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Prof. Dr. Jacob Scharcanski
Instituto de Informática, UFRGS
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RESUMO

A doença de Alzheimer é a mais comum das patologias neurodegen-

erativas afetando principalmente pessoas idosas e causando considerável impacto

econômico em todos os páıses. Atualmente não há cura para cessar seus efeitos na

memória fazendo do diagnóstico precoce fundamental para eventuais intervenções

terapêuticas. Para tal, técnicas de reconhecimento de padrões podem ser utilizadas

para diferenciar indiv́ıduos com o mal Alzheimer de indiv́ıduos saudáveis. No en-

tanto, aumentando o número de diagnósticos (classes) que definem estágios inter-

mediários da doença a capacidade de diferenciar classes de tais técnicas é compro-

metida. Isto ocorre devido ao fato de que as medidas biológicas, ou os biomar-

cadores, não são discriminantes o suficiente para lidar com classes além do caso

extremo, de forma binária, Alzheimer versus controle normal. Outro fator que difi-

culta o diagnóstico é a distribuição de probabilidade das classes intermediárias serem

altamente sobrepostas e com probabilidade a priori representando 60% dos dados.

Neste trabalho vamos demonstrar a capacidade de melhorar a pre-

cisão do diagnóstico utilizando classificadores e técnicas de amostragem baseados

em funções de distância. Abordagens binárias ou abordagens binárias adaptadas

a problemas multiclasse são a regra na literatura de diferenciação das classes da

doença de Alzheimer. No presente momento existe apenas um único artigo demon-

strando a possibilidade de melhora nas medidas de classificação com um tratamento

de reamostragem das probabilidades a priori das classes de Alzheimer. Diferente-

mente do artigo citado que trabalha com classificação binária, aqui vamos usar uma

abordagem de classificação todos-contra-todos na avaliação de um problema mul-

ticlasse da doença de Alzheimer. Demonstramos que a taxa de classificação do

nosso classificador utilizando classes balanceadas e uma função de distância apro-

priada é superior a classificadores populares. Este trabalho apresenta também duas

novas estratégias de ajuste do desequiĺıbrio tendo como medida de similaridade
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a distância entre os padrões. A de subamostragem, denominada Nearmiss 4, que

obteve maior redução de sobreposição entre as classes nas comparações entre algorit-

mos de amostragem, e outra de sobreamostragem, denominada SMOTE-borderline

3, uma versão multiclasse para a famı́lia de algoritmos SMOTE que se destaca por

ser naturalmente multiclasse ao contrário das abordagens binárias adaptadas para

multiclasse tratadas neste texto.

Finalmente, são comparadas técnicas de seleção de caracteŕısticas para

avaliar o poder discriminativo entre biomarcadores do mal de Alzheimer visando

encontrar o subconjunto de biomarcadores que fornece a melhor taxa de classificação.

Usando tal abordagem foi posśıvel encontrar o biomarcador com maior capacidade

discriminativa em um dado conjunto de biomarcadores.
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ABSTRACT

Alzheimer’s disease is the most common neurodegenerative disorder af-

fecting mainly elderly people and causing considerable economic impact in all coun-

tries. Currently, there is no cure to cease its effects in memory making early diagno-

sis fundamental for any therapeutic interventions. To this end, pattern recognition

techniques can be used to differentiate individuals with Alzheimer’s from healthy

individuals. However, increasing the number of diagnoses (classes) which define

disease’s intermediate stages (e.g. mild cognitive impairment) the classes differen-

tiation for such techniques is compromised. This is due to the fact that biological

measures, or biomarkers, are not discriminant enough to deal with classes beyond

the binary extreme case, Alzheimer’s versus normal control. Another factor that

makes diagnosis difficult is the probability distribution of the intermediate classes

being highly overlapping and with a priori probability representing 60 % of the data.

In this work, we will demonstrate the ability to improve diagnostic ac-

curacy using classifiers and sampling techniques based on distance functions. Binary

approaches or binary approaches adapted to multiclass problems are ubiquitous in

the literature of differentiating the classes of Alzheimer’s disease. At present, there

is only one article demonstrating the possibility of improvement in the classifica-

tion measures using a sampling treatment to change a priori probabilities of the

Alzheimer’s classes. Differently from the cited article working with binary classi-

fication, here we will use an all-versus-all classification approach to evaluating an

Alzheimer’s disease multiclass problem. Also, is shown that classification rate of

our classifier using balanced classes and an appropriate distance function is able to

overcome popular classifiers choices. This work also presents two new strategies of

imbalance adjustment, taking as a measure of similarity the distance between the

patterns. The undersampling, called Nearmiss 4, obtained the greatest reduction in

class overlapping comparing the sampling algorithms discussed, and another contri-
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bution is an oversampling, called SMOTE-borderline 3, a multiclass version for the

family of SMOTE algorithms that stands out for being naturally multiclass unlike

the binary approaches adapted for multiclass treated in this text.

Finally, feature selection techniques are compared to evaluate the dis-

criminative power between Alzheimer’s disease biomarkers in order to find the subset

of biomarkers which provides the best classification rate. Using this approach it was

possible to find the biomarker with the highest discriminative capacity in a given

set of biomarkers.
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1 INTRODUCTION

Alzheimer’s disease (AD) has a profound social and economic impact

on the world’s population. Mainly elderly people is affected by AD, what poses a

financial burden on health and social security for countries worldwide. Actually,

there are no AD treatments to cease damage of neurons that causes the symptoms

and ultimately leads to death [5]. AD is pathophysiologically characterized by the

gradual brain deposition of amyloid plaques, neurofibrillary tangles, and eventual

neuronal depletion [40]. The AD spectrum can be explained by preclinical (CN),

mild cognitive impairment (MCI) and AD dementia phases [40]. Preclinical AD in-

dividuals are those cognitively normal with amyloid plaques and tangles, individuals

with MCI have cognitive symptoms without meeting clinical criteria for dementia,

and AD dementia individuals present severely compromised cognitive faculties [75].

In recent years, a plethora of disease trackers, called biomarkers, has been developed

in order to track AD progression. For instance, biomarkers for beta peptide 1-42

(Aβ1−42) and tau proteins that indicate the presence of the hallmark pathological

features of AD, namely, amyloid plaques [40] and neurofibrillary tangles [25].

This thesis proposes to analyze the precision of such biomarkers when

identifying the region of AD spectrum which a given patient belongs. To this, pat-

tern recognition techniques will be applied to predict a pattern class or label, i.e.

a structured category in which patterns are organized. In pattern recognition, the

classifiers are central objects of study which use pre-labeled observations to iden-

tify non-categorized observations. Distance-based classifiers use distance functions

as similarity measures observations. Such classifiers are widely known since were

essential to early theoretical development in pattern recognition and are used as a

benchmark comparison for any new classification technique [19].

Usually, AD datasets contain issues such as missing data due to patients

quitting the study or dying, and imbalanced classes, due to different probability

1



of occurrences in AD spectra [20]. Such artifacts in data quality are detrimental

to diagnosis identification [47]. Distance-based pre-processing strategies are one

possible solution to deal with such artifacts. For instance, sampling methods in

which the main goal is to modify the class priors (resizing dataset classes), and,

data imputation algorithms are able to substitute missing data. In this thesis,

it will be proposed a study of how such modifications in AD datasets by means

of distance-bases algorithms (classifiers and sampling techniques) can benefit AD

identification.

In another front, instead of answering which are the classifier modifica-

tions that highly improve AD classification, a biomarker-wise comparison is studied

in order to answer which biomarker combination provides best chances to iden-

tify AD. This is done in the context of feature selection techniques wrapped with

distance-based classifiers [46]. Feature selection techniques basically find a subset

of features that maximize a chosen criterion of usefulness [30], however there is no

optimality ensured [60]. Not restrict to this, feature extraction from raw data [53]

and feature construction from other features are found in literature related with

AD classification [43]. Using such techniques it is possible to compare biomarkers

modalities and the probability of a given biomarker combination to provide a higher

precision than other.

This thesis is organized as follows: the second chapter presents basic

concepts of pattern recognition as well as the validation scheme for the remaining

thesis; the third chapter, how distance-based classifier is defined and can be mod-

ified by means of distance functions and normalization schemes; the fourth chap-

ter, distance-based inspired sampling strategies; the fifth chapter explores wrappers

feature selection using a distance-based classifier as usefulness measure; the sixth

chapter which describes the datasets (should be read first); the last chapter points

out future work suggestions and thesis conclusion. Related work will be introduced

at the beginning of each section if it is necessary.

2



2 BASIC CONCEPTS IN PATTERN

RECOGNITION

This chapter presents some fundamental concepts to understand the

main contents of this thesis. It also provides examples of classification problems

with analytical treatment for comparison to the non-analytical approach in next

chapters. The chapter is organized as follows: first, it is defined and discussed

basic objects related to classification, the pattern, and class, as well as the space

in which patterns are contained called the feature space. Next, the framework

of discriminant functions is introduced in order to define classifiers formally. Fi-

nally, is presented the classifier’s validation which allows the multiple classifiers

comparison. All codes and plots were written in R language and are available at

https://github.com/yurier/distance-based-alzheimer.

2.1 Basic definitions

A classifier basically assigns a pattern given type into a class. There

is no restrained definition for the term pattern [32]. It can be, for instance, a real

number, a categorical value, an ordinal value, or an image which can be represented

as real vectors and even more structured elements are possible, as graphs or temporal

series. Here, the term pattern is limited to be a real vector due to the range of

objects which can be understood as patterns. Thus, classifiers receive patterns as

inputs and categorical values as outputs, the classes. These constraints on pattern

and class definitions are not detrimental and will be enough to our purposes. Next

are presented definitions for class, pattern, and classifier as given in Devroye et al.

[19], in order to introduce the functional relationship that will be called classifier.

Assuming that any pattern can be assigned in one class, we define the class space

as follows.

3



Definition 1. (Class space)

Any pattern can be assigned to only one of m classes, {ωj}mj=1, which belongs to the

finite set Ω = {ω1, ..., ωm} called class space.

As defined in [19], an observation or pattern is a collection of numerical

measurements. Formally, it is an n-dimensional real vector in which each dimension

is called feature. As discussed in the introduction, in medical related classification

problems, features would be called for instance biomarkers. Patterns in medical

datasets often represent patients with n-dimensional biomarkers measures, for in-

stance: weight, height, gender, etc. Alternatively, in single individual studies, pat-

terns can be images’ voxels/pixels accounting for different biomarkers, for instance:

voxel perfusion, voxel grey-white matter ratio, etc.

Features used in the main datasets on this work are proteomic measures

from cerebral spinal fluid (CSF), cognitive measures from neuropsychological tests,

positronic emission tomography (PET) measures. Furthermore, constructed and

extracted features have been a potential source to understand diseases behavior

since new biomarkers are obtained from such processes. For instance, Lopez-de

Ipiña K. et al. [53] were able to differentiate individuals with Alzheimer’s disease

from healthy by applying feature extraction techniques on spontaneous speech to

obtain discriminant features. Another example can be seen in Khazaee A. et al.

[43] in which individuals with Alzheimer’s disease were differentiated perfectly from

healthy group using features obtained by graph theoretical tools through resting

state fMRI (functional magnetic resonance imaging). Thus, since features are used

to construct the classifier, they play an important role In the performance and

classifier’s designing. The feature space is defined as follows,

Definition 2. (Feature space)

The feature space F is a n-dimensional space in which patterns are characterized.
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Property 2.1. (Pattern and class association)

Any pattern x = (x1, ..., xn) ∈ F can be associated to a class ωj, such that ωj ∈ Ω.

This is ∀x ∈ F , ∃ ωj ∈ Ω.

In supervised learning is not possible to infer if Ω is suitable to repre-

sent the classes of given classification problem through the pairs {x ∈ F , ω ∈ Ω}.
Conversely, in unsupervised learning, which deals with unlabeled patterns, the main

goal is to seek for a class space for the patterns by clustering them. Recently, un-

supervised learning has been used on interesting neuroscience related applications.

For instance, similar to the blind source separation problem, spike sorting techniques

[50] which have been invaluable for brain-machine interfaces [49] since they are able

to cluster spikes based on its shape and give a class structure to the extracellularly

recorded neurons [50]. Turning back to supervised learning, let’s define the classifier

as a functional relationship between the feature space and the class space as follows,

Definition 3. (Classifier)

A classifier C : F ,→ Ω is a surjective function such that,

∀x ∈ F ∃ ωj ∈ Ω with C(x) = ωj.

The classifier C depends on the feature and the class space. In multi-

category classification [65], a classifier C can be represented as a vector of m binary

classifiers {ci}mi=1, where ci(x) = 1 if x belongs to class ωi ∈ Ω and ci(x) = 0 other-

wise, that is C(x) = {c1(x), ..., cm(x)} [19]. An union of such binary classifiers form

a well-defined classifier C if,

∀x ∈ F , ci(x) = 1 and cj(x) = 0 for j 6= i,

that is, for 1 ≤ i 6= j ≤ m follows that,

m
⋃

i=1

{x : ci(x) = 1} = F and {x : ci(x) = 1}
⋂

{x : cj(x) = 1} = ∅
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This simple association between patterns and classes is not a satisfac-

tory definition because any well-defined association between patterns and classes is

a valid classifier. Thus, it is reasonable to think how a classifier can be designed for

an optimal error. That is to say, a classifier with minimal probability of error. This

problem is also known as the Bayes problem [19]. Since data generation underlying

processes are unknown in real-world classification problems, next examples illustrate

how one can use class distributions to solve artificially the Bayes problem.

Prior to discussing the example, it is relevant to remark all AD features

and its importance will only be discussed in five. Given two classes representing the

diagnosis labels AD and CN as given in chapter six by name of proteom dataset,

let’s suppose to have complete knowledge of these class distributions with respect

to the biomarker Aβ1−42 (ABETA). The problem here is to classify an unclassi-

fied pattern using the previously labeled data, whereas the class space is given by

Ω = {ω1 = AD,ω2 = CN} and the feature space, F , is one-dimensional mea-

sure represented by ABETA. Furthermore, let’s assume that distribution of each

class is completely explained by Gaussians, N (µCN = 196.67, σCN = 49.96) and

N (µAD = 133.20, σAD = 35.84) as depicted in figure 2.1 with priors p(AD) = 39.68%

and p(CN) = 60.32%. The line in figure 2.1 represents the value in which both

Gaussians distributions are equally likely.
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Figure 2.1 Gaussians of both classes and line dividing the domain in two decision regions.
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Using the line as reference it is possible to assign an unclassified pattern

into one class only and a well-defined classifier is achieved. Given that ∀x ∈ F , ∃
ω ∈ Ω the classifier can be written as follows,

C(x) =











ω1 if x ≤ 168.65,

ω2 otherwise.

Another solution for the intersection between two Gaussians is x =

−36.84 however since x is positive it will be ignored. The calculations to obtain

the line in figure 2.1 will be explained in next section for multivariate Gaussians.

In figure 2.1 notice misclassification errors are unavoidable even for the Bayes clas-

sifier which addresses the optimal error solution (with assumptions on distribution

shapes). Further sections present examples of a multiclass bivariate problem solved

by Bayes classifier. A framework to describe all classifiers in this thesis is presented

next. It is known as discriminant functions or the set of rules which compose a

classifier [19].

2.2 Discriminant functions

An example of a simple classifier is the maximum a posteriori (MAP)

classifier. The MAP uses the posterior probability for classification, in such way that

selected class maximizes the class conditional posterior probability. Let ω̃j denotes

the class estimated by the classifier, the MAP classifier is defined as follows,

Definition 4. (MAP classifier)

Let p(wj|x) be the posterior probability of the pattern x ∈ F belong to the class

wj ∈ Ω := {ω1, ..., ωm}. The MAP classifier is defined as a function that maximizes

the posterior probability of classification given the class,

ω̃k = arg
ω∈Ω

max {p(ω1|x), p(ω2|x), ..., p(ωm|x)} ,
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this is,

ω̃k = argmax
ω∈Ω

p(ω|x).

The highest probability defines the classification assignment of x to ω̃k since p(ωk|x) ≥
p(ωj|x) for j = 1, .., k − 1, k + 1, ...,m.

Any classifier, e.g. MAP classifier, allows feature space be separated

in different regions. These regions in the feature space are called decision regions.

Basically, all patterns containing in a given region space belongs to the same class.

Also, decision regions are limited by its borders which are called decision bound-

aries. Decision boundaries for the MAP classifier are precisely where class posterior

probabilities are equally likely, this is,

p(ωj|x) = p(ωi|x) ∀x ∈ F ∀ wj 6= wi ∈ Ω.

It is uncommon in real-world problems patterns laying exactly over the

boundary between classes. Decision boundary importance is mainly related to the

interpretation of how the feature space will be divided in the class space. This

division allows using a classifier as an interpretative tool for observing patterns

position in the feature spaces. Next section introduces discriminant functions which

generalize MAP classifier.

Discriminant functions are able to describe non-probabilistic and prob-

abilistic classifiers approaches [12] and are defined as follow.

Definition 5. (Discriminant functions)

A discriminant function is a set of functions fj(x) : F → R for j = 1, ...,m in which

if x belongs to class ωj ∈ Ω then

fj(x) ≥ fi(x) ∀x ∈ Rj ∀i 6= j

For instance, if a pattern x belongs to a class ωj, the discriminant

function, fj, has the highest value among discriminant functions. The set of patterns
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which assume the highest value for a given discriminant function fj defines a region

in feature space called decision region, denoted by Rj ⊂ F . That is to say all

patterns in Rj are associated with the class ωj.

Classification by means of the discriminant function is done by maxi-

mizing its argument related to the class. Different from the MAP classifier it does

not necessarily have a probability function to be maximized, that is,

ω̃j = argmax
j=1,...,m

fj(x) (2.1)

A discriminant functions set must create the same decision regions un-

der a monotonic function composition. This property allows classification prob-

lems which have the classes described by parametric expressions (e.g. distributions

Gamma or Gaussian) to be solved analytically.

Property 2.2. (Monotonic function composition)

Let h(x) be a monotonic function and {fj}mj=1 the set of discriminant functions, then

h(fj(x)) ≥ h(fi(x)) ∀x ∈ Rj ∀i 6= j.

Suppose one wants the class conditional probability as a discriminant

function as used in MAP classifier, in order to this, consider Bayes theorem [57],

p(ωk|x) =
p(ωk, x)

p(x)
=

p(x|ωk)p(ωk)

p(x)
, (2.2)

notice that equation (2.1) states the function from discriminant function set which

achieves the highest value assigns the associated class to a given pattern x. Thus,

using equation (2.2) one can write an inequality between class conditional probabil-

ities,

p(ωi|x) ≥ p(ωj|x)
p(x|ωi)p(ωi)

p(x)
≥ p(x|ωj)p(ωj)

p(x)
. (2.3)

Assuming p(x) > 0, the value p(x) in equation (2.3) does not play

any role in the class assignment and can be simplified. Notice that the class prior
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probability p(ω) affects classification, by that in next examples and for the sake

of simplicity, let’s assume the same prior for all classes. Since classes are propor-

tional (equal priors) the parametric description of all class posterior probability,

{p(x|ωi)}mi=1, are enough to describe the classifier. Applying property 2.2 in equa-

tion (2.3) and supposing equally likely classes we have,

log(p(x|ωi)p(ωi)) ≥ log(p(x|ωj)p(ωj))

log(p(x|ωi)) + log(p(ωi)) ≥ log(p(x|ωj)) + log(p(ωj))

log(p(x|ωi)) ≥ log(p(x|ωj)). (2.4)

Equation (2.4) shows under the former assumptions of equally likely

classes the classification rule depends only on the class conditional probability. Next,

let’s give an example of a parametric method for a binary classification problem

which can be solved analytically.

Suppose the problem of classifying patients with AD. For simplicity,

let’s classify them as AD or healthy CN as shown figure 2.1. Also, suppose that these

classes are bivariate Gaussians. The classification problems between these classes

will be performed using biomarkers ABETA and p-tau181 (PTAU) as described in

proteom dataset. Let’s assume complete knowledge of the class conditional prob-

ability for classes AD and CN which are given by fAD(x) ∼ N (µAD,ΣAD) and

fCN(x) ∼ N (µCN ,ΣCN), respectively. The terms µ and Σ are the mean and covari-

ance matrices, respectively. Assuming equal priors the class conditional probabilities

for AD and CN are given by the Gaussians distributions as follow,

p(x|AD) = fAD(x) =
1

2π
√

det(ΣAD)
exp(−1

2
(x− µAD)

TΣ−1
AD(x− µAD)),

p(x|CN) = fCN(x) =
1

2π
√

det(ΣCN)
exp(−1

2
(x− µCN)

TΣ−1
CN(x− µCN)).

Solving fAD(x) = fCN(x) analytically one can determine the decision

boundary and decision regions. Applying natural logarithm to the last equation (by

the property 2.2 ), this is, ln(fAD(x)) = ln(fCN(x)), is possible to write,
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−(x− µAD)
TΣ−1

AD(x− µAD) = ln
( |ΣAD|
|ΣCN |

)

− (x− µCN)
TΣ−1

CN(x− µCN). (2.5)

Equation (2.5) is quadratic and has solution if the covariance matrices

ΣAD and ΣCN are positive-definite which imply to have inverse [28]. That is, if

all eigenvalues are strictly positive the solution exists [45], this is required since

all covariances matrices are positive semi-definite. The parameters estimated from

dataset AD1 are,

ΣAD =





1517.7610 −373.7946

−373.7946 4258.3641



 ΣCN =





2575.088 −354.219

−354.219 1102.495





µAD =





135.7225

133.8363



 µCN =





194.96282

67.28462





The decision boundary is obtained from equation (2.5) as the distribu-

tion functions intersections. Figure 2.2 depicts the decision boundary that divides

the feature space into decision regions.
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Figure 2.2 Gaussian distribution for AD e CN. Black solid line represents the decision

boundary between the two classes.

Figure 2.2 decision boundary’s shape is a parabola which depends on

the estimated covariance matrix and the mean. A full description of how covariance

matrices shapes decision regions can be seen in [57]. A parametric description of data

has its advantages and allows the analytical treatment of the decision boundaries,

however it makes assumptions on the probability distribution model. Alternatively,
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chapter three is focused on model-free approaches to the classification problem in

which distribution models are not assumed.

Figure 2.2 one can notice there is the possibility for some training pat-

terns being in the opposite decision region accounting as errors. This is due to

the high overlapping between classes AD and CN distributions. Using the Bhat-

tacharyya coefficient [11] obtained through the Bhattacharyya distance one can

measure the overlapping between AD and CN which is 0.61 for the proteom dataset

(assuming Gaussian distributions), where 0 means classes totally separated and 1

means complete overlapped. Therefore, more than half of the patterns are on the

wrong side of the decision region. Furthermore, an intermediary class of Alzheimer

spectra will be included increasing the overlapping between class distributions. This

problem is the main reason why the majority of papers on Alzheimer’s disease clas-

sification problems deal only with extreme classes (e.g AD and CN) or binary [25].

2.3 Validation

A classifier C is obtained using a training set and creates a mapping

between the feature space and the class space. One can ask how good this mapping

is when compared with another classifier? This question will be addressed using

misclassification error measures estimated from an unseen set of patterns called test

set. This ensures that we are simulating classifier’s interaction with real-world data

variability. Thus, the validation design plays an important role in the classification

performance and classification rate due to data size issues as claimed by [48].

As argued by Devroye et al. [19] a good classifier has a property called

consistency, which means the more data is available the nearer conditional proba-

bility error expectation will be to its optimal value, in the convergence sense. The

conditional probability of error can be defined as follows,
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Definition 6. (Conditional probability of error)

Consider a training set with n samples, T := {xi, ω}ni=1 and an unclassified pattern

x∗ belonging to the class ω∗, then the conditional error probability for the classifier

C trained with T , denoted by Ln(C), is expressed by,

Ln(C) = p(C(x∗) 6= ω∗|T ).

where x∗ belongs to the class ω∗.

Therefore, using definition 6, the consistency can be written as follows,

lim
n→∞

E(Ln(C)) = L(C∗),

where C∗ is the Bayes optimal classifier. A consistent classifier is a motivation to get

more data since it means the best possible discriminant rule or set of discriminant

function [19]. Furthermore, a distance-based classifier to be defined next chapter was

essential for early development of consistency concept. For convergence conditions of

a wide type of multiclass classifiers see [79]. Since misclassification error is the main

concern to understand how good a classifier is, let’s define the validation procedure

to assess, the multiclass problems treated in this thesis.

2.3.1 Confusion matrix

The validation allows one to compare classifiers using a scalar value.

There are many scalar measures of misclassification available [72], for instance, ac-

curacy, F-score, G-score, sensitivity, sensibility and so on. Such measures of errors

are designed to the binary classification problems, e.g. positive vs. negative classes,

and not account for multiclass interactions [26] which will be explored further chap-

ters. Multiclass validation naturally must account for all class assignments errors

and would be estimated using a confusion matrix, or contingency table, defined as

follows.

Definition 7. (Confusion Matrix)

Let m be the number of classes in Ω, ω̂j be the true pattern’s for a given pattern and
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C a hypothetical classifier. Each element of confusion matrix P ∈ Rm×Rm is given

by,

Pj,i = p(C(x) = ω̃j|ω̂i) = p(ω̃j|ω̂i),

that is, the probability of a pattern from class ωi be classified into the class ωj.

Another way to represent the confusion matrix is showing only the num-

ber of wrongly classified elements in each class without any probabilistic measure.

However, this simplification will be done in order to use macro-averaged measures

which are useful to assess imbalanced classes [72]. Conversely, micro-averaged mea-

sures do not treat all classes equally, in turn, it depends on the major classes to

achieve high results [72]. By definition 7 the confusion matrix can be seen as a

stochastic matrix by lines since the sum of rows are equal to 1,

m
∑

j=1

p(ωj|ω̂i) = 1 for i = 1, ...,m.

Using the confusion matrix one can define measures to multiclass clas-

sification problem. The ideal situation is the confusion matrix being equal to the

identity matrix. In this work empirical evaluation will be used to assess a classifier’s

confusion matrix, alternatively, one can use analytical estimation error techniques

as listed in [76]. Let’s use an invariant comparable scalar measure called precision

as the evaluation criterion. However, a comparable measure can be any function

transforming the confusion matrix P ∈ Rm2
in a scalar.

Definition 8. (Macro-averaged precision)

The precision measure named as ”macro-average precision” [72] is equal to the con-

fusion matrix trace, or the average of correct classified class probabilities,

precision =

∑m
i=1 p(ω̃i|ω̂i)

m

A review of relevant measures including invariant analysis is given in

[72]. In order to illustrate the confusion matrices’ role, consider the following mul-

ticlass problem solved by a parametric method (which assumes distribution models
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controlled by parameters) [57]. Suppose a trichotomous classification problem be-

tween the AD classes (CN, MCI, AD) as defined in proteom dataset. The classes

distributions in figure 2.3 (left) depicts the overlapping between AD classes, in which

the Bhattacharyya coefficient (assuming gaussianity) between classes is 0.61, 0.90

and 0.85, respectively for CN and AD, AD and MCI, AD and MCI.

For this example, it is assumed that each class is well represented by

a Gaussian distribution. Seemingly to the figure 2.2 the Gaussian distributions are

fAD(x) ∼ N (µAD,ΣAD), fMCI(x) ∼ N (µMCI ,ΣMCI) and fCN(x) ∼ N (µCN ,ΣCN).

In order to show more cases of how the covariance affects the decision boundaries,

the covariances matrices are changed to be a scaled identity matrices, as shown by

distributions depicted in figure 2.3. The changes are ΣCN = λCN∗I, ΣMCI = λMCI∗I
and ΣAD = λAD ∗ I used to generate the training set, where I is the identity

matrix and λ is the average of singular values in singular value decomposition (SVD)

technique [28]. This strategy allows to finding the decision boundary by pair of

classes, by solving the following equations fAD = fMCI , fCN = fMCI and fAD = fCN .

Solving fAD = fMCI we have,

ln(fAD) = ln(fMCI)

ln
( 1

2π
√

|ΣAD|

)

−
1

2
(x− µAD)TΣ−1

AD
(x− µAD) = ln

( 1

2π
√

|ΣMCI |

)

−
1

2
(x− µMCI)

TΣ−1
MCI

(x− µMCI)

−σ−1
AD

(xT x− 2µT
ADx+ µT

ADµAD) = ln
( σAD

σMCI

)

− σ−1
MCI

(xT x− 2µT
MCIx+ µT

MCIµMCI)
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Figure 2.3 At left, original Gaussian distributions for all the three classes. At right,

modified covariances matrices that will describe the three classes. Points are the Gaussian

mean.
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Following this same reasoning is possible to solve the remaining two

equations,

−σ−1
AD(x

Tx− 2µT
ADx+ µT

ADµAD) = ln
(σAD

σCN

)

− σ−1
CN (xTx− 2µT

CNx+ µT
CNµCN ),

−σ−1
CN (xTx− 2µT

CNx+ µT
CNµCN ) = ln

( σCN

σMCI

)

− σ−1
MCI(x

Tx− 2µT
MCIx+ µT

MCIµMCI).

For evaluation purposes, original data from proteom dataset was di-

vided into 75% for the training set and 25% for the test set. Figure 2.4 depicts how

the decision boundaries divide up the feature space, how the training set is classified

and where is the true classification of the training set. This plot goal is to show

how many training patterns are misclassified in training step. As argued [33] due to

over-fitting the training set classification rate is not a reliable measure to evaluate

classifier error. Figure 2.5 shows how the test set was classified.
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Figure 2.4 At left the decision boundary and the training set and at right the decision

boundary and the classification outcome for the training set.
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Figure 2.5 At left, the decision boundary and the true class of test set. At right, the

classifier outcome for the test set.
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Figure 2.6 shows the confusion matrices for different training set sizes

75%, 50% and 25% of the dataset. Each row entry is the probability of classification

error for given a class correct. Notice errors in classification of MCI class are higher

due to the strong overlap. Using 74% of data as training set misclassification error

for intermediary class MCI is P (AD|M̂CI) = 88.46% and P (CN |M̂CI) = 50% and

precision is P (MCI|M̂CI) = 7.69%. Errors in opposite classes (AD and CN) are

less frequent since the intermediary class was generated with equal prior probability

relative to the minor class in proteom dataset. However, using non-generated data,

as it will be presented in next chapter, majority class (MCI) promotes errors in

minor classes [35]. The confusion matrices presented in figure 2.6 do not provide the

dispersion measures of presented method. To obtain a reliable measure of dispersion

one can use k-fold cross-validation (CV) [12] and assess the precision from averaged

confusion matrices as will be done in next chapter.
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Figure 2.6 From left to right, confusion matrices for training set sizes of 75%, 50% and

25% of dataset, respectively.

The precision of confusion matrices (the average of correctly classified

probabilities by class) in figure 2.6 is 35.90%, 44.87% and 43.59%, respectively. The

confusion matrices of this same problem will be used as an example for the distance-

based classifier in next chapter.

In summary, an important aspect of this chapter are the simulations

which give us a first glance of AD classification problem difficulty. Also, basic defini-

tions to develop this thesis are settled. Briefly, the pattern is considered a real vector

and the classifier a function composed of discriminant functions. Since the classifier
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of interest in next chapter uses all-versus-all strategy for classification the valida-

tory mechanism uses confusion matrix precision instead of binarized strategies, e.g.

receiver operator characteristic (ROC) analysis [23]. The parametric classification

approach presented in this chapter uses parameters estimated from data to make a

decision, see [12] for more parametric methods. Next chapter shows a model-free

distance-based classifier which is equivalent to the parametric approach in the sense

of class posterior estimation.
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3 DISTANCE-BASED CLASSIFIER

3.1 Introduction

Distance-based classifiers usually incorporate distance functions induced

by metrics (e.g. p-norm metric or pseudo-metric) to determine how similar two

patterns are [71]. Alternatively, distance measures participate in the classifier’s for-

mulation by penalizing hyperparameters, error estimation, and optimization [32]. In

supervised and unsupervised learning classifiers dependence of distance functions are

critical for its performance [84]. Thus, the concept of distance-based classifiers ex-

tends to a large class of methods, for instance, support vector machines (SVM) [15],

artificial neural networks (ANN) [34], k-means [32], nearest-neighbor (NN) based

algorithms [6].

Exemplifying, SVM is a binary classifier used in many domains which

the main goal is to maximize patterns distances from a hyperplane while mini-

mizing misclassification by penalizing linear models weights [32]. Distance-based

modifications in SVM include, for instance, elastic-net [32] and lasso [41] weight

penalization in order to obtain faster algorithms or to achieve a specific property,

e.g. a given number of non-zero weights [32]. Distance functions participate in ANN

supervised and unsupervised learning, for instance, in error adaptation mechanisms

(e.g. error back-propagation algorithm) and clustering task orientated ANN (e.g.

self-organized maps - SOM), respectively [34]. For instance, a distance modification

in ANN is presented by Duch and Adamczak [21] in which non-Euclidean distances

are used to provide flexible decision borders for multi-layer perception (MLP).

Since the distance-based classifier concept is broad, this thesis focuses

on classifiers using distance functions as similarity measures. For instance, the NN

algorithm which can be defined straightforwardly: an unsigned query pattern is
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classified as belonging to the same class of the nearest labeled pattern [17]. The

NN classifier uses only one nearest neighbor to evaluate a query pattern’s class.

Alternatively, a natural extension which uses more than one neighbor is the k-nearest

neighbors (kNN), as well called the majority voting rule [17]. Here, let’s study how

distance function and normalization would improve kNN precision. Pragmatically,

the kNN is a benchmark comparison for machine learning articles and its data pre-

processing extensions are competing for state-of-art algorithms when dealing with

data issues [47]. Challenging data issues [85], as imbalanced classes [16] and missing

data [33], finds state of art solutions in algorithms based on the kNN strategy to

prevent decreased classification performance [35]. The next chapter will discuss such

algorithms to treat data imbalance.

As claimed in [32], the kNN classifier would be an insecure choice when

dealing with high-dimensional feature spaces producing an inferior performance.

Such effects are mainly due to the curse of dimensionality which causes feature

space’s sparsity [7]. Since kNN is dangerously simple, an efficient usage goes through

the knowledge of what causes its degradation. For instance, as shown by Boiman O.

[14], for image related classification task, known by its high-dimensionality, kNN’s

deteriorated performance can be avoided to excel top leading learning-based image

classifiers when used with image descriptors. Hence, to avoid the curse of dimen-

sionality effect in kNN one may find a low-dimensional representation of data or

to reduce data sparsity effect by modifying kNN. This chapter will focus on kNN

modifications, particularly using Minkowski distance as the similarity measure and

different normalization schemes as suggested by [2].

In the following section, the kNN is formally defined by means of the

discriminant functions framework. Results are validated using confusion matrices

as defined earlier and compared to multiple datasets. AD classification problems

in this chapter are used only to illustrate concepts and will be discussed in chapter

four.
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3.2 k-Nearest Neighbor

In the last chapter instances of parametric methods were presented in

order to illustrate the Bayes classifier, L(C∗). However, Bayes classifier requires

data complete knowledge on the underlying class distribution. Parametric classi-

fiers, which approximate the distribution model by parameters estimation, are also

known as eager learning algorithms. Alternatively, the kNN to be discussed here do

not rely on any distribution model. Classifiers using the data structure to describe

class distributions are called non-parametric methods. In the non-parametric classi-

fication context, analytic manipulation is not possible when obtaining explicitly the

decision regions for real-world problems.

Seemingly to the NN classifier henceforward 1NN, the kNN is data de-

pendent [19]. That is, when slightly (even one pattern) different training sets are

used to generate the classifier, different classification mappings should arise. This

happens since kNN is an instance-based classifier, which requires all dataset dis-

tances comparison to make an assignment [39]. Conversely, the parametric methods

need only a finite set of parameters to make an assignment. According to [3] clas-

sifiers which store data to create the mapping are called: lazy-learning, case-based,

instance-based, memory-based [3].

The information to assign an unclassified pattern is contained in its

vicinity. Precisely, at least half of the classification information is contained in the

nearest neighbor for the infinity-sample case as proved by Cover and Hart [17].

This fact is used to demonstrate the Cover-Hart inequality, a relationship between

NN and Bayes optimal error. Considering the conditional probability of error as in

definition 6 from chapter 2, in a separable metric space, for any distribution and n

samples, we have,

lim sup
n→∞

E(LNN) ≤ L(C∗),
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that is,

L(C∗) ≥ LNN ≥ 2L(C∗).

Using such estimation with 1NN is possible to obtain information on

the optimal solution generally unavailable. Back to kNN formulation, let’s define

the vicinity of kNN (k-neighborhood) as follows.

Definition 9. (k-neighborhood)

A k-neighborhood of a pattern x∗, denoted as N(x∗, k), is a limited sequence of the

first k nearest patterns, N(x∗, k) := {x(1), x(2), ..., x(k)}, for a given metric measure

d(., .) over the feature space F .

More explicitly, given the set of all labeled patterns denoted as T ,

namely, the training set, the k-neighborhood of an unclassified pattern x∗ is given by

{x(1), x(2), ..., x(k)} = N(x∗, k) ⊂ T . In which x(1) is such that x(1) = argmin
x∈T

d(x, x∗),

the closest pattern in T given by the distance function d(., .). The remaining neigh-

bors {x(i)}ki=2 are given by,

x(i) = argmin
x∈T\{x(j)}

i−1
j=1

d(x, x∗).

Each pattern x in T has associated a class ω ∈ Ω. Since for each

x(i) ∈ N(x∗, k) we have a class ω(i) ∈ Ω = {ω1, ..., ωm} the classification of an

unclassified pattern x∗ is obtained by the number of majority classes among the

k-neighborhood set, N(x∗, k). A critical issue for classification rate is the distance

function defined to create the k-neighborhood, further examples explore how one

can take advantages of metric modification. The kNN classifier can be defined using

the discriminant functions as follows [6].

Definition 10. (k-Nearest neighbors)

Let N(x∗, k) := {x(i)}ki=1 be the set of k nearest patterns from x∗, in which each x(i)

is associated to a class ω(i) ∈ Ω := {ω1, ..., ωm}. The estimated class, ω̃, for the

unclassified pattern x∗ is given by,

ω̃ = argmax
ω∈Ω

∑

x(i)∈N(k,x∗)

δ(ω, ω(i)).
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The kNN formulation allows one to deal with multiclass classification

problems naturally using the all-versus-all strategy in which all classes are mutually

affected at once. Conversely, other classifiers dealing with non-binary classification

problems require adaptations by means of one-against-all or one-against-one strate-

gies [58]. Examples are depicted in figure 2.3 in the previous chapter. Thus, to

solve an n-class problem using binary classifiers (e.g. SVM), n(n−1)
2

rules are re-

quired to build a multiclass classifier. For further discussion on binary adaptations

to multiclass problems see [58].

3.2.1 Approximating class posterior probabilities

Bishop [12] lists three frameworks to construct classifiers organized by

how the discriminant functions are applied. The generative models use Bayes theo-

rem to estimate the posterior class probabilities, p(ωi|x). In order to this, a para-

metric distribution for the class conditional probabilities, p(x|ωi), is searched and

the class prior probabilities, p(ωi) are estimated as usual [12]. This approach does

not require to carry out all dataset to estimate classifier, only a set model param-

eters that would generate the classes. Examples of algorithms commonly used in

generative modeling are maximum likelihood and expectation maximization.

Alternatively, the discriminative models do not need to estimate the

class conditional probability neither the class prior. Instead, the posterior class

probabilities for each class are estimated directly as an inference problem. Instances

of discriminative modeling are NN-based classifiers treated in this thesis. When

compared to generative, the discriminative approaches are more precise in discrim-

ination task [12].

The third framework is the case in which probabilities play no role, be-

ing neither generative nor discriminative. However, discriminative functions frame-

work are employed to define the decision regions in this case. A widely known
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example is the SVM classifier. For a detailed comparison of the listed approaches

see [42].

Considering δ(., .) as Kronecker delta let’s show that kNN classifier

locally estimates the posterior class probability. kNN classifies a given query pattern,

x∗, as follows,

ω̃ = argmax
ω∈Ω

∑

x(i)∈N(k,x∗)

δ(ω, ω(i)) = C(x). (3.1)

Since {x(i)}ki=1 ∈ N(k, x∗) are the nearest neighbors to the unclassified

pattern x∗ and each nearest neighbor is associated to a class ω(i) ∈ Ω := {ω1, ..., ωc},
one can rewrite equation (3.1) as,

ω̃ = argmax
ω∈Ω







∑

x(i)∈N(x∗,k)

δ(ω, ω1), ...,
∑

x(i)∈N(x∗,k)

δ(ω, ωc)







. (3.2)

Using the monotonic property of discriminant functions to equation

(3.2) and dividing it by k we have,

ω̃ = argmax
ω∈Ω







∑

x(i)∈N(x∗,k)

δ(ω, ω1)

k
, ...,

∑

x(i)∈N(x∗,k)

δ(ω, ωc)

k







. (3.3)

Thus, each term in equation (3.3) is the probability of class assignment

given a training set T and the size of k-neighborhood,

p(ωj|x∗, T, k) =
∑

x(i)∈N(x∗,k)

δ(ωj, ωi)

k
, for j = 1, ..., c. (3.4)

By means of equation (3.4) the kNN’s discrimination function can be

written as,

ω̃ = argmax
ω∈Ω

p(ω|x∗, T, k). (3.5)

The equation (3.5) have the same structure of MAP classifier which use

the posterior class probability depending on the training set T and the hyperparam-

eter k. That is, dataset modifications, even in the absence of one pattern, it would

imply in different outcomes from equation (3.5) succeeding a different classification
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mapping. Since it is not possible to obtain the decision regions of kNN analytically,

further is shown the decision regions from the equation (3.4).

The next example, depicted in figure 3.1, uses the same dataset of bi-

nary classification problem depicted in figure 2.2. Instead, it is used the original

class priors, p(AD) = 39.68% and p(CN) = 60.32% solved with 5NN. Here, the

decision region for kNN is drawn using a lattice with specific resolution limited

to the maximum and minimum pattern features. Once this instance is a binary

problem the decision boundary is when p(AD|x) = p(CN |x) = 0.5, or equivalently,

p(AD|x) = p(AD|x) − 1, thus, one class outcome is enough to estimate the proba-

bility of assignment for both classes. However, in kNN we have a discrete values and

the probability value 50% is not always available. For instance, in a binary problem

5NN allows the values, 1/5, 2/5, 3/5, 4/5 and 5/5, with 2.5/5=50% reached only

for even k. Thus, the decision border is drawn between class transitions. In figure

3.1 the probability scale is proportional to the size of probability values allowed by

k parameter.
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Figure 3.1 The decision border between the classes is represented by the black line.
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The normalization is required in any distance-based algorithms since

distances compared to different scales are meaningless. In order to compare with

the examples from last chapter the problem in figure 3.1 was not normalized (re-

scaled). When data is normalized classification mapping interpretative component

may be compromised, however, to disregard re-scaling could potentially prejudice

the classification performance [12]. Regarding the parameter k in kNN as higher it

is more stratified can be the probability outcomes for equation (3.5). In the next

section, normalization schemes effect on kNN will be analyzed [54].

3.2.2 Tie breaking strategies

In binary classification problems, one can avoid ties using kNN if the

k parameter is an odd number. This fact does not hold for multiclass problems

and there are no guidelines to the optimal k hyperparameter. Despite this, one

can limit the range of exhaustive search for k parameter by the square root of

sample number in the training set as suggested in [10]. Also, since kNN is a voting

scheme any choice of k parameter different from 1 (1NN) will imply in ties for the

multiclass case. To deal with that, breaking ties strategies in kNN are incorporated

to avoid ties. Unlikely binary cases solved with kNN, in which ties can be avoided,

the decision boundaries in a multiclass problem depend on how we break ties. Tie

breaking strategies discussed by [6] are:

• Replace N(k, x∗) by N(k − 1, x∗) iterativelly until solve the tie (minus);

• Replace N(k, x∗) by N(k + 1, x∗) iterativelly until solve the tie (plus);

• Random tie-breaking (random).

Figure 3.2 depicts the k-neighborhood for 5NN and the tie-breaking

effect. As mentioned, using parameter k as an odd number prevents ties in binary

classification, however for multiclass problems this is not true as depicts figure 3.2.
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Figure 3.2 At left a binary classification problem and the query point (triangle) and its

5-neighborhood. At right a multiclass problem and the query point (triangle) and its

5-neighborhood.

Next example shows decision regions for a multiclass problem account-

ing for tie-breaking strategies, two validation procedures, and dataset-wise com-

parison. In the multiclass case, decision boundary definition are similarly defined

as binary case, drawn between class transitions. Considering the AD classification

problem as depicted in figure 2.3 and original priors and normalized with min-max

[54]. Figure 3.3 depicts the decision region obtained with 5NN for each class with

random break tie.
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Figure 3.3 Respectively each plot shows the decision region for CN, MCI and AD for 5NN

classifier with random tie-breaking.

One can notice, due to the random tie-breaking, overlapped regions

between three plots act like an uncertainty region, creating a diffused decision re-

gion. Such randomness can add variability even to the LOOCV procedure as it is

shown in table 3.2. Figures 3.4 and 3.5 depict the decision regions obtained by tie-

breaking decreased k-neighborhood (minus) and increased k-neighborhood (plus),

respectively.
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Figure 3.4 Respectively each plot shows the decision region for CN, MCI and AD for 5NN

classifier with decreasing neighborhood tie-breaking.
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Figure 3.5 Respectively each plot shows the decision region for CN, MCI and AD for 5NN

classifier with increasing neighborhood tie-breaking.

The confusion matrices’ trace (precision) for 10-fold CV are depicted

in 3.6 for all listed tie-breaking strategies. Confusion matrices averaged from 10-

fold CV are depicted in figure 3.7. Furthermore, figure 3.7 shows that intermediary

class, which is also the major class MCI, tends to concentrate most of the class

assignments and is misclassified than minor classes (AD and CN). This is expected

due to class overlapping as observed previously (chapter two).

Figure 3.6 10-fold CV boxplot for each tie-breaking strategy and its precision using 5NN.

The red dot stands for median.
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Figure 3.7 From left to right, confusion matrices for tie-breaking strategies random, minus

and plus, respectively. Its precision are, 33.19%, 32.86% and 33.65%, respectively .

Confusion matrices of kNN (e.g. 3.7) in comparison with figure’s 2.3

parametric classification approach was inferior, however, further modifications in

kNN will change this. Table 3.2 presents a dataset-wise comparison between the

three tie-breaking strategies. The validation was done with leave-one-out CV (LOOCV)

and 2-fold CV. The k-fold number is small due to the converter datasets (plasma,

psyconvert, bloodabeta) have classes with only two patterns as described in chapter

six. The number of features for each dataset is described in chapter six.

Table 3.1 LOOCV comparison for each tie-breaking strategies.

dataset minus (%) k plus (%) k random (%) k

plasma 37.91 3 36.58 32 38 ± 3.01 3

psyconvert 37.71 13 37.77 4 37.72 ± 0.18 14

bloodabeta 15.95 19 16.02 21 16.33 ± 0.30 7

adni 79.43 1 79.43 1 79.43 1

proteom 41.60 1 41.60 1 42.29 ± 1.32 2

neuropsy 88.71 1 88.71 1 88.71 1

neuroimag 47.91 11 47.91 10 47.83 ± 0.36 10

parkinson 96.22 1 96.22 1 96.22 1

average 55.67 - 55.52 - 55.81 -
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Table 3.2 2-fold CV comparison for each tie-breaking strategies.

dataset minus (%) k plus (%) k random (%) k

plasma 35.77 ± 0.57 16 37.15 ± 1.13 10 36.31 ± 1.45 14

psyconvert 37.11 ± 0.13 7 37.55 ± 2.03 17 37.32 ± 1.14 6

bloodabeta 16.30 ± 0.42 32 16.22 ± 0.21 32 16.38 ± 0.24 8

adni 79.13 ± 5.44 4 74.78 ± 1.67 1 77.36 ± 4.72 1

proteom 38.61 ± 0.96 1 39.07 ± 1.99 1 43.40 ± 4.61 2

neuropsy 86.50 ± 0.49 1 88.60 ± 0.78 1 88.30 ± 1.99 1

neuroimag 46.92 ± 1.64 9 47.00 ± 3.64 2 47.41 ± 1.21 6

parkinson 93.09 ± 4.88 1 91.71 ± 4.90 1 91.70 ± 0.97 1

average 54.17 - 54.00 - 54.77 -

All tie-breaking strategies differ from less than 1% for both validation

modalities. Regarding a tie-breaking strategies comparison, plus and minus are

less computational advantageous than random tie-breaking [6]. This is, As claimed

by [6] strategies that require k-neighborhood reassessment are slower than random

tie-breaking. Henceforward, the random tie-breaking will be adopted in this work.

Regarding table 3.2 datasets plasma, psyconvert and bloodabeta which

have seven classes are highly overlapped and imbalanced (classes with unequal prior

probabilities). Furthermore, datasets plasma, psyconvert and bloodabeta are a co-

hort study, that is, a combination of follow-up and cross-sectional data. Here, it is

assumed that follow-up patterns are non-temporal in order to observe how conver-

sion classes affect overall performance, that is, a cross-sectional usage of cohort data

[56]. Data-wise comparisons in this section use min-max normalization, however,

re-scaling schemes can affect kNN classifier precision given the magnitude between

features. In the sequel is analyzed how the classifier can be affected by different

normalization schemes.
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3.3 Normalization schemes

Since kNN is a distance-based classifier data normalization is required in

order to avoid meaningless distance measures [8]. With respect to interpretability

of decision regions, normalization can be a drawback since features must be re-

scaled in order to be dimensionless. Indeed, to disregard normalization would affect

the validation phase, for instance when using an unnormalized dataset, the ANNs

converges slower [73] and k-means clustering provides poorer results [59]. Such

drawbacks are increased the more features magnitude differ, causing patterns to

cluster in short scales, the more compacted they are.

Settled the normalization’s importance, what is the best normalization

scheme for the kNN given a classification problem? An instance of normalization

effect was given by Ma et al. [54] when solving the binary classification problem

for the parkinson’s dataset (described chapter six). They were able to show that

kNN accuracy increases by assessing four normalization strategies and validation

strategies (k-fold CV and LOOCV) when compared to the random choice of kNN

hyperparameters with unnormalized data. Apart from the normalization require-

ment, there are classifiers as Naive Bayes and Fischer’s Linear Discriminant in which

re-scaling is unnecessary and have no impact on classification measures [12]. In the

last section, only min-max normalization was applied to illustrate tie-breaking sim-

ulations. Here, the effect of different normalization schemes is compared when k

parameter is optimized. In order to do this, the probability of one normalization

scheme to provide higher precision than other is evaluated. The compared normal-

ization schemes are: maximum (max), min-max (min), z-score (zsc) and decimal

(dec) [54]. Considering v the feature and v′ the normalized feature, we have.

min: v′ =
(v −min(v))

max(v)−min(v)
max: v′ =

v

max(v)

zsc: v′ =
v − µ(v)

σ(v)
dec: v′ =

v

10j
for j ∈ Z, ‖v′‖ ≤ 1
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First let’s define a prior reduction technique discussed in next chapter,

the random undersampling, in which majority classes go under pattern removal un-

til it achieves a desired proportion. This changes the classification problem since

it modifies the prior probability. Let’s compare different degrees of pruning with

different normalization schemes. Figure 3.8 shows the precision of AD three-class

classification problem depicted in figure 3.1 for the mentioned normalization tech-

niques and using 0%, 50%, 75% and 100% of random undersampling degree.
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Figure 3.8 From left to right, 10-fold CV precision for four normalization strategies,

respectively for 0%, 50%, 75% and 100% of random undersampling degree. The dots in

each line depict the maximum precision for each normalization scheme.

Figure 3.8 shows that increasing undersampling degree the optimal k

parameters for each normalization scheme changes as well. Considering each un-

dersampling degree in figure 3.8 there is not significant improvement in the highest

10-fold CV precision by each normalization scheme. That is, highest precision for

each undersampling degree (0%, 50%, 75% and 100%) in terms of mean and standard

deviation is 43.45 ± 4.55% for min-max, 50.98 ± 5.10% for decimal, 47.95 ± 7.64 %

for max and 54.30 ± 6.06 % for decimal, respectively to each listed undersampling

degree. The last kNN score surpasses the parametric method in last chapter.

Despite the lack of significance, there is a small difference of highest

precision by normalization scheme for each undersampling degree of figure 3.8 being

the standard deviation between them, 1.83%, 1.04%, 0.60% and 1.52%. It is inter-

esting to verify whether the precision changes in other validation schemes in which

standard deviation is less than 10-fold CV, e.g. LOOCV.
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Changing the validation procedure parameter k optimum value can

be not the same. Figure 3.9 depicts if a dominance exists among normalization

schemes through the search range for the parameter k. In order to do this, each

undersampling degree is evaluated for the probability of a normalization scheme to

provide higher precision than other.
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Figure 3.9 From left to right, probability matrices of a normalization scheme to pro-

vide strictly higher 10-fold CV precision than other for k parameter ranging from 1 to
√
number of samples for each undersampling degree, 0%, 50% 75% and 100%, respectively.

Probability matrices in figure 3.9 comparisons would be not symmetri-

cal. For instance, the fourth matrix in figure 3.9 depicts that P (zsc < min) = 44%,

whereas P (zsc < max) = 52%. This happens since ties would occur for some

k values. Since for each undersampling degree the 10-fold CV precision was not

statistically significant. Let’s repeat the same experiment for LOOCV procedure.

Figure 3.10 depicts the LOOCV precision for different undersampling degrees and

normalization schemes. As it can be seen in figure 3.8, the same effect observed for

10-fold CV in which undersampling degree of 100% exhibits highest precision and

undersampling degree 0% (original dataset) inferior are evident for LOOCV as well.
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Figure 3.10 From left to right, LOOCV precision for four normalization strategies, respec-

tively for 0%, 50%, 75% and 100% of random undersampling degree. The dots in each

line depict the maximum precision for each normalization scheme.
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Using LOOCV each undersampling degree (0%, 50%, 75% and 100%)

achieves the following highest precision respectively: 42.82 ± 0.09% with min-max,

46.03% with z-score, 46.76% with decimal and 52.70% with min-max. Except for

undersampling degree of 75%, the difference between highest value are nearer com-

pared to 10-fold CV highest scores. The standard deviation between the maximum

for each normalization scheme by undersampling degree (0%, 50%, 75% and 100%)

is 1.35%, 0.93%, 1.74% and 0.41%, respectively. Figure 3.11 is depicted the prob-

ability matrices of a given normalization scheme to provide higher precision than

remaining through parameter k search path. One can notice re-scaling dominance

along parameter k values does not hold for different validation schemes.
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Figure 3.11 From left to right, probability matrices of a normalization scheme to pro-

vide strictly higher LOOCV precision than other for k parameter ranging from 1 to
√
number of samples for each undersampling degree, 0%, 50% 75% and 100%, respectively.

In order to show how the normalization behaves for other k-fold valida-

tion values, the optimization path (through k parameter) for k-fold CV varying from

2 to 30 folds and different normalization schemes for imbalanced setup are shown

in the interactive plot, link https://plot.ly/∼yurier/190/ . Despite the optimiza-

tion path’s for k-fold CV being the same, standard deviation curves become less

disperse as the k-fold size decreases as seen in https://plot.ly/∼yurier/192/ . This

happens due to the statistical dissimilarities in sample size for different validation

folds. Let’s shown that it is possible to increase precision by experimenting different

normalization schemes. Below, simulation comparing normalization schemes and

different datasets.
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3.3.1 Data-wise comparison of normalization schemes

The last section presented comparisons between 10-fold CV and LOOCV

for the proteom dataset with optimized k. Furthermore, despite LOOCV being more

computationally intensive than 10-fold CV it has less standard deviation allowing

a significant improvement comparison between normalization schemes. Figure 3.12

depicts different datasets and the average precision difference for listed normaliza-

tion schemes with kNN optimized. None of the datasets are treated with balance

aid strategies as done in figures 3.8 and 3.10.
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Figure 3.12 Relative difference between the lesser average precision normalization scheme

and the remaining ones. The missing color label means the lesser value.

For bloodabeta dataset the normalization increases LOOCV precision

from 16.27± 0.22% using min-max to 16.49± 0.38% using z-score. Conversely, there

was a slight improvement for other datasets, an instance, neuropsy dataset in which

best use of normalization schemes can raise LOOCV precision from 83.04% using

decimal to 90.30 ± 0.71% using z-score. Thus, kNN and normalization optimization

can be done in order to raise the average precision. Later on, a greedy approach

will be adopted since other optimization procedures will increase the number of

hyperparameters. Next section proposes to find a suitable p-norm metric for kNN

in order to increase its precision.
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3.4 Minkowski distance modification

The curse of dimensionality [7] refers to poor classification measures

[72] in problems related to high-dimensional feature spaces [12], it is generally

avoided with dimensionality reduction [30]. Dimensionality reduction techniques’

goal is to find a representative feature subspace to describe the same classification

problem with equal or higher classification properties, e.g. principal component

analysis (PCA) and Fischer’s discriminant analysis. An interesting curse of dimen-

sionality effect explanation is given by [32], in which it is shown the mean distance

between the closest pattern and the origin for a given uniform distribution becomes

meaningless, in the sense defined by [8]. Due to the meaningless metric behavior

in high-dimensional feature spaces the usage of kNN becomes limited. Let’s study

here the possibility of increasing kNN’s precision by searching a suitable Minkowski

distance function.

The term of high-dimensional evolved within popularization of video

and image pattern recognition and micro-array gene analysis. Early developments

owing to reduce the feature space dimensionality are designed to deal with nearly

40 features [46]. Nowadays, high-dimensional classification problems vary broadly,

ranging from 6000 to 60000 features [30]. Examples of datasets which receive high-

dimensional feature spaces aids are genetic data, neuroimaging data, image/video

data, bank transactions, etc.

A central problem regarding high-dimensionality is the feature space’s

sparsity. That is, adding features, patterns become isolated in the feature space and

distances between farthest and nearest patterns become unrecognizable. Meaning

that, the distance between patterns become meaningless [2]. Let’s explore and

simulate a relative distances measure in an uniform data and the fractional metric

solution proposed by [2] to prevent distances functions to become meaningless.
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3.4.1 Contrast measure for distance meaningfulness

Particularly, the kNN classifier is affected by the curse of dimensionality

since it is a distance-based classifier [8]. Bishop [12] exemplifies the dimensionality

effect on kNN by means of increasing hypercubic volume and the sparsity between

patterns in it. However, as shown by Aggarwal [2], one may use the fractional

distance function in order to improve kNN’s performance. That is, one can reduce

the high-dimensionality effect with metric searching and parameter k optimization.

However, no empirical study on the search range for fractional metric was conducted.

The behavior of p-norm induced metric in high-dimensionality feature space for

uniform data is simulated after the contrast measure definition.

Let Xd ⊂ F := Rd be a set of patterns in an d-dimensional feature

space. Assume ‖Xd‖p as the vector of the distances between each pattern in Xd and

the origin (0 ∈ Rd) for a given Minkowski distance, defined by ‖x‖p = (
∑d

i=1 |xi|p)1/p,
in which x = x1, ..., xd ∈ Xd. Also, consider the ratio between the distance of near-

est and farthest patterns in Xd to the origin as contrast [8], given by, constrast−1 =

Dminp
d/Dmaxp

d, where Dmaxp
d = max{‖Xd‖p} and Dminp

d = min{‖Xd‖}p for

Dminp
d 6= 0, that is, the origin do not belong to Xd. The behavior of Lp-norm

metric induced in high-dimensionality feature space is obtained observing the con-

trast convergence when dimensionality (d) is increased and fixing the previous set

of patterns Xd−1. That is, new features are introduced. For further discussion and

definition on contrast see [8].

To illustrate contrast in high-dimensional feature space, consider 2000

patterns in the set Xd, in which each pattern in each dimension is an uniform

distribution realization, U(0, 1). Figure 3.13 depicts fractional and non-fractional

p-norms contrast for the following p values: 2/3, 2/5, 1/7, 3, 2 (Euclidean distance),

1 (Manhattan distance).
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Figure 3.13 depicts the inverse contrast when dimensionality increases.

As it can be seen by contrast measure the furthest and nearest patterns have about

the same distance from the origin. This behavior depends on data distribution,

however as claimed by [8] the convergence of contrast is valid for a wide variety

of data distribution functions. Convergence of fractional measures is theoretically

discussed in [2]. Figure 3.14 shows the probability of a given p-norm to have higher

inverse contrast than other.
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Figure 3.14 From left to right the probability of an inverse contrast of a given p-norm being

higher than another, summing up until 5, 10 and 50 dimensions of figure 3.13 respectively.

The higher is the p-norm value the faster is its contrast convergence

(in probability), as depicted in figure 3.14 in which is shown that increasing the

number of features the farthest and closest vector have about the same distance from

origin. In the curse of dimensionality context, there are query point instability issues.
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Specifically, how perturbations in the query point imply in changes for classification

outcome. Pattern classifiers must be robust against noise or perturbations since in

real applications one would have pattern artifacts difficulties which modify actual

pattern value [12]. However, as demonstrated in [2] the fractional metric is able

to overcome the integral p-norm in noisy mask simulations. Due to the dataset’s

low-dimensional character in this work fractional metric effect in contrast measure

would be subtle. Next chapter illustrates Minkowski distance modifications using

parkinson dataset.

3.4.2 Parkinson dataset and distance function search

It is possible that metric optimization benefits low-dimensional classi-

fication problems. Let’s show it through parkinson dataset and fractional distances

optimization since it have the largest number of features and it is a prion-like disease

as AD. At end of section, combined strategies will be applied in the AD datasets and

its contrast measures will be compared. Figure 3.15 depicts the kNN’s LOOCV pre-

cision for p-norm induced metrics using k parameter optimized and non-optimized

(fixed at k = 5). The simulation in figure 3.15 was driven using min-max normal-

ization due to score achieved in figure 3.12.
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for k parameter optimized (yes) and fixed at k = 5 (no). At right, optimum k parameter

for each p-norm.
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LOOCV higher precision in figure 3.15 achieves 97.25% for p-norms 2.90

and 2.95 with optimized k and min-max normalization. Euclidean and Manhattan

distances achieve 96.21% and 93.09% respectively for optimized k and min-max nor-

malization. Regarding parkinson dataset and measures obtained from experiment

depicted in figure 3.15, distance function searching had few improvement relative

to usual euclidean distance. However, comparing our results by accuracy instead of

precision, both defined in [72], the metric optimization is able to surpass the score

obtained described by [54] with the margin of 0.51% for the same z-score normaliza-

tion and LOOCV but using p-norm 3 instead of Euclidean distance. Also, by using

accuracy measure metric, the optimization achieves 96.92% for min-max against

96.41% described as kNN’s highest precision [54]. R. Ramani and G. Sivagami [64]

solve parkinson classification problem and compare 13 popular algorithms. They

were able to shown that kNN accuracy is only inferior to random trees classifier [32]

which achieves accuracy of 100%. In a further, chapter imbalance aiding strategies

based on kNN will be included and the classification rate would increase. Next ex-

periment in figure 3.16 shows the behavior between p-norms 3, 2, 1, 2/3, 2/5 and

1/7 whereas parkinson dataset features vary. First, this is done for k parameter

fixed at 5. In order to observe p-norms behavior, features were also added randomly

without substitution to compare with non-randomized added features. Moreover, in

order to observe each p-norm precision the curve was smoothed and the real value

was added with the same color in the background.
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Figure 3.16 shows using 14 random features the LOOCV precision

achieves 94.83 % for p-norm 1, whereas the highest precision combination for non-

random added features achieve 93.09%. That is, different features combinations

would provide different classification rates. Figure 3.17 shows the probability ma-

trix of a p-norm to provide higher precision than other.
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Figure 3.17 At left, the probability matrix for parkinson features not randomly added.

At right, the probability matrix for parkinson features randomly added.

Both probability matrices in figure 3.17 shows extreme p-norm, e.g. 3

and 1/7, the matrices lines averaged are lower than remaining, this is comparable

to the experiment in figure 3.15. Also, p-norm 1 and .35 have the same precision

for 5NN as depicted in figure 3.15. Interesting, p-norm 1 had the highest average

line in both probability matrices. Suggesting that the p-norm behavior regarding

lower and higher precision can affect the probability of dominance through other

features combinations. Next, the p-norm behavior when k parameter is optimized

as depicted in figure 3.18 for random and non-random features of parkinson dataset.
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Figure 3.18 At left, the probability matrix for parkinson features nor randomly added.

At right, the probability matrix for parkinson features randomly added.
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In figure 3.18 precision for k parameter optimized achieves 96.91% using

p-norm 3. Despite this, for fractional metric, it was found that precision reaches

97.25% for p-norms 2.90 and 2.95. Dominance behavior of p-norm metric is depicted

in figure 3.19.
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Figure 3.19 At left, the probability matrix for parkinson features not randomly added.

At right, the probability matrix for parkinson features randomly added.

Using the same method to assess the dominance of one metric over

another the random and non-random probability matrices have the same dominance

structure in the sense of averaged matrix lines. A suggestion of why this happens is

because the preference by metric in probability is reflected through the features as

well for the non-optimized k case. From measures taken in figure 3.19, p-norm 3 and

2 achieves the highest precision along the dimensions for random and non-random

features adding. Such measures are coherent with the experiment in figure 3.15.

Both experiments, for optimized and non-optimized k, show that ran-

dom added features do not largely modify the dominance’s structure along dataset

features. Such structure of metric through the features would be useful for dimen-

sionality reduction mechanisms while searching the most suitable metric in high-

dimensional feature spaces. However, the study remains to be done by comparing

the optimal p-norm distribution through the multiple features combinations. Fur-

thermore, other approaches as metric learning [82] by linear programming being used

in a comparative study with for kNN distance function modifications. Advances

in this direction can be found in the following works: Neighborhood Components
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Analysis by [27] and Stochastic Neighbor Embedding [37]. It is clear that metric

modifications increase kNN performance in next section a data-wise comparison is

presented.

3.4.3 Data-wise comparison for distance optimization

The section 3.4.2 uses only parkinson dataset since it has the largest

number features here is presented a comparison of AD datasets accounting to the

previous normalization scheme obtained in the experiment from figure 3.12. Figure

3.20 (left) depicts the difference between LOOCV precision with Euclidean distance

and LOOCV precision using fractional distances, both with optimized k. It is shown

also the standard deviation for the outcome k optimized outcome for each p-norm.
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Figure 3.20 At left, the difference between precision in Euclidean distance by dataset and

p-norm precision. At right, the standard deviation for optimized k in each p-norm.

Regarding improvements by metric optimization, there were datasets,

for instance, bloodabeta, with high standard deviation and oscillating precision around

Euclidean distance. There was none dataset in which the highest average precision

occur for Euclidean distance. The highest improvement was in the adni dataset in

which LOOCV precision increases 11.43 ± 0.23% with p-norm 0.01 over the 81.84%

achieved by searching only a suitable normalization scheme with Euclidean distance.

The metric searching shows to be capable of improving kNN’s precision when asso-

ciated to the normalization scheme. Comparison of such techniques discussed here

and other classifiers will be performed next section.
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In summary, this chapter shows how distance functions and normaliza-

tion schemes modifications would improve the kNN’s performance. These procedures

also can be applied in other distance-based classifiers. NN algorithms are plenty and

easy to modify since similarity measures and voting scheme can be arranged in sev-

eral ways [9]. The number of publications regarding popular classifiers’ extension

is notoriously increasing, for instance, in science direct database a search for ”kNN

extension” outcome 37 titles in 2000 and increases to 610 titles in 2016. A kNN

extension, the weighted kNN (wkNN) [29], attributes a weight for each voting pat-

tern, whereas the kNN assumes that all patterns have the voting weight regardless of

distance. The wkNN uses kernels to distribute the weights through voting patterns

and since it is an distance-based classifier it also can use the approaches discussed

here. Additionally, wkNN can would benefits from kernel optimization as proposed

by [36]. Another extension is the informative kNN (ikNN) [74] which uses informa-

tiveness criterion as similarity measure and is able to surpass popular algorithms as

SVM and boosting methods in classification task.

Instead of exhaustive searching as done here, metric learning for nearest

neighbor algorithms are found in kNN extensions, e.g. the Large Margin Nearest

Neighbor in which the Mahalanobis distance function is learned by semi-definite

programming [82]. The discussed Minkowski distance searching , suitable for kNN,

produces a non-convex optimization problem which is incompatible to the usual

optimization techniques. An instance of a non-convex surface is depicted in figure

3.20 for bloodabeta dataset. However, the optimization procedure for metric learning

would be done between two patterns as follows. Considering a dataset D in which

xi, xj ∈ D ⊂ R the metric learning approach can be done by finding a matrix A

which minimizes the distance function d(xi, xj)
2
A = ‖xi−xj‖2A = (xi−xj)

TA(xi−xj)

while ensuring that d(., .)A satisfies the metric (or pseudo-metric) definitions. A

model to find the optimal distance function to kNN without an exhaustive search

would be useful since there are other parameters to optimize, e.g. optimal k-fold CV

partition and parameter k. However, more data is required to make a predictor for
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such relation between contrast and the optimal p-norm in order to have at least an

smart start to search the optimal distance function. An exploratory data analysis

was driven using the average class inverse contrast, contrast, highest improvement

and optimal distance function as depicted in figure 3.21.
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Figure 3.21 Exploratory data analysis on constrast and precision relationship.

The objective of figure 3.21 is to show how contrast plays an important

role in the use of kNN modifications developed in this chapter. The theoretical im-

provement modeling, that is how better the metric optimized would reach remains

to be cleared and deserves further attention. Next chapter brings aid balance solu-

tions for imbalanced classification problems, which means datasets with a different

number of patterns. Figure 3.8 shows normalization schemes with a different under-

sampling degree to illustrate how much improvement a classification problem would

expect. Also in imbalanced class setup, the major class tends to have higher classi-

fication rate than minority ones as depicted in figure 3.7 for tie-breaking strategies.

The AD classification problem with imbalance aids would increase the capability of

detect patterns in minor classes. As demonstrated in the pioneer work comparing

balance aid strategies to improve classification rate using ADNI (Alzheimer’s Dis-

ease Neuroimaging Initiative) data [20]. The next chapter explores distance-based

strategies to deal with imbalance setup in AD classification problems and compares

novel distance-based strategies to do it.
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4 IMBALANCED CLASSIFICATION

4.1 Introduction

Data imbalance happens when a number of instances for a given class is

higher than the remaining ones [35]. It is considered among the ten most challenging

issues in data analysis since classifiers dealing with data imbalance situations tend to

misclassify minor class samples. In medical research and industry, consequences of

imbalanced data in computer aided diagnosis are overwhelmingly costly [35]. Unfor-

tunately, imbalances in medical databases are ubiquitous due to the manifestation of

different disease spectra’s regions which have its own probability of occurrence [20].

An instance from medical images is the number of voxels/pixels representing ab-

normalities which are inferior compared to all image’s voxels/pixels, characterizing

an imbalanced problem. Breast cancer detection using digital mammography [16]

is a classification problem which congregates such difficulties. The number of pixels

representing cancerous regions is scarce and hard to detect, additionally, cancerous

breasts images in training set are few (10,923 healthy vs 260 cancer [35]). The ur-

gency of this problem gives rise to the data dream digital mammography challenge

in 2016 which an $1.2M prize was offered for the most accurate classifier. Similar

data dream challenges for AD classification called attention in 2014.

In AD, it is relevant to predict if an individual will convert to another

AD’s class. Despite the importance of early intervention, an accurate solution for

AD conversion classification problem remains a challenge. This happens due to the

few instances in conversion classes and MCI classes stratification which prevent an

accurate non-binary or binary approaches. For instance, Cuingnet R. et al [18],

using MRI extracted features from 509 subjects of ADNI cohort study, proposed

three binary classification designs between AD classes: CN vs AD, CN vs MCI/AD

(MCI patients which become AD within 18 months) and MCI/AD vs MCI (MCI
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non-converters within 18 months). Cuingnet R. et al were able to correctly classify:

CN vs AD with 81% sensitivity and 95% specificity; classify CN vs MCI/AD with

specificity ranging from 51% to 73% and sensitivity 85%; and, MCI/AD vs MCI

achieving 32% sensitivity and 91% specificity. Even using a binary perspective

over the classes Cuingnet R. et al obtained low scores for highly overlapped classes

and conversion classes. Here, instead of non-binary classifiers largely applied in AD

classification [25] let’s use a natural multiclass classifier, described in the last chapter

aided with sampling strategies.

The main goal of sampling techniques is to balance the accuracy be-

tween unrepresented and overrepresented classes. Imbalanced setup complexity is a

wide topic, covering from small sample-size imbalanced classes, majority and minor-

ity class concepts, overlapped imbalanced classes to the noise data [35]. Such topics

will be highlighted and discussed in this chapter using distance-based sampling al-

gorithms, that is, inspired by kNN (with exception of random undersampling).

Regarding state-of-art algorithms for imbalanced data Haibo He et al.

[35] divide up the current focus of study in sampling methods, cost-sensitive meth-

ods, kernel-based and active learning methods. This chapter compares the over-

sampling and undersampling distance-based algorithms effects in AD datasets pre-

cision. The undersampling methods presented are the random undersampling and

four informed undersampling. Whereas oversampling methods presented are the

SMOTE (Synthetic Minority Oversampling TEchnique) and three adaptive syn-

thetic sampling variations from SMOTE’s family. In this context we describe two

contributions, one algorithm for informed undersampling, Nearmiss4, and one for

oversampling, SMOTE-borderline3. Respectively, the first show to be the best choice

to reduce class overlapping while the other is a multiclass orientated SMOTE’s ver-

sion. Next section illustrates the imbalance problem in the kNN context and relates

the integration of kNN modifications with sampling methods. At end of chapter a
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comparison between kNN with sampling methods and previous chapter modifica-

tions against popular classifiers choices.

4.2 Imbalanced dataset issues

Minority classes have a less representative number of instances, imply-

ing in reduced size of decision regions. Since they are underrepresented, misclassifi-

cation errors in minor classes tend to be higher than in major ones for all confusion

matrices previously presented, for instance, figures 3.7 and 2.6.

To illustrate the decreased size of the minor class decision region let’s

assume a circle representing the minority class decision region. Figure 4.1 depicts

the class A (minority class) where patterns were generated using a circular uniform

distribution centered in origin with unitary radius, whereas class B (majority class)

was generated by a Gaussian distribution following N (µ = [2, 2],Σ = 4 ∗ I). The

imbalanced proportion between class A and B is 1:13.
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Figure 4.1 Binary class decision region obtained with 3NN.

The circle in figure 4.1, in which class A was generated, is underrepre-

sented and give rise for minor class classification errors. Other sources of misclas-

sification include minor class sub-clusters and noise samples. These topics have a

concise presentation in [35], here only usual imbalance will be discussed. Classifi-
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cation methods (e.g. SVM, MLP, and kNN) have performance issues when dealing

with imbalanced datasets [35]. However, imbalance aid can be noneffective depend-

ing on the dataset as will be shown. Another case, are classifiers in which a degree

of imbalance allow better results than balance dataset [35]. The kNN’s formulation

approximates p(ω|x) directly disregarding the class priors as was shown. Here let’s

discuss how imbalance setup affects kNN’s precision and how class prior modifica-

tions can prevent the shrinking effect for AD classification problems.

4.3 Random undersampling

The previously mentioned random undersampling (RU) is a sampling

strategy which prunes randomly the major classes in order to have equal proportion

between minor ones [35]. The major classes will loss instances and it will enlarge the

minor class decision regions [55]. Also there is the possibility to recycle pruned data

to use together with the validation set. In the end of this section an AD dataset

comparison showing how RU increases the kNN classifier precision for LOOCV and

2-fold CV. Assume the AD three class problem for proteom dataset normalized

with min-max. Figure 4.2 shows the decision regions using 100% of undersampling

degree and 5NN. That is, the class priors of majority classes will have the same prior

number than minor class.
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Figure 4.2 Decision regions for CN, MCI and AD respectively for RU with 100% degree

and 5NN.

Notice majority class decision region in figure 4.2 was reduced when

compared with imbalanced problem decision region in figure 3.3. The undersampling
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degree parameter will not be optimized since this would increase the computational

cost associated to optimize the k parameter. Thus, let’s use p-norm value and

normalization scheme previously obtained for all data-wise simulations in further

tables. Figure 4.3 show how changes the k parameter when the undersampling

degree is modified due to this the k value must be optimized.
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Figure 4.3 At left, precision obtained from optimal k and varying p-norm and RU degree.

At right, optimal k for each example in left figure.

In figure 4.4 the AD classification problem is solved using 5NN when

the undersampling degree is less than 75% and 25NN otherwise. It was also applied

random tie-breaking, Euclidean distance, 10-fold CV. The pruned data was included

in validation to increase available data for the test set.
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Figure 4.4 From left to right, decision regions for CN, MCI and AD, respectively.

Comparing the imbalance degree from figure 4.4 in which the RU degree

vary from 0% to 100%, it is possible to see that there is a significant improvement

when compared to parametric approach and random tie experiment, depicted in

figures 2.6 and 3.7, respectively. Such improvement can be assessed in confusion
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matrices depicted in figure 4.5. However, it is noticeable the trade-off between

major an minor classes under imbalance aid.
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Figure 4.5 Respectively each plot shows the decision region for CN, MCI and AD and

undersampled relative to the minor class from the major classes.

It is possible to reduce the class overlap using undersampling strategy

by decreasing the major class decision region shown in figures 4.4 and 4.5, but los-

ing precision in majority class. The confusion matrices in figure 4.5 show precision

improvement in average from 37.13% (imbalanced) to 51.52% using 100% degree

random undersampling. Table 4.1 shows the dataset-wise comparison for under-

sampled classification problems using 2-fold CV and LOOCV. The number of folds

is not bigger because there are classification problems with only two patterns per

class. Due to this let’s set the undersampling degree in 50%.

Table 4.1 Dataset comparisons for random undersampling and two validation procedures.

dataset 2-fold CV (%) k LOOCV (%) k

plasma 38.78 ± 4.94 2 43.15 3

psyconvert 38.28 ± 0.69 4 38.72 7

bloodabeta 15.86 ± 0.31 14 16.44 7

adni 94.13 ± 1.33 25 94.46 22

proteom 43.87 ± 1.93 3 44.54 2

neuropsy 94.79 ± 3.46 24 95.16 7

neuroimag 51.46 ± 0.78 9 53.62 4

parkinson 89.18 ± 5.86 1 96.24 1

average 58.29 - 60.29 -
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For every dataset, LOOCV and 2-fold CV precision is higher in average

using RU (50% of degree) than imbalanced setup shown in table 3.2. The number

of patterns to prune is based on the convex combination between the number of

patterns in major and minor classes whereas degree is the new proportion to the

major class. For instance, with a minor class being 100 and a major 414, the convex

combination is,

(1− degree) ∗ 414 + degree ∗ 100,

for undersampling degree of 50% the new major class is 257. Next section, another

approach for the undersampling degree which considering structural data aspects is

given.

4.4 Informed undersampling

The random undersampling technique randomly prunes data until it

achieves the desired equilibrium between major and minor classes, however, as a

drawback, it disregards data structural aspects. Alternatively, informed undersam-

pling techniques try to overcome information loss introduced by the random un-

dersampling using distance rules to prune. Examples of such techniques include

EasyEnsemble, BalanceCascade [52], Nearmiss family of algorithms and one-sided

selection, all discussed in [35] and from the best of our knowledge none applied in

AD classification imbalance problems.

In the pioneer work of R. Dubey et al [20] done with imbalanced AD

classification the following balance aid techniques are compared: random under-

sampling, random oversampling [35], k-medoids undersampling [63] and SMOTE

oversampling [16]. As claimed by Dubey R. et al [20] k-medoids shows to be the

balance aid strategy with higher overall classification measures among designed bi-

nary classification studies. Aside from the oversampling techniques discussed in

next section, k-medoids is a cluster-based undersampling technique based on un-
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supervised learning algorithm called k-means [12]. Distance-based algorithms, as

k-means and k-medoids, uses properties of local approximation as kNN would use,

then it is reasonable to think that metric-learning strategies can be performed in

the context of sampling strategies. In object recognition field, an instance of such

combination is given by Ebert S. et al. [22] by comparing several sampling strate-

gies and learning a representative distance function to improve object recognition.

Ebert S. et al. strategies was able to improve overall accuracy up to 23% for object

recognition challenges.

Here, let’s use the kNN which is a natural multiclass classifier to eval-

uate sampling strategies in ADNI datasets. Also the informative algorithms to

be evaluated in this section are the Nearmiss family and one Nearmiss algorithm

adapted from it.

4.4.1 Nearmiss undersampling

Let’s explore informed undersampling techniques to increase minor classes

precision [86], namely: NearMiss-1 (N1), NearMiss-2 (N2), NearMiss-3 (N3), Most

distant (MD), and a version of N3 named Nearmiss-4 (N4).

• N1 [55], selects (keeps) the major class samples which are closest to minority class

samples. The selected major class samples must have the smallest average distance

to three closest patterns minor class.

• N2 [55], selects the major classes samples in their average distance whose three

farthest minority samples are the smallest.

• N3 [55], removes a given number of the closest majority class samples for each

minority class sample.

• N4, an experimental version of N3 in which is removed a given number among the

farthest majority class samples for each minority class sample.
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•MD [55], selects the majority class samples whose average distances to three closest

minor class samples are the largest.

Let’s describe the pseudo-code for Nearmiss4 which is an original con-

tribution in this work:

input: data D, classes ω ∈ Ω = {ω1, ..., ωc} , undersampling degree d, Lp-norm

p, number of elements to be removed by each minority pattern n

C ← major classes, Ω\ωmin

ωmin ← minor class

for all ω ∈ C do

dist matrix ← calculate distance matrix between pattern of ω and ωmin for a

given norm (or semi) p

degree number← floor[(1− d) ∗ ♯D(ω) + d ∗ ♯D(ωmin)]

while ♯D(ω) ≥ degree number do

randomly choice a column c in distance matrix

order column c by decreasing order

remove the first n elements relative to the greatest distances from class ω

end while

end for

if ♯D(ω) < degree number then

retrieve removed patterns from last D in order to ♯D(ω) = degree number

end if

output reduced D

The algorithm is written in R programming language and is available

on line in github. For the NM3 and NM4 the number of elements to be removed by

minority example is 2.

Nearmiss family original implementations [55] does not control the un-

dersampling degree, here, instead, the algorithm continues to prune until achieves
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the desired balance and repeated data selection/removal is not allowed as in the orig-

inal implementation. Decision regions for Nearmiss family using proteom dataset are

depicted in figures from 4.6 to 4.9. These mappings are solved with 5NN, Euclidean

distance, random tie-breaking for undersampling degree 100%.
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Figure 4.6 Decision regions for CN, MCI and AD respectively with N1.
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Figure 4.7 Decision regions for CN, MCI and AD respectively with N2.
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Figure 4.8 Decisions region for CN, MCI and AD respectively with N3.
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Figure 4.9 Decision regions for CN, MCI and AD respectively with N4.
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Figure 4.10 Decision region for CN, MCI and AD respectively with MD.

One can observe from figure 4.6 to 4.10 intermediary class becomes

compacted reducing the class overlap, in the last section a comparison on sampling

methods overlap is presented. Figures from 4.6 Using proteom dataset figures 4.11

(N1 and N2) and 4.12 (N3, N4, and MD) shows the effect when varying the un-

dersampling degree. None of the informed undersampling includes the pruned data

into the test set since they are structurally different, although the test set has the

randomness of cross-validation folds. Here, instead of 5NN, when the undersampling

degree is higher than 75% let’s use 25NN.
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Figure 4.11 At left, 10-fold CV precision for N1. At right, 10-fold CV precision for N2.

The red dot stands for the median value.
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Figure 4.12 At first row left, 10-fold CV precision for N3. At first row right, 10-fold CV

precision for N4. At second row, 10-fold CV precision for MD. The red dot stands for the

median. value.

Figures from 4.13 to 4.17 depict confusion matrices for N1, N2 ,N3 ,N4

and MD, respectively.
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Figure 4.13 NM1 confusion matrices for 0%, 50% and 100% of undersampling degree with

average precision of 34.32%, 39.39% and 46.67% respectively.
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Figure 4.14 N2 confusion matrices for 0%, 50% and 100% of undersampling degree with

average precision of 34.42%, 40.77% and 49.15% respectively.
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Figure 4.15 N3 confusion matrices for 0%, 50% and 100% of undersampling degree with

average precision of 36.16%, 42.22% and 52.29% respectively.
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Figure 4.16 N4 confusion matrices for 0%, 50% and 100% of undersampling degree with

average precision of 35.83%, 42.73% and 51.84% respectively.
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Figure 4.17 MD confusion matrices for 0%, 50% and 100% of undersampling degree with

average precision of 34.58%, 42.16% and 50.83%.

Data-wise comparisons for the informed undersampling techniques are

available in table 4.2 for two validation modalities (LOOCV and 2-fold CV). The

undersampling degree to each class was 50% relative to the smallest class as ex-

plained earlier. When the minor class is small in such way the algorithm cannot be

performed, for instance, NM1 needs three patterns in minor class to evaluate the

average distance from the major class, the algorithm then uses only the number of

patterns available to assess the average.
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Table 4.2 Dataset comparison for informed undersampling.

dataset N1 2-fold CV (%) k N1 LOOCV (%) k N2 2-fold CV (%) k N2 LOOCV (%) k

plasma 35.92 ± 0.59 16 36.48 ± 0.22 7 29.59 ± 0.88 7 36.44 ± 0.28 8

psyconvert 40.28 ± 2.62 1 40.03 1 29.94 ± 0.23 19 40.03 1

bloodabeta 16.98 ± 0.28 5 16.40 ± 0.07 17 15.57 ± 0.56 7 16.52 ± 0.14 21

adni 74.94 ± 2.23 3 90.78 ± 0.01 14 72.00 ± 0.12 1 90.96 ± 0.23 14

proteom 45.23 ± 2.93 2 44.12 ± 0.47 15 42.72 ± 5.14 10 43.20 ± 0.18 11

neuropsy 85.01 ± 7.02 3 88.76 3 79.03 ± 1.48 2 88.04 11

neuroimag 50.94 ± 0.23 15 54.03 ± 0.21 5 54.85 ± 2.34 3 55.10 ± 0.55 4

parkinson 87.89 ± 9.34 1 97.26 1 84.13 ± 15.10 1 97.26 1

average 54.64 - 58.48 - 50.97 - 58.44

dataset N3 2-fold CV (%) k N3 LOOCV (%) k N4 2-fold CV (%) k N4 LOOCV (%) k

plasma 43.20 ± 3.96 1 35.57 ± 0.03 3 33.02 ± 3.20 2 36.58 ± 0.54 7

psyconvert 34.07 ± 10.35 2 36.24 ± 0.02 11 30.33 ± 0.61 20 36.35 ± 0.13 7

bloodabeta 20.70 ± 7.72 2 18.91 ± 7.97 3 15.50 ± 0.54 7 16.28 ± 0.10 32

adni 73.82 ± 2.83 5 94.52 ± 0.06 15 73.40 ± 0.34 8 92.57 21

proteom 47.03 ± 0.36 21 44.83 ± 0.28 19 47.29 ± 0.59 1 45.73 ± 0.35 13

neuropsy 82.35 ± 0.58 1 95.33 ± 0.41 20 78.25 ± 3.78 3 90.96 3

neuroimag 55.14 ± 2.98 5 55.48 ± 0.34 4 50.14 ± 6.54 23 55.55 ± 0.16 5

parkinson 87.97 ± 3.19 1 91.50 1 90.14 ± 0.72 1 97.26 1

average 55.53 - 59.04 - 52.25 - 58.91

dataset MD 2-fold CV (%) k MD LOOCV (%) k

plasma 41.34 ± 1.08 1 33.83 ± 0.21 11

psyconvert 34.94 ± 10.29 2 33.73 ± 0.14 10

bloodabeta 23.24 ± 10.41 3 16.16 ± 0.08 19

adni 73.63 ± 3.77 1 94.59 ± 0.53 16

proteom 49.65 ± 1.68 6 47.10 ± 1.39 2

neuropsy 81.57 ± 2.85 9 95.81 25

neuroimag 56.47 ± 0.63 4 56.34 ± 0.27 5

parkinson 87.08 ± 3.69 1 90.82 1

average 55.99 - 58.54 -

The sampling techniques’ goal is to increase the minority samples, how-

ever, without losing precision in other classes. Thus, the macro-average precision is

suitable since it not benefits the major class as accuracy does. For instance, the re-

view paper [35] in which sampling techniques for binary classification are presented,

the following measures are claimed to be the most used to evaluate imbalanced prob-
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lems: accuracy, recall, F-Measure, G-mean. Such measures to compare imbalance

solutions are not appropriate as shown by [81] since they are originally created for

binary problems and not account for multiclass interactions, e.g. classifier degra-

dation which tends to be caused by multi major classes. In order to illustrate the

class precision imbalance let’s suggest a measure as being the average difference

between class precision. Instead of measuring the degree of exactness, it simply

evaluates the average difference between the class probability of correct classified

samples (e.g. accuracy, precision). Moreover, for such measure, the classifier would

achieve 0% for all classes and be considered ”fair” since this regards only to the

difference between classes. As shown in table 4.2 the MD algorithm reaches most

of the high precision whereas NM3 reaches the highest average. However, compar-

ing the average difference between precision for the proteom dataset classification

problem one may observe NM3 and MD, indeed, increase precision for minor classes

but creating a precision difference higher than the imbalanced version. That is, the

imbalanced problem achieves 47.50% of average difference precision using random

tie-breaking, with RU it is reduced to 45.96%, with MD undersampling it increases

back to 50.78%. For NM3 which achieves second higher average in table 4.2 the

average difference precision is 46.31%. Since all informed undersampling algorithms

here uses pair-wise relations to prune data minor classes’ interactions are not ac-

counted leading to increased distance between class individual scores and minor class

overlapping as depict in figures 4.8 and 4.10. A comparison between all balance aid

techniques by means of overlap will be presented at end of this chapter.

4.5 Synthetic oversampling methods

Instead of pruning data as the under-sampling algorithms one would like

to raise the low priors of the minor classes by adding synthetic samples. The over-

sampling techniques are designed to deal with imbalanced problems by modifying

the training balance artificially. The strategies of oversampling techniques discussed
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here use distances in order to insert synthetic samples in training set. Let’s show

in AD classification problems the well-known oversampling algorithms, SMOTE

(Synthetic Minority Over-sampling TechniquE) and three of its derivations. Let’s

show also how the oversampling parameters affect the original distribution and how

it differ from the undersampling approach.

Basically, SMOTE evaluates the k-nearest neighbors of the minority

classes and add a synthetic data between a random pair of the k neighbors. This

process is repeated until it achieves the desired proportion between classes. For

details regarding the algorithm see [16]. The algorithm uses as entries the number of

k neighbors and the proportion to be reached. As higher is the number of neighbors,

k, more distant the synthetic data would be included. Figure 4.18 shows how the k

parameter modifies the original distribution when synthetic data is included in AD

class by means of Bhattacharyya coefficient and assuming Gaussianity.
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Figure 4.18 From left to right the synthetic data generated with SMOTE using parameter

k = 7, k = 15 and k = 30, respectively. The Bhattacharyya coefficients are, 0.9719190,

0.9881616 and 0.9943559, respectively.

Using Bhattacharyya coefficient there is a small (< 0.03%) difference

between original and SMOTE pre-processed distributions shown in figure 4.18. How-

ever, when the parameter k is increased the synthetic samples tend to be placed

distantly. Figure 4.19 shows the effect of proportion control, this is, the inclusion

of synthetic data relative to the difference between the number of major and minor

classes samples.
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Figure 4.19 From left to right the synthetic data generated with SMOTE using param-

eter k = 5 and proportions, 150%, 300% and 500%, respectively. The Bhattacharyya

coefficients are, 0.9970899, 0.9968130 and 0.9961496, respectively.

It is noticeable by the Bhattacharyya coefficient and varying the syn-

thetic inclusion degree that SMOTE does not promotes great changes in original

distribution (figure 4.19). However, SMOTE is considered a blind over-sample be-

cause it is possible to propagate noise samples compromising precision and class’

decision regions. In order to avoid propagation of noise (or outliers) samples a

variation of SMOTE, called SMOTE-borderline, is used. Such technique inserts

synthetic samples only near to instances that have increased chances to be misclas-

sified in comparison to remaining, such patterns belonging to the minority classes

are called borderlines. The SMOTE-borderline variations discussed here are:

• SMOTE-borderline1 (S1) identifies borderline instances in minor class and add

synthetic samples between borderline and nearest patterns of its class;

• SMOTE-borderline2 (S2) identifies borderline instances in minor class and add

synthetic samples between borderline and nearest patterns in majority class;

• SMOTE-borderline3 (S3), an S1 modification, named here as S3, which identifies

borderline instances in minor class and adds synthetic samples between borderline

and nearest patterns in all dataset.

There is no requirement to include S3 pseudo-code, it can be under-

stood from pseudo-code SMOTE borderline described in [31]. Next is presented a

comparison between SMOTE (S), S1, S2 and S3 for the proteom dataset. Figures

from 4.20 to 4.23 show the decision regions for the classification problem solved
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with 5NN, random tie-breaking and min-max normalization for each oversampling

strategy and the oversampling degree 100%.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
ABETA

P
T
A

U

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
ABETA

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
ABETA

class

AD
CN
MCI

probability

0.00
0.25
0.50
0.75
1.00

Figure 4.20 Decisions region using S for classes CN, MCI and AD, respectively.
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Figure 4.21 Decisions region by S1 for classes CN, MCI and AD, respectively.
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Figure 4.22 Decisions region by S2 for classes CN, MCI and AD, respectively.
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Figure 4.23 Decisions region by S3 for classes CN, MCI and AD, respectively.

Figure 4.24 shown a comparison of 10-fold CV precision for the over-

sampling techniques varying the degree between 0% to 150%, the k value is changed

from k = 5 to k = 20 when degree is higher than 75%.
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Figure 4.24 From left to right at first row, the 10-fold CV outcomes for SMOTE and

SMOTE-borderline1, respectively. From left to right at second row, the 10-fold CV out-

comes for SMOTE-borderline2 and SMOTE-borderline3, respectively. Red dot corre-

sponds to for the median value.

One can notice in above figures that standard deviation for SMOTE’s

family algorithms are higher than previous undersampling and imbalanced instances,

synthetic samples would account for such effect [68]. Conversely, LOOCV precision is

capable of reducing this effect as it will be shown. Beyond 100% of the oversampling

degree, all SMOTE techniques become noneffective for this choice of k. Indeed, for

such cases above 100%, the majority classes turn into the minority ones causing

10-fold CV precision to be stagnated. Further data-wise comparison gives shows

precision and standard deviation for AD classification problems. Figures from 4.25

to 4.28 depicts the 10-fold CV confusion matrices for oversampling algorithms and

0%, 50%, 100% and 150% of oversampling degrees.
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Figure 4.25 From left to right confusion matrices obtained by S with 35.67%, 41.45%,

45.69% and 46.27% of 10-fold CV precision, respectively.

CN MCI AD

CN

MCI

AD

19.33

15.61

5

78.67

74.88

82

2

9.51

13

CN MCI AD

CN

MCI

AD

40.67

27.8

12

45.33

48.78

45

14

23.41

43

CN MCI AD

CN

MCI

AD

52

37.32

15

28.67

23.9

14

19.33

38.78

71

CN MCI AD

CN

MCI

AD

56.67

43.66

22

22.67

16.59

10

20.67

39.76

68

Figure 4.26 From left to right confusion matrices obtained by S1 with 35.73%, 44.15%,

48.96% and 47.08% of 10-fold CV precision respectively.
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Figure 4.27 From left to right confusion matrices obtained by S2 with 37.68%, 43.03%,

49.83% and 50.13% of 10-fold CV precision, respectively.
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Figure 4.28 From left to right confusion matrices obtained by S3 with oversampling degree

of 0%, 50%, 100% and 150%, respectively. The precision achieved is 35.00%, 39.31%,

47.08% and 48.76%, respectively.
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Evaluating the average class precision difference, each oversampling

technique achieves for 100% of oversampling degree, 20.62%, 31.67%, 31.88%, and

29.68%, respectively for S, S1, S2, and S3.

Table 4.3 shows data-wise comparison for algorithms S, S1, S2 and S3.

All datasets use previously estimated parameters for p-norm and normalization. The

comparisons are done using 2-fold CV and LOOCV. Since the SMOTE’s family needs

at least two samples in training set generate synthetic ones the classes with only

that are not suitable for SMOTE generates perturbed values around such pattern.

Table 4.3 Datasets with oversampling degree of 50% and optimized k.

dataset S 2-fold CV (%) k S LOOCV (%) k S1 2-fold CV (%) k S1 LOOCV (%) k

plasma 44.20 ± 1.97 22 39.83 ± 0.03 3 44.47 ± 1.31 3 42.52 ± 0.25 3

psyconvert 47.94 ± 8.99 31 45.84 ± 0.16 18 46.16 ± 5.52 32 45.42 ± 0.11 16

bloodabeta 14.47 ± 1.56 3 13.23 ± 0.31 3 15.25 ± 0.37 1 14.83 1

adni 94.49 ± 2.45 25 81.25 ± 0.06 17 94.05 ± 2.80 24 81.00 7

proteom 52.35 ± 0.58 22 46.53 ± 0.18 19 54.29 ± 0.02 24 43.92 ± 0.20 25

neuropsy 95.05 ± 3.58 24 90.24 9 96.02 ± 0.78 20 89.99 5

neuroimag 58.45 ± 0.11 21 56.56 ± 0.16 21 59.12 ± 2.64 13 54.55 ± 0.28 21

parkinson 94.51 ± 0.99 1 96.92 1 87.89 ± 3.41 1 97.26 1

average 62.68 - 58.79 - 62.15 - 58.68 -

Dataset S2 2-fold CV (%) k S2 LOOCV (%) k S3 2-fold CV (%) k S3 LOOCV (%) k

plasma 38.06 ± 4.09 6 39.93 ± 0.04 20 39.00 ± 2.74 1 40.57 ± 0.08 17

psyconvert 46.49 ± 7.91 2 39.48 ± 0.19 12 41.90 ± 6.97 5 39.05 ± 0.22 16

bloodabeta 15.57 ± 1.52 1 15.58 ± 0.07 2 15.86 ± 1.40 3 14.21 ± 0.21 3

adni 93.40 ± 3.51 9 79.92 1 93.63 ± 1.98 18 80.63 1

proteom 53.09 ± 1.28 25 50.34 ± 0.80 25 48.77 ± 1.92 25 50.74 ± 0.74 22

neuropsy 95.27 ± 2.13 17 88.06 ± 0.02 10 95.11 ± 0.47 12 89.32 3

neuroimag 57.37 ± 1.01 21 56.74 ± 0.49 24 57.48 ± 3.22 22 58.01 ± 0.41 25

parkinson 90.31 ± 7.85 1 97.26 1 94.83 ± 5.37 1 97.26 1

average 61.19 - 58.41 - 60.82 - 58.72 -

Despite SMOTE not shown the highest precision among other over-

sampling techniques for 100% of oversampling degree, as depicted in figure 4.25, it

achieves the highest average for 10-fold CV and LOOCV in data-wise comparison

for 50% of oversampling degree. SMOTE’s family average precision in 2-fold CV

achieves higher results than RU, however, for LOOCV the dominance does not hold
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since random undersampling achieves higher average precision. Despite the over-

sampling techniques have a higher average precision for 2-fold CV validation, the

standard deviation is discouraging.

Comparing all previous tables one may observe that validation scheme

is one of the main factors to decide the most precise sampling technique (in aver-

age) [68]. As claimed in [68], such factors rather than imbalance ratio and validation

scheme is the amount of overlapping between classes and other distribution charac-

teristics [26]. In order to assess the overlapping amount driven by such methods, a

comparison is made in next section.

4.6 Imbalance strategies comparison

The oversampling and undersampling are supposed to be equivalent

since they both modifies the original dataset by providing a balance solution. How-

ever, each method adds its own biases and problematic consequences, for instance,

noise increasing by synthetic samples in oversampling, reduced training set for RU,

discarded pruned data since informed undersampling changes training set structure.

Not only imbalance degree affects learning, but the class overlap is an important

factor to prevent classifier deterioration. It is possible to measure the degree of over-

lap using caused by sampling methods by using Bhattacharyya coefficient (assuming

Gaussianity). However, for extreme minor classes accounting with only two samples,

e.g. converters datasets, the covariance matrices no meaning. Also, overlapping is

not the only source of error in imbalanced setup as claimed in [68] and [26], with

class distribution parameters being decisive as well.

In figure 4.29 a dataset comparison is presented for averaged class over-

lap caused by the sampling techniques and its probability matrix. All sampling

methods had its degree settled to 50% and the datasets were normalized. Covari-
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ance matrices which become singular evaluating Bhattacharyya distance were not

included in the average ranging from 0 to 1.
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Figure 4.29 At left, by dataset the averaged overlapping between different classes caused

by each resampling method. At right, the matrix of probabilities for a given resampling

method (line) to create more overlap than other method (column) along datasets.

In figure 4.29 (right), the row average in probability matrix which allows

the highest overlapping, in order is: 79.16 % (RU), 75.00% (S1) 75.00% (S2) 51.38%

(S3), 47.22% (S), 41.66% (N1), 37.50% (N2), 29.16% (N4), 29.16% (MD) and 26.38%

(N3). However, average class overlap has its drawbacks, e.g. as decreasing artificially

the overlap. For instance, considering three classes as the problem depicted in figure

4.10, the overlapping is all concentrated between two classes while the third class

(the minor one), become distant, the average will shown one high overlap between

major classes and two low overlaps between minor and remaining major classes.

Instead of average class overlap by one-against-one let’s use one-against-all average

class overlap. Assessing the same matrix, for one-against-all average overlap, in

order we have: 84.72% (S1), 79.16% (S2), 72.22% (RU), 55.55% (S3), 55.55% (S),

40.27% (MD), 33.33% (N1), 26.38% (N3,) 25.00% (N2) and 19.44% (N4). In both

situations, informed undersampling achieves less overlap. Also, N4 algorithm obtain

a reasonable separation between classes and higher precision than imbalanced setup.
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In figure 4.30 the probability matrices calculated along the dataset comparison shows

the probability of one method provides higher precision than other.
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Figure 4.30 Probability matrices for the sampling methods precision compared to the

random tie-break kNN (”Imb”). At left, 2-fold CV, at right LOOCV.

It is noticeable that oversampling techniques achieves higher precision

for 2-fold CV. For LOOCV the RU achieves higher precision than use only kNN

without imbalance aids. The difference between sampling methods is evident in

the probability matrix for 2-fold CV precision. The line average probability matrix

without ”Imb” shows that SMOTE’s family have the higher probability to provide a

higher precision than remaining sampling methods. Whereas RU presents higher line

average than informed undersampling. For LOOCV probability matrix, evidence of

the best strategy is tight between oversampling and informed undersampling, but

oversampling techniques surpasses. Regarding the improvement compared to the

imbalanced problem for LOOCV all methods are effective (except from MD that

has the same probability of ”Imb”).

Table 4.4 compares 10-fold CV and LOOCV precision for kNN with

sampling methods, metric and normalization searches against others classifiers from

R language packages, namely: SVM from e1071 package; conditional inference trees
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(ctree) from party package; bootstrap aggregating (bagging) from ipred package;

learning vector quantization (lvq) from class package; wkNN from kknn package; and

kNN tuned with experiments described in past sections. Respectively by dataset in

table 4.4 (upper), the kNN highest LOOCV precision was achieved by the following

sampling methods: RU (plasma), S (psyconvert), N3 (bloodabeta), MD (adni), S3

(proteom), MD (neuropsy), S3 (neuroimag), S1 (parkinson).

Table 4.4 Classifier comparison for LOOCV (upper table) and 2-fold CV (bottom table).

dataset SVM (%) ctree (%) bagging (%) lvq (%) wkNN (%) kNN (%)

plasma 36.45 37.20 37.88 29.81 36.14 43.15

psyconvert 34.14 37.08 37.92 32.96 38.03 45.84 ± 0.16

bloodabeta 16.21 14.29 14.23 14.72 15.04 16.52 ± 0.14

adni 71.13 94.10 94.02 58.23 85.87 94.59 ± 0.53

proteom 34.86 33.33 38.58 38.77 33.07 50.74 ± 0.74

neuropsy 92.30 94.10 93.71 67.65 92.31 95.81

neuroimag 42.20 47.25 43.10 44.62 46.67 58.01 ± 0.41

parkinson 65.62 74.02 85.80 69.92 93.43 97.26

dataset SVM (%) ctree (%) bagging (%) lvq (%) wkNN (%) kNN (%)

plasma 35.81 ± 2.65 37.23 ± 0.90 38.03 ± 1.10 32.32 ± 0.38 34.58 ± 0.93 44.47 ± 1.31

psyconvert 34.63 ± 1.26 37.42 ± 0.32 38.90 ± 0.35 38.46 ± 0.06 36.62 ± 0.38 47.94 ± 8.99

bloodabeta 14.85 ± 0.04 14.29 15.89 ± 0.06 14.99 ± 2.23 16.09 ± 0.19 23.24 ± 10.41

adni 61.48 ± 0.73 93.96 ± 1.12 94.36 ± 4.73 66.23 ± 4.84 83.76 ± 2.21 94.49 ± 2.45

proteom 36.42 ± 1.46 33.33 38.42 ± 1.88 42.61 ± 4.24 35.01 ± 5.18 54.29 ± 0.02

neuropsy 90.30 ± 1.33 92.48 ± 6.70 95.95 ± 0.36 72.23 ± 3.22 90.78 ± 0.29 96.02 ± 0.78

neuroimag 42.50 ± 1.62 41.10 ± 1.30 45.56 ± 3.12 46.61 ± 5.39 43.66 ± 1.10 59.12 ± 2.64

parkinson 65.62 ± 4.42 77.14 ± 0.97 80.96 ± 2.50 66.68 ± 1.96 87.89 ± 3.45 94.83 ± 5.37

The kNN using resampling, a suitable metric and normalization, was

able to surpass all classifiers in average, only without statistical significance was the

adni dataset. Results described in table 4.4 (bottom) shows 2-fold CV precision

compared to previous classifiers. Respectively by dataset in table table 4.4 (bot-

tom), the kNN highest 2-fold CV precision was achieved by the following sampling

methods: S1 (plasma), S (psyconvert), MD (bloodabeta), S (adni), S1 (proteom), S1

(neuropsy), S1 (neuroimag), S3 (parkinson). Despite kNN achieves higher precision

in average, most of the result for this validation modality are from oversampling

70



techniques which include increased standard deviation bias implying in significance

loss. Results in table 4.4 (bottom) are statistically significant only for the following

dataset, plasma, proteom and neuroimag.

In summary, this chapter compares two sampling strategies, oversam-

pling and undersampling, and the main drawbacks for each one. Also, two new

algorithms were proposed, NM4 and S3. Whereas the S3 did not show especial at-

tributes, the NM4 shows properties relative to reduce overlap the between classes.

The kNN with modifications shows precision in average higher than popular algo-

rithms as listed. However, overlapping induced by oversampling techniques in 2-fold

CV may increase the standard deviation leaving the LOOCV a safer option. The

balance aid steps can be applied to any classifier in order to improve its classification

rate. Regarding the normalization, metric optimization and the possible parameter

of balance aid techniques, non-greedy strategies are required to have a better impact

of such factor combined. Next chapter presents feature selection techniques in order

to compare AD biomarkers discriminative power.
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5 WRAPPERS FEATURE SELECTION

5.1 Introduction

Biomarkers are a characteristic that is objectively measured and eval-

uated as an indicator of normal biological processes, pathogenic processes or phar-

macological responses to a therapeutic intervention [77]. The combination of differ-

ent biomarker modalities often allows an accurate diagnosis classification [25]. In

AD, biomarkers are indispensable to identify cognitively normal individuals destined

to develop dementia symptoms. However, using the combination of canonical AD

biomarkers, studies have repeatedly shown poor classification rates to differentiating

between AD, mild cognitive impairment and control individuals. Furthermore, the

design of classifiers to assess multiple biomarker combinations includes issues such

as imbalance classes and missing data. Since the number biomarker combinations

is large then wrappers feature selection can be used to avoid multiple comparisons

[46].

In this chapter is compared the ability of three wrappers feature selec-

tion methods to obtain the biomarker combinations which maximize precision. Also,

as a criterion for the wrappers feature selection is used the kNN classifier with sam-

pling techniques from the previous section. Overall, the analyses presented in this

chapter shows how biomarkers combinations affect the classifier precision and how

sampling strategy improve it. Is shown also, that non-defining and non-cognitive

biomarkers from dataset described in table 6.1 have less precision than cognitive

measures when classifying AD and among the non-cognitive which is the biomarker

that provides higher precision when combined.

It is a well-established fact that combined biomarkers provide higher

classification rates than single biomarkers [61]. In this regard, neuropsychological
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tests associated with different biomarker modalities have been used to classify AD

[78]. These studies have combined PET, MRI, fMRI as well as CSF and blood

biomarkers to perform binary classifications of AD [25], e.g. healthy versus un-

healthy individuals. Despite AD’s classification problem being an inherently multi-

class binary classification or multiclass driven by binary strategies are the rule [25].

Since some classifiers are naturally binary they must be adapted for multiclass by

means of one-versus-all or one-versus-one strategies, e.g. SVM [12]. Thus, to solve

an n-class problem using binary classifiers, n(n−1)
2

rules are required to build a mul-

ticlass classifier. As benefits, binary classifiers are well suited for the receiver ROC

analysis which has been largely applied in comparative studies and model selection

[24].

5.1.1 Related work

Recently, various approaches used for AD’s identification have achieved

successful results and satisfactory classification rates. For instance, Khedher et al.

[44] were able to accurately differentiate the three clinical classes of the AD spec-

trum reaching the maximum sensitivity (85.11%), specificity (91.27%), and accuracy

(88.49%) values by implementing binary classifier strategy and reduction of input

space with SVM and PCA techniques [12]. As previously referred, Khazaee et al.

[43] were able to perfectly differentiate between cognitively healthy and AD classes

in a small dataset of 40 individuals, using graph theory applied to brain connectivity

assessed with fMRI they reach an accuracy of 100% for linear SVM and 87.5% for

kNN. Although the separation between extreme cases is straightforward, difficulties

are expected when considering the overlapped intermediary classes as show in the

first chapter. Classifiers performance can be potentially affected by data issues, such

as class overlapping, feature space with high dimensionality, missing-data, class im-

balance, etc [85]. Recently, the pioneer Dubey’s et al. work [20] on imbalanced AD

classification problem showed the sensitivity and sensibility [23] for binary designed
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classification problems (e.g. MCI vs AD, CN vs AD) would be improved using

sampling strategies.

There is a need to identify biomarker combinations that maximize the

classification and understand how much they contribute to differentiate between

AD classes [38] [25]. However, this goal faces multiple classifier’s comparisons when

assessing biomarker combinations. In order to avoid the excessive number of com-

parisons, feature selection techniques are able to find a set of biomarkers that meet

defined criterion [30]. For a given task (e.g. classification) examples of criterion

are: identify the most cost-effective biomarkers, with higher accuracy and low false-

positive; find a subspace of reduced dimensionality with the same or enhanced dis-

criminant properties; extract/build relevant features from raw data [67].

Techniques of feature selection have been largely applied to AD-related

problems, intending to provide a better understanding of biomarkers relationship [38]

and achieve defined criterion of usefulness [30]. Interesting applications of feature

selection techniques contributed to the understanding of AD, like the construction of

potential biomarkers for enhanced classification. For instance, as graph theoretical

measures obtained from fMRI connectivity matrix or metabolic connectivity map-

ping from PET. Another instance, owing to determine preclinical biomarkers for

AD, Lopez-de-Ipiña et al. apply feature selection techniques on spontaneous speech

to extract discriminant features [53]. They also were able to correctly classify AD

subjects using kNN and MLP classifiers obtaining accuracy of 87.30% and 90.90%,

respectively to each classifier. Feature selection AD-related works also is found in

gene microarray analysis [67] and neuroimaging both with high-dimensional feature

spaces. These fields have been provoking adaptation of feature selection techniques

to deal with high dimensionality (tens of thousands of features) and small sample

size in the case of microarray datasets [67]. In neuroimaging, the feature selection

methods in 3D matrices are able to mitigate performances issues and improve the

classification accuracy [69].
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5.2 Experiment design

Here, let’s find subsets of features among several feature combinations

which maximize classification rates between three AD classes. Specifically, a multi-

class classification problem is solved by assigning test patterns into one of following

classes: CN, MCI or AD. To do that, is compared three feature selection techniques

that depend on the classifier’s outcome as a measure of usefulness [30]. This re-

quirement characterizes the feature selection techniques called wrappers which select

features based on the classifier’s performance. However, instead of widely applied

binary strategies, here let’s use the all-versus-all strategy naturally achieved by the

kNN classifier. The misclassification and comparison between biomarker combina-

tions will be done by scalar measures of confusion matrices defined in chapter two.

In order to observe the effect of training set size two validation processes are com-

pared, 10-fold CV and LOOCV [12]. Analysis shows how the imbalanced dataset

affects precision and shows a comparison of the feature’s probability to reach higher

precision. Two techniques to aid the class balances are compared with SMOTE and

the random undersampling.

Here, let’s use the kNN with data re-scaled by min-max normalization

with Euclidean metric [54]. Importantly, since features CDRSB and MMSE are

employed to define the diagnosis or are similar to ADNI categorization protocol (see

ADNI site) they will be used only as comparison. The feature-wise comparison will

be performed only for non-defining and non-cognitive features since it is well know

that cognitive measures have more discriminative power. However, feature selection

will be applied for non-defining features which include cognitive measures.

5.3 Wrappers

The goal of feature selection methods is to select a subset of features

that is useful to build enhance a given classifier’s measure, e.g. accuracy. Since
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classifiers are induced by data with unknown underlying distributions the feature

selection methods allow sub-optimal answers. There are comprehensive definitions

of usefulness that would be a criterion to select relevant features, e.g. correlation

and information theoretical criterion [30]. As shown in [46] the optimal choice of

features does not imply the choice of relevant features. Conversely, optimality does

not imply in relevancy. For instance, features that are presumably redundant may

enhance the accuracy when combined with useful features [30].

Despite the lack of guarantees presented, feature selection methods were

invaluable to deal with high-dimensional real-world problems. Feature selection

methods were initially designed to deal with classification problems with no more

than 40 features [46], now they are able to deal with thousands of features as dis-

cussed in the previous chapter. High-dimensional problems related to genetics have

been received attention to uncovering the molecular mechanisms related to AD [70]

and has motivated initiatives like AlzGene which is focused on providing data re-

sources for AD genetic researches. Despite that, in this work the feature selection

techniques will be applied to at least 9 features in order to observe the group-wise

probability of a feature being more relevant than other.

Feature selection methods are divided into three categories due to the

relation with the classifier: filter, wrapper, and embedded methods. Filters select a

subset of features independently of the chosen classifier and the procedure mainly

focus on ranking the features given defined criterion. Conversely, wrappers use

classifiers’ measures as a criterion to select subsets. Lately, embedded methods use

a structured model to get the set of relevant features subject to a classifier [30]. For

a complete discussion on the feature selection strategies and benefits see [30]. Others

examples of feature selection techniques are feature extraction, feature construction,

feature selection techniques for non-supervised learning, etc.

Three wrapper methods for feature selection using the kNN classifier

combined with balance aid strategies to select the most useful subset of features are
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compared. These are defined on the following search strategies: backward elimina-

tion, forward selection, and hill-climbing selection [30]. The subset obtained using

the three methods will be compared to all combinations of features in order to ob-

serve if they are able to reach the optimum subset drawn from the rank with all

features combinations. Additionally, a noise feature will be included in the feature

selection procedure in order to compare the features to a non-significant case.

In figure 5.1 is depicted an example of search graph with all possibilities

for three combinations. Regarding figure 5.1 in far left stage, no features chosen and

far right all features chosen. Backward elimination moves right to left; forward

selection left to right; hill climbing moves to any direction.

Figure 5.1 Scheme showing how to chose a subset of 3 features, using forward selection,

backward elimination and hill-climbing.

The wrappers feature selection will search in a 9 (8 + noise) features

graph scheme for the more useful subset. Forward selection initializes with any fea-

ture and steps up towards completing the feature subset. Iteratively it adds features

to the chosen subset using the usefulness criterion that is to increase kNN classifica-

tion rate. The usefulness criterion for kNN is obtained with the LOOCV, that means

to classify one pattern using all remaining patterns as the training set. The back-

ward elimination goes in the opposite direction in the searching graph. It initializes

with all features and iteratively prunes features according to the highest usefulness

defined by the kNN classification rate criterion. The hill-climbing selection can go
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in any direction in the searching graph combining two previous approaches. Here,

let’s set up hill-climbing starting from the empty set feature.

All wrappers in this work are greedy algorithms and are subject to

be trapped in a local maximum [46] (relative to the classification rate). A greedy

algorithm can only optimize in a short distance and do not prevent that a good choice

for a given iteration would lead to losing better options. There are search strategies

designed to avoid this greedy drawback, for instance, the simulated annealing and

the genetic algorithms [30] .

5.4 Results and discussion

Features for specific and general cohort studies owing to identify AD

spectrum come from various sources: cognitive, genetic, neuroimaging, proteomic

and others [53]. These features intend to provide insights on biological factors AD

which is critical to understanding the disease progression and to early prevention

strategies [25]. Features combinations provide higher classification rates than fea-

tures by itself, also there are combinations more precise than others. For instance,

a feature may confer a poor classification rate when many classes are included, even

being highly valuable to understand AD biological processes, as depicted in past

figures of ABETA and PTAU decision regions. This is, the combination Aβ1−42

and p-tau181, which sustain the main hypothesis for neurodegeneration [25] achieves

poor results as shown in many examples in former chapters. Thus, it is necessary to

find additional features or combinations to better identify AD. However, for n fea-

tures the number of combinations is given by
∑n

i=1
n!

i!(n−i)!
, thus requiring strategies

to avoid computational effort to uncover such combinations. Wrapper feature selec-

tion techniques are suitable for avoiding the comparison of all features combinations

while maximizing a chosen classifier’s accuracy. In case, the kNN that allows the

all-versus-all strategy to observe how the classes affect each other all at once. Also

78



the all-versus-all strategy contrasts to the binary adapted strategies that are widely

used in referenced AD researches along with ROC analysis [25]. Three techniques

of wrappers feature selection are compared to the global rank of features for each

sampling strategies using confusion matrices. Moreover, Gaussian noise (mean=0,

sd=1) was added to feature space in order to compare an irrelevant feature to the

features displayed in table 6.1, with label N standing for noise. Table 5.1 shows the

precision of sorted combinations by higher classification rate among the non-defining

features and by the number of features.

The dataset described in table 6.1 shows the numeric label of each

biomarkers. Excluding the defining features (3,5) the wrappers here were able to

identify sub-optimal combinations given the accuracy of combinations available. For

imbalanced dataset the combinations found are: 4,6 for hill climbing (position 2);

4,1,8 for backward elimination (position 28); 4,6,7,8 for forward selection (position

41). With random undersampling the combinations found are: 4,6 for hill climbing

(position 8); 1,4,6,8 for backward elimination (position 2); 4,1 for forward selection

(position 5). With oversampling (SMOTE) the combinations found are: 4,6,7,8,N

for hill climbing (position 38); 1,2,4,6,7,8,N for backward elimination (position 9);

4,7,6,8 for forward selection (position 21). All strategies of sampling and wrapper

feature selection found sub-optimal combinations relative to the rank position, for

the complete rank lists see on-line contents. One can notice that even with hill-

climbing which combine the forward and backward strategies it can be trapped in

local maximum and be affected by the cross-validatory components. For instance,

using oversampling with backward elimination was found position 9 and hill-climbing

position 38.

Clearly, from the selected features in training phase, the combination

that provides the higher classification rate in validation is the defining features

(3,5). See https://github.com/yurier /TEMA-R-CODES/tree/master/PLOTS2D

for all adni dataset features decisions regions (2D only).
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Table 5.1 Rank of combinations for the three imbalanced strategies. Note the highest

classification rate was bolded for each validation method.

position LOOCV (%) k 10-fold CV (%) k combination

imbalanced

2 60.37 ± 0.05 13 59.33 ± 0.35 6 4,6

1 58.35 1 58.37 ± 2.58 4 2,4,8

3 58.11 ± 0.13 2 56.81 ± 2.56 6 1,2,4,8

7 58.01 5 56.29 ± 4.29 3 2,4,6,8,N

10 58.80 3 58.02 ± 1.09 3 1,4,6,7,8,N

38 56.94 ± 0.05 5 56.74 ± 2.25 12 1 2 4 6 7 8 N

undersampled

5 70.15 24 66.78 ± 3.36 18 1,4

3 69.05 20 68.59 ± 3.40 10 4,6,8

2 69.40 12 69.15 ± 4.46 13 1,4,6,8

1 67.14 10 67.47 ± 4.37 23 1,4,6,8,N

7 67.08 24 66.57 ± 2.41 25 1,2,4,6,7,8

43 66.39 22 66.13 ± 2.98 24 1,4,2,6,7,8,N

oversampled

80 66.98 ± 0.47 23 69.20 ± 4.21 24 4,6

41 63.97 ± 0.11 23 65.08 ± 5.83 21 4,7,N

12 66.35 ± 0.05 19 67.15 ± 2.81 25 1,4,6,8

1 62.16 ± 0.05 25 63.80 ± 4.63 24 1,2,4,7,N

3 64.34 ± 0.53 25 65.69 ±6.02 20 1,2,4,6,8,N

9 62.91 ± 0.11 17 64.16± 7.89 24 1,2,4,6,7,8,N

The wrappers can be affected by the random nature of the cross-

validation process and results may vary when the random generator number for the

feature N and for the sampling are unfixed. These variation ranges between the very

first combinations to the middle-rank combinations. The list of 502 combinations for
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each technique to aid imbalance is available on-line, also the 120 combinations rank

for non-defining features and the 26 combinations rank for non-cognitive features.

Comparing the three techniques approaches (imbalanced, undersam-

pled and oversampled) is possible to claim that there is a significant improvement

over the sampling techniques and the dataset imbalance. With the rank of all train-

ing results for all combinations of eight features plus noise producing 502 different

combinations, one can ask the probability that a feature belonging to a given com-

bination have higher classification rate than other. This is done by measuring how

many times combinations that have feature A and not B are more accurate than

combinations that have B and not A divided by the number of comparisons between

A and B. Figure 5.2 depicts this evaluation for each balance method (imbalanced,

undersampling, oversampling) using only one significant digit by resolution reasons

and just for the non-cognitive features (26 features combinations). For instance, one

can be interested in the probability of combinations that contain the feature 2 and

not 8 to provide higher accuracy than combinations containing 8 and not 2, the left

matrix in figure 5.2 shown that is 38.7%. Since as argued by [25] the neuropsycho-

logical tests are more accurate and standardized measures to detect AD the figure

5.2 shows only non-cognitive features (1,2,7,8,N). Despite neuropsychological tests

being cost-effective biomarkers and its combinations provide a high accuracy, they

do not provide information on the biological mechanism of AD. The suggestion of

how they provide a higher accuracy, aside from similarity between defining features,

is due to the limited possibilities of outcomes that define the neuropsychological

scores, leading to overlaying patterns. Suggesting that biomarkers with fractional

values are less subject to become a cluster in comparison to neuropsychological tests.

Because of that filling in a less confined region in feature space. In the left matrix

of figure 5.2, the noise has a higher probability in average to increase the classifica-

tion rate than proteomic biomarker 7, however, it does not mean irrelevancy [30].

As argued by [30], a feature that is supposed to be irrelevant could contribute to

enhancing the classifier performance.
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Figure 5.2 From right to left, probability matrix of a feature to provide higher classification

rate than others for the imbalance, undersampled and oversampled, ranks respectively.

Label ”A” stands for column-wise and row-wise average.

In summary, wrappers techniques for feature selection have shown to be

efficient finding the sub-optimal combinations given by the rank for all imbalance aid

strategies for the proposed problem. However, adding more features to test limits

of greedy search success is not ensured. Including features is challenging because it

increases the number of patients who did not undergo to all examinations. This can

be seen in the complete dataset available in ADNI. Fortunately, kNN inspired data

missing techniques are available and would be useful to identify more accurate com-

binations that include interpretation benefits for AD mechanisms. However, to deal

with improvements to kNN that imply in non-convex optimizations remains to be

researched. This is, to include metric optimization is a matter of computational cost

since it will increase the parameter space to optimize and will require improvements

in computation performance. Even with the curse of dimensionality, the kNN with

sampling strategies surpass many algorithms as depicted in classifier comparison the

last chapter. However, the benefits of data balance would increment any classifier

accuracy. The performed all-versus-all strategy requires fewer classifiers to be built

than binary strategies, also one can visualize how the classes affect each other us-

ing confusion matrices. Comparisons using non-cognitive features reveal that FDG

contributes more to increase the classification rate. However, more non-cognitive

features are needed to observe if dominance for FDG holds, this is a challenge given

mentioned data issues for missing values and data imbalance.
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6 DATASETS

6.1 Introduction

AD [40] is pathophysiologically characterized by the gradual brain de-

position of amyloid plaques, neurofibrillary tangles, and eventual neuronal depletion

[40]. The AD spectrum can be composed by preclinical (CN), MCI and AD demen-

tia phases [40]. There are other categorizations which include more stratified phases

of AD and MCI classes. Preclinical AD individuals are those cognitively normal

with amyloid plaques and tangles, individuals with MCI have cognitive symptoms

without meeting clinical criteria for dementia, and AD dementia individuals present

severely compromised cognitive faculties [75]. In recent years, a plethora of biomark-

ers has been developed in order to track AD progression, such as biomarkers for beta

peptide 1-42 (Aβ1−42) and tau proteins that indicate the presence of hallmark patho-

logical features of AD, amyloid plaques and neurofibrillary tangles, respectively [40]

[25]. Due to its economic importance, many public and private databases focusing on

Alzheimer’s research were started in last two decades, few instances of featured stud-

ies are: Alzheimer Disease Neuroimaging Initiative (ADNI), Human Connectome

Project (HCP), Department of Defense ADNI (DOD-ADNI), Australian Imaging,

Biomarker & Lifestyle Flagship Study of Ageing (AIBL). The ADNI was launched

in 2003 as a public-private partnership, led by Principal Investigator Michael W.

Weiner, MD. The goal of ADNI has been to test whether serial MRI, PET, other

biological markers, and clinical and neuropsychological assessment can be combined

to measure the progression of MCI and early AD. For up-to-date information, see

www.adni-info.org. For review on papers published using ADNI database see [83].

From UCI repository, the dataset parkinson is composed of speech signals recordings

from healthy and parkinsonians patients [51].
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Due to the fast changing in the field and recent discoveries relating

Alzheimer’s disease and the biomarkers discussed here this text will not, at least in

detail, many aspects of biomarkers.

6.2 ADNI and UCI datasets

The data-wise comparison uses seven datasets from ADNI (Alzheimer

Disease Neuroimaging Initiative) database and one from the popular UCI (Univer-

sity California Irvine) machine learning repository. Further is described how the AD

dataset was obtained. The UCI dataset used is the parkison dataset in which at-

tributes information and class distribution are found in https://archive.ics.uci.edu/

ml/datasets/Parkinsons. This dataset contains missing value and has 195 patterns

distributed in 2 classes and 22 attributes. The major class has 147 patterns and

the minor one 48. Let’s define the nomenclature used though text for the dataset.

The adni dataset consist of two neuroimaging biomarkers (labels 1,2), four neu-

ropsychological tests (labels 3,4,5,6) and two proteomic biomarkers (labels 7,8) [77],

respectively: 2-[18F]fluoro-2-Deoxy-D-glucose (FDG) PET, florbetapir-fluorine-18

(18F-AV-45) PET, clinical dementia rating sum of boxes (CDRSB), Alzheimer’s

disease assessment scale-cognitive with 11 items (ADAS11), mini-mental state ex-

amination (MMSE), Ray auditory verbal learning test percent forgetting (RAVLT),

Aβ1−42 CSF, phosphorylated tau protein (p-tau181) CSF.

From adni dataset let’s define other three: the proteom dataset formed

by features Aβ1−42 and p-tau181, in the text, ABETA and PTAU; the neuropsy

dataset formed by features CDRSB, ADAS11, MMSE, RAVLT; the neuroimag

dataset formed by features 18-F-AV-45 and FDG. Indeed the original dataset avail-

able in ADNI site have 80 features and 11.149 patterns (from baseline and follow-

ups), there are incomplete patterns with 37.44% from features information being

NA’s values. Table 6.1 depicts dataset demographics.
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Table 6.1 Dataset adni demographics described by mean and standard deviation.

Feature CN MCI AD Label

Male 73 227 59 -

Female 79 187 41 -

Age 73.31 ± 6.35 71.39 ± 7.44 74.88 ± 8.19 -

Education 16.53 ± 2.50 16.18 ± 2.65 15.72 ± 2.55 -

FDG 1 6.59 ± 0.51 6.33 ± 0.65 5.28 ± 0.76 1

18-F-AV-45 2 1.10 ± 0.17 1.20 ± 0.22 1.39 ± 0.20 2

CDRSB 0 1.44 ± 0.86 4.70 ± 1.63 3

ADAS11 5.85 ± 3.13 9.25 ± 4.45 20.96 ± 7.13 4

MMSE 29.05 ± 1.18 28.07 ± 1.73 22.96 ± 1.98 5

RAVLT 35.22 ± 26.69 55.41 ± 31.37 89.17 ± 20.72 6

Aβ1−42 pg/mL 196.67 ± 49.96 174.79 ± 51.55 133.20 ± 35.84 7

p-tau181 pg/mL 33.52 ± 16.40 41.26 ± 24.30 58.06 ± 29.39 8

Dataset adni was processed to remove NA’s while conserving the max-

imum number of features. Other possibilities for dataset were available however

it includes genetic data which strongly correlates with AD diagnosis. Implying

in increased difficulty to analyze the discriminant power of other features. Next

dataset from ADNI database is the plasma dataset, it consists of one neuroimag-

ing biomarker, FDG; neuropsychological tests, CDRSB, ADAS11, ADAS13, MMSE,

RAVLT; and two blood-based biomarkers AB40 and AB42. It was separated in the

following datasets: the psyconvert dataset, formed by CDRSB, ADAS11, ADAS13,

MMSE, and RAVLT; the bloodabeta dataset, formed by Aβ1−40 and Aβ1−42 proteins

plasma sampled. Similarly, the original plasma dataset has 2.442 (1057 complete)

entries with 5.80% missing data. Table 6.2 describes dataset plasma demographics.

1Average of FDG-PET of angular, temporal, and posterior cingulated with pons as reference
region [80]

2Average of standardized 18-F-AV45 uptake value ratio (SUVR) of frontal, anterior cingulate,
precuneus, and parietal cortex relative to whole cerebellum as reference region [80]
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Table 6.2 Dataset plasma demographics described by mean and standard deviation.
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7 CONCLUSION

In chapter two was presented the difficulty of classifying the three class

AD problem compared to the binary approach. The binary approach is more fre-

quent in literature than multiclass since it prevents between-class interactions and

overlap which leads to classification measures deterioration. Also, the extreme case

for AD classification has been solved already and biomarkers to achieve perfect

accuracy in AD vs CN case are available. For instance, using graph theoretical

measures from fMRI allows 100% of accuracy [43] and using electroencephalogram

(EEG) allows 97.7% of accuracy [4]. Since the limit accuracy is reached for the

extreme case, candidates for other research direction can be for instance in cost-

effective or progress-related biomarkers able to explain AD underlying causes. For

the three class case, it has been a challenge with few approaches. For instance, using

one-against-all binary classification for AD, MCI and CN, in [1] was achieved the

accuracy of, 41.7% 66.7% and 77.8%, respectively using SVM classifier and high-

dimensional gray matter density map as biomarkers. In the Dubeys’ pioneer work

[20] is used sampling techniques for the MCI class divided into MCI converters and

non-converters and biomarkers from MRI and proteomic ADNI data. By focusing

in one-against-one binary classification study design Dubey et al. identify the k-

Medoids algorithm as the sampling technique which achieves best overall accuracy

in the binary study.

In the third chapter is presented the widely know distance-based clas-

sifier, kNN, and possibilities to improve it by means of distance functions and nor-

malization modifications. Mainly, the kNN uses all-versus-all classification strat-

egy which allows observing how the imbalance affect spreads through the classes.

With modifications on kNN, the fourth chapter presents distance-based sampling

techniques to solve AD classification in which is shown kNN can surpass popular

classifiers without balance aids. Also, was proposed two new sampling algorithms
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SMOTE-borderline-3 (S3) and NearMiss-4 (NM4). The last was able to reach lower

average class overlapping among all sampling techniques compared. Regarding the

average precision achieved in data-wise comparisons, NM4 is comparable to the

informed undersampling (second higher average in LOOCV) and S3 to the oversam-

pling methods (second higher average in LOOCV).

Data-wise comparisons show the inherent difficulty of three and seven

class AD classification problems, respectively for dataset based on adni and plasma.

The worse improvement was in the bloodabeta dataset which achieves a poor preci-

sion of 16.52 ± 0.14%. However, this is expected due to being a multiclass problem

with high class overlapping, high average class contrast as depicted in figure 3.21,

also Aβ1−40 and Aβ1−42 sampled from plasma has been shown to be a not suitable

biomarker [13]. However, it is not the end-line for cost-effective blood sampling,

using other 18 proteins sampled from blood as shown in [66] it is possible to achieve

near 90% accuracy to differentiate AD from CN subjects (extreme case). Remain-

ing datasets obtained from plasma did not achieve great improvement due to the

class overlapping and reduced class size for conversion classes. Conversely, the best

improvement compared to the imbalanced setup is observed in the neuropsy dataset

which precision is raised to 95.81%. However, this improvement is expected since

neuropsychological tests in this dataset are similar to the features used to define

the disease AD stages. Using non-defining dataset,neuroimag and proteom achieve

precision of 50.74 ± 0.74% and 58.01 ± 0.41% in LOOCV validation. Showing

these neuroimaing biomarkers (FDG and 18-F-AV-45) provide higher precision when

classifying AD three class problem than proteomic CSF biomarkers (Aβ1−42 and p-

tau181). The low precision for these datasets is due to being a multiclass problem

which often is approached only as a binary study design, not suitable for multiclass

problems, but allows better results [25].

Chapter five explores the argument of combined biomarkers would pro-

vide increased classification rate than biomarkers alone. Owing to this wrappers
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feature selection using kNN precision as usefulness criterion are used to compared

all features combinations of the adni dataset. We are able to show that wrappers can

find sub-optimal biomarkers combinations among 502 possibilities (for all features).

Furthermore, regarding non-defining and non-cognitive biomarkers we showed that

FDG is the classifier with higher probability to provide higher precision than re-

maining biomarkers. However, precision was limited to 70.15% (LOOCV) for FDG

and ADAS11 combination in AD three class problem.

7.1 Future work

Next directions to be followed from this thesis are the missing data

algorithms, since the ADNI dataset is about 30% missing values it can potentially

increase overall precision. Missing data solutions would be a parametric approach as

expectation maximization for data imputation, or a distance-based for instance kNN

data imputation which can use metric modification as done before. For instance,

as claimed by [62], the feature weighted grey kNN (FWGKNN) data imputation

excels other four missing data imputation strategies. The grey relational analysis

as distance function has been shown to be superior to Euclidean distance when

measuring similarity between two patterns, whereas the mutual information is used

as weight for data imputation.

Alternatively to the data preprocessing, there are feature extraction

approaches as connectivity mapping features, which shown to be highly competitive

to discriminate AD from CN, however, research remains to be done with more

classes. A promising strategy which allow discriminant biomarkers is the feature

extraction from metabolic connectivity mapping obtained from PET-based measures

and graph theory. Such approaches are planned to be implemented in near future.
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[68] Sáez, J. A., Luengo, J., Stefanowski, J., and Herrera, F. Smote–

ipf: Addressing the noisy and borderline examples problem in imbalanced

classification by a re-sampling method with filtering. Information Sciences

291 (2015), 184–203.

[69] Sarica, A., Di Fatta, G., Smith, G., Cannataro, M., Saddy,

J. D., et al. Advanced feature selection in multinominal dementia clas-

sification from structural mri data. In Proc MICCAI Workshop Challenge

97



on Computer-Aided Diagnosis of Dementia Based on Structural MRI Data

(2014), pp. 82–91.

[70] Scheubert, L., et al. Tissue-based alzheimer gene expression markers–

comparison of multiple machine learning approaches and investigation of

redundancy in small biomarker sets. BMC bioinformatics 13, 1 (2012), 1.

[71] Simard, P., LeCun, Y., and Denker, J. S. Efficient pattern recogni-

tion using a new transformation distance. Advances in neural information

processing systems (1993), 50–50.

[72] Sokolova, M., and Lapalme, G. A systematic analysis of performance

measures for classification tasks. Information Processing & Management

45, 4 (2009), 427–437.

[73] Sola, J., and Sevilla, J. Importance of input data normalization for

the application of neural networks to complex industrial problems. IEEE

Transactions on Nuclear Science 44, 3 (1997), 1464–1468.

[74] Song, Y., Huang, J., Zhou, D., Zha, H., and Giles, C. L. Iknn:

Informative k-nearest neighbor pattern classification. In European Con-

ference on Principles of Data Mining and Knowledge Discovery (2007),

Springer, pp. 248–264.

[75] Sperling, R. A., Aisen, P. S., Beckett, L. A., Bennett, D. A.,

Craft, S., Fagan, A. M., Iwatsubo, T., Jack, C. R., Kaye,

J., Montine, T. J., et al. Toward defining the preclinical stages

of alzheimer’s disease: Recommendations from the national institute

on aging-alzheimer’s association workgroups on diagnostic guidelines for

alzheimer’s disease. Alzheimer’s & dementia 7, 3 (2011), 280–292.

98



[76] Stoica, P., and Selen, Y. Model-order selection: a review of infor-

mation criterion rules. IEEE Signal Processing Magazine 21, 4 (2004),

36–47.

[77] Tapiola, T., Alafuzoff, I., Herukka, S.-K., Parkkinen, L., Har-

tikainen, P., Soininen, H., and Pirttilä, T. Cerebrospinal fluid
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