryseq ={Beacon, POX, Floodlight,
Switch Traffic Grapher, OFMonitor}. Furthermore, to facilitate
such a selection, the Maker via CHS provides him/her con-
textual guidance about each of nAvailable Resources = 14.
Therefore, ¢, = 1, gF = 2, and ¢F' = 1. Using these values
in the equation 2), Csel:make’r =31.

Configure on Maker. The network adminis-
trator configures (N 4) Visual Resources,
Reonf ={Beacon,POX,Floodlight,Switch Traffic Grapher}, by
providing their functioning settings. Then, in accordance to the
equation (3), Ccon:maker = Sbeacon + Spox + Sfloodlight + Sstg-
Where, Speacon Sfloodlight
sourceParameter(login) + sourceParameter(key) +

Spox

150

Monitored Switches

id IP Address Port (o

C P c Port C

+ 00:00:00:00:00:00:03:f5 192.168.56.2 37076 2013-10-31 13:21:43 143.54.12.23
2 00:00:00:00:00:00:04:53 192.168.56.2 41258 2013-10-31 13:21:10 143.54.12.38
= 00:00:00:00:00:00:04:1d 192.168.56.2 38666 2013-10-31 13:19:41 143.54.12.45

Type
beacon
floodlight
pox

6633
6633
6633

Flows on Switch(es)| | Tables on Switch(es) | | Ports on Switch(es) | | Traffic Last Minute | | Traffic Last Hour

Last Hour Traffic Switch 00:00:00:00:00:00:03:f5 beacon 143.54.12.23:6633

- -

Last Hour Traffic Switch 00:00:00:00:00:00:04:53 floodlight 143.54.12.38:6633 ~

Last Hour Traffic Switch 00:00:00:00:00:00:04:1d pox 143.54.12.45:6633

-

/ / —
J/ /_/
—
///
Figure 6. Performance Monitoring Mashment on Runtime
sourceParameter(ip) + sourceParameter(port) and Designer.
Sstg = sourceParameter(refreshTime). Considering that
the Maker via CHS offers him/her configuration guidelines s
. . 40
about Visual Resources, Gpeacon = 8 and g5 = 2. Using _35
= 30
these values, Ccon:maker = 26. 22 - =wiou
. .. S 20 aker
Combine on Maker. The network administrator uses the Sis Maker
. . . . 10
Wire Service (linkType(l) = 1) to create L = 4 links: Beacon s e

- OF Monitor, POX - OF Monitor, Floodlight - OF Monitor,
and Switch Traffic Grapher - OF Monitor. Regarding these
links, it is to stand out that: (i) he/she does not need to adapt
the data transferred because the Mediator Bus is responsible
for hiding the data mapping; and (ii) he/she obtains guidelines
about links creation from the Maker via CHS. Therefore,
goF = 2 and coF' = 1. Using these values in the equation
(4)’ CCO77LZ’UL(Lk(:’7' = 12'

Execute on Maker. Since the network administrator can run
the Performance Monitoring Mashment from the Designer by
clicking the Run Button, (ezeimaker = 1. After launching
this Mashment (see Figure 6), the network administrator can
identify the three Open vSwitches implicated in the NMSit-
SDN, by analyzing, in an integrated GUI, Switch Traffic
Grapher images and HTML tables.

The Figure 7 depicts the obtained results in the complexity
assessment when the network administrator faces the NMSit-
SDN with and without the Maker. In accordance to these
results, the use of the Maker: (i) diminishes the complexity
of Select in 3404%’ Csel:maker =3l < Csel:nomaker = 47,
attained by the services Drag-and-Drop and CHS, (ii) reduces
the complexity of Configure in 38.09%, Cconmaker = 26 <
Ceon:nomaker = 42, reached by CHS, (iii) decreases the
complexity of Combine in 42.85%, Ccom:maker = 12 <
Ceom:nomaker = 21, obtained by the Wire Service and the
Mediator Bus; and (iv) diminishes the complexity of Execute
in 50%’ Cczc:mak:c’r =1< Cczc:nomakcr =2, gotten by the

882

Select Configure Combine Execute Task

Figure 7. NMSit-SDN: Tasks Complexity

Since in a Maker-based workspace the complexity of each
task is less than the corresponding complexity when the Maker
is not used, (pmm = 70 is also less than (pomaker = 112 and
the global reduction is 37.50%. Considering the above results,
we demonstrated that if network administrators follow the
process to develop and execute Mashments in the Maker, the
complexity of handling NMSits is decreased. Consequently,
we conclude that our approach can be used by network
administrators to overcome the complexity of NMSits.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced an approach that allows to
overcome the complexity on the work performed by network
administrators to face NMSits. The approach is formed by the
Mashments conceptual model, the process to develop and exe-
cute Mashments, and the Maker that supports such model and
process. Furthermore, we presented the complexity evaluation
of process that the network administrator conducts to build
up and run two solutions: Situational Script and Performance
Monitoring Mashment. Both solutions were targeted to address
the NMSit-SDN: identify switches that are suddenly causing
performance degradation on OpenFlow networks handled by
different controllers.

Our approach permitted the network administrator to ad-
dress the complexity involved in overcoming the NMSit-SDN,
confirming the importance of the Mashment conceptual model,
the process to develop and execute Mashments, and the Maker.
In this sense, using per-task metrics, we demonstrated that the
complexity decreases when network administrators conduct
the following situational tasks: Select, Configure, Combine,
and Execute. Therefore, we can state that our approach cuts
down the complexity on the work carried out by network
administrators to cope with NMSits.

We consider the proposed approach as a step forward in
the network management, the situation management, and the
mashup technology. In this regard, we drive the first towards
an environment focused on situations, composite situational
solutions, and network administrators. We bring mashup foun-
dations up to the second to perform its investigative and control
aspects. We lead the third to a novel application domain
located in the intersection of the situation management and
the network management.

As future work, we plan to correlate time and complexity
metrics, in order to evaluate the productivity of network
administrators that face NMSits by Mashments. Furthermore,
we are interested in propose the deployment costs model of
our approach by considering the heterogeneity of resources to
be integrated/combined. Finally, we also pretend to add more
resources and services to improve the Maker implementation.

ACKNOWLEDGMENT

The research of PhD(c) Caicedo is supported by the PECPG
of the CAPES (Brazil) and the University of Cauca (Colom-
bia).

REFERENCES

[1] G. Jakobson, J. Buford, and L. Lewis, “Situation Management: Basic
Concepts and Approaches,” in Information Fusion and Geographic
Information Systems, ser. Lecture Notes in Geoinformation and Cartog-
raphy, W. Cartwright, G. Gartner, L. Meng, M. . Peterson, V. . Popovich,
M. Schrenk, and K. . Korolenko, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2007, ch. 2, pp. 18-33.

Kokar, Mieczyslaw M. and Matheus, Christopher J. and Baclawski,
Kenneth, “Ontology-based Situation Awareness,” Information Fusion,
vol. 10, no. 1, pp. 83-98, january 2009.

G. Jakobson, L. Lewis, C. Matheus, M. Kokar, and J. Buford, “Overview
of Situation Management at SIMA,” in MILCOM, 2005, pp. 1630 —1636
Vol. 3.

S. George, W. Zhou, H. Chenji, M. Won, Y. O. Lee, A. Pazarloglou,
R. Stoleru, and P. Barooah, “DistressNet: a Wireless ad hoc and Sensor
Network Architecture for Situation Management in Disaster Response,”
Communications Magazine, vol. 48, no. 3, pp. 128-136, 2010.

B. Magoutas, G. Mentzas, and D. Apostolou, “Proactive Situation
Management in the Future Internet: The Case of the Smart Power Grid,”
in DEXA, september 2011, pp. 267 —271.

D. M. Hein, R. Toegl, M. Pirker, E. Gatial, Z. Balogh, H. Brandl, and
L. Hluchy, “Securing Mobile Agents for Crisis Management Support,”
in STC. New York, NY, USA: ACM, 2012, pp. 85-90.

Pereira, I.S.A. and Costa, P.D. and Almeida, J.P.A., “A Rule-based
Platform for Situation Management,” in CogSIMA, 2013, pp. 83-90.
O. Caicedo, F. Estrada, and Granville., “A Mashup Ecosystem for
Network Management Situations,” in Globecom, december 2013, pp.
2271-2277.

X. Chen, Y. Mao, Z. M. Mao, and J. Van der Merwe, “Declarative
Configuration Management for Complex and Dynamic Networks,” in
Co-NEXT. New York, NY, USA: ACM, 2010, pp. 6:1-6:12.

2

—

3

[4

=

3
=

883

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

151

N. Kim and J. Kim, “Building NetOpen Networking Services over
OpenFlow-based Programmable Networks,” in ICOIN, january 2011, pp.
525 -529.

D. Mattos, N. Fernandes, V. da Costa, L. Cardoso, M. Campista,
L. Costa, and O. Duarte, “OMNI: OpenFlow MaNagement Infrastruc-
ture,” in NOF, november 2011, pp. 52 -56.

J. de Santanna, J. Wickboldt, and L. Granville, “A BPM-based Solution
for Inter-domain Circuit Management,” in NOMS, 2012, pp. 385-392.

C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker, “Com-
posing Software-defined Networks,” in NSDI. Berkeley, CA, USA:
USENIX Association, 2013, pp. 1-14.

H. Kim and N. Feamster, “Improving Network Management with
Software Defined Networking,” Communications Magazine, vol. 51,
no. 2, pp. 114-119, 2013.

D. E. Simmen, M. Altinel, V. Markl, S. Padmanabhan, and A. Singh,
“Damia: Data Mashups for Intranet Applications,” in ACM SIGMOD.
New York, NY, USA: ACM, 2008, pp. 1171-1182.

N. Laga, E. Bertin, R. Glitho, and N. Crespi, “Widgets and Composition
Mechanism for Service Creation by Ordinary Users,” Communications
Magazine, vol. 50, no. 3, pp. 52-60, 2012.

N. Ozkan and W. Abidin, “Investigation of Mashups for Managers,” in
ISCIS, september 2009, pp. 622 —627.

H. Gebhardt, M. Gaedke, F. Daniel, S. Soi, F. Casati, C. Iglesias, and
S. Wilson, “From Mashups to Telco Mashups: A Survey,” Internet
Computing, vol. 16, no. 3, pp. 70-76, may-june 2012.

V. Stirbu, Y. You, K. Roimela, and V. Mattila, “A Lightweight Platform
for Web Mashups in Immersive Mirror Worlds,” Pervasive Computing,
vol. 12, no. 1, pp. 3441, 2013.

Y. Han, G. Wang, G. Ji, and P. Zhang, “Situational Data Integration
with Data Services and Nested Table,” Service Oriented Computing and
Applications, vol. 7, no. 2, pp. 129-150, 2013.

C. dos Santos, R. Bezerra, J. Ceron, L. Granville, and L. Rocken-
bach Tarouco, “On Using Mashups for Composing Network Manage-
ment Applications,” Communications Magazine, vol. 48, no. 12, pp.
112-122, december 2010.

O. Caicedo, F. Estrada, and Granville., “A Mashup-based Approach for
Virtual SDN Management,” in COMPSAC, july 2013, pp. 143-152.

J. Yu, B. Benatallah, F. Casati, and F. Daniel, “Understanding Mashup
Development,” Internet Computing, vol. 12, no. 5, pp. 44 52, sept.-oct.
2008.

C. dos Santos, R. Bezerra, J. Ceron, L. Granville, and L. Tarouco,
“Botnet Master Detection Using a Mashup-based Approach,” in CNSM,
october 2010, pp. 390 —393.

B. R.S., C. dos Santos, L. Bertholdo, L. Granville, and L. Tarouco, “On
the Feasibility of Web 2.0 Technologies for Network Management: A
Mashup-based Approach,” in NOMS, april 2010, pp. 487 —494.

Y. Diao and A. Keller, “Quantifying the Complexity of IT Service
Management Processes,” ser. DSOM’06. Berlin, Heidelberg: Springer-
Verlag, 2006, pp. 61-73.

152

Globecom 2013 - Next Generation Networking Symposium

A Mashup Ecosystem for Network Management
Situations

Oscar Mauricio Caicedo Rendon
Computer Networks Group
Institute of Informatics
University Federal do Rio Grande do Sul
Email: omcrendon @inf.ufrgs.br

Abstract—Current network management approaches and
their implementations are not intended to address dynamic situa-
tions that need rapid delivery of good-enough and comprehensive
solutions. In this paper, we introduce a novel mashup ecosystem,
called Mashment Ecosystem, that allows Network Administrators
to conduct on a Mashment Maker the activities and interac-
tions necessary to provide Mashments. Mashments are mashups
aimed to tackle network management situations. We evaluate
the Mashment Ecoystem by estimating with the Keystroke-
Level Model and measuring in a test scenario the time that
Network Administrators take to perform the activities of creating,
launching, and publishing Mashments. Similarly, we evaluate the
time for retrieving information about a network management
situation by using or not Mashments. The evaluation results
corroborated that Network Administrators, in our ecosystem,
need short-time to deal with network management situations.

[. INTRODUCTION

Nowadays, the use of computer networks has become vital
to most enterprises. Up to now, in these networks, many man-
agement tasks require manual intervention by Network Ad-
ministrators, mainly, to manage dynamic Situations that need
rapid delivery of good-enough and comprehensive solutions
[1]. In general, a Situation is a collection of entities (i.e., things
in a domain), their attributes, and relations in a time interval
[2]. Hereinafter, we call a network management Situation as
NMSit. Information technology departments do not provide
situational solutions for NMSits because the requirements of
these types of Situations are usually located in the long-tail
of enterprise needs [3] [4]. As result, Network Administrators
must create by themselves solutions for NMSits.

The Situation Management (SM) is an approach to provide
solutions that enable to analyze, correlate, and coordinate
the interaction between people, information, technologies, and
actions intended to overcome Situations [2][5]. SM includes
three aspects always linked to the time axis [2]: (i) the
investigative aspect is related to retrospective cause analysis
of Situations (e.g., finding the root of a packet transmission
failure in an OpenFlow-based network), (ii) the control aspect
is directed to change or preserve Situations (e.g., migrating
a virtual switch from an overloaded server); and (iii) the
predictive aspect is aimed to presage Situations (e.g., projecting
the appropriate time to migrate a critical router before a service
disruption happen). In addition, as Situations are dynamic, SM
emphasizes an adaptive management style.

978-1-4799-1353-4/13/$31.00 ©2013 |EEE

Felipe Estrada-Solano
Telematics Engineering Group
Telematics Department
University of Cauca
Email: festradasolano@unicauca.edu.co

2249

Lisandro Zambenedetti Granville
Computer Networks Group
Institute of Informatics
University Federal do Rio Grande do Sul
Email: granville@inf.ufrgs.br

Current network management solutions, such as Ganglia[6]
and Nagios [7], are not intended to address the NMSits.
Regarding these solutions, it is important to point out that
they are not compatible, difficulting the information collection
and information fusion that are necessaries to deal with a
NMSit. Furthermore, the referred solutions are created without
taking into account their rapid integration, extension, and
improvement by Network Administrators, making hard the
coping of NMSits. Thus, during a NMSit, the job of Network
Administrators is hindered, since they are not able to enhance
their workspace and must use numerous mismatched solutions
from the Web and the network management.

Different research works have been developed about net-
work management in traditional [8], virtual [9], Software
Defined (SDN) [10], and cloud [11] networks. Such researches
do not focus on face the NMSits and are developer centric. In
the last years, mashups [12], that are end-user centric solutions
formed by combining resources from different providers, have
been applied in several domains as situational projects [13]
and natural disasters [14] [15]. Nevertheless, mashups have not
been used for tackling the NMSits. In this way, we raise the
following question: how to tackle the NMSits by focusing on
the Network Administrator?. In order to answer this question,
we introduce a mashup ecosystem, named Mashment Ecosys-
tem, which allows to carry out SM in network management.
To the best of our knowledge, this work is the first to use
an approach centric in the Network Administrator, SM, and
mashup-based to deal with NMSits.

The Mashment Ecosystem, first, helps and encourages to
Network Administrators to build up Mashments (i.e., mashup
used to deal with a NMSit) by themselves. Second, it al-
lows Network Administrators to collect, correlate, and fuse
information from heterogeneous resources offered by diverse
providers. Third, it promotes the sharing and reuse of Mash-
ments to avoid their wasting and to push the rise of innovative
ones. Summarizing, the key contributions presented in this
paper are to: (i) propose a novel Mashment Ecosystem for
rapidly tackling NMSits by focusing in the Network Admin-
istrator; and (ii) demonstrate the short time that the Network
Administrator needs to address a NMSit by building up and
using a Mashment in our ecosystem.

The remainder of this paper is organized as follows. In
Section II, we present SM and the mashup technology. In
Section III, we introduce the Mashment Ecosystem. In Section
IV, we expose and analyze the case study developed to evaluate

Globecom 2013 - Next Generation Networking Symposium

our proposal. In Section V, we provide some conclusions and
implications for future work.

II. BACKGROUND

In this section, we present a SM background. Also, we
describe mashups and research works about mashups—SM.

A. Situation Management

SM is an emerging approach to provide solutions that need
the planning and implementing of actions aimed to overcome
a determined Situation [2]. SM requires the use of novel
techniques [5], first, to collect time/state information about
Situations. Second, to correlate and fuse multi-source infor-
mation for timely and correct decision making in Situations.
Third, to analyze past and predict future Situations. Fourth,
to present information aiming at the human comprehension
maximization.

Solutions based on the SM concepts are found in several
domains. For instance, in the domain of polyester film base
manufacturing, a situational solution, based on an expert
system, has been proposed for monitoring the non-steady state
events and assisting human operators with the event tasks [16].
In the aviation domain, a scalable and distributed situational
system has been introduced for the management of air security
incidents such as terrorist attacks that need, to be overcomed,
the coordination and sharing of information from different
organizations [17]. An architecture, based on SM, the Service
Oriented Architecture, and developer centric, has been outlined
for supporting demand response aspects of the smart grid
domain [18]. Althoug SM has been used in several domains,
there is not a SM-based approach to deal with NMSits.

B. Mashups

Mashups are web applications centered in end-users and
built up by combining several resources (e.g., data, applica-
tion logic, and user interfaces) from one or more providers
[12]. Here, end-user centric means that mashups can be built
by users without advanced programming skills. In addition,
regarding the mashups is to noteworthy [19]. First, they
encourage the sharing among end-users. Second, the providers
that supply resources, the end-users/developers that create
mashups, and the end-users that use mashups act as a single
unit known as mashup ecosystem.

If a mashup is developed for rapidly coping an immediate
need of one or a set of end-users, it can be considered as a
situational solution [20]. Mashups have been useful to manage
Situations in diverse domains. For instance, Mashups were
used to help to overcome a fire emergency in San Diego
(California, United States) by sharing weather and rescue
information among civil organizations and the government
[14]. In situational projects that involve a small number of
users and have a short lifespan, a mashup environment has
been introduced in order to support management tasks. In
such environment, the project manager is able to quickly
develop a mashup for visualizing and filtering the information
of his/her project [13]. An architecture, based on the Web 2.0
and wireless sensor networks, has been proposed in order to
estimate the speed and timing of possible floods. A mashup
prototype that collects, correlates, and presents data from

2250

153

multiple wireless sensors was developed to test the architecture
[15]. Despite the use of mashups in several domains, there is
not a mashup-based approach for tackling the NMSits.

III. MASHMENT ECOSYSTEM

In order to better explain our proposal, we present an
overview of the Mashment Ecosystem. Subsequently, we
describe its Resources, Stakeholders, Activities&Interactions,
and Software Entities.

A. Overview

Current network management approaches do not focus on
dealing with NMSits. In the same way, although the mashup
technology provides good basis for developing composite
situational solutions by end-users, it has not been used for
tackling the NMSits. Therefore, there is a gap in the mashup
and network management related research and, consequently,
there is a chance for innovation. Hereinafter, we present how
a Mashment Ecosystem, based on the abstraction of resources,
the mashups composition model, and a Network Administrator
centric approach, can be targeted to address the NMSits. In
particular for coping the NMSits, the Mashment Ecosystem
faces three issues: (i) the complexity and heterogeneity to
collect, correlate, and fuse information from multiple resources
of the Web and the network management, (ii) the demand by
functionalities that allow Network Administrators to rapidly
create adaptable solutions for NMSits; and (iii) the need by
visualization functionalities that enable Network Administra-
tors to get NMSit information, in a very understandable way.

Before detailing the Mashment Ecosystem, we introduce
the Mashment concept and a motivating scenario. A Mashment
is a tunable situational mashup that allows Network Admin-
istrators (their end-users) to tackle a NMSit by combining
diverse types of resources from multiple providers. Tunable
means that Mashments are adaptable and easily customizable.
Since Mashments are a special type of mashup, they can be
created by Network Administrators. Regarding a Mashment
is also relevant to point out. First, it hides the heterogeneity,
complexity, and stiffness of resources used to deal with a
NMSit. Second, it bears the easy collection, correlation, and
fusion of information about a NMSit. Third, it presents NMSit
information, in a visual and clear way. Fourth, it can be rapidly
created to cope a determined NMSit.

Motivating Scenario. Let’s suppose the following NMSit:
in a virtual network formed by OpenFlow-based heterogeneous
Slices from different providers (NP,, NP,, and NP,), a
packet failure transmission occurs because of sudden and
unidentified errors. To tackle this NMSit, the Network Ad-
ministrator needs to found errors from Slices in NP,, NP,
and N P.. As every N P uses a different OpenFlow Controller,
aiming at overcoming this NMSit, the Network Administrator
has three options. The first one is to collect, correlate, and
visualize network monitoring information by using disparate
solutions, such as command line interfaces to execute specific
commands on each Controller, distinct web user interfaces to
monitor virtual switches, and external web tools to display
non-integrated information about packet traffic. A drawback
of first option is that the use of several mismatched solutions
consumes more time than use an integrated solution. The

154

second option is to develop a low-level script to integrate
the aforementioned commands, user interfaces, and web tools.
This option also consume a lot of time because, the Network
Administrator usually does not have advanced knowledge in
programming. The third option is to participate in the Mash-
ment Ecosystem. A Network Administrator in our ecosystem
is able to quickly build up, in a high-level abstraction, by
him/herself a Mashment to face the described NMSit. This
Mashment hides the resources heterogeneity from N P,, N P,
and N P.. Furthermore, the Mashment presents the network
management information of virtual network in an integrated
and intelligible way.

2

Network Management Provide/

{Tackling the NMSit: Executing Mashments
Resource Provider Consume _Mashup | - Creating H

(NMRP) ~ "Tmeeeeee Creator | - Reusing
reator | bishing Mashment Engine
- N Mashment
Mashment Maks ‘] i
[Ay lashment Maker " Mashment | i Marketplace
i —f-n Instances | Mashment
oud- ot Mashment | Repository
Mashment = Store
Mashment Tistantiate -
:MR-N % " ee .\ MashmentPkg
DN-NMRP e Announce
Mashment ‘GperatorR | Mashment | - Creating
esource - Reusing MashmentPk
NMR (OpR)E - Publishing

- Selling
- Buying
- Sharing

- - Launchin
Virtual-NMRP - Releasing

o0 Provide/
NVR_ @ Consume._
R poby
Traditional-NMRP Crea(pr

Web Resource Provider

Provide/ § N e " Commercialize Mashup
_Consume § administrator | Cregtor

WR H 1022 g NMmsit

4 Provide/
NMRP | Consume

--------- Interactions H
Activities + Provide/
+ Consume

Provide/ §
Gonsume |

Fig. 1: Mashment Ecosystem

The Mashment Ecosystem (see Figure 1) is formed by:
resources (Network Management Resources, Web Resources,
and Operator Resources), Mashments, stakeholders (Network
Administrator, Mashup Creator, Resource Creator, Web Re-
source Providers, Network Management Resource Providers,
and Software Entity Providers), software entities (Mashment
Maker, Mashment Engine, Mashment Repository, and Mash-
ment Store), activities performed by stakeholders, interactions
between stakeholders, and interactions between software enti-
ties. In this ecosystem, Network Administrators and Mashup
Creators build up Mashments by using the Mashment Maker.
Mashments are made up of resources from different providers
and are executed in the Mashment Engine. The resources
are released by the Resource Creator. In the Martketplace,
the Mashments are shared, sold, and purchased by Mashup
Creators and Network Administrators.

If a NMSit occurs, a Network Administrator can address
it as follows: (i) buying or getting free of charge a Mash-
ment(s), rapidly creating one or more Mashments, or quickly
reusing a Mashment(s) previously built; and (if) executing the
purchased or created Mashment(s). It is important to highlight
that the Mashment Ecosystem evolves over time because of
the emerging and perishing of resources, the sharing and
commercialization of Mashments, and the dynamic interactions
between stakeholders.

The Mashment Ecosystem can be expressed as M Eco =
{M,St,A,I,Se}. Where: St, A, I, and Se are sets of
stakeholders, activities, interactions, and software entities, re-
spectively. In turn, the set of Mashments M = {m;|m; =
(Rused; Troot, 0,nmsit) : Rysed C R,Troot € R,nmsit €
NDMSit}. Here, Ryseq is the set of resources on my, T'root
is the root resource that starts the m; execution, 0 is the
execution flow of resources on m;, and nmsit is the specific

2251

Globecom 2013 - Next Generation Networking Symposium

NMSit tackled by m;. The other sets forming our ecosystem
are described in next subsections.

B. Resources

A resource is a clearly identifiable entity in a time interval,
which is conceived or can be adapted to tackle a NMSit. The
set of resources is R = {ri|r;, € NMR U WR U OpR}.
Where, Network Management Resources (NMR) are entities
intended for the network management. NMR examples are
Ganglia to manage traditional networks, Citrix Center for
monitoring virtual resources, NetOpen to control OpenFlow-
based networks, network monitoring systems based on the
Simple Network Management Protocol, and all Application
Programming Interfaces (API) that provide interaction with
network elements.

Web Resources (WR) are Internet entities conceived or
useful (via adaptation) for the network management. WR
examples are the Google Maps API to show the geographic
location of several network devices, the Multi Router Traffic
Grapher (MRTG) to generate web pages with images present-
ing the traffic of network links, and the RRDTool to display
over time the performance data of routers.

Operator Resources (OpR) are entities for combining re-
sources (i.e., NMR, WR, and even Mashments). There are
two classes of OpR. Configuration_OpR to set up parameters
for both access and communication to resources. An example
of Configuration_OpR 1is a service to configure the security
credentials required to monitor a virtual router. Control_OpR
are composition patterns, such as Split, Merge, Aggregate,
Invoke, Trigger, and Receive, useful, for instance, to collect,
correlate, and fuse resources.

C. Stakeholders

A stakeholder affects and is
tivities and interactions performed by other one. The
set of stakeholders is St = {sti|st; € NMRP U
WRP U SFEP U ResourceCreators U MashupCreators U
NetworkAdministrators}. Where, The Network Manage-
ment Resource Provider (NMRP) is in charge of supplying
NMR. Citrix Systems and Cisco Systems, providing solu-
tions and programming interfaces to manage virtual servers
and network devices, are examples of NMRP. The Web
Resource Provider (WRP) is responsible for supplying WR.
An example of WRP is a big player as Yahoo Inc. that
provides visualization libraries and map services useful to
present network management information. Another example
is Oetieker&Partners Inc. that supplies web solutions intended
for network monitoring, such as RDDTool and SmokePing.

affected by the ac-

The Software Entity Provider (SEP) is in charge of offering
one or more software entities. In general, the Mashment
Maker (containing visual representations of NMR, WR, OpR,
and Mashments) and the Mashment Engine are provided, in
an unified way, by the same SEP. In turn, the Mashment
Repository and Mashment Store are usually offered, in a
distributed way, by different SEP. In the Mashment Ecoystem
can exist several Makers, Engines, Repositories, and Stores.

Before participating in the building of a Mashment, many
WR and NMR need of adaption, in data format and/or com-
munication protocol. The Resource Creator is responsible for

Globecom 2013 - Next Generation Networking Symposium

this adaptation that we called releasing. Since such a releasing
requires strong programming skills, Resource Creators are
usually software companies and professional developers. The
Open Software community, that provides APIs to interact
via standardized protocols with network devices and servers
containing virtual routers, is an example of Resource Creator.

The Mashup Creator creates, publishes, and launches
Mashments by means of the Mashment Maker and the Mash-
ment Engine. Also, he/she is able to share, sell, and buy
Mashments in the Marketplace. A Mashup Creator can get
profits by commercializing Mashments. Software companies,
professional developers, and end-users are examples of this
class of stakeholder.

The Network Administrator is responsible for tackling the
NMSits in traditional, virtual, SDN, and cloud networks. The
Mashment Ecosystem allows Network Administrators to: (i)
create and execute Mashments, (ii) reuse existing Mashments,
NMR, OpR, and WR, (iii) improve their workspace as result of
(7) and (ii); and (iv) get profits through publishing and selling
Mashments.

D. Activities and Interactions

The activities are actions conducted by stakeholders
in the software entities. The set of activities is A =
{Releasing, Creating, Reusing, Publishing, Launching,
Selling, Buying, Sharing}. Where, Releasing is carried out
by Resource Creators to enable the combination of hetero-
geneous resources through adapting NMR and WR. After
Releasing, the adapted resources can be used to build up
Mashments.

Mashup Creators and Network Administrators perform
Creating, Reusing, Publishing, Sharing, Selling, and
Buying. Creating allows to build up a Mashment (i.e., define
¢ or execution flow), which involves: (i) discover the available
resources (NMR, WR, OpR, and Mashments), (ii) select the
suitable resources to address a NMSit, (iii) orchestrate a static
or dynamic plan for tackling a NMSit, by combining the
previously selected resources, (iv) monitor if the WR, NMR,
and Mashments used on the orchestrated plan are available
and flawless; and (v) reconfigure the orchestrated plan if any
resource is in flaw or unavailable.

Reusing enables to take advantage of existing Mashments,
aiming at the creation of more complex and innovative Mash-
ments. Publishing allows to package and put Mashments in
the Mashment Repository, aiming at their sharing, selling, and
buying. Sharing enables to offer and get Mashments free
of charge. Selling and Buying allow the commercialization
of Mashments. Sharing, Selling, and Buying promote the
reuse of Mashments and encourage the evolution of the Mash-
ment Ecosystem. Mashments (built and purchased) are sent
to execute through performing Launching, which, in turn,
is conducted by Network Administrators. Every Mashment
launched is called Mashup Instance.

The interactions take place in the relationships:
stakeholder/stakeholder and software entity/software
entity. The set of interactions can be expressed as [=
{Provides, Consume, Tackling, Commercialize, Occur,
Instantiate, Announce}. Where, Provide and Consume

2252

155

occur from the need of supplying and consumption of NMR
and WR, during: the building up of the Mashment Maker,
the resources releasing, and the Mashments creation that
enhances and improves the Mashment Maker. Provide and
Consume take place among: Resource Providers, Resource
Creator, Mashup Creators, and Network Administrators.

Instantiate is conducted among the Mashment Maker and
the Mashment Engine when a Network Administrator launches
a Mashment. Announce is performed among the Mashment
Maker and the Mashment Marketplace, aiming at publishing
of Mashments that can be later shared, purchased, and sold
in Commercialize. Mashup Creators and Network Admin-
istrators carry out Commercialize. Occur and Tackling
are special interactions used to represent the emerging of a
NMSit and the corresponding responses offered by Mashment
Instances. During T'ackling, Mashment Instances interact with
NMR, WR, and OpR in order to face a NMSit.

E. Software Entities

The software entities are responsible for supporting
and automating the activities and interactions
aforedescribed. =~ The set of software entities is
Se = {Maker, Engine, Marketplace}. Where, the
Mashment Maker allows Network Administrators and
Mashment Creators to build up Mashments, in an easy and
rapid way. The Maker is a development environment that
provides a composition approach, high-level programming
tools, and a lightweight development process. The composition
approach consists of four phases related to Creating and
Reusing activities: (i) discover and select, (if) orchestrate,
(iii) monitor and reconfigure; and (iv) reuse. The above
phases enable, first, to use the last information retrieved from
available resources. Second, to avoid the use of redundant,
incomplete, or irrelevant information provided by resources
in failure. Third, to avoid the lack of information because of
unavailable resources.

The high-level programming tools are visual facilities,
based on drag-and-drop and wire mechanisms, that allow
to perform the composition approach, Publishing, and
Launching. Such tools are responsible for hiding the data
mapping among WR, NMR, and OpR. The data mapping is
a problem particularly daunting for Network Administrators,
because, generally, they are not expert developers. As the
Mashment Maker is devoted to Network Administrators, we
define a simple process to tackle whatever NMSit: (i) conduct
the approach of composition above described and so build
up Mashments for the NMSit or buy the Mashment for the
NMSit, (ii) use the Mashments to deal the NMSit; and (iii)
maintenance of Mashments to avoid their malfunctioning.

The Mashment Marketplace allows to establish a new value
chain in which revenues are shared not only by WRP and
NMRP but all stakeholders. Marketplaces that involve end-
users (as Network Administrators) and professional developers
(as Mashup Creators) have proved valuable to promote the
evolution over time of Service Ecosystems (as the Mashment
Ecosystem). The Android Market and the Apple Store are
succesful examples of solutions marketplaces. The Mashment
Marketplace is make up of the Mashment Store(s) and the
Mashment Repository(s). In the Mashment Store are performed

156

Selling, Sharing, and Buying. As result of Announce,
in the Mashment Respositoy are stored MashmentPkgs (a
packaged Mashment) to be sold or shared. The reuse of
existing Mashments, by Selling and Sharing, is a key aspect
for the evolution of proposed ecosystem.

The Mashment Engine is responsible for the lifecycle
(i.e., Instantiate) of Mashment Instances that are Mashments
on run time. A Mashment Instance allows to tackle (i.e.,
Tackling) a NMSit. As the Mashments are make up of WR,
NMR, OpR, and even Mashments, that function in back-end
or front-end, the Mashment Engine is an enabler to create,
destroy, and cache such resources into both web servers and
web/mobile clients.

IV. CASE STUDY

To assess our proposal, we perform a test environment
for the Mashment Ecosystem. This section describes the test
conditions and analyzes the obtained results.

A. Test Environment

The Figure 2 depicts the test environment for the raised
case study. To set up such environment, first, we created
a heterogeneous virtual network. Second, we developed the
Mashment Maker, the Mashment Engine, and the Market-
place Repository (as a Database). Third, we released into the
Mashment Maker the resources to create, launch, and publish
a Mashment, hereinafter called MVN. When suddenly and
unidentified transmission errors occur (i.e., the NMSit) in the
virtual network built, MVN allows the Network Administrator
to visually look for them (i.e., tackling the NMSit) by present-
ing, in a visual and integrated way, the collected, correlated,
and fused information about packet traffic from switches.

NMSit: Transmission Errors in Virtual Network

™ “Occurring @ Occuring
Presenting the correlated and fused
Resources | management information from Virtual Network
Virtual) Network Tﬂ - — — — —
Network Floodlight APl Administrator |
NPa: NMRPa 1. Creating
Floodlight, 2. Launching |
o] 3. Publishing
vSwitches Beacon API
1 NMRPb Mashment Maker e B
ot - — . T ® | Instentang ashment Engine
Cotlecting POX API Releasing - chment Created MVN Instantiated
vSwitches lashment Create t
" NMRPc (MVN)
NBcy Marketplace I
;s:"‘ RDDTool API e
vSwitches WRP l Announcing

--------- Interactions
-Activities

) MashmentPkg I
Merge Operator.

Mashment Maker Provider |
Collecting

Fig. 2: Test Environment

The virtual network was created by using Open vSwitch
and one different OpenFlow Controller in each network
provider (N P,, NP,, and N P.), namely, Floodlight, Beacon,
and POX. Beacon and Floodlight are controllers based on the
Java programming language. In turn, POX is based on Python.
The controllers and switches were deployed on the Mininet that
is a software for emulating OpenFlow networks. The Mininet
was executed on Oracle VM VirtualBox. The Mashment Maker
was developed by using Asynchronous Javascript and XML
(AJAX), web services based on the Representational State
Transfer (REST), and APIs for Floodlight, Beacon, POX, and

2253

Globecom 2013 - Next Generation Networking Symposium

RRDTool. The Mashment Maker was deployed on the Apache
Tomcat Server. This Apache Tomcat was used as the Mashment
Engine in the server-side. In the client-side, the Mashment
Engine used was Firefox. The Marketplace Database was
implemented on a MySQL Server. Network Administrators
created the MVN by using the Mashment Maker.

B. Evaluation and Analysis

To evaluate the Mashment Ecosystem, we estimated and
experimentally measured the time that Network Administrators
take to perform Creating, Launching, and Publishing
MVN. MVN (see Figure 3) is formed by five visual com-
ponents (i.e., Ryscq): BeaconController, FloodlightController,
and POXController representing the OpenFlow controllers
(i.e., NMR) used in the virtual network, RRDTool (i.e., WR)
representing the web tool used to generate images that present
packet traffic information, and Monitoring Panel that is a
merge operator (i.e., OpR) and the root resource (i.e., 7ro0t)-
Subsequently, we also estimated and experimentally measured
the time that Network Administrators take to retrieve, by using
MVN, information about the NMSit above presented.

The time estimation was made by using the Keystroke-
Level Model (KLM). In KLM, each activity is modeled as a
sequence of actions. The time average for KLM actions is [21]:
(i) Press and release a key — K = 0.2s, (ii) Type a string —
T, = n x K, (iii) Hold or release the mouse — B = 0.1s,
(iv) Point the mouse — P = 1.1s, (v) Move the hand from
mouse to keyboard or viceversa — H = 0.4s; and (vi) Mental
preparation — M = 1.35s. In addition to these actions, we
used, drag-and-drop a visual element — T},,4 and wire two
visual elements — Tyire. Tuna and Toy.e are given by [4]:
Tand = P+ 2B = 1.3s and Tyire = 3P + 8B = 4.1s.

‘o New. \mLoad 1@53«3 |°Dele|e |0 Help. |-*Run |@Punnsn ‘

RRDTool (7)

BeaconController [EX

1P 190.90.69.83 @ @

POXController [EX

1P [143.54.12.210 “ @

FloodlightController [EX

IP 1905203123 [C] @

RRDTool | x |

Monitoring Panel [EX

(gcontroller 1
Add

(gcontroller 2
Add

Add

Add

Fig. 3: Mashment Maker - Creating MVN

To tackle the NMSit, the Network Administrator creates
MVN, the corresponding actions sequence (i.e., ¢) is as fol-
lows (see Figure 3): (I) Drag-and-drop Beacon — Tgnq4, (2)
Configure Beacon (IP Address=190.90.69.93) — T.oni12, (3)
Drag-and-drop POX — Ty,,4, (4) Configure POX (IP Ad-
dress=143.54.12.210) — T¢opn13, (5) Drag-and-drop Floodlight
— Tind, (6) Configure Floodlight (IP Address=190.5.203.123)
— Teon13, (7) Drag-and-drop RRDTool — Ty,4, (8) Config-
ure RRDTool (Time in seconds = 600) — T4, (9) Drag-
and-drop Monitoring Panel — Ty,4, (10) Wire Beacon to
Monitoring Panel — Tyire, (11) Wire POX to Monitoring
Panel — Tyire, (12) Wire Floodlight to Monitoring Panel
— Twire; and (13) Wire RRDTool to Monitoring Panel —
Twire- Where, Toopnzs = P + 2H + T,—33 = 8.8s and
Trvg=P+2H +T,—3 =2.5s.

Globecom 2013 - Next Generation Networking Symposium

According the previous sequence, the
estimated time for Creating MVN is
Cest =13M + Tcon38 + Trrd + 5le’1d + 4Twire- Then,
it is expected that, by using the Mashment Maker, Network
Administrators take 56.25s to build up MVN. We consider this
Cest 18 good because, for instance, just typing the example
script (10 lines with 40 characters each one) to generate a
single RRD image takes Tscript = 10M + Th—400 = 93.5s.
In this way, we can state that Network Administrators,
participating in the proposed ecosystem, can rapidly create
Mashments aimed to tackle a NMSit. Generalizing, the
estimated time to create any Mashment can be expressed as:
6(t) - Tsel +Tconn+Tconf+T’ment~ Where7 Tsal = Z; Tdnd,
Teonn = Zjl Twire Tconf = P+ H+ (nt * K), and
Tinent = M % (i + j + 0). Here, ¢ is the number of elements
in the set R,s.q (drag-and-dropped), j is the number total
of wires linking Ryseq, nt is the number total of characters
to configure R,scq, and o is the number of R,s.q to be
configurated. In §(¢) a dynamic composition model could
be used to decrease both T'sel and T.,n,. This dynamic
composition for Mashments is a future work.

The Network Administrator performs the following ac-
tions sequence for Launching MVN. This sequence is the
same for every Mashment: (1) Drag-and-drop MVN (when
a Mashment is created, it is represented as a resource in
the Mashment Maker) — 1,4, (2) Point the mouse to Run
button — P; and (3) Press and release Run button — 25.
Therefore, the estimated time for Launching is given by
Lest = 3M + P + Tana + 2B. As result, it is expected that
Network Administrators take 6.65s to start MVN by means of
the Mashment Maker.

The Network Administrator performs the following actions
sequence for Publishing MVN. This sequence is the same for
every Mashment. (1) Point the mouse to Save button — P, (2)
Point the mouse to dialog that asks the Mashment name — P,
(3) Type the string MVN — T),_3, (4) Mouse press and release
to store MVN in the Mashment Maker — 2B, (5) Point the
mouse to Publish button — P, (6) Point the mouse to dialog
that asks the Marketplace location — P, (7) Type a repository
string, for instance, http://www.mashments.mplace.com/repos
— T,=37; and (8) Mouse press and release to store
MVN in the Marketplace Database — 2B. Therefore, the
time estimated for the Publishing activity is given by
Pest =8M +4(P + B) + Th—3 + Th=37. As result, it is
expected that the Network Administrator takes 23.60s to
publish any Mashment. Afterwards, MVN and, in general,
any Mashments can be shared, sold, and purchased in the
Marketplace Store that will be presented in a future work.

60
50

'540

Y 30 .
£ m Estimated
20
10
0 -

Creating Launching

m Experimental

Publishing Activity

Fig. 4: Activities Time: Estimated vs Experimental

We also conducted an experimental study to measure the
time that Network Administrators take to perform Creating,

2254

157

Launching, and Publishing. In the study participated 30
Network Administrators whose age ranged from 22 to 35.
Although all participants frequently had used web tools none of
them had used a mashup maker before. Thus, each participant
was trained to use the Mashment Maker by 45 minutes. We
took the experimental average time in seconds with a 95%
confidence level. The results of estimated and experimental
times (see Figure 4) corroborate the short time that Network
Administrators need to tackle a NMSit by performing activities
in the proposed ecosystem. Furthermore, as the experimen-
tal times of Creating (41.55s), Launching (5.46s), and
Publishing (21.92s) were always less than the corresponding
estimated times, we can state that the implementation of
proposed ecosystem had a good behavior in front of KLM
estimations.
Switches on Virtual Network
Switch Id IP Address Port Controller P Controller Port Controller Type
00:00:00:00:00:00:04:4d 192.168.210.30 48209 2013-03-08 08:13:05 190.90.69.93 8080 beacon
00:00:00:00:00:00:04:0e 192.168.56.2 46521 2013-03-08 10:09:24 143.54.12.210 8080 pox

00:00:00:00:00:00:03:9 192.168.1.48 50102 2013-03-08 08:22:42 190.5.203.123 8080 floodight
Flows on Switches Tables on Switches | [Ports on Switches | | Traffic

Connected

Traffic on Switch 00:00:00:00:00:00:04:4d || Traffic on Switch 00:00:00:00:00:00:04:0
from beacon in 190.90.69.93: 3680
500

Traffic on Switch 00:00:00:00:00:00:03:e9

from pox in 143,54.12,210:8080 from floodlight in 190.5.203.123:8080
400 600

Fig. 5: MVN on runtime

On runtime, MVN (see Figure 5) allows Network Admin-
istrators to tackle the raised NMSit. MVN during its execu-
tion presents, simultaneously in an integrated user interface,
the information of flows, links, and packect traffic of Open
vSwitches, regardless of controllers from network providers.
For instance, into MVN, the actions sequence to retrieve packet
traffic information of three switches, each one in a different
controller, is as follows: (1) Point the mouse to controllers list
— P, (2) Mouse press and release to select three controllers
— 6B; (3) Point the mouse to Switches button — P, (4)
Mouse press and release the Switches button — 25, (5) Mouse
press and release to select three switches — 6B, (6) Point the
mouse to Traffic button — P, (7) Mouse press and release the
Traffic button to open the RRDTool images that contain the
packet traffic information — 2B. The estimated time to the
above sequence is given by Rest = 7TM + 3P + 16B. Thus,
it is expected that, by using MVN, Network Admistrators take
14.355s to deal the raised NMSit, by analyzing, in an integrated
user interface, three RRDTool images that present information
about packets received, transmitted, dropped, and with error.
This result was corroborated by the experimental study in
which Rexp = 9.01s < Rest-

If the Network Administrator does not participate in the
Mashment Ecosystem, he/she performs the following actions
sequence to retrieve the information about the packet traffic on
one switch from a specific controller web tool: (1) Point the
mouse to Switches tab — P, (2) Mouse press and release to
select the Switches tab — 28, (3) Point the mouse to select
a switch — P, (4) Mouse press and release to select a switch
— 2B, (5) Point the mouse to Ports button — P; and (6)

158

Mouse press and release to select ports of switch — 2B. These
actions must be repeated three times, one by each controller
web tool. Therefore, without MVN the estimated time to
retrieve non-integrated information about the packet traffic on
three switches is: Rgs = 3(6M + 6B + 3P) = 36s. There-
fore, Rexp < Rest < R3s. In this sense, it is important to
highlight that the retrieving time for MVN is significantly
smaller (a 60% taking into account the estimated time) than for
the non-MVN case. According this result, we can state that a
Network Administrator in the Mashment Ecosystem can tackle
a NMSit faster than one out of it.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a mashup ecosystem (Mash-
ment Ecosystem) that allows to tackle network management
situations (NMSit). The Mashment Ecosystem and its imple-
mentation are based on the high-level abstraction of NMR,
WR, and OpR, the composition model of mashups, and an
approach centered in the Network Administrator for building
up of composite solutions. Our ecosystem empowers the Net-
work Administrator with the important ability to rapidly create,
launch, and publish Mashments that are mashups devised
to collect, correlate, fuse, and present integrated information
about a NMSit. We also presented experimental measured and
KLM estimation of time that the Network Administrator take
to: (i) create, launch, and publish MVN that is a Mashment
aimed to address a specific NMSit: transmission errors in
a heterogeneous virtual network; and (i) retrieve, by using
MVN, the integrated information about the referred NMSit.

The aforementioned NMSit has a particular challenge: it
needs the fast development of a solution (MVN) able to
retrieve, merge, and rapidly present, in an integrated way,
network management information from different OpenFlow
controllers and their underlying virtual network elements.
The Mashment Ecosystem allowed the Network Adminis-
trator to overcome such a challenge, corroborating its sig-
nificance and the relevance of Mashment concept. Through
an experimental and KLM evaluation, we have confirmed,
first, the short time that a Network Administrator takes
to MVN: create (estimated=56.25s, experimental=67.24),
launch (estimated=6.65s, experimental=5.46s), and publish
(estimated=23.60s, experimental=21.92). Second, the short
time that a Network Administrator, that is using MVN, takes
to retrieve (estimated=14.35s, experimental=9.01s) the inte-
grated information about the raised NMSit. The experimen-
tal evaluation confirmed KLLM predictions and, consequently,
the feasibility of using our ecosystem to tackle any NMSit.
Furthermore, it is important to highlight that the time to
retrieve non-integrated information about this NMSit, by using
mistmached solutions, is 36s. Thus, it is expected that a
Network Administrator in the Mashment Ecosystem can tackle
a NMSit 60% faster than one out of it.

As future work, we plan to propose and implement a
Mashment dynamic composition model in order to tackle
the NMSits more rapidly. Furthermore, we are interested in
evaluating the productivity of Network Administrators partici-
pating in the Mashment Ecosystem. We also plan to implement
the Mashment Marketplace to evaluate its feasibility. The
acceptance of Mashments by Network Administrators is a topic
to explore too.

2255

Globecom 2013 - Next Generation Networking Symposium

ACKNOWLEDGMENT

The research of PhD(c) Caicedo is funded by two scholar-
ships one PECPG of the CAPES (Brazil) and another one of
the University of Cauca (Colombia).

REFERENCES

[11 Z.Zhao, S. Bhattarai, J. Liu, and N. Crespi, “Mashup services to daily
activities: end-user perspective in designing a consumer mashups,” in
iiWAS ’11. New York, NY, USA: ACM, 2011, pp. 222-229.

[2] G. Jakobson, J. Buford, and L. Lewis, “Situation Management: Basic
Concepts and Approaches,” in Information Fusion and Geographic
Information Systems, ser. Lecture Notes in Geoinformation and Cartog-
raphy, W. Cartwright, G. Gartner, L. Meng, M. . Peterson, V. . Popovich,
M. Schrenk, and K. . Korolenko, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2007, ch. 2, pp. 18-33.

[3] G. Bader, W. He, A. Anjomshoaa, and A. Tjoa, “Proposing a context-
aware enterprise mashup readiness assessment framework,” Information
Technology and Management, vol. 13, pp. 377-387, 2012.

[4] S. Tian, G. Weber, and C. Lutteroth, “A tuplespace event model for
mashups,” in OzCHI ’11. New York, NY, USA: ACM, 2011, pp.
281-290.

[5] G.Jakobson, L. Lewis, C. Matheus, M. Kokar, and J. Buford, “Overview
of situation management at sima 2005,” in MILCOM ’05. IEEE, 2005,
pp. 1630 —1636 Vol. 3.

[6] M. L. Massie, B. N. Chun, and D. E. Culler, “The ganglia distributed
monitoring system: Design, implementation and experience,” Parallel
Computing, vol. 30, p. 2004, 2003.

[7] W. Barth, Nagios: System and Network Monitoring, 2nd ed. San
Francisco, CA, USA: No Starch Press, 2008.

[8] G. Pavlou, “On the evolution of management approaches, frameworks
and protocols: A historical perspective,” J. Netw. Syst. Manage., vol. 15,
no. 4, pp. 425445, Dec. 2007.

[9]1 M. Bari, R. Boutaba, R. Esteves, L. Granville, M. Podlesny, M. Rabbani,
Q. Zhang, and M. Zhani, “Data center network virtualization: A survey,”
Communications Surveys Tutorials, IEEE, vol. PP, no. 99, pp. 1-20.

[10] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation
in campus networks,” SIGCOMM, vol. 38, no. 2, pp. 69-74, Mar. 2008.

[11] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of
cloud computing,” Commun. ACM, vol. 53, no. 4, pp. 50-58, apr 2010.

[12] E. M. Maximilien, A. Ranabahu, and S. Tai, “Swashup: situational web
applications mashups,” in OOPSLA ’07. New York, NY, USA: ACM,
2007, pp. 797-798.

[13] N. Ozkan and W. Abidin, “Investigation of mashups for managers,” in
ISCIS 2009, sept. 2009, pp. 622 —627.

[14] A. Majchrzak and P. H. B. More, “Emergency! web 2.0 to the rescue!”
Commun. ACM, vol. 54, pp. 125-132, April 2011.

[15] E. Tosti and W. Smari, “Sensors integration in a grid-based architecture
for emergency management systems,” in DEST '10, April, pp. 435-442.

[16] J. Adams and C. Reynolds, “A complex situational management appli-
cation employing expert systems,” in Systems, Man, and Cybernetics,
2000. IEEE, vol. 3, 2000, pp. 1959 —1964 vol.3.

[17] R. Koelle and A. Tarter, “Towards a distributed situation management
capability for sesar and nextgen,” in ICNS ’12, april 2012, pp. O6-1
-06-12.

[18] B. Magoutas, G. Mentzas, and D. Apostolou, “Proactive situation

management in the future internet: The case of the smart power grid,”
in DEXA 11, 29 2011-sept. 2 2011, pp. 267 -271.

[19] K. Huang, Y. Fan, and W. Tan, “An empirical study of programmable
web: A network analysis on a service-mashup system,” in JICWS 12,
june 2012, pp. 552 -559.

[20] R. Latih, A. Patel, A. Zin, T. Yiqi, and S. Muhammad, “Whip: A
framework for mashup development with block-based development
approach,” in /CEEI ’11, july 2011, pp. 1 —6.

[21] D. Kieras, “Using the keystroke-level model to estimate execution
times,” in University of Michigan, 2001.

159

2013 IEEE 37th Annual Computer Software and Applications Conference

A Mashup-based Approach for Virtual SDN Management

Oscar Mauricio Caicedo Rendon
Computer Networks Group
Institute of Informatics
University Federal do Rio Grande do Sul
Email: omcrendon@inf.ufrgs.br

Abstract—The Software Defined Networks paradigm aided
by the Network Virtualization is a key driver to cope the
Internet ossification. There are different proposals to deploy
this paradigm, but there is not an integrated or standardized
way for the management of networks built with such proposals.
In this sense, the network management becomes too complex
because multiple solutions must be used by Network Admin-
istrators to perform their tasks. In this paper, we introduce a
mashup-based approach that allows Network Administrators to
customize and combine management solutions, in order to they
build composite applications (called SDN Mashups) aiming the
integrated management of Virtual Software Defined Networks
in heterogeneous environments. We evaluate our approach by
building a SDN Mashup for the management of a network
slice that uses three distinct Network Operating Systems and
by running performance tests, corroborating that the mashup
built has small response time.

Keywords-OpenFlow; SDN; SDN Mashup; Virtual SDN;
Web-based Management;

I. INTRODUCTION

The Internet constantly evolves to support a lot of new
technologies and protocols in Application and Link Layers.
However, at the Internet core (Transport and Internet Lay-
ers), the evolution has come to a standstill that is known
as Internet ossification. The Software Defined Networks
(SDN) and the Network Virtualization are key drivers to
overcome such ossification [1]. The SDN paradigm proposes
to separate data (packet forwarding) and control (decision
policies) planes in order to simplify the network operation
[2]. The Network Virtualization allows to share a network
physical infrastructure among several virtual networks. This
type of virtualization may help to deploy the SDN-based
networks, because it facilitates the control plane migration
from network devices (e.g., routers, switches) to servers and
allows to perform network experiments in an isolated way
[3]. Hereinafter, we will call a SDN aided by the Network
Virtualization as Virtual SDN.

There are different proposals for deploying the SDN
paradigm, such as OpenFlow [4] and the Forwarding and
Control Element Separation (ForCES) framework [5]. In
these proposals common components are: the Network Op-
erating System (NOS) at the control plane and the Network
Services running on it. However, there is not an integrated

0730-3157/13 $26.00 © 2013 IEEE
DOI 10.1109/COMPSAC.2013.22

Felipe Estrada-Solano
Telematics Engineering Group
Telematics Department
University of Cauca
Email: festradasolano@unicauca.edu.co

143

Lisandro Zambenedetti Granville
Computer Networks Group
Institute of Informatics
University Federal do Rio Grande do Sul
Email: granville@inf.ufrgs.br

or standardized way for managing these components, which
certainly is not suitable for the whole management of SDN-
based networks on heterogeneous and virtual environments.
For instance, in a future scenario, if a Network Administrator
needs to manage several Virtual SDN Slices from different
providers, which are using distinct NOS to operate and
provide Virtual SDN Resources, the SDN management will
become too complex because multiple tools must be used to
perform control and monitoring tasks.

Although large research efforts have been made about
the SDN deployment [2] [6] [7], few investigations are
found in the literature concerning the control and monitor-
ing of non-homogeneous SDNs. In this paper, we take a
step further, proposing a novel mashup-based approach that
provides a suitable model of composition and abstraction to
cope the heterogeneity of virtual resources on SDN. In the
approach, we introduce the SDN Mashup concept that lets
Network Administrators create SDN Management solutions
(called SDN Mashups) to meet their own requirements.
The SDN Mashups stimulate Network Administrators to
customize and combine, in a high-level abstraction, their
SDN management tools, aiming to facilitate the enforcement
of management tasks.

In summary, the key contributions presented in this pa-
per are: (i) propose a mashup-based approach aimed to
manage Virtual SDNs on heterogeneous environments and
allow Network Administrators to build up SDN Management
solutions, (i) present a SDN Mashup prototype based on the
representation of Virtual SDN Resources as Services; and
(iii) demonstrate a monitoring scenario of a Virtual SDN
that uses three different NOS, confirming the small response
time of the mashup built.

The remainder of this paper is organized as follows. In
Section II, we present both the background and the related
work. In Section III, we introduce the SDN Mashup concept.
In Section IV, we present the SDN Mashup System. In
Section V, we expose and analyze the case study developed
to evaluate our approach. The paper concludes in Section
VL

IEEE
computer
psoclety

160

II. BACKGROUND AND RELATED WORK

In this section, first, we present a mashups background.
Second, we describe the main SDN concepts. Third, we
discuss the related work about the SDN management.

A. Mashups

Mashups are Web applications created through the inte-
gration of different resources (e.g., data, application logic,
and user interfaces) available on the Internet [8]. The
Mashup technology has been considered a fundamental
piece in Web 2.0 [9], allowing end-users, without advanced
programming skills, to create their own and customized
applications. Furthermore, mashups encourage both coop-
eration and reuse among end-users [10].

In accordance to the ProgrammableWeb site, the main
mashup service directory, about 60% of current mashups are
related to mapping services [11]. The Mashup technology
has been also used in many other areas, for instance,
helping to overcome an emergency situation [12] by sharing
weather and rescue information among civil organizations
and government entities. In the telecommunications area, the
telco-mashup concept [13] was defined to provide composite
services for end-users, by combining features like streaming,
Quality of Service, and billing. Mashups, based on the
REpresentational State Transfer (REST) architectural model
and the semantic Web, were proposed to facilitate the
composition of small applications by end-users [14]. In this
paper, we introduce the SDN Mashup concept to extend the
use areas of mashups and cover the SDN management.

B. Software Defined Networks

The SDN paradigm has emerged as an important trend
that defines how future networks are architected. A SDN is
formed by three architectural components [2] [6]: the packet
forwarding datapath (e.g., switches and routers passing pack-
ets), the NOS that controls such datapath through a vendor-
independent protocol, and the Network Services (or Network
Features) running on the top of NOS. The possibility to
add these Network Services, in an easier way, is the key
advantage of SDN to facilitate the innovation in the Internet.

The SDN deployment proposals define aforementioned
components in a different way. For instance, in the ForCES
framework [5], the ForCES protocol is used to communicate
Control Elements (i.e., the NOS) and Forwarding Elements
(i.e., the datapath). In such framework, Network Services can
be developed as distributed features in Control Elements.
In an OpenFlow-based SDN [4], a Controller (i.e., the
NOS), such as POX [15], Beacon [16], and FloodLight
[17], uses the OpenFlow protocol to control OpenFlow-
capable network devices (i.e., the datapath). The Controller
is also used for deploying new-centralized Network Services
(e.g., a new routing protocol) that are known as Network
Applications.

144

C. Management of Software Defined Networks

Although, in previous researches, the problems about
the management of heterogeneous SDNs by using high-
level tools have not been directly addressed. Below, we
review some of the most important OpenFlow management
solutions found in the literature.

The Stanford University introduced a graphical tool,
called OpenRoads [18], to facilitate the management of IP
addresses in OpenFlow networks and to show monitoring
information of switches on the datapath. The OpenFlow
MaNagement Infrastructure (OMNI) [19] is a solution aimed
to control and monitor OpenFlow networks. This solution
is based on a multi-agent system that can be accessed by
Network Administrators from a Web user interface. The
NetOpen [20] uses a Service Oriented Architecture (SOA) to
support the creation of Network Services by combinig basic
SOA services that are named networking primitives. The
NetOpen considered, among others, the following Network
Services: to retrieve information of switches, link states, and
flow tables, and to configure the network device capabilities.

It is worth noting that the described solutions were not
devised to be extended and enhanced by Network Adminis-
trators themselves. Such solutions can be solely improved by
network programmers in a low-level abstraction. Moreover,
up to now, OpenRoad and OMNI were just tested in network
slices controlled by NOX that is an OpenFlow-based NOS
implemented in the C language. In turn, NetOpen can
be considered as a specialization of NOX. Consequently,
OpenRoad, OMNI, and NetOpen cannot manage a Virtual
SDN that uses more than one type of NOS. Thus, regarding
the NOS, these solutions are constrained to homogeneous
environments.

III. SDN MASHUPS

In order to better explain our approach, first, we present
the global vision of SDN Mashups. Second, we describe a
network management scenario in which is necessary to use
such type of mashup.

A. Global Vision

Before defining what is a SDN Mashup, we present the
main concepts used in our approach. A Virtual Network
Provider (VNP) is a company in charge of operating Virtual
SDN Resources and providing them to distinct Virtual Net-
work Operators (VNOs). A VNO is a company responsible
for supplying the Virtual SDN Slices requested by customers
and/or applications [1]. A Virtual SDN is a subset of the
underlying physical network and, usually, can be formed
by several Virtual SDN Resources [3]. One or more Virtual
SDN form a Virtual SDN Slice.

Every Virtual Network Element (VNE), Network AP-
plication (NAP), and NOS is a Virtual SDN Resource. A
VNE is located at the bottom of the SDN architecture.
Virtual network devices (e.g., the Vyatta Router and the

Open vSwitch), virtual nodes and hosts (using, for instance,
VMWare, Xen, or VirtualBox), links, and flows are types of
VNE. A NAP is a program that handles the control software
of VNE, through interfaces and protocols provided by NOS.
Rendezvouz services and applications to path selection are
examples of NAP. A NOS is in charge of monitoring and
handling the resources and the entire state of Virtual SDN.

The SDN Mashups are composite Web applications aimed
to manage any SDN that has been deployed using Network
Virtualization. In our approach, Network Administrators are
able to create SDN Mashups by using wiring and drag-
and-drop mechanisms. Thus, Network Administrators do not
require intimate knowledge about the Application Program
Interfaces (APIs) of NAP, NOS, and VNE, or concerning the
data mapping among these APIs. It is important to highlight
that an end-user programming approach, as the used by SDN
Mashups, provides flexibility for Network Administrators
to build their solutions by themselves, and promotes the
innovation in SDN management solutions.

A SDN Mashup poses some features that existing
mashups do not support. First, it combines information, on
the fly, from multiple resources, such as NAP, NOS, and
VNE. Second, it hides the heterogeneity and complexity of
Virtual SDN Resources in order to facilitate the carrying
out of management tasks. Third, it blends local and external
visualization APIs to generate integrated Graphical User
Interfaces (GUIs). Fourth, it provides access to multiple
end-users to enable communication and collaboration among
them by sharing and reusing SDN Mashups. It is worth
noting that, by the SDN Mashup concept and the aforemen-
tioned features, we lead the Network Management towards
an end-user centric environment, where millions of Network
Administrators are able to participate and collaborate in
order to cope their own needs, and even obtain profits.

In a general way, a SDN Mashup is formed by combining
Virtual SDN Resources represented as Services, Mashup
Operations, and GUIs. The representation of Resources as
a service consists on defining and providing a common
data-format to interchange information of resources, a well-
known interface to each resource, and a common protocol
to communicate with every interface. Specifically, we define
the following Virtual SDN Resources as a service (see details
in the section IV): Network Operating System as a service
(NOSS), Network APplication as a service (NAPS), and
Virtual Network Element as a service (VNES). The Mashup
Operations are structures of composition, such as Sequential,
Split, and Merge. A Mashup Operation can be used, for in-
stance, to sort, filter, and aggregate the information retrieved
from one or more NOSS. The GUIs represent visualization
and presentation libraries used to generate the integrated user
interfaces of SDN Mashups.

The Figure 1 presents the global vision of SDN Mashups,
in which we mainly propose the creation of SDN man-
agement solutions by end-users: (/) The mediation process

145

161

Virtual Network

phical User
Interfaces

Virtual SDN Resources Operator
as Services m (VNO)
Network Applications as] - '\ End-user
Services (NAPS; y
eiyicesil) [Compositic}

as Services (NOSS)

[Ne(work Operating Systems}

Virtual Network Elements as
Services (VNES)

Y

A
4

Virtual Network
Providers
(VNPs)

Virtual SDN
Resources

Figure 1. Global Vision of SDN Mashups

is responsible for offering the Virtual SDN Resources as
Services. This mediation is necessary because there is not
a standardized interface/protocol to access the data, the
application logic, and the user interfaces provided by dif-
ferent types of resources. (2) The end-user (e.g., a SDN
Administrator: the Network Administrator of a VNO), in
the composition process, defines the Mashup Operations that
act on NOSS, NAPS, and/or VNES. The results of these
Operations are shown by Web 2.0 GUIs, that are also defined
and customized by the end-user in the composition process.
(3) In the reuse process, a SDN Mashup can be used to
create another one. Different end-users may use the same or
similar candidate resources/services/mashups and glue them
to compose a new complex SDN Mashup. (4) The end-
user, by executing SDN Mashups, is able to manage one
or several Virtual SDNs that are formed by Virtual SDN
Resources belonging to VNPs. A SDN Mashup carries out
their management tasks through the mediation process that
is always hidden for the end-user.

B. Motivating Scenario

Management of Virtual SDN. Let’s suppose that a
Network Administrator, here called SDN Administrator,
requires to purchase new Virtual SDN Slices to satisfy
the demand of its customers, for instance, Internet Service
Providers and small companies. Usually, VNP, is the
choosen option to meet such requirement. However, at this
time, the SDN Administrator decides to buy required Slices
from V N P, because of economic profits. As a result, the
SDN Administrator will need to control and monitor the
Slices provided by VNP, and VN P,.

Considering that V' N P, uses a different NOS than V N P,
the SDN Administrator will have to manage each type of
Virtual SDN Slice by using disparate management solutions,
such as proprietary command line interfaces to execute

162

specific commands on each NOS or dissimilar Web user
interfaces to administrate virtual routers. Instead, if the SDN
Administrator uses our approach, he/she will be able to build
by him/herself a SDN Mashup devoted to manage the Virtual
SDN Slices, in an integrated way. This SDN Mashup will
hide the NOS heterogeneity from VNP, and V N P,. Thus,
the complexity of SDN management tasks carried out by the
SDN Administrator will be also mitigated.

IV. SDN MASHUP SYSTEM

Usually generic mashup systems (in the literature, they
are also known as mashup makers) provide good basis for
developing small composite applications, named mashups.
However, these systems do not address, in a native way,
special concerns of the SDN management. In particular,
the complexity, heterogeneity, and high-level interaction
of SDN Resources must be driven to enable the control
and monitoring of SDN Slices in virtual environments.
Therefore, there is a gap in the mashup-and-SDN related
research and, consequently, there is a chance for innovation.
In next paragraphs, we describe how a system based on
the abstraction and composition models of the mashup
technology, called SDN Mashup System, can be targeted to
resolve the shortcomings of the SDN management in non-
homogeneous and virtual surroundings.

Virtual Network

SDN

Operator Administrator sgg‘ﬁiﬁ:ﬂ"
T
Mobile Client
Web Client Mobile Web Web Client
'eb RunTime RunTime eb RunTime
(WRT) (MWRT) (WRT)
Environment Environment Environment
SDN Mashup System
SDN (Publisher
Resource T T
Buiicen Mashup Mashup Deve'lopment
% Resource Environment
Containey [Designer [Vlsual Elementsj
""" NAPS
T SDN
H Device Mashup Usgr Mashup
VNES Croniiiiner Container CeRiETEr | _Instances
SDN Mediators
-------------- (NAP Mediator) (NOS Mediator) (VNE Mediator)
T

Virtual Network [I 1

Providers
VNP
VNP "Napx " [NAPa
NOSy NOSb
VNEz VNEc
Figure 2. SDN Mashup System

The Figure 2 depicts the SDN Mashup System that
enables to carry out the SDN Mashup concept, the System
users, and the Virtual SDN Resources (i.e., NAP, NOS, and
VNE) to be managed by SDN Mashups. The SDN Mashup
System is made up by the SDN Mediators, the Mashup

146

Resource Container, the Mashup Development Environment,
the Publisher, and the Mashup Engine. The users that interact
with our System by using a Web Client, a Mobile Client,
and/or an Integrated Development Environment (IDE) are
the SDN Administrator, the SDN Mashup Developer, and
the SDN Resource Builder.

The Virtual SDN Resources, provided by VNPs, are
heterogeneous. Therefore, in the SDN Mashup System,
these resources are accessed and handled through SDN
Mediators. A Mediator hides the complexity of one or more
resources in two ways: (i) accessing and retrieving the
information from Virtual SDN Resources, and presenting
it to the SDN Mashup System in a standardized data-
format (e.g, XML and JSON); and (ii) providing a two-way
communication between the Virtual SDN Resources and the
SDN Mashup System via gateways (e.g, SNMP/HTTP and
Proprietary/HTTP). This communication allows complete
interaction among any VNO and its VNPs.

In the SDN Mashup System, SDN Mediators were de-
fined for NAP, NOS, and VNE. A new Mediator must be
developed every time a new kind of Virtual SDN Resource
arises. In our approach, we propose that Mediators must
be developed and extended by the SDN Resource Builder
through the use of a conventional IDE. For example, if the
NOX is integrated into a VNP, the SDN Resource Builder
will be in charge of developing the corresponding Mediator
(e.g., NOX Mediator) to adapt such NOS into the SDN
Mashup System.

The Mashup Resource Container stores services that
represent the Virtual SDN Resources in the SDN Mashup
System. We define three types of services: (i) NAPS that
offers the functionalities provided by Network Applications
(e.g., a Video Multicasting solution) running on the top of a
specific NOS, (ii)) NOSS, in turn, provides the management
facilities (e.g., slice topology discovery) supplied by a de-
termined NOS; and (iii) VNES that offers the information
about one or a set of virtual network elements, for instance,
quantity of sent/lost packets in a Vyatta virtual router. The
communication between the Mashup Resource Container
and every SDN Mediator is made via a standardized protocol
(e.g., HTTP and SOAP). NAPS, NOSS, and VNES interact
with corresponding Virtual SDN Resources through SDN
Mediators. Similarly to Mediators, services in the Resource
Container must be implemented by the SDN Resource
Builder.

In very general terms, SDN Administrators and SDN
Mashup Developers use the Mashup Development Environ-
ment to compose and execute SDN Mashups (SDN man-
agement solutions). The Mashup Development Environment
provides flexibility to the SDN Mashup System through
a high-level abstraction of Virtual SDN Resources, GUISs,
and Mashup Operations used in the composition process.
In this sense, it is important to point out that we propose
a Mashup Development Environment in which, during the

building of SDN Mashups, it is not necessary to work with
data mapping. The data mapping is one of the least intuitive
tasks in current mashup makers because non-programmers
(as the SDN Administrators) are usually not able to specify
it correctly.

The Mashup Development Environment is formed by the
Visual Elements, the Designer, the SDN Mashup Container,
the Device Container, and the User Container. The Visual
Elements are graphical representations of the Mashup Oper-
ations, the services stored into the Mashup Resource Con-
tainer, and the SDN Mashups. In addition to SDN Mashups,
we define four types of Visual Elements: Visual_NAP,
Visual_NOS, Visual_VNE, and Visual_MashupOperation.
An instance of Visual NAP is a box symbolizing a new
tunneling algorithm to be executed on the top of a NOS. An
example of Visual_NOS is a box representing a particular
NOS as Beacon, NOX, FloodLight, or POX. A type of
Visual_VNE is a box symbolizing a virtual switch as the
Open vSwitch. A visual filter to be applied to the infor-
mation collected from NOSS invocations is an example of
Visual_MashupOperation.

The Designer is an user interface based on drag-and-
drop and wiring mechanisms. Using these mechanisms, SDN
Mashup Developers and SDN Administrators can blend,
in an easy way, different Visual Elements to create SDN
Mashups. By considering, the Visual Elements, the Me-
diators, and the Designer, the Mashup Development En-
vironment becomes technology-agnostic. Here, technology-
agnostic means that the Mashup Development Environment
allows to combine Resources/Services regardless the cor-
responding underlying protocols (e.g., OpenFlow/ForCES),
controller libraries (e.g., Beacon/POX API), and so on.

In the Designer, the SDN Mashups can be used to develop
new and complex ones, which promotes: (i) the reuse of
SDN Mashups, (ii) the extension and improvement of SDN
Mashups and the Mashup Development Environment; and
(iii) the fast development of SDN Mashups. In brief, the
SDN Administrator and the SDN Mashup Developer can use
the Designer to extend and enhance their SDN Management
solutions and the own Designer. Likewise, the SDN Re-
source Builder can also improve the Mashup Development
Environment (including the Designer) by adding new Visual
Elements using an IDE.

The SDN Mashup Container stores the metadata of all
SDN Mashups built in the Mashup Development Environ-
ment. This metadata is used on design time to present each
SDN Mashup as a Visual Element. Thus, the SDN Mashup
Container is also a key module that enables the reuse in our
approach. On runtime the metadata is read to execute every
SDN Mashup. The User Container stores the user profiles
metadata, that is used to control the access to SDN Mashups.
The Device Container hosts the information related to device
capabilities. This information is processed to identify what
type of Client device is able to run the SDN Mashups and

147

163

the Mashup Development Environment.

The Publisher module is responsible for adapting the GUI
of each SDN Mashup to different Client devices (i.e., the
Web Client and the Mobile Client). Moreover, this module
controls the access to available elements in the containers
of the SDN Mashup System. After that a SDN Mashup
is launched, for example from the Mashup Development
Environment, the Mashup Engine acts as the SDN Mashup
life cycle manager in charge of creating, deleting, and
caching Mashups Instances. As a result, this Engine interacts
with all modules of the SDN Mashup System.

The Web Client and the Mobile Client are software
entities in charge of running and showing SDN Mashups,
anywhere and anytime. The former uses a Web RunTime
environment and the latter a Mobile Web RunTime environ-
ment to execute client-side mashup functionalities. The SDN
Mashups can be executed on both types of Clients. There-
fore, browsers, running on personal computers, notebooks,
and smartphones, are enabled to be used as front-end of
SDN management solutions based on mashups. The Mashup
Development Environment only can be executed on Web
Clients, which means that SDN Mashups are programmed on
Web and not on Mobile environments. Since SDN Mashups
and the Mashup Development Environment are Web 2.0
solutions, Client devices must support Javascript, Asyn-
chronous Javascript And XML (AJAX), Cascading Style
Sheets (CSS), and HyperText Markup Language (HTML)
version 5, among other Web 2.0 technologies.

Regarding the users of the SDN Mashup System, we
consider: first, the SDN Resource Builder is an informa-
tion technology developer responsible for programming and
providing SDN Resources as Services, Visual Elements,
and Mediators. The Resource Builder interacts with our
Mashup System by means of a conventional IDE. Second,
the SDN Mashup Developer is in charge of combining
Visual Elements and even existing SDN Mashups in order
to develop new mashups. The Mashup Developer interacts
with our Mashup System via the Mashup Development
Environment running on a Web Client. Third, the SDN
Administrator is responsible for the management of virtual
and heterogeneous SDNs through mashups running on the
Web Client and/or the Mobile Client. Using the Mashup
Development Environment, the SDN Administrator is also
able to perform two actions: (i) create, customize, and
improve composite applications addressed to manage Virtual
SDNs; and (i) as a result of developing mashups, extend,
and enhance his/her workspace.

V. CASE STUDY

In order to evaluate our approach, first, we created an
infrastructure of OpenFlow-based Virtual SDNs. Second,
we developed a SDN Mashup for monitoring such infras-
tructure. Third, we conducted experiments to measure the
response time of the SDN Mashup built.

164

A. OpenFlow Virtual SDN

The Figure 3 presents the test environment of our case
study. V' N P, has an OpenFlow-based network where virtual
switches (Open vSwitches), links and flows are monitored
via Beacon version 1.0.2. The Beacon is an OpenFlow
Controller developed in the Java language. V. NP, has an
OpenFlow-based network that is monitored by POX version
1.0.0. The POX is a Controller implemented in the Phyton
language. VNP, has an OpenFlow-based network that is
monitored by FloodLight version 0.9.0. The FloodLight is a
Controller developed in the Java language. All OpenFlow-
based Virtual SDNs were deployed on Mininet version 1.0.0
[6] that, in turn, was executed on Oracle VM VirtualBox
version 4.2.6. The Mininet is a software for emulating
OpenFlow networks. Here, we use OpenFlow because of
its commercial and research significance [4].

Virtual Network Operator (VNO)

| Slice Monitoring Mashup |
SDN Mashup System

- Virtual SDN Slice 3‘

Virtual Network Provider B (VNPb)
POX Controller
Virtual Switches, Links, Flows
- OpenFlow Enabled

() f‘,w Customer A Customer B(

Virtual Network Provider A (VNPa) |
Beacon Controller

Virtual Switches, Links, Flows

- OpenFlow Enabled

Virtual Network Provider C (VNPc)
FloodLight Controller
Virtual Switches, Links, Flows
- OpenFlow Enabled

Test Environment

Figure 3.

VNO provides network services to Customers A and
B by means a Virtual SDN Slice made up of OpenFlow
Controllers, virtual switches, links and flows from VN P,,
VNP, and VNP, (see Figure 3). In this sense, the SDN
Administrator of VNO requires to monitor Virtual SDN
Resources, in an integrated way, regardless of controllers,
network topologies, and implementation technologies. The
previous requirement is met by the Slice Monitoring Mashup
that is an instantiation of our SDN Mashup concept.

B. Slice Monitoring Mashup

The Slice Monitoring Mashup was composed in the
Designer of the SDN Mashup System by connecting
the VisualBeacon (i.e., a Visual_NOS), the VisualFlood-
Light, and the VisualPOX to the MonitorSDN (i.e., a Vi-
sual_MashupOperation). The VisualBeacon, the VisualPOX,
and the VisualFloodLight are boxes built to represent,
respectively, Beacon, POX, and FloodLight. In turn, the
MonitorSDN is a visual box created to encapsulate the next
monitoring operations: SwitchesList, LinksList, and

148

FlowsList. These operations are applied to the Visu-
alBeacon, the VisualPOX, and/or the VisualFloodLight to
retrieve the list of virtual switches, links, and flows. The
Slice Monitoring Information results from executing one or
more of the above mentioned operations.

Virtual Network
Operator (VNO)

SDN Administrator

Retrieve Slice Monitoring
Information

Virtual Network Providers

Virtual Network Provider A
(VNPa)

—P(Beacon (NOS)
I

Virtual Switches,

_L

BeaconService

POXService l'_FlﬁLightSenE

Reh"ieve N_Ioni:;r::g Relfieve M.oni::::g | Ret!ieve M'onifl:;i:g | Opl-rl]r::ll(:‘,”Féonvalzle(‘
| Beacon (NOSS) | POX (NOSS) || FloodLight (NOSS)
! I) |) | Virtual Network Provider B

|; il | . (VNPb)
r “ - Y

i Mediat Mediator jatt]

1 i Yzt] Virtual Switches,
|_ | | SDN Mediators |] Links, Flows

- T OpenFlow Enabled

Virtual Network Provider C
(VNPc)

L» FloodLight (NOS)
X

4<“g’;:ﬂ“\
Merge/ /

Slice Monitoring Information

Visual Slice Information :Links
X - Flows

‘ : Slice Monitoring N
Mashup

Virtual Switches,
Links, Flows
OpenFlow Enabled

Figure 4. Internal Operation of Slice Monitoring Mashup

In a general way, the Slice Monitoring Mashup is in
charge of splitting, aggregating, and merging the information
collected from different Virtual SDN Resources in VNP,
VNP, and VNPF,. The Figure 4 depicts the internal op-
eration of the mashup developed to the raised case study:
(i) in the Mashup Development Environment running on a
Firefox Web Client, the SDN Administrator sends a request
to execute the Slice Monitoring Mashup, (ii) this request is
Splitted in three solicitations, the first solicitation targeted
to the BeaconService, the second to the POXService, and
the third to the FloodLightService, (iii) each Service in-
vokes NOSS operations (SwitchesList, LinksList,
and FlowsList) to collect information from a particular
Controller, (iv) each Service carries out the corresponding
mediation process to interact with its specific OpenFlow-
based Virtual SDN, (v) the information retrieved by Flood-
Light/POX/Beacon Services is Aggregated and Merged to
generate the Slice Monitoring Information; and (vi) finally,
such information is shown, in an integrated way, in the Web
GUI (see Figure 5) of the Slice Monitoring Mashup.

As result of composing and executing the Slice Moni-
toring Mashup, the SDN Administrator is able to observe,
in an unique GUI, the detailed information of resources

Slice General Information

Service IP ServicePort Type Listen Address Listen Port
1 192.168.210.76 8081 beacon any 6633
2 192.168.210.175 8081 pox any 6633
3 192.168.210.89 8081 floodlight any 8633

| Switches on Slice | | Devices on Slice | | Links on Slice |

165

Slice General Information

Service IP ServicePort Type Listen Address Listen Port
1 192.168.210.76 8081 beacon any 6633
2 192.168.210.175 8081 pox any 6633
3 192.168.210.89 8081 floodlight any 6633

| Switches on Slice | | Devices on Slice | | Links on Slice

Switches on Slice Links on Slice
Id IP Address Port Connected NOS Service IP NOS Service Port NOS Type Source Id Source Port Destination Id Destination Port NOS Service IP NOS Service Port NOS Type
1 00:00:00:00:00:00:00:09 132.168.210.30 42781 20130127 165727 192.168.210.76 8081 beacon 1 00:00:00:00:00:00:00:09 1 00:00:00:00:00:00:00:0 3 162.168.210.76 8081 beacon
2 00:00:00:00:00.00:00:09 182.168.56.101 43435 20130127 155654 162.16B.210.175 8081 pox 2 00:00:00:00:00:00:00:09 2 00:00:00:00:00:00:00:0d 3 192.168.210.76 8081 beacon
3 0000:00:00:00:00:00:09 192.168.210.138 43159 20130127 155711 192.168.210.89 8081 floodiignt 3 00:00:00:00:00:00:00:09 1 00:00:00:00:00:00:00:0 3 192.168.210.175 8081 pox
4 00:00:00:00:00:00:00:0a 192.168.210.30 42784 2013-01-27 155727 192.168.210.76 8081 beacon 4 00:00:00:00:00:00:00:09 2 00:00:00:00:00:00:00:0d 3 192.168.210.175 8081 pox
5 00:00:00:00.0000:00:0 192.168.56.101 43496 20130127 155654 162.168.210.175 8081 pox 5 00:00:00:00:00:00:00:09 2 00:00:00:00:00:00:00:0d 3 162.166.210.89 8081 Tloodiight
& 0000:00:00:00:00:00:0a 192.168.210.138 43161 20130127 155711 192.168.210.88 8081 floodiight & 00:00:00:00:00:00:00:09 1 00:00:00:00:00:00:00:0a 3 182.168.210.89 8081 floodiight
7 00:00:00:00:00:00:00:0b 192.168.210.30 42785 2013-01-27 15:57:27 192.168.210.76 8081 beacon 7 00:00:00:00:00:00:00:0a 1 00:00:00:00:00:00:00:0b. 3 192.168.210.76 8081 beacon
& 00:00:00:00:0000:00:00 192.168.56.101 43437 20130127 155654 162.168.210.175 8081 pox & 00:00:00:00:00:00:00:0a 3 00:00:00:00:00:00:00:09 1 162.168.210.76 8081 beacon
9 00:00:00:00:00:00:00:0b 192.168.210.138 43157 20130127 155711 192.168.210.88 8081 floodiight 9 00:00:00:00:00:00:00:0a 2 00:00:00:00:00:00:00:0¢ 3 192.168.210.76 8081 beacon
10 00:00:00:00:00:00:00:0c 192.168.210.30 42780 2013-01-27 15:57:27 192.168.210.76 8081 beacon 10 00:00:00:00:00:00:00:0a 3 00:00:00:00:00:00:00:09 1 192.168.210.175 8081 pox
> (A) » (B)
Switches on Slice
Id IP Address Port Connected NOS Service IP NOS Service Port NOS Type
19 00:00:00:00:00:00.00:01 192.163210.30 42782 20130127 155727 192168.210.76 8081 beacon
20 00:00:00:00:00:00:00:0F 192.168.56.101 43501 2013-01-27 15:56:54 192.168.210.175 8081 pox
21 00:00:00:00:00:00:00:0f 192.168.210.138 43155 20130127 15:57:11 192.168.210.89 8081 floodiight
«
| Flows on Switches | | Tables on Switches | | Ports on Switches |
Flows on Switches
NOS
In Datalayer Datalayer Datalayer Network Network Network Transport Transport Time Idie Hard out NOS Service NOS
Port Source Destination Type Source Destination Protocol Source Destination \vldcards Bytes Packets T oot Timeout Caokla Ports brhkin P i:';'“ Type
12 000000000008 00:00:00000001 2048 10008 10001 1 0 0 0 20 3 Ts%6 0 0 0 3 00:00:00:000000:00:0F 192.168.210.76 8081 beacon
2 2 00:00:00.00:00:08 00:00:00000001 204 10008 10001 2 0 0 0 2 1 7ss2 0 0 0 3 ODO0:00:00:0000:00:0f 192.168.21076 8081 beacon
3 2 00:00:00:00:00:08 00:00:00:00:00:01 2054 10.0.0.8 10.00.1 1 0 0 0 42 1 710.565 0 0 0 3 00:00:00:00:00:00:00:0f 192.168.210.76 8081 beacon
4 6553 00:00:000000:08 00:00:0000:0005 2034 10008 10005 2 0 0 1 2 1 eI 0 0 0 3 00:00:00:000000:00:0f 192168.210.175 8081 pox
5 65534 00:00:00.00:00:08 00:00:00000005 2048 10008 10005 1 0 0 1 2% 3 emse 0 0 0 3 00:00:00:00:00:00:00:0f 192168.210.175 8081 pox
6 65534 00:00:00:00:00:08 00:00:00:00:00:05 2054 10.0.0.8 10.00.5 1 0 0 1 42 1 666.55 0 0 0 3 00:00:00:00:00:00:00:0f 192.168.210.175 8081 pox
72 00:00.00.00:00:08 00:00:00000007 0 0000 0000 0 0 0 6872 52 6 0211 0 0 9007199547409 1 00:00:00:00.00:00:00:0f 192168.210.89 8081 floodlight
& 2 00:00:00:00:00:08 00:00:00000005 0 0000 00.00 0 0 0 620872 3% 4 e23® 0 0 0007199254740992 3 00:00:00:00.00:00:00:0f 192.168.210.89 8081 floodlight
9 1 00:00:00:00:00:07 00:00:00:00:00:08 0 0.0.00 0.0.00 0 0 0 2629872 336 4 649.208 0 0 9007199254740992 2 00:00:00:00:00:00:00:0f 192.168.210.89 8081 floodlight
10 6553 00:00:0000:00:05 00:00:0000:00:08 205 10005 10003 2 0 0 1 2 1 666475 0 0 0 2 00:00:00:00000000:0f 162.168.210.175 8081 pox
, ©)
Figure 5. Slice Monitoring Mashup

forming the Virtual SDN Slice. For instance, (i) the Figure 5
(A) depicts the information about several virtual switches,
monitored by either Beacon, POX, or FloodLight, (ii) the
Figure 5 (B) presents details of links located in three
OpenFlow-based SDNs; (iii) and the Figure 5 (C) illustrates
flows in three virtual switches, each one monitored by a
different OpenFlow Controller.

C. Implementation Highlights

Regarding the communication details, it is important
to highlight that, first, the interaction between each Con-
troller (Beacon, POX, and FloodLight) and its correspond-
ing virtual switches (Open vSwitches) is made by the
OpenFlow protocol. Second, the interaction between me-
diation processes and Controllers is based on Remote
Procedure Calls (Beacon and POX do not expose their
monitoring operations through interfaces of services) and
HTTP (FloodLight exposes its monitoring operations as
Web services). In this sense, the interactions Beacon-
Controller/BeaconService, POXController/POXService, and
FloodLightController/FloodLightService were implemented

149

by using the Java Remote Method Invocation API, the
PYthon Remote Objects Library, and the FloodLight REST
API, respectively.

The POXService, the BeaconService, and the FloodLight-
Service are based on the REST architectural model [21].
We have used REST because it is becoming in the de-
facto model for developing mashups. Furthermore, REST-
based solutions are suitable for heterogeneous environments
(as in our case study) because their HTTP interaction is
independent of programming languages. Specifically, the
POXService was developed by using the Phyton Flask API.
In turn, the BeaconService and the FloodLightService were
implemented by using the Java Jersey APL

The GUIs of the Slice Monitoring Mashup and the
Mashup Development Environment were built using the
Yahoo User Interface (YUI) API, that provides a lot of high-
level widgets, and the Google Chart API, that allows to
create advanced graphics for websites. It is to point out that
both APIs are based on AJAX. AJAX granted us two aspects:
dynamic and interactive SDN Mashups, and asynchronous
interaction of GUIs with POX/Beacon/FloodLightServices.

166

D. Evaluation and Analysis

The test environment (see Figure 3) was deployed on
servers and personal computers running the Linux Ubuntu
0.S. 11.10 (64 bits). The SDN Mashup System was executed
on a server with 4 GBytes RAM and 2.53 GHz core 2 duo
processor. Each virtual OpenFlow-based network, in a tree
or linear topology, was deployed on a server with 8 GBytes
RAM and 3.4 GHz core i7 processor. The Slice Monitoring
Mashup was ran on a personal computer with 2 GBytes
RAM and 2.53 GHz core 2 duo processor.

To test our approach, we evaluate the operations
(SwitchesList, LinksList, and FlowsList) of the
Slice Monitoring Mashup when it is used to monitor, in
an integrated way, the Virtual SDN Slice composed by
Virtual SDN Resources in VNP,, VNPF,, and VNP.,.
In all evaluation cases, we took 30 measurements with
a 95% confidence level for the average response time in
milliseconds.

180 _
160 - =
g 140
2 120

-
(=3
o

[
(=]

= Linear

D
o

Tree

Response Tim

P
o

N
(=]

o

60 120 180 240 300 #Switches

Figure 6. Slice Monitoring Mashup - SwitchesList

The Figure 6 depicts the response time results of the
SwitchesList operation when the number of switches
was increased from 20 to 100 in each Virtual SDN of
VNP,, VNP, and VN P.. Thus, pertest, the total number
of switches was 60, 120, 180, 240, and 300. Since the
response time (r in milliseconds - ms) of Web systems can
be ranked as optimal (r < 100), good (100 < r < 1000),
admissible (1000 < r < 10000), and deficient (r > 10000)
[22], we can state that the Slice Monitoring Mashup has
a good r when executing the SwitchesList operation.
Moreover, r has a similar behavior in tested topologies and
its growth is less than 1 ms per switch.

The Figure 7 presents the response time results of the
LinksList operation when the number of links was
increased from 50 to 250 in each Virtual SDN of our
case study. Thus, pertest, the total number of links was
150, 300, 450, 600, and 750. According to obtained results,
we can assert that the LinksList operation of the Slice
Monitoring Mashup has a good r that grows negligibly (less
than 1 ms per link) when the number of links is raised in
linear and tree topologies.

150

2 100

——Linear

Tree

150 300 450 600 750 #Links

Figure 7. Slice Monitoring Mashup - LinksList

5000

4500
- 4000
% 3500
£ 3000
E 2500
£ 2000
& 1500

Q
& 1000
=

==_inear

Tree

1000 2000 4000 6000 8000 10000 #Flows

Figure 8. Slice Monitoring Mashup - FLowsList

The Figure 8 presents the response time results of the
FlowsList operation when the number of flows is in-
creased from 1000 to 10000 in the Virtual SDN Slice.
For this operation, the Slice Monitoring Mashup has an
admissible r that grows less than 3 ms per flow, regardless
network topology. As in a network the number of flows may
be large, in practice, FlowsList retrieves 1000 flows per
block, getting so a good r. Such constraint is not relevant
because the use of an unique GUI to display all flows is not a
good practice of usability. Furthermore, using a mechanism
of pagination, flows can be suitably retrieved and displayed
to the SDN Administrator.

Summarizing, although the Slice Monitoring Mashup uses
11 additional software modules to integrate the monitoring
information of the Virtual SDN Slice, the response time of
all mashup operations is good on heterogeneous environ-
ments. In this way, we can state that the Slice Monitoring
Mashup can be used to monitor a Virtual SDN Slice re-
gardless of NOS, the network topology, and the number of
virtual switches, links, and flows. The NOS heterogeneity
is hidden by NOSS and SDN Mediators. The topologies
and the number of virtual resources are handled by own
centralized-nature of each NOS.

On the other hand, since the SDN Mashup System is
based on visual mechanisms as dragging-and-dropping and

wiring, we can state that the SDN Administrator and the
SDN Mashup Developer do not need programming skills
to develop similar SDN Mashups to the Slice Monitoring
Mashup. In the mashup composition process, the Adminis-
trator and the Developer only need to link Visual Elements
and provide configuration information, such as IP address
and type of NOS. Thus, if a SDN Administrator or a SDN
Mashup Developer have to build SDN Mashups, he/she does
not need to worry about the data mapping between Visual
Elements.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a mashup-based approach
formed by the SDN Mashup concept and the SDN Mashup
System that allows to carry it out. The concept and its in-
stantiation are based on the abstraction and representation of
any SDN Resource as a Service, and on the end-user centric
development of composite applications. Thus, our approach
empowers the SDN Administrator with the important ability
to build, extend, and customize SDN management systems.
We also presented a realistic Virtual SDN management
scenario where multiple information sources and services
are aggregated/merged to create a new application, namely
the Slice Monitoring Mashup that is a SDN Mashup aimed
to meet a specific purpose: integrated monitoring of a Slice
formed by Virtual SDNs that use different NOS.

The aforementioned scenario has a particular challenge:
the monitoring of heterogeneous Virtual SDNs. Our ap-
proach was able to overcome such challenge, corroborat-
ing the significance of the SDN Mashup concept and the
SDN Mashup System. In this sense, through a quantitative
evaluation, we have confirmed, first, a good response time
(r < 1000) of the Slice Monitoring Mashup, regardless
of network topologies and Virtual SDN Resources (NOS,
virtual switches, links, flows). Second, the negligible growth
of this response time as the number of Virtual SDN Re-
sources increases. The evaluation of the Slice Monitoring
Mashup confirms the feasibility of using our approach to
cope the complexity and heterogeneity of the Virtual SDN
management.

From a qualitative point of view, the use of Visual
Elements, drag-and-drop, and wiring facilities, provides an
easy-to-use Mashup Development Environment with lit-
tle compromise on usability, particularly during the SDN
Mashup composition process. The Visual Elements and the
Mashup Designer allow to create and reuse SDN Mashups
to manage, in an integrated manner, Virtual SDNs. Addi-
tionally, the SDN Mashup System, as a whole, hides imple-
mentation details about types of NOS, network topologies,
virtual switches, flows, and links. Thus, our approach over-
comes the stiffness of current SDN management solutions.
In this sense, we consider SDN Mashups a step forward, in
both the mashup technology and the network management
area. We lead the former towards a new application domain

151

167

and the latter to an environment centric in the Network
Administrator.

As future researches, we plan to extend the SDN Mashup
System, adding new features to perform other management
tasks and appending more powerful GUIs to automati-
cally compose SDN Mashups. Also, we are interested on
evaluating the decrease on the carrying out time of SDN
management tasks by using our mashup-based approach.
The acceptance by Network Administrators of mashups as
network management solutions is a topic that we are going
to explore too.

ACKNOWLEDGMENT

The research of PhD(c) Caicedo is supported in part
by a scholarship PECPG (Agreement Program Students
Graduate) of the CAPES (Brazil). The University of Cauca
(Colombia) also funds the research of PhD(c) Caicedo.

REFERENCES

[1] N. Chowdhury and R. Boutaba, “Network Virtualization:
State of the Art and Research Challenges,” Communications
Magazine, IEEE, vol. 47, no. 7, pp. 20-26, july 2009.

[2] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado,

N. McKeown, and S. Shenker, “NOX: Towards an Operating

System for Networks,” ACM SIGCOMM Comput. Commun.

Rev., vol. 38, no. 3, pp. 105-110, 2008. [Online]. Available:

http://doi.acm.org/10.1145/1384609.1384625

[3

—_—

A. Khan, A. Zugenmaier, D. Jurca, and W. Kellerer, “Network
virtualization: a Hypervisor for the Internet?” Communica-
tions Magazine, IEEE, vol. 50, no. 1, pp. 136-143, january
2012.

[4] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner,
“OpenFlow: Enabling Innovation in Campus Networks,”
ACM SIGCOMM Comput. Commun. Rev., vol. 38,
no. 2, pp. 69-74, march 2008. [Online]. Available:
http://doi.acm.org/10.1145/1355734.1355746

[5] A. Doria, J. Hadi Salim, R. Haas, H. Khosravi,
W. Wang, L. Dong, R. Gopal, and J. Halpern,
“Forwarding and Control Element Separation (ForCES)
Protocol Specification,” RFC 5810, march 2010. [Online].
Available: http://datatracker.ietf.org/doc/rfc5810/

[6] B. Lantz, B. Heller, and N. McKeown, “A Network
in a Laptop: Rapid Prototyping for Software-defined
Networks,” in Proceedings of the 9th ACM SIGCOMM
Workshop on Hot Topics in Networks. New York, NY,
USA: ACM, 2010, pp. 19:1-19:6. [Online]. Available:
http://doi.acm.org/10.1145/1868447.1868466

[7

—

A. Tootoonchian and Y. Ganjali, “HyperFlow: a Distributed
Control Plane for OpenFlow,” in Proceedings of the 2010
internet network management conference on Research on
enterprise networking, ser. INM/WREN’10. Berkeley, CA,
USA: USENIX Association, 2010, pp. 3-3. [Online]. Avail-
able: http://dl.acm.org/citation.cfm?id=1863133.1863136

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

168

D. E. Simmen, M. Altinel, V. Markl, S. Padmanabhan, and
A. Singh, “Damia: Data Mashups for Intranet Applications,”
in Proceedings of the 2008 ACM SIGMOD international
conference on Management of data. New York, NY,
USA: ACM, 2008, pp. 1171-1182. [Online]. Available:
http://doi.acm.org/10.1145/1376616.1376734

C. Cappiello, F. Daniel, M. Matera, and C. Pautasso, “In-
formation Quality in Mashups,” Internet Computing, IEEE,
vol. 14, no. 4, pp. 14-22, july-august 2010.

J. Yu, B. Benatallah, F. Casati, and F. Daniel, “Understanding
Mashup Development,” Internet Computing, IEEE, vol. 12,
no. 5, pp. 44-52, september-october 2008.

J. J. Jung, “Collaborative browsing system based on
semantic mashup with open apis,” Expert Syst. Appl.,
vol. 39, no. 8, pp. 6897-6902, 2012. [Online]. Available:
http://dx.doi.org/10.1016/j.eswa.2012.01.006

A. Majchrzak and P. H. B. More, “Emergency!
Web 2.0 to the Rescue!” Commun. ACM, vol. 54,
pp. 125-132, April 2011. [Online]. Available:

http://doi.acm.org/10.1145/1924421.1924449

H. Gebhardt, M. Gaedke, F. Daniel, S. Soi, F. Casati, C. Igle-
sias, and S. Wilson, “From Mashups to Telco Mashups: A
Survey,” Internet Computing, IEEE, vol. 16, no. 3, pp. 70
—76, may-june 2012.

A. P. Sheth, K. Gomadam, and J. Lathem, “SA-REST:
Semantically Interoperable and Easier-to-Use Services and
Mashups,” IEEE Internet Computing, vol. 11, pp. 91-94,
2007.

P. Community. (2012) POX Home. [Accessed july 20, 2012].
[Online]. Available: https://github.com/noxrepo/pox

D. Erickson. (2012) Beacon
cessed july 20, 2012]. [Online].
https://openflow.stanford.edu/display/Beacon/Home

Home. [Ac-
Available:

F. Community. (2011) Floodlight Home. [Accessed july 20,
2012]. [Online]. Available: http://floodlight.openflowhub.org/

K.-K. Yap, M. Kobayashi, D. Underhill, S. Seetharaman,
P. Kazemian, and N. McKeown, “The Stanford OpenRoads
Deployment,” in Proceedings of the 4th ACM international
workshop on Experimental evaluation and characterization.
New York, NY, USA: ACM, 2009, pp. 59-66. [Online].
Available: http://doi.acm.org/10.1145/1614293.1614304

D. Mattos, N. Fernandes, V. da Costa, L. Cardoso, M. Camp-
ista, L. Costa, and O. Duarte, “OMNI: OpenFlow MaNage-
ment Infrastructure,” in Network of the Future (NOF), 2011
International Conference on the, november 2011, pp. 52 —-56.

N. Kim and J. Kim, “Building NetOpen Networking Services
over OpenFlow-based Programmable Networks,” in Informa-
tion Networking (ICOIN), International Conference on, jan.
2011, pp. 525 -529.

R. T. Fielding and R. N. Taylor, “Principled Design of the
Modern Web Architecture,” ACM Transactions on Internet
Technology, vol. 2, no. 2, pp. 115-150, may 2002. [Online].
Available: http://doi.acm.org/10.1145/514183.514185

152

[22] S.Joines, R. Willenborg, and K. Hygh, Performance Analysis

for Java Websites. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 2002.

Anais 907
169

ProViNet: Uma Plataforma para Gerenciamento de Redes
Virtuais Programaveis

Wanderson Paim de Jesus!, Ricardo Luis dos Santos!, Oscar Mauricio Caicedo Rendén'
Lisandro Zambenedetti Granville!

"nstituto de Informética — Universidade Federal do Rio Grande do Sul (UFRGS)
Caixa Postal 15.064 — 91.501-970 — Porto Alegre — RS — Brasil

{wpjesus, rlsantos, omrendom, granville}@inf.ufrgs.br

Abstract. With the evolvement of virtualization and network programming te-
chniques, high-level applications can be used to define the behavior of network
traffic while keeping isolation. However, to ensure a harmonious relationship
between users, network applications and virtual networks, considerable mana-
gement efforts are needed. In this paper we propose the ProViNet platform, a
solution for managing the deployment of network applications in Programma-
ble Virtual Networks (PVN). In addition to the management facilities, ProViNet
contributes with an architecture that allows sharing the control plane of PVN
in a scalable way. During the development of this work we identified the need
for a standard representation of programmable virtual infrastructures, so it is
also proposed an extension of the programmable virtual networks description
language VXDL. In order to verify the feasibility of the proposed platform, we
implemented a prototype, which is analyzed and evaluated in this paper.

Resumo. Ao passo que evoluem as técnicas de virtualizacdo e programacdo
de redes, aplicativos de alto nivel podem ser utilizados para definir o compor-
tamento de trdfegos de rede isoladamente. Entretanto, garantir um relacio-
namento harménico entre usudrios, aplicativos de rede e redes virtuais exige
grandes esforcos de gerenciamento. Neste trabalho propomos a plataforma
ProViNet, uma solucdo para o gerenciamento da implantacdo de aplicativos
de rede em Redes Virtuais Programdveis (RVP). Além de agregar facilidades
no gerenciamento, ProViNet contribui com uma arquitetura que permite o com-
partilhamento do plano de controle de RVP de forma escaldvel. Durante o de-
senvolvimento do trabalho foi identificada a necessidade de uma representagdo
padrdo da infraestrutura virtual programdvel, para tanto propde-se também,
uma extensdo da linguagem de definicdo de redes virtuais VXDL. A fim de ve-
rificar a viabilidade da plataforma proposta, foi implementado um prototipo, o
qual é analisado e avaliado neste trabalho.

1. Introducao

Historicamente, o nicleo das redes de computadores, quando comparado com os servido-
res, desktops e dispositivos moveis da borda das redes, € um ambiente hostil a inovagao.
No contexto especifico da Internet, esse fato é geralmente referenciado como ossificagao
[Hausheer et al. 2011]. Para exemplificar, solu¢des propostas a mais de dez anos, como
IPv6 e IPSec, ainda ndo estdao amplamente em uso. S@o apontadas como possiveis cau-
sas: (i) a necessidade de modificagdes globais, ocasionalmente exigindo a substituicao de

908 312 Simpésio Brasileiro de Redes de Computadores e Sistemas Distribuidos — SBRC 2013
170

equipamentos; (ii) a lentidao no processo de padronizacdo que trata da interoperabilidade
com servi¢os legados; (iii) e a abordagem adotada pelas fabricantes de equipamentos, de
implementar e implantar solu¢cdes baseadas em seu retorno financeiro.

Na intersec¢do entre o conceito de Virtualizacdo de Redes
[Chowdhury e Boutaba 2010] e o de Programabilidade de Redes [Kanaumi et al. 2010],
emergem as Redes Virtuais Programaveis (RVP), as quais promissoramente prometem
reverter o cendrio de lentiddao testemunhado nas redes de computadores. Uma das
abordagens adotadas pelas RVP segue o formato das Redes Definidas por Software
(SDN - Software-Defined Networks) [Lantz et al. 2010], que define o desacoplamento
dos planos de controle e de dados. Algumas implementagdes do plano de controle se
baseiam na Arquitetura Orientada a Servicos (SOA - Service Oriented Architecture) para
prover a comunicagdo com aplicativos de rede. Dessa forma, utilizando uma interface
padronizada de definicdo de servigos, os aplicativos de rede podem ser programados em
linguagens distintas, se tornam menos dependentes da tecnologia utilizada no plano de
controle.

Por um lado, o desacoplamento entre aplicativos de rede, plano de controle e in-
fraestrutura programadvel torna a arquitetura SDN flexivel e escaldvel [Gutz ef al. 2012].
Por outro lado, induz uma grande complexidade no gerenciamento. Modelos de gerenci-
amento utilizados nas redes comuns ndo sao adequados as redes programaveis, uma vez
que ndo tratam da implantacdo dindmica de novos servicos. Além disso, dependendo das
politicas de acesso as infraestruturas programaveis, um grande nimero de usudrios po-
derdo propor e implantar seus préprios aplicativos de rede. Nesse cendrio, harmonizar
os aplicativos, usudrios e redes virtuais, mantendo a confiabilidade e escalabilidade dos
servigos implantados é um problema em aberto.

As propostas para o gerenciamento de RVP variam de acordo com o ambiente
de implantagdo e com os requisitos dos usudrios. Nos ambientes de festbeds, as pro-
postas focam em prover aos experimentadores e cientistas solugdes para o controle do
provimento de Slices. Entretanto, o gerenciamento da programabilidade que os usudrios
possuem sobre os Slices ainda € incipiente. Sao exemplos desse tipo de proposta o Proto-
GENI [ProtoGENI 2012] e o OFELIA Control Framework [Kopsel 2011]. Nos ambien-
tes de Cloud, mais direcionados ao mercado, implementam-se solucdes para gerenciar os
servigos que os provedores de Cloud oferecerdo aos seus clientes. Ou seja, o foco maior
estd em prover controle aos gerentes e administradores da Cloud, deixando o usudrio final
sem chance de propor novos aplicativos de rede. As propostas da CITRIX, XenServer
Distributed vSwitch Controller e da CISCO, OnePK, sdo exemplos.

O problema de pesquisa deste trabalho estd em como prover acesso de multiplos
usudrios finais a uma infraestrutura de RVP, agregando facilidades no gerenciamento e
implantacdo de aplicativos de forma a encorajar o desenvolvimento de novas solugdes
de rede. Propde-se para isso a plataforma de gerenciamento ProViNet (Programmable
Virtual Network Managemet Platform). ProViNet contribui para o estado-da-arte em
quatro pontos: (i) na elaboracdo de uma arquitetura para gerenciamento de RVP que
prové escalabilidade e alta disponibilidade de servigos; (ii) em uma abordagem para
implantacdo dindmica de novos servigos no plano de controle; (iii) na extensdo da lin-
guagem de descricao de rede virtual programavel, Virtual Resources and Interconnection
Networks Description Language (VXDL) [Koslovski et al. 2008]; (iv) e por fim, no de-

Anais 909

senvolvimento, como parte da plataforma, de um sistema com interface de acesso Web
que facilita a compreensao e interacdo dos usudrios finais com ambientes de RVP.

O restante do artigo estd organizado conforme segue. Na Sec¢do 2, sdo descritos
os principais trabalhos que envolvem o gerenciamento de RVP. Na Sec¢ao 3 € apresentada
a plataforma ProViNet, discutindo a arquitetura conceitual e conceitos empregados. Em
seguida, na Secao 4 € detalhado o protétipo utilizado como base para a avaliacao e andlise
apresentada na Secdo 5. Por fim, a Secdo 6 conclui o artigo com as consideracdes finais e
perspectivas para trabalhos futuros.

2. Trabalhos Relacionados e Contextualizacao

Os conceitos de Virtualizagio de Redes [Chowdhury e Boutaba 2009]
[Chowdhury e Boutaba 2010] e a Programabilidade de Redes [Campbell et al. 1999]
[Lin et al. 2011] s@o bem discutidos na literatura. A juncdo desses conceitos formam as
Redes Virtuais Programaveis (RVP), as quais sdo mais comumente aplicadas em dois
ambientes, nos projetos de plataformas de testes, também conhecidos como testbeds e em
Nuvens privadas (Private Clouds). Os trabalhos relacionados apresentados neste capitulo
sdo organizados conforme esses dois ambientes, buscando evidenciar em cada um deles o
nivel de abstracdo da infraestrutura virtual, a abordagem utilizada e a natureza da licenga.

Dentre as propostas no contexto dos festbeds, as quais focam em auxiliar os pes-
quisadores em seus experimentos, destaca-se o framework de controle OFELIA (OCF)
[Kopsel 2011], o qual é uma derivacdo da plataforma Expedient proposta pela Universi-
dade de Stanford. Esse framework auxilia os pesquisadores na criacao de Slices utilizando
recursos de vdrias federacdes. Além disso, lhes oferece também a capacidade de associar
esses Slices a controladores previamente configurados. Apesar dessa funcionalidade de
associagdo através da interface grafica, o OCF nao prové o gerenciamento da implantacao
de aplicativos de rede, considerada uma das maiores preocupacdes da virtualizacdo de
redes [Chowdhury e Boutaba 2010].

Outra proposta, ainda no contexto dos festbeds, foi criada no projeto GENI
[GENI 2011] e é chamada ProtoGENI [ProtoGENI 2012]. Tal proposta também imple-
menta uma interface de acesso via Web que assiste aos pesquisadores na criagdo de Slices
com recursos oriundos de diversas federacdes. Ao interagir com a interface do Proto-
GENI, pesquisadores podem instanciar nés virtuais e conecta-los dinamicamente. Assim
como a maioria das propostas desenvolvidas nesse mesmo contexto, o foco estd no provi-
mento do Slice e ndo na programabilidade do mesmo. Em geral, essas solucdes sao livres
de licenga, entretanto existe um conjunto burocratico de regras para utilizacao e acesso
aos recursos geridos pelas ferramentas citadas.

As solugdes no contexto de Cloud Computing se diferem das propostas de test-
beds, principalmente pelo foco comercial. Os ambientes de Cloud em geral demandam
uma grade quantidade de recursos de rede, pois comercializam servigos com alta taxa
de disponibilidade e qualidade de servico. Portanto, a criagdo de servicos de rede cus-
tomizados para atender a demandas especiais € visto como um grande atrativo para os
provedores de Cloud. Para atender esses provedores, surgiram solu¢des que aumentam o
poder de customizagdo dos servicos providos nas redes virtuais de seus datacenters. Al-
gumas dessas solucdes sdo comercializadas, tais como Nexus 1000v e OnePK da CISCO
e DVSC (Distributed Virtual Switch Controller) da CITRIX. Outras sdo de codigo aberto,

171

910 312 Simposio Brasileiro de Redes de Computadores e Sistemas Distribuidos — SBRC 2013
172

como os plugins open-vSwitch, Ryu Plugin e o restproxy, para a plataforma OpenStack
[OpenStack 2011].

Tanto em Cloud quanto em testbeds, € crescente o nimero de propostas que em-
pregam os conceitos da arquitetura SDN em suas solucdes de programabilidade em re-
des virtuais. Rubio et al. [Rubio-Loyola et al. 2011], por exemplo, propds um plano de
orquestracdo, o qual é complementar aos planos originalmente definidos na arquitetura
SDN (controle e dados). O proposito desse novo plano € controlar dinamicamente o com-
portamento das redes virtuais em resposta as constantes variagdes, gerando assim um sis-
tema de gerenciamento autondmico. Embora esse sistema tenha vantagens, como resposta
rapida as falhas geradas por variacdes no comportamento da rede, requer solucdes padro-
nizadas e bem testadas. Em consequéncia, o usudrio final continua distante da criacao
e implantacdo de aplicativos na rede virtual programével. Tal fato, contribui para baixa
taxa de inovagdo nas redes, pois mantem a natureza restritiva e a pequena quantidade de
pessoas aptas a desenvolver e implantar novas solucoes.

Em resumo, apesar de existirem propostas recentes envolvendo redes virtuais pro-
graméaveis, nenhuma das pesquisadas promove o gerenciamento da programabilidade em
uma infraestrutura de RVP, considerando o acesso de multiplos usudrios finais. Além
disso, maior parte das propostas analisadas se limitam ao provisionamento da rede virtual
(controle de médquinas virtuais e configuracao da rede virtual), ndo oferecendo funciona-
lidades para o gerenciamento dos aplicativos de rede que podem ser instalados dinamica-
mente nas redes virtuais programaveis.

3. ProViNet

Uma das abordagens para as Redes Virtuais Programaveis € a utiliza¢do da arquitetura de
Redes Definidas por Software. Tal arquitetura define que os planos de controle e de dados
sejam desacoplados. Sendo assim, eles necessitam de um protocolo para comunicagdo.
Recentemente tem se empregado o termo Southbound API (SBAPI) para se referir aos
protocolos que provejam essa comunicagdo entre o plano de controle e de dados. Con-
forme ilustrado na Figura 1 a SBAPI (2) € utilizada para comunicagdo entre o Pool de
Controle e os Slices, que serdo descritos mais diante.

Ao passo que surgiram diversas solucdes para a camada de controle, e cada
implementag¢do adota um padrio de linguagem, os aplicativos de rede criados seguiam
tal heterogeneidade, ficando assim dependentes das tecnologias dos controladores e iso-
ladas entre si. Atualmente a tendéncia € que as diferentes implementagdes do plano de
controle oferecam uma interface padrao de comunicacdo com aplicativos de rede exter-
nos. E comum se referir a esse tipo de interface como Northbound API (NBAPI) (1). Em
geral, elas independem de linguagem, baseando-se na arquitetura Representational State
Transfer (REST), por exemplo. Desse modo, novos aplicativos que venham a interagir
com a camada de controle necessitam apenas das especificacdes de servicos providas por
cada implementagdo de controlador.

Conforme ilustrado na Figura 1, a plataforma ProViNet auxilia os usudrios finais
no gerenciamento e implantacao de aplicativos de rede em Slices de Redes Virtuais Pro-
gramaveis. Para isso, se apoia no conceito de separacdo de planos, sejam eles: o plano
de dados, representado pelos elementos que formam a rede virtual nos Slices e utilizam
a SBAPI para se comunicarem com o plano de controle; o plano de controle, formado

Anais 911
173

L2 B [T——@ NBAP!
W7y |

Usuario ,"“{PROVINET Pool de
(O An Programmete Vituel Network

Final Controle
S

Figura 1. Mddulos e relacionamentos

pelos controladores, que sdo agrupados no Pool de Controle para prover alta disponibili-
dade, conforme serd apresentado na Subse¢do 3.1; e pelo plano de aplicativos, presente
no Pool de Execugdo, o qual organiza, armazena e executa os aplicativos de rede que se
aproveitam do conceito de NBAPI para comunicag¢ido com o plano de controle.

A plataforma ProViNet se aplica a qualquer ambiente que utilize infraestrutura
compativel com o conceito de RVP. Em geral, a aplicacdo se da em dois niveis, um no
nivel de rede virtual, no qual o plano de dados seriam representado pelos vSwitches, e
outro no nivel fisico, utilizando os switches fisicos compativeis como plano de dados. Ou
até mesmo em um modelo hibrido, com controle em ambos os niveis.

3.1. Arquitetura Conceitual

A arquitetura apresentada na Figura 2 ilustra os componentes da plataforma ProViNet
assim como suas relagdes em alto nivel. O usudrio interage com a plataforma através
de uma interface Web que expOe graficamente as funcionalidades providas por seus
modulos. Conforme ilustrado, essas funcionalidades se subdividem em quatro interagdes.
Na intera¢do (a), o médulo Controle de Usudrios atende a requisi¢des de autenticagdo e
cadastro. O processo de gerenciamento de implantacdo e execugdo de aplicativos, exe-
cutado na interacdo (b), é tratado pelo médulo Controle de Aplicativos. As solicitacdes
de infraestrutura virtual sdo enviadas na interacdo (c) e tratadas pelo médulo de Controle
de Slices e Referéncias. Por fim, as configuragdes inerentes aos trés modulos citados sao
apresentadas em uma interface de administra¢do (d) para o Administrador do ambiente
de implantacdo do ProViNet.

ProViNet fornece escalabilidade utilizando uma arquitetura baseada no con-
ceito chamado de Resource Pool. Cada Pool representa um conjunto de servidores de
virtualizacdo (hypervisors) interligados e controlados por uma plataforma de gerencia-
mento Unica. O Pool de Controle € utilizado para execuc¢do de mdaquinas virtuais com
sistemas idénticos, que executam uma implementacao de controlador pré-definida e com-
pativel com o conceito de NBAPI. Os aplicativos escritos pelos usudrios sdo executados
em maquinas virtuais individuais alocadas no Pool de Execucdo. A comunicagdo entre os
controladores do Pool de Controle e as VMs do Pool de Execucao € provida pela NBAPI.
J4 a comunicagdo entre os controladores € os elementos do plano de dados nos Slices
¢ provida pela SBAPI. As requisicdes realizadas pelos médulos do ProViNet aos Pools
utilizam as interfaces de comunicacao providas pela plataforma de virtualizacao adotada.
Finalmente, a requisi¢cdo ao Provedor de Infraestrutura Virtual ocorre por meio de uma
requisicdo HTTP, enviando um documento de descri¢do de infraestrutura virtual, a ser

912 312 Simposio Brasileiro de Redes de Computadores e Sistemas Distribuidos — SBRC 2013
174

comentado mais adiante.

s

," TPROVINET Slices da RVP
(Db anFrogammoble Vil Nemork
Web
Gul :ool dT) @a ‘
ontrole \
____________________ & P
|‘ S - |
@ <[> Controle de Usudrios Pool de <
1 Execugdo 1
H Controle de
, @ T aplicat i v
1 plicativos Servidor
! - DNS Provedor de
@ 11| Controle de Slices e Infraestrutura
! Referéncias »> Virtual
' -
@ leiy Mo_dylo de~
i Administragdo
Administrador \—— “---------mmmmmmmmmo J

Figura 2. Arquitetura conceitual

Analisando novamente a Figura 2, percebe-se a esquerda o Usudrio Final e a di-
reita a Rede Virtual Programdvel. Entre esses elementos estd a plataforma ProViNet,
provendo a ligac@o entre eles. Nessa posicdo, o ProViNet oferece o gerenciamento da
implantacdo de aplicativos, o controle de acesso para ambientes com multiplos usudrios
e os requisitos ndo funcionais de disponibilidade, confiabilidade e escalabilidade. Com
excec¢ao do médulo de Controle de Usudrios e de Administragcdo, devido a simplicidade,
os outros sdo detalhados nas subsecoes seguintes.

3.2. Controle de Slices e Referéncias

Uma Rede Virtual Programavel (RVP) dispde de recursos computacionais e de rede ne-
cessarios para a criacdo de redes isoladas e programaveis. Para isso, se apoiam em tec-
nologias de virtualizacdo (tais como XenServer, VMWare e Virtualbox) e de programa-
bilidade (como o OpenFlow, empregado neste trabalho). Seja qual for a tecnologia e
a abordagem de provimento da RVP, o resultado é que o usudrio terd uma rede virtual
programdvel que interliga exclusivamente suas maquinas virtuais. Por compartilharem
os recursos do provedor (ou datacenter), é conveniente e usual se referir ao subconjunto
de recursos de rede, computacionais € de armazenamento pertencentes a um usudrio, de
Slice.

Nao é funcdo da plataforma ProViNet o provimento do Slice, ou seja, inicializar
maquinas virtuais e configurar a rede virtual que interliga as mesmas. Portanto, o médulo
Controle de Slices e Referéncias tem, entre outras, a fung¢do de receber e encaminhar um
documento de descri¢ao de infraestrutura virtual especificando a topologia e os recursos a
serem alocados pelo Provedor de Infraestrutura Virtual (PIV). Existem diversas propostas
para esse tipo de documento, tais como Rspec (GENI), NDL-OWL(RENCI), NMC (OGF)
e Virtual Resources and Interconnection Networks Description Language (VXDL) do
projeto INRIA [Koslovski ef al. 2008]. Neste trabalho propomos uma extensdo para a
linguagem VXDL, tornando-a compativel com arquiteturas de programabilidade de redes
em que haja separagdo de planos (de controle e de dados).

Originalmente, a linguagem VXDL, apresentada no trabalho de Koslovski et.al.
[Koslovski et al. 2008], define que os recursos possuem um nome e podem ter uma lista
de fun¢des, parametros, softwares e uma localiza¢do conforme se nota no trecho desta-
cado de sua defini¢cdo e apresentado abaixo:

Anais 913

<resource> ::= "resource" " (" <name> ")" "{"
["function" <elementary-functions>]
["parameters" <resource-parameters>]
["software" <software-list>]
["anchor" <location>] "}"

O atributo function pode assumir diversos valores, tais como endpoints, aquisition
e router. Propde-se a adicdo de um novo atributo inerente ao valor router, o qual nomeia-
se <controller-list>. Esse valor representa uma lista de controladores. Foi adotado uma
lista pois alguns roteadores ou swifches compativeis com SDN aceitam redundancia de
controladores. O switch virtual Open vSwitch por exemplo aceita a configuracao de um
master e diversos slaves. Cada elemento <controller> é composto por atributos que
definem o tipo de conexao (ftp, ptcp e ssl sao exemplos), o endereco IP e a porta em que
o controlador remoto estd configurado.

<elementary-functions> ::= <function> ("," <function>)=x
<function> ::= "endpoint" | "aquisition" | "storage"

| "computing" | "visualization" | "network_sensor"

| "router"™ " (" "ports" <ports> [<controller-list>] ")"
<ports> ::= <number>
<controller-list> ::= <controller> ("," <controller>)=*
<controller> ::= " (" <connection-type> <ip-address> <port> ")"

O usudrio inicialmente deve elaborar este arquivo sem as informacdes sobre o
controlador, pois estas serdo adicionadas automaticamente pelo ProViNet durante o pro-
cesso de requisi¢ao de infraestrutura virtual. Isso se justifica pelo fato do usuério nao
ter informagdes sobre os enderecos de IP dos controladores, até mesmo porque eles sao
dindmicos, conforme serd apresentado adiante.

Usurio Controle de Slices Servidor DNS Pool de Controle PIV
e Referéncias

Envia VXDL e nivel
de redundancia

r| Clona instancia(s) de Controlador e consulta IP

Acrescenta dados

dos controladores, T 4--~"""""""" """ -TTT RS TR T o TS s S e
no VXDL Envia requisigdo (VXDL) ao Provedor de Infraestrutura Virtual

Guarda Q‘T """"""""""""""""""""""""""""""" [':I
informagbes i >

Cria subdominio com IP(s) " |
i Thforma URL dos controladores

Ex.:user1.provinet.com
E o status da
requisicado de Slice

Figura 3. Diagrama de sequéncia da abordagem de criacao de Slices

De acordo com o diagrama da Figura 3, quando o usudrio ja elaborou o documento
VXDL, ele o envia ao mdédulo Controle de Slices e Referéncias via formulério de upload.
No mesmo formulario, o usuario deve definir um nivel de redundancia de controladores
no Pool de Controle que pretende ser associado ao Slice requerido. Apoés a instanciagao
dos controladores, o Pool de Controle reponde a requisi¢cao informando o IP dos mesmos.
Esses IPs sdo adicionados ao VXDL juntamente com o tipo de conexdo e porta. Em se-

175

914 312 Simposio Brasileiro de Redes de Computadores e Sistemas Distribuidos — SBRC 2013
176

guida, o documento € enviado ao PIV por uma requisicaio HTTP, gerada automaticamente
pela plataforma.

Ao receber a resposta sobre o status da requisi¢cdo e com informacdes sobre o
acesso aos recursos do Slice, a plataforma registra no Servidor DNS os IPs dos controla-
dores (os mesmos adicionados no documento VXDL). Esse registro € a adi¢do do nome
do usudrio como subdominio do dominio www.provinet.local. Ou seja, cada usudrio tem
um subdominio no qual sdo associados os IPs dos controladores por ele requeridos. Caso
o usudrio tenha definido grau e redundancia maior que um, o Servidor DNS aplicard o
algoritmo Round Robin entre as referéncias. Abaixo segue um exemplo de configuracdo
de uma dominio em que o “userl” possui dois controladores e o “user2” tem um.

NS servidor.provinet.local.
servidor A XXX XXX . XXX . XXX
userl A <IP-controlador-1>
userl A <IP-controlador-2>
user?2 A <IP-controlador-3>

Por fim, o médulo apresenta ao usudrio a URL a ser utilizada em seus aplicati-
vos para fazer chamadas aos servigos (Ex.: http://userl.provinet.local). Sao fornecidos,
também, os dados de acesso aos recursos virtuais recebidos do PIV. Dessa forma, o apli-
cativo do usudrio poderd enviar requisi¢cdes aos servigos providos pelos controladores
instanciados no Pool de Controle.

3.3. Controle de Aplicativos

Uma vez que a estrutura de programabilidade ja estd estabelecida, ou seja, o usudrio
possui um Slice e um plano de controle devidamente configurado, resta ao usudrio de-
senvolver e executar os aplicativos de rede. Para que o desenvolvimento seja possivel, o
usudrio precisa saber quais sdo os servigos a sua disposicdo. Por isso, € disponibilizado
através da interface Web do ProViNet, uma documentacdo completa sobre tais servigos,
os quais dependem da tecnologia utilizada no Pool de Controle.

Usuario Controle de Pool de Execugdo

Aplicativos

Usuario requere a
VM de execugéo

r| Cria instancia de VM com as caracteristicas requeridas pelo usuarjo

Configura acesso g ___________ Recebe informagdes da insténcia ____________
VNC via Browser Q_T Conexao Segura

Figura 4. Abordagem de referéncias para provimento de escalabilidade e dispo-
nibilidade

De acordo com o diagrama apesentado na Figura 4, no primeiro passo o usuario
acessa a plataforma e requer a VM que rodara seus aplicativos. Nesta requisicdo sao
apresentados perfis de VM, variando o Sistema Operacional e quantidade de recursos,
tais como memoria, processamento € armazenamento. Apds a escolha de um perfil, a
plataforma, por meio de uma interface de comunicacdo com o Pool de Execugdo requer
uma VM com tais caracteristicas. Para evitar qualquer tipo de bloqueio por firewall, ao

Anais 915

receber os dados da VM criada, o médulo Controle de Aplicativos configura uma interface
de acesso remoto via Browser. Ou seja, o usudrio € capaz de visualizar e interagir com a
VM criada por meio de um terminal apresentado em seu Browser.

Como ilustrado na Figura 5, o aplicativo do “userl” rodando no Pool de Execugao
poderia fazer a chamada http://userl.provinet.local/getTopology para consultar a topolo-
gia da rede virtual disponibilizada em seu Slice. Se o usudrio tem mais de um controla-
dor, as requisi¢des dos aplicativos serdao direcionadas para os controladores conforme o
algoritmo Round Robin, implementado pelo Servidor DNS. Assim, existird um balance-
amento de carga entre os controladores. Além disso, em caso de falha de um controlador,
terd outro para atender as requisicoes.

Formato de chamada REST
(http://<referenciacontrolador>/<servigco>)

EPool d~e Pool de Controle Slice do
xecugdo usert
Exemplo: http://user1.provinet.local/getTopology EI
N e)
20 21 SBAPI
Exemplo: http://user2.provinet.local/sw/1/setFlow | —
" —’4’ = {)
31 Slice d
NBAPI | e user?2

Servid <nome> : <IP-do-controlador-principal>, <secundario>,... | =
o DNS user1.provinet.local : 192.168.1.20, 192.168.1.21 «

user2.provinet.local : 192.168.1.30, 192.168.1.31
Maquinas virtuais rodando o(s) controlador(es)

Magquina virtual rodando o aplicativo do usuario

. - *
lli Hypervisor lli Hypervisor

Figura 5. Abordagem de referéncias para provimento de escalabilidade e confia-
bilidade

O conjunto de servicos disponiveis deve variar de acordo com a tecnologia utili-
zada no plano de controle. Todavia, diante da necessidade de um novo servi¢o, 0 mesmo
pode ser desenvolvido e instalado. Em geral, os controladores seguem uma arquitetura
que permite o acoplamento de modulos com a implementagdo de novos servigos. Ba-
seado nas informacgdes de quais controladores pertencem a quais usudrios, a plataforma
ProViNet auxilia o usuério na instalagdo desses médulos.

Para implementar o médulo a ser instalado, o usudrio deve seguir os tutoriais! dis-
ponibilizados pela fabricante do controlador adotado no plano de controle. O processo de
instalacdo de um novo mddulo se inicia pelo envio do médulo compactado para a plata-
forma. O modulo responsavel entdo o encaminha a todos os controladores do usuario que
estdo associados a um determinado Slice. Em cada controlador, um deamon configurado
para fazer a implantacdo de modulos executa uma rotina de instalagdo. Uma vez que os
modulos estdo instalados, os aplicativos dos usudrios podem enviar requisi¢des a ele (Ex.:
http://user1.provinet.local/modules/newModule/service).

'"Tomando como exemplo o controlador Floodlight, estdio disponiveis no endereco
http://www.openflowhub.org/display/floodlightcontroller/How+to+Write+a+Module, um conjunto de
instrucdes para o desenvolvimento de novos médulos.

177

916 312 Simposio Brasileiro de Redes de Computadores e Sistemas Distribuidos — SBRC 2013
178

4. Prototipo

Com o objetivo de demonstrar a viabilidade da arquitetura conceitual detalhada na Fi-
gura 2 do Capitulo 3, foi desenvolvido um protétipo. Sua implementagcdo baseia-se no
desenvolvimento dos cinco principais mddulos, a Interface Web, o Controle de Usudrios,
o Controle de Aplicativos, o Controle de Slices e Referéncias e a Administragao do Pro-
ViNet. Tais médulos foram implementados utilizando o framework Django 1.4.3, a lin-
guagem Python 2.7.3 e o sistema gerenciador de banco de dados PostgreSQL 9.1.6. A
fim de fornecer maior compatibilidade do sistema, foi utilizado o servidor Web Apache
2.2.23.

O modulo Controle de Usuarios fornece na interface do ProViNet, formularios
de registro e login. O Controle de Aplicativos apresenta na interface uma 4rea especial
para apresentagao dos servicos disponibilizados no plano de controle e uma area para
requisi¢éio, controle e interacio com as VMs no Pool de Execucdo. E disponibilizado
pelo médulo de Controle de Slices e Referéncias um formuldrio para upload do docu-
mento VXDL e defini¢ao do nivel de redundancia. Finalmente, a drea de Administracao
apresenta um conjunto de funcionalidades de configuracdo, que incluem o endereco de IP
e dados de acesso dos Pools, do Servidor DNS, do Provedor de Infraestrutura Virtual e
ainda a defini¢do dos perfis de maquinas virtuais que serao disponibilizadas aos usudrios.

Os Pools de Execugdo e de Controle sdo, na prética, servidores com alguma pla-
taforma de virtualizacdo instalada. No protétipo desenvolvido foi utilizado o hypervisor
XenServer da CITRIX. Sendo assim, a comunicagdo entre os modulos da plataforma
ProViNet e os Pools se dio pela utilizacdo do XenServer SDK. Com o SDK € possivel
controlar e monitorar o hypervisor através de chamadas XML-RPC. O ultimo mddulo
da plataforma € o Servidor DNS, o qual foi instalado em uma mdaquina com os sistemas
Bind9 e Apache?2. Para o controle dindmico de configuracdo do DNS, um servigo web foi
implementado para que, a partir de chamadas HTTP a uma URL especifica, seja feita a
adicao e remocgdo de entradas no arquivo de configuracdo do bind9.

A implementacdo de controlador utilizada foi o Floodlight, por prover uma API
RESTfull que possibilita o consumo dos servigos disponibilizados no controlador por
meio de chamadas HTTP. Outras implementacdes poderiam ser utilizadas, desde que
seja possivel a instalacio de mddulos para provimento de servigos customizados e a
disponibiliza¢do de servicos utilizando a arquitetura REST.

5. Caso de Estudo e Analise de Resultados

Para avaliar a solucdo apresentada foi elaborado um caso de estudo que aborda cada um
dos diagramas de sequéncia apresentados no Capitulo 3. O cendrio de execu¢do é com-
posto por servidores Intel Xeon CPU E3-1220 3.1GHz, 4GB RAM, com o hypervisor
XenServer 6.1 representando o Pool de Controle e de Execu¢do. O controlador Open-
Flow utilizado foi o Floodlight v0.90, e € iniciado, por script durante a inicializa¢do da
VM (Ubuntu 12.04 com 1 vCPU e 384MB RAM) no hypervisor. Para executar o fra-
mework Django com o ProViNet foi utilizado um laptop Intel Core 17 2.8GHz e 4GB
RAM. Por fim, o Servidor DNS foi instalado e configurado em um terceiro PC (Intel Core
2 Duo 2.33GHz e 4GB RAM) na mesma rede local que os outros PCs. Vale ressaltar que
os tempos apresentados neste trabalho foram obtidos ap6s 30 execugdes, e representam a
média uma vez que o coeficiente de variacao foi muito proximo de zero.

Anais 917

Instanciar dois Adicionar informacdes Provimento da Configuracdo de Total
controladores no VXDL infraestrutura virtual (PIV) subdominios
12,8245 0,003s 57,81s 0,04s 75,677s

Tabela 1. Tempos para requisicao de Slice e configuracdao de subdominios

Atraidas pelo baixo custo de manutengdo, seguranga e armazenamento, é cada vez
mais comum que empresas migrem parte de sua infraestrutura de computagdo para ambi-
entes de Cloud, seja ela publica, privada ou hibrida. Para representar esse caso de estudo,
consideramos uma rede composta por 7 switches € 4 hosts, organizados em uma topo-
logia de arvore. Consideramos também que o usudrio responsavel pela migracdo ja esta
registrado na plataforma ProViNet. Inicialmente, o usudrio faz a requisi¢do da infraes-
trutura virtual enviando um arquivo VXDL com a descri¢do da topologia (switches, hosts
e links). A avaliacdo desse processo € apresentada na Tabela 1 e pode ser acompanhada
pelo diagrama da Figura 3. Os tempos apresentados consideram nivel de redundéancia
igual a dois, ou seja, o Slice terd dois controladores associados.

Vale ressaltar que o tempo gasto para instanciar a infraestrutura virtual deve variar
de acordo com a abordagem de mapeamento utilizada pelo PIV. A utilizagao de maquinas
virtuais ao invés de bridges para representar os swifches virtuais, por exemplo, certamente
acarreta em maior custo de tempo. Os tempos apresentados consideram um sistema de-
senvolvido em um trabalho anterior chamado HyFS [Wickboldt et al. 2012] como prove-
dora da infraestrutura virtual programavel. O HyFS € atualmente a tnica plataforma de
private Cloud capaz de receber requisicoes de rede virtual programével com topologias
variadas. A topologia virtual € criada utilizando o modelo overlay, no qual switches e
hosts sao implantados em maquinas virtuais. Uma vez instanciados, os software swit-
ches sdo configurados para receberem informacoes de controle de controladores externos,
estabelecidos pela plataforma ProViNet.

Ap6s o provimento da infraestrutura virtual, o usuério responsavel pela migracao
deve avaliar os servigos presentes no cendrio anterior a migragao, tais como Firewall,
Balanceadores de carga e outros servigos necessarios. Uma vez que a rede virtual a ser
criada € programavel, esses servigcos podem ser implementados em forma de aplicativos
de rede. Utilizando uma notacao simplificada, um exemplo de aplicativo para tratamento
de ataques de negacdo de servigo (DDoS) € apresentado no Algoritmo 1. Esse aplicativo
roda no plano de execu¢do, em uma VM que o usudrio acessa através do Browser.

O algoritmo apresentado analisa o trafego recebido por um switch a cada 10 se-
gundos, se esse trafego for superior a um limite pré definido o sistema toma alguma agao.
Essa acdo depende do nimero de ocorréncias em que se detectou trafego superior ao li-
mite definido. Na segunda ocorréncia o sistema bloqueia o trafego ICMP, na terceira,
o trafego Web (porta 80) é bloqueado, e por fim, na quarta ocorréncia, todo trafego é
bloqueado e um gerente € contactado. Certamente essa nao € a melhor solu¢do, mas é
um exemplo de um possivel aplicativo de rede que pode ser desenvolvido pelo usudrio e
implantado no Pool de Controle para proteger seu Slice desse tipo de ataque.

Para medir desempenho das requisi¢cdes do aplicativo do usudrio, foram realiza-
dos experimentos com vari¢des no nivel de redundancia no plano de controle. Espera-se
uma variacdo no desempenho das chamadas, pois ao utilizar uma maior quantidade de
controladores, o balanceamento de carga realizado pelo Servidor DNS torna o processo

179

918 312 Simposio Brasileiro de Redes de Computadores e Sistemas Distribuidos — SBRC 2013
180

Algorithm 1 Exemplo de Aplicativo: Solugdo ProViNet para DDoS
Require: limite - Limite de trafego considerado normal
Require: swdpid - DPID do switch de entrada de trafego rede

1: limite < 2000M B

2:

3. anterior < hitpRequest(userl.provinet.local /readstatus/swdpid)

4: ocorrencias < 1

5: while True do

6: atual < httpRequest(userl.provinet.local /readstatus/swdpid)

7: if (atual — anterior) > limite then

8: if ocorrencias == 2 then

9: http Request(userl.provinet.local /add Flow /swdpid/blockIC M P)
10: else if ocorrencias == 3 then
11: httpRequest(userl.provinet.local /add Flow /swdpid/blockW eb)
12: else if ocorrencias > 3 then
13: httpRequest(userl.provinet.local /add Flow/swdpid/block All)
14: CallManager()
15: end if
16: ocorrencias + +
17: end if

18: anterior < atual

19: sleep(10)
20: end while

8

7r B
—6 i
3 Numero de
g 5 {/Controladores
()] -
8 3
23
£ 3
o —4

...5
=
20 40 60 80 100

Numero de requisicoes

Figura 6. Performance do plano de controle com balanceamento de carga

mais rapido. Tal fato pode ser acompanhado no gréfico da Figura 6, que mostra o tempo
gasto para concluir X requisicdes, sendo X, valores entre 10 e 100 com intervalos de
10 unidades. A requisi¢do executada para obtencdo dos valores apresentados foi provi-
net.local/wm/core/controller/switches/json, a qual retorna a lista de switches presentes no
Slice.

Analisando os valores apresentados no grafico 6, percebe-se que o balanceamento
de carga provido pela abordagem proposta e gerenciado pelo ProViNet € efetivo e implica

Anais 919

em uma reducdo do tempo gasto para execucdo das requisicdes. Entretanto, o ganho
se torna menos significativo para um nimero de controladores maior que 3. Ou seja,
utilizando apenas 1 controlador, foram gastos em média 7,91 segundos para concluir 100
requisi¢des, ao passo que com 2 controladores esse valor caiu para 4,45. O ganho ao
aumentar o nimero de controladores de 4 para 5, ndo € tao expressivo quanto de 1 para
2, saindo de 3,09 para 2,98 segundos nesse caso. Discussdes mais aprofundadas nesse
contexto foram apresentadas por Heller et.al. [Heller et al. 2012].

Para avaliar a funcionalidade de implantacdo de moddulos sob demanda,
desinstalou-se do Floodlight um médulo que originalmente ja vem instalado, o médulo
de firewall. Compactou-se tal médulo em um arquivo e, através da interface do ProVi-
Net, foi feita a requisicao de instalacdo. Uma vez que o modulo Controle de Aplicativos
possui cadastrado o endereco IP de todos os controladores e seus respectivos usudrios,
apos receber o arquivo por upload, um script de envio € disparado. O papel desse script €
acessar via ssh a VM de cada controlador, fazer a copia do novo médulo para uma pasta
especifica na VM e ativar um segundo script na VM que faz a instalagdo do mesmo. Esse
segundo script segue as informagdes disponibilizadas no site do Floodlight para instalacdo
de médulos. O tempo médio gasto nesse processo foi de 23,435 segundos.

6. Conclusoes e Trabalhos Futuros

A diversidade de ambientes computacionais requerem distintos servigos de comunicac¢ao
em redes. As solucdes desenvolvidas no passado, e implementadas de acordo com as von-
tades das fabricantes de equipamentos de redes, podem nao ser mais suficientes. Entre-
tanto, com o surgimento de propostas abertas de virtualizacdo e programabilidade, como
as Redes Definidas por Software, a criagdo de novas solugdes se torna, de certa forma,
mais democrética. Ou seja, depende menos dos anseios financeiros das grandes fabrican-
tes.

Todavia, a complexidade inerente ao gerenciamento de ambientes de Rede Vir-
tual Programével (RVP) ainda representa um grande desafio. Neste trabalho, propomos
a plataforma ProViNet para o gerenciamento da implantacdo de aplicativos de rede em
ambiente de RVP. A plataforma ProViNet contribui com uma arquitetura escalavel, uti-
lizando o conceito de Resource Pool, com uma abordagem para a instalacio dindmica
de novos mddulos no plano de controle, com a extensdao da linguagem de definicdo de
infraestrutura virtual de rede virtual programdvel, chamada VXDL, e por fim, com o de-
senvolvimento de um sistema com interface de acesso Web, facilitando a compreensao e
interacao com usudrios finais.

Como trabalhos futuros pretende-se investigar mais precisamente, como 0s am-
bientes de Cloud poderiam prover pratilheiras de servigos de rede dindmicas. As quais
seriam ocupadas por solucdes desenvolvidas e consumidas pelos préprios usudrios de
Cloud.

Referéncias

Campbell, A. T., Meer, H. G. D., Kounavis, M. E., Miki, K., Vicente, J. B., e Villela,
D. (1999). A survey of programmable networks. Computer Communication Review,
29:7-23.

181

920 312 Simpésio Brasileiro de Redes de Computadores e Sistemas Distribuidos — SBRC 2013
182

Chowdhury, N. e Boutaba, R. (2009). Network virtualization: state of the art and research
challenges. Communications Magazine, IEEE, 47(7):20 -26.

Chowdhury, N. M. K. e Boutaba, R. (2010). A survey of network virtualization. Computer
Network, 54(5):862-876.

GENI (2011). Global Environment for Network Innovations. Disponivel em:
http://www.geni.net/. Acessado em: Julho 2012.

Gutz, S., Story, A., Schlesinger, C., e Foster, N. (2012). Splendid isolation: a slice
abstraction for software-defined networks. Em Proceedings of the first workshop on
Hot topics in software defined networks, HotSDN °12, paginas 79-84, New York, NY,
USA. ACM.

Hausheer, D., Parekh, A., Walrand, J., e Schwartz, G. (2011). Towards a compelling
new internet platform. Em Integrated Network Management (IM), 2011 IFIP/IEEE
International Symposium on, paginas 1224 —1227.

Heller, B., Sherwood, R., e McKeown, N. (2012). The controller placement problem. Em
Proceedings of the first workshop on Hot topics in software defined networks, HotSDN
"12, paginas 7-12, New York, NY, USA. ACM.

Kanaumi, Y., Saito, S., e Kawai, E. (2010). Deployment of a programmable network for
a nation wide randd network. Em Network Operations and Management Symposium
Workshops (NOMS Wksps), 2010 IEEE/IFIP, paginas 233 —238.

Kopsel, W. (2011). Ofelia - pan-european test facility for openflow experimentation.

Koslovski, G. P., Primet, P. V.-B., e Chardo, A. S. (2008). Vxdl: Virtual resources and
interconnection networks description language. volume 2 of Lecture Notes of the Insti-
tute for Computer Sciences, Social Informatics and Telecommunications Engineering,
paginas 138-154. Springer.

Lantz, B., Heller, B., e McKeown, N. (2010). A network in a laptop: rapid prototyping for
software-defined networks. Em Proceedings of the 9th ACM SIGCOMM Workshop on
Hot Topics in Networks, Hotnets-1X, paginas 19:1-19:6, New York, NY, USA. ACM.

Lin, P, Bi, J., Hu, H., Feng, T., e Jiang, X. (2011). A quick survey on selected approa-
ches for preparing programmable networks. Em Proceedings of the 7th Asian Internet
Engineering Conference, AINTEC ’11, paginas 160-163, New York, NY, USA. ACM.

OpenStack (2011). Open source software for building private and public clouds. Dis-
ponivel em: http://www.openstack.org/. Acessado em: Julho 2012.

ProtoGENI (2012). Control Framework for GENI Cluster C. Disponivel em:
http://www.protogeni.net/trac/protogeni. Acessado em: Dezembro 2012.

Rubio-Loyola, J., Galis, A., Astorga, A., Serrat, J., Lefevre, L., Fischer, A., Paler, A., e
Meer, H. (2011). Scalable service deployment on software-defined networks. Commu-
nications Magazine, IEEE, 49(12):84 -93.

Wickboldt, J. A., Granville, L. Z., Schneider, F., Dudkowski, D., e Brunner, M. (2012).
A new approach to the design of flexible cloud management platforms. Em 8th Inter-
national Conference on Network and Service Management (CNSM), paginas 155-158,
Las Vegas, USA.

	Acknowledgement
	Contents
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Abstract
	1 INTRODUCTION
	1.1 Contributions
	1.2 Methodology and organization

	2 STATE OF THE ART
	2.1 Situation management
	2.2 Mashup technology
	2.3 Network management
	2.4 Final remarks

	3 CARRYING OUT NETWORK MANAGEMENT USING SITUATION MANAGEMENT AND MASHUPS
	3.1 Fundamental concepts
	3.1.1 Network management situation
	3.1.2 Mashment

	3.2 Mashment ecosystem
	3.2.1 Resources
	3.2.2 Stakeholders
	3.2.3 Activities and interactions
	3.2.4 Software entities

	3.3 Process for addressing nmsits by mashments
	3.3.1 Overall functioning
	3.3.2 Complexity
	3.3.3 Time-consuming

	3.4 Mashment system architecture
	3.4.1 Managed resources layer
	3.4.2 Adaptation layer
	3.4.3 Composition layer
	3.4.4 Presentation layer

	3.5 Final remarks

	4 EVALUATING THE MASHMENT-BASED APPROACH
	4.1 Reference implementation
	4.1.1 Managed resources
	4.1.2 Mashment system server
	4.1.3 Mashment maker prototype
	4.1.4 Runtime environments

	4.2 Case study on SDN
	4.2.1 Complexity: results and analysis
	4.2.2 Time-consuming: results and analysis
	4.2.3 Time-response: results and analysis
	4.2.4 Traffic: results and analysis

	4.3 Case study on virtual nodes
	4.3.1 Complexity: results and analysis
	4.3.2 Time-consuming: results and analysis
	4.3.3 Time-response: results and analysis
	4.3.4 Traffic: results and analysis

	4.4 Case study for dynamic mashments
	4.4.1 Time-recognition: results and analysis
	4.4.2 Time-composition: results and analysis
	4.4.3 Complexity: results and analysis
	4.4.4 Time-consuming: results and analysis

	4.5 Final remarks

	5 CONCLUSIONS
	5.1 Answer for the fundamental questions
	5.2 Contributions
	5.3 Future work

	References
	APPENDIX A - Scientific Production
	A.1 Papers: accepted and on reviewing
	A.2 Collaborations: accepted and on reviewing

