

SALÃO DE INICIAÇÃO CIENTÍFICA XXVIII SIC

Evento	Salão UFRGS 2016: SIC - XXVIII SALÃO DE INICIAÇÃO
	CIENTÍFICA DA UFRGS
Ano	2016
Local	Campus do Vale - UFRGS
Título	Investigação dos parâmetros ideais para fabricação de filmes
	de In(x) Al(1-x) Sb por sputtering
Autor	CHARLES AIRTON BOLZAN
Orientador	RAQUEL GIULIAN

Antimoneto de índio e alumínio (In_(x) Al_(1-x) Sb) é um composto ternário da família dos semicondutores III-V. Caracteriza-se por exibir parâmetro de rede similar à do InSb e estrutura cristalina tipo zincblende. Esse material apresenta potencial tecnológico como na fabricação de sensores e membranas nanométricas. Certos materiais quando implantados por feixes de íons sofrem uma mudança em sua morfologia, adquirindo uma estrutura porosa. Semicondutores porosos exibem enorme área superficial, o que favorece reações químicas de superfície, sendo favorável aumentando, por exemplo, a eficiência de sensores de gás.

Neste trabalho serão investigados os parâmetros ideais para a fabricação de filmes de $In_{(x)}$ $AI_{(1-x)}$ Sb, que serão depositados por sputtering sobre Si, assim como a presença de um comportamento similar ao composto ternário $Ga_{(1-x)}AI_{(x)}As$ de exibir um bandgap (banda proibida) intermediário entre os dois valores dos cristais puros), no caso $In_{(x)}$ $AI_{(1-x)}$ Sb, em relação ao antimoneto de alumínio(AISb)(~ 1.62eV) e antimoneto de índio(~ 0.17eV), variando conforme a concentração de Al no material. Entre outros parâmetros, será analisada a influência da temperatura de deposição na estrutura e qualidade dos filmes que terão entre 100-400 nm de espessura. A espessura e estrutura dos filmes além da concentração dos elementos nele presentes serão estudadas mediante a técnica Rutherford backscattering spectrometry (RBS) e difração de raios x (XRD).