Universidade Federal do Rio Grande do Sul Escola de Engenharia Programa de Pós-Graduação em Engenharia Civil

Aparatos de Baixo Custo para Ensaios Biaxiais em Concretos Reforçados com Fibras de Aço

Maria Vânia Nogueira do Nascimento Peres

Maria Vânia Nogueira do Nascimento Peres

Aparatos de Baixo Custo para Ensaios Biaxiais em Concretos Reforçados com Fibras de Aço

Dissertação apresentada ao Programa de Pós-Graduação em Engenharia Civil da Universidade Federal do Rio Grande do Sul, como parte dos requisitos para obtenção do título de Mestre em Engenharia na modalidade Acadêmico.

PERES, Maria Vânia Nogueira do Nascimento

Aparatos de Baixo Custo para Ensaios Biaxiais em Concretos Reforçados com Fibras de Aço / Maria Vânia Nogueira do Nascimento Peres – Porto Alegre: PPGEC / UFRGS, 2008. 153p.

Dissertação de Mestrado, Programa de Pós-graduação em Engenharia Civil da Universidade Federal do Rio Grande do Sul. Orientadores: Alexandre Rodrigues Pacheco e Luiz Carlos Pinto da Silva Filho.

1. Concreto Reforçado com Fibra de Aço. 2. Ensaios Multiaxiais. 3. Curvas de Ruptura.

CCAA2

Maria Vânia Nogueira do Nascimento Peres

Aparatos de Baixo Custo para Ensaios Biaxiais em Concretos Reforçados com Fibras de Aço

Esta dissertação de mestrado foi julgada adequada para a obtenção do título de MESTRE EM ENGENHARIA, com área de atuação em Estruturas e aprovada em sua forma final pelos professores orientadores e pelo Programa de Pós-Graduação em Engenharia Civil da Universidade Federal do Rio Grande do Sul.

Porto Alegre, 29 de Agosto de 2008.

Prof. Alexandre Rodrigues Pacheco Ph.D. pela Pennsylvania State University Orientador Prof. Luiz Carlos Pinto da Silva Filho Ph.D. pela University of Leeds Orientador

Prof. Fernando SchnaidCoordenador do PPGEC / UFRGS

BANCA EXAMINADORA

Prof. Antônio Domingues de Figueiredo (USP) Dr. pela Escola Politécnica da Universidade de São Paulo

Prof. Américo Campos Filho (UFRGS) Dr. pela Escola Politécnica da Universidade de São Paulo

Prof. Roberto Domingo Rios (UFRGS)Dr. pela Universidade Federal do Rio Grande do Sul

Agradecimentos

Ao longo do desenvolvimento desta dissertação, muitas pessoas contribuíram para a sua concretização. Portanto, não posso deixar de agradecer, aqui, de um modo muito especial, a algumas pessoas que foram essenciais para a conclusão desta dissertação.

Primeiramente, agradeço a DEUS, por todos os momentos felizes e, porque não, também os tristes, pois muitas coisas aprendi com eles. Muitos valores guardei e muitas vitórias conquistei.

Agradeço à minha FAMÍLIA que, mesmo distante, esteve sempre presente nos momentos mais difíceis. Obrigada pelo amor incondicional.

Ao meu ESPOSO, o meu imenso agradecimento pela paciência, incentivo, compreensão, carinho e amor.

Ao Professor ALEXANDRE RODRIGUES PACHECO, orientador deste trabalho, um profundo agradecimento pela disponibilidade, apoio, incentivo e conhecimentos transmitidos.

Ao Professor LUIZ CARLOS PINTO DA SILVA FILHO, pelo incentivo desde o início da minha pós-graduação.

Aos meus colegas de pós-graduação pela troca de conhecimentos.

Aos funcionários do LEME - Laboratório de Ensaios e Modelos Estruturais, pelo apoio na elaboração e execução dos ensaios experimentais.

À CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, pela concessão da bolsa de estudo.

À empresa MACCAFERRI, por ter proporcionado a continuidade desta pesquisa por meio da doação de parte do material utilizado no programa experimental.

E a todas as pessoas que contribuíram direta ou indiretamente para o término desta pesquisa.

Não prometo dar-lhes sempre longas respostas, mas somente confessar com muita franqueza meus erros, se os reconhecer, ou então, se não os puder perceber, dizer simplesmente o que achei para a defesa daquilo que escrevi.

René Descartes

Resumo

PERES, M.V.N.N. Aparatos de Baixo Custo para Ensaios Biaxiais em Concretos

Reforçados com Fibras de Aço. 2008. Dissertação (Mestrado em Engenharia Civil) -

Programa de Pós-Graduação em Engenharia Civil, UFRGS, Porto Alegre.

Nas últimas décadas, a utilização de fibras de aço no reforço de elementos de concreto tem

aumentado significativamente no cenário nacional e mesmo internacional, pois esta utilização

melhora em muito as propriedades do material resultante, reduzindo sua fragilidade

característica perante esforços de tração.

Embora muito se conheça a respeito do comportamento de concretos reforçados com fibras

sob solicitações uniaxiais, é sempre desejável que se possa prever adequadamente um

comportamento mais amplo dos elementos feitos com tais materiais. Sendo assim, uma das

soluções práticas para este tipo de questão seria a realização de ensaios sob solicitações

biaxiais. No entanto, este tipo de análise se torna inviável em muitos casos, devido à falta de

equipamentos adequados para sua realização.

Assim, buscando-se colaborar com um melhor conhecimento dos concretos reforçados com

fibras, o presente trabalho procurou desenvolver aparatos de ensaio de baixo custo capazes de

solicitar corpos-de-prova em duas direções ortogonais. O comportamento do concreto

reforçado com frações volumétricas de 0,5%, 1,0% e 1,5% de fibra foi, desta forma, avaliado

a partir das seguintes proporções entre as tensões principais: $\sigma_2/\sigma_1 = 0/-1$; $\sigma_2/\sigma_1 = -0.2/-1$;

 $\sigma_2/\sigma_1 = -0.5/-1$; $\sigma_2/\sigma_1 = -1/-1$. A partir das informações de resistência última e das

deformações específicas obtidas nos ensaios, foi possível traçar as curvas de ruptura e analisar

os padrões de ruptura do concreto reforçado com fibras de aço.

Como esperado, os resultados obtidos nos ensaios mostraram que, sob estados de tensões

biaxiais, ocorreu um aumento da resistência última e da rigidez do concreto para todas as

relações de tensão analisadas ($\sigma_2/\sigma_1 = 0/-1$; $\sigma_2/\sigma_1 = -0.2/-1$; $\sigma_2/\sigma_1 = -0.5/-1$; $\sigma_2/\sigma_1 = -1/-1$). O

aumento da resistência última em compressão biaxial, quando comparado ao concreto sob

compressão uniaxial, foi de aproximadamente 20% para o concreto simples e, devido à adição

de fibra, foi de aproximadamente 95% para uma relação de tensão igual a $\sigma_2/\sigma_1 = -0.5/-1$.

Palavras-chave: concreto reforçado com fibra de aço; ensaios

multiaxiais; curvas de ruptura.

Abstract

PERES, M.V.N.N. Low Cost Apparatuses for Biaxial Tests on Steel Fiber Reinforced Concretes. 2008. Dissertação (Mestrado em Engenharia Civil) – Programa de Pós-Graduação em Engenharia Civil, UFRGS, Porto Alegre.

In the last decades, the use of steel fibers to reinforce concrete elements has been significantly increased in the national scenario and even internationally, since its usage considerably improves the resulting material's properties, reducing its characteristic fragility under tension.

Although much is already known about the behavior of fiber reinforced concretes under uniaxial forces, a better understanding of the behavior of elements made of such materials is always desired. Therefore, a practical solution for this kind of problem would be to undertake biaxial tests. Nevertheless, this type of analysis sometimes turns out to be unviable because of the lack of adequate equipment for its realization.

In this way, in an attempt to contribute with a better understanding of the fiber reinforced concretes, the present work tried to develop low-cost apparatuses capable of orthogonally loading specimens in two directions. The behavior of concrete reinforced with fiber volumetric fractions of 0.5%, 1.0%, and 1.5% was, therefore, evaluated under the following principal stresses' proportions: $\sigma_2/\sigma_1 = 0/-1$; $\sigma_2/\sigma_1 = -0.2/-1$; $\sigma_2/\sigma_1 = -0.5/-1$; $\sigma_2/\sigma_1 = -1/-1$. From the ultimate strength values and from the obtained strains in the carried out tests, the rupture curves were possible to be plot, and the rupture modes and patterns of the fiber reinforced concretes were possible to be analyzed.

As expected, the obtained results in the tests showed that, under biaxial stress states, an increase in ultimate strengths and stiffness of concretes for all the stress relations analyzed occurred ($\sigma_2/\sigma_1 = 0/-1$; $\sigma_2/\sigma_1 = -0.2/-1$; $\sigma_2/\sigma_1 = -0.5/-1$; $\sigma_2/\sigma_1 = -1/-1$). The increase in the ultimate strength in biaxial compression, when compared with concrete under uniaxial compression, was of about 20% for plain concrete and, due to the addition of fibers, about 95% for a stress relation equals to $\sigma_2/\sigma_1 = -0.5/-1$.

Keywords: Steel fiber reinforced concrete; multiaxial tests; rupture curves.

Sumário

Capítulo 1	
Introdução	
1.1 Generalidades	
1.2 Relevância do Tema	
1.3 Objetivos	
1.3.1 Objetivo Principal	
1.3.2 Objetivos Secundários	
1.4 Estrutura do Trabalho	ı
Capítulo 2	
Comportamento Mecânico do Concreto	
2.1 Considerações Iniciais	
2.2 Ensaios Biaxiais em Concreto	
2.3 Possibilidades de Equipamentos para Realização dos Ensaios Biaxiais	
2.4 Considerações e Resultados Obtidos na Literatura	
2.4.1 Resistência à Compressão e à Tração Biaxial	
2.4.2 Comportamento Tensão-deformação	
2.4.3 Padrões de Ruptura	
Capítulo 3	1
Influência da Adição de Fibras nas Propriedades Mecânicas do Concreto	
3.1 Considerações Iniciais	
3.2 Fibras de Aço	
3.3 Propriedades do Concreto Modificadas com a Adição de Fibras de Aço	
3.3.1 Resistência à Compressão	
3 3 2 Resistência à Tração	

Capítulo 4	•••••
Programa Experimental	•••••
4.1 Considerações Iniciais	
4.2 Equipamentos de Teste	
4.2.1 Aparato de ensaio APE-01: Método 01	
4.2.2 Aparato de ensaio APE-02: Método 02	
4.2.3 Instrumentação	
4.3 Materiais	
4.3.1 Cimento	
4.3.2 Agregados	
4.3.3 Fibra	
4.3.4 Concreto	
4.4 Ensaios	
4.4.1 Compressão Simples	
4.4.2 Compressão Biaxial	
Resultados Experimentais e Análises5.1 Generalidades5.2 Resultados e Análises5.2 Resultados e Análises	
Capítulo 6	
Conclusões e Sugestões	
6.1 Considerações Iniciais	
6.2 Conclusões	
6.3 Sugestões	
or Discources	
Referências Bibliográficas	•••••
Apêndice A	
Resultados dos Ensaios Uniaxiais e Biaxiais	
A.1 Compressão uniaxial (σ ₂ /σ ₁ =0/-1)	

A.2 Compressão biaxial (σ ₂ /σ ₁ =-1/-1) - APE-01	92
A.3 Compressão biaxial (σ ₂ /σ ₁ =-0,2/-1) - APE-02	99
A.4 Compressão biaxial (σ_2/σ_1 =-0,5/-1) - APE-02	107
A.5 Compressão biaxial (σ₂/σ₁=-1/-1) - APE-02	114
Apêndice B	122
Gráficos tensão – deformação	122
B.1 Compressão uniaxial ($\sigma_2/\sigma_1=0/-1$)	123
B.2 Compressão biaxial (σ ₂ /σ ₁ =-1/-1) - APE-01	125
B.3 Compressão biaxial (σ ₂ /σ ₁ =-0,2/-1) - APE-02	127
B.4 Compressão biaxial (σ ₂ /σ ₁ =-0,5/-1) - APE-02	129
B.5 Compressão biaxial (σ ₂ /σ ₁ =-1/-1) - APE-02	131

Lista de Figuras

C	. 14	1_	1
Cap	uu	w	4

Figura 2.1: Esquema de uma placa de aço tipo escova	
Figura 2.2: Resultados experimentais utilizando diferentes métodos de redução do atrito	
Figura 2.3: Resistência biaxial do concreto (adaptado de Kupfer et al.,1969)	1
Figura 2.4: Esquemas tradicionais para a condução de ensaios biaxiais	1
Figura 2.5: Equipamento para ensaio biaxial em corpos-de-prova prismáticos (adaptado de Senthival e Uzoegbo, 2004)	12
Figura 2.6: Equipamento para ensaio biaxial em corpos-de-prova prismáticos (adaptado de Swaddiwadhipong e Seow, 2006)	13
Figura 2.7: Equipamento para ensaios biaxiais para uso em uma prensa hidráulica (adaptado de Yin et al., 1989)	1.
Figura 2.8: Curvas de ruptura para um concreto simples, com fibra e de alta resistência	1
Figura 2.9: Proposta de curva de ruptura para concreto sob carregamento biaxial	1:
Figura 2.10: Relações tensão-deformação obtidas tipicamente para as duas direções principais em ensaios biaxiais (adaptado de Yin <i>et al.</i> , 1989)	1
Figura 2.11: Modos de ruptura em ensaios biaxiais (adaptado de Kupfer et al., 1969)	1
Capítulo 3	
Figura 3.1: Formas e seções de alguns tipos de fibras de aço (adaptado de Lobão, 2005)	2
Figura 3.2: Definição do fator de forma de uma fibra	2
Figura 3.3: Curva tensão-deformação para concreto com e sem adição de fibras (adaptado de Bentur e Mindess,1990)	2
Figura 3.4: Mecanismo de atuação das fibras (adaptado de Nunes et al., 1997 apud Nunes 2006)	2

Figura 3.5: Influência do teor de fibras na curva tensão-deformação na compressão uniaxial simples (adaptado de ACI 544.4R-88, 2004)
Capítulo 4
Figura 4.1: Aparato de ensaio número 1(APE-01) usado no Método 01
Figura 4.2: Aparato de ensaio APE-01
Figura 4.3: Curva de ruptura determinada a partir do APE-01 e ensaio complementar (Método 01)
Figura 4.4: Detalhamento das peças para montagem do APE-01.
Figura 4.5: Detalhamento do APE-01
Figura 4.6: Verificação do desempenho do equipamento
Figura 4.7: Comportamento do equipamento sob carregamento biaxial
Figura 4.8: Comportamento do equipamento sob carregamento biaxial
Figura 4.9: Comportamento do equipamento sob carregamento biaxial
Figura 4.10: Distribuição de tensões na direção da tensão principal σ_1
Figura 4.11: Distribuição de tensões na direção da tensão σ_2
Figura 4.12: Aparato de ensaio número 2 (APE-02) usado no Método 02
Figura 4.13: Aparato de ensaio APE-02
Figura 4.14: Curva de ruptura determinada a partir do APE-02 e ensaios complementares (Método 02)
Figura 4.15: Detalhamento das peças para montagem do APE-02
Figura 4.16: Detalhamento do APE-02
Figura 4.17: Lâminas de teflon utilizadas nos ensaios
Figura 4.18: Sensor de efeito hall posicionado em corpo-de-prova de concreto
Figura 4.19: Transdutor de deformações específicas utilizando um sensor de efeito hall
Figura 4.20: Sistema de aquisição de dados por computador SYSTEM 5000
Figura 4.21: Detalhes da fibra de aço utilizada no programa experimental

	_
Figura 4.22: Fibras de aço utilizadas no programa experimental	45
Figura 4.23: Fôrmas utilizadas para moldagem dos corpos-de-prova	47
Figura 4.24: Corpos-de-prova de concreto	48
Figura 4.25: Ensaio de compressão simples	49
Figura 4.26: Instrumentação para obtenção do módulo de elasticidade	49
Figura 4.27: Ensaio de compressão biaxial APE – 01, para uma relação de tensão σ_2/σ_1 =-1/-1	50
<i>Figura 4.28</i> : Ensaio de compressão biaxial APE – 02, posicionado para σ_2/σ_1 =-0,2/-1	51
<i>Figura 4.29</i> : Ensaio de compressão biaxial APE – 02, posicionado para σ_2/σ_1 =-0,5/-1	51
Figura 4.30: Ensaio de compressão biaxial APE – 02, posicionado para σ_2/σ_1 =-1/-1	52
Capítulo 5	
Figura 5.1: Curvas de ruptura para concretos simples e reforçados com fibras de aço (Método 02)	57
Figura 5.2: Curvas de ruptura para concretos simples e reforçados com fibras de aço (Método 01)	59
Figura 5.3: Curvas de ruptura obtidas a partir dos Métodos 01 e 02	60
Figura 5.4: Curvas de ruptura para o concreto simples (comparação com os resultados de Voyiadjis e Abulebdeh, 1993)	61
Figura 5.5: Curvas de ruptura para os concretos simples e reforçados com fibras de aço (comparação com os resultados de Traina e Mansour, 1991)	63
Figura 5.6: Relação tensão-deformação do concreto simples sob compressão biaxial	6:
Figura 5.7: Relação tensão-deformação do concreto reforçado com 0,5% de fibras de aço sob compressão biaxial	60
Figura 5.8: Relação tensão-deformação do concreto reforçado com 1% de fibras de aço sob compressão biaxial	66
Figura 5.9: Relação tensão-deformação do concreto reforçado com 1,5% de fibras de aço sob compressão biaxial	6
Figura 5.10: Relação tensão-deformação do concreto simples e reforçado com fibras de aço sob compressão uniaxial (f_c =28,24 MPa)	68

<i>Figura 5.11</i> : Relação tensão-deformação para concretos simples e reforçados com fibras de aço sob compressão biaxial $(\sigma_2/\sigma_1 = -1/-1)$ – APE-02 $(f_c$ =28,24 MPa)	69
<i>Figura 5.12</i> : Relação tensão-deformação para concretos simples e reforçados com fibras de aço sob compressão biaxial $(\sigma_2/\sigma_1 = -0.5/-1)$ – APE-02 $(f_c$ =28,24 MPa)	70
<i>Figura 5.13</i> : Relação tensão-deformação para concretos simples e reforçados com fibras de aço sob compressão biaxial $(\sigma_2/\sigma_1 = -0,2/-1)$ – APE-02 $(f_c$ =28,24 MPa)	70
<i>Figura 5.14</i> : Relação tensão-deformação para concretos simples e reforçados com fibras de aço sob compressão biaxial $(\sigma_2/\sigma_1 = -1/-1)$ – APE-01 $(f_c$ =28,24 MPa)	71
<i>Figura 5.15</i> : Modos de ruptura para $\sigma_2/\sigma_1 = -0.2/-1$	73
<i>Figura 5.16</i> : Modos de ruptura para $\sigma_2/\sigma_I = -0.5/-1$	73
<i>Figura 5.17</i> : Modos de ruptura para $\sigma_2/\sigma_1 = -1/-1$	74
Apêndice B	
Figura B.1.1: Percentual de fibra: $0,0\%$ ($\sigma_2/\sigma_1=0/-1$)	123
Figura B.1.2: Percentual de fibra: 0.5% ($\sigma_2/\sigma_1=0/-1$)	123
Figura B.1.3: Percentual de fibra: 1,0% (σ_2/σ_1 =0/-1)	124
Figura B.1.4: Percentual de fibra: 1,5% (σ_2/σ_1 =0/-1)	124
Figura B.2.1: Percentual de fibra: 0.0% (σ_2/σ_1 =-1/-1) – APE-01	125
Figura B.2.2: Percentual de fibra: 0.5% (σ_2/σ_1 =-1/-1) – APE-01	125
Figura B.2.3: Percentual de fibra: 1,0% (σ_2/σ_1 =-1/-1) – APE-01	126
Figura B.2.4: Percentual de fibra: 1,5% (σ_2/σ_1 =-1/-1) – APE-01	126
Figura B.3.1: Percentual de fibra: $0.0\% (\sigma_2/\sigma_1 = -0.2/-1) - APE-02$	127
Figura B.3.2: Percentual de fibra: 0,5% (σ_2/σ_1 =-0,2/-1) – APE-02	127
Figura B.3.3: Percentual de fibra: 1,0% (σ_2/σ_1 =-0,2/-1) – APE-02	128
Figura B.3.4: Percentual de fibra: 1,5% (σ_2/σ_1 =-0,2/-1) – APE-02	128
Figura B.4.1: Percentual de fibra: $0.0\% (\sigma_2/\sigma_1 = -0.5/-1) - APE-02$	129
Figura B.4.2: Percentual de fibra: 0,5% (σ_2/σ_1 =-0,5/-1) – APE-02	129
Figura B.4.3: Percentual de fibra: 1,0% (σ_2/σ_1 =-0,5/-1) – APE-02	130
<i>Figura B.4.4</i> : Percentual de fibra: 1.5% (σ_2/σ_1 =-0.5/-1) – APE-02	130

	٠	٠	
V	1	1	1

Figura B.5.1: Percentual de fibra: 0.0% (σ_2/σ_1 =-1/-1) – APE-02	131
Figura B.5.2: Percentual de fibra: 0.5% (σ_2/σ_1 =-1/-1) – APE-02	131
Figura B.5.3: Percentual de fibra: 1,0% (σ_2/σ_1 =-1/-1) – APE-02	132
<i>Figura A.5.4</i> : Percentual de fibra: 1,5% (σ_2/σ_1 =-1/-1) – APE-02	132

Lista de Tabelas

Capitulo 4	
Tabela 4.1: Características das fibras	4
Tabela 4.2: Composição do concreto utilizado no programa experimental	4
Capítulo 5	
Tabela 5.1: Resultados do ensaio de compressão simples	5
<i>Tabela 5.2</i> : Resultados do ensaio de compressão biaxial com o APE-02 para uma relação de tensão σ_2/σ_1 =-1/-1	5
<i>Tabela 5.3</i> : Resultados do ensaio de compressão biaxial com o APE-02 para uma relação de tensão σ_2/σ_1 =-0,5/-1	5
<i>Tabela 5.4</i> : Resultados do ensaio de compressão biaxial com o APE-02 para uma relação de tensão σ_2/σ_1 =-0,2/-1	5
<i>Tabela 5.5</i> : Resultados do ensaio de compressão biaxial com o APE-01 para uma relação de tensão σ_2/σ_1 =-1/-1	5
Tabela 5.6: Resultados dos ensaios biaxiais de Voyiadjis e Abulebdeh (1993) e os obtidos nesta pesquisa	6
Tabela 5.7: Resultados dos ensaios biaxiais de Traina e Mansour (1991) e os obtidos nesta pesquisa	6
Tabela 5.8: Deformações específicas últimas (‰)	6
Apêndice A	
Tabela A.1.1: Percentual de fibra: $0,0\%$ ($\sigma_2/\sigma_1=0/-1$)	8
<i>Tabela A.1.2</i> : Percentual de fibra: 0.5% ($\sigma_2/\sigma_1=0/-1$)	8
Tabela A.1.3: Percentual de fibra: 1,0% (σ_2/σ_1 =0/-1)	8
<i>Tabela A.1.4</i> : Percentual de fibra: 1,5% (σ_2/σ_1 =0/-1)	9
<i>Tabela A.2.1</i> : Percentual de fibra: 0,0% (σ_2/σ_1 =-1/-1) – APE-01	9

<i>Tabela A.2.2</i> : Percentual de fibra: 0,5% (σ_2/σ_1 =-1/-1) – APE-01	94
<i>Tabela A.2.3</i> : Percentual de fibra: 1,0% (σ_2/σ_1 =-1/-1) – APE-01	96
<i>Tabela A.2.4</i> : Percentual de fibra: 1,5% (σ_2/σ_1 =-1/-1) – APE-01	97
<i>Tabela A.3.1</i> : Percentual de fibra: 0.0% (σ_2/σ_1 =-0.2/-1) – APE-02	99
<i>Tabela A.3.2</i> : Percentual de fibra: 0.5% (σ_2/σ_1 =-0.2/-1) – APE-02	101
<i>Tabela A.3.3</i> : Percentual de fibra: 1,0% (σ_2/σ_1 =-0,2/-1) – APE-02	103
<i>Tabela A.3.4</i> : Percentual de fibra: 1,5% (σ_2/σ_1 =-0,2/-1) – APE-02	105
<i>Tabela A.4.1</i> : Percentual de fibra: $0,0\%$ (σ_2/σ_1 =-0,5/-1) – APE-02	107
<i>Tabela A.4.2</i> : Percentual de fibra: 0.5% (σ_2/σ_1 =- $0.5/-1$) – APE-02	109
<i>Tabela A.4.3</i> : Percentual de fibra: 1,0% (σ_2/σ_1 =-0,5/-1) – APE-02	111
<i>Tabela A.4.4</i> : Percentual de fibra: 1,5% (σ_2/σ_1 =-0,5/-1) – APE-02	113
Tabela A.5.1: Percentual de fibra: $0,0\%$ (σ_2/σ_1 =-1/-1) – APE-02	114
Tabela A.5.2: Percentual de fibra: 0.5% (σ_2/σ_1 =-1/-1) – APE-02	116
Tabela A.5.3: Percentual de fibra: 1,0% (σ_2/σ_1 =-1/-1) – APE-02	118
<i>Tabela A.5.4</i> : Percentual de fibra: 1,5% (σ_2/σ_1 =-1/-1) – APE-02	120

Lista de Siglas

ABNT: Associação Brasileira de Normas Técnicas

ACI: American Concrete Institute

APE: Aparato de Ensaio

ASCE: American Society of Civil Engineers

CS: Concreto Simples

FA05: Concreto Reforçado com Fibra de Aço com Percentagem em Volume de Fibra de 0,5%

FA10: Concreto Reforçado com Fibra de Aço com Percentagem em Volume de Fibra de 1,0%

FA15: Concreto Reforçado com Fibra de Aço com Percentagem em Volume de Fibra de 1,5%

IBRACON: Instituto Brasileiro do Concreto

LEME: Laboratório de Ensaios e Modelos Estruturais

LVDT: Linear Variable Differential Transformer

PPGEC: Programa de Pós Graduação em Engenharia Civil

UFRGS: Universidade Federal do Rio Grande do Sul

Lista de Símbolos

Letras Romanas Maiúsculas

E: módulo de elasticidade

L: comprimento das fibras

P₁, P₂, P₃: carga aplicada no equipamento

Letras Romanas Minúsculas

d: diâmetro das fibras

 f_c : resistência à compressão uniaxial para concreto simples

Letras Gregas Minúsculas

α: ângulo entre a carga aplicada e o centro do pino

ε: deformação específica

ε_{1u}: deformação específica última na direção 1

 ϵ_{2u} : deformação específica última na direção 2

ε_{compressão}: deformação específica de compressão

 $\varepsilon_{tração}$: deformação específica de tração

μ: sufixo de deformações específicas (10⁻⁶)

 σ_1 : tensão principal

 σ_2 : tensão de confinamento

 f_{tf} : resistência a tração da fibra de aço

Capítulo 1

Introdução

1.1 Generalidades

O desenvolvimento tecnológico e a geração de novos materiais das últimas décadas até os dias de hoje tem influenciado intensamente a dinâmica do crescimento das cidades, evidenciando novas técnicas de construção, manutenção e modificação de estruturas em geral (Resende, 2003).

O concreto é um material com sua utilização difundida no setor da construção civil e as alternativas que visam melhorar as propriedades físicas e mecânicas dos concretos são objetivos de constantes pesquisas. Dentre estas pesquisas, destacam-se as adições de fibras de aço, vidro, sintéticas e naturais.

A escolha do tipo de fibra depende das características desejadas no concreto. Segundo Holanda e Pinheiro (2001), as fibras que possuem módulo de elasticidade menor (fibras de polipropileno e polietileno) absorvem grandes energias, proporcionando forte resistência ao impacto e tenacidade. Porém, não contribuem muito para o aumento da resistência do concreto. Já as fibras com elevado módulo de elasticidade (aço, vidro, carbono) podem produzir concretos com elevada resistência à tração, rigidez e absorção de cargas dinâmicas.

A idéia de se reforçar, com materiais fibrosos, elementos resistentes, porém frágeis, na tentativa de melhorar as propriedades do compósito, tende a proporcionar mudanças com relação ao desempenho das estruturas. Esta tendência se verificaria porque a adição de fibras no concreto proporciona uma mudança no seu comportamento frágil de forma a se obter um material com maior resistência à tração e à flexão, tenacidade e ductilidade pelo retardamento da propagação das fissuras através da matriz cimentícia (Flores, 2003 e Lobão, 2005). No entanto, é importante destacar que esses possíveis comportamentos e variações nas propriedades, modificadas a partir da adição de fibras, dependem muito do volume de fibra adicionado, das características mecânicas e também da geometria das fibras presente no concreto.

Estudos relacionados a concretos com fibras vêm se intensificando cada vez mais, pois as melhorias nas características do concreto são bastante significativas. As fibras inibem a propagação de fissuras, atuando como obstáculos ao interceptarem as microfissuras que surgem durante o endurecimento da pasta, impedem sua progressão e evitam o aparecimento prematuro das macrofissuras. No concreto endurecido, elas também limitam o comprimento e a abertura das fissuras e diminuem a permeabilidade do concreto na região exposta ao ambiente, melhorando a durabilidade (Bentur e Mindess, 1990).

As propriedades mecânicas do concreto são convencionalmente determinadas a partir de ensaios uniaxiais de tração e compressão. Sendo assim, a aplicação de tais resultados em elementos estruturais sujeitos a estados de tensões multiaxiais, o que é um caso comum, resulta, portanto, numa incoerência (Rosenthal e Glucklich, 1970). Desta forma, sendo que, neste tipo de ensaio, só é possível a determinação do comportamento do material numa única direção, surge à necessidade de se conduzir ensaios biaxiais ou ainda triaxiais para se definir adequadamente o comportamento na ruptura do material nas condições reais em que serão exigidas. Desta forma, estudos do comportamento do concreto sob estados de tensões multiaxiais são essenciais para o desenvolvimento de um critério de falha universal para o concreto, o que seria importante no projeto de vários tipos de estruturas, tais como cascas, lajes e estruturas de contenção (Chern et al., 1992).

Observou-se que, no Brasil, dados experimentais de ensaios multiaxiais não têm sido realizados. No entanto, pesquisas focadas em ensaios uniaxiais em concreto com fibras de aço são desenvolvidas em grande escala, visando à melhoria de propriedades mecânicas. Dentre estas pesquisas, são encontrados estudos recentes como, por exemplo, relacionados à utilização de metodologia de dosagem do concreto reforçado com fibras de aço para pavimentos (Figueiredo, 2006), concreto com agregados graúdos reciclados reforçados com fibras de aço (Figueiredo e Pietra, 2006), ou ainda relacionados à verificação da validade de modelos teóricos para a estimativa do comportamento pós-fissuração do concreto reforçado com fibras de aço (Gava, 2006). Além de trabalhos de cunho puramente experimental, também há uma grande contribuição com relação à modelagem numérica de elementos constituídos de concretos reforçados com fibras de aço (Grossi, 2006).

No programa de pós-graduação do PPGEC/UFRGS, por exemplo, algumas pesquisas utilizando fibras de aço na composição de concretos, também foram desenvolvidas nos últimos anos. Dentre algumas destas pesquisas, destaca-se uma análise teórico-experimental do comportamento de concretos reforçados com fibras de aço quando submetidos a cargas de impacto (Garcez, 2005), existindo ainda, contribuições com relação a trabalhos puramente numéricos como, por exemplo, o desenvolvido por Garcez *et al.* (2006), simulando numericamente o comportamento do concreto reforçado com fibras de aço em placas submetidas a cargas de impacto, ou ainda, analisando o comportamento de estruturas de concreto reforçado com fibras de aço (Pasa, 2007), com o intuito de realizar uma análise mais profunda do material.

Sendo assim, na tentativa de contribuir com resultados que possam ser utilizados como referência em trabalhos futuros, a motivação desta pesquisa se deve, principalmente, à necessidade de se obter resultados capazes de representar o comportamento do concreto na ruptura sob estados biaxiais de tensão. No entanto, nem sempre é possível a realização desses experimentos, uma vez que isto pode implicar numa demanda de recursos técnicos e financeiros relativamente altos. Com isso, tornam-se importantes formas de se reproduzir resultados experimentais com técnicas de custos mais baixos, de maior simplicidade e rapidez

na análise estrutural. Nesse sentido, a elaboração de aparatos de ensaios utilizando recursos simples passa a ser uma alternativa viabilizadora para a realização e popularização deste tipo de ensaio, sem que a confiabilidade e qualidade dos resultados venham a ser comprometidos.

1.2 Relevância do Tema

Os ensaios multiaxiais tendem a demandar um esforço de laboratório bastante grande, sendo relativamente complicados e caros. No entanto, os resultados obtidos em tais ensaios são muito importantes para a definição do comportamento constitutivo dos materiais, o que ainda é bastante incipiente no caso dos concretos reforçados com fibras. Procura-se, desta forma, contribuir com a determinação do comportamento mecânico deste tipo de material, sugerindo, para tanto, alternativas de baixo custo para equipar os laboratórios para tais ensaios.

1.3 Objetivos

1.3.1 Objetivo Principal

Desenvolver duas alternativas de aparatos de ensaio que sejam capazes de solicitar, em duas direções ortogonais, e mantendo a proporção entre estas solicitações ao longo dos ensaios, de forma a manter um estado de tensões biaxiais uniforme, utilizando-se, para isto, do uso de apenas uma única prensa hidráulica comum, equipamento normalmente presente nos laboratórios de concreto

1.3.2 Objetivos Secundários

Contribuir, particularmente, para a capacitação do Laboratório de Ensaios e Modelos Estruturais (LEME), deste Programa de Pós-Graduação, para a execução de ensaios biaxiais, propondo soluções simples e que possam também ser adotadas pelos laboratórios de pesquisa em geral para este tipo de ensaio;

- Realizar ensaios de compressão em concreto para várias relações de tensão ($\sigma_2/\sigma_1 = 0/-1$; $\sigma_2/\sigma_1 = -0,2/-1$; $\sigma_2/\sigma_1 = -0,5/-1$ e $\sigma_2/\sigma_1 = -1/-1$), utilizando, na composição dos corpos-de-prova, diferentes proporções de fibra de aço em volume (0%; 0,5%; 1% e 1,5%);
- Definir e analisar as curvas de ruptura resultantes para os concretos reforçados com fibras de aço testados para esta pesquisa, confrontando tais curvas com àquelas que puderam ser obtidas na literatura.

1.4 Estrutura do Trabalho

Para atingir os objetivos descritos no item anterior, este trabalho se encontra organizado em diferentes capítulos e apêndices, conforme descrito a seguir.

O *Capítulo 2* está constituído de uma revisão bibliográfica abordando aspectos relacionados a ensaios biaxiais em concreto realizados nas últimas décadas. Ainda, são apresentados tipos de concretos estudados e equipamentos utilizados para a realização destes ensaios.

O *Capítulo 3* mostra aspectos relativos às características das fibras de aço, sua utilização como reforço e influência nas propriedades mecânicas do concreto. Também são apresentados o comportamento mecânico e as propriedades do concreto modificadas pela adição de fibras.

O programa experimental encontra-se exposto no *Capítulo 4*, onde são descritos os materiais utilizados, equipamentos e procedimentos dos ensaios empregados para se avaliar o desempenho do concreto simples e do concreto com algumas proporções de fibra sob estados de tensões biaxiais. Especificamente, foram desenvolvidos dois aparatos de ensaios, um mais simplificado e intuitivo, formado apenas por duas placas de aço com encaixes para os corposde-prova a serem utilizados apenas em ensaios com proporções de tensões iguais, e outro, um pouco mais elaborado, formado por dois arcos de aço que distribuem as tensões em proporções diversas. Ensaios uniaxiais de compressão e de tração complementaram os ensaios

biaxiais realizados. Além dos aparatos de aplicação de tensões nos corpos-de-prova, testou-se, também, um dispositivo de medição de deformações específicas baseado no efeito hall, tentando-se, com isto, ampliarem-se as possibilidades de medida de deformações específicas a serem empregadas nos laboratórios.

No *Capítulo 5* são apresentados e analisados os resultados obtidos nos ensaios descritos no capítulo anterior. Também são apresentados resultados experimentais de alguns pesquisadores, com o intuito de fazer um comparativo com os resultados obtidos nesta pesquisa.

No *Capítulo 6* encerra-se este trabalho mediante a apresentação dos objetivos alcançados, apresentando as principais conclusões e considerações finais desta pesquisa, e complementando-se o trabalho com algumas sugestões para possíveis trabalhos a serem ainda desenvolvidos sobre o tema estudado.

No *Apêndice A* são apresentados os resultados obtidos nos ensaios uniaxiais e biaxiais executados durante o programa experimental desenvolvido e, finalmente, no *Apêndice B*, são apresentados os diagramas tensão-deformação obtidos para os tipos de concreto estudados durante o programa experimental desenvolvido.

Capítulo 2

Comportamento Mecânico do Concreto

2.1 Considerações Iniciais

Neste capítulo, são abordadas algumas características do comportamento mecânico do concreto sob estados de tensões biaxiais, quando submetido a um carregamento estático.

Inicialmente, descrevem-se os ensaios biaxiais em concreto. Em seguida, apresentam-se as possibilidades de equipamentos utilizados na realização dos ensaios e, por fim, resultados e principais conclusões obtidas na literatura são também apresentados.

2.2 Ensaios Biaxiais em Concreto

Durante décadas, foram desenvolvidos vários estudos relacionados ao comportamento do concreto submetido a estados de tensões biaxiais. Esses estudos abrangeram desde o concreto simples (Wastlund, 1937 *apud* Kupfer *et al.*, 1969; Glomb, 1958 *apud* Kupfer *et al.*, 1969; Weigler e Becker, 1963 *apud* Kupfer *et al.*, 1969; Kupfer *et al.*, 1969; Atan e Slate, 1973; Wang *et al.*, 1987; Lu *et al.*, 2007), concreto reforçado com fibras de aço (Yin *et al.*, 1989; Traina e Mansour, 1991; Swaddiwudhipong e Seow, 2006), até o concreto de alta resistência (Hussein e Marzouk, 2000). No entanto, um dos principais problemas na condução deste tipo de teste é o desenvolvimento de um estado de tensões biaxial uniforme e bem definido nos corpos-de-prova (Kupfer *et al.*, 1969).

Muitos dos resultados apresentados pelos diversos pesquisadores, interessantemente, divergem consideravelmente um do outro, sendo que tais divergências foram apontadas por Hilsdorf (1965) como sendo devidas ao atrito existente entre os corpos-de-prova e as superfícies de contato no equipamento de teste, ocasionando um maior confinamento e superestimando a resistência do concreto. Ou seja, como apontado por Kupfer *et al.* (1969), se a carga é aplicada através de placas rígidas, como nas máquinas de ensaios comuns, a restrição às deformações laterais introduzidas pelas placas produz um incremento aparente da resistência.

Diante dessas constatações, diferentes alternativas para a redução do atrito na interface entre o corpo-de-prova de concreto e o equipamento de ensaio foram estudadas, como, por exemplo, lâminas de aço e lâminas de resina com camada de óleo (Wang *et al.*, 1987), lâminas de polietileno com camada óleo (Traina e Mansour, 1991), lâminas de teflon (Voyiadjis e Abulebdeh, 1993), e placas de aço tipo escova, que foram utilizadas por Kupfer *et al.* (1969), Atan e Slate (1973) Yin *et al.* (1989), Hussein e Marzouk (2000), e Swaddiwudhipong e Seow (2006).

Das várias alternativas utilizadas para reduzir o atrito existente entre o corpo-de-prova e o equipamento de teste, as placas de aço tipo escova, foi um dos primeiros métodos utilizados com sucesso na redução do atrito entre o equipamento de teste e os corpos-de-prova. Essas placas se constituem em múltiplos prismas esbeltos (Figura 2.1), que são flexíveis o suficiente para permitir que o concreto se deforme transversalmente na região de contato, sem que os prismas venham a romper por flambagem ou escoamento.

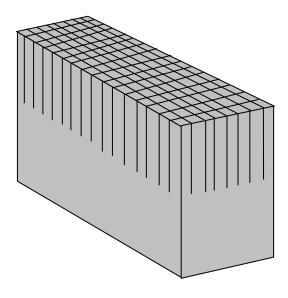


Figura 2.1: Esquema de uma placa de aço tipo escova.

Alguns dos resultados encontrados na literatura para diferentes métodos de redução do atrito estão apresentados na Figura 2.2. As três opções, placa de aço tipo escova, lâmina de polietileno e lâmina de teflon, conduzem a resultados que seriam considerados como aceitáveis, sendo que a utilização das lâminas tem sido uma prática mais moderna e que simplifica os procedimentos experimentais.

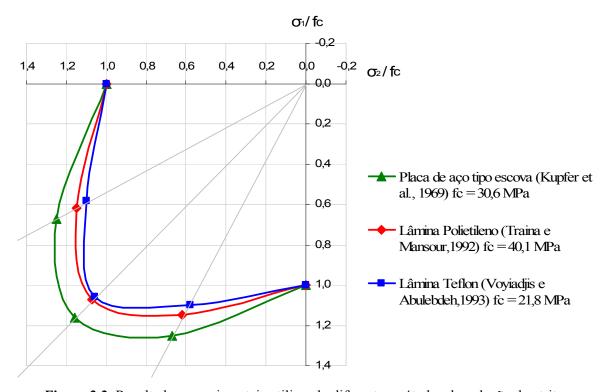


Figura 2.2: Resultados experimentais utilizando diferentes métodos de redução do atrito.

Em função das variações nos resultados obtidos nas diversas pesquisas com relação às resistências e deformações específicas últimas do concreto sob carregamento biaxial, Traina e Mansour (1991) observaram que esses resultados não estão somente ligados ao atrito entre o equipamento e o corpo-de-prova, mas vários fatores podem também contribuir para o problema, tais como, no caso de concreto com fibras, o tipo de fibra, moldagem, volume de fibra, mistura de projeto e, mais genericamente, forma e tamanho do corpo-de-prova, idade e equipamento de teste.

Na Figura 2.3, vê-se o resultado de ensaios sob estados de tensões biaxiais, mostrando a influência da compressão lateral sobre a resistência. Foram também determinadas às tensões correspondentes ao limite elástico, inflexão da deformação volumétrica e a máxima deformação volumétrica.

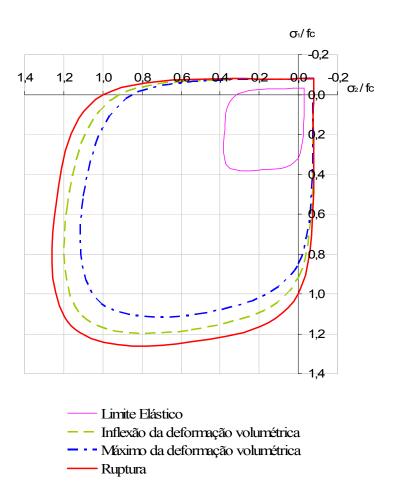


Figura 2.3: Resistência biaxial do concreto (adaptado de Kupfer et al., 1969).

2.3 Possibilidades de Equipamentos para a Realização de Ensaios Biaxiais

A realização de ensaios para a verificação do comportamento do concreto sob estados multiaxiais de tensão necessita, em princípio, de equipamentos sofisticados e, normalmente, relativamente caros para os laboratórios. O esquema de ensaio tradicional para a realização de testes biaxiais foi o equipamento utilizado, por exemplo, por Kupfer *et al.* (1969), usando pórticos de concreto protendido para cada uma das duas direções principais, onde o carregamento era aplicado biaxialmente aos corpos-de-prova nas proporções desejadas. Este esquema tradicional de ensaio foi também utilizado nos trabalhos de Wang *et al.* (1987), Hussein e Marzouk (2000), Eberhardsteiner e Helnwein (2003), Senthivel e Uzoegbo (2004), Swaddiwudhipong e Seow (2006), e Lu *et al.* (2007). Neste esquema de ensaio, pode-se submeter o corpo-de-prova a um estado de compressão biaxial, tração biaxial, e de compressão-tração, sendo ideais para se aplicar um estado de tensão biaxial a um corpo-de-prova de concreto.

Nas Figuras 2.4, 2.5 e 2.6 apresentam-se, na sequência, os esquemas tradicionais para a condução dos ensaios biaxiais em corpos-de-prova prismáticos e cilíndricos e alguns modelos de equipamentos já utilizados por pesquisadores.

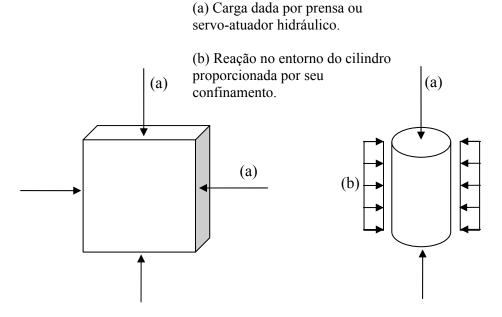
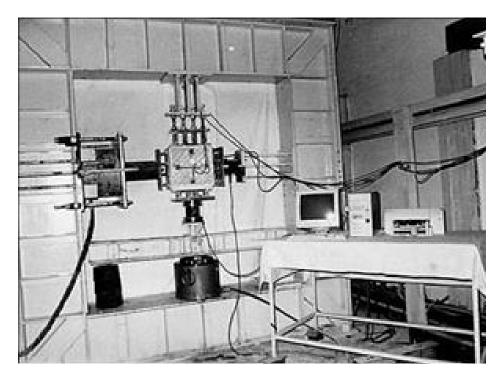
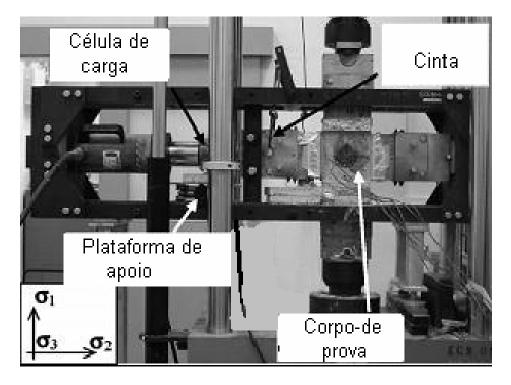




Figura 2.4: Esquemas tradicionais para a condução de ensaios biaxiais.

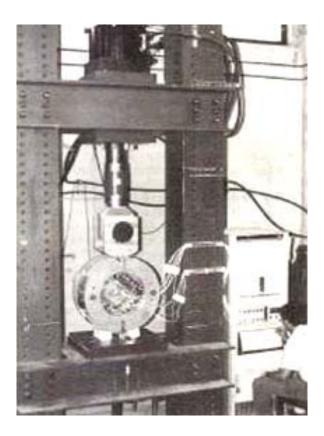


Figura 2.5: Equipamento para ensaio biaxial em corpos-de-prova prismáticos (adaptado de Senthivel e Uzoegbo, 2004).

Figura 2.6: Equipamento para ensaio biaxial em corpos-de-prova prismáticos (adaptado de Swaddiwudhipong e Seow, 2006).

Considerando as dificuldades para a realização do ensaio, Yin *et al.* (1989) criaram um engenhoso aparato para a realização de ensaios biaxiais de uma forma mais simplificada, como mostrado na Figura 2.7. A carga, neste caso, é aplicada somente por uma prensa hidráulica comum, existente em qualquer laboratório para ensaios uniaxiais. A carga, passando por um mecanismo de bifurcação de cargas, transforma a carga uniaxial em duas cargas perpendiculares às faces do corpo-de-prova, sempre na proporção desejada. Maiores detalhes sobre este equipamento são dados mais adiante, no capítulo 4 deste trabalho.

Figura 2.7: Equipamento para ensaios biaxiais para uso em uma prensa hidráulica (adaptado de Yin *et al.*, 1989).

2.4 Considerações e Resultados Obtidos na Literatura

Com a finalidade de se apresentar o comportamento do concreto sob estados biaxiais de tensão, são feitas, a seguir, algumas considerações sobre os resultados de ensaios realizados por alguns pesquisadores.

2.4.1 Resistência à compressão e à tração biaxial

A fim de se determinar algumas propriedades mecânicas do concreto sob estados biaxiais de tensão, Kupfer *et al.* (1969), Yin *et al.* (1989), Hussein e Marzouk (2000), utilizaram corposde-prova de concreto prismáticos sujeitos a tensões biaxiais nas regiões de compressão-compressão, compressão-tração e tração-tração. Os ensaios biaxiais foram realizados para várias relações de tensão ($\sigma_2/\sigma_1 = 0/-1$; $\sigma_2/\sigma_1 = 0/1$; $\sigma_2/\sigma_1 = -0,2$ /-1; $\sigma_2/\sigma_1 = -0,5/-1$; $\sigma_2/\sigma_1 = -1/-1$; $\sigma_2/\sigma_1 = 1/1$) e resultaram na determinação da resistência última do concreto sob carregamento biaxial, sendo possível representar esta resistência em termos de uma curva de ruptura, como mostra a Figura 2.8. Os resultados apresentados são para um concreto de resistência normal, para um concreto de alta resistência e para um concreto reforçado com fibras de aço, todos normalizados pela resistência uniaxial à compressão do concreto de resistência normal.

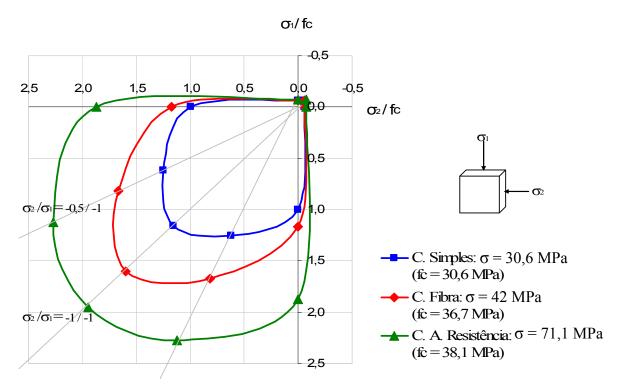


Figura 2.8: Curvas de ruptura para um concreto simples, com fibra e de alta resistência.

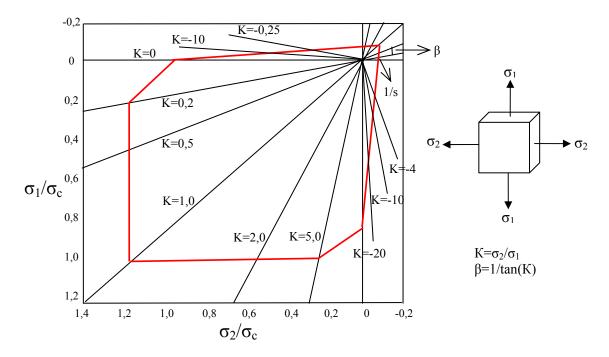
A partir dos resultados obtidos nos ensaios, pôde-se concluir que a resistência última do concreto sob compressão biaxial é significativamente maior que a resistência última sob

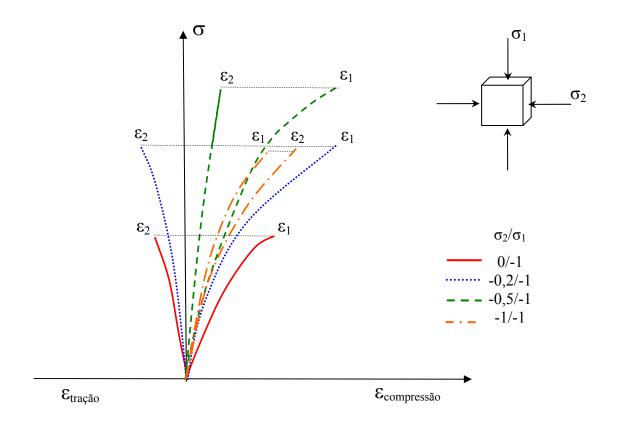
compressão uniaxial, e que isso ocorreria pelo aumento das tensões de confinamento no corpo-de-prova testado.

Outro ponto a ser considerado é que o aumento da resistência última sob compressão biaxial é dependente das relações de tensão, onde o aumento máximo da resistência ocorre quando σ_2/σ_1 está próximo de -0,5/-1 em todos os corpos-de-prova testados, podendo representar um acréscimo entorno de 25% sobre a resistência uniaxial. Ainda, em um estado de compressão biaxial, onde a relação de tensão é σ_2/σ_1 = -1/-1, a resistência representa um aumento entorno de 16%, dependendo do tipo de concreto analisado (Chen, 1982; Hussein e Marzouk, 2000).

Observou-se, também, que no caso da resistência última sob tração biaxial, esta é praticamente independente das relações de tensão e igual à resistência última sob tração uniaxial (Kupfer *et al.*, 1969).

Vale a pena que se mencione o trabalho de Tasuji *et al.* (1978), que, baseando-se em ensaios experimentais, propuseram uma curva de ruptura linearizada para o concreto de forma que fosse simplificada a caracterização do comportamento mecânico deste material (Figura 2.9).




Figura 2.9: Proposta de curva de ruptura para concreto sob carregamento biaxial.

Assim, pode-se observar que, nesta simplificação, se considera claramente o aumento da resistência à compressão para valores em torno de 20% maiores, quando se passa do estado uniaxial de tensão para um estado biaxial, nas proporções de tensões acima de 0,2 (ou seja, para $\sigma_2/\sigma_1 = -0,2/-1$).

2.4.2 Comportamento tensão-deformação

O concreto é um material do tipo frágil e o seu comportamento tensão-deformação é fortemente afetado pelo desenvolvimento de micro e macro-fissuras no seu volume, especialmente nas interfaces entre o agregado graúdo e a argamassa, mesmo antes da aplicação do carregamento. A progressão dessas fissuras, as quais são inicialmente invisíveis, ficam visíveis quando a carga externa chega a certo nível, e sempre contribuindo para um comportamento tensão-deformação fortemente não-linear do material (Chen, 1987).

As curvas típicas de tensão-deformação para cada uma das direções principais monitoradas em testes uniaxiais e biaxiais de compressão são mostradas na Figura 2.10, de acordo com os estudos experimentais realizados por Kupfer *et al.* (1969), Atan e Slate (1973), Wang *et al.* (1987), Yin *et al.* (1989), Traina e Mansour (1991), Hussein e Marzouk (2000), Swaddiwudhipong e Seow (2006), Lu *et al.* (2007).

Figura 2.10: Relações tensão-deformação obtidas tipicamente para as duas direções principais em ensaios biaxiais (adaptado de Yin *et al.*, 1989).

Pode-se observar que a tensão de confinamento, σ_2 , proporciona efeitos significativos no comportamento de deformação dos corpos-de-prova de concreto, aumentando em muito sua rigidez. Ainda, pode ser visto também que, sob carregamentos compressivos com tensões de confinamento, o concreto exibe certo grau de ductilidade antes da ruptura (Chen, 1987).

2.4.3 Padrões de ruptura

Os modos de ruptura associados aos estados de tensão biaxial são essencialmente comandados por um critério de deformação específica máxima de tração (Kupfer *et al.*, 1969; Nelissen, 1972). Assim, na literatura, foi possível a caracterização do tipo de fissuração que conduz à ruptura do material para várias relações entre as componentes de tensão, como pode ser visto na Figura 2.11.

Pôde-se notar que, em corpos-de-prova sujeitos à compressão biaxial, ocorrem algumas micro-fissuras paralelas à superfície descarregada, desenvolvendo, porém, uma fissura maior na superfície livre do corpo-de-prova com uma angulação entre 18 a 27°.

No caso de corpos-de-prova sujeitos a uma combinação de tração e compressão, esses comportam-se de forma semelhante à compressão biaxial quando a tensão de tração vale aproximadamente $^{1}/_{15}$ da tensão de compressão. Para tensões de tração um pouco maiores, essa grande fissura ocorre paralelamente à direção da tensão principal, σ_{I} .

Em trações biaxiais, sendo uma tensão o dobro da outra, foram observadas rupturas perpendiculares à maior tensão de tração. Para tensões de igual intensidade, no entanto, há a tendência de um padrão de ruptura semelhante àquele observado para compressões biaxiais com tensões de intensidades iguais.

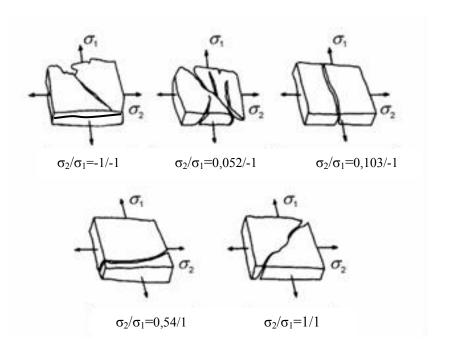


Figura 2.11: Modos de ruptura em ensaios biaxiais (adaptado de Kupfer et al., 1969).

Capítulo 3

Influência da Adição de Fibras nas Propriedades Mecânicas do Concreto

3.1 Considerações Iniciais

Apresenta-se aqui uma revisão sobre fibras de aço, bem como sobre o comportamento mecânico do concreto reforçado com fibras e algumas das propriedades do concreto que são modificadas com a adição das fibras.

3.2 Fibras de Aço

A fibra de aço é um produto caracterizado geometricamente por uma das dimensões (comprimento) que prevalece sobre as dimensões da seção transversal, apresentando superfície lisa ou corrugada e com formas retilíneas ou com ancoragens nas extremidades. Seu uso como reforço leva em consideração que deve haver uma dispersão homogênea das inúmeras unidades de fibra na massa que serve de matriz para o conjunto, sem que haja alterações nas características geométricas das fibras dispersas (Cruz, 1998).

As fibras de aço são as que possuem uma maior variedade de formas e seções. Algumas formas e seções podem ser vistas na Figura 3.1, dentre as quais, pode-se ver o tipo usado neste trabalho (a segunda da direita para a esquerda).

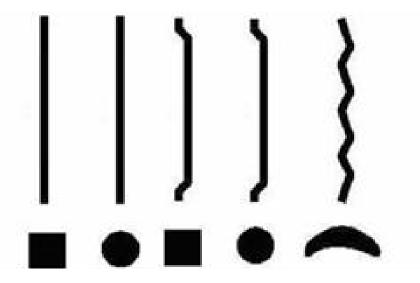
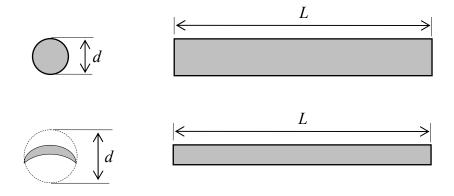
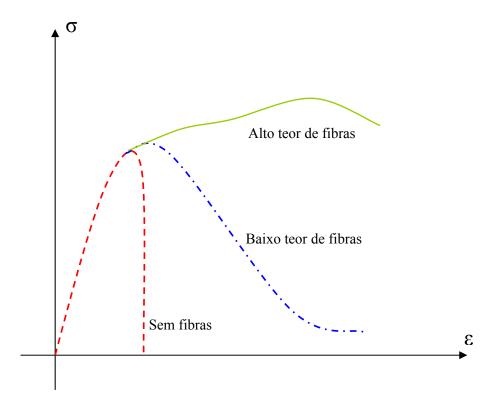



Figura 3.1: Formas e seções de alguns tipos de fibras de aço (adaptado de Lobão, 2005).

Geometricamente, a fibra é caracterizada pelo comprimento, pela sua forma ao longo do seu comprimento e pela forma e dimensões de sua seção transversal. Especificamente, um tipo de fibra é geometricamente caracterizado pela relação entre o seu comprimento e o diâmetro circunscrito à sua seção transversal, obtendo-se o fator de forma da fibra, também chamado de fator de esbeltez ou ainda de relação de aspecto da fibra. A Figura 3.2 ilustra a obtenção deste parâmetro.

Fator de forma = L/d

Figura 3.2: Definição do fator de forma de uma fibra.


Em geral, as fibras de aço possuem relação de aspecto, L/d, na faixa de 20 a 100, sendo que o comprimento varia entre 6,4 a 76 mm. As tensões máximas resistidas variam no intervalo entre 345 MPa a 2100 MPa, enquanto que as deformações específicas últimas variam entre 0,5 e 3,5% (ACI 544.1R-96, 2004).

No que se refere à influência da geometria das fibras (forma, dimensões longitudinais e transversais), o fator de forma é considerado o elemento mais importante, pois, do seu valor, dependem a ductilidade e a tenacidade do concreto reforçado com fibras, ou seja, é um índice capaz de indicar o grau de eficiência da fibra em função da sua geometria. Assim, para o mesmo volume de fibras numa mistura, o aumento do fator de forma em uma fibra de comprimento constante representa uma redução no seu diâmetro, ou seja, é menor o espaçamento entre as fibras e maior é o número de fibras atuando como ponte de transferência de tensões (Nunes, 1998).

O comprimento das fibras influencia na forma como estas interagem com a matriz, na medida em que, quanto maior for seu comprimento, maior será a área de contato e, consequentemente, melhor será a aderência. No entanto, sabe-se, também, que a aderência tende a melhorar com a diminuição do diâmetro da fibra (Evangelista, 2003).

Quando grandes volumes de fibra são incorporados ao concreto, há uma chance de prejuízos ao comportamento pós-fissuração em função dos problemas de compactação. Em conseqüência, podem ocorrer também prejuízos à resistência mecânica do concreto em vez de benefícios (Ceccato *et al.*, 1997 *apud* Nunes, 2006). Com relação a isso, Bentur e Mindess (1990) observaram que o reforço do concreto com elevado volume de fibra permite o acréscimo do desempenho mecânico do material, possibilitando o controle de micro e macrofissuração da matriz, desde que se garanta um bom adensamento e uma boa dispersão das fibras, afetando porém a trabalhabilidade do concreto. Assim, aliar-se desempenho mecânico à distribuição das fibras no concreto evidencia a importância do estudo de concretos de elevada trabalhabilidade, os chamados concretos auto-adensáveis, como matrizes para concretos reforçados com fibras de aço (Velasco *et al.*, 2005).

Na Figura 3.3, pode-se observar como a adição de fibras pode modificar o comportamento da curva tensão-deformação dos concretos, passando-se de um comportamento típico de um material frágil para o comportamento de um material com grande energia de deformação interna na medida em que se aumentam também os teores de fibra empregados.

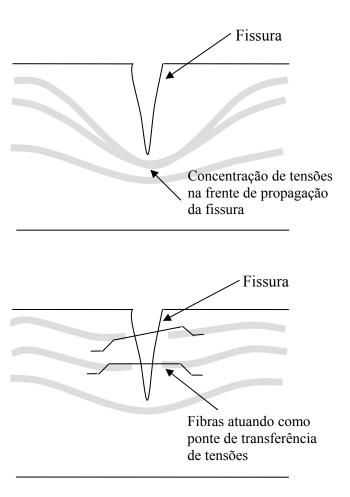


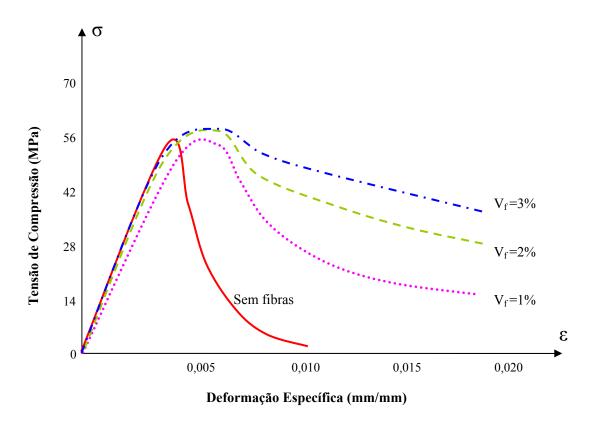
Figura 3.3: Curva tensão-deformação para concreto com e sem adição de fibras (adaptado de Bentur e Mindess, 1990).

3.3 Propriedades do Concreto Modificadas com a Adição de Fibras de Aço

A adição de fibras modifica o comportamento mecânico do concreto, promovendo melhorias em algumas propriedades do concreto endurecido (ASCE, 1994), como é o caso da resistência à tração, resistência à compressão, resistência à flexão, resistência ao cisalhamento e tenacidade. Neste item, são abordadas apenas aquelas propriedades pertinentes ao trabalho desenvolvido nesta dissertação.

Um dos principais objetivos da adição de fibras ao concreto é a obtenção de um compósito que tenha maior capacidade de absorção de energia após a fissuração da matriz, reduzindo, assim, sua fragilidade característica (Figueiredo, 2005). Portanto, quando adicionadas ao concreto, as fibras dificultam a propagação das fissuras devido ao seu elevado módulo de elasticidade, fazendo com que o concreto deixe de ter um caráter marcadamente frágil. Isto ocorre pelo fato da fibra servir como ponte de transferência de tensões através das fissuras (Figura 3.4), evitando a propagação destas e permitindo ao elemento suportar esforços mesmo quando fissurado, sendo capaz de absorver grande quantidade de energia até a ruptura total do material, o que aumenta a sua durabilidade (Bentur e Mindess, 1990).

Figura 3.4: Mecanismo de atuação das fibras (adaptado de Nunes *et al.*, 1997 *apud* Nunes, 2006).


3.3.1 Resistência à Compressão

A resistência à compressão geralmente é considerada a propriedade mais importante do concreto, pois além de oferecer uma estimativa geral da qualidade da estrutura de que faz parte, propriedades como a resistência à tração, o módulo de elasticidade longitudinal, e mesmo a aderência com as barras de aço podem, todos, serem expressos em termos da resistência à compressão (Takeuti, 1999).

A adição de fibras ao concreto, entretanto, não tem como objetivo a alteração da sua resistência à compressão, pois esta praticamente não se altera com a adição de fibras. Pode, inclusive, até haver decréscimos no valor desta propriedade devido à tendência de aumento na quantidade de água a ser adicionada para se aumentar a trabalhabilidade do concreto fresco (Lobão, 2005). A adição de fibra tem como principal objetivo modificar o comportamento frágil do concreto, aumentando a sua ductilidade.

Alguns estudos mostram que a adição de fibras de aço pode influenciar a resistência do concreto à compressão uniaxial, aumentando-a a níveis até 25% maiores para teores abaixo de 120 kg/m^3 (Balaguru, 1992 apud Nunes et al., 2006). Outro resultado esperado é que a diferença incremental de resistência à compressão decorrente do aumento nos volumes adicionados de fibras de aço é muito pequena, não mais que 4% (Yin et al., 1989). Em contrapartida, estudos realizados por Traina e Mansour (1991) indicaram que o concreto reforçado com fibras de aço pode apresentar aumento, decréscimo ou nenhuma alteração em sua resistência à compressão uniaxial, quando comparado ao mesmo concreto sem fibras, dependendo do tipo de fibra utilizada, sua relação de forma e o teor utilizado. Por exemplo, nos ensaios daqueles autores, foi observado um aumento na compressão uniaxial de até 22% para um concreto com 1,5% de adição de fibras com ancoragem em gancho nas extremidades, L/d = 60 e dimensões de L = 30 mm e d = 0,5 mm. Porém, quando outro tipo de fibra foi testado, uma fibra corrugada ao longo do seu comprimento, com L/d = 33 e dimensões de L = 25,4 mm e d = 0,76 mm, nenhum aumento significativo foi observado.

A influência do teor ou volume de fibra adicionado ao concreto pode ser observada na Figura 3.5, onde se pode notar que a resistência à compressão uniaxial do concreto não apresenta um aumento significativo com a adição de fibras. Porém, a ductilidade do concreto parece ser bastante melhorada com o aumento do teor volumétrico de fibra (Balaguru, 1992 *apud* Lobão, 2005).

Figura 3.5: Influência do teor de fibra na curva tensão-deformação na compressão uniaxial simples (adaptado de ACI 544.4R-88, 2004).

Alguns poucos estudos relacionados ao comportamento do concreto com fibras de aço sob estados biaxiais se encontram disponíveis na literatura. Porém, diante desses poucos resultados, é possível se verificar que a adição de fibras aumenta de forma significativa à resistência biaxial do concreto, quando comparados ao concreto simples.

Em estudos realizados por Yin *et al.* (1989), utilizando fibras de 25,4 mm de comprimento, foi observado um aumento de 35% nessa resistência para um volume de 2% em fibras e uma relação entre tensões principais de -0,2/-1.

Já no caso dos estudos realizados por Traina e Mansour (1991), o concreto com adição de fibras teve um aumento na resistência, quando comparado ao concreto convencional, para os dois tipos de fibra analisadas. O aumento da resistência biaxial foi de 70% para as fibras lisas com ancoragem em gancho e de 60% para as fibras corrugadas, para uma relação de tensão $\sigma_2/\sigma_1 = -0.5/-1$ e um percentual volumétrico de fibra de 1,5%.

Segundo Barros (1996), em ensaios biaxiais, a adição de fibras de aço aumenta de forma significativa à ductilidade do concreto, da mesma forma como ocorre em ensaios uniaxiais.

3.3.2 Resistência à Tração

A adição de fibras em matrizes à base de cimento produz uma melhora significativa de sua resistência à tração, que depende principalmente do volume de fibras utilizado (Lobão, 2005). Em contrapartida, de acordo com Shah *et al.* (1972, *apud* ACI 544.4R-88, 2004), a resistência à tração de concretos com fibras geralmente é da mesma ordem da dos concretos sem fibras (2 a 4 MPa). Contudo, a resistência à tração pode ser bastante aumentada se utilizadas fibras com alto módulo de elasticidade. Na maioria dos casos, é utilizado menos de 2% (em volume) de fibras, o que não acarreta um aumento significativo na resistência à tração.

Além do tipo e teor das fibras, existem outros parâmetros que influem na resistência à tração, como o arranjo das fibras e o processo de mistura adotado. Fibras alinhadas na direção das tensões de tração, por exemplo, produzem maiores incrementos na resistência à tração (Bentur e Mindess, 1990).

Não existe nenhum ensaio padrão para determinar a curva tensão-deformação na tração direta de concretos com fibras. Não obstante, essa curva depende do tamanho do corpo-de-prova, método de ensaio, rigidez da máquina de ensaio, comprimento do corpo-de-prova, e se única ou múltiplas fissuras ocorrem no corpo-de-prova (ACI 544.4R-88, 2004). A curva tensão-deformação geralmente é obtida a partir dos ensaios de flexão ou tração indireta.

Capítulo 4

Programa Experimental

4.1 Considerações Iniciais

No Laboratório de Ensaios e Modelos Estruturais – LEME/UFRGS foram desenvolvidos dois aparatos de ensaios biaxiais de baixo custo (APE-01 e APE-02), com o objetivo de verificar o comportamento mecânico do concreto reforçado com fibras quando submetido a estados biaxiais de tensão.

Foram ensaiadas quatro misturas de concreto, sendo que três delas continham diferentes proporções de fibras de aço, avaliando-se a resistência mecânica, o módulo de elasticidade, as deformações específicas, as curvas de ruptura e os modos de ruptura.

Fizeram parte do programa experimental os ensaios de compressão simples e de compressão biaxial.

4.2 Equipamentos de Teste

No presente estudo, o principal procedimento experimental será conduzido por dois tipos de equipamentos de teste, ambos especialmente projetados para a realização dos ensaios biaxiais de compressão. Um dos aparatos, o mais simplificado (*APE-01*), parte de uma idéia o mais intuitiva possível, enquanto que o outro, muito mais versátil (*APE-02*), expande a idéia do

primeiro tipo, e tenta reproduzir o aparato originalmente desenvolvido por Yin *et al.* (1989). Esses equipamentos propostos nessa pesquisa foram utilizados para se determinar a resistência à compressão biaxial do concreto reforçado com fibras de aço para várias relações de tensão, de forma a se obter sua curva de ruptura.

4.2.1 Aparato de ensaio APE-01: Método 01

Com este aparato de teste (Figuras 4.1 e 4.2), foram realizados ensaios biaxiais de compressão em corpos-de-prova de concreto simples e reforçados com fibra de aço. Foram conduzidos, também, ensaios complementares de compressão simples, de forma a se poder definir as curvas de comportamento biaxial dos materiais. Nesta etapa, determinaram-se apenas três pontos da curva de ruptura, conforme pode ser visto na Figura 4.3.

O *APE-01* é composto por duas placas de aço, sendo que cada uma possui dimensões 260 x 260 x 50 mm e foram usinadas de forma a encaixar corpos-de-prova de concreto com dimensões de 150 x 150 x 50 mm. O aparato foi utilizado para a determinação da resistência à compressão biaxial para uma relação de tensões sempre iguais nas duas direções principais $(\sigma_2/\sigma_1 = -1/-1)$, enquanto que o ensaio complementar de compressão simples serviu para determinar os pontos da curva relativos à proporção $\sigma_2/\sigma_1 = 0/-1$. Pela condição de simetria da curva de ruptura, pôde-se considerar este valor também para a posição $\sigma_2/\sigma_1 = -1/0$.

Nas Figuras 4.4 e 4.5 encontram-se os detalhamentos de todas as peças utilizadas na montagem do aparato de ensaio APE-01, com suas respectivas dimensões. Este modelo de equipamento é a forma mais simplificada de se obter tensões iguais nas duas direções principais (σ_2/σ_1 =-1/-1), possuindo como limitante, não ser possível variar as relações de tensões.

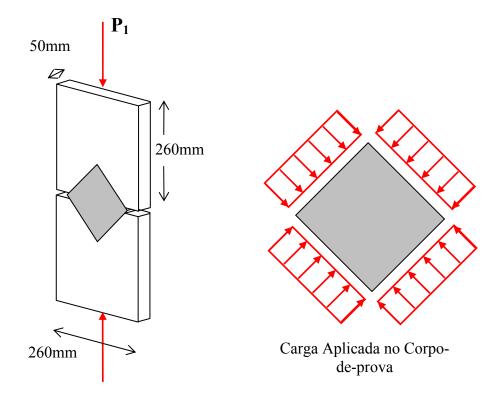
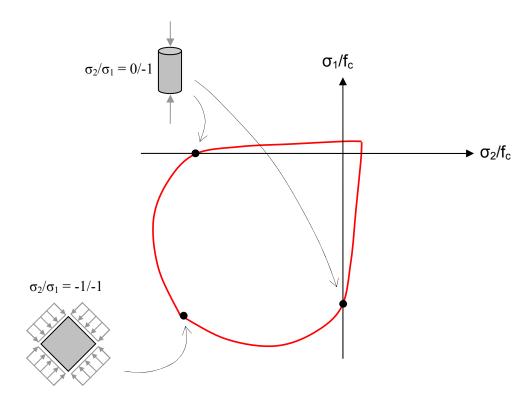



Figura 4.1: Aparato de ensaio número 1 (APE-01), usado no Método 01.

Figura 4.2: Aparato de ensaio APE-01.

Figura 4.3: Curva de ruptura determinada a partir do APE-01 e ensaio complementar (Método 01).

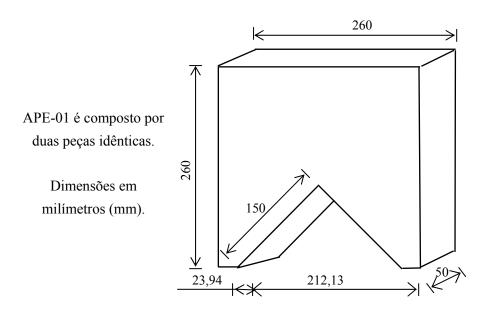


Figura 4.4: Detalhamento das peças para montagem do APE-01.

Figura 4.5: Detalhamento do APE-01.

Houve a necessidade de se avaliar o comportamento dos equipamentos de ensaios biaxiais devido à incerteza de como o conjunto formado pelo equipamento e o corpo-de-prova se comportaria ao longo da realização dos ensaios, principalmente no que se referia a distribuição uniforme de tensões nas interfaces deste conjunto.

Sendo assim, uma das primeiras alternativas adotadas foi a instrumentação do equipamento (Figura 4.6) por meio de extensômetros elétricos (*strain-gages*) para se medir as deformações específicas ao longo da peça, verificando-se se estas estariam ocorrendo da mesma forma para ambos os lados, já que estes são simétricos, bem como se seriam satisfatoriamente uniformes ente si. As avaliações do comportamento do equipamento foram realizadas na fase de teste.

A Figura 4.6 mostra a distribuição dos extensômetros elétricos na peça de aço superior, onde foram colocados três de cada lado para fins de comparação. A numeração dos extensômetros na figura indica que, para efeito de comparação dos resultados, 1 = 6, 2 = 5 e 3 = 4, sendo que todos deveriam obedecer a um mesmo padrão de comportamento para se obter um resultado satisfatório.

Figura 4.6: Verificação do desempenho do equipamento.

As deformações específicas no equipamento foram obtidas ao longo do tempo a partir da aplicação de sucessivos incrementos de carga, até que se atingisse a carga de 300 kN (estimativa para os ensaios), obtendo-se os gráficos apresentados nas Figuras 4.7, 4.8 e 4.9.

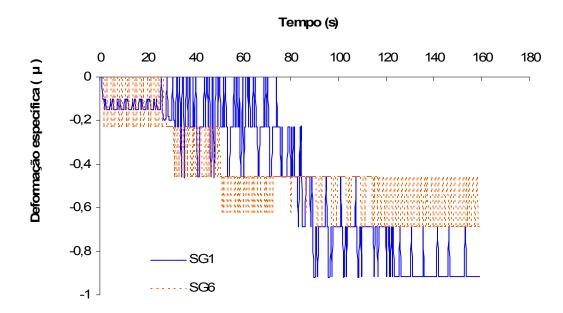


Figura 4.7: Comportamento do equipamento sob carregamento biaxial.

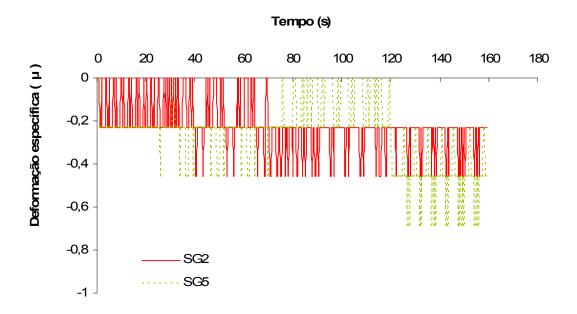
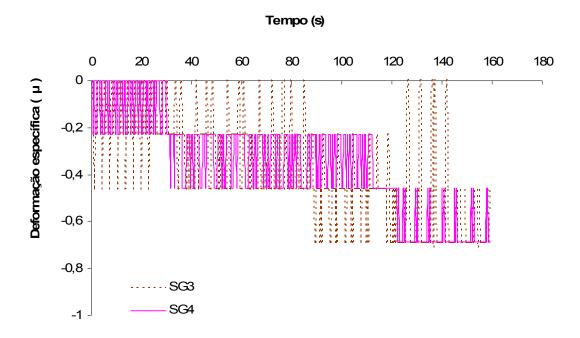
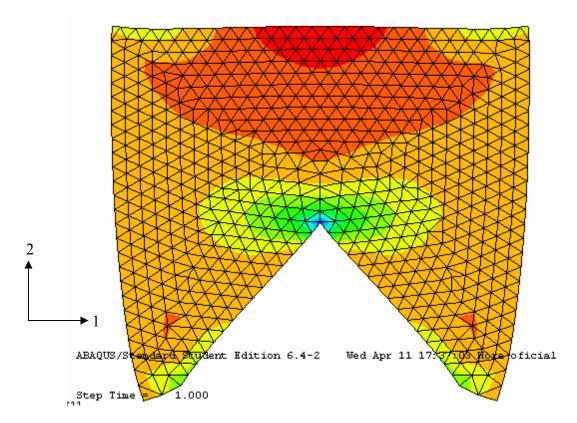
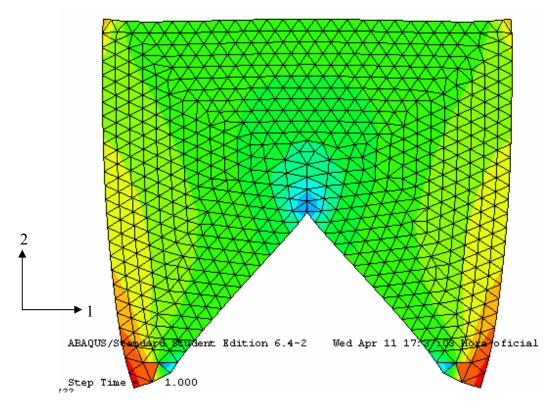


Figura 4.8: Comportamento do equipamento sob carregamento biaxial.


Figura 4.9: Comportamento do equipamento sob carregamento biaxial.

Como pode ser observado, as deformações específicas ocorridas no equipamento e medidas por meio de seis extensômetros são semelhantes, obedecendo ao mesmo comportamento e estando num trecho de 0 a -1,0 μ . Estas deformações foram consideradas pouco significativas, já que se esperava que as deformações nos concretos ensaiados alcançassem algo em torno de -2000 μ .

Ainda com relação ao comportamento do *APE-01*, o equipamento foi modelado via método dos elementos finitos utilizando programa *ABAQUS*. As Figuras 4.10 e 4.11 representam a distribuição de tensões ao longo da peça em duas direções principais. Nestas distribuições de tensões, observou-se que os valores de tensões apenas variavam de 3,82 MPa até 6,92 MPa, ou seja, obtendo-se um comportamento bastante uniforme da peça como um todo.

Figura 4.10: Distribuição de tensões na direção da tensão principal σ_I .

Figura 4.11: Distribuição de tensões na direção da tensão σ_2 .

4.2.2 Aparato de ensaio APE-02: Método 02

Com este aparato de teste (Figura 4.12 e 4.13), foram realizados ensaios biaxiais de compressão em corpos-de-prova de concreto simples e com adição de fibra de aço, e ensaio complementar de compressão simples. Nesta etapa, foram determinados vários pontos da curva de ruptura (Figura 4.14).

O APE-02 é composto por peças articuladas, de forma que seja possível mudarem-se as relações de tensão apenas alterando-se os pontos de aplicação de carga. Assim, o aparato foi utilizado para a determinação da resistência à compressão biaxial para relações de tensão iguais a $\sigma_2/\sigma_1 = -0,2/-1$; -0,5/-1 e -1/-1; sendo comparado com os resultados obtidos com o Método 01 para a relação de tensão $\sigma_2/\sigma_1 = -1/-1$. O ensaio complementar de compressão simples serviu para determinar os pontos da curva relativos à proporção $\sigma_2/\sigma_1 = 0/-1$. Pela condição de simetria da curva de ruptura, pôde-se considerar este valor também para a posição $\sigma_2/\sigma_1 = -1/0$.

Nas Figuras 4.15 e 4.16 encontram-se os detalhamentos de todas as peças, com suas respectivas dimensões, para montagem do aparato de ensaio APE-02. Este modelo de equipamento é a forma mais completa para se obter diferentes valores de tensões principais, para várias relações de tensão, sendo necessário para isso, apenas a mudança do ponto de aplicação da carga. Por ser um modelo de equipamento mais complexo, formado por peças articuladas e pesadas (87,50 Kg), teve-se dificuldades no seu manuseio por não se ter elaborado uma estrutura de apoio e transporte que, se viu com o andamento dos ensaios, muito importante. Devido a esta dificuldade, resolveu-se manter o mesmo esquema utilizado com o APE-01, sendo necessário mais uma vez à realização de um ensaio complementar de compressão simples para se determinar a ruptura para uma relação de tensão σ_2/σ_1 =0/-1, mesmo que o APE-02 pudesse ter sido utilizado também para esta relação de tensão.

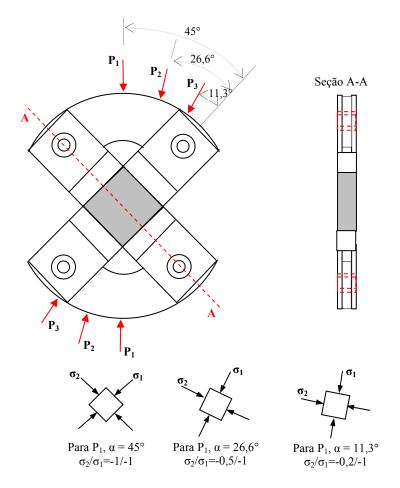
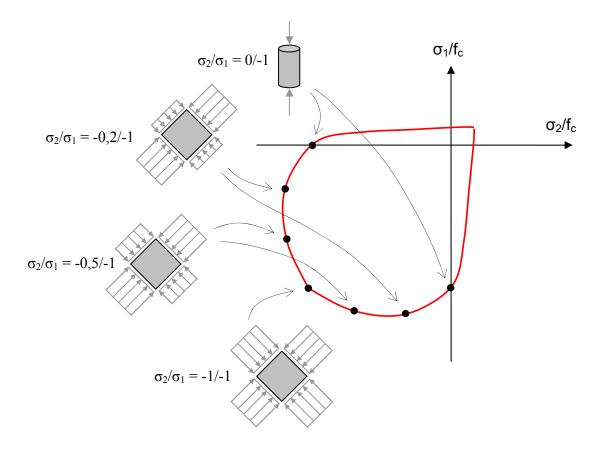



Figura 4.12: Aparato de ensaio número 2 (APE-02), usado no Método 02.

Figura 4.13: Aparato de ensaio APE-02.

Figura 4.14: Curva de ruptura determinada a partir do APE-02 e ensaios complementares (Método 02).

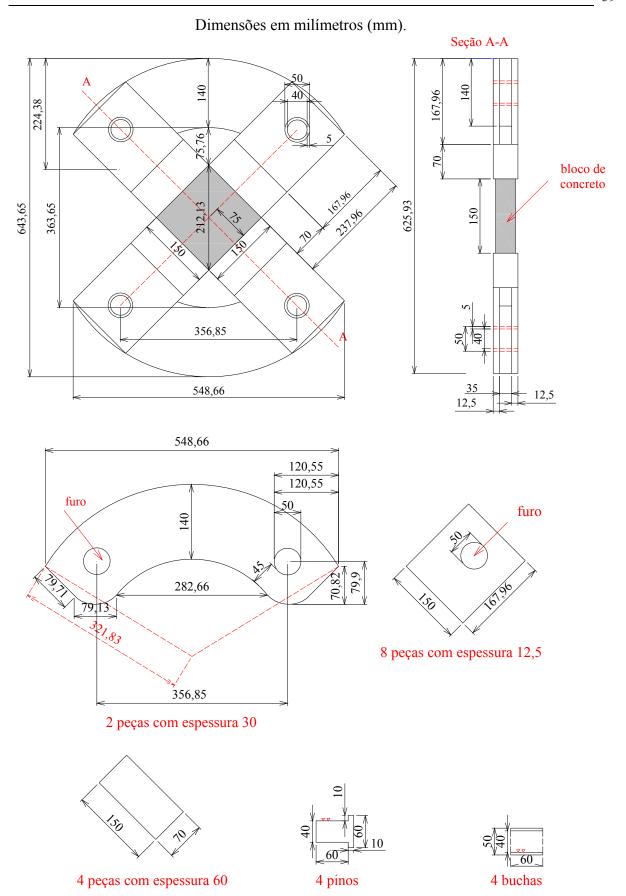


Figura 4.15: Detalhamento das peças para montagem do APE-02.

Figura 4.16: Detalhamento do APE-02.

Para ambos os equipamentos, APE-01 e APE-02, a carga de compressão foi aplicada por uma prensa própria para ensaios uniaxiais. Ainda, para eliminar ou, simplesmente, diminuir o atrito existente entre os aparatos de teste e as superfícies dos corpos-de-prova, foram utilizadas lâminas de teflon como elementos de contato (Figura 4.17). Conforme comentado anteriormente, este tipo de material se mostrou satisfatoriamente eficiente na redução do atrito de contato na interface aparato/corpo-de-prova, o que é corroborado por alguns autores como, por exemplo, em Voyiadjis e Abulebdeh (1993).

Figura 4.17: Lâminas de teflon utilizadas nos ensaios.

4.2.3 Instrumentação

A instrumentação dos corpos-de-prova foi feita a partir de um dispositivo elaborado como mostra as Figuras 4.18 e 4.19, utilizando um sensor de efeito hall para medir as deformações específicas nos corpos-de-prova. Este tipo de sensor se mostrou satisfatoriamente eficiente nas medidas de deformação feitas e puderam ser montados com apenas uma fração pequena

do custo de sensores do tipo LVDT, sendo também mais robustos que os tradicionais extensômetros elétricos. Ainda, os extensômetros elétricos, apesar de possuírem um baixo custo unitário, tendem a encarecer os ensaios quando são utilizados em grande número, pois precisam ser repostos, já que não são reutilizáveis. Para contornar esta situação, uma alternativa comumente utilizada em laboratório seria a manufatura de sensores do tipo *clip gage*, que empregariam apenas alguns poucos extensômetros elétricos. No entanto, optou-se pelo sensor de efeito hall de forma a se contribuir com mais uma alternativa de instrumentação de corpos-de-prova de concreto para os laboratórios.

Assim, as deformações específicas foram monitoradas nas superfícies sem carga dos corposde-prova e a aquisição de dados foi obtida por um sistema de alto desempenho controlado por computador, o *SYSTEM 5000*, como mostrado na Figura 4.20.

Figura 4.18: Sensor de efeito Hall posicionado em corpo-de-prova de concreto.

Figura 4.19: Transdutor de deformações específicas utilizando um sensor de efeito hall.

Figura 4.20: Sistema de aquisição de dados por computador SYSTEM 5000.

4.3 Materiais

4.3.1 Cimento

O aglomerante utilizado na pesquisa foi o cimento Portland, do tipo CP IV-32, cujas características físicas e químicas devem obedecer às recomendações da NBR 5736 (ABNT, 1991).

4.3.2 Agregados

O agregado miúdo utilizado foi a areia natural, classificada como areia média. A composição granulométrica foi determinada de acordo com a NBR 7217 (ABNT, 2003), resultando numa dimensão máxima característica do agregado de 2,12 mm, com um módulo de finura igual a 2,59.

O agregado graúdo utilizado foi de origem basáltica, lavado e seco ao ar-livre antes da sua utilização. A composição granulométrica foi determinada de acordo com a NBR 7217 (ABNT, 2003), resultando numa dimensão máxima característica do agregado de 19 mm, sendo classificado como brita 1.

4.3.3 Fibra

Nesta pesquisa, foram utilizadas fibras de aço *Wirand*® *FS3N*, produzidas pela empresa Maccaferri, e com as características geométricas na Tabela 4.1. As Figuras 4.21 e 4.22 ilustram a fibra utilizada no programa experimental.

De acordo com os dados do fabricante, a fibra é produzida a partir de fios de aço com baixo teor de carbono trefilados a frio.

Tabela 4.1: Características das Fibras.

Fibra	Comprimento (mm)	Diâmetro (mm)	Fator de Forma	Resistência à Tração (MPa)
FS3N	33	0,75	44	1200

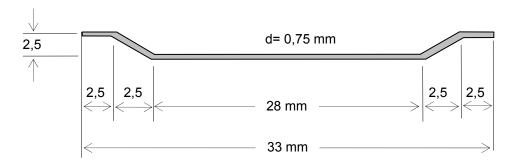


Figura 4.21: Detalhes da fibra de aço utilizada no Programa Experimental.

Figura 4.22: Fibras de aço utilizadas no Programa Experimental.

4.3.4 Concreto

O traço utilizado nesta pesquisa para a produção do concreto foi 1: 1,56: 1,36 com uma relação água-cimento de 0,43, dosado para que se obtivesse uma resistência à compressão de 28 MPa aos 28 dias, sem a adição de fibras (Tabela 4.2).

Tabela 4.2: Composição do concreto utilizado no programa experimental.

Material	Massa (kg/m³)	
Cimento CP IV-32	534,1	
Areia Média	833,3	
Brita 1	726,4	
Água	229,7	
0,5% de Fibra de aço	30,9	
1% de Fibra de aço	61,9	
1,5% de Fibra de aço	92,8	

Foram estabelecidos quatro grupos: o primeiro foi denominado *CS* (concreto simples), o segundo, *FA05* (concreto reforçado com fibra de aço com percentagem em volume de fibra de 0,5 %); o terceiro FA10 (concreto reforçado com fibra de aço com percentagem em volume de fibra de 1 %); e o quarto grupo foi denominado *FA15* (concreto reforçado com fibra de aço com percentagem em volume de fibra de 1,5 %).

A trabalhabilidade das misturas foi medida a partir do ensaio de abatimento de tronco de cone (*slump test*), realizado de acordo com a NBR NM67 (ABNT, 1998), e a moldagem dos corpos-de-prova foi realizada de acordo com a NBR 5738 (ABNT, 2003).

A mistura foi realizada em uma betoneira, obedecendo à seguinte sequência de materiais: agregado graúdo, água, cimento, agregado miúdo e fibra. O concreto foi lançado em dois tipos de fôrmas: cilíndricas, com dimensões de 100 x 200 mm, e prismáticas, com seção de 150 x 150 x 150 mm. Após 24 horas, todos os corpos-de-prova foram desmoldados e submetidos à cura em uma câmara úmida, em condições de temperatura de 23° ± 2° C e umidade relativa maior ou igual a 95%, até a idade de ensaio de 90 dias. Na Figura 4.23 estão apresentadas às fôrmas utilizadas e, na Figura 4.24, dois exemplares dos corpos-de-prova de concreto produzidos.

Figura 4.23: Fôrmas utilizadas para moldagem dos corpos-de-prova.

Figura 4.24: Corpos-de-prova de concreto.

4.4 Ensaios

4.4.1 Compressão Simples

Para a realização do ensaio de compressão simples, foram utilizados três corpos-de-prova cilíndricos de 100 x 200 mm para cada tipo de concreto, ensaiados de acordo com a NBR 5739 (ABNT, 1994). Após a instrumentação, os corpos-de-prova foram ensaiados à compressão simples (uniaxial) em uma prensa computadorizada da marca *SHIMADZU*, de 200 kN de capacidade de carga, conforme mostra a Figura 4.25. Os corpos-de-prova foram ensaiados aos 90 dias de idade, embora pudessem ter sido ensaiados já aos 28 dias, porque os aparatos de carga ainda estavam em fase de ajustes e testes preliminares.

Figura 4.25: Ensaio de compressão simples.

Adicionalmente, o módulo de elasticidade secante foi determinado conforme determina a NBR 8522 (ABNT, 2002). Assim, foram ensaiados mais três corpos-de-prova para cada tipo de concreto estudado, na idade de 90 dias, com o auxílio de dois transdutores tipo LVDT. A Figura 4.26 mostra o equipamento utilizado no ensaio.

Figura 4.26: Instrumentação para obtenção do módulo de elasticidade.

4.4.2 Compressão Biaxial

Para a realização do ensaio de compressão biaxial, foram utilizados os dois aparatos de ensaio desenvolvidos neste trabalho, sendo utilizados três corpos-de-prova prismáticos de 150 x 150 x 50 mm para cada condição testada. Estes corpos-de-prova também foram ensaiados aos 90 dias de idade.

As Figuras 4.27 a 4.30 mostram os equipamentos APE-01 e APE-02 para a realização dos ensaios biaxiais. A Figura 4.27 corresponde ao equipamento mais simples, o APE-01, que permite avaliações somente para $\sigma_2/\sigma_1 = -1/-1$, enquanto que as Figuras 4.28, 4.29 e 4.30 correspondem ao equipamento mais completo, o APE-02, que permite ser posicionado sob diferentes ângulos de forma a se conseguir diferentes proporções de tensão.

Figura 4.27: Ensaio de compressão biaxial APE – 01, para uma relação de tensão σ_2/σ_1 = -1/-1.

Figura 4.28: Ensaio de compressão biaxial APE – 02, posicionado para σ_2/σ_1 = -0,2/-1.

Figura 4.29: Ensaio de compressão biaxial APE – 02, posicionado para σ_2/σ_1 =-0,5/-1.

Figura 4.30: Ensaio de compressão biaxial APE – 02, posicionado para σ_2/σ_1 =-1/-1.

Capítulo 5

Resultados Experimentais e Análises

5.1 Generalidades

Neste capítulo, são apresentados os resultados experimentais obtidos a partir dos ensaios descritos no capítulo 4, sendo estes resultados comparados com dados experimentais obtidos da literatura.

5.2 Resultados e Análises

Para a apresentação dos resultados obtidos nos ensaios sob estados de tensões uniaxiais e biaxiais, fez-se sempre a normalização das tensões pela resistência à compressão uniaxial do concreto simples ($f_c = 28,24$ MPa).

Nas Tabelas 5.1 a 5.8, estão apresentados todos os resultados obtidos na pesquisa para as resistências uniaxiais e biaxiais de compressão. Os valores de todas as resistências foram obtidos inicialmente fazendo a média entre os resultados de carga obtidos nos estudos experimentais.

Tabela 5.1: Resultados do ensaio de compressão simples.

Concreto	P (kN)	Desvio padrão	P _{médio} (kN)	σ ₁ (MPa)	$\sigma_{\it l}/f_{\it c}$	E (GPa)
0,0% fibra	221,00 225,50 219,00	3,33	221,83	28,24	1,00	26,58
0,5% fibra	246,50 245,00 239,50	3,68	243,67	31,02	1,10	29,54
1,0% fibra	263,50 253,00 260,50	5,41	259,00	32,98	1,17	30,43
1,5% fibra	276,50 280,50 272,50	4,00	276,50	35,21	1,25	31,33

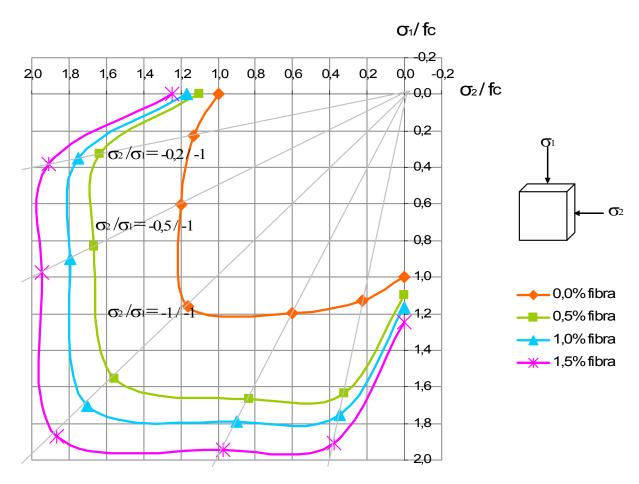
A partir dos resultados apresentados na Tabela 5.1, verifica-se que, ao se acrescentar maiores percentuais de volume de fibra de aço ao concreto simples, ocorre um aumento na sua resistência última e também no seu módulo de elasticidade. O acréscimo na resistência última pode chegar a até 25% (concreto reforçado com 1,5% de fibra). Pode-se observar, também, que, para os concretos reforçados com fibra de aço, a cada incremento de 0,5% no volume de fibra, aumenta-se a resistência, em média, em aproximadamente 6%.

A Tabela 5.2 apresenta os resultados obtidos a partir do APE-02. Com base nestes resultados se verifica que, para todas as relações de tensão, ocorre um aumento na resistência última do concreto devido à adição de fibra, como aconteceu também no caso dos ensaios uniaxiais.

Pode ser verificado, também, que, aumentando-se o percentual de fibra de 0% para 1,5%, ocorre um aumento maior na resistência última à compressão do concreto quando a relação de tensão é igual a $\sigma_2/\sigma_1 = -0,2/-1$, onde esse aumento é de aproximadamente 69%.

Tabela 5.2: Resultados do ensaio de compressão biaxial com o APE-02 para uma relação de tensão σ_2/σ_1 =-1/-1.

Carga aplicada a 45° Desvio $P_{m\'edio}$ σ_1 σ_2 Concreto P(kN) σ_l/f_c σ_2/f_c (kN)(MPa) (MPa) padrão 354,00 0,0% fibra 339,50 7,42 347,67 32,78 1,16 32,78 1,16 349,50 465,50 0,5% fibra 461,50 4,00 465,50 43,89 43,89 1,55 1,55 469,50 515,00 510,50 1,0% fibra 4,01 510,83 48,16 48,16 1,71 1,71 507,00 553,00 1,5% fibra 561,50 5,77 559,50 52,75 52,75 1,87 1,87 564,00


Tabela 5.3: Resultados do ensaio de compressão biaxial com o APE-02 para uma relação de tensão σ_2/σ_1 =-0,5/-1.

Carga aplicada a 26,6°									
Concreto	P (kN)	Desvio padrão	P _{médio} (kN)	σ ₁ (MPa)	σ ₂ (MPa)	σ_1/f_c	σ_2/f_c		
0,0% fibra	284,00 287,00 281,50	2,75	284,17	33,88	16,97	1,20	0,60		
0,5% fibra	397,50 395,00 392,50	2,50	395,00	47,09	23,58	1,67	0,83		
1,0% fibra	428,00 421,00 425,00	3,51	424,67	50,63	25,35	1,79	0,90		
1,5% fibra	463,00 457,50 462,00	2,93	460,83	54,94	27,51	1,95	0,97		

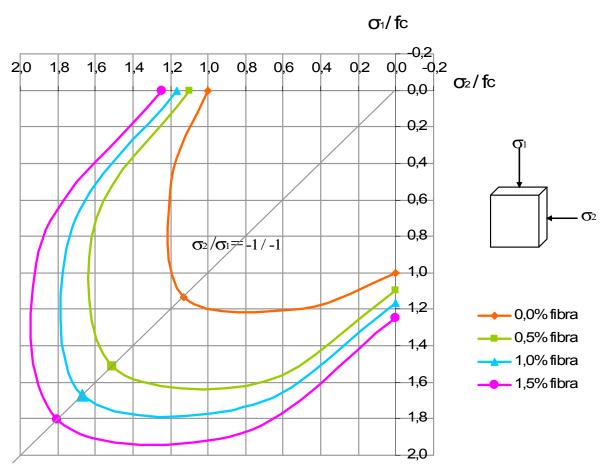
Tabela 5.4: Resultados do ensaio de compressão biaxial com o APE-02 para uma relação de tensão σ_2/σ_1 =-0,2/-1.

	Carga aplicada a 11,3°									
Concreto	P (kN)	Desvio padrão	P _{médio} (kN)	σ ₁ (MPa)	σ ₂ (MPa)	σ_{l}/f_{c}	σ_2/f_c			
0,0% fibra	243,00 238,00 250,00	6,03	243,67	31,86	6,34	1,13	0,22			
0,5% fibra	358,50 356,00 343,50	8,04	352,67	46,12	9,17	1,63	0,32			
1,0% fibra	385,00 379,00 371,50	6,76	378,50	49,50	9,85	1,75	0,35			
1,5% fibra	419,00 417,00 401,00	9,86	412,33	53,92	10,73	1,91	0,38			

Na Figura 5.1 estão reunidos todos os resultados apresentados nas tabelas 5.1, 5.2, 5.3 e 5.4, porém normalizados pela resistência à compressão do concreto simples, caracterizando as curvas de ruptura dos concretos testados segundo o Método 02.

Figura 5.1: Curvas de ruptura para concretos simples e reforçados com fibras de aço (Método 02).

Como pode ser claramente observado, a resistência última do concreto sob compressão biaxial é maior que a resistência última sob compressão uniaxial para todas as concentrações de volume de fibra de aço e para todas as relações de tensão analisadas. Esse aumento, segundo alguns autores, ocorre devido ao aumento do confinamento proporcionado pelos estados biaxiais de tensão (Chen, 1982 e Hussein e Marzouk, 2000). Assim, a partir dos resultados apresentados com as curvas de ruptura, tem-se que, para o concreto simples testado, a resistência última sob compressão biaxial, quando comparada à resistência à compressão uniaxial, aumentou 20% quando a relação de tensão era igual a $\sigma_2/\sigma_1 = -0.5/-1$ e, para os concretos com fibras de aço testados, esse aumento foi de 95% para a mesma relação de tensão quando a concentração de volume de fibra era de 1,5%.


Quando se aumentou a quantidade de fibras de aço de 0,5% para 1,5%, houve um aumento de 32% na resistência última sob compressão biaxial quando a relação de tensão era igual a σ_2/σ_1 = -1/-1. Em contrapartida, o aumento da resistência última na compressão uniaxial foi, em média, de 15%.

A Tabela 5.5 e a Figura 5.2 mostram os resultados obtidos a partir dos ensaios biaxiais correspondentes ao Método 01, sendo possível apenas a determinação dos valores correspondentes a estados de tensões biaxiais para uma relação de tensões igual a $\sigma_2/\sigma_1 = -1/-1$.

Na Tabela 5.5, observa-se que, da mesma forma como ocorreu para os ensaios biaxiais correspondentes ao Método 02, os resultados obtidos com o Método 01 também correspondem a um aumento da resistência à compressão última do concreto devido à adição de fibras onde, aumentando-se o percentual de fibra de 0% para 1,5%, ocorre um acréscimo de aproximadamente 60%, enquanto que, com o Método 02, esse acréscimo era de 61%.

Tabela 5.5: Resultados do ensaio de compressão biaxial com o APE-01 para uma relação de tensão σ_2/σ_1 =-1/-1.

	Carga aplicada a 45° (σ ₂ /σ ₁ =-1/-1)									
Concreto	P (kN)	Desvio padrão	P _{médio} (kN))	σ ₁ (MPa)	σ ₂ (MPa)	σ_1/f_c	σ_2/f_c			
0,0% fibra	336,50 339,00 342,00	2,75	339,17	31,98	31,98	1,13	1,13			
0,5% fibra	445,00 463,50 450,50	9,50	453,00	42,71	42,71	1,51	1,51			
1,0% fibra	498,50 504,50 498,00	3,62	500,33	47,17	47,17	1,67	1,67			
1,5% fibra	525,00 538,50 559,50	17,38	541,00	51,01	51,01	1,81	1,81			

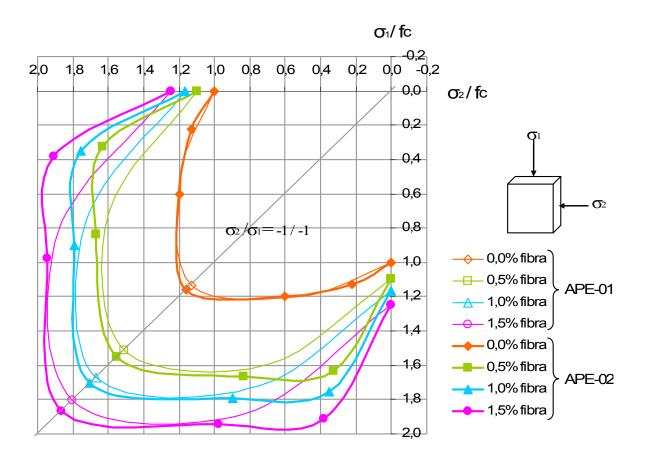
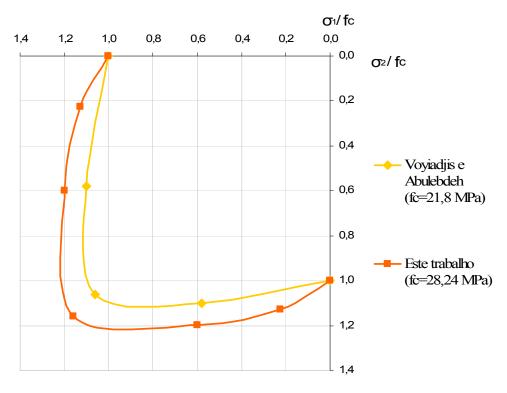


Figura 5.2: Curvas de ruptura para concretos simples e reforçados com fibras de aço (Método 01).

Na Figura 5.3 são comparados os resultados dos estudos experimentais obtidos com os equipamentos de testes APE-01 e APE-02 sob carregamento biaxial para tensões iguais nas duas direções principais ($\sigma_2/\sigma_1 = -1/-1$), sendo assim, observa-se que os resultados obtidos possuem valores muito próximos, tendo, em média, 4% de diferença entre eles, o que poderia indicar que os equipamentos estão funcionando apropriadamente.

Ainda com relação à diferença existente nos resultados obtidos por meio dos dois equipamentos, podem-se concluir além de um funcionamento apropriado devido à semelhança nos resultados, também que esses resultados podem não ter sido iguais devido à rigidez dos equipamentos, mas especificamente, devido à rigidez existente no equipamento APE-01,

devido à forma como o modelo de teste foi desenvolvido, aplicando cargas em duas direções com apenas uma peça.

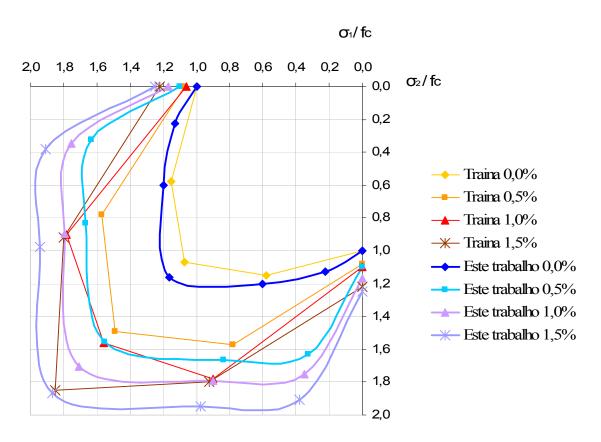

Figura 5.3: Curvas de ruptura obtidas a partir dos Métodos 01 e 02.

Nesta pesquisa, foram utilizadas placas de teflon como elemento de interface para a redução do atrito existente entre o equipamento de teste e o corpo-de-prova de concreto, da mesma forma como foi feito na pesquisa realizada por Voyiadjis e Abulebdeh (1993). Assim, na Tabela 5.6, estão apresentados os dados experimentais para o concreto simples utilizados para a obtenção das curvas de ruptura correspondentes aos ensaios biaxiais realizados por aqueles autores e também os resultados obtidos nesta pesquisa.

Tabela 5.6: Resultados dos ensaios biaxiais de Voyiadjis e Abulebdeh (1993) e os resultados obtidos nesta pesquisa.

Voyiadjis e Abulebdeh (1993)								
Relação de tensão $\sigma_2/\sigma_1=0/-1,0$ $\sigma_2/\sigma_1=-0,2/-1,0$ $\sigma_2/\sigma_1=-0,5/-1,0$ $\sigma_2/\sigma_1=-1,0/-1,0$								
Concreto	σ_{I}/f_{c}	1,00	_	1,10	1,06			
simples	σ_2/f_c	0,00	_	0,58	1,06			
Peres (2008)								
Concreto	σ_{l}/f_{c}	1,00	1,13	1,20	1,16			
simples	σ_2/f_c	0,00	0,22	0,60	1,16			

Na Figura 5.4 podem ser comparadas a curva de ruptura apresentada por Voyiadjis e Abulebdeh (1993) para o concreto simples com a obtida nesta pesquisa. Como é possível de se observar, ambas as curvas apresentam um comportamento semelhante, sendo que as diferenças observadas são razoáveis na medida em que representam concretos diferentes.


Figura 5.4: Curvas de ruptura para o concreto simples (Comparação com os resultados de Voyiadjis e Abulebdeh, 1993).

Na Tabela 5.7 podem ser observados os dados experimentais dos ensaios biaxiais realizados por Traina e Mansour (1991), juntamente com os resultados experimentais obtidos nesta pesquisa, utilizando diferentes percentuais de fibra de aço.

Tabela 5.7: Resultados dos ensaios biaxiais de Traina e Mansour (1991) e os obtidos nesta pesquisa.

Traina e Mansour – (Fibra: $L=30$ mm, $d=0.5$ mm, $f_{tf}=1172$ MPa)								
Relação de te	ensão	$\sigma_2/\sigma_1 = 0/-1 \qquad \sigma_2/\sigma_1 = -0.2/-1$		$\sigma_2/\sigma_1 = -0.5/-1$	$\sigma_2/\sigma_1 = -1/-1$			
0.0% fibra σ_1/f_c		1,00	_	1,15	1,07			
0,0 % jibru	σ_2/f_c	0,00	_	0,58	1,07			
0,5% fibra	σ_{I}/f_{c}	1,08	_	1,57	1,49			
0,5 % Jibru	σ_2/f_c	0,00	_	0,78	1,49			
1 00/ fibra	σ_{I}/f_{c}	1,10	-	1,78	1,56			
1,0% fibra	σ_2/f_c	0,00	_	0,90	1,56			
1,5% fibra	σ_{I}/f_{c}	1,22	-	1,70	1,85			
1,5 % Jibru	σ_2/f_c	0,00	_	0,92	1,85			
Peres	(2008) -	- (Fibra: L =	33 mm, $d = 0.75$	$5 mm, f_{tf} = 1200$	MPa)			
0.00/ 61	σ_{l}/f_{c}	1,00	1,13	1,20	1,16			
0,0% fibra	σ_2/f_c	0,00	0,22	0,60	1,16			
0.50/.61	σ_{l}/f_{c}	1,10	1,63	1,67	1,55			
0,5% fibra	σ_2/f_c	0,00	0,32	0,83	1,55			
1.00/.01	σ_{l}/f_{c}	1,17	1,75	1,79	1,71			
1,0% fibra	σ_2/f_c	0,00	0,35	0,90	1,71			
1 50/ 61	σ_{l}/f_{c}	1,25	1,91	1,95	1,87			
1,5% fibra	σ_2/f_c	0,00	0,38	0,97	1,87			

Na Figura 5.5 se observam às curvas de ruptura obtidas a partir dos dados apresentados na Tabela 5.7. De acordo com as curvas de ruptura propostas por Traina e Mansour (1991) e as obtidas nesta pesquisa, e que estão apresentadas na Figura 5.5, é possível se observar que são capazes de representar o comportamento biaxial do concreto, onde o aumento máximo da resistência à compressão biaxial, em ambos os casos, ocorreu para uma relação de tensão $\sigma_2/\sigma_1 = -0.5/-1$, como esperado.

Figura 5.5: Curvas de ruptura para os concretos simples e reforçados com fibras de aço (Comparação com os resultados de Traina e Mansour, 1991).

As relações tensão-deformação para o concreto simples e para o concreto reforçado com fibras de aço submetido à compressão biaxial são mostradas nas Figuras 5.6 a 5.9.

As tensões e as deformações específicas nas duas direções principais foram determinadas em todos os testes através da instrumentação realizada e detalhada anteriormente. As deformações específicas últimas constam na Tabela 5.8.

Tabela 5.8: Deformações específicas últimas (°/00).

Deformações	$\sigma_2/\sigma_1 = 0/-1$		$\sigma_2/\sigma_1 = -0, 2/-1$		$\sigma_2/\sigma_1 = -0.5/-1$		$\sigma_2/\sigma_1 = -1/-1$	
	ε_{1u}	ε_{2u}	ε_{1u}	ε_{2u}	ε_{1u}	ε_{2u}	ε_{1u}	\mathcal{E}_{2u}
0,0% fibra	-2,0	_	-2,4	0,2	-2,5	-0,9	-1,3	-1,6
0,5% fibra	-2,1	_	-2,6	-0,6	-2,6	-1,0	-1,6	-1,8
1,0% fibra	-2,3	_	-2,8	-0,4	-3,1	-1,0	-1,9	-2,1
1,5% fibra	-2,5	_	-3,0	-0,2	-3,3	-1,3	-2,3	-2,5

Com base nos dados da Tabela 5.8, observa-se que os valores obtidos para as deformações específicas últimas na direção da tensão principal σ_I aumentam com a adição de fibras, sendo que as maiores deformações específicas ocorreram para uma relação de tensão igual a $\sigma_2/\sigma_I =$ -0,5/-1. Esse aumento foi de 32% quando comparado com uma relação de tensão igual a $\sigma_2/\sigma_I =$ 0/-1, para um percentual de fibra de aço de 1,5%.

O efeito das relações de tensão (σ_2/σ_1) pode ser visto nas figuras a seguir, onde, ao se introduzir uma tensão de confinamento na direção da tensão principal σ_2 , sendo esta tensão menor ou igual a σ_1 , há uma tendência de se afetar a resistência última do material, o comportamento das deformações específicas e ainda de se afetar o módulo de elasticidade na direção da tensão principal σ_1 . Cabe salientar que as alterações no módulo de elasticidade do material estão relacionadas ao efeito de Poisson e à ocorrência de um confinamento das microfissuras (Tasuji et al., 1978).

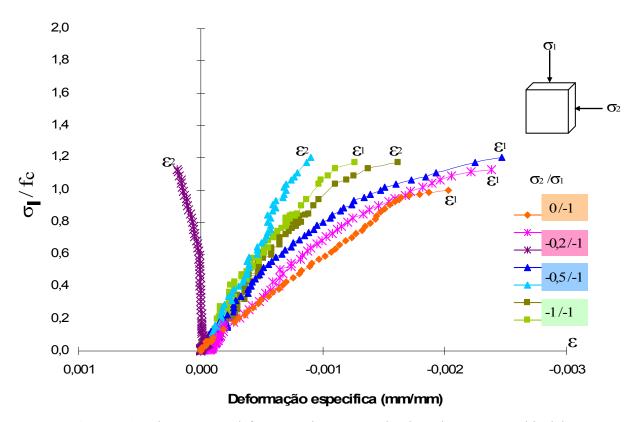
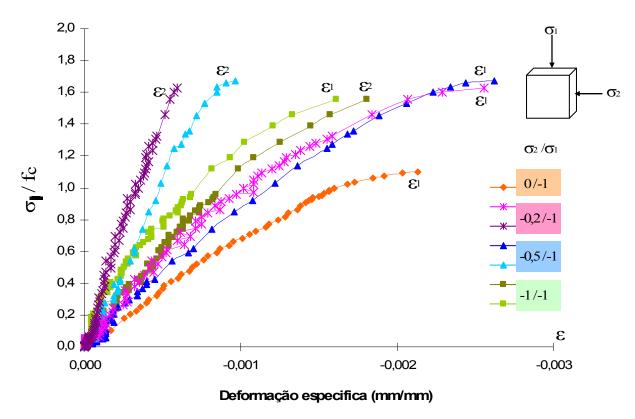
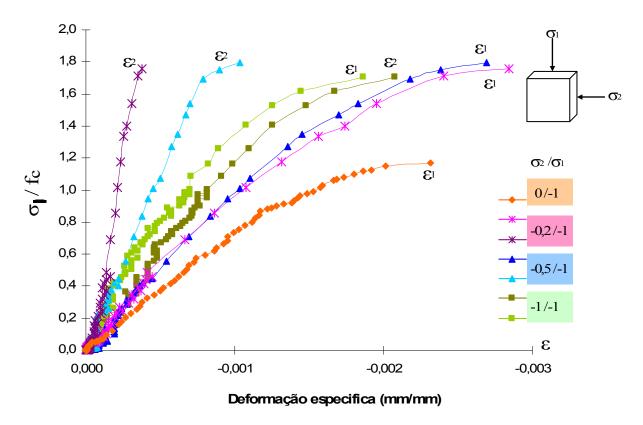




Figura 5.6: Relação tensão-deformação do concreto simples sob compressão biaxial.

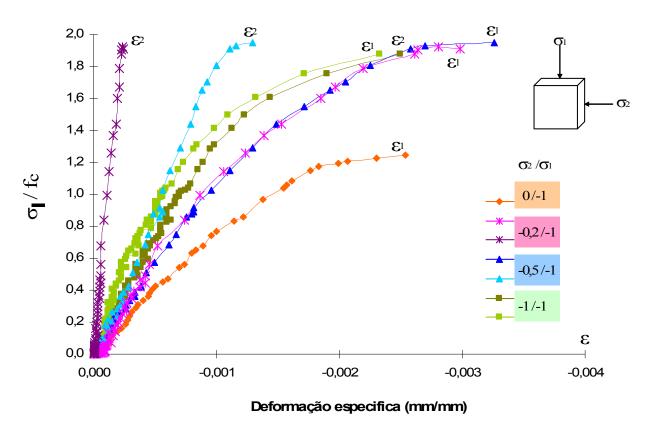

O aumento significativo na resistência à compressão biaxial quando comparada à resistência à compressão uniaxial do concreto simples (Figura 5.6) é de 13% para uma relação de tensão igual a $\sigma_2/\sigma_1 = -0.2/-1$; de 20% para a relação de tensão igual a $\sigma_2/\sigma_1 = -0.5/-1$ e, para uma relação de tensão igual a $\sigma_2/\sigma_1 = -1/-1$, este aumento ficou em 16%.

Figura 5.7: Relação tensão-deformação do concreto reforçado com 0,5% de fibras de aço sob compressão biaxial.

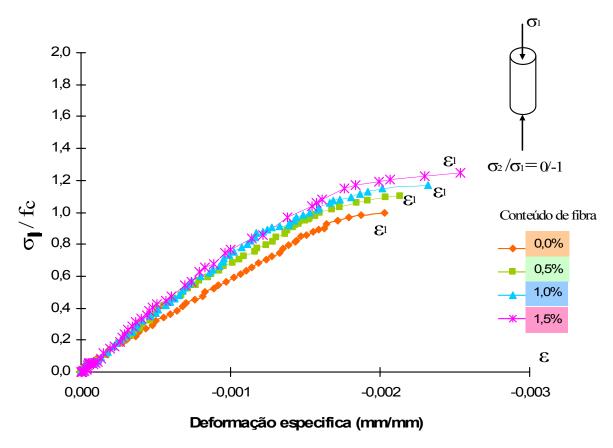
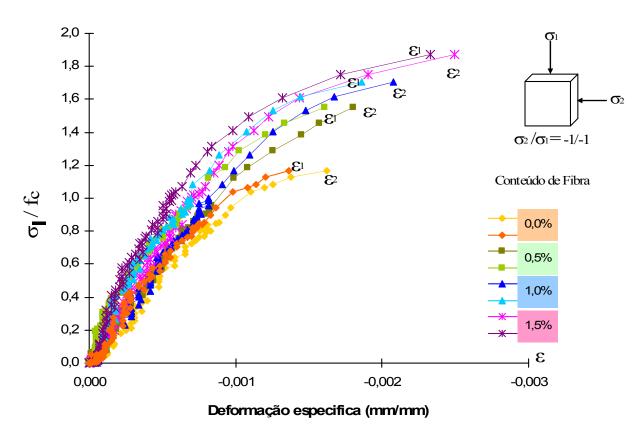
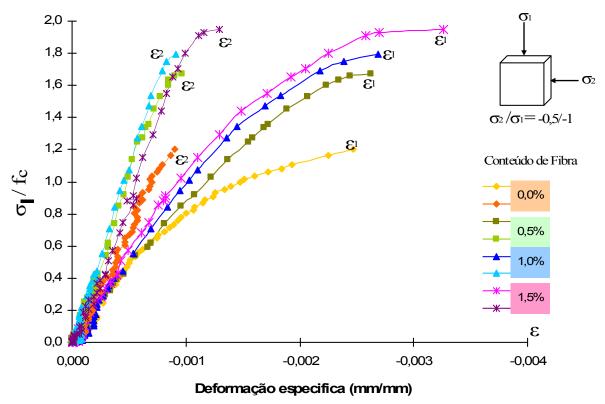

Figura 5.8: Relação tensão-deformação do concreto reforçado com 1% de fibras de aço sob compressão biaxial.

Figura 5.9: Relação tensão-deformação do concreto reforçado com 1,5% de fibras de aço sob compressão biaxial.

Como pode ser observado nas Figuras 5.7, 5.8 e 5.9, o mesmo efeito ocorrido no concreto simples sob compressão biaxial pode ser novamente observado para os concretos reforçados com fibra de aço, considerando-se diferentes concentrações de volume de fibras de aço. Ou seja, nota-se que a resistência última sob compressão biaxial tende a ser maior para todas as concentrações de volume de fibra testadas, quando se compara com a resistência sob compressão uniaxial. Parece, também, que, na medida em que se aumenta a tensão de confinamento, ocorre uma tendência de se prolongar o trecho inicial onde a resposta na tensão-deformação é linear. Isto significa que um carregamento maior é requerido sob compressão biaxial do que em compressão uniaxial. A adição de fibra aumenta a rigidez do concreto nas duas direções principais de compressão, ε₁ e ε₂. Assim, a adição de fibra não só enrijece o corpo-de-prova na direção carregada, mas também reduz a deformação de tração dos corpos-de-prova na direção descarregada, aumentando também a ductilidade do concreto analisado para diferentes percentuais de fibra de aço.


Analisando os efeitos da quantidade de fibra para todas as relações tensão-deformação sob carregamentos uniaxial e biaxial, a partir dos resultados apresentados nas Figuras 5.10 a 5.14, podem ser observados vários aspectos.


Figura 5.10: Relação tensão-deformação do concreto simples e reforçado com fibras de aço sob compressão uniaxial ($f_c = 28,24$ MPa).

Primeiramente, considerando-se a Figura 5.10, que mostra as curvas tensão-deformação para o concreto simples e para os concretos reforçados com diferentes percentuais de fibras de aço a partir de um carregamento de compressão uniaxial, observa-se que a incorporação de fibras de aço no concreto resulta em aumentos da resistência última de compressão, da deformação específica última, bem como do módulo de elasticidade ou rigidez do material. Especificamente, para a concentração de 1,5% de fibra de aço, verificou-se um aumento na resistência última em aproximadamente 25%, e também um aumento na rigidez do material

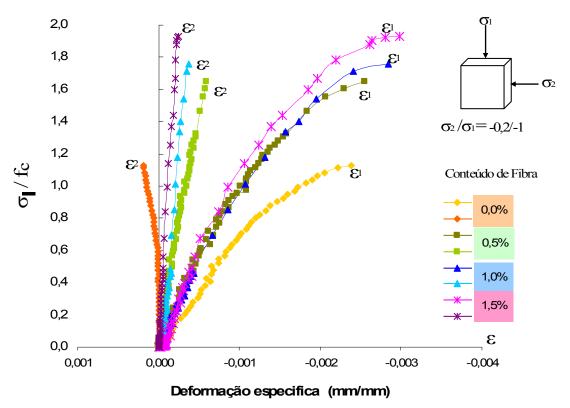

de 18% (de 26,58 GPa para 31,33 GPa, conforme resultados apresentados na Tabela 5.1). Em estudos realizados por Traina e Mansour (1991), ao mostrarem curvas de deformação volumétrica, estes autores atribuíram estes incrementos ao efeito de confinamento proporcionado pelas fibras de aço.

Figura 5.11: Relação tensão-deformação para concretos simples e reforçados com fibras de aço sob compressão biaxial $(\sigma_2/\sigma_I = -1/-1)$ – APE-02 $(f_c = 28,24 \text{ MPa})$.

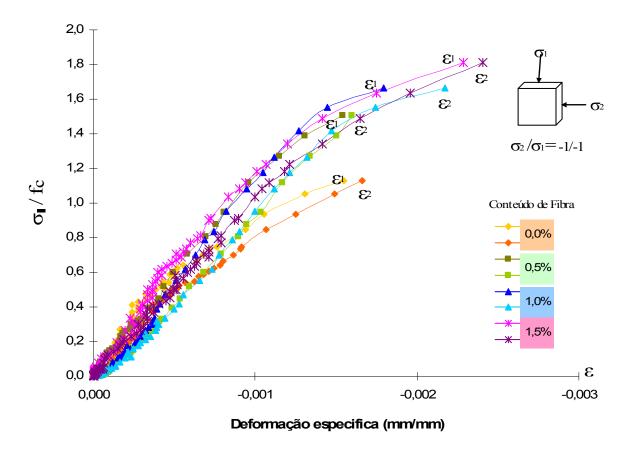
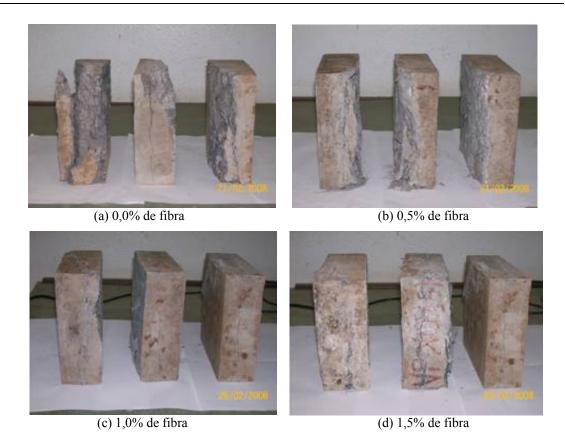


Figura 5.12: Relação tensão-deformação para concretos simples e reforçados com fibras de aço sob compressão biaxial ($\sigma_2 / \sigma_I = -0.5/-1$) – APE-02 ($f_c = 28.24$ MPa).

Figura 5.13: Relação tensão-deformação para concretos simples e reforçados com fibras de aço sob compressão biaxial $(\sigma_2/\sigma_1 = -0.2/-1)$ – APE-02 $(f_c = 28,24 \text{ MPa})$.

Em segundo lugar, os efeitos da adição de fibras de aço são bastante evidentes ao se observar as Figuras 5.11, 5.12 e 5.13. Essa adição parece aumentar a rigidez do concreto nas duas direções principais, como também tende a ocorrer um aumento nas deformações específicas. A Figura 5.11 mostra que, ao se introduzir uma tensão de confinamento ao longo da tensão principal σ_2 , parece ocorrer o mesmo efeito observado no concreto sob compressão uniaxial (Figura 5.10), e esse efeito tende a aumentar com o conteúdo de fibra incorporado, aumentando-se a resistência última e a rigidez do concreto. Especificamente, para uma concentração de fibra de aço de 1,5% para tensões iguais nas duas direções ($\sigma_2/\sigma_1 = -1/-1$), o aumento da resistência última foi de 87% com relação à resistência do concreto simples. Nos demais casos (Figuras 5.12 e 5.13), ocorreu o mesmo efeito, sendo que, para uma relação de tensão igual a $\sigma_2/\sigma_1 = -0.5/-1$, a resistência aumentou em torno de 95%, e, para uma relação de $\sigma_2/\sigma_1 = -0.2/-1$, esse aumento foi de aproximadamente 91%.


Figura 5.14: Relação tensão-deformação para concretos simples e reforçados com fibras de aço sob compressão biaxial $(\sigma_2/\sigma_1 = -1/-1)$ – APE-01 $(f_c = 28,24 \text{ MPa})$.

Ainda, com relação às Figuras 5.11 e 5.14, onde $\sigma_2/\sigma_1 = -1/-1$, uma leve divergência é observada nas deformações específicas apresentadas nas curvas tensão-deformação, onde os valores de ε_1 e ε_2 deveriam ter resultado iguais. Isto pode ser devido à não-homogeneidade do material, ou da dificuldade de se assegurar que as cargas aplicadas sejam exatamente iguais nas duas direções, já que, em tese, deveriam ser (Swaddiwudhipong e Seow, 2006) ou ainda, essas pequenas divergências podem ocorrer devido à rigidez dos equipamentos, principalmente no caso do APE-01.

Nas Figuras 5.15 a 5.17 são mostrados os padrões de ruptura obtidos nos estudos experimentais para o concreto simples e com adição de fibra de aço sob compressão biaxial.

As Figuras 5.15 (a), 5.16 (a) e 5.17 (a) mostram os padrões de ruptura para o concreto simples. Como pode ser observado neste caso, a ruptura do concreto ocorreu a partir de tensões de tração perpendiculares às superfícies descarregadas dos corpos-de-prova, com físsuras sendo formadas em planos paralelos a estas superfícies.

Nos demais casos analisados, onde os padrões de ruptura apresentados ocorreram para os concretos com adições de fibras de aço em diferentes concentrações de volume de fibra, as fissuras ocasionadas no momento da ruptura dos corpos-de-prova não foram tão severas, sendo que, em alguns casos, como, por exemplo, para uma relação de tensão igual a $\sigma_2/\sigma_1 = -1/-1$, essas fissuras apresentam-se num nível significativamente reduzido.

Figura 5.15: Modos de ruptura para $\sigma_2/\sigma_1 = -0.2/-1$.

Figura 5.16: Modos de ruptura para $\sigma_2/\sigma_1 = -0.5/-1$.

Figura 5.17: Modos de ruptura para $\sigma_2/\sigma_I = -1/-1$.

Finalmente, com o intuito de se garantir um nível de informação adicional a respeito do programa experimental realizado neste trabalho, todos os resultados relacionados aos ensaios uniaxiais e biaxiais de compressão para os tipos de concreto estudados podem ser encontrados nos Apêndices A e B. Assim, todos os resultados obtidos estão disponibilizados na forma de tabelas detalhadas e de diagramas tensão-deformação.

Capítulo 6

Conclusões e Sugestões

6.1 Considerações Iniciais

Nesta pesquisa, foi apresentado um estudo experimental do comportamento de concretos reforçados com fibras de aço sob estados de tensões biaxiais através de equipamentos de baixo custo. O procedimento experimental desenvolvido e a interpretação dos resultados obtidos permitem o estabelecimento de algumas conclusões que são detalhadas neste capítulo.

O comportamento mecânico do concreto simples e do concreto reforçado com fibras de aço sob estados biaxiais de tensão foi investigado experimentalmente, estabelecendo a sensibilidade das propriedades mecânicas do material sob carregamento biaxial quando volumes crescentes de fibra são incorporados, até um limite pré-estabelecido de 1,5% de fibra em volume.

A determinação dos dados de compressão biaxial exigiu a construção de equipamentos específicos para a realização dos ensaios. Sendo assim, foram projetados e desenvolvidos dois aparatos para testes biaxiais denominados APE-01, que só permite determinar resultados para uma relação de tensão $\sigma_2/\sigma_1 = -1/-1$ e APE-02, que permite a obtenção de resultados para infinitas relações de tensão (foram testadas, com este equipamento, as relações -0,2/-1; -0,5/-1 e -1/-1).

Além dos testes de compressão biaxial, foi realizado o ensaio complementar de compressão simples, que por sua vez, além de ser aproveitado para a obtenção dos módulos de elasticidade dos concretos testados, serviu para se obter os resultados para a relação de tensão $\sigma_2/\sigma_1 = 0/-1$. Embora estes resultados pudessem ter sido obtidos com o equipamento APE-02, pois, em princípio, o equipamento permitiria ensaios biaxiais de compressão para quaisquer relações de tensão, verificou-se, na prática, algumas dificuldades de manuseio do equipamento que ainda precisariam ser contornadas, conforme foi comentado no Capítulo 4. Não obstante, comparando-se os resultados do APE-02 para uma carga aplicada num ângulo de 45° com os dados fornecidos pelo equipamento APE-01, pôde ser verificado apenas diferenças de até 4%.

6.2 Conclusões

Baseando-se nos resultados e análises apresentadas no capítulo 5, pode-se chegar às seguintes conclusões:

- Em compressão uniaxial, o concreto reforçado com fibra de aço mostrou um aumento da resistência, quando comparado com o concreto simples, para todos os volumes de fibra utilizados (0,5; 1 e 1,5%);
- Para compressão biaxial, o concreto reforçado com fibra de aço, quando comparado com o concreto simples, mostrou um aumento da resistência para todas as relações de tensão investigadas e para todos os volumes de fibra considerados;
- Tendo-se como base a resistência do concreto simples sob compressão uniaxial (resultado de controle), para um percentual de volume de fibra de 1,5%, a resistência do material sob compressão uniaxial aumentou aproximadamente 25%, enquanto que, sob compressão biaxial numa relação de tensão igual a $\sigma_2/\sigma_1 = -0,5/-1$ foi obtido um aumento de 95% nesta resistência;

- Ao se introduzir uma tensão de confinamento na direção da tensão principal σ₂, afetase significativamente a rigidez e a resistência última do concreto na direção da tensão principal σ₁. Essa rigidez é cada vez maior, quanto maior for a tensão de confinamento σ₂;
- Perante os resultados obtidos por meio dos dois equipamentos desenvolvidos, utilizando lâminas de teflon para a redução do atrito existente na interface equipamento-corpo-de-prova, observou-se que tanto os equipamentos quanto a escolha pelas lâminas de teflon foram práticos e eficientes, gerando resultados confiáveis e apenas ligeiramente diferentes daqueles disponíveis na literatura (diferenças, em geral, menores ou iguais a 10%). Reforçando este aspecto, salienta-se que os equipamentos geraram resultados muito próximos, tendo apenas, em media, 4% de diferença entre si e, ao se comparar os resultados obtidos nesta pesquisa com aqueles de Traina e Mansour (1991), observou-se que, para o concreto simples, os resultados de compressão biaxiais apresentam uma diferença de, em média, 5% para uma relação de tensão igual a -0,5/-1 e de 9% para tensões iguais nas duas direções principais;
- Já com relação ao concreto com adição de fibras de aço, no entanto, ao se comparar novamente com os resultados de Traina e Mansur (1991), foram observadas algumas divergências mais significativas como, por exemplo, para 1,5% de fibra e uma relação de tensão de -0,5/-1, onde a diferença foi de 25% e, para um percentual de fibra de 1,0% e uma relação de tensão de -1/-1, essa diferença foi de aproximadamente 21%. Embora a comparação destes resultados tenham sido satisfatórios, é importante salientar que apenas os teores de fibras de aço utilizados nesta pesquisa foram iguais aos utilizados por Traina e Mansour (1991), sendo assim, alguns outros parâmetros poderiam ter interferido nesta análise como, por exemplo, os valores de resistências diferentes em ambas as pesquisas.

- Analisando-se os padrões de fissura e modos de ruptura obtidos nos ensaios de compressão biaxial para todas as relações de tensões, observou-se que nenhuma mudança significativa ocorreu na medida em que cresciam a tensão de confinamento e a participação de fibras no concreto. Isto, no entanto, de certa forma já era esperado, pois desde os trabalhos da década de 70 na área, os modos de ruptura só sofriam alterações em seus padrões na medida em que esforços de tração eram introduzidos nas amostras. Cogitava-se, no entanto, que a incorporação de fibras no concreto pudesse modificar os padrões tipicamente observados no concreto simples, o que acabou não se confirmando.
- De um modo geral, e finalmente, os resultados satisfatórios da pesquisa mostraram a eficiência e praticidade dos equipamentos desenvolvidos para a realização de ensaios biaxiais, capacitando o laboratório de estruturas deste Programa de Pós-Graduação (LEME/PPGEC) para continuados estudos na área, sem a necessidade de um grande investimento em termos de equipamento ou demanda de espaço físico.

6.3 Sugestões

Algumas sugestões para trabalhos futuros encontram-se descritos nos pontos a seguir.

- Adaptação dos equipamentos desenvolvidos para esta dissertação de forma a possibilitarem os seus empregos na realização de ensaios biaxiais também de tração;
- Investigação do comportamento mecânico de concretos reforçados com fibra em estados biaxiais de tensão para outros percentuais de volume de fibras de aço, detalhando mais o comportamento do concreto com fibras no intervalo estudado (de 0,5 a 1,5%);
- Investigação do comportamento mecânico de concretos reforçados com fibra em estados biaxiais de tensão para concretos reforçados com fibras de aço cuja orientação

das fibras seja forçada numa direção predominante, como o que tende a ocorrer em peças de paredes finas (tubos, por exemplo);

- Além da fibra de aço, uma série de outras possibilidades já são realidades no mercado, tais como as fibras de polipropileno, as fibras de vidro e mesmo as fibras orgânicas e oriundas de rejeitos industriais, o que, aliás, proporcionaria um viés ecológico aos trabalhos a serem eventualmente produzidos;
- Por fim, seria interessante a investigação de possibilidades de desenvolvimento de equipamentos de baixo custo também para a realização de ensaios triaxiais para concretos.

Referências Bibliográficas

AMERICAN CONCRETE INSTITUTE. ACI 544.1R-96 (2004). "State-of-the-art report on fiber reinforced concrete". In: Manual of concrete Practice. Detroit, MI, Vol. 5.

AMERICAN CONCRETE INSTITUTE. ACI 544-4R-88 (2004). "Desing Considerations for Steel Fiber Reinforced Concrete". In: Manual of concrete Practice. Detroit, MI, Vol. 5.

AMERICAN SOCIETY OF CIVIL ENGINEERS – ASCE. (1994) "Fibre Reinforced Concrete – Myth and Reality". Advances in Cement and Concrete.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (1991). NBR 5736 – Cimento Portland Pozolônico.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (2003). NBR 5738 – Moldagem e Cura de Corpos-de-prova Cilíndricos ou Prismáticos.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (1994). NBR 5739 – Concreto – Ensaio de Compressão de Corpos-de-prova Cilíndricos.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (2003). NBR 7217 – Agregados – Determinação da Composição Granulométrica.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (1994). NBR 7222 – Argamassa e Concreto – Determinação da Resistência à Tração por Compressão Diametral de Corposde-prova Cilíndricos.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (2002). NBR 8522 – Concreto – Determinação do Módulo de Deformação Estática e Diagrama Tensão-deformação.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (1998). NBR NM67 – Concreto – Determinação da Consistência pelo Abatimento do Tronco de Cone.

ATAN, Y.; SLATE, F.O. (1973). *Structural Lightweight Concrete under Biaxial Compression*. ACI Journal, Vol. 70, N°17, p. 182-186.

BARROS, J.A.O. (1996). *Estado-de-Arte dos Betões Reforçados com Fibras.* Eng. Civil UM, Departamento de Eng. Civil, Univ. do Minho, Guimarães, Portugal, n. 3, p. 29-47.

BENTUR, A.; MINDESS, S. (1990). *Mechanics of Fibre Reinforced Cementitious Composites*. In: Fibre reinforced cementitious composites. London e New York: Elsevier Applied Science. p. 89-131.

CHEN, W. F. (1982). *Plasticity in Reinforced Concrete.* McGraw-Hill. New York.

CHEN, W.F; HAN, D.J. (1987). *Plasticity for Structural Engineers*. McGraw-Hill. New York.

CHERN, J.C; YANG, H.J; CHEN, H.W. (1992). *Behavior of Steel Fiber Reinforced Concrete in Multiaxial Loading*. ACI Materials Journal, Vol. 89, N°1, p. 32-40.

CRUZ, J.M.S. (1998). *Comportamento Cíclico de Estruturas Porticadas de Betão Armado Reforçado com Fibras de Aço*. Tese (Mestrado). 268 p. Faculdade de Engenharia da Universidade do Porto.

EBERHARDSTEINER, J.; HELNWEIN, P.M. (2003). *Biaxial Strength Tests for the Macroscopic Characterization of Clear Spruce Wood.* ASCE Engineering Mechanics Conference. University of Washington, Seatle.

EVANGELISTA, L.M.R. (2003). *Betão Reforçado com Fibras de aço – aplicação em pavimentos industriais.* Ed. Construlink Press, N°11.

FIGUEIREDO, A.D. (2005). *Concreto com Fibras*. Concreto Ensino, Pesquisa e Realizações. Ibracon, v. 2. São Paulo: Ipisis Gráfica e Editora, cap.39, p.1195-1225.

FIGUEIREDO, A.D.; PIETRA, I.F.D. (2006). *Concreto com Agregados Graúdos Reciclados Reforçado com Fibras de Aço.* São Paulo: Departamento de Engenharia de Construção Civil (Boletim Técnico (BT/PCC/424)).

FIGUEIREDO, A.D. (2006). *Metodologia de Dosagem de Concreto Reforçados com Fibras de Aço para Pavimentos*. Anais do 48º Congresso Brasileiro de Concreto (IBRACON).

FLORES, J.E.R.; CUNHA, J. (2003). *Caracterização Numérica do Comportamento Estrutural de Pisos em Concreto Reforçado por Fibras de Aço*. Revista Horizonte Científico. Universidade Federal de Uberlândia.

GARCEZ, E.O. (2005). Análise Teórico-Experimental do Comportamento de Concretos Reforçados com Fibras de Aço quando Submetidos a Cargas de Impacto. Dissertação (Mestrado). 141 p. Universidade Federal do Rio Grande do Sul. UFRGS. Porto Alegre.

GARCEZ, E.O.; FIGUEIREDO, M.P.; RIOS, R.D.; FILHO, L.C.P.S. (2006). *Simulação Numérica do Comportamento do Concreto Reforçado com Fibras de Aço Submetidos a Cargas de Impacto.* In: Jornadas Sulamericanas de Engenharia Estrutural. Campinas/SP.

GAVA, G.P. (2006). Análise Teórica-Experimental do Comportamento à Flexão de Vigas de Concreto Reforçado com Fibras de Aço. Tese (Doutorado). 306 p. Universidade Federal de Santa Catarina. UFSC.

GROSSI, B.F. (2006). *Uma Contribuição para a Modelagem Numérica do Concreto com Fibras Curtas de Aço.* Tese (Doutorado). 227 p. Universidade Federal de Minas Gerais. UFMG. Belo Horizonte.

HILSDORF, H.K. (1965). *The Experimental Deformation of the Biaxial Strength of Concrete*. (Die Bestimmung der Zweiachsigen Festigkeit von Beton), Proceedings, Vol. 173, Deutscher Ausschuss für Stahlbrton, Berlin.

HOLANDA, K.M.A.; PINHEIRO, L.M. (2001). *Desempenho Estrutural do Concreto Reforçado com Fibras de Aço*. Anais do 43° Congresso Brasileiro do Concreto (IBRACON).

HUSSEN, A.; MARZOUK, H. (2000). *Behavior of High-Strength Concrete under Biaxial Stresses*. ACI Materials Journal, Vol. 97, N° 1, p. 27-36.

KUPFER, H.; HILSDORF, H.K.; RUSCH, H. (1969). *Behaviour of Concrete Under Biaxial Stresses*. ACI Journal, Vol. 66, N° 8, p. 656-666.

KUPFER, H.B.; GERSTLE, K.H. (1973). *Behaviour of Concrete Under Biaxial Stresses*. ASCE J. Eng. Div. Vol. 99, N° 4, p. 853-866.

LOBÃO, L.M.M. (2005). *Taxa de Armadura Longitudinal de Tração Mínima em Vigas de Concreto de Resistência Normal com Fibras de Aço.* Dissertação (Mestrado). 109 p. COPE/UFRJ. Rio de Janeiro.

LU, P.; LI, Q.; SONG, Y. (2007). *Behavior of Concrete under Nonproportional Biaxial Fatigue Stress with one Constant.* ACI Material Journal, Vol. 104, N° 1, p. 3-11.

NUNES, N.L. (1998). Estudo da Influência da Geometria da Fibra de Aço na Tenacidade à Flexão dos Compósitos de Matriz de Concreto. Dissertação (Mestrado), 193 p. Escola Politécnica, Universidade de São Paulo.

NUNES, N.L. (2006). Contribuição para a Aplicação do Concreto Reforçado com Fibras de Aço em Elementos de Superfície Restringidos. Tese (Doutorado), 276 p. Escola Politécnica, Universidade de São Paulo.

NUNES, F.G.T; ARAÚJI, D.L; GUERRA, E.A.; FONSECA, A.C. (2006). *Influência da Adição de Fibras de Aço nas Propriedades Mecânicas do Concreto*. Anais do 48° Congresso Brasileiro do Concreto (IBRACON).

NELISSEN, I.J. (1972). *Biaxial Testing of Normal Concrete.* Heron (Delf), Vol. 18, N° 1, p. 603-611.

PASA, V.F. (2007). Análise do Comportamento de Estruturas de Concreto Reforçado com *Fibras de Aço Via Método dos Elementos Finitos.* Dissertação (Mestrado). 159 p. Universidade Federal do Rio Grande do Sul. UFRGS. Porto Alegre.

RESENDE, F.N. (2003). *Influência das Fibras de Aço, Polipropileno e Sisal no Amortecimento de Concretos de Resistência Normal e de Alto Desempenho.* Dissertação (Mestrado). 98 p. COPPE/UFRJ. Rio de Janeiro.

ROSENTHAL, I.; GLUCKLICH, J. (1970). *Strength of Plain Concrete under Biaxial Stress.* ACI Materials Journal, Vol. 67, N° 56, p. 903-914.

SENTHIVEL, R.; UZOEGBO, H.C. (2004). *Failure Criterion of Unreinforced Masonry under Biaxial Pseudo Dynamic Loading.* Journal of the South African Institution of Civil Engineering, Vol. 46(4), N° 578, p. 20-24.

SWADDIWUDHIPONG, S.; SEOW, C. (2006). *Modelling of Steel Fiber-reinforced Concrete Under Multi-axial Loads*. Cement and Concrete Research. CEMCON 03409, p.1-8.

TAKEUTI, A.R. (1999). *Reforço de Pilares de Concreto Armado por meio Encamisamento com Concreto de Alto Desempenho*. Dissertação (Mestrado), 205 p. – Escola de Engenharia de São Carlos, Universidade de São Paulo.

TASUJI, M. EBAHIM; SLATE, FLOYD O.; NILSON, ARTHUR H. (1978). *Stress-strain Response and Fracture of Concrete in Biaxial Loading.* ACI Journal, Proceedings, Vol. 75, No 7, p. 306-312.

TRAINA, L.A.; MANSOUR, S.A. (1991). *Biaxial Strength and Deformational Behavior of Plain and Steel Fiber Concrete*. ACI Materials Journal, Vol. 88, N° 4, p. 354-362.

VELASCO, R.V.; CORDEIRO, G.C.; SILVOSO, M.M.; TOLEDO FILHO, R.D.; FAIRBAIRN, E.M.R. (2005). *Comportamento Reológico e Mecânico de Concretos Auto-Adensáveis Reforçados com Elevadas Frações Volumétricas de Fibras de Aço*. Anais do 47º Congresso Brasileiro de Concreto (IBRACON).

VOYIADJIS, G.Z.; ABULEBDEH, T.M. (1993). *Biaxial Testing of Repaired Concrete*. ACI Materials Journal, Vol. 89, N° 6, p. 564-573.

WANG, C.Z.; GUO, Z.H.; ZHANG, X.Q. (1987). *Experimental Investigation of Biaxial and Triaxial Compressive Concrete Strength.* ACI Materials Journal, Vol. 84, No 11, p. 92-100.

YIN, W.S.; SU, E.C.M; MANSUR, M.A.; HSU, T.T.C. (1989). *Biaxial Tests of Plain and Fiber Concrete*. ACI Materials Journal, Vol. 86, N° 3, p. 236-243.

Apêndice A – Resultados dos ensaios uniaxiais e	biaxiais	

A.1 Compressão uniaxial (σ_2/σ_1 =0/-1)

Tabela A.1.1: Percentual de fibra: 0,0%

P (KN)	σ _{total} (MPa)	σ ₁ (MPa)	σ ₂ (MPa)	σ_1/fc	ε ₁ (mm/mm)
0,0000	0.0000	0.0000	0.0000	0,0000	0,0000
0,0614	0,0078	0,0078	0,0000	0,0003	0,0000
0,1229	0,0156	0,0156	0,0000	0,0006	0,0000
0,1843	0,0235	0,0235	0,0000	0,0008	0,0000
0,2457	0,0313	0,0313	0,000	0,0011	0,0000
0,5529	0,0704	0,0704	0,000	0,0025	0,0000
0,6143	0,0782	0,0782	0,000	0,0028	0,0000
0,8601	0,1095	0,1095	0,000	0,0039	0,0000
1,2900	0,1642	0,1642	0,0000	0,0058	0,0000
1,7815	0,2268	0,2268	0,0000	0,0080	0,0000
2,7644	0,3520	0,3520	0,0000	0,0125	0,0000
3,8702	0,4928	0,4928	0,0000	0,0174	0,0000
5,0989	0,6492	0,6492	0,0000	0,0230	0,0000
6,8805	0,8761	0,8761	0,0000	0,0310	0,0000
10,0130	1,2749	1,2749	0,0000	0,0451	0,0000
12,1630	1,5486	1,5486	0,0000	0,0548	0,0000
12,1630	1,5486	1,5486	0,0000	0,0548	0,0000
12,4700	1,5877	1,5877	0,0000	0,0562	-0,0001
12,2860	1,5643	1,5643	0,0000	0,0554	-0,0001
12,5320	1,5956	1,5956	0,0000	0,0565	-0,0001
13,2690	1,6895	1,6895	0,0000	0,0598	-0,0001
14,4980	1,8459	1,8459	0,0000	0,0654	-0,0001
19,0440	2,4248	2,4248	0,0000	0,0858	-0,0001
30,3480	3,8640	3,8640	0,0000	0,1368	-0,0002
39,6240	5,0451	5,0451	0,0000	0,1786	-0,0003
44,6610	5,6864	5,6864	0,0000	0,2013	-0,0003
49,9450	6,3592	6,3592	0,0000	0,2251	-0,0004
55,1050	7,0162	7,0162	0,0000	0,2484	-0,0004
60,2040	7,6654	7,6654	0,0000	0,2714	-0,0004
65,3650	8,3225	8,3225	0,0000	0,2947	-0,0005
70,4630	8,9716	8,9716	0,0000	0,3176	-0,0005
75,6240	9,6287	9,6287	0,0000	0,3409	-0,0006
80,5390	10,2545	10,2545	0,0000	0,3631	-0,0006
85,6370	10,9036	10,9036	0,0000	0,3860	-0,0006
90,7360	11,5529	11,5529	0,0000	0,4090	-0,0007
95,6510	12,1787	12,1787	0,0000	0,4312	-0,0007
100,7500	12,8279	12,8279	0,0000	0,4542	-0,0008
105,7800	13,4683	13,4683	0,0000	0,4769	-0,0008
110,8800	14,1177	14,1177	0,0000	0,4998	-0,0008
115,8600	14,7518	14,7518	0,0000	0,5223	-0,0009
120,9000	15,3935	15,3935	0,0000	0,5450	-0,0009
125,9300	16,0339	16,0339	0,0000	0,5677	-0,0010
130,9100	16,6680	16,6680	0,0000	0,5901	-0,0010
135,8900	17,3021	17,3021	0,0000	0,6126	-0,0011
140,8600	17,9349	17,9349	0,0000	0,6350	-0,0011
145,9000	18,5766	18,5766	0,0000	0,6577	-0,0011
151,0000	19,2259	19,2259	0,0000	0,6807	-0,0012 -0.0012
155,9700	19,8587	19,8587	0,000 0,000	0,7031	-0,0012 -0,0013
160,8900 165,9900	20,4852 21,1345	20,4852 21,1345	0,0000	0,7253 0,7483	-0,0013
170,8400	21,7520	21,1345 21,7520	0,0000	0,7483	-0,0013 -0,0014
175,9400	22,4014	22,4014	0,0000	0,7931	-0,0014
180,9200	23,0355	23,0355	0,0000	0,7931	-0,0014
183,0800	23,3105	23,3105	0,0000	0,8156	-0,0014
187,9300	23,9280	23,9280	0,0000	0,8472	-0,0014
190,0900	24,2030	24,2030	0,0000	0,8569	-0,0015
194,9400	24,8205	24,8205	0,0000	0,8788	-0,0015
197,9200	25,2000	25,2000	0,0000	0,8922	-0,0016
200,0200	25,4673	25,4673	0,0000	0,9017	-0,0016
205,9900	26,2275	26,2275	0,0000	0,9286	-0,0016
210,9700	26,8615	26,8615	0,0000	0,9510	-0,0010
215,0100	27,3759	27,3759	0,0000	0,9693	-0,0017
217,8600	27,7388	27,7388	0,0000	0,9821	-0,0018
217,0000	28,2443	28,2443	0,0000	0,7021	-0,0019

Tabela A.1.2: Percentual de fibra: 0,5%

P	σ_{total}	σ_{l}	σ_2	σ ₁ /fc	ε_{I}
(KN)	(MPa)	(MPa)	(MPa)	$\sigma_{IJ}c$	(mm/mm)
0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
0,0212	0,0027	0,0027	0,0000	0,0001	0,0000
0,0614	0,0078	0,0078	0,0000	0,0003	0,0000
0,1843	0,0235	0,0235	0,0000	0,0008 0,0011	0,0000
0,2329 0,3686	0,0297 0,0469	0,0297 0,0469	0,0000 0,0000	0,0011	0,0000 0,0000
0,7372	0,0409	0,0409	0,0000	0,0017	0,0000
1,4129	0,1799	0,1799	0,0000	0,0064	0,0000
2,3958	0,3050	0,3050	0,0000	0,0108	0,0000
3,0716	0,3911	0,3911	0,0000	0,0138	0,0000
4,4846	0,5710	0,5710	0,0000	0,0202	0,0000
6,2047	0,7900	0,7900	0,0000	0,0280	0,0000
8,9692	1,1420	1,1420	0,0000	0,0404	0,0000
12,9000 12,2250	1,6425 1,5565	1,6425 1,5565	0,0000 0,0000	0,0582 0,0551	0,0000 -0,0001
12,1630	1,5486	1,5486	0,0000	0,0548	-0,0001
12,2250	1,5565	1,5565	0,0000	0,0551	-0,0001
12,4090	1,5800	1,5800	0,000	0,0559	-0,0001
12,5930	1,6034	1,6034	0,0000	0,0568	-0,0001
13,2080	1,6817	1,6817	0,0000	0,0596	-0,0001
15,7880	2,0102	2,0102	0,0000	0,0712	-0,0001
22,9140	2,9175	2,9175	0,0000	0,1033	-0,0002
39,6240 45,0920	5,0451 5,7413	5,0451 5,7413	0,0000 0,0000	0,1787 0,2033	-0,0003 -0,0003
50,2520	6,3983	6,3983	0,0000	0,2033	-0,0003 -0,0003
55,4120	7,0553	7,0553	0,0000	0,2498	-0,0003
60,6960	7,7281	7,7281	0,000	0,2737	-0,0004
65,7950	8,3773	8,3773	0,0000	0,2966	-0,0004
70,8940	9,0265	9,0265	0,0000	0,3196	-0,0005
75,9310	9,6678	9,6678	0,0000	0,3423	-0,0005
81,0300	10,3171	10,3171	0,0000	0,3653	-0,0005
86,0060 91,2280	10,9506 11,6155	10,9506 11,6155	0,0000 0,0000	0,3878 0,4113	-0,0005 -0,0006
96,1430	12,2413	12,2413	0,0000	0,4335	-0,0006
101,3000	12,8979	12,8979	0,000	0,4567	-0,0006
106,0900	13,5078	13,5078	0,000	0,4783	-0,0007
111,1900	14,1572	14,1572	0,0000	0,5013	-0,0007
116,1700	14,7912	14,7912	0,0000	0,5238	-0,0007
121,2000	15,4317	15,4317	0,0000	0,5464	-0,0008
126,2400	16,0734	16,0734	0,0000	0,5692	-0,0008
131,2800 136,4400	16,7151 17,3721	16,7151 17,3721	0,0000 0,0000	0,5919 0,6152	-0,0008 -0,0009
141,2900	17,9896	17,9896	0,0000	0.6370	-0,0009
146,2700	18,6237	18,6237	0,0000	0,6595	-0,0010
151,3100	19,2654	19,2654	0,0000	0,6822	-0,0010
156,3400	19,9058	19,9058	0,0000	0,7049	-0,0011
161,4400	20,5552	20,5552	0,0000	0,7279	-0,0011
166,2900	21,1727	21,1727	0,0000	0,7497	-0,0012
171,3900 176,3100	21,8221 22,4485	21,8221 22,4485	0,0000 0,0000	0,7727 0,7949	-0,0012 -0,0012
181,2200	23,0737	23,0737	0,0000	0,7949	-0,0012
186,3800	23,7306	23,7306	0,0000	0,8403	-0,0013
191,4200	24,3724	24,3724	0,0000	0,8630	-0,0014
196,4000	25,0064	25,0064	0,0000	0,8855	-0,0014
201,5000	25,6558	25,6558	0,0000	0,9085	-0,0014
203,4100	25,8990	25,8990	0,0000	0,9171	-0,0014
205,3900	26,1511	26,1511	0,0000	0,9260	-0,0015
206,4200 208,4000	26,2822 26,5343	26,2822 26,5343	0,0000 0,0000	0,9307 0,9396	-0,0015 -0,0015
209,4400	26,6667	26,6667	0,0000	0,9390	-0,0015
211,3500	26,9099	26,9099	0,0000	0,9529	-0,0015
213,3300	27,1620	27,1620	0,000	0,9618	-0,0015
216,3700	27,5491	27,5491	0,0000	0,9755	-0,0016
218,3400	27,7999	27,7999	0,0000	0,9844	-0,0016
221,3200	28,1793	28,1793	0,0000	0,9979	-0,0016
226,2900	28,8121	28,8121	0,0000	1,0203	-0,0017
229,2700 235,3100	29,1916 29,9606	29,1916 29,9606	0,0000 0,0000	1,0337 1,0609	-0,0017 -0,0018
238,2800	30,3388	30,3388	0,0000	1,0743	-0,0018
243,6700	31,0250	31,0250	0,0000	1,0986	-0,0017
2.0,0,00	21,0200	0.1,0200	0,000	2,0700	U,UUII

Tabela A.1.3: Percentual de fibra: 1,0% (continua)

P	,	σ_{total}	σ_{I}	σ_2	σ ₁ /fc	$arepsilon_{I}$
(KN	V)	(MPa)	(MPa)	(MPa)	- 0	(mm/mm)
0,00		0,0000	0,0000	0,0000	0,0000	0,0000
0,06		0,0078	0,0078	0,0000	0,0003	0,0000
0,12		0,0156	0,0156	0,0000	0,0006	0,0000
0,14		0,0183	0,0183	0,0000	0,0006	0,0000
0,18		0,0235	0,0235	0,0000	0,0008	0,0000
0,22		0,0290	0,0290	0,0000	0,0010	0,0000
0,28		0,0364	0,0364	0,0000	0,0013	0,0000
0,30		0,0391	0,0391	0,0000	0,0014	0,0000
0,36		0,0469	0,0469	0,0000	0,0017	0,0000
0,55		0,0704	0,0704	0,0000	0,0025	0,0000
0,67		0,0860	0,0860	0,0000	0,0030	0,0000
0,92		0,1173	0,1173	0,0000	0,0042	0,0000
1,47		0,1877	0,1877	0,0000	0,0066	0,0000
2,15		0,2738	0,2738	0,0000	0,0097	0,0000
2,82		0,3598	0,3598	0,0000	0,0127	0,0000
3,74	74	0,4771	0,4771	0,0000	0,0169	0,0000
5,09	89	0,6492	0,6492	0,0000	0,0230	0,0000
6,88	305	0,8761	0,8761	0,0000	0,0310	0,0000
9,70		1,2359	1,2359	0,0000	0,0438	0,0000
11,79	950	1,5018	1,5018	0,0000	0,0532	0,0000
11,97	790	1,5252	1,5252	0,0000	0,0540	0,0000
11,91	180	1,5174	1,5174	0,0000	0,0537	-0,0001
12,34	480	1,5722	1,5722	0,0000	0,0557	-0,0001
12,53	320	1,5956	1,5956	0,0000	0,0565	-0,0001
12,90	000	1,6425	1,6425	0,0000	0,0582	-0,0001
13,69	990	1,7442	1,7442	0,0000	0,0618	-0,0001
16,09	950	2,0493	2,0493	0,0000	0,0726	-0,0001
20,58	800	2,6203	2,6203	0,0000	0,0928	-0,0001
27,52	220	3,5042	3,5042	0,0000	0,1241	-0,0002
35,01	160	4,4584	4,4584	0,0000	0,1579	-0,0002
40,05		5,0998	5,0998	0,0000	0,1806	-0,0002
45,52		5,7960	5,7960	0,0000	0,2052	-0,0003
50,80		6,4687	6,4687	0,0000	0,2291	-0,0003
56,21		7,1570	7,1570	0,0000	0,2534	-0,0003
61,37		7,8140	7,8140	0,0000	0,2767	-0,0004
66,65		8,4868	8,4868	0,0000	0,3005	-0,0004
71,81		9,1438	9,1438	0,0000	0,3238	-0,0004
76,91		9,7930	9,7930	0,0000	0,3468	-0,0005
81,89		10,4266	10,4266	0,0000	0,3692	-0,0005
87,05		11,0836	11,0836	0,0000	0,3925	-0,0005
92,21		11,7407	11,7407	0,0000	0,4157	-0,0006
97,06		12,3586	12,3586	0,0000	0,4376	-0,0006
102,1		13,0074	13,0074	0,0000	0,4606	-0,0006
107,2		13,6491	13,6491	0,0000	0,4833	-0,0007
112,2		14,2896	14,2896	0,0000	0,5060	-0,0007
117,2		14,9313	14,9313	0,0000	0,5287	-0,0007
122,2		15,5654	15,5654	0,0000	0,5512	-0,0007
127,2		16,2058	16,2058	0,0000	0,5739	-0,0007
132,2		16,8322	16,8322	0,0000	0,5960	-0,0008 -0,0009
137,3 142,3		17,4816 18,1233	17,4816 18,1233	0,0000 0,0000	0,6190 0,6418	-0,0009 -0,0009
142,3		18,7637	18,7637	0,0000	0,6644	-0,0009
147,3		19,3902	19,3902	0,0000	0,6866	-0,0009
152,2		20,0395	20,0395	0,0000	0,7096	-0,0009 -0,0010
		20,0393	20,0393	0,0000		
162,3 167,3		20,6723 21,3064	20,6723 21,3064	0,0000	0,7320 0,7545	-0,0010 -0,0010
172,4		21,3064 21,9557	21,9557	0,0000	0,7343	-0,0010 -0,0011
		22,6051	21,9557 22,6051	0,0000	0,7775	-0,0011 -0,0011
	TUU	22,0031		· · · · · · · · · · · · · · · · · · ·		
177,5 182,4		23,2303	23,2303	0,0000	0,8226	-0,0011

Tabela A.1.3: Percentual de Fibra: 1,0% (continuação)

P (KN)	σ _{total} (MPa)	σ ₁ (MPa)	σ ₂ (MPa)	σ ₁ /fc	€ ₁ (mm/mm)
192,4700	24,5060	24,5060	0,0000	0,8678	-0,0012
195,4400	24,8842	24,8842	0,0000	0,8812	-0,0012
197,4800	25,1439	25,1439	0,0000	0,8904	-0,0012
200,5200	25,5310	25,5310	0,0000	0,9041	-0,0013
202,3100	25,7589	25,7589	0,0000	0,9121	-0,0013
204,4700	26,0339	26,0339	0,0000	0,9219	-0,0014
207,3800	26,4044	26,4044	0,0000	0,9350	-0,0014
210,4800	26,7992	26,7992	0,0000	0,9490	-0,0014
214,3400	27,2906	27,2906	0,0000	0,9664	-0,0014
217,5000	27,6930	27,6930	0,0000	0,9806	-0,0015
220,2900	28,0482	28,0482	0,0000	0,9932	-0,0015
225,3300	28,6899	28,6899	0,0000	1,0159	-0,0016
228,3600	29,0757	29,0757	0,0000	1,0296	-0,0016
235,2200	29,9491	29,9491	0,0000	1,0605	-0,0017
237,3200	30,2165	30,2165	0,0000	1,0700	-0,0017
240,1700	30,5794	30,5794	0,0000	1,0828	-0,0017
243,0800	30,9499	30,9499	0,0000	1,0960	-0,0018
248,0600	31,5840	31,5840	0,0000	1,1184	-0,0019
250,0400	31,8361	31,8361	0,0000	1,1273	-0,0019
255,0100	32,4689	32,4689	0,0000	1,1497	-0,0020
259,0000	32,9769	32,9769	0,0000	1,1677	-0,0023

Tabela A.1.4: Percentual de fibra: 1,5%

P	σ_{total}	σ_1	σ_2	σ ₁ /fc	$arepsilon_1$
(KN)	(MPa)	(MPa)	(MPa)	· PJ ·	(mm/mm)
0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
0,0212	0,0027	0,0027	0,000	0,0001	0,000
0,0614	0,0078	0,0078	0,0000	0,0003	0,0000
0,1229	0,0156	0,0156	0,0000	0,0006	0,000
0,3072	0,0391	0,0391	0,000	0,0014	0,0000
0,6143	0,0782	0,0782	0,0000	0,0028	0,0000
1,2900	0,1642	0,1642	0,0000	0,0058	0,0000
2,1501	0,2738	0,2738	0,0000	0,0097	0,0000
3,2559	0,4146	0,4146	0,0000	0,0147	0,0000
4,6074	0,5866	0,5866	0,0000	0,0208	0,0000
6,5119	0,8291	0,8291	0,0000	0,0294	0,0000
8,9078	1,1342	1,1342	0,0000	0,0402	0,0000
10,3820	1,3219	1,3219	0,0000	0,0468	0,0000
11,7950	1,5018	1,5018	0,0000	0,0532	-0,0001
11,7330	1,4939	1,4939	0,0000	0,0529	-0,0001
11,6100	1,4782	1,4782	0,0000	0,0523	-0,0001
11,5490	1,4705	1,4705	0,0000	0,0521	-0,0001
12,1020	1,5409	1,5409	0,0000	0,0546	-0,0001
13,3310	1,6974	1,6974	0,0000	0,0601	-0,0001
18,3070	2,3309	2,3309	0,0000	0,0825	-0,0001
25,9240	3,3007	3,3007	0,0000	0,1169	-0,0002
31,8220	4,0517	4,0517	0,0000	0,1435	-0,0002
36,1220	4,5992	4,5992	0,0000	0,1628	-0,0002
41,5900	5,2954	5,2954	0,0000	0,1875	-0,0003
47,3030	6,0228	6,0228	0,0000	0,2132	-0,0003
52,8940	6,7347	6,7347	0,0000	0,2384	-0,0003
58,4840	7,4464	7,4464	0,0000	0,2636	-0,0003
63,7060	8,1113	8,1113	0,0000	0,2872	-0,0003
68,9890	8,7840	8,7840	0,0000	0,3110	-0,0004
74,2110	9,4488	9,4488	0,0000	0,3345	-0,0004
79,4330 84,4700	10,1137 10,7551	10,1137 10,7551	0,0000 0,0000	0,3581 0,3808	-0,0004 -0,0005
84,4700 89,7540	10,7331	10,7331	0,000	0,3808	-0,0005 -0,0005
94,6680	12,0535	12,0535	0,0000	0,4268	-0,0005
99,7060	12,6950	12,6950	0,0000	0,4268	-0,0005
104,7400	13,3359	13,3359	0,0000	0,4722	-0,0006
119,8400	15,2585	15,2585	0,0000	0,5402	-0,0007
124,8100	15,8913	15,8913	0,0000	0,5626	-0,0007
139,8500	17,8063	17,8063	0,0000	0,6304	-0,0007
144,8900	18,4480	18,4480	0,0000	0,6532	-0,0008
150,0500	19,1050	19,1050	0,0000	0,6764	-0,0009
164,9000	20,9957	20,9957	0,0000	0,7434	-0,0010
170,0600	21,6527	21,6527	0,0000	0,7666	-0,0010
185,0400	23,5600	23,5600	0,000	0,8342	-0,0011
190,0200	24,1941	24,1941	0,0000	0,8566	-0,0012
214,9900	27,3734	27,3734	0,000	0,9692	-0,0014
229,9700	29,2807	29,2807	0,0000	1,0367	-0,0015
235,1900	29,9453	29,9453	0,000	1,0602	-0,0016
240,0400	30,5628	30,5628	0,000	1,0821	-0,0016
255,0800	32,4778	32,4778	0,000	1,1499	-0,0018
260,1200	33,1195	33,1195	0,000	1,1726	-0,0018
265,0900	33,7523	33,7523	0,0000	1,1950	-0,0020
268,0700	34,1317	34,1317	0,0000	1,2084	-0,0021
272,1100	34,6461	34,6461	0,000	1,2267	-0,0023
276,5000	35,2051	35,2051	0,0000	1,2464	-0,0025

A.2 Compressão biaxial (σ_2/σ_1 =-1/-1) - APE-01

Tabela A.2.1: Percentual de fibra: 0,0% (continua)

P	_			= /fa	= /fa		
(kN)	σ _{total} (MPa)	σ ₁ (MPa)	σ ₂ (MPa)	σ_1/fc	σ_2/fc	E ₁ (mm/mm)	E₂ (mm/mm)
0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
0,0640	0,0085	0,0060	0,0060	0,0002	0,0002	0,0000	0,0000
0,1264	0,0169	0,0119	0,0119	0,0004	0,0004	0,0000	0,0000
0,1439	0,0192	0,0136	0,0136	0,0005	0,0005	0,0000	0,0000
0,1783	0,0238	0,0168	0,0168	0,0006	0,0006	0,0000	0,0000
0,2337	0,0312	0,0220	0,0220	0,0008	0,0008	0,0000	0,0000
0,2856	0,0381	0,0269	0,0269	0,0010	0,0010	0,0000	0,0000
0,3454	0,0461	0,0326	0,0326	0,0012	0,0012	0,0000	0,0000
0,4300	0,0573	0,0405	0,0405	0,0014	0,0014	0,0000	0,0000
0,6122	0,0816	0,0577	0,0577	0,0020	0,0020	0,0000	0,0000
0,6719 0,7372	0,0896 0,0983	0,0633 0,0695	0,0633 0,0695	0,0022 0,0025	0,0022 0,0025	0,0000 0,0000	0,0000 0,0000
0,7986	0,0983	0,0693	0,0693	0,0023	0,0023	0,0000	0,0000
0,7372	0,0983	0,0695	0,0695	0,0027	0,0027	0,0000	0,0000
0,8601	0,1147	0,0811	0,0811	0,0029	0,0029	0,0000	0,0000
1,1057	0,1474	0,1042	0,1042	0,0037	0,0037	0,0000	0,0000
1,0443	0,1392	0,0985	0,0985	0,0035	0,0035	0,0000	0,0000
1,1382	0,1518	0,1073	0,1073	0,0038	0,0038	0,0000	0,0000
1,2934	0,1725	0,1219	0,1219	0,0043	0,0043	0,0000	0,0000
1,1472	0,1530	0,1082	0,1082	0,0038	0,0038	0,0000	0,0000
1,7688	0,2358	0,1668	0,1668	0,0059	0,0059	0,0000	0,0000
1,8972	0,2530	0,1789	0,1789	0,0063	0,0063	0,0000	0,0000
1,9658	0,2621	0,1853	0,1853	0,0066	0,0066	-0,0001	0,0000
2,3958	0,3194	0,2259	0,2259	0,0080	0,0080	0,0000 0.0000	0,0000
2,8259 3,2559	0,3768 0,4341	0,2664 0,3070	0,2664 0,3070	0,0094 0,0109	0,0094 0,0109	0,0000	0,0000 0,0000
3,9931	0,5324	0,3765	0,3765	0,0103	0,0109	0.0000	0,000
4,1689	0,5559	0,3930	0,3930	0.0139	0,0139	-0,0001	0,0000
5,5661	0,7421	0,5248	0,5248	0,0186	0,0186	-0,0001	0,0000
6,4504	0,8601	0,6081	0,6081	0,0215	0,0215	-0,0001	0,0000
7,4948	0,9993	0,7066	0,7066	0,0250	0,0250	-0,0001	-0,0001
8,9078	1,1877	0,8398	0,8398	0,0297	0,0297	0,0000	-0,0001
10,1010	1,3468	0,9523	0,9523	0,0337	0,0337	-0,0001	-0,0001
11,7330	1,5644	1,1062	1,1062	0,0392	0,0392	-0,0001	-0,0001
11,9180	1,5891	1,1236	1,1236	0,0398	0,0398	-0,0001	-0,0001
12,9830	1,7311	1,2240	1,2240	0,0433	0,0433	-0,0001	-0,0001
12,4700 13,1460	1,6627 1,7528	1,1757 1,2394	1,1757 1,2394	0,0416 0,0439	0,0416 0,0439	-0,0001 -0,0001	-0,0001 -0,0001
13,6810	1,7328	1,2394	1,2394	0,0439	0,0439	0,0000	-0,0001
14,9800	1,9973	1,4123	1,4123	0,0500	0,0500	0,0000	-0,0001
15,7730	2,1031	1,4871	1,4871	0,0527	0,0527	0,0000	-0,0001
17,6310	2,3508	1,6623	1,6623	0,0589	0,0589	-0,0001	-0,0001
19,7810	2,6375	1,8650	1,8650	0,0660	0,0660	-0,0001	-0,0001
21,4410	2,8588	2,0215	2,0215	0,0716	0,0716	-0,0001	-0,0001
24,1750	3,2233	2,2792	2,2792	0,0807	0,0807	-0,0001	-0,0001
27,1900	3,6253	2,5635	2,5635	0,0908	0,0908	-0,0001	-0,0001
30,5930	4,0791	2,8843	2,8843	0,1021	0,1021	-0,0001	-0,0001
32,0060 35,5218	4,2675 4,7362	3,0176 3,3490	3,0176 3,3490	0,1069 0,1186	0,1069 0,1186	-0,0001 -0.0001	-0,0002 -0,0002
35,5218	4,7362 4,9720	3,3490 3,5157	3,3490 3,5157	0,1186	0,1186	-0,0001 -0,0001	-0,0002 -0,0002
40,9750	5,4633	3,8632	3,8632	0,1243	0,1243	-0,0001	-0,0002
45,2760	6,0368	4,2687	4,2687	0,1512	0,1512	-0,0002	-0,0002
49,5760	6,6101	4,6741	4,6741	0,1655	0,1655	-0,0002	-0,0002
54,0610	7,2081	5,0969	5,0969	0,1805	0,1805	-0,0002	-0,0002
58,7910	7,8388	5,5429	5,5429	0,1963	0,1963	-0,0001	-0,0002
63,5220	8,4696	5,9889	5,9889	0,2121	0,2121	-0,0002	-0,0002
67,3006	8,9734	6,3452	6,3452	0,2247	0,2247	-0,0002	-0,0003
72,5675	9,6757	6,8417	6,8417	0,2423	0,2423	-0,0002	-0,0003
75,1860	10,0248	7,0886	7,0886	0,2510	0,2510	-0,0002	-0,0003
81,3644 85,1334	10,8486 11,3511	7,6711 8,0265	7,6711 8,0265	0,2716 0,2842	0,2716 0,2842	-0,0002 -0,0002	-0,0004 -0,0003
90,5520	12,0736	8,5373	8,0263 8,5373	0,2842	0,2842	-0,0002	-0,0003
95,0370	12,6716	8,9602	8,9602	0,3023	0,3023	-0,0003	-0,0003
75,0510	12,0/10	0,7002	0,7002	0,5175	0,5175	0,0002	0,000

Tabela A.2.1: Percentual de Fibra: 0,0% (continuação)

P (kN)	σ _{total} (MPa)	σ ₁ (MPa)	σ ₂ (MPa)	σ ₁ /fc	σ₂/fc	€ ₁ (mm/mm)	E ₂ (mm/mm)
110,8500	14,7800	10,4510	10,4510	0,3701	0,3701	-0,0002	-0,0004
113,5200	15,1360	10,7028	10,7028	0,3790	0,3790	-0,0003	-0,0004
118,1900	15,7587	11,1431	11,1431	0,3946	0,3946	-0,0003	-0,0004
122,9200	16,3893	11,5890	11,5890	0,4104	0,4104	-0,0002	-0,0004
127,7800	17,0373	12,0472	12,0472	0,4266	0,4266	-0,0003	-0,0004
132,6900	17,6920	12,5101	12,5101	0,4430	0,4430	-0,0003	-0,0004
139,9200	18,6560	13,1918	13,1918	0,4671	0,4671	-0,0004	-0,0005
142,3400	18,9787	13,4199	13,4199	0,4752	0,4752	-0,0003	-0,0005
149,5000	19,9333	14,0950	14,0950	0,4991	0,4991	-0,0004	-0,0005
152,1700	20,2893	14,3467	14,3467	0,5080	0,5080	-0,0004	-0,0005
157,4348	20,9913	14,8431	14,8431	0,5256	0,5256	-0,0004	-0,0005
161,9900	21,5987	15,2726	15,2726	0,5408	0,5408	-0,0005	-0,0006
163,9100	21,8547	15,4536	15,4536	0,5472	0,5472	-0,0004	-0,0006
172,8807	23,0508	16,2993	16,2993	0,5772	0,5772	-0,0005	-0,0006
175,5110	23,4015	16,5473	16,5473	0,5860	0,5860	-0,0005	-0,0007
181,4500	24,1933	17,1073	17,1073	0,6058	0,6058	-0,0005	-0,0007
186,0800	24,8107	17,5438	17,5438	0,6212	0,6212	-0,0005	-0,0007
192,1000	25,6133	18,1114	18,1114	0,6413	0,6413	-0,0006	-0,0008
198,7500	26,5000	18,7383	18,7383	0,6635	0,6635	-0,0006	-0,0008
210,5400	28,0720	19,8499	19,8499	0,7029	0,7029	-0,0007	-0,0009
219,5900	29,2787	20,7031	20,7031	0,7331	0,7331	-0,0007	-0,0009
224,5500	29,9400	21,1708	21,1708	0,7497	0,7497	-0,0008	-0,0009
254,5000	33,9333	23,9945	23,9945	0,8497	0,8497	-0,0009	-0,0011
279,9700	37,3293	26,3958	26,3958	0,9347	0,9347	-0,0011	-0,0012
315,6900	42,0920	29,7635	29,7635	1,0539	1,0539	-0,0013	-0,0015
339,0000	45,2000	31,9612	31,9612	1,1318	1,1318	-0,0015	-0,0017

Tabela A.2.2: Percentual de fibra: 0,5% (continua)

D	_			- /6-	- /6-	_	_
P	σ_{total}	σ_1	σ_2	σ_1/fc	σ_2/fc	$\boldsymbol{\varepsilon_{l}}$	ϵ_2
(kN)	(MPa)	(MPa)	(MPa)			(mm/mm)	(mm/mm)
0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
0,0124	0,0017	0,0012	0,0012	0,0000	0,0000	0,0000	0,0000
0,0139	0,0018	0,0013	0,0013	0,0000	0,0000	0,0000	0,0000
0,0212	0,0028	0,0020	0,0020	0,0001	0,0001	0,0000	0,0000
0,0257	0,0034	0,0024	0,0024	0,0001	0,0001	0,0000	0,0000
0,0333	0,0044	0,0031	0,0031	0,0001	0,0001	0,0000	0,0000
0,0389	0,0052	0,0037	0,0037	0,0001	0,0001	0,0000	0,0000
0,0414	0,0055	0,0039	0,0039	0,0001	0,0001	0,0000	0,0000
0,0473	0,0063	0,0045	0,0045	0,0002	0,0002	0,0000	0,0000
0,0547	0,0073	0,0052	0,0052	0,0002	0,0002	0,0000	0,0000
0,0614	0,0082	0,0058	0,0058	0,0002	0,0002	0,0000	0,0000
0,0686	0,0091	0,0065	0,0065	0,0002	0,0002	0,0000	0,0000
0,0743	0,0099	0,0070	0,0070	0,0002	0,0002	0,0000	0,0000
0,0776	0,0103	0,0073	0,0073	0,0003	0,0003	0,0000	0,0000
0,0829	0,0110	0,0078	0,0078	0,0003	0,0003	0,0000	0,0000
0,0843	0,0112	0,0079	0,0079	0,0003	0,0003	0,0000	0,0000
0,0869	0,0116	0,0082	0,0082	0,0003	0,0003	0,0000	0,0000
0,0929	0,0124	0,0088	0,0088	0,0003	0,0003	0,0000	0,0000
0,0948	0,0126	0,0089	0,0089	0,0003	0,0003	0,0000	0,0000
0,0974	0,0130	0,0092	0,0092	0,0003	0,0003	0,0000	0,0000
0,0995	0,0133	0,0094	0,0094	0,0003	0,0003	0,0000	0,0000
1,0700	0,1427	0,1009	0,1009	0,0036	0,0036	0,0000	0,0000
1,1045	0,1473	0,1041	0,1041	0,0037	0,0037	0,0000	0,0000
1,1229	0,1497	0,1059	0,1059	0,0037	0,0037	0,0000	-0,0001
1,2150	0,1620	0,1146	0,1146	0,0041	0,0041	0,0000	-0,0001
1,2310	0,1641	0,1161	0,1161	0,0041	0,0041	0,0000	-0,0001
1,5523	0,2070	0,1464	0,1464	0,0052	0,0052	0,0000	-0,0001
1,7658	0,2354	0,1665	0,1665	0,0059	0,0059	0,0000	-0,0001
1,9078	0,2544	0,1799	0,1799	0,0064	0,0064	0,0000	-0,0001
2,1124	0,2817	0,1992	0,1992	0,0071	0,0071	0,0000	-0,0001
2,3550	0,3140	0,2220	0,2220	0,0079	0,0079	0,0000	-0,0001
2,7757	0,3701	0,2617	0,2617	0,0093	0,0093	0,0000	-0,0001
3,2900	0,4387	0,3102	0,3102	0,0110	0,0110	0,0000	-0,0001
3,8429	0,5124	0,3623	0,3623	0,0128	0,0128	0,0000	-0,0001
4,1229	0,5497	0,3887	0,3887	0,0138	0,0138	0,0000	-0,0001
4,6887	0,6252	0,4421	0,4421	0,0157	0,0157	0,0000	-0,0001
5,4476	0,7263	0,5136	0,5136	0,0182	0,0182	0,0000	-0,0001
5,7229	0,7631	0,5396	0,5396	0,0191	0,0191	0,0000	-0,0001
6,3350	0,8447	0,5973	0,5973	0,0211	0,0211	0,0000	-0,0001
6,7200	0,8960	0,6336	0,6336	0,0224	0,0224	0,0000	-0,0001
7,5185	1,0025	0,7089	0,7089	0,0251	0,0251	0,0000	-0,0001
7,9627	1,0617	0,7507	0,7507	0,0266	0,0266	0,0000	-0,0001
8,2341	1,0979	0,7763	0,7763	0,0275	0,0275	0,0000	-0,0001
8,3456	1,1127	0,7868	0,7868	0,0279	0,0279	0,0000	-0,0001
10,6600	1,4213	1,0050	1,0050	0,0356	0,0356	0,0000	-0,0001
12,7000	1,6933	1,1974	1,1974	0,0424	0,0424	0,0000	-0,0001
16,3400	2,1787	1,5405	1,5405	0,0546	0,0546	0,0000	-0,0001
18,8800	2,5173	1,7800	1,7800	0,0630	0,0630	0,0000	-0,0001
20,4200	2,7227	1,9252	1,9252	0,0682	0,0682	0,0000	-0,0001
25,2500	3,3667	2,3806	2,3806	0,0843	0,0843	0,0000	-0,0002
29,7700	3,9693	2,8067	2,8067	0,0994	0,0994	-0,0001	-0,0002
30,1900	4,0253	2,8463	2,8463	0,1008	0,1008	-0,0001	-0,0002
32,9800	4,3973	3,1094	3,1094	0,1101	0,1101	-0,0001	-0,0002
35,6600	4,7547	3,3621	3,3621	0,1191	0,1191	-0,0001	-0,0002
40,2000	5,3600	3,7901	3,7901	0,1342	0,1342	-0,0001	-0,0002
44,6700	5,9560	4,2115	4,2115	0,1491	0,1491	-0,0001	-0,0002
47,8200	6,3760	4,5085	4,5085	0,1596	0,1596	-0,0001	-0,0002
50,9000	6,3760	4,5085	4,5085	0,1596	0,1596	-0,0001	-0,0002

Tabela A.2.2: Percentual de Fibra: 0,5% (continuação)

P	σ_{total}	σ_1	σ_2	σ_1/fc	σ ₂ /fc	ε_1	ϵ_2
(kN)	(MPa)	(MPa)	(MPa)	·		(mm/mm)	(mm/mm)
52,3300	6,9773	4,9337	4,9337	0,1747	0,1747	-0,0002	-0,0003
55,5600	7,4080	5,2382	5,2382	0,1855	0,1855	-0,0002	-0,0003
60,9500	8,1267	5,7464	5,7464	0,2035	0,2035	-0,0002	-0,0003
65,6100	8,7480	6,1858	6,1858	0,2190	0,2190	-0,0002	-0,0003
68,7900	9,1720	6,4856	6,4856	0,2297	0,2297	-0,0002	-0,0003
70,4400	9,3920	6,6411	6,6411	0,2352	0,2352	-0,0002	-0,0003
73,2500	9,7667	6,9061	6,9061	0,2445	0,2445	-0,0002	-0,0003
76,9900	10,2653	7,2587	7,2587	0,2570	0,2570	-0,0002	-0,0004
80,8800	10,7840	7,6254	7,6254	0,2700	0,2700	-0,0002	-0,0004
85,6200	11,4160	8,0723	8,0723	0,2858	0,2858	-0,0002	-0,0004
89,2700	11,9027	8,4165	8,4165	0,2980	0,2980	-0,0002	-0,0004
90,7800	12,1040	8,5588	8,5588	0,3031	0,3031	-0,0003	-0,0004
95,1200	12,6827	8,9680	8,9680	0,3176	0,3176	-0,0003	-0,0004
98,6300	13,1507	9,2989	9,2989	0,3293	0,3293	-0,0003	-0,0004
118,2300	15,7640	11,1468	11,1468	0,3947	0,3947	-0,0003	-0,0005
133,7700	17,8360	12,6120	12,6120	0,4466	0,4466	-0,0004	-0,0005
154,5400	20,6053	14,5702	14,5702	0,5159	0,5159	-0,0004	-0,0006
179,9000	23,9867	16,9611	16,9611	0,6006	0,6006	-0,0005	-0,0007
210,9800	28,1307	19,8914	19,8914	0,7044	0,7044	-0,0006	-0,0008
241,1100	32,1480	22,7321	22,7321	0,8050	0,8050	-0,0007	-0,0009
262,5500	35,0067	24,7535	24,7535	0,8765	0,8765	-0,0008	-0,0009
283,7500	37,8333	26,7522	26,7522	0,9473	0,9473	-0,0008	-0,0010
334,8600	44,6480	31,5709	31,5709	1,1179	1,1179	-0,0010	-0,0012
380,4400	50,7253	35,8682	35,8682	1,2701	1,2701	-0,0011	-0,0013
415,9800	55,4640	39,2190	39,2190	1,3888	1,3888	-0,0013	-0,0015
450,5100	60,0680	42,4745	42,4745	1,5041	1,5041	-0,0015	-0,0017

Tabela A.2.3: Percentual de fibra: 1,0%

	<u> </u>	<u> </u>		10	10	I	
P	σ_{total}	σ_1	σ_2	σ_{1}/fc	σ₂/fc	$oldsymbol{arepsilon_1}$	$oldsymbol{arepsilon}_2$
(kN)	(MPa)	(MPa)	(MPa)			(mm/mm)	(mm/mm)
0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
0,0121	0,0016	0,0011	0,0011	0,0000	0,0000	0,0000	0,0000
0,0346	0,0046	0,0033	0,0033	0,0001	0,0001	0,0000	0,0000
0,0588	0,0078	0,0055	0,0055	0,0002	0,0002	0,0000	0,0000
0,0614	0,0082	0,0058	0,0058	0,0002	0,0002	0,0000	0,0000
0,0744	0,0099	0,0070	0,0070	0,0002	0,0002	0,0000	0,0000
0,0923 0,1229	0,0123 0,0164	0,0087 0,0116	0,0087 0,0116	0,0003 0,0004	0,0003 0,0004	0,0000 0,0000	0,0000 0,0000
0,1229	0,0164	0,0116	0,0116	0,0004	0,0004	0,0000	0,0000
0,5072	0,0410	0,0290	0,0290	0,0010	0,0010	0,0000	0,0000
0,0738	0,0901	0,0869	0,0869	0,0023	0,0023	0,0000	0,0000
1,2286	0,1638	0,1158	0,1158	0,0031	0,0041	0,0000	0,0000
1,5972	0,2130	0,1506	0,1506	0,0053	0,0053	0,0000	0,0000
1,9658	0,2621	0,1853	0,1853	0,0066	0,0066	0,0000	0,0000
2,3958	0,3194	0,2259	0,2259	0,0080	0,0080	0,0000	0,0000
2,9487	0,3932	0,2780	0,2780	0,0098	0,0098	0,0000	0,0000
3,5016	0,4669	0,3301	0,3301	0,0117	0,0117	0,0000	0,0000
4,0545	0,5406	0,3823	0,3823	0,0135	0,0135	0,0000	0,0000
4,6074	0,6143	0,4344	0,4344	0,0154	0,0154	0,0000	-0,0001
5,2832	0,7044	0,4981	0,4981	0,0176	0,0176	0,0000	-0,0001
6,1433	0,8191	0,5792	0,5792	0,0205	0,0205	0,0000	-0,0001
7,3105	0,9747	0,6892	0,6892	0,0244	0,0244	0,0000	-0,0001
8,7849	1,1713	0,8282	0,8282	0,0293	0,0293	0,0000	-0,0001
10,3200	1,3760	0,9730	0,9730	0,0345	0,0345	-0,0001	-0,0001
11,5490	1,5399	1,0889	1,0889	0,0386	0,0386	-0,0001	-0,0001
11,7950	1,5727	1,1120	1,1120	0,0394	0,0394	-0,0001	-0,0001
11,9180	1,5891	1,1236	1,1236	0,0398	0,0398	-0,0001	-0,0001
12,3480	1,6464	1,1642	1,1642	0,0412	0,0412	-0,0001	-0,0001
12,2860	1,6381	1,1583	1,1583	0,0410	0,0410	-0,0001	-0,0001
12,9620	1,7283	1,2221	1,2221	0,0433	0,0433	-0,0001	-0,0001
14,4980	1,9331	1,3669	1,3669	0,0484	0,0484	-0,0001	-0,0001
18,3680	2,4491	1,7318	1,7318	0,0613	0,0613	-0,0001	-0,0001
24,3270	3,2436	2,2936	2,2936	0,0812	0,0812	-0,0001	-0,0002
31,2690	4,1692	2,9481	2,9481	0,1044	0,1044	-0,0002	-0,0002
34,1560 38,0880	4,5541 5,0784	3,2203 3,5910	3,2203 3,5910	0,1140 0,1272	0,1140 0,1272	-0,0002 -0,0002	-0,0002 -0,0002
42,7570	5,7009	4,0312	4,0312	0,1272	0,1272	-0,0002	-0,0002
47,7330	6,3644	4,5003	4,5003	0,1427	0,1427	-0,0002	-0,0002
52,8940	7,0525	4,9869	4,9869	0,1354	0,1766	-0,0002	-0,0002
58,3000	7,7733	5,4966	5,4966	0,1766	0,1946	-0,0003	-0,0003
63,5220	8,4696	5,9889	5,9889	0,2121	0,2121	-0,0003	-0,0003
68,8660	9,1821	6,4927	6,4927	0,2299	0,2299	-0,0003	-0,0004
74,2110	9,8948	6,9967	6,9967	0,2478	0,2478	-0,0003	-0,0003
79,4330	10,5911	7,4890	7,4890	0,2652	0,2652	-0,0003	-0,0004
84,7160	11,2955	7,9871	7,9871	0,2828	0,2828	-0,0003	-0,0004
90,0610	12,0081	8,4910	8,4910	0,3007	0,3007	-0,0004	-0,0004
95,2210	12,6961	8,9775	8,9775	0,3179	0,3179	-0,0004	-0,0004
100,3800	13,3840	9,4639	9,4639	0,3351	0,3351	-0,0004	-0,0004
115,4800	15,3973	10,8876	10,8876	0,3855	0,3855	-0,0004	-0,0005
125,5700	16,7427	11,8389	11,8389	0,4192	0,4192	-0,0004	-0,0005
140,6100	18,7480	13,2568	13,2568	0,4694	0,4694	-0,0004	-0,0006
165,5900	22,0787	15,6120	15,6120	0,5528	0,5528	-0,0005	-0,0007
185,5600	24,7413	17,4948	17,4948	0,6195	0,6195	-0,0006	-0,0007
210,5400	28,0720	19,8499	19,8499	0,7029	0,7029	-0,0006	-0,0008
235,5200	31,4027	22,2050	22,2050	0,7863	0,7863	-0,0007	-0,0009
250,6300	33,4173	23,6296	23,6296	0,8367	0,8367	-0,0007	-0,0009
284,6700	37,9560	26,8389	26,8389	0,9504	0,9504	-0,0008	-0,0010
323,9900 352,3500	43,1987 46,9800	30,5461 33,2199	30,5461 33,2199	1,0817 1,1763	1,0817 1,1763	-0,0009 -0,0011	-0,0011 -0,0012
378,4900	50,4653	35,2199 35,6844	35,2199 35,6844	1,1763	1,1763	-0,0011	-0,0012
424,0800	56,5440	39,9826	39,9826	1,4158	1,4158	-0,0011	-0,0015 -0,0015
465,2400	62,0320	43,8632	43,8632	1,5532	1,5532	-0,0013	-0,0013
498,5400	66,4720	47,0028	47,0028	1,6644	1,6644	-0,0014	-0,0017
770,5700	00,T/20	77,0020	77,0020	1,0077	1,0077	-0,0010	-0,0044

Tabela A.2.4: Percentual de fibra: 1,5% (continua)

P				= /fa	= /fa	0	
	σ_{total}	σ_1	σ_2	σ_1/fc	σ_2/fc	ε ₁	E ₂
(kN)	(MPa)	(MPa)	(MPa)			(mm/mm)	(mm/mm)
0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
0,0614	0,0082	0,0058	0,0058	0,0002	0,0002	0,0000	0,0000
0,0614	0,0082	0,0058	0,0058	0,0002	0,0002	0,0000	0,0000
0,1229	0,0164	0,0116	0,0116	0,0004	0,0004	0,0000	0,0000
0,1843	0,0246	0,0174	0,0174	0,0006	0,0006	0,0000	0,0000
0,6143	0,0819	0,0579	0,0579	0,0021	0,0021	0,0000	0,0000
0,8601	0,1147	0,0811	0,0811	0,0029	0,0029	0,0000	0,0000
1,5358	0,2048	0,1448	0,1448	0,0051	0,0051	0,0000	0,0000
2,0272	0,2703	0,1911	0,1911	0,0068	0,0068	0,0000	0,0000
2,9487	0,3932	0,2780	0,2780	0,0098	0,0098	0,0000	0,0000
3,5016	0,4669	0,3301	0,3301	0,0117	0,0117	0,0000	0,0000
4,1774	0,5570	0,3938	0,3938	0,0139	0,0139	0,0000	0,0000
4,9760	0,6635	0,4691	0,4691	0,0166	0,0166	0,0000	0,0000
6,3890	0,8519	0,6024	0,6024 0,7298	0,0213 0,0258	0,0213	0,0000	0,0000
7,7405	1,0321 1,2450	0,7298 0,8804	0,7298	0,0238	0,0258 0,0312	0,0000 0,0000	0,0000 0,0000
9,3378 10,5050	1,2430	0,8804	0,8804	0,0312	0,0312	0,0000	0,0000
11,6720	1,4007	1,1004	1,1004	0,0351	0,0351	0,0000	0,0000
	1,5644	1,1004		0,0390	0,0390	0,0000	0,0000
11,7330 11,8560	1,5808	1,1178	1,1062 1,1178	0,0392	0,0392	0,0000	0,0000
12,3480	1,5808	1,1178		0,0396	0,0396	0,0000	0,0000
-		1,1873	1,1642 1,1873	0,0412	0,0412	0,0000	-0,0001
12,5930 13,4530	1,6791	1,1873		0,0420	0,0420	0,0000	-0,0001
16,3410	1,7937 2,1788	1,2084	1,2684 1,5406	0,0449	0,0449	0,0000	-0,0001
22,7300	3,0307	2,1430	2,1430	0,0340	0,0340	0,0000	-0,0001
30,1020	4,0136	2,8380	2,8380	0,1005	0,1005	-0,0001	-0,0001
33,5420	4,4723	3,1624	3,1624	0,1003	0,1003	-0,0001	-0,0001
37,6580	5,0211	3,5504	3,5504	0,1120	0,1120	-0,0001	-0,0001
42,3270	5,6436	3,9906	3,9906	0,1237	0,1237	-0,0001	-0,0001
47,4260	6,3235	4,4714	4,4714	0,1413	0,1413	-0,0001	-0,0001
52,7710	7,0361	4,9753	4,9753	0,1762	0,1762	-0,0002	-0,0002
58,0540	7,7405	5,4734	5,4734	0,1938	0,1938	-0,0001	-0,0002
63,3990	8,4532	5,9773	5,9773	0,2117	0,2117	-0,0002	-0,0002
68,8050	9,1740	6,4870	6,4870	0,2297	0,2297	-0,0002	-0,0002
74,1490	9,8865	6,9908	6,9908	0,2476	0,2476	-0,0003	-0,0003
79,3710	10,5828	7,4832	7,4832	0,2650	0,2650	-0,0002	-0,0003
84,7770	11,3036	7,9929	7,9929	0,2830	0,2830	-0,0003	-0,0003
89,9380	11,9917	8,4794	8,4794	0,3003	0,3003	-0,0003	-0,0003
95,0370	12,6716	8,9602	8,9602	0,3173	0,3173	-0,0002	-0,0003
100,3200	13,3760	9,4583	9,4583	0,3349	0,3349	-0,0002	-0,0003
105,4100	14,0547	9,9382	9,9382	0,3519	0,3519	-0,0003	-0,0003
110,6400	14,7520	10,4312	10,4312	0,3694	0,3694	-0,0003	-0,0004
115,5500	15,4067	10,8942	10,8942	0,3858	0,3858	-0,0003	-0,0003
120,7100	16,0947	11,3806	11,3806	0,4030	0,4030	-0,0003	-0,0004
125,5000	16,7333	11,8323	11,8323	0,4190	0,4190	-0,0003	-0,0004
130,6000	17,4133	12,3131	12,3131	0,4360	0,4360	-0,0003	-0,0004
135,6400	18,0853	12,7883	12,7883	0,4528	0,4528	-0,0004	-0,0005
140,7400	18,7653	13,2691	13,2691	0,4699	0,4699	-0,0003	-0,0004
145,7800	19,4373	13,7443	13,7443	0,4867	0,4867	-0,0004	-0,0005
150,4500	20,0600	14,1846	14,1846	0,5023	0,5023	-0,0004	-0,0005
149,8300	19,9773	14,1261	14,1261	0,5002	0,5002	-0,0003	-0,0005
158,6200	21,1493	14,9548	14,9548	0,5296	0,5296	-0,0004	-0,0005
164,6400	21,9520	15,5224	15,5224	0,5497	0,5497	-0,0004	-0,0005
169,8600	22,6480	16,0146	16,0146	0,5671	0,5671	-0,0004	-0,0006
175,2600	23,3680	16,5237	16,5237	0,5851	0,5851	-0,0004	-0,0005
180,5500	24,0733	17,0224	17,0224	0,6028	0,6028	-0,0004	-0,0006
185,5200	24,7360	17,4910	17,4910	0,6194	0,6194	-0,0004	-0,0006

Tabela A.2.4: Percentual de Fibra: 1,5% (continuação)

P	σ_{total}	σ_1	σ_2	σ_1/fc	σ₂/fc	ε_1	ϵ_2
(kN)	(MPa)	(MPa)	(MPa)			(mm/mm)	(mm/mm)
195,6600	26,0880	18,4470	18,4470	0,6532	0,6532	-0,0005	-0,0006
200,9400	26,7920	18,9448	18,9448	0,6709	0,6709	-0,0005	-0,0006
205,7400	27,4320	19,3974	19,3974	0,6869	0,6869	-0,0005	-0,0007
210,5900	28,0787	19,8546	19,8546	0,7031	0,7031	-0,0005	-0,0007
215,5000	28,7333	20,3175	20,3175	0,7195	0,7195	-0,0006	-0,0007
220,4200	29,3893	20,7814	20,7814	0,7359	0,7359	-0,0006	-0,0007
230,1000	30,6800	21,6940	21,6940	0,7682	0,7682	-0,0006	-0,0008
238,5300	31,8040	22,4888	22,4888	0,7963	0,7963	-0,0006	-0,0008
243,8700	32,5160	22,9923	22,9923	0,8142	0,8142	-0,0007	-0,0008
268,8500	35,8467	25,3474	25,3474	0,8976	0,8976	-0,0007	-0,0009
273,8900	36,5187	25,8226	25,8226	0,9144	0,9144	-0,0007	-0,0009
309,2300	41,2307	29,1545	29,1545	1,0324	1,0324	-0,0008	-0,0010
324,6400	43,2853	30,6074	30,6074	1,0838	1,0838	-0,0009	-0,0010
334,6100	44,6147	31,5473	31,5473	1,1171	1,1171	-0,0009	-0,0011
353,7900	47,1720	33,3556	33,3556	1,1811	1,1811	-0,0010	-0,0012
365,9400	48,7920	34,5012	34,5012	1,2217	1,2217	-0,0011	-0,0012
401,0600	53,4747	37,8123	37,8123	1,3390	1,3390	-0,0012	-0,0014
444,9400	59,3253	41,9493	41,9493	1,4855	1,4855	-0,0014	-0,0016
489,5500	65,2733	46,1552	46,1552	1,6344	1,6344	-0,0017	-0,0020
538,5300	71,8040	50,7731	50,7731	1,7979	1,7979	-0,0023	-0,0024

A.3 Compressão biaxial (σ_2/σ_1 =-0,2/-1) - APE-02

Tabela A.3.1: Percentual de fibra: 0,0% (continua)

P (kN)	σ _{total} (MPa)	σ ₁ (MPa)	σ ₂ (MPa)	σ_1/fc	σ₂/fc	ε ₁ (mm/mm)	ε ₂ (mm/mm)
0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
0,0640	0,0085	0,0084	0,0017	0,0003	0,0001	0,0000	0,0000
0,1523	0,0203	0,0199	0,0040	0,0007	0,0001	0,0000	0,0000
0,1965	0,0262	0,0257	0,0051	0,0009	0,0002	0,0000	0,0000
0,2134	0,0285	0,0279	0,0056	0,0010	0,0002	0,0000	0,0000
0,2457	0,0328	0,0321	0,0064	0,0011	0,0002	0,0000	0,0000
0,3072	0,0410	0,0402	0,0080	0,0014	0,0003	0,0000	0,0000
0,3686	0,0491	0,0482	0,0096	0,0017	0,0003	0,0000	0,0000
0,4300	0,0573	0,0562	0,0112	0,0020	0,0004	0,0000	0,0000
0,4915	0,0655	0,0643	0,0128	0,0023	0,0005	0,0000	0,0000
0,6143	0,0819	0,0803	0,0160	0,0028	0,0006	0,0000	0,0000
0,6758	0,0901	0,0884	0,0176	0,0031	0,0006	0,0000	0,0000
0,7372	0,0983	0,0964	0,0192	0,0034	0,0007	0,0000	0,0000
0,7986	0,1065	0,1044	0,0208	0,0037	0,0007	0,0000	0,0000
0,8601	0,1147	0,1125	0,0224	0,0040	0,0008	0,0000	0,0000
0,9215	0,1229	0,1205	0,0240	0,0043	0,0008	0,0000	0,0000
1,0443	0,1392	0,1366	0,0272	0,0048	0,0010	0,0000	0,0000
1,1057	0,1474	0,1446	0,0288	0,0051	0,0010	0,0000	0,0000
1,1672	0,1556	0,1526	0,0304	0,0054	0,0011	0,0000	0,0000
1,2286	0,1638	0,1607	0,0320	0,0057	0,0011	0,0000	0,0000
1,2900	0,1720	0,1687	0,0336	0,0060	0,0012	0,0000	0,0000
1,4743	0,1966	0,1928	0,0383	0,0068	0,0014	-0,0001	0,0000
1,7201	0,2293	0,2249	0,0447	0,0080	0,0016	-0,0001	0,0000
1,7815	0,2375	0,2330	0,0463	0,0082	0,0016	-0,0001	0,0000
1,8429	0,2457	0,2410	0,0479	0,0085	0,0017	-0,0001	0,0000
2,0272	0,2703	0,2651	0,0527	0,0094	0,0019	-0,0001	0,0000
2,3958	0,3194	0,3133	0,0623	0,0111	0,0022	-0,0001 -0.0001	0,0000
2,4573	0,3276	0,3213 0,3535	0,0639	0,0114	0,0023	-0,0001	0,0000 0,0000
2,7030 2,5801	0,3604 0,3440	0,3333	0,0703	0,0125 0,0119	0,0025 0,0024	-0,0001	0,0000
2,5801	0,3440	0,3374	0,0671 0,0687	0,0119	0,0024	-0,0001	0,0000
2,7644	0,3522	0,3434	0,0687	0,0122	0,0024	-0,0001	0,0000
2,7644	0,3932	0,3856	0,0719	0,0128	0,0023	-0,0001	0,0000
3,3788	0,3932	0,3830	0,0707	0,0157	0,0027	-0,0001	0,0000
3,6245	0,4833	0,4740	0,0943	0,0168	0,0031	-0,0001	0,0000
4,0545	0,5406	0,5302	0,1055	0,0188	0,0037	-0,0001	0,0000
4,3617	0,5816	0,5704	0,1135	0,0202	0,0040	-0,0001	0,0000
4,7303	0,6307	0,6186	0,1230	0,0219	0,0044	-0,0001	0,0000
5,1603	0,6880	0,6748	0,1342	0,0239	0,0048	-0,0001	0,0000
5,6518	0,7536	0,7391	0,1470	0,0262	0,0052	-0.0001	0,0000
6,0204	0,8027	0,7873	0,1566	0,0279	0,0055	-0,0001	0,0000
6,6347	0,8846	0.8676	0,1726	0,0307	0,0061	-0,0001	0,0000
7,1876	0,9583	0,9399	0,1870	0,0333	0,0066	-0,0001	0,0000
7,6177	1,0157	0,9962	0,1982	0,0353	0,0070	-0,0001	-0,0001
8,1706	1,0894	1,0685	0,2125	0,0378	0,0075	-0,0001	0,0000
8,6620	1,1549	1,1327	0,2253	0,0401	0,0080	-0,0001	0,0000
9,2149	1,2287	1,2050	0,2397	0,0427	0,0085	-0,0001	-0,0001
9,8907	1,3188	1,2934	0,2573	0,0458	0,0091	-0,0001	-0,0001
10,1360	1,3515	1,3255	0,2637	0,0469	0,0093	-0,0001	-0,0001
10,4430	1,3924	1,3656	0,2716	0,0484	0,0096	-0,0001	-0,0001
10,8730	1,4497	1,4219	0,2828	0,0503	0,0100	-0,0001	0,0000
11,6100	1,5480	1,5183	0,3020	0,0538	0,0107	-0,0001	0,0000
12,2250	1,6300	1,5987	0,3180	0,0566	0,0113	-0,0001	0,0000
12,4700	1,6627	1,6307	0,3244	0,0577	0,0115	-0,0001	0,0000
13,0230	1,7364	1,7030	0,3388	0,0603	0,0120	-0,0001	0,0000
13,4530	1,7937	1,7593	0,3499	0,0623	0,0124	-0,0001	0,0000
14,3130	1,9084	1,8717	0,3723	0,0663	0,0132	-0,0001	0,0000
15,9110	2,1215	2,0807	0,4139	0,0737	0,0147	-0,0001	0,0000
17,8770	2,3836	2,3378	0,4650	0,0828	0,0165	-0,0002	0,0000
19,2280	2,5637	2,5145	0,5002	0,0890	0,0177	-0,0002	0,0000
21,0100	2,8013	2,7475	0,5465	0,0973	0,0194	-0,0002	0,0000
23,3440	3,1125	3,0527	0,6072	0,1081	0,0215	-0,0002	0,0000
26,1090	3,4812	3,4143	0,6791	0,1209	0,0240	-0,0002	0,0000
28,9350	3,8580	3,7839	0,7527	0,1340	0,0267	-0,0002	0,0000
28,9350	3,8580	3,7839	0,7527	0,1340	0,0267	-0,0002	0,0000

Tabela A.3.1: Percentual de Fibra: 0,0% (continuação)

P	σ_{total}	σ_{l}	σ_2	σ ₁ /fc	σ ₂ /fc	\mathcal{E}_1	$\boldsymbol{\mathcal{E}}_2$
(kN)	(MPa)	(MPa)	(MPa)	1.0		(mm/mm)	(mm/mm)
32,4360	4,3248	4,2417	0,8437	0,1502	0,0299	-0,0002	0,0000
35,2620	4,7016	4,6113	0,9172	0,1633	0,0325	-0,0002	0,0000
39,1940	5,2259	5,1255	1,0195	0,1815	0,0361	-0,0003	0,0000
44,2310	5,8975	5,7841	1,1505	0,2048	0,0407	-0,0003	0,0000
49,8220	6,6429	6,5153	1,2960	0,2307	0,0459	-0,0004	0,0000
55,2890	7,3719	7,2302	1,4382	0,2560	0,0509	-0,0004	0,0000
60,6340	8,0845	7,9292	1,5772	0,2808	0,0559	-0,0004	0,0000
65,9790	8,7972	8,6282	1,7162	0,3055	0,0608	-0,0005	0,0000
71,4460	9,5261	9,3431	1,8585	0,3308	0,0658	-0,0005	0,0000
76,7300	10,2307	10,0341	1,9959	0,3553	0,0707	-0,0005	0,0000
82,0130	10,9351	10,7250	2,1333	0,3798	0,0755	-0,0006	0,0000
87,3580	11,6477	11,4239	2,2724	0,4045	0,0805	-0,0006	0,0000
92,5180	12,3357	12,0987	2,4066	0,4284	0,0852	-0,0006	0,0000
97,8010	13,0401	12,7896	2,5440	0,4529	0,0901	-0,0006	0,0000
103,0800	13,7440	13,4799	2,6813	0,4773	0,0949	-0,0007	0,0000
108,5500	14,4733	14,1952	2,8236	0,5027	0,1000	-0,0006	0,0000
112,8500	15,0467	14,7575	2,9355	0,5226	0,1039	-0,0007	0,0000
117,9500	15,7267	15,4245	3,0681	0,5462	0,1086	-0,0007	0,0000
122,9800	16,3973	16,0823	3,1990	0,5695	0,1133	-0,0008	0,0000
128,0800	17,0773	16,7492	3,3316	0,5931	0,1180	-0,0008	0,0000
133,1800	17,7573	17,4161	3,4643	0,6167	0,1227	-0,0009	0,0000
138,2200	18,4293	18,0752	3,5954	0,6401	0,1273	-0,0009	0,0000
143,1300	19,0840	18,7173	3,7231	0,6628	0,1318	-0,0010	0,0000
148,1700	19,7560	19,3764	3,8542	0,6861	0,1365	-0,0010	0,0000
153,2100	20,4280	20,0355	3,9853	0,7095	0,1411	-0,0010	0,0000
157,9400	21,0587	20,6540	4,1083	0,7314	0,1455	-0,0011	0,0000
162,4200	21,6560	21,2399	4,2249	0,7521	0,1496	-0,0011	0,0001
167,3400	22,3120	21,8833	4,3529	0,7749	0,1541	-0,0012	0,0001
172,9300	23,0573	22,6143	4,4983	0,8008	0,1593	-0,0012	0,0001
177,9700	23,7293	23,2734	4,6294	0,8241	0,1639	-0,0013	0,0001
183,6200	24,4827	24,0122	4,7763	0,8503	0,1691	-0,0013	0,0001
189,4600	25,2613	24,7759	4,9282	0,8773	0,1745	-0,0014	0,0001
194,7400	25,9653	25,4664	5,0656	0,9018	0,1794	-0,0015	0,0001
199,7800	26,6373	26,1255	5,1967	0,9251	0,1840	-0,0015	0,0001
204,8700	27,3160	26,7911	5,3291	0,9487	0,1887	-0,0016	0,0001
208,7500	27,8333	27,2985	5,4300	0,9667	0,1923	-0,0017	0,0001
214,1500	28,5533	28,0047	5,5705	0,9917	0,1973	-0,0017	0,0001
219,4300	29,2573	28,6952	5,7078	1,0161	0,2021	-0,0018	0,0002
224,4100	29,9213	29,3464	5,8374	1,0392	0,2067	-0,0019	0,0002
229,2000	30,5600	29,9728	5,9620	1,0614	0,2111	-0,0020	0,0002
234,0600	31,2080	30,6083	6,0884	1,0839	0,2156	-0,0021	0,0002
240,4800	32,0640	31,4479	6,2554	1,1136	0,2215	-0,0022	0,0002
243,0600	32,4080	31,7853	6,3225	1,1255	0,2239	-0,0024	0,0002

Tabela A.3.2: Percentual de fibra: 0,5% (continua)

- D				/6	/C	1	
P	σ_{total}	σ_1	σ_2	σ_{1}/fc	σ_2/fc	$oldsymbol{arepsilon}_1$	$oldsymbol{arepsilon}_2$
(kN)	(MPa)	(MPa)	(MPa)	1		(mm/mm)	(mm/mm)
0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
0,0241	0,0032	0,0032	0,0006	0,0001	0,0000	0,0000	0,0000
0,0614	0,0082	0,0080	0,0016	0,0003	0,0001	0,0000	0,0000
0,1229	0,0164	0,0161	0,0032	0,0006	0,0001	0,0000	0,0000
0,2657	0,0354	0,0348	0,0069	0,0012	0,0002	0,0000	0,0000
0,3686	0,0491	0,0482	0,0096 0,0128	0,0017	0,0003	0,0000	0,0000
0,4915 0,4915	0,0655 0,0655	0,0643 0,0643	· ·	0,0023 0,0023	0,0005 0,0005	0,0000 0,0000	0,0000 0,0000
0,4913	0,0633	0,0043	0,0128 0,0144	0,0025	0,0005	0,0000	0,0000
0,6143	0,0737	0,0723	0,0144	0,0028	0,0005	0,0000	0,0000
0,6143	0,0819	0,0803	0,0160	0,0028	0,0006	0,0000	0,0000
0,7986	0,1065	0,1044	0,0208	0,0028	0,0007	0,0000	0,0000
0,9215	0,1229	0,1205	0,0240	0,0043	0,0008	0,0000	0,0000
0,8601	0,1147	0,1125	0,0224	0,0040	0,0008	0,0000	0,0000
1,0443	0,1392	0,1366	0,0272	0,0048	0,0010	0,0000	0,0000
1,2900	0,1720	0,1687	0,0336	0,0060	0,0012	0,0000	0,0000
1,4129	0,1884	0,1848	0,0368	0,0065	0,0013	0,0000	0,0000
1,5972	0,2130	0,2089	0,0415	0,0074	0,0015	0,0000	0,0000
1,8429	0,2457	0,2410	0,0479	0,0085	0,0017	0,0000	0,0000
2,2115	0,2949	0,2892	0,0575	0,0102	0,0020	0,0000	0,0000
2,5801	0,3440	0,3374	0,0671	0,0119	0,0024	0,0000	0,0000
3,1330	0,4177	0,4097	0,0815	0,0145	0,0029	0,0000	0,0000
3,8088	0,5078	0,4981	0,0991	0,0176	0,0035	0,0000	0,0000
4,5460	0,6061	0,5945	0,1183	0,0211	0,0042	0,0000	0,0000
5,3446	0,7126	0,6989	0,1390	0,0247	0,0049	0,0000	0,0000
6,3276	0,8437	0,8275	0,1646	0,0293	0,0058	0,0000	0,0000
7,5562	1,0075	0,9881	0,1966	0,0350	0,0070	0,0000	0,0000
8,7849	1,1713	1,1488	0,2285	0,0407	0,0081	0,0000	0,0000
9,8907	1,3188	1,2934	0,2573	0,0458	0,0091	0,0000	0,0000
10,5050	1,4007	1,3738	0,2733	0,0486	0,0097	0,0000	0,0000
11,1190	1,4825	1,4540	0,2892	0,0515	0,0102	0,0000	0,0000
12,2250 13,0850	1,6300 1,7447	1,5987	0,3180 0,3404	0,0566 0,0606	0,0113 0,0121	0,0000 -0,0001	0,0000 0,0000
13,0850	1,7447	1,7111 1,7914	0,3404	0,0634	0,0121	-0,0001	0,0000
14,1910	1,8203	1,7914	0,3691	0,0657	0,0120	0,0000	0,0000
15,6650	2,0887	2,0485	0,4075	0,0037	0,0131	-0,0001	-0,0001
17,7540	2,3672	2,3217	0,4618	0,0822	0,0144	-0,0001	-0,0001
20,0880	2,6784	2,6269	0,5225	0,0930	0,0185	-0,0001	-0,0001
21,6850	2,8913	2,8358	0,5641	0,1004	0,0200	-0,0001	-0,0001
23,9580	3,1944	3,1330	0,6232	0,1109	0,0221	-0,0001	-0,0001
26,7840	3,5712	3,5026	0,6967	0,1240	0,0247	-0,0001	-0,0001
29,6100	3,9480	3,8721	0,7702	0,1371	0,0273	-0,0001	-0,0001
31,3300	4,1773	4,0971	0,8150	0,1451	0,0289	-0,0001	-0,0001
33,3580	4,4477	4,3623	0,8677	0,1545	0,0307	-0,0001	-0,0001
36,2450	4,8327	4,7398	0,9428	0,1678	0,0334	-0,0001	-0,0001
39,5630	5,2751	5,1737	1,0291	0,1832	0,0364	-0,0001	-0,0001
43,4940	5,7992	5,6878	1,1314	0,2014	0,0401	-0,0002	-0,0001
47,7950	6,3727	6,2502	1,2432	0,2213	0,0440	-0,0002	-0,0001
52,2180	6,9624	6,8286	1,3583	0,2418	0,0481	-0,0002	-0,0001
56,8250	7,5767	7,4311	1,4781	0,2631	0,0523	-0,0002	-0,0001
61,7400	8,2320	8,0738	1,6060	0,2859	0,0569	-0,0003	-0,0001
66,6550	8,8873	8,7166	1,7338	0,3087	0,0614	-0,0003	-0,0001
71,5690	9,5425	9,3592	1,8617	0,3314	0,0659	-0,0003	-0,0001
76,6070	10,2143	10,0180	1,9927	0,3547	0,0706	-0,0003	-0,0001
81,7060 86,8050	10,8941 11,5740	10,6848	2,1253	0,3784	0,0753 0,0800	-0,0003 -0,0004	-0,0001 -0,0001
91,7810	11,5740	11,3516 12,0023	2,2580 2,3874	0,4020 0,4250	0,0800	-0,0004 -0,0003	-0,0001 -0,0001
91,7810	12,2373	12,6449	2,5874	0,4230	0,0845	-0,0003	-0,0001
101,7900	13,5720	13,3112	2,5132	0,4478	0,0891	-0,0004	-0,0001
106,8300	14,2440	13,9703	2,7789	0,4714	0,0938	-0,0004	-0,0001
111,9900	14,9320	14,6451	2,9131	0,5186	0,1032	-0,0005	-0,0002
111,9900	14,9320	14,6451	2,9131	0,5186	0,1032	-0,0005	-0,0002
,	,· - = ·	,	, · · ·	,- ,-	,	,	,

Tabela A.3.2: Percentual de Fibra: 0,5% (continuação)

P	σ_{total}	σ_{l}	σ_2	σ ₁ /fc	σ ₂ /fc	$arepsilon_1$	ϵ_2
(kN)	(MPa)	(MPa)	(MPa)			(mm/mm)	(mm/mm)
122,1200	16,2827	15,9698	3,1766	0,5655	0,1125	-0,0005	-0,0002
127,2800	16,9707	16,6446	3,3108	0,5894	0,1172	-0,0005	-0,0002
132,5100	17,6680	17,3285	3,4469	0,6136	0,1221	-0,0005	-0,0002
138,2200	18,4293	18,0752	3,5954	0,6401	0,1273	-0,0006	-0,0002
144,0600	19,2080	18,8389	3,7473	0,6671	0,1327	-0,0006	-0,0002
149,9500	19,9933	19,6092	3,9005	0,6944	0,1381	-0,0007	-0,0002
155,5400	20,7387	20,3402	4,0459	0,7203	0,1433	-0,0006	-0,0002
160,8300	21,4440	21,0320	4,1835	0,7448	0,1481	-0,0007	-0,0002
166,0500	22,1400	21,7146	4,3193	0,7689	0,1529	-0,0008	-0,0002
171,0900	22,8120	22,3737	4,4504	0,7923	0,1576	-0,0007	-0,0002
176,3100	23,5080	23,0563	4,5862	0,8164	0,1624	-0,0008	-0,0003
181,4100	24,1880	23,7232	4,7188	0,8401	0,1671	-0,0008	-0,0003
186,5700	24,8760	24,3980	4,8531	0,8640	0,1719	-0,0009	-0,0003
191,6700	25,5560	25,0649	4,9857	0,8876	0,1765	-0,0008	-0,0003
196,7700	26,2360	25,7319	5,1184	0,9112	0,1812	-0,0009	-0,0003
201,6200	26,8827	26,3661	5,2445	0,9336	0,1857	-0,0009	-0,0003
206,5300	27,5373	27,0082	5,3723	0,9564	0,1902	-0,0010	-0,0003
210,0400	28,0053	27,4672	5,4636	0,9726	0,1935	-0,0011	-0,0003
215,5600	28,7413	28,1891	5,6072	0,9982	0,1986	-0,0010	-0,0003
220,9100	29,4547	28,8887	5,7463	1,0230	0,2035	-0,0011	-0,0003
226,1300	30,1507	29,5713	5,8821	1,0471	0,2083	-0,0011	-0,0004
231,2900	30,8387	30,2461	6,0163	1,0710	0,2130	-0,0011	-0,0004
236,3900	31,5187	30,9130	6,1490	1,0947	0,2177	-0,0011	-0,0004
241,3700	32,1827	31,5643	6,2785	1,1177	0,2223	-0,0012	-0,0004
246,4700	32,8627	32,2312	6,4112	1,1413	0,2270	-0,0012	-0,0004
251,4400	33,5253	32,8812	6,5405	1,1643	0,2316	-0,0013	-0,0004
256,6000	34,2133	33,5559	6,6747	1,1882	0,2364	-0,0013	-0,0004
261,5200	34,8693	34,1993	6,8027	1,2110	0,2409	-0,0013	-0,0004
266,4900	35,5320	34,8493	6,9319	1,2340	0,2455	-0,0014	-0,0004
271,5300	36,2040	35,5084	7,0631	1,2574	0,2501	-0,0014	-0,0004
276,5100	36,8680	36,1596	7,1926	1,2804	0,2547	-0,0015	-0,0004
281,4800	37,5307	36,8095	7,3219	1,3035	0,2593	-0,0015	-0,0005
286,2700	38,1693	37,4359	7,4465	1,3256	0,2637	-0,0016	-0,0005
315,8800	42,1173	41,3081	8,2167	1,4628	0,2910	-0,0018	-0,0005
335,7300	44,7640	43,9039	8,7330	1,5547	0,3092	-0,0021	-0,0005
346,0900	46,1453	45,2587	9,0025	1,6026	0,3188	-0,0023	-0,0006
356,0110	47,4681	46,5560	9,2606	1,6486	0,3279	-0,0026	-0,0006

Tabela A.3.3: Percentual de fibra: 1,0% (continua)

P	σ_{total}	σ_1	σ_2	σ ₁ /fc	σ ₂ /fc	$arepsilon_{l}$	$arepsilon_2$
(kN)	(MPa)	(MPa)	(MPa)	o pje	07/jc	(mm/mm)	(mm/mm)
				0.0000	0.0000	,	<u> </u>
0,0000	0,0000	0,0000	0,0000 0,0006	0,0000	0,0000	0,0000	0,0000
0,0214	0,0029	0,0028	· ·	0,0001	0,0000	0,0000	0,0000
0,0246	0,0033	0,0032	0,0006	0,0001	0,0000	0,0000	0,0000
0,0307	0,0041	0,0040	0,0008	0,0001	0,0000	0,0000	0,0000
0,0369	0,0049	0,0048	0,0010	0,0002	0,0000	0,0000	0,0000
0,0580	0,0077	0,0076	0,0015	0,0003	0,0001	0,0000	0,0000
0,0640	0,0085	0,0084	0,0017	0,0003	0,0001	0,0000	0,0000
0,0893	0,0119	0,0117	0,0023	0,0004	0,0001	0,0000	0,0000
0,1543	0,0206	0,0202	0,0040	0,0007	0,0001	0,0000	0,0000
0,1985	0,0265	0,0260	0,0052	0,0009	0,0002	0,0000	0,0000
0,2011	0,0268	0,0263	0,0052	0,0009	0,0002	0,0000	0,0000
0,2143	0,0286	0,0280	0,0056	0,0010	0,0002	0,0000	0,0000
0,3546	0,0473	0,0464	0,0092	0,0016	0,0003	0,0000	0,0000
0,3876	0,0517	0,0507	0,0101	0,0018	0,0004	0,0000	0,0000
0,4326	0,0577	0,0566	0,0113	0,0020	0,0004	0,0000	0,0000
0,4768	0,0636	0,0624	0,0124	0,0022	0,0004	0,0000	0,0000
0,5129	0,0684	0,0671	0,0133	0,0024	0,0005	0,0000	0,0000
0,6143	0,0819	0,0803	0,0160	0,0028	0,0006	0,0000	0,0000
0,6758	0,0901	0,0884	0,0176	0,0031	0,0006	0,0000	0,0000
0,8601	0,1147	0,1125	0,0224	0,0040	0,0008	0,0000	0,0000
1,0443	0,1392	0,1366	0,0272	0,0048	0,0010	0,0000	0,0000
1,1672	0,1556	0,1526	0,0304	0,0054	0,0011	0,0000	0,0000
1,4129	0,1884	0,1848	0,0368	0,0065	0,0013	0,0000	0,0000
1,5358	0,2048	0,2008	0,0399	0,0071	0,0014	0,0000	0,0000
1,7201	0,2293	0,2249	0,0447	0,0080	0,0016	0,0000	0,0000
1,9658	0,2621	0,2571	0,0511	0,0091	0,0018	0,0000	0,0000
1,9658	0,2621	0,2571	0,0511	0,0091	0,0018	0,0000	0,0000
1,9658	0,2621	0,2571	0,0511	0,0091	0,0018	0,0000	0,0000
2,5187	0,3358	0,3294	0,0655	0,0117	0,0023	0,0000	0,0000
2,8873	0,3850	0,3776	0,0751	0,0134	0,0027	0,0000	0,0000
3,5016	0,4669	0,4579	0,0911	0,0162	0,0032	0,0000	0,0000
4,0545	0,5406	0,5302	0,1055	0,0188	0,0037	0,0000	0,0000
4,8532	0,6471	0,6347	0,1262	0,0225	0,0045	0,0000	0,0000
5,7132	0,7618	0,7471	0,1486	0,0265	0,0053	0,0000	0,0000
6,5733	0,8764	0,8596	0,1710	0,0304	0,0061	0,0000	0,0000
7,9248	1,0566	1,0363	0,2061	0,0367	0,0073	0,0000	0,0000
9,5221	1,2696	1,2452	0,2477	0,0441	0,0088	-0,0001	0,0000
10,0750	1,3433	1,3175	0,2621	0,0467	0,0093	0,0000	0,0000
10,4430	1,3924	1,3656	0,2716	0,0484	0,0096	-0,0001	0,0000
11,1800	1,4907	1,4620	0,2908	0,0518	0,0103	-0,0001	0,0000
11,9790	1,5972	1,5665	0,3116	0,0555	0,0110	-0,0001	0,0000
12,4090	1,6545	1,6227	0,3228	0,0575	0,0114	-0,0001	0,0000
13,0230	1,7364	1,7030	0,3388	0,0603	0,0120	-0,0001	0,0000
14,1290	1,8839	1,8477	0,3675	0,0654	0,0130	-0,0001	0,0000
16,0340	2,1379	2,0968	0,4171	0,0742	0,0148	-0,0001	0,0000
17,3850	2,3180	2,2735	0,4522	0,0805	0,0160	-0,0001	-0,0001
19,3510	2,5801	2,5306	0,5034	0,0896	0,0178	-0,0001	-0,0001
21,9930	2,9324	2,8761	0,5721	0,1018	0,0203	-0,0001	-0,0001
25,1870	3,3583	3,2937	0,6552	0,1166	0,0232	-0,0001	-0,0001
28,8730	3,8497	3,7758	0,7510	0,1337	0,0266	-0,0001	-0,0001
31,2690	4,1692	4,0891	0,8134	0,1448	0,0288	-0,0002	-0,0001
33,3580	4,4477	4,3623	0,8677	0,1545	0,0307	-0,0002	-0,0001
36,5520	4,8736	4,7800	0,9508	0,1693	0,0337	-0,0002	-0,0001
40,6680	5,4224	5,3182	1,0579	0,1883	0,0375	-0,0001	-0,0001

Tabela A.3.3: Percentual de Fibra: 1,0% (continuação)

P	σ_{total}	σ_1	σ_2	σ_1/fc	σ₂/fc	ε_1	$oldsymbol{arepsilon}_2$
(kN)	(MPa)	(MPa)	(MPa)			(mm/mm)	(mm/mm)
50,0680	6,6757	6,5475	1,3024	0,2319	0,0461	-0,0002	-0,0001
51,7880	6,9051	6,7724	1,3471	0,2398	0,0477	-0,0002	-0,0001
57,9930	7,7324	7,5838	1,5085	0,2685	0,0534	-0,0002	-0,0001
63,7670	8,5023	8,3389	1,6587	0,2953	0,0587	-0,0003	-0,0001
69,2960	9,2395	9,0619	1,8025	0,3209	0,0638	-0,0003	-0,0001
74,6410	9,9521	9,7609	1,9416	0,3456	0,0688	-0,0003	-0,0001
79,7400	10,6320	10,4277	2,0742	0,3693	0,0734	-0,0004	-0,0001
84,7770	11,3036	11,0864	2,2052	0,3926	0,0781	-0,0004	-0,0001
89,6310	11,9508	11,7212	2,3315	0,4151	0,0826	-0,0004	-0,0001
94,6680	12,6224	12,3799	2,4625	0,4384	0,0872	-0,0004	-0,0001
99,5210	13,2695	13,0145	2,5887	0,4609	0,0917	-0,0004	-0,0002
104,4300	13,9240	13,6565	2,7164	0,4836	0,0962	-0,0004	-0,0001
149,3500	19,9133	19,5307	3,8849	0,6916	0,1376	-0,0007	-0,0002
184,2600	24,5680	24,0959	4,7930	0,8533	0,1697	-0,0009	-0,0002
218,9900	29,1987	28,6376	5,6964	1,0141	0,2017	-0,0011	-0,0002
253,9100	33,8547	33,2042	6,6047	1,1758	0,2339	-0,0013	-0,0002
288,7000	38,4933	37,7537	7,5097	1,3369	0,2659	-0,0016	-0,0003
302,8100	40,3747	39,5989	7,8767	1,4022	0,2789	-0,0017	-0,0003
332,5100	44,3347	43,4828	8,6493	1,5398	0,3063	-0,0020	-0,0003
369,9400	49,3253	48,3776	9,6229	1,7131	0,3408	-0,0024	-0,0004
379,1500	50,5533	49,5820	9,8625	1,7557	0,3492	-0,0028	-0,0004

Tabela A.3.4: Percentual de fibra: 1,5% (continua)

P		I		σ ₁ /fc	σ ₂ /fc	i i	C.
(kN)	σ _{total} (MPa)	σ ₁ (MPa)	σ ₂ (MPa)	σημ	σητ	E ₁ (mm/mm)	\mathcal{E}_2 (mm/mm)
	1			0.0000	0.0000		
0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
0,0214	0,0029	0,0028	0,0006	0,0001	0,0000	0,0000	0,0000
0,0369	0,0049	0,0048	0,0010	0,0002	0,0000	0,0000	0,0000
0,0491	0,0066	0,0064	0,0013	0,0002	0,0000	0,0000	0,0000
0,0491	0,0066	0,0064	0,0013	0,0002	0,0000	0,0000	0,0000
0,0553	0,0074	0,0072	0,0014	0,0003	0,0001	0,0000	0,0000
0,0614	0,0082	0,0080	0,0016	0,0003	0,0001	0,0000	0,0000
0,0614	0,0082	0,0080	0,0016	0,0003	0,0001	0,0000	0,0000
0,0799	0,0106	0,0104	0,0021	0,0004	0,0001	0,0000	0,0000
0,0921	0,0123	0,0121	0,0024	0,0004	0,0001	0,0000	0,0000
0,1229	0,0164	0,0161	0,0032	0,0006	0,0001	0,0000	0,0000
0,2657	0,0354	0,0348	0,0069	0,0012	0,0002	0,0000	0,0000
0,3072	0,0410	0,0402	0,0080	0,0014	0,0003	0,0000	0,0000
0,4843	0,0646	0,0633	0,0126	0,0022	0,0004	0,0000	0,0000
0,5529	0,0737	0,0723	0,0144	0,0026	0,0005	0,0000	0,0000
0,6143	0,0819	0,0803	0,0160	0,0028	0,0006	0,0000	0,0000
0,6758	0,0901	0,0884	0,0176	0,0031	0,0006	0,0000	0,0000
0,7372	0,0983	0,0964	0,0192	0,0034	0,0007	0,0000	0,0000
0,7986	0,1065	0,1044	0,0208	0,0037	0,0007	0,0000	0,0000
0,8601	0,1147	0,1125	0,0224	0,0040	0,0008	0,0000	0,0000
0,9215	0,1229	0,1205	0,0240	0,0043	0,0008	0,0000	0,0000
1,1057	0,1474	0,1446	0,0288	0,0051	0,0010	-0,0001	0,0000
1,0443	0,1392	0,1366	0,0272	0,0048	0,0010	-0,0001	0,0000
1,1672	0,1556	0,1526	0,0304	0,0054	0,0011	-0,0001	0,0000
1,2900	0,1720	0,1687	0,0336	0,0060	0,0012	-0,0001	0,0000
1,5972	0,2130	0,2089	0,0415	0,0074	0,0015	-0,0001	0,0000
2,1501	0,2867	0,2812	0,0559	0,0100	0,0020	-0,0001	0,0000
2,7644	0,3686	0,3615	0,0719	0,0128	0,0025	-0,0001	0,0000
3,6859	0,4915	0,4820	0,0959	0,0171	0,0034	-0,0001	0,0000
4,6689	0,6225	0,6106	0,1214	0,0216	0,0043	-0,0001	0,0000
5,8975	0,7863	0,7712	0,1534	0,0273	0,0054	-0,0001	0,0000
7,1876	0,9583	0,9399	0,1870	0,0333	0,0066	-0,0001	0,0000
8,7235	1,1631	1,1408	0,2269	0,0404	0,0080	-0,0001	0,0000
9,3992	1,2532	1,2291	0,2445	0,0435	0,0087	-0,0001	0,0000
10,2590	1,3679	1,3416	0,2669	0,0475	0,0094	-0,0001	0,0000
10,5050	1,4007	1,3738	0,2733	0,0486	0,0097	-0,0001	0,0000
11,0570	1,4743	1,4459	0,2876	0,0512	0,0102	-0,0001	0,0000
11,1190	1,4825	1,4540	0,2892	0,0515	0,0102	-0,0001	0,0000
11,7330	1,5644	1,5343	0,3052	0,0543	0,0108	-0,0001	0,0000
13,0230	1,7364	1,7030	0,3388	0,0603	0,0120	-0,0001	0,0000
15,0510	2,0068	1,9682	0,3915	0,0697	0,0139	-0,0001	0,0000
17,6310	2,3508	2,3056	0,4586	0,0816	0,0162	-0,0001	0,0000
20,9480	2,7931	2,7394	0,5449	0,0970	0,0193	-0,0001	0,0000
25,0030	3,3337	3,2697	0,6504	0,1158	0,0230	-0,0002	0,0000
29,3030	3,9071	3,8320	0,7622	0,1357	0,0270	-0,0001	0,0000
31,1460	4,1528	4,0730	0,8102	0,1442	0,0287	-0,0002	0,0000
34,4020	4,5869	4,4988	0,8949	0,1593	0,0317	-0,0002	0,0000
38,7640	5,1685	5,0692	1,0083	0,1795	0,0357	-0,0002	0,0000
43,5560	5,8075	5,6959	1,1330	0,2017	0,0401	-0,0002	0,0000
48,6550	6,4873	6,3627	1,2656	0,2253	0,0448	-0,0002	0,0000
53,7540	7,1672	7,0295	1,3983	0,2489	0,0495	-0,0002	0,0000
53,7540	7,1672	7,0295	1,3983	0,2489	0,0495	-0,0002	0,0000

Tabela A.3.4: Percentual de Fibra: 1,5% (continuação)

P	σ_{total}	σ_1	σ_2	σ ₁ /fc	σ₂/fc	ε_1	$oldsymbol{arepsilon}_2$
(kN)	(MPa)	(MPa)	(MPa)			(mm/mm)	(mm/mm)
64,3820	8,5843	8,4193	1,6747	0,2981	0,0593	-0,0002	0,0000
69,5420	9,2723	9,0941	1,8089	0,3220	0,0641	-0,0003	0,0000
75,0100	10,0013	9,8092	1,9512	0,3473	0,0691	-0,0003	0,0000
80,1080	10,6811	10,4758	2,0838	0,3710	0,0738	-0,0003	0,0000
85,1460	11,3528	11,1347	2,2148	0,3943	0,0784	-0,0003	0,0000
90,4290	12,0572	11,8255	2,3522	0,4188	0,0833	-0,0004	-0,0001
95,4670	12,7289	12,4844	2,4833	0,4421	0,0879	-0,0004	-0,0001
100,6200	13,4160	13,1582	2,6173	0,4659	0,0927	-0,0004	-0,0001
105,7200	14,0960	13,8251	2,7500	0,4896	0,0974	-0,0004	-0,0001
120,8200	16,1093	15,7998	3,1428	0,5595	0,1113	-0,0005	-0,0001
145,9200	19,4560	19,0822	3,7957	0,6757	0,1344	-0,0005	-0,0001
180,9000	24,1200	23,6565	4,7056	0,8377	0,1666	-0,0007	-0,0001
214,3400	28,5787	28,0295	5,5754	0,9925	0,1974	-0,0009	-0,0001
246,0600	32,8080	32,1776	6,4005	1,1394	0,2266	-0,0011	-0,0001
271,0900	36,1453	35,4508	7,0516	1,2553	0,2497	-0,0012	-0,0001
296,0100	39,4680	38,7096	7,6998	1,3707	0,2727	-0,0014	-0,0002
310,9200	41,4560	40,6594	8,0877	1,4398	0,2864	-0,0015	-0,0002
345,9000	46,1200	45,2338	8,9976	1,6018	0,3186	-0,0018	-0,0002
360,8800	48,1173	47,1928	9,3872	1,6711	0,3324	-0,0020	-0,0002
385,4800	51,3973	50,4097	10,0271	1,7850	0,3551	-0,0022	-0,0002
405,9900	54,1320	53,0919	10,5606	1,8800	0,3740	-0,0026	-0,0002
410,8600	54,7813	53,7287	10,6873	1,9026	0,3784	-0,0026	-0,0002
415,5100	55,4013	54,3368	10,8083	1,9241	0,3827	-0,0028	-0,0002
417,0400	55,6053	54,5369	10,8481	1,9312	0,3841	-0,0030	-0,0002

A.4 Compressão biaxial (σ_2/σ_1 =-0,5/-1) - APE-02

Tabela A.4.1: Percentual de fibra: 0,0% (continua)

P	σ	σ_{1}	σ_2	σ_{l}/fc	σ_2/fc	$arepsilon_1$	$arepsilon_2$
(kN)	σ _{total} (MPa)	(MPa)	(MPa)	$\sigma_p j c$	υyjc	(mm/mm)	(mm/mm)
0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
0,0614	0,0000	0,000	0,0000	0,0003	0,0000	0,0000	0,0000
0,1229	0,0164	0,0070	0,0063	0,0005	0,0001	0,0000	0,0000
0,1843	0,0246	0,0227	0,0003	0,0008	0,0002	0,0000	0,0000
0,1843	0,0328	0,0303	0,0074	0,0008	0,0003	0,0000	0,0000
0,3072	0,0410	0,0378	0,0123	0,0011	0,0004	0,0000	0,0000
0,4300	0,0573	0,0570	0,0219	0,0019	0,0008	0,0000	0,0000
0,4915	0,0655	0,0605	0,0251	0,0021	0,0009	0,0000	0,0000
0,5529	0,0737	0,0681	0,0282	0,0024	0,0010	0,0000	0,0000
0,9215	0,1229	0,1135	0,0470	0,0040	0,0017	0,0000	0,0000
1,3515	0,1802	0,1665	0,0690	0,0059	0,0024	0,0000	0,0000
1,7815	0,2375	0,2195	0,0909	0,0078	0,0032	0,0000	0,0000
2,2730	0,3031	0,2800	0,1160	0,0099	0,0041	0,0000	0,0000
2,8259	0,3768	0,3481	0,1442	0,0123	0,0051	0,0000	0,0000
3,4402	0,4587	0,4238	0,1755	0,0150	0,0062	0,0000	0,0000
4,1774	0,5570	0,5146	0,2131	0,0182	0,0075	0,0000	0,0000
5,0989	0,6799	0,6281	0,2602	0,0222	0,0092	0,0000	0,0000
5,9590	0,7945	0,7341	0,3041	0,0260	0,0108	0,0000	-0,0001
7,1262	0,9502	0,8778	0,3636	0,0311	0,0129	0,0000	-0,0001
8,4163	1,1222	1,0368	0,4294	0,0367	0,0152	0,0000	-0,0001
9,8907	1,3188	1,2184	0,5047	0,0431	0,0179	0,0000	0,0000
10,8730	1,4497	1,3394	0,5548	0,0474	0,0196	0,0000	-0,0001
11,4880	1,5317	1,4151	0,5862	0,0501	0,0208	0,0000	0,0000
12,2250	1,6300	1,5059	0,6238	0,0533	0,0221	0,0000	-0,0001
12,9000	1,7200	1,5891	0,6582	0,0563	0,0233	0,0000	-0,0001
13,3310	1,7775	1,6422	0,6802	0,0582	0,0241	0,000	-0,0001
14,1910	1,8921	1,7481	0,7241	0,0619	0,0256	-0,0001	-0,0001
15,6650	2,0887	1,9297	0,7993	0,0683	0,0283	-0,0001	-0,0001
17,3850	2,3180	2,1416	0,8871	0,0758	0,0314	-0,0001	-0,0001
18,6140	2,4819	2,2929	0,9498	0,0812	0,0336	-0,0002	-0,0001
21,0100	2,8013	2,5881	1,0720	0,0916	0,0380	-0,0002	-0,0001
24,1430	3,2191	2,9740	1,2319	0,1053	0,0436	-0,0001	-0,0001
28,0750	3,7433	3,4584	1,4325	0,1225	0,0507	-0,0001	-0,0001
30,9620	4,1283	3,8140	1,5798	0,1351	0,0559	-0,0002	-0,0001
33,3580	4,4477	4,1092	1,7021	0,1455	0,0603	-0,0002	-0,0001
36,9210	4,9228	4,5481	1,8839	0,1611	0,0667	-0,0002	-0,0001
41,0370	5,4716	5,0551	2,0939	0,1790	0,0741	-0,0002	-0,0002
45,7670	6,1023	5,6378	2,3352	0,1996	0,0827	-0,0002	-0,0002
50,7430	6,7657	6,2507	2,5891	0,2213	0,0917	-0,0002	-0,0002
56,0880	7,4784	6,9091	2,8619	0,2447	0,1013	-0,0003	-0,0002
61,2480	8,1664	7,5448	3,1251	0,2672	0,1107	-0,0003	-0,0002
66,5320	8,8709	8,1957	3,3948	0,2902	0,1202	-0,0003	-0,0002
71,9380	9,5917	8,8616	3,6706	0,3138	0,1300	-0,0003	-0,0003
77,0370	10,2716	9,4897	3,9308	0,3360	0,1392	-0,0003	-0,0002
82,2590	10,9679	10,1330	4,1972	0,3588	0,1486	-0,0004	-0,0003
87,4190	11,6559	10,7686	4,4605	0,3813	0,1579	-0,0004	-0,0003
92,4570	12,3276	11,3892	4,7176	0,4033	0,1671	-0,0004	-0,0003
97,5560	13,0075	12,0173	4,9777	0,4255	0,1763	-0,0004	-0,0004
102,7100	13,6947	12,6522	5,2407	0,4480	0,1856	-0,0005	-0,0004
107,8100	14,3747	13,2805	5,5009	0,4703	0,1948	-0,0005	-0,0004
112,7900	15,0387	13,8939	5,7550	0,4920	0,2038	-0,0005	-0,0004
117,9500	15,7267	14,5295	6,0183	0,5145	0,2131	-0,0005	-0,0004
122,9200	16,3893	15,1418	6,2719	0,5362	0,2221	-0,0006	-0,0004
122,9200	16,3893	15,1418	6,2719	0,5362	0,2221	-0,0006	-0,0004

Tabela A.4.1: Percentual de Fibra: 0,0% (continuação)

P	σ_{total}	σ_1	σ_2	σ_{l}/fc	σ ₂ /fc	ε_1	$\boldsymbol{\varepsilon}_2$
(kN)	(MPa)	(MPa)	(MPa)	- 0	- 0	(mm/mm)	(mm/mm)
133,0000	17,7333	16,3835	6,7863	0,5802	0,2403	-0,0006	-0,0004
138,2200	18,4293	17,0265	7,0526	0,6029	0,2497	-0,0007	-0,0005
143,1300	19,0840	17,6313	7,3031	0,6243	0,2586	-0,0007	-0,0005
148,1700	19,7560	18,2522	7,5603	0,6463	0,2677	-0,0007	-0,0005
153,2100	20,4280	18,8730	7,8175	0,6683	0,2768	-0,0008	-0,0005
158,4300	21,1240	19,5160	8,0838	0,6911	0,2863	-0,0008	-0,0005
163,5900	21,8120	20,1517	8,3471	0,7136	0,2956	-0,0009	-0,0005
168,5100	22,4680	20,7577	8,5981	0,7350	0,3045	-0,0009	-0,0005
173,5400	23,1387	21,3773	8,8548	0,7570	0,3136	-0,0009	-0,0006
178,6400	23,8187	22,0056	9,1150	0,7792	0,3228	-0,0010	-0,0006
183,6800	24,4907	22,6264	9,3722	0,8012	0,3319	-0,0010	-0,0005
188,6600	25,1547	23,2399	9,6263	0,8229	0,3409	-0,0011	-0,0006
193,7600	25,8347	23,8681	9,8865	0,8452	0,3501	-0,0011	-0,0005
198,6100	26,4813	24,4656	10,1340	0,8663	0,3589	-0,0011	-0,0006
203,5800	27,1440	25,0778	10,3876	0,8880	0,3678	-0,0012	-0,0006
208,5000	27,8000	25,6839	10,6386	0,9095	0,3767	-0,0012	-0,0006
213,4100	28,4547	26,2887	10,8891	0,9309	0,3856	-0,0013	-0,0006
218,3300	29,1107	26,8947	11,1402	0,9524	0,3945	-0,0013	-0,0007
223,1200	29,7493	27,4848	11,3846	0,9733	0,4031	-0,0014	-0,0007
227,9700	30,3960	28,0822	11,6320	0,9944	0,4119	-0,0015	-0,0007
232,7000	31,0267	28,6649	11,8734	1,0150	0,4204	-0,0015	-0,0007
237,7400	31,6987	29,2857	12,1306	1,0370	0,4296	-0,0016	-0,0007
243,0300	32,4040	29,9374	12,4005	1,0601	0,4391	-0,0017	-0,0007
247,8200	33,0427	30,5274	12,6449	1,0810	0,4478	-0,0018	-0,0008
252,8500	33,7133	31,1471	12,9015	1,1029	0,4569	-0,0019	-0,0008
267,5200	35,6693	32,9542	13,6501	1,1669	0,4834	-0,0023	-0,0009
284,0200	37,8693	34,9867	14,4920	1,2389	0,5131	-0,0025	-0,0009

Tabela A.4.2: Percentual de fibra: 0,5% (continua)

P	σ_{total}	σ_1	σ_2	σ ₁ /fc	σ ₂ /fc	$arepsilon_1$	ϵ_2
(kN)	(MPa)	(MPa)	(MPa)	σγ j c	0250	(mm/mm)	(mm/mm)
0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
0,0614	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
0,1229	0,0082	0,0070	0,0063	0,0005	0,0001	0,0000	0,0000
0,1229	0,0104	0,0131	0,0003	0,0003	0,0002	0,0000	0,0000
0,1843	0,0240	0,0303	0,0094	0,0008	0,0003	0,0000	0,0000
0,3072	0,0328	0,0378	0,0123	0,0011	0,0004	0,0000	0,0000
0,3686	0,0410	0,0378	0,0188	0,0015	0,0007	0,0000	0,0000
0,5529	0,0737	0,0681	0,0282	0,0010	0,0010	0,0000	0,0000
0,7372	0,0983	0,0908	0,0376	0,0024	0,0013	0,0000	0,0000
1,0443	0,1392	0,1286	0,0533	0,0032	0,0019	0,0000	0,0000
1,4129	0,1884	0,1740	0,0721	0,0062	0,0026	0,0000	0,0000
2,0272	0,2703	0,2497	0,1034	0,0088	0,0037	0,0000	0,0000
2,6416	0,3522	0,3254	0,1348	0,0115	0,0048	0,0000	0,0000
3,2559	0,4341	0,4011	0,1661	0,0142	0,0059	0,0000	0,0000
4,0545	0,5406	0,4994	0,2069	0,0177	0,0073	0,0000	0,0000
5,0375	0,6717	0,6205	0,2570	0,0220	0,0091	-0,0001	0,0000
5,8975	0,7863	0,7265	0,3009	0,0257	0,0107	-0,0001	0,0000
7,3105	0,9747	0,9005	0,3730	0,0319	0,0132	-0,0001	0,0000
8,9692	1,1959	1,1049	0,4576	0,0317	0,0162	-0,0001	0,0000
10,9960	1,4661	1,3545	0,5611	0,0480	0,0199	-0,0001	0,0000
11,7330	1,5644	1,4453	0,5987	0,0430	0,0177	-0,0001	0,0000
11,9180	1,5891	1,4681	0,6081	0,0512	0,0212	-0,0001	-0,0001
12,1020	1,6136	1,4908	0,6175	0,0528	0,0219	-0,0001	-0,0001
12,4700	1,6627	1,5361	0,6363	0,0544	0,0225	-0,0001	-0,0001
12,8390	1,7119	1,5816	0,6551	0,0560	0,0232	-0,0001	-0,0001
13,0230	1,7364	1,6042	0,6645	0,0568	0,0235	-0,0001	-0,0001
14,0060	1,8675	1,7253	0,7146	0,0611	0,0253	-0,0001	-0,0001
16,0340	2,1379	1,9751	0,8181	0,0699	0,0290	-0,0001	-0,0001
18,7370	2,4983	2,3081	0,9560	0,0817	0,0339	-0,0001	-0,0001
21,9310	2,9241	2,7015	1,1190	0,0957	0,0396	-0,0001	-0,0001
25,6790	3,4239	3,1632	1,3103	0,1120	0,0464	-0,0001	-0,0001
29,9180	3,9891	3,6854	1,5265	0,1305	0,0541	-0,0001	-0,0001
32,0060	4,2675	3,9426	1,6331	0,1396	0,0578	-0,0001	-0,0001
34,8940	4,6525	4,2984	1,7804	0,1522	0,0630	-0,0002	-0,0001
38,7020	5,1603	4,7675	1,9747	0,1688	0,0699	-0,0002	-0,0001
43,0640	5,7419	5,3048	2,1973	0,1878	0,0778	-0,0002	-0,0001
47,4870	6,3316	5,8496	2,4230	0,2071	0,0858	-0,0002	-0,0001
52,4020	6,9869	6,4551	2,6738	0,2286	0,0947	-0,0002	-0,0001
57,7470	7,6996	7,1135	2,9465	0,2519	0,1043	-0,0002	-0,0001
62,9690	8,3959	7,7568	3,2130	0,2747	0,1138	-0,0003	-0,0001
68,4360	9,1248	8,4302	3,4919	0,2985	0,1237	-0,0003	-0,0002
73,7810	9,8375	9,0886	3,7646	0,3218	0,1333	-0,0003	-0,0002
79,1870	10,5583	9,7546	4,0405	0,3454	0,1431	-0,0003	-0,0002
84,3470	11,2463	10,3902	4,3038	0,3679	0,1524	-0,0004	-0,0002
89,6310	11,9508	11,0411	4,5734	0,3910	0,1619	-0,0004	-0,0002
94,6070	12,6143	11,6541	4,8273	0,4127	0,1709	-0,0004	-0,0002
97,3710	12,9828	11,9945	4,9683	0,4247	0,1759	-0,0005	-0,0002
123,8200	16,5093	15,2526	6,3178	0,5401	0,2237	-0,0006	-0,0003
135,9500	18,1267	16,7469	6,9368	0,5930	0,2456	-0,0007	-0,0003
141,0500	18,8067	17,3751	7,1970	0,6153	0,2549	-0,0007	-0,0003
169,5900	22,6120	20,8908	8,6532	0,7398	0,3064	-0,0008	-0,0004
195,0000	26,0000	24,0209	9,9498	0,8506	0,3523	-0,0010	-0,0004
195,0000	26,0000	24,0209	9,9498	0,8506	0,3523	-0,0010	-0,0004

Tabela A.4.2: Percentual de Fibra: 0,5% (continuação)

P (kN)	σ _{total} (MPa)	σ ₁ (MPa)	σ ₂ (MPa)	σ_1/fc	σ₂/fc	ε ₁ (mm/mm)	ε ₂ (mm/mm)
235,5000	31,4000	29,0098	12,0163	1,0273	0,4255	-0,0012	-0,0005
260,6600	34,7547	32,1091	13,3000	1,1370	0,4710	-0,0014	-0,0005
286,1400	38,1520	35,2479	14,6001	1,2482	0,5170	-0,0016	-0,0006
291,1800	38,8240	35,8687	14,8573	1,2701	0,5261	-0,0016	-0,0006
306,1000	40,8133	37,7066	15,6186	1,3352	0,5531	-0,0017	-0,0006
311,0100	41,4680	38,3114	15,8691	1,3566	0,5619	-0,0017	-0,0007
333,6200	44,4827	41,0966	17,0228	1,4553	0,6028	-0,0019	-0,0007
350,2900	46,7053	43,1501	17,8734	1,5280	0,6329	-0,0021	-0,0008
366,6100	48,8813	45,1605	18,7061	1,5992	0,6624	-0,0022	-0,0008
373,9700	49,8627	46,0671	19,0816	1,6313	0,6757	-0,0023	-0,0008
380,9600	50,7947	46,9282	19,4383	1,6618	0,6883	-0,0024	-0,0009
395,0400	52,6720	48,6626	20,1567	1,7232	0,7137	-0,0026	-0,0010

Tabela A.4.3: Percentual de fibra: 1,0% (continua)

P	σ_{total}	σ_{I}	σ_2	σ_{1}/fc	σ ₂ /fc	$arepsilon_{l}$	$\boldsymbol{\varepsilon}_2$
(kN)	(MPa)	(MPa)	(MPa)	σηjc	<i>0 y j</i> c	(mm/mm)	(mm/mm)
0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
0,0614	0,0000	0,0006	0,0000	0,0003	0,0000	0,0000	0,0000
0,1229	0,0164	0,0070	0,0063	0,0005	0,0001	0,0000	0,0000
0,1229	0,0104	0,0227	0,0003	0,0008	0,0002	0,0000	0,0000
0,1843	0,0328	0,0303	0,0024	0,0008	0,0003	0,0000	0,0000
0,3072	0,0328	0,0378	0,0123	0,0011	0,0004	0,0000	0,0000
0,3686	0,0491	0,0454	0,0188	0,0015	0,0007	0,0000	0,0000
0,4915	0,0655	0,0605	0,0251	0,0010	0,0007	0,0000	0,0000
0,6143	0,0819	0,0757	0,0313	0,0027	0,0003	0,0000	0,0000
0,7372	0,0983	0,0908	0,0376	0,0027	0,0011	0,0000	0,0000
0,9829	0,1311	0,1211	0,0502	0,0032	0,0018	0,0000	0,0000
1,1672	0,1556	0,1438	0,0596	0,0051	0,0021	0,0000	0,0000
1,3225	0,1763	0,1629	0,0675	0,0051	0,0021	0,0000	0,0000
1,4129	0,1703	0,1029	0,0073	0,0062	0,0024	-0,0001	0,0000
1,5358	0,2048	0,1740	0,0721	0,0067	0,0028	0,0000	0,0000
1,5418	0,2056	0,1899	0,0787	0,0067	0,0028	-0,0001	0,0000
1,7201	0,2030	0,1899	0,0787	0,0007	0,0028	-0,0001	0,0000
1,7201	0,2539	0,2119	0,0878	0,0073	0,0031	-0,0001	0,0000
2,2730	0,3031	0,2800	0,0372	0,0083	0,0034	-0,0001	0,0000
2,4575	0,3031	0,3027	0,1100	0,0099	0,0041	-0,0001	0,0000
2,4373	0,3277	0,3027	0,1234	0,0107	0,0044	-0,0001	0,0000
3,0716	0,3803	0,3771	0,1479	0,0120	0,0052	-0,0001	0,0000
3,3773	0,4093	0,3784	0,1723	0,0134	0,0053	-0,0001	-0,0001
3,8702	0,4303	0,4160	0,1723	0,0147	0,0001	-0,0001	-0,0001
4,9760	0,6635	0,4707	0,1973	0,0109	0,0070	-0,0001	-0,0001
6,0204	0,8027	0,7416	0,3072	0,0217	0,0090	-0,0001	-0,0001
7,6177	1,0157	0,7410	0,3887	0,0332	0,0109	-0,0001	-0,0001
9,5835	1,0137	1,1805	0,4890	0,0332	0,0138	-0,0001	-0,0001
10,8120	1,4416	1,3319	0,4890	0,0418	0,0175	-0,0001	-0,0001
11,4260	1,5235	1,4075	0,5830	0,0472	0,0193	-0,0001	-0,0001
12,5320	1,6709	1,5437	0,6394	0,0547	0,0206	-0,0001	-0,0001
12,5320	1,6709	1,5437	0,6394	0,0547	0,0226	-0,0001	-0,0001
12,9000	1,7200	1,5891	0,6582	0,0563	0,0220	-0,0001	-0,0001
13,6380	1,8184	1,6800	0,6959	0,0595	0,0233	-0,0001	-0,0001
15,7880	2,1051	1,9448	0,8056	0,0689	0,0240	-0,0001	-0,0001
17,3850	2,3180	2,1416	0,8871	0,0758	0,0314	-0,0001	0,0001
19,9650	2,6620	2,4594	1,0187	0,0738	0,0361	-0,0001	0,0000
23,0980	3,0797	2,8453	1,1786	0,1008	0,0301	-0,0001	0,0000
26,8460	3,5795	3,3070	1,3698	0,1008	0,0417	-0,0002	-0,0001
30,8390	4,1119	3,7989	1,5735	0,1171	0,0483	-0,0002	-0,0001
32,7430	4,3657	4,0334	1,6707	0,1343	0,0592	-0,0002	-0,0001
36,1840	4,8245	4,4573	1,8463	0,1428	0,0592	-0,0001	-0,0001
40,3000	5,3733	4,9643	2,0563	0,1378	0,0034	-0,0002	-0,0001
45,0300	6,0040	5,5470	2,0303	0,1758	0,0728	-0,0002	-0,0001
50,0680	6,6757	6,1676	2,5547	0,1704	0,0905	-0,0002	-0,0001
55,2280	7,3637	6,8032	2,8180	0,2409	0,0998	-0,0002	-0,0001
60,4500	8,0600	7,4465	3,0844	0,2637	0,1092	-0,0002	-0,0001
65,7950	8,7727	8,1049	3,3572	0,2870	0,1092	-0,0002	-0,0002
71,0780	9,4771	8,7557	3,6267	0,3100	0,1189	-0,0003	-0,0001
76,2380	10,1651	9,3913	3,8900	0,3326	0,1204	-0,0003	-0,0002
81,5210	10,8695	10,0421	4,1596	0,3556	0,1473	-0,0003	-0,0002
86,6200	11,5493	10,6702	4,4197	0,3778	0,1565	-0,0003	-0,0002

Tabela A.4.3: Percentual de Fibra: 1,0% (continuação)

P (kN)	σ _{total} (MPa)	σ ₁ (MPa)	σ ₂ (MPa)	σ ₁ /fc	σ₂/fc	ε ₁ (mm/mm)	ε ₂ (mm/mm)
96,9410	12,9255	11,9416	4,9464	0,4229	0,1752	-0,0004	-0,0002
102,0400	13,6053	12,5697	5,2065	0,4229	0,1732	-0,0004	-0,0002
,	· ′	· ·	,	· ·	· /	,	ŕ
127,1300	16,9507	15,6604	6,4867	0,5545	0,2297	-0,0005	-0,0003
162,6100	21,6813	20,0309	8,2971	0,7093	0,2938	-0,0007	-0,0003
192,4600	25,6613	23,7080	9,8202	0,8395	0,3477	-0,0008	-0,0004
216,1800	28,8240	26,6299	11,0305	0,9430	0,3906	-0,0010	-0,0004
231,5400	30,8720	28,5220	11,8142	1,0100	0,4183	-0,0010	-0,0005
246,5300	32,8707	30,3685	12,5791	1,0754	0,4454	-0,0011	-0,0005
291,6100	38,8813	35,9217	14,8792	1,2720	0,5269	-0,0014	-0,0006
308,5200	41,1360	38,0047	15,7421	1,3458	0,5574	-0,0015	-0,0006
337,6200	45,0160	41,5894	17,2269	1,4727	0,6100	-0,0017	-0,0007
352,5100	47,0013	43,4236	17,9866	1,5377	0,6369	-0,0018	-0,0007
387,6900	51,6920	47,7572	19,7817	1,6911	0,7005	-0,0022	-0,0008
401,5462	53,5395	49,4640	20,4887	1,7516	0,7255	-0,0024	-0,0008
411,0800	54,8107	50,6385	20,9751	1,7931	0,7427	-0,0027	-0,0009
425,0440	56,6725	52,3586	21,6876	1,8541	0,7680	-0,0031	-0,0010

Tabela A.4.4: Percentual de fibra: 1,5%

P	σ_{total}	σ_1	σ_2	σ ₁ /fc	σ₂/fc	ε_1	$arepsilon_2$
(kN)	(MPa)	(MPa)	(MPa)			(mm/mm)	(mm/mm)
0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
0,0640	0,0085	0,0079	0,0033	0,0003	0,0001	0,0000	0,0000
0,1224	0,0163	0,0151	0,0062	0,0005	0,0002	0,0000	0,0000
0,1843	0,0797	0,0736	0,0305	0,0026	0,0011	0,0000	0,0000
0,2457	0,0819	0,0757	0,0313	0,0027	0,0011	0,0000	0,0000
0,3072	0,1145	0,1058	0,0438	0,0037	0,0016	0,0000	0,0000
0,3686	0,1589	0,1468	0,0608	0,0052	0,0022	0,0000	0,0000
0,4300	0,0819	0,0757	0,0313	0,0027	0,0011	0,0000	0,0000
0,4915	0,0573	0,0530	0,0219	0,0019	0,0008	0,0000	0,0000
0,5977	0,3686	0,3405	0,1411 0,2006	0,0121	0,0050	0,0000	0,0000
0,6143 0,8590	0,5242 0,1145	0,4843 0,1058	0,2006	0,0172 0,0037	0,0071 0,0016	0,0000 -0,0001	0,0000 0,0000
1,1915	0,1145	0,1038	0,0438	0,0037	0,0016	0,0001	0,0000
1,1913	0,1389	0,1408	0,0008	0,0032	0,0022	-0,0001	0,0000
1,8358	0,2448	0,1913	0,0792	0,0080	0,0028	0,0000	0,0000
2,7644	0,3686	0,3405	0,0937	0,0080	0,0050	-0,0001	0,0000
3,9317	0,5242	0,4843	0,2006	0,0121	0,0030	0,0000	0,0000
5,4061	0,7208	0,6659	0,2758	0,0172	0,0071	0,0000	0,0000
6,8190	0,9092	0,8400	0,3479	0,0297	0,0078	-0,0001	0,0000
8,1535	1,0871	1,0044	0,4160	0,0356	0,0123	-0,0001	0,0000
10,8560	1,4475	1,3373	0,5539	0,0474	0,0147	-0,0001	0,0000
11,9790	1,5972	1,4756	0,6112	0,0523	0,0216	-0,0001	0,0000
12,1020	1,6136	1,4908	0,6175	0,0528	0,0210	-0,0001	-0,0001
15,2250	2,0300	1,8755	0,7768	0,0664	0,0215	-0,0001	-0,0001
18,4700	2,4627	2,2752	0,9424	0,0806	0,0334	-0,0001	-0,0001
22,7160	3,0288	2,7982	1,1591	0,0991	0,0410	-0,0001	-0,0001
23,2080	3,0944	2,8589	1,1842	0,1012	0,0419	-0,0001	-0,0001
35,1120	4,6816	4,3252	1,7916	0,1532	0,0634	-0,0001	-0,0001
38,1840	5,0912	4,7037	1,9483	0,1666	0,0690	-0,0001	-0,0001
42,0540	5,6072	5,1804	2,1458	0,1834	0,0760	-0,0002	-0,0001
46,6620	6,2216	5,7480	2,3809	0,2035	0,0843	-0,0002	-0,0001
50,9620	6,7949	6,2777	2,6003	0,2223	0,0921	-0,0002	-0,0001
55,1120	7,3483	6,7889	2,8121	0,2404	0,0996	-0,0002	-0,0002
60,4910	8,0655	7,4515	3,0865	0,2639	0,1093	-0,0002	-0,0001
64,7300	8,6307	7,9737	3,3028	0,2824	0,1170	-0,0003	-0,0002
71,2760	9,5035	8,7801	3,6368	0,3109	0,1288	-0,0003	-0,0002
76,2520	10,1669	9,3930	3,8907	0,3326	0,1378	-0,0003	-0,0002
83,4740	11,1299	10,2827	4,2592	0,3641	0,1508	-0,0003	-0,0002
88,6960	11,8261	10,9259	4,5257	0,3869	0,1603	-0,0003	-0,0002
95,9790	12,7972	11,8231	4,8973	0,4187	0,1734	-0,0004	-0,0003
97,0780	12,9437	11,9585	4,9534	0,4235	0,1754	-0,0004	-0,0003
116,2380	15,4984	14,3187	5,9310	0,5070	0,2100	-0,0004	-0,0003
131,3370	17,5116	16,1786	6,7014	0,5729	0,2373	-0,0005	-0,0004
156,4980	20,8664	19,2780	7,9852	0,6827	0,2828	-0,0006	-0,0004
171,4740	22,8632	21,1228	8,7494	0,7480	0,3098	-0,0007	-0,0004
196,3880	26,1851	24,1918	10,0206	0,8567	0,3548	-0,0008	-0,0005
201,2400	26,8320	24,7895	10,2682	0,8778	0,3636	-0,0008	-0,0005
204,8000	27,3067	25,2281	10,4498	0,8933	0,3700	-0,0008	-0,0006
209,7100	27,9613	25,8329	10,7003	0,9148	0,3789	-0,0008	-0,0005
235,0600	31,3413	28,9556	11,9938	1,0253	0,4247	-0,0010	-0,0006
263,6500	35,1533	32,4774	13,4526	1,1501	0,4764	-0,0011	-0,0006
295,6900	39,4253 43,9573	36,4243	15,0874	1,2898	0,5343	-0,0013 -0,0015	-0,0007 -0,0008
329,6800	43,9573	40,6113	16,8217	1,4381	0,5957		-0,0008 -0,0008
354,6000 378,6500	47,2800 50,4867	43,6810 46,6436	18,0933 19,3204	1,5468 1,6517	0,6407 0,6842	-0,0017 -0,0019	-0,0008 -0,0009
378,6300	52,0733	48,1095	19,3204	1,7036	0,6842	-0,0019	-0,0009
413,4400	55,1253	50,9292	21,0956	1,7036	0,7037	-0,0020	-0,0009
438,2900	58,4387	53,9903	22,3635	1,8034	0,7470	-0,0025	-0,0010
462,0100	61,6013	56,9122	23,5738	2,0153	0,8348	-0,0020 -0,0033	-0,0011 -0,0013
702,0100	01,0013	50,7144	<i>43,373</i> 0	4,0133	0,0340	-0,0033	-0,0013

A.5 Compressão biaxial (σ_2/σ_1 =-1/-1) - APE-02

Tabela A.5.1: Percentual de fibra: 0,0% (continua)

P (kN)	σ _{total} (MPa)	σ ₁ (MPa)	σ ₂ (MPa)	σ_{l}/fc	σ₂/fc	€ ₁ (mm/mm)	ε ₂ (mm/mm)
0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
0,0640	0,0085	0,0060	0,0060	0,0002	0,0002	0,0000	0,0000
0,1256	0,0168	0,0118	0.0118	0.0004	0.0004	0,0000	0,0000
0,1539	0,0205	0,0145	0,0145	0,0005	0,0005	0,0000	0,0000
0,1843	0,0246	0,0174	0,0174	0,0006	0,0006	0,0000	0,0000
0,2457	0,0328	0,0232	0,0232	0,0008	0,0008	0,0000	0,0000
0,4300	0,0573	0,0405	0,0405	0,0014	0,0014	0,0000	0,0000
0,3686	0,0491	0,0348	0,0348	0,0012	0,0012	0,0000	0,0000
0,4300	0,0573	0,0405	0,0405	0,0014	0,0014	0,0000	0,0000
0,6143	0,0819	0,0579	0,0579	0,0021	0,0021	0,0000	0,0000
0,7372	0,0983	0,0695	0,0695	0,0025	0,0025	0,0000	0,0000
0,7372	0,0983	0,0695	0,0695	0,0025	0,0025	0,0000	0,0000
0,7986	0,1065	0,0753	0,0753	0,0027	0,0027	0,0000	0,0000
0,7372	0,0983	0,0695	0,0695	0,0025	0,0025	0,0000	0,0000
0,8601	0,1147	0,0811	0,0811	0,0029	0,0029	0,0000	0,0000 0,0000
1,1057	0,1474	0,1042 0,0985	0,1042 0,0985	0,0037	0,0037 0,0035	0,0000 0,0000	0,0000
1,0443 1,1672	0,1392 0,1556	0,0983	0,0983	0,0035 0,0039	0,0033	0,0000	0,0000
1.1672	0,1556	0,1100	0.1100	0,0039	0,0039	0,0000	0,0000
1,2900	0,1720	0,1216	0,1216	0,0039	0,0039	0,0000	0,0000
1,5358	0,2048	0,1448	0,1448	0,0051	0,0051	0,0000	0,0000
1,5972	0,2130	0,1506	0,1506	0,0053	0,0053	0,0000	0,0000
1,9658	0,2621	0,1853	0,1853	0,0066	0,0066	0,0000	0,0000
2,3958	0,3194	0,2259	0,2259	0,0080	0,0080	0,0000	0,0000
2,8259	0,3768	0,2664	0,2664	0,0094	0,0094	0,0000	0,0000
3,2559	0,4341	0,3070	0,3070	0,0109	0,0109	0,0000	0,0000
3,9931	0,5324	0,3765	0,3765	0,0133	0,0133	0,0000	0,0000
4,6689	0,6225	0,4402	0,4402	0,0156	0,0156	-0,0001	0,0000
5,4061	0,7208	0,5097	0,5097	0,0180	0,0180	-0,0001	0,0000
6,4504	0,8601	0,6081	0,6081	0,0215	0,0215	-0,0001	0,0000
7,4948	0,9993	0,7066	0,7066	0,0250	0,0250	-0,0001	-0,0001
8,9078	1,1877	0,8398	0,8398	0,0297	0,0297	0,0000	-0,0001
10,5050	1,4007	0,9904	0,9904	0,0351	0,0351	-0,0001	-0,0001
11,7330	1,5644	1,1062	1,1062	0,0392	0,0392	-0,0001	-0,0001
11,9180	1,5891	1,1236	1,1236	0,0398	0,0398	-0,0001	-0,0001
12,5930 12,4700	1,6791 1,6627	1,1873 1,1757	1,1873 1,1757	0,0420 0,0416	0,0420 0,0416	-0,0001 -0,0001	-0,0001 -0,0001
13,1460	1,7528	1,1737	1,1737	0,0416	0,0416	-0,0001	-0,0001
13,7610	1,8348	1,2974	1,2974	0,0459	0,0459	0,0000	-0,0001
14,4980	1,9331	1,3669	1,3669	0,0484	0,0484	0,0000	-0,0001
15,9110	2,1215	1,5001	1,5001	0,0531	0,0531	0,0000	-0,0001
17,6310	2,3508	1,6623	1,6623	0,0589	0,0589	-0,0001	-0.0001
19,7810	2,6375	1,8650	1,8650	0,0660	0,0660	-0,0001	-0,0001
22,3610	2,9815	2,1082	2,1082	0,0747	0,0747	-0,0001	-0,0001
25,1870	3,3583	2,3747	2,3747	0,0841	0,0841	-0,0001	-0,0001
28,1970	3,7596	2,6584	2,6584	0,0941	0,0941	-0,0001	-0,0001
30,5930	4,0791	2,8843	2,8843	0,1021	0,1021	-0,0001	-0,0002
32,0060	4,2675	3,0176	3,0176	0,1069	0,1069	-0,0001	-0,0001
34,2180	4,5624	3,2261	3,2261	0,1142	0,1142	-0,0001	-0,0002
37,2900	4,9720	3,5157	3,5157	0,1245	0,1245	-0,0001	-0,0002
40,9750	5,4633	3,8632	3,8632	0,1368	0,1368	-0,0002	-0,0001
45,2760	6,0368	4,2687	4,2687	0,1512	0,1512 0,1655	-0,0002	-0,0002
49,5760 54,0610	6,6101	4,6741 5,0969	4,6741 5,0969	0,1655 0,1805	0,1655	-0,0002 -0.0002	-0,0002 -0,0002
58,7910	7,2081 7,8388	5,5429	5,5429	0,1803	0,1803	-0,0002	-0,0002
63,5220	8,4696	5,9889	5,9889	0,1903	0,1903	-0,0001	-0,0003
68,0060	9,0675	6,4117	6,4117	0,2121	0,2121	-0,0002	-0,0003
72,6750	9,6900	6,8519	6,8519	0,2426	0,2426	-0,0002	-0,0003
77,1600	10,2880	7,2747	7,2747	0,2576	0,2576	-0,0002	-0,0003
81,6440	10,8859	7,6975	7,6975	0,2726	0,2726	-0,0002	-0,0003
86,1900	11,4920	8,1261	8,1261	0,2878	0,2878	-0,0002	-0,0003
90,5520	12,0736	8,5373	8,5373	0,3023	0,3023	-0,0003	-0,0003
95,0370	12,6716	8,9602	8,9602	0,3173	0,3173	-0,0002	-0,0004
99,5830	13,2777	9,3888	9,3888	0,3325	0,3325	-0,0003	-0,0003

Tabela A.5.1: Percentual de Fibra: 0,0% (continuação)

P	σ_{total}	σ_1	σ_2	σ ₁ /fc	σ₂/fc	ε_1	€2
(kN)	(MPa)	(MPa)	(MPa)	13	23	(mm/mm)	(mm/mm)
113,5200	15,1360	10,7028	10,7028	0,3790	0,3790	-0,0003	-0,0004
118,1900	15,7587	11,1431	11,1431	0,3946	0,3946	-0,0003	-0,0004
122,9200	16,3893	11,5890	11,5890	0,4104	0,4104	-0,0003	-0,0004
127,7800	17,0373	12,0472	12,0472	0,4266	0,4266	-0,0003	-0,0004
132,6900	17,6920	12,5101	12,5101	0,4430	0,4430	-0,0004	-0,0004
137,4200	18,3227	12,9561	12,9561	0,4588	0,4588	-0,0003	-0,0005
142,3400	18,9787	13,4199	13,4199	0,4752	0,4752	-0,0003	-0,0004
147,5000	19,6667	13,9064	13,9064	0,4924	0,4924	-0,0004	-0,0005
152,1700	20,2893	14,3467	14,3467	0,5080	0,5080	-0,0004	-0,0005
157,0800	20,9440	14,8096	14,8096	0,5244	0,5244	-0,0004	-0,0005
161,9900	21,5987	15,2726	15,2726	0,5408	0,5408	-0,0004	-0,0005
166,9100	22,2547	15,7364	15,7364	0,5572	0,5572	-0,0005	-0,0005
172,0700	22,9427	16,2229	16,2229	0,5745	0,5745	-0,0004	-0,0005
177,1100	23,6147	16,6981	16,6981	0,5913	0,5913	-0,0005	-0,0006
182,0200	24,2693	17,1610	17,1610	0,6077	0,6077	-0,0005	-0,0005
186,0800	24,8107	17,5438	17,5438	0,6212	0,6212	-0,0005	-0,0006
192,1000	25,6133	18,1114	18,1114	0,6413	0,6413	-0,0006	-0,0006
197,7500	26,3667	18,6440	18,6440	0,6602	0,6602	-0,0005	-0,0007
204,1400	27,2187	19,2465	19,2465	0,6815	0,6815	-0,0006	-0,0007
210,5900	28,0787	19,8546	19,8546	0,7031	0,7031	-0,0006	-0,0007
216,5500	28,8733	20,4165	20,4165	0,7230	0,7230	-0,0006	-0,0007
222,2000	29,6267	20,9492	20,9492	0,7418	0,7418	-0,0006	-0,0007
227,9700	30,3960	21,4932	21,4932	0,7611	0,7611	-0,0007	-0,0008
230,6900	30,7587	21,7497	21,7497	0,7702	0,7702	-0,0007	-0,0008
237,3400	31,6453	22,3766	22,3766	0,7924	0,7924	-0,0007	-0,0008
239,8100	31,9747	22,6095	22,6095	0,8006	0,8006	-0,0007	-0,0008
240,1500	32,0200	22,6416	22,6416	0,8018	0,8018	-0,0007	-0,0008
245,3100	32,7080	23,1280	23,1280	0,8190	0,8190	-0,0007	-0,0008
246,6600	32,8880	23,2553	23,2553	0,8235	0,8235	-0,0007	-0,0008
249,8200	33,3093	23,5533	23,5533	0,8340	0,8340	-0,0007	-0,0008
251,1000	33,4800	23,6739	23,6739	0,8383	0,8383	-0,0008	-0,0008
253,2000	33,7600	23,8719	23,8719	0,8453	0,8453	-0,0008	-0,0009
255,3600	34,0480	24,0756	24,0756	0,8525	0,8525	-0,0008	-0,0009
269,4000	35,9200	25,3993	25,3993	0,8994	0,8994	-0,0008	-0,0009
281,4300	37,5240	26,5335	26,5335	0,9396	0,9396	-0,0009	-0,0010
310,5300	41,4040	29,2770	29,2770	1,0367	1,0367	-0,0010	-0,0011
318,6500	42,4867	30,0426	30,0426	1,0638	1,0638	-0,0010	-0,0012
325,3100	43,3747	30,6705	30,6705	1,0861	1,0861	-0,0010	-0,0013
337,9000	45,0533	31,8575	31,8575	1,1281	1,1281	-0,0011	-0,0014
349,5000	46,6000	32,9512	32,9512	1,1668	1,1668	-0,0013	-0,0016

Tabela A.5.2: Percentual de fibra: 0,5% (continua)

	ı	ī			1		
P	σ_{total}	σ_1	σ_2	$\sigma_{\it l}/fc$	σ_2/fc	$oldsymbol{arepsilon}_{I}$	$oldsymbol{arepsilon}_2$
(kN)	(MPa)	(MPa)	(MPa)			(mm/mm)	(mm/mm)
0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
0,0614	0,0082	0,0058	0,0058	0,0002	0,0002	0,0000	0,0000
0,0614	0,0082	0,0058	0,0058	0,0002	0,0002	0,0000	0,0000
0,1229	0,0164	0,0116	0,0116	0,0004	0,0004	0,0000	0,0000
0,2657	0,0491	0,0348	0,0348	0,0012	0,0012	0,0000	0,0000
0,3686	0,0655	0,0463	0,0463	0,0016	0,0016	0,0000	0,0000
0,4915	0,0737	0,0521	0,0521	0,0018	0,0018	0,0000	0,0000
0,4915	0,0655	0,0463	0,0463	0,0016	0,0016	0,0000	0,0000
0,5529	0,0655	0,0463	0,0463	0,0016	0,0016	0,0000	0,0000
0,6143	0,0819	0,0579	0,0579	0,0021	0,0021	0,0000	0,0000
0,6143	0,0819	0,0579	0,0579	0,0021	0,0021	0,0000	0,0000
0,7986	0,1065	0,0753	0,0753	0,0027	0,0027	0,0000	0,0000
0,9215	0,1229	0,0869	0,0869	0,0031	0,0031	0,0000	0,0000
0,8601	0,1147	0,0811	0,0811	0,0029	0,0029	0,0000	0,0000
1,0443	0,1392	0,0985	0,0985	0,0035	0,0035	0,0000	0,0000
1,2900	0,1720	0,1216	0,1216	0,0043	0,0043	0,0000	0,0000
1,4129	0,1884	0,1332	0,1332	0,0047	0,0047	0,0000	0,0000
1,5972	0,2130	0,1506	0,1506	0,0053	0,0053	0.0000	0,0000
1,8429	0,2457	0,1738	0,1738	0,0062	0,0062	0,0000	0,0000
2,2115	0,2949	0,2085	0,2085	0,0074	0,0074	0,0000	0,0000
2,5801	0,3440	0,2433	0,2433	0,0086	0,0074	0,0000	0,0000
3,1330	0,4177	0,2954	0,2455	0,0105	0,0105	0,0000	0,0000
3,8088	0,5078	0,3591	0,3591	0,0103	0,0103	0,0000	0,0000
4,5460	0,6061	0,3391	0,3391	0,0127	0,0127	0,0000	0,0000
5,3446	0,7126	0,5039	0,5039	0,0132	0,0132	0,0000	0,0000
	0,8437	0,5966	0,5966	0,0178	0,0178	0,0000	0,0000
6,3276 7,5562	1,0075	0,3900	0,3966	0,0211	0,0211	0,0000	0,0000
		· ·					0,0000
8,7849	1,1713	0,8282	0,8282	0,0293	0,0293	0,0000	0,0000
9,8907	1,3188	0,9325	0,9325 0,9904	0,0330	0,0330	0,0000	/
10,5050	1,4007	0,9904	/	0,0351	0,0351	0,0000	0,0000
11,1190	1,4825	1,0483	1,0483	0,0371	0,0371	0,0000	0,0000
12,2250	1,6300	1,1526	1,1526	0,0408	0,0408	0,0000	0,0000
13,0850	1,7447	1,2337	1,2337	0,0437	0,0437	0,0000	0,0000
13,6990	1,8265	1,2916	1,2916	0,0457	0,0457	0,0000	0,0000
14,1910	1,8921	1,3379	1,3379	0,0474	0,0474	0,0000	0,0000
15,6650	2,0887	1,4769	1,4769	0,0523	0,0523	0,0000	0,0000
17,7540	2,3672	1,6739	1,6739	0,0593	0,0593	0,0000	0,0000
20,0880	2,6784	1,8939	1,8939	0,0671	0,0671	0,0000	0,0000
21,6850	2,8913	2,0445	2,0445	0,0724	0,0724	0,0000	-0,0001
23,9580	3,1944	2,2588	2,2588	0,0800	0,0800	0,0000	-0,0001
26,7840	3,5712	2,5252	2,5252	0,0894	0,0894	0,0000	-0,0001
29,6100	3,9480	2,7917	2,7917	0,0988	0,0989	0,0000	-0,0001
31,3300	4,1773	2,9538	2,9538	0,1046	0,1046	0,0000	-0,0001
33,3580	4,4477	3,1450	3,1450	0,1114	0,1114	-0,0001	-0,0001
36,2450	4,8327	3,4172	3,4172	0,1210	0,1210	-0,0001	-0,0001
39,5630	5,2751	3,7300	3,7300	0,1321	0,1321	0,0000	-0,0001
43,4940	5,7992	4,1007	4,1007	0,1452	0,1452	0,0000	-0,0001
47,7950	6,3727	4,5062	4,5062	0,1595	0,1596	0,0000	-0,0001
52,2180	6,9624	4,9232	4,9232	0,1743	0,1743	0,0000	-0,0001
56,8250	7,5767	5,3575	5,3575	0,1897	0,1897	0,0000	-0,0001
61,7400	8,2320	5,8209	5,8209	0,2061	0,2061	-0,0001	-0,0002
66,6550	8,8873	6,2843	6,2843	0,2225	0,2225	-0,0001	-0,0001
71,5690	9,5425	6,7476	6,7476	0,2389	0,2389	-0,0001	-0,0002
76,6070	10,2143	7,2226	7,2226	0,2557	0,2558	-0,0001	-0,0002
81,7060	10,8941	7,7033	7,7033	0,2727	0,2728	-0,0001	-0,0002
86,8050	11,5740	8,1841	8,1841	0,2898	0,2898	-0,0001	-0,0002
91,7810	12,2375	8,6532	8,6532	0,3064	0,3064	-0,0001	-0,0002
96,6950	12,8927	9,1165	9,1165	0,3228	0,3228	-0,0001	-0,0002
101,7900	13,5720	9,5969	9,5969	0,3398	0,3398	-0,0002	-0,0002
106,8300	14,2440	10,0720	10,0720	0,3566	0,3567	-0,0001	-0,0003
111,9900	14,9320	10,5585	10,5585	0,3738	0,3739	-0,0002	-0,0003
117,0300	15,6040	11,0337	11,0337	0,3907	0,3907	-0,0002	-0,0003
122,1200	16,2827	11,5136	11,5136	0,4076	0,4077	-0,0002	-0,0004
127,2800	16,9707	12,0001	12,0001	0,4249	0,4249	-0,0002	-0,0003
132,5100	17,6680	12,4932	12,4932	0,4423	0,4424	-0,0002	-0,0004
138,2200	18,4293	13,0315	13,0315	0,4614	0,4615	-0,0002	-0,0004
144,0600	19,2080	13,5821	13,5821	0,4809	0,4810	-0,0002	-0,0004

Tabela A.5.2: Percentual de Fibra: 0,5% (continuação)

P	σ_{total}	σ_1	σ_2	σ_{1}/fc	σ ₂ /fc	ε_1	ϵ_2
(kN)	(MPa)	(MPa)	(MPa)		-0	(mm/mm)	(mm/mm)
160,8300	21,4440	15,1632	15,1632	0,5369	0,5369	-0,0003	-0,0004
166,0500	22,1400	15,6553	15,6553	0,5543	0,5544	-0,0003	-0,0005
171,0900	22,8120	16,1305	16,1305	0,5711	0,5712	-0,0003	-0,0005
176,3100	23,5080	16,6227	16,6227	0,5885	0,5886	-0,0003	-0,0005
181,4100	24,1880	17,1035	17,1035	0,6056	0,6056	-0,0003	-0,0005
186,5700	24,8760	17,5900	17,5900	0,6228	0,6229	-0,0003	-0,0005
191,6700	25,5560	18,0708	18,0708	0,6398	0,6399	-0,0004	-0,0005
196,7700	26,2360	18,5517	18,5517	0,6568	0,6569	-0,0004	-0,0005
201,6200	26,8827	19,0089	19,0089	0,6730	0,6731	-0,0004	-0,0005
206,5300	27,5373	19,4718	19,4718	0,6894	0,6895	-0,0004	-0,0006
210,0400	28,0053	19,8028	19,8028	0,7011	0,7012	-0,0004	-0,0005
215,5600	28,7413	20,3232	20,3232	0,7196	0,7197	-0,0004	-0,0006
220,9100	29,4547	20,8276	20,8276	0,7374	0,7375	-0,0004	-0,0006
226,1300	30,1507	21,3197	21,3197	0,7548	0,7549	-0,0005	-0,0006
231,2900	30,8387	21,8062	21,8062	0,7721	0,7722	-0,0005	-0,0006
236,3900	31,5187	22,2871	22,2871	0,7891	0,7892	-0,0005	-0,0007
241,3700	32,1827	22,7566	22,7566	0,8057	0,8058	-0,0005	-0,0006
246,4700	32,8627	23,2374	23,2374	0,8227	0,8229	-0,0005	-0,0007
251,4400	33,5253	23,7060	23,7060	0,8393	0,8394	-0,0006	-0,0007
256,6000	34,2133	24,1925	24,1925	0,8565	0,8567	-0,0006	-0,0007
261,5200	34,8693	24,6563	24,6563	0,8730	0,8731	-0,0006	-0,0007
266,4900	35,5320	25,1249	25,1249	0,8896	0,8897	-0,0006	-0,0007
271,5300	36,2040	25,6001	25,6001	0,9064	0,9065	-0,0006	-0,0008
276,5100	36,8680	26,0696	26,0696	0,9230	0,9231	-0,0006	-0,0008
281,4800	37,5307	26,5382	26,5382	0,9396	0,9397	-0,0007	-0,0008
286,2700	38,1693	26,9898	26,9898	0,9556	0,9557	-0,0007	-0,0008
335,8800	44,7840	31,6671	31,6671	1,1212	1,1214	-0,0008	-0,0010
355,7300	47,4307	33,5385	33,5385	1,1874	1,1876	-0,0009	-0,0011
386,0900	51,4787	36,4009	36,4009	1,2888	1,2890	-0,0010	-0,0013
415,4000	55,3867	39,1643	39,1643	1,3866	1,3868	-0,0012	-0,0015
436,6700	58,2227	41,1696	41,1696	1,4576	1,4578	-0,0013	-0,0016
465,5000	62,0667	43,8878	43,8878	1,5539	1,5541	-0,0016	-0,0018

Tabela A.5.3: Percentual de fibra: 1,0% (continua)

P	σ_{total}	σ_1	σ_2	σ_1/fc	σ_2/fc	$arepsilon_{l}$	$arepsilon_2$
(kN)	(MPa)	(MPa)	(MPa)	σηje	0250	(mm/mm)	(mm/mm)
0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
0,0614	0,0000	0,0058	0,0058	0,0000	0,0000	0,0000	0,0000
0,2457	0,0328	0,0232	0,0038	0,0002	0,0002	0,0000	0,0000
0,0614	0,0082	0,0058	0,0058	0,0002	0,0002	0,0000	0,0000
0,1229	0,0164	0,0116	0,0116	0,0004	0,0004	0,0000	0,0000
0,2457	0,0328	0,0232	0,0232	0,0008	0,0008	0,0000	0,0000
0,3072	0,0410	0,0290	0,0290	0,0010	0,0010	0,0000	0,0000
0,5529	0,0737	0,0521	0,0521	0,0018	0,0018	0,0000	0,0000
0,5529	0,0737	0,0521	0,0521	0,0018	0,0018	0,0000	0,0000
0,9215	0,1229	0,0869	0,0869	0,0031	0,0031	0,0000	0,0000
1,0443	0,1392	0,0985	0,0985	0,0035	0,0035	0,0000	0,0000
1,4129	0,1884	0,1332	0,1332	0,0047	0,0047	0,0000	0,0000
1,7201	0,2293	0,1622	0,1622	0,0057	0,0057	0,0000	0,0000
2,0887	0,2785	0,1969	0,1969	0,0070	0,0070	0,0000	0,0000
2,6416	0,3522	0,2491	0,2491	0,0088	0,0088	0,0000	0,0000
3,3173	0,4423	0,3128	0,3128	0,0111	0,0111	0,0000	-0,0001
4,1160	0,5488	0,3881	0,3881	0,0137	0,0137	0,0000	-0,0001
4,9760	0,6635	0,4691	0,4691	0,0166	0,0166	0,0000	-0,0001
5,8361	0,7781	0,5502	0,5502	0,0195	0,0195	0,0000	-0,0001
7,1876	0,9583	0,6777	0,6777	0,0240	0,0240	0,0000	0,0000
8,6006	1,1467	0,8109	0,8109	0,0287	0,0287	0,0000	0,0000
9,7064	1,2942	0,9151	0,9151	0,0324	0,0324	-0,0001	0,0000
10,5660	1,4088	0,9962	0,9962	0,0353	0,0353	-0,0001	0,0000
11,2420	1,4989	1,0599	1,0599	0,0375	0,0375	-0,0001	0,0000
12,1020	1,6136	1,1410	1,1410	0,0404	0,0404	-0,0001	-0,0001
12,5930	1,6791	1,1873	1,1873	0,0420	0,0420	-0,0001	-0,0001
13,0850	1,7447	1,2337	1,2337	0,0437	0,0437	-0,0001	0,0000
13,7610	1,8348	1,2974	1,2974	0,0459	0,0459	-0,0001	-0,0001
15,4190	2,0559	1,4537	1,4537	0,0515	0,0515	-0,0001	-0,0001
17,8150	2,3753	1,6796	1,6796	0,0595	0,0595	-0,0001	-0,0001
19,8420	2,6456	1,8707	1,8707	0,0662	0,0662	-0,0001	-0,0001
22,4230	2,9897	2,1141	2,1141	0,0748	0,0749	-0,0001	-0,0001
25,7400	3,4320	2,4268	2,4268	0,0859	0,0859	-0,0001	-0,0001
29,6100	3,9480	2,7917	2,7917	0,0988	0,0989	-0,0001	-0,0001
31,8220	4,2429	3,0002	3,0002	0,1062	0,1062	-0,0001	-0,0001
34,4640	4,5952	3,2493	3,2493	0,1150	0,1151	-0,0001	-0,0001
37,6580	5,0211	3,5504	3,5504	0,1257	0,1257	-0,0001	-0,0001
41,8970	5,5863	3,9501	3,9501	0,1399	0,1399	-0,0001	-0,0001
46,8120	6,2416	4,4135	4,4135	0,1563	0,1563	-0,0001	-0,0001
52,0950	6,9460	4,9116	4,9116	0,1739	0,1739	-0,0001	-0,0001
57,5010	7,6668	5,4212	5,4212	0,1919	0,1920	-0,0001	-0,0001
62,8460	8,3795	5,9252	5,9252	0,2098	0,2098	-0,0001	-0,0001
68,3130	9,1084	6,4406	6,4406	0,2280	0,2281	-0,0001	-0,0002
73,6580	9,8211	6,9445 7,4426	6,9445 7,4426	0,2459	0,2459	-0,0001	-0,0001
78,9410 84,1630	10,5255	7,4426	7,4426	0,2635	0,2635	-0,0002	-0,0002
84,1630 89,3230	11,2217 11,9097	7,9350 8 4215	7,9350 8 4215	0,2809	0,2810 0,2982	-0,0001 -0,0001	-0,0003 -0,0003
94,6070	12,6143	8,4215 8,9196	8,4215 8,9196	0,2982 0,3158	0,2982	-0,0001	-0,0003
99,8290	13,3105	9,4120	9,4120	0,3138	0,3139	-0,0002	-0,0003
104,8600	13,9813	9,8863	9,8863	0,3532	0,3533	-0,0002	-0,0003
110,0200	14,6693	10,3728	10,3728	0,3500	0,3673	-0,0001	-0,0003
115,0000	15,3333	10,3728	10,3728	0,3873	0,3839	-0,0001	-0,0003
120,2200	16,0293	11,3345	11,3345	0,4013	0,3839	-0,0001	-0,0004
125,4400	16,7253	11,8266	11,8266	0,4187	0,4188	-0,0002	-0,0003
130,7300	17,4307	12,3253	12,3253	0,4364	0,4364	-0,0002	-0,0003
135,9500	18,1267	12,8175	12,8175	0,4538	0,4539	-0,0002	-0,0004
141,1700	18,8227	13,3096	13,3096	0,4712	0,4713	-0,0003	-0,0004
146,2100	19,4947	13,7848	13,7848	0,4881	0,4881	-0,0003	-0,0004
		,	-,	,	-,	.,	.,

Tabela A.5.3: Percentual de Fibra: 1,0% (continuação)

P	σ_{total}	σ_1	σ_2	σ_1/fc	σ ₂ /fc	$arepsilon_1$	ϵ_2
(kN)	(MPa)	(MPa)	(MPa)			(mm/mm)	(mm/mm)
161,5000	21,5333	15,2264	15,2264	0,5391	0,5392	-0,0003	-0,0004
166,6000	22,2133	15,7072	15,7072	0,5561	0,5562	-0,0003	-0,0005
171,5200	22,8693	16,1711	16,1711	0,5725	0,5726	-0,0003	-0,0005
176,6800	23,5573	16,6576	16,6576	0,5898	0,5899	-0,0003	-0,0005
181,7100	24,2280	17,1318	17,1318	0,6066	0,6066	-0,0003	-0,0005
186,6300	24,8840	17,5956	17,5956	0,6230	0,6231	-0,0003	-0,0005
191,6700	25,5560	18,0708	18,0708	0,6398	0,6399	-0,0003	-0,0005
196,6400	26,2187	18,5394	18,5394	0,6564	0,6565	-0,0004	-0,0005
201,7400	26,8987	19,0202	19,0202	0,6734	0,6735	-0,0004	-0,0005
206,8400	27,5787	19,5011	19,5011	0,6904	0,6905	-0,0004	-0,0005
211,8200	28,2427	19,9706	19,9706	0,7071	0,7072	-0,0004	-0,0006
216,7900	28,9053	20,4392	20,4392	0,7237	0,7238	-0,0004	-0,0006
221,9500	29,5933	20,9256	20,9256	0,7409	0,7410	-0,0005	-0,0006
226,8700	30,2493	21,3895	21,3895	0,7573	0,7574	-0,0004	-0,0006
231,9100	30,9213	21,8647	21,8647	0,7741	0,7742	-0,0005	-0,0006
236,8800	31,5840	22,3333	22,3333	0,7907	0,7908	-0,0005	-0,0007
241,8000	32,2400	22,7971	22,7971	0,8071	0,8073	-0,0005	-0,0007
246,7700	32,9027	23,2657	23,2657	0,8237	0,8239	-0,0005	-0,0007
251,4400	33,5253	23,7060	23,7060	0,8393	0,8394	-0,0006	-0,0007
255,9900	34,1320	24,1350	24,1350	0,8545	0,8546	-0,0006	-0,0007
260,4700	34,7293	24,5573	24,5573	0,8695	0,8696	-0,0006	-0,0007
265,2600	35,3680	25,0090	25,0090	0,8855	0,8856	-0,0005	-0,0007
270,4900	36,0653	25,5020	25,5020	0,9029	0,9030	-0,0006	-0,0008
275,5200	36,7360	25,9763	25,9763	0,9197	0,9198	-0,0007	-0,0008
280,5600	37,4080	26,4515	26,4515	0,9365	0,9367	-0,0006	-0,0008
285,5400	38,0720	26,9210	26,9210	0,9531	0,9533	-0,0007	-0,0008
290,4500	38,7267	27,3839	27,3839	0,9695	0,9697	-0,0007	-0,0008
295,4300	39,3907	27,8534	27,8534	0,9862	0,9863	-0,0007	-0,0008
300,1600	40,0213	28,2994	28,2994	1,0019	1,0021	-0,0007	-0,0008
324,9500	43,3267	30,6366	30,6366	1,0847	1,0849	-0,0007	-0,0009
349,1900	46,5587	32,9219	32,9219	1,1656	1,1658	-0,0008	-0,0010
377,8000	50,3733	35,6193	35,6193	1,2611	1,2613	-0,0009	-0,0011
420,7100	56,0947	39,6649	39,6649	1,4044	1,4046	-0,0011	-0,0013
458,3200	61,1093	43,2108	43,2108	1,5299	1,5301	-0,0013	-0,0015
483,3900	64,4520	45,5744	45,5744	1,6136	1,6138	-0,0014	-0,0017
510,5000	68,0667	48,1304	48,1304	1,7041	1,7043	-0,0019	-0,0021

Tabela A.5.4: Percentual de fibra: 1,5% (continua)

D	_	_	_	- /Co	- /Co		
P (kN)	σ _{total} (MPa)	σ ₁ (MPa)	σ ₂ (MPa)	σ_{l}/fc	σ₂/fc	ε ₁ (mm/mm)	ε₂ (mm/mm)
0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
0,0614	0,0082	0,0058	0,0058	0,0002	0,0002	0,0000	0,0000
0,1229	0,0164	0,0116	0,0116	0,0004	0,0004	0,0000	0,0000
0,3686	0,0491	0,0348	0,0348	0,0012	0,0012	0,0000	0,0000
0,4915	0,0655	0,0463	0,0463	0,0016	0,0016	0,0000	0,0000
0,5529 0,6758	0,0737 0,0901	0,0521 0,0637	0,0521 0,0637	0,0018 0,0023	0,0018 0,0023	0,0000 0,0000	0,0000 0,0000
0,7372	0,0983	0,0695	0,0695	0,0025	0,0025	0,0000	0,0000
0,8601	0,1147	0,0811	0,0811	0,0029	0,0029	0,0000	0,0000
0,9829	0,1311	0,0927	0,0927	0,0033	0,0033	0,0000	0,0000
0,9829	0,1311	0,0927	0,0927	0,0033	0,0033	0,0000	0,0000
1,2900	0,1720	0,1216	0,1216	0,0043	0,0043	0,0000	0,0000
1,4129	0,1884	0,1332	0,1332	0,0047	0,0047	0,0000	0,0000
1,5972	0,2130	0,1506	0,1506	0,0053	0,0053	0,0000	0,0000
1,8429 1,9044	0,2457 0,2539	0,1738 0,1795	0,1738 0,1795	0,0062 0,0064	0,0062 0,0064	0,0000 0,0000	0,0000 0,0000
1,9658	0,2621	0,1793	0,1793	0,0064	0,0064	-0,0001	0,0000
2,1501	0,2867	0,2027	0,2027	0,0072	0,0072	0,0000	0,0000
2,7644	0,3686	0,2606	0,2606	0,0092	0,0092	0,0000	0,0000
3,2559	0,4341	0,3070	0,3070	0,0109	0,0109	0,0000	0,0000
3,9317	0,5242	0,3707	0,3707	0,0131	0,0131	0,0000	0,0000
4,8532	0,6471	0,4576	0,4576	0,0162	0,0162	0,0000	0,0000
5,5904	0,7454	0,5271	0,5271	0,0187	0,0187	-0,0001	0,0000
6,7576	0,9010	0,6371	0,6371	0,0226	0,0226	-0,0001 0.0000	0,0000
8,0477 9,3992	1,0730 1,2532	0,7587 0,8862	0,7587 0,8862	0,0269 0,0314	0,0269 0,0314	0,0000	0,0000 0,0000
11,1190	1,4825	1,0483	1,0483	0,0371	0,0371	0,0000	0,000
11,1800	1,4907	1,0541	1,0541	0,0373	0,0373	-0,0001	-0,0001
11,5490	1,5399	1,0889	1,0889	0,0386	0,0386	-0,0001	-0,0001
12,2860	1,6381	1,1583	1,1583	0,0410	0,0410	-0,0001	-0,0001
12,6550	1,6873	1,1931	1,1931	0,0422	0,0422	-0,0001	-0,0001
12,9000	1,7200	1,2162	1,2162	0,0431	0,0431	-0,0001	-0,0001
13,8220 15,4190	1,8429 2,0559	1,3032 1,4537	1,3032 1,4537	0,0461 0,0515	0,0461 0,0515	-0,0001 -0,0001	-0,0001 -0,0001
16,8940	2,0339	1,5928	1,4337	0,0513	0,0513	-0,0001	-0,0001
19,5970	2,6129	1,8476	1,8476	0,0654	0,0654	-0,0001	-0,0001
22,4840	2,9979	2,1198	2,1198	0,0751	0,0751	-0,0001	-0,0001
26,3540	3,5139	2,4847	2,4847	0,0880	0,0880	-0,0001	-0,0001
29,7950	3,9727	2,8091	2,8091	0,0995	0,0995	-0,0001	-0,0001
31,8830	4,2511	3,0060	3,0060	0,1064	0,1064	-0,0001	-0,0001
35,2010	4,6935	3,3188	3,3188	0,1175	0,1175	-0,0001 -0,0001	-0,0001
39,5010 44,0470	5,2668 5,8729	3,7242 4,1528	3,7242 4,1528	0,1319 0,1470	0,1319 0,1471	-0,0001	-0,0001 -0,0001
49,0850	6,5447	4,6278	4,6278	0,1470	0,1471	-0,0001	-0,0001
54,1220	7,2163	5,1027	5,1027	0,1807	0,1807	-0,0001	-0,0001
59,4050	7,9207	5,6008	5,6008	0,1983	0,1983	-0,0001	-0,0002
64,7500	8,6333	6,1047	6,1047	0,2161	0,2162	-0,0001	-0,0001
70,0950	9,3460	6,6086	6,6086	0,2340	0,2340	-0,0001	-0,0002
75,2550	10,0340	7,0951	7,0951	0,2512	0,2512	-0,0001	-0,0001
80,6000 85,6990	10,7467	7,5990	7,5990 8,0798	0,2690	0,2691 0,2861	-0,0001 -0,0001	-0,0002 -0,0002
91,0440	11,4265 12,1392	8,0798 8,5837	8,0798 8,5837	0,2861 0,3039	0,2861	-0,0001	-0,0002 -0,0002
96,1430	12,1392	9,0644	9,0644	0,3039	0,3040	-0,0002	-0,0002
101,4200	13,5227	9,5620	9,5620	0,3385	0,3386	-0,0002	-0,0002
106,3400	14,1787	10,0258	10,0258	0,3550	0,3550	-0,0002	-0,0003
111,7400	14,8987	10,5349	10,5349	0,3730	0,3731	-0,0002	-0,0002
116,8400	15,5787	11,0158	11,0158	0,3900	0,3901	-0,0002	-0,0003
122,0600	16,2747	11,5079	11,5079	0,4074	0,4075	-0,0002	-0,0003
127,2200 132,3800	16,9627 17,6507	11,9944 12,4809	11,9944 12,4809	0,4247 0,4419	0,4247 0,4420	-0,0002 -0,0002	-0,0003 -0,0003
132,3800	18,3307	12,4809	12,4809	0,4419	0,4420	-0,0002	-0,0003
142,6400	19,0187	13,4482	13,4482	0,4761	0,4762	-0,0002	-0,0003
147,6200	19,6827	13,9177	13,9177	0,4928	0,4928	-0,0002	-0,0004
152,6000	20,3467	14,3873	14,3873	0,5094	0,5095	-0,0002	-0,0004
157,6900	21,0253	14,8672	14,8672	0,5264	0,5265	-0,0002	-0,0003
162,7300	21,6973	15,3423	15,3423	0,5432	0,5433	-0,0003	-0,0004
167,8300	22,3773	15,8232	15,8232	0,5602	0,5603	-0,0002	-0,0003
172,7500 177,6000	23,0333 23,6800	16,2870 16,7443	16,2870 16,7443	0,5766 0,5928	0,5767 0,5929	-0,0002 -0,0003	-0,0004 -0,0004
182,7000	24,3600	17,2251	17,2251	0,6099	0,5929	-0,0003	-0,0004

Tabela A.5.4: Percentual de Fibra: 1,5% (continuação)

P	σ_{total}	σ_1	σ_2	σ ₁ /fc	σ₂/fc	\mathcal{E}_1	E 2
(kN)	(MPa)	(MPa)	(MPa)	17	23	(mm/mm)	(mm/mm)
197,5600	26,3413	18,6261	18,6261	0,6595	0,6596	-0,0003	-0,0004
202,5400	27,0053	19,0957	19,0957	0,6761	0,6762	-0,0004	-0,0005
207,4600	27,6613	19,5595	19,5595	0,6925	0,6926	-0,0003	-0,0004
212,3100	28,3080	20,0168	20,0168	0,7087	0,7088	-0,0004	-0,0005
217,2800	28,9707	20,4854	20,4854	0,7253	0,7254	-0,0003	-0,0005
219,7400	29,2987	20,7173	20,7173	0,7335	0,7336	-0,0004	-0,0005
225,9500	30,1267	21,3028	21,3028	0,7542	0,7543	-0,0004	-0,0006
231,3500	30,8467	21,8119	21,8119	0,7723	0,7724	-0,0004	-0,0005
236,5700	31,5427	22,3040	22,3040	0,7897	0,7898	-0,0005	-0,0005
241,6700	32,2227	22,7849	22,7849	0,8067	0,8068	-0,0004	-0,0005
246,7100	32,8947	23,2600	23,2600	0,8235	0,8237	-0,0005	-0,0006
251,6300	33,5507	23,7239	23,7239	0,8400	0,8401	-0,0004	-0,0006
256,7200	34,2293	24,2038	24,2038	0,8569	0,8571	-0,0005	-0,0006
261,6400	34,8853	24,6677	24,6677	0,8734	0,8735	-0,0005	-0,0006
266,5500	35,5400	25,1306	25,1306	0,8898	0,8899	-0,0005	-0,0006
271,4100	36,1880	25,5888	25,5888	0,9060	0,9061	-0,0005	-0,0006
276,3800	36,8507	26,0574	26,0574	0,9226	0,9227	-0,0005	-0,0006
281,2400	37,4987	26,5156	26,5156	0,9388	0,9389	-0,0005	-0,0007
286,1500	38,1533	26,9785	26,9785	0,9552	0,9553	-0,0005	-0,0007
293,1300	39,0840	27,6366	27,6366	0,9785	0,9786	-0,0005	-0,0007
295,9200	39,4560	27,8996	27,8996	0,9878	0,9879	-0,0006	-0,0007
300,6500	40,0867	28,3456	28,3456	1,0036	1,0037	-0,0005	-0,0007
305,3800	40,7173	28,7915	28,7915	1,0194	1,0195	-0,0006	-0,0007
307,1100	40,9480	28,9546	28,9546	1,0251	1,0253	-0,0006	-0,0008
310,9000	41,4533	29,3119	29,3119	1,0378	1,0380	-0,0006	-0,0008
319,7600	42,6347	30,1473	30,1473	1,0674	1,0675	-0,0006	-0,0008
345,6100	46,0813	32,5844	32,5844	1,1537	1,1538	-0,0007	-0,0008
359,4600	47,9280	33,8902	33,8902	1,1999	1,2001	-0,0007	-0,0009
384,2500	51,2333	36,2274	36,2274	1,2826	1,2828	-0,0008	-0,0009
392,9200	52,3893	37,0449	37,0449	1,3116	1,3118	-0,0008	-0,0010
423,3500	56,4467	39,9138	39,9138	1,4132	1,4134	-0,0010	-0,0011
447,4600	59,6613	42,1869	42,1869	1,4936	1,4939	-0,0011	-0,0012
481,4500	64,1933	45,3915	45,3915	1,6071	1,6073	-0,0013	-0,0014
525,1400	70,0187	49,5107	49,5107	1,7529	1,7532	-0,0017	-0,0019
561,5000	74,8667	52,9387	52,9387	1,8743	1,8746	-0,0023	-0,0025

Apêndice B – Gráficos tensão-deformação

B.1 Compressão uniaxial ($\sigma_2/\sigma_1=0/-1$)

Figura B.1.1: Percentual de fibra: 0,0%

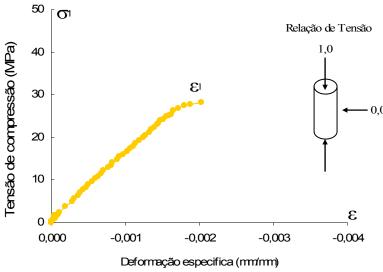
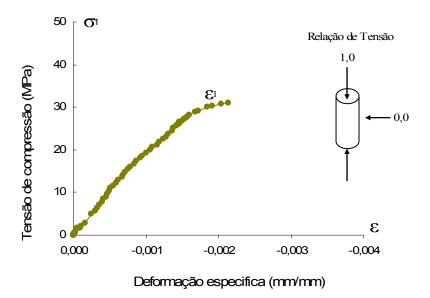



Figura B.1.2: Percentual de Fibra: 0,5%

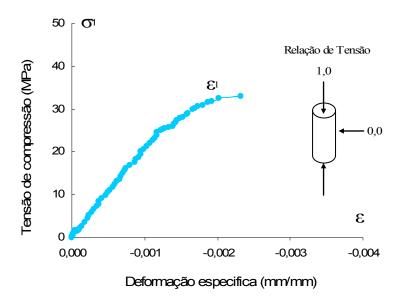
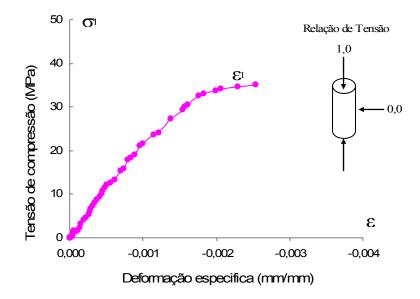
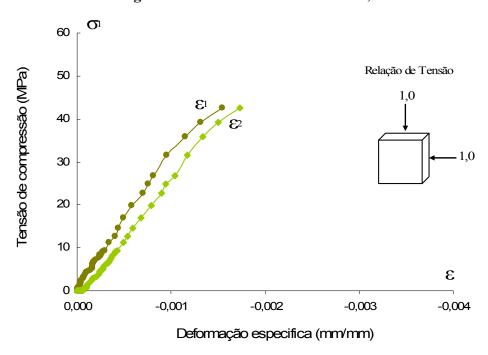



Figura B.1.3: Percentual de fibra: 1,0%



B.2 Compressão biaxial (σ_2/σ_1 =-1/-1) - APE-01

60 \mathbf{Q}_{l} Relação de Tensão 50 Tensão de compressão (MPa) 1,0 40 1,0 30 20 10 3 -0,001 -0,002 -0,003 -0,004 0,000 Deformação especifica (mm/mm)

Figura B.2.1: Percentual de fibra: 0,0%

Figura B.2.2: Percentual de Fibra: 0,5%

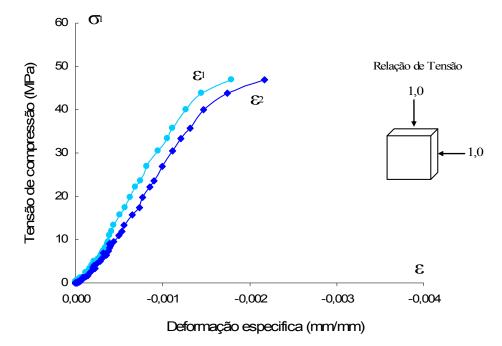
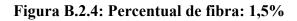
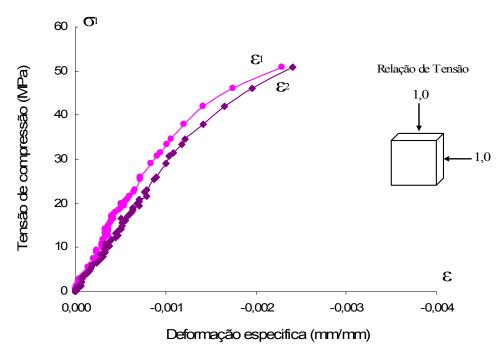




Figura B.2.3: Percentual de fibra: 1,0%

B.3 Compressão biaxial (σ_2/σ_1 =-0,2/-1) - APE-02

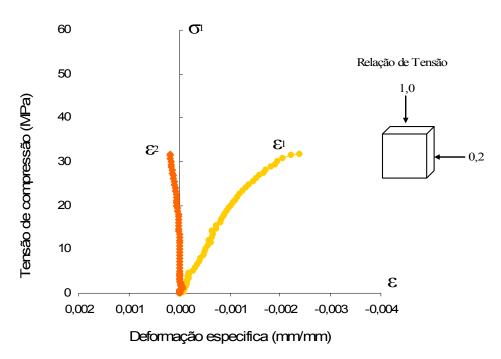
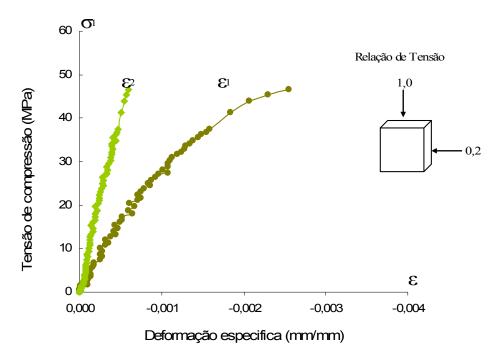



Figura B.3.1: Percentual de fibra: 0,0%

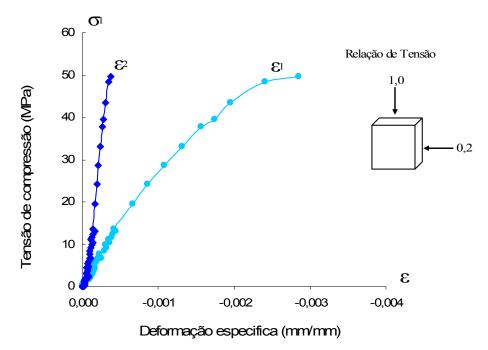
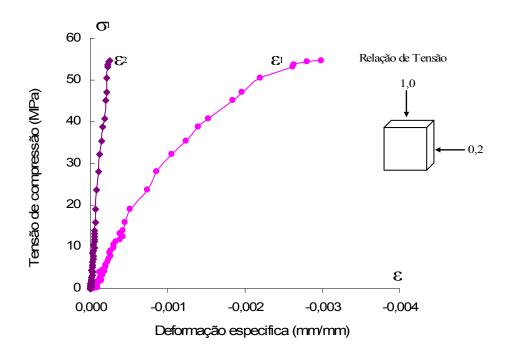



Figura B.3.3: Percentual de fibra: 1,0%

B.4 Compressão biaxial (σ_2/σ_1 =-0,5/-1) - APE-02

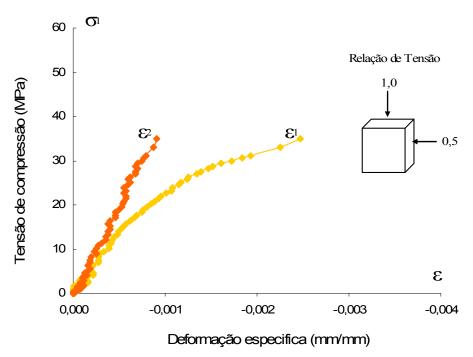
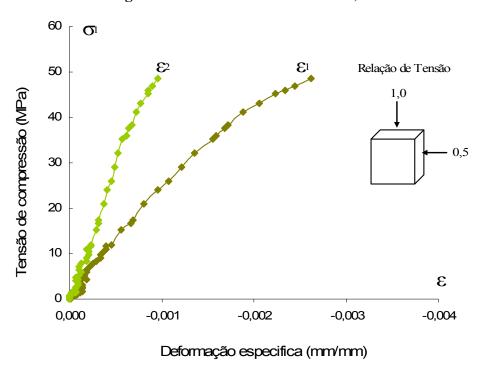
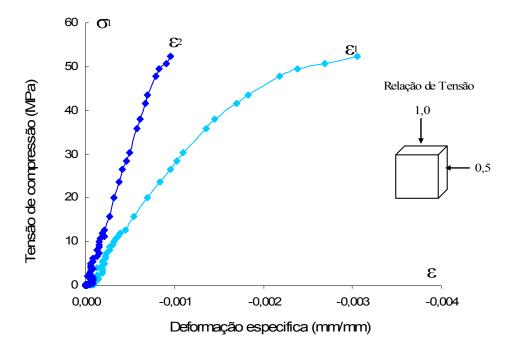



Figura B.4.1: Percentual de fibra: 0,0%



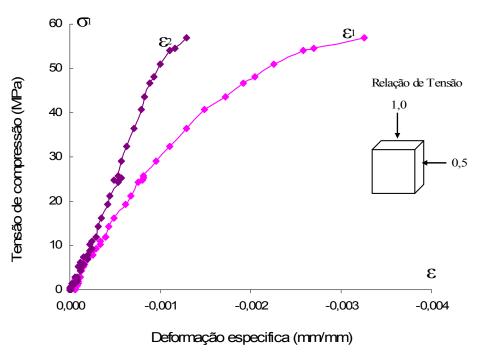


Figura B.4.3: Percentual de fibra: 1,0%

B.5 Compressão biaxial (σ_2/σ_1 =-1/-1) - APE-02

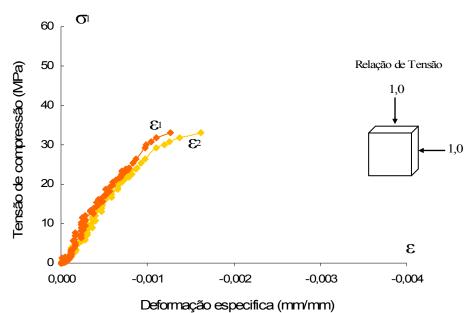
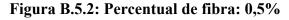
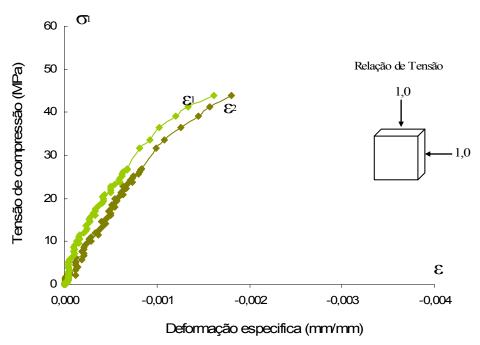




Figura B.5.1: Percentual de fibra: 0.0%

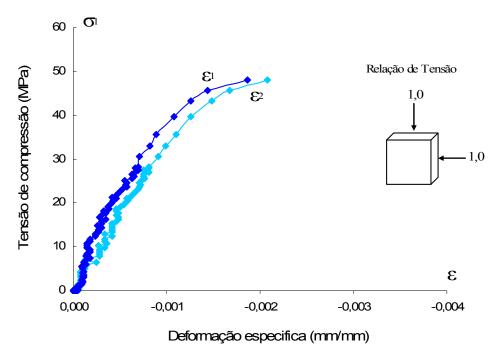
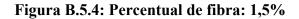
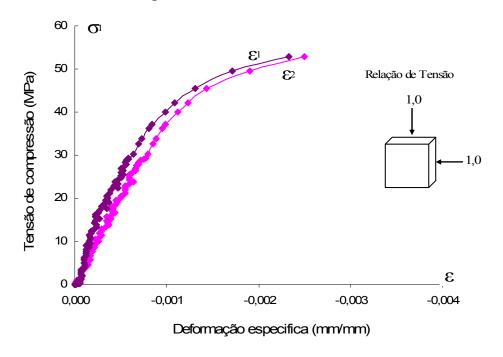




Figura B.5.3: Percentual de fibra: 1,0%

