

SALÃO DE INICIAÇÃO CIENTÍFICA XXVIII SIC

Evento	Salão UFRGS 2016: SIC - XXVIII SALÃO DE INICIAÇÃO
	CIENTÍFICA DA UFRGS
Ano	2016
Local	Campus do Vale - UFRGS
Título	ESTUDO NUMÉRICO DE UM DISPOSITIVO DO TIPO COLUNA DE
	ÁGUA OSCILANTE
Autor	GABRIEL BARBIERI DUMONT
Orientador	LUIZ ALBERTO OLIVEIRA ROCHA

ESTUDO NUMÉRICO DE UM DISPOSITIVO DO TIPO COLUNA DE ÁGUA OSCILANTE

Autor: Gabriel Barbieri Dumont

Orientador: Luiz Alberto Oliveira Rocha

Instituição: Universidade Federal do Rio Grande do Sul

O trabalho consiste na simulação, utilizando recursos computacionais, de um dispositivo de conversão de energia das ondas do mar em energia elétrica do tipo Coluna de Água Oscilante (CAO). O objetivo é validar o modelo numérico utilizado através da comparação dos resultados obtidos na modelagem computacional com os resultados previstos pela solução analítica, determinando o período de onda que resulta na menor diferença entre os dois. Após a validação do modelo numérico, foram efetuadas simulações para determinar variáveis de interesse como pressão, elevação da superfície livre e vazão mássica em certas posições do dispositivo e, a partir delas, foi calculada a potência hidropneumática do dispositivo.

A metodologia para validar o modelo numérico consiste em definir o primeiro domínio computacional (que representa um tanque de geração de ondas em um plano bidimensional, sem o dispositivo CAO) e efetuar simulações com ondas de períodos diversos, comparando os valores numéricos da elevação da superfície livre com os valores fornecidos pela equação analítica. O período de onda que apresentou o menor erro em relação à solução analítica foi utilizado para a simulação do dispositivo CAO. No caso estudado, a altura e o comprimento de onda foram mantidos constantes para todos os períodos de onda. As simulações foram realizadas para oito casos distintos, cada um correspondendo a um valor inteiro de período entre 5 e 12 segundos. Após a validação do modelo numérico e a definição do período de onda ideal, foram realizadas simulações numéricas usando o segundo domínio computacional (que representa um dispositivo CAO, posicionado em um tanque de geração de ondas, em um plano bidimensional), e sondas de monitoramento foram empregadas para determinar os valores de pressão e elevação da superfície livre no interior da câmara do dispositivo, vazão mássica na saída da chaminé do dispositivo, e vazão volumétrica na base do dispositivo. A partir destes dados, pôde-se definir a potência hidropneumática do dispositivo analiticamente, utilizando a média RMS. O tempo de simulação foi de 30 segundos, e as simulações forneceram um total de 300 dados para cada variável de interesse. Os domínios computacionais foram discretizados nos softwares GAMBIT® e ICEM®, assim como as condições de contorno correspondentes para os casos. As simulações numéricas foram efetuadas utilizando o programa FLUENT® e o modelo multifásico Volume of Fluid (VOF), baseado no Método dos Volumes Finitos e utilizado na simulação de escoamentos compostos por dois ou mais fluidos imiscíveis (neste caso, o ar e a água). Para a geração das ondas, é criada uma função definida pelo usuário, chamada de UDF (*User Defined Function*), que é carregada no FLUENT® após a definição do modelo e aplicada na região de entrada. A função na UDF separa a velocidade da onda em componentes horizontal e vertical, que são baseadas na Teoria de Stokes de 2ª Ordem.

Os resultados obtidos através do modelo multifásico VOF, quando comparados com os resultados da solução analítica, comprovam que o mesmo é adequado para simular o problema em questão. Também fica claro que a acurácia do modelo depende dos parâmetros da onda, neste caso, o período. A diferença entre os valores obtidos na solução numérica e os valores equivalentes da solução analítica é menor no período de 5 segundos, validando o uso desta onda como padrão. O aumento do período, enquanto o comprimento de onda se mantém constante, resulta em um aumento de amplitude, que é muito mais pronunciado na solução numérica em relação a solução analítica.