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ABSTRACT

This thesis’ original contribution is a novel algorithm which integrates a data-efficient

function approximator with reinforcement learning in continuous state spaces. The com-

plete research includes the development of a scalable online and incremental algorithm

capable of learning from a single pass through data. This algorithm, called Fast Incre-

mental Gaussian Mixture Network (FIGMN), was employed as a sample-efficient func-

tion approximator for the state space of continuous reinforcement learning tasks, which,

combined with linear Q-learning, results in competitive performance. Then, this same

function approximator was employed to model the joint state and Q-values space, all in

a single FIGMN, resulting in a concise and data-efficient algorithm, i.e., a reinforcement

learning algorithm that learns from very few interactions with the environment. A single

episode is enough to learn the investigated tasks in most trials. Results are analysed in

order to explain the properties of the obtained algorithm, and it is observed that the use

of the FIGMN function approximator brings some important advantages to reinforcement

learning in relation to conventional neural networks.

Keywords: Reinforcement Learning. Neural Networks. Gaussian Mixture Models.



Aprendizagem Por Reforço Contínua com Modelos de Mistura de Gaussianas

Incrementais

RESUMO

A contribução original desta tese é um novo algoritmo que integra um aproximador de

funções com alta eficiência amostral com aprendizagem por reforço em espaços de es-

tados contínuos. A pesquisa completa inclui o desenvolvimento de um algoritmo online

e incremental capaz de aprender por meio de uma única passada sobre os dados. Este

algoritmo, chamado de Fast Incremental Gaussian Mixture Network (FIGMN) foi em-

pregado como um aproximador de funções eficiente para o espaço de estados de tarefas

contínuas de aprendizagem por reforço, que, combinado com Q-learning linear, resulta

em performance competitiva. Então, este mesmo aproximador de funções foi empregado

para modelar o espaço conjunto de estados e valores Q, todos em uma única FIGMN,

resultando em um algoritmo conciso e com alta eficiência amostral, i.e., um algoritmo de

aprendizagem por reforço capaz de aprender por meio de pouquíssimas interações com o

ambiente. Um único episódio é suficiente para aprender as tarefas investigadas na maioria

dos experimentos. Os resultados são analisados a fim de explicar as propriedades do algo-

ritmo obtido, e é observado que o uso da FIGMN como aproximador de funções oferece

algumas importantes vantagens para aprendizagem por reforço em relação a redes neurais

convencionais.

Palavras-chave: Aprendizagem por Reforço, Redes Neurais, Modelos de Mistura de

Gaussianas.
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1 INTRODUCTION

Reinforcement learning has become mainstream in the last few years, mainly due

to the efforts of the Google Deep Mind team. They have managed both to achieve human-

level gameplay on Atari games [Mnih et al. 2015] and to defeat the go world champion

[Silver et al. 2016], and reinforcement learning is at the heart of both achievements,

through an algorithm called Deep Q-Learning Network (DQN). That’s not just a matter

of preference or hype, but an acknowledgment of the virtues of reinforcement learning

for producing intelligent agents with high-quality autonomous behaviors with minimal

human supervision. It is an excellent paradigm for allowing learning from sparse rewards

without explicit goals or continuous human supervision, just like living beings. This

makes reinforcement learning an obvious candidate for advancing the fields of artificial

intelligence and autonomous robots.

Yet, albeit being the state-of-the-art on those tasks, the mentioned approaches suf-

fer from low data efficiency, which means that a high number of training episodes is

necessary for the agent to acquire the desired level of competence on diverse tasks. Deep

Mind’s algorithms require millions of agent-environment interactions due to very ineffi-

cient learning. This is not acceptable for some classes of tasks, such as robotics, where

failure and damage must be minimized. There are solutions for this problem, but most of

them deal with discrete environments instead of continuous environments, i.e., environ-

ments with an infinite number of states and possibly infinite actions too, like the physical

world, as will be shown in chapter 3. [Gu et al. 2016] presented a solution for augmenting

DQN with model-based learning, but the results are still far from ideal, possibly due to its

reliance on non-data-efficient function approximators like neural networks (they require

many epochs in order to approximate their target functions, at least with the most com-

monly used optimization procedures). This research proposes a new solution to this prob-

lem, by integrating a sample-efficient function approximator with reinforcement learning

techniques, reducing the number of required interactions with the real environment.

1.1 Motivation

Current approaches for solving reinforcement learning tasks in continuous do-

mains often employ neural networks as function approximators. This has proven to be an

effective approach for solving hard reinforcement learning tasks. However, slowly and
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iteratively approximating the Q-value function is often the case, which is not acceptable

for robotics and real-world tasks in general. A robot cannot afford to fall from stairs one

thousand times before learning to avoid them. More data-efficient algorithms are neces-

sary. In the ideal case, a single episode should be enough to learn a given task. While

other works focus on the reinforcement learning side itself for data efficiency, the function

approximation side is often neglected. Hence, this is the focus of this research: integrate

data-efficient function approximators with reinforcement learning in order to offer a com-

plementary solution to other acceleration methods.

1.2 Research Overview

The proposed solution to the mentioned issues in the previous section consists in

developing a reinforcement learning algorithm based on the Incremental Gaussian Mix-

ture Network (IGMN) [Heinen and Engel 2011]. The IGMN is capable of learning useful

models in a single-pass through data, which greatly reduces the amount of interaction

necessary for learning in a physical environment, where data is costly. It also provides

variance estimates for its predictions, which can be used to guide exploration of promis-

ing actions and to avoid excessive exploration of hopeless actions [Heinen, Bazzan and

Engel 2011]. Finally, it is able to infer any of its variables from any other set of variables.

It means that it could be used to predict expected rewards, select actions and predict

consequences of its actions (a forward model) all in a single model, if wanted. A model-

free (without a forward model) approach for combining the IGMN with reinforcement

learning was presented in [Heinen 2011], but it was not the focus of the research and

data efficiency was not analysed. The feasibility and properties of this idea are going to

be explored in this research. A less synergistic approach where the IGMN only models

the state-space density is going to be explored first, and then, using the same IGMN to

model the state space and to approximate a Q-value function will be the next step. Both

approaches are presented in chapter 5.

But the IGMN has its drawbacks too: it has cubic complexity on the number of

dimensions of data. If we want to provide a solution for real-world tasks (most of which

are high dimensional), it is not acceptable. Thus, before applying it to reinforcement

learning, reducing the time complexity of the IGMN algorithm is mandatory. The process

for achieving this goal and the resulting algorithm update will also be shown in chapter 5.

In order to explore these ideas, the following research questions were selected:
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• Can the complexity of the IGMN algorithm be reduced by avoiding matrix inver-

sions?

• In which forms can the IGMN algorithm be used as a function approximator for

reinforcement learning?

• How can it be used to approximate the state space only?

• How can it learn the joint distribution of states and Q-values in a single model?

• Does the resulting algorithm increase the data-efficiency of reinforcement learning?

1.3 Methodology

Regarding the need to answer the first research question, about reducing the IGMN

complexity, experiments were conducted in the Weka [Hall et al. 2009] platform using

the Java programming language. This platform allows for measuring and comparing the

running time of various algorithms in various datasets (which are distributed along with

Weka). If complexity is indeed reduced, reductions in runtime compared to the origi-

nal IGMN are expected, and these reductions should be more drastic as the number of

dimensions of the datasets increases (the complexity reduction is related to the number

of dimensions). Also, the resulting algorithm must give exactly the same results as the

original one.

In order to answer the remaining questions, testing and comparing reinforcement

learning algorithms is necessary. Three items are required for this:

• Proposed algorithms;

• Environments / tasks;

• Competing algorithms.

Besides taking a long time to implement and the risk of reinventing the wheel, the last two

items would remove focus from the important part of this work, which are the proposed

algorithms. The best solution found to solve this problem is to use the OpenAI Gym

[Brockman et al. 2016] as the primary platform for testing the proposed algorithms. This

recently released open-source platform provides dozens of ready-to-use reinforcement

learning environments as well as a leaderboard-like page comparing the performance of

algorithms from different users, including the most common algorithms like Q-learning.

The performance is measured by two factors: episodes to solve (data efficiency) and
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mean reward. Each environment has some accumulated reward to reach. More precisely,

the agent must obtain an average accumulated reward equal or higher than the goal for

100 consecutive episodes. Time to solve is defined as the first episode of the successful

100 episode window. Authors should publish, together with their algorithms, precise

instructions for reproductions. This greatly improves the scientific value of this approach.

Considering that the research questions refer to possibilities and capabilities, rather

than to performance, only sufficiently competitive results will be expected. If an algorithm

solves a task, it is considered that "it works". Anyway, each algorithm will be tested on

various environments to be sure of their generality. With that said, more demanding tasks

like the Atari games [Bellemare et al. 2013] will be avoided, due to hardware restric-

tions. All experiments are being executed on an Intel i7 laptop without access to GPU.

Using compute services or even the university cluster platform would not give large im-

provements, since the IGMN algorithm is not trivially parallelized due to its incremental

nature.

Since the OpenAI Gym platform currently only supports the Python language,

this was the language of choice for implementing the final experiments. An existing

open-source implementation 1 of the IGMN algorithm in this language was used at first.

This implementation was already used with success in previous works [Pereira, Engel and

Pinto 2012]. Later, it was converted into the more scalable FIGMN algorithm which is

part of the contributions of this research.

1.4 Contributions

This research contributes to the field of machine learning through the Fast IGMN

algorithm presented in chapter 5. It comprises an online EM procedure devoid of matrix

inversions and full determinant computations. It also presents formulations for Gaussian

mixture regression using the inverse covariance matrix directly. This is an important piece

for the remaining algorithms to be implemented.

Continuous-time reinforcement learning in continuous state spaces through the use

of an FIGMN function approximator is presented too as a novel contribution. Moreover,

the main contribution of this work consists in a algorithm combining the FIGMN with

Q-Learning for reinforcement learning with continuous states, learning in the joint state

and Q-values space. With this, a more data-efficient reinforcement learning algorithm

1https://github.com/renatopp/liac/blob/master/liac/models/igmn.py
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is expected as the final result, which should be more appropriate for robotics tasks and

also fills most of the requirements mentioned in chapter 4. The proposed architecture

will be tested on classic reinforcement learning problems provided by the OpenAI Gym

[Brockman et al. 2016] platform.

Finally, an extensive and up-to-date survey of the reinforcement learning field is

provided. The most cited survey on the field [Kaelbling, Littman and Moore 1996] dates

from 1996, while most recent ones deal with restricted types of reinforcement learning

only, like multi-agent systems, robotics or transfer learning.

1.5 Publications

The following papers which have me as the first author were published during my

Ph.D. research:

• One-Shot Learning in the Road-Sign Problem [Pinto, Engel and Heinen 2012]:

International Joint Conference on Neural Networks (IJCNN 2012), Qualis A2.

• A Fast Incremental Gaussian Mixture Model [Pinto and Engel 2015]: Plos One,

Qualis B2 (A1 until acceptance date).

Submitted:

• Scalable and Incremental Learning of Gaussian Mixture Models (2017): Annals of

Mathematics and Artificial Intelligence, Qualis B1.

Other published papers where I contributed as a co-author:

• Using a Gaussian Mixture Neural Network for Incremental Learning and Robotics

[Heinen, Engel and Pinto 2012]: International Joint Conference on Neural Net-

works (IJCNN 2012), Qualis A2.

• Autocorrelation and partial autocorrelation functions to improve neural networks

models on univariate time series forecasting [Flores, Engel and Pinto 2012]: Inter-

national Joint Conference on Neural Networks (IJCNN 2012), Qualis A2.

• Learning Abstract Behaviors with the Hierarchical Incremental Gaussian Mixture

Network [Pereira, Engel and Pinto 2012]: Brazilian Symposium on Neural Net-

works (SBRN 2012), Qualis B3.
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1.6 Work Structure

Chapters 2 to 4 present bibliographical research and related works in different

areas: Chapter 2 presents static learning algorithms, which serve as the basis for func-

tion approximation in reinforcement learning; Chapter 3 deals with general reinforce-

ment learning algorithms while chapter 4 deals with continuous reinforcement learning

algorithms. Finally, chapter 5 presents the contributions of this research, including exper-

imental results, and chapter 6 finishes this work with discussions and future works.
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2 BASE LEARNING ALGORITHMS

This chapter presents a review of supervised and unsupervised learning algo-

rithms. These algorithms will serve as function approximators for continuous state re-

inforcement learning algorithms to be presented in chapter 4.

2.1 Multi-Layer Perceptron

The multilayer perceptron (MLP) is a supervised feedforward artificial neural net-

work model that learns non-linear mappings from input vectors to output vectors (discrete

or continuous). It is composed of multiple layers of non-linear neurons (computational

units) which propagate signals until they reach the output layer. Each neuron computes

the scalar product between its inputs and its incoming weights and then applies some non-

linear transformation, usually a sigmoid function. Consecutive layers are fully connected

and the number of neurons in each of them (as well as the number of layers) must be

manually specified. This architecture can be seen in figure 2.1.

Once the signal reaches the output layer, the error of the computed values in rela-

tion to the given output example (the target values) is back-propagated in order to update

the network weights. This training procedure can be performed in various ways, but here

we will talk about the Stochastic Gradient Descent (SGD) procedure, since it can be used

for online learning, i.e. updating the model after each example data is presented to the

network. The specialized version of SGD for multilayer perceptrons is called Stochas-

tic Backpropagation [Werbos 1974]. Backpropagation tries to minimize a cost function,

usually the mean squared error, in relation to the network weights between the neurons.

Unlike single layer neural networks (e.g. perceptron, adaline), there is no guarantee of

Figure 2.1 – An example of multilayer perceptron architecture with 3 inputs, 2 hidden layers with
5 and 4 neurons respectively and 2 output neurons.



21

finding the global minimum, just local minima, since the error surface is not convex.

Also, this kind of training procedure requires many epochs for convergence, i.e. scanning

the entire dataset many times for reducing error at small steps.

It is also proven that multilayer perceptrons are universal function approximators

[Maxwell and White 1989], given the necessary number of neurons. Nevertheless, it

is not guaranteed that backpropagation can find those approximations even with enough

neurons.

In contrast to Radial Basis Function (RBF) networks, which use local activation

functions (a more complete description can be found in section 4.1.3), the MLP is a global

algorithm, meaning that all of its neurons contribute to its output at any region of input-

space. An undesirable consequence of this is catastrophic forgetting, when new informa-

tion overwrites old information in the network weights. Some techniques are necessary to

mitigate this problem when applying an MLP to reinforcement learning, such as the use

of experience replay (storing experiences for reuse) [Lin 1992].

2.1.1 Deep Neural Networks

Deep learning [Arel, Rose and Karnowski 2010, Schmidhuber 2015, Bengio and

Courville 2016] refers to algorithms capable of autonomously extracting features and cre-

ate deeper abstractions over them. More specifically, deep neural networks (see figure

2.2) are the deep learning version of multi-layer perceptrons, with diverse adjustments

for working with many layers, like unsupervised pre-training [Bengio et al. 2007], ReLU

activation functions [Glorot, Bordes and Bengio 2011], dropout regularization [Hinton et

al. 2012] and batch normalization [Ioffe and Szegedy 2015]. Deep neural networks are

achieving state-of-the-art performance on classification tasks for various datasets such as

MNIST [Wan et al. 2013], CIFAR-10 [Graham 2014], CIFAR-100 [Clevert, Unterthiner

and Hochreiter 2015], STL-10 [Zhao et al. 2015], SVHN [Lee, Gallagher and Tu 2016]

and ImageNet [Russakovsky et al. 2015]. However, large clusters of CPU’s and GPU’s

are needed in order to run these models in moderate time. Also, when dealing with re-

inforcement learning, proper modifications, such as experience replay, are necessary in

order to mitigate the inherent problems of the multilayer perceptron.
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Figure 2.2 – Example of Deep Neural Network with 3 hidden layers.

2.2 Self-Organizing Map (SOM)

Figure 2.3 – SOM in an advanced training state, with bidimensional inputs taken from a uni-
form distribution. Each node represents a data cluster, and the edges represent the neighborhood
relations between them.

The SOM is an unsupervised neural network, meaning it does not learn from input-

output example pairs, instead just learning the structure of the input space, in this case in

the form of data clusters. It consists of a single competitive layer (besides the input layer)

neural network, and this layer is spatially organized. It’s usually a 2D lattice (could be

1D, 3D or any dimension) and, therefore, the relative position of the neurons is impor-

tant, in contrast to more conventional neural networks (a 2D input space representation

in this architecture can be seen in figure 2.3). The weights from the input layer to the

competitive layer represent the learned input vectors’ prototypes and, therefore, have the

same dimensionality as the input space. The input vectors are presented one-by-one to

the algorithm, which finds the most similar prototype so far, based on a distance metric

(usually Euclidian or Manhattan distance). The best matching neuron is then selected as
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the winner neuron or best matching unit (BMU), according to the following equation:

b(t) = arg min
i∈VO
{‖x(t)− wi‖} , (2.1)

where x(t) is the input vector at time t, b(t) is the index (position) of the winner neuron

at time t in the output / competitive layer space VO, wi(t) is a prototype to be compared

to the input, also at time t. After finding the winner neuron, its corresponding weights

wb (its prototype vector elements) are adjusted, as well as the weights of its neighbors,

according to the following update rule:

wi(t+ 1) = wi(t) + γ(t)hib(t)(x(t)− wi(t)) , (2.2)

where γ is a learning rate between 0 and 1 and hib is a neighborhood function such as

hib(t) = exp

(
−‖Ii − Ib‖2

2σ(t)2

)
, (2.3)

where Ii and Ib are neurons i and b indexes (positions) on the competitive layer, and σ(t)

is the Gaussian standard deviation at time t. Note that γ and σ are time dependent, and

are usually implemented with some decay during the algorithm’s execution time.

2.3 Adaptive Resonance Theory (ART)

Adaptive Resonance Theory (ART) [Carpenter and Grossberg 1986] differs from

other works by its foundation on neuroscience and its dual characteristic: it is both a

cognitive theory and a set of biologically plausible computational models, the later being

the focus of interest here.

The first ART model (also called ART1) deals with boolean variables only. Its

innovative feature lies in the fact that new neurons are created when existing ones are

not enough to recognize (or to "resonate" with) incoming inputs. This mechanism is con-

trolled by a vigilance meta parameter. Although the complete model is complex, including

differential equations and continuous time, [Moore 1989] described it very simply by us-

ing the clustering paradigm: Whenever the input is well reconstructed, i.e., its similarity

to the best matching unit is larger than the vigilance parameter, the best matching unit

is updated to be closer to the input. However, if this condition is not met, a new neuron

is created to recognize the input perfectly (its weights are initialized equal to the input).
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Another interesting feature which is relevant to the present work is that it is suggested

that this vigilance parameter may be automatically modulated by reinforcement from the

environment [Carpenter and Grossberg 1987]. If an incorrect recognition is followed by

negative reinforcement, the vigilance parameter is increased as a form of greater attention

on some poorly understood part of the environment. This is in conformity with this re-

search’s goal of achieving synergy between algorithms. See figure 2.4 for a depiction of

the ART architecture.

Figure 2.4 – Example of ART architecture with 8 inputs and 6 neurons created on-demand during
execution.

The ART2 [Carpenter and Grossberg 1987] improves upon the ART1 model by

dealing with real-valued inputs, while ART2-A [CARPENTER, GROSSBERG and ROSEN

1991] improves its speed. FuzzyART [Carpenter, Grossberg and Rosen 1991] extends

ART with fuzzymin andmax operators, replacing the and and or operators, respectively.

It also introduces complement coding, a normalization procedure where the absence of

features is explicitly represented, keeping the norm of inputs constant. ARTMAP [Car-

penter, Grossberg and Reynolds 1991] employs 2 ART models, one for inputs and other

for outputs, allowing it to perform supervised learning. The output ART is also capable

of modulating the vigilance parameter of the input ART in order to minimize prediction

errors (see figure 2.5 for an example). Finally, a Fuzzy ARTMAP was proposed in [Car-

penter et al. 1992], which adds fuzzy operators to ARTMAP.
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Figure 2.5 – Example of ARTMAP architecture with 8 inputs and 6 neurons for each ART.

Figure 2.6 – GNG in an advanced training stage with two-dimensional inputs from a uniform
distribution.

2.4 Growing Neural Gas (GNG)

An improvement over the Neural Gas algorithm [Martinetz and Schulten 1991],

the Growing Neural Gas (GNG) is an unsupervised neural network similar to the SOM,

but capable of learning the topology and the number of necessary neurons for a given

task. Here is a description of the algorithm:

1. Start with 2 neurons a and b at random positions wa and wb from the input space

Rn.

2. Read an input vector v.

3. Find the neuron s1 nearest to the input vector v and the second nearest neuron, s2.
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4. Increment the age of all connections of s1.

5. Add the square distance between the input vector and the winning neuron s1 in the

input space to an error accumulator for this neuron:

∆error(s1) = ‖ws1 − v‖2 . (2.4)

6. Move s1 and its neighbors towards v by fractions εb and εn (learning rates), respec-

tively, of the total distance:

∆ws1 = εb(v− ws1) , (2.5)

∆wn = εn(v− wn) . (2.6)

7. If s1 and s2 are connected, reset this connection’s age to 0. Otherwise, connect both

neurons.

8. Remove connections older than amax. If this results in neurons without connections,

remove those neurons too.

9. If the number of input vector presented so far is a multiple of a λ parameter, insert

a new neuron the following way:

• Find the neuron q with the largest accumulated error.

• Insert a new neuron r midway between q and its neighbor f with the largest

accumulated error:

wr = 0.5(wq + wf ) . (2.7)

• Connect the new neuron r with neurons q and f, and remove the original con-

nection between q and f.

• Decrease the error accumulators of q and f by multiplying them by a constant

α. Initialize the error accumulator of r with the new error accumulator value

of q.

10. Decrease all error accumulators by multiplying them by a constant d.

11. If a stopping criterion (e.g., network size or performance measure) is still not met,

go to step 2.

An example of a GNG in advanced training state can be seen in figure 2.6.
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2.5 Incremental GNG (IGNG)

A variation of the GNG, called Incremental GNG (IGNG), is proposed in [Prudent

and Ennaji 2005], with an important difference: its growing mechanism does not depend

on time, but on instantaneous errors. The IGNG is more appropriate for lifelong tasks,

since it will not add neurons indefinitely. This new mechanism works in a form similar

to ART’s vigilance parameter. If the current input ξ is too distant (as defined by a meta

parameter σ) from its best matching unit, a new "embryo" neuron is created with its

center at ξ. If the current input is sufficiently close to its best matching unit but not from

the second nearest neuron, a new neuron is created the same way as before, but now a

connection between it and the BMU is also added. If the current input is sufficiently

close both its nearest and second nearest neurons, the BMU and its neighbors are updated

as vanilla GNG. Neurons have a "maturation time" defined by the meta parameter amax.

Only mature neurons can be removed when they have no edges. These improvements

are essential for tasks like the ones studied in this work, since robotics might deal with

unlimited data streams.

An improved version of the IGNG called Improved Incremental Growing Neural

Gas (I2GNG) is presented in [Hamza et al. 2008], with the additional property of setting

different distance thresholds for each neuron, according to the spread of its data. Another

approach for computing different thresholds for each neuron is presented in [Shen and

Hasegawa 2010] with the Self-Organizing Incremental Neural Network (SOINN), where

the threshold is defined by the neuron’s distance to its nearest neighbor. More recently,

the work presented in [Bouguelia, Belaïd and Belaïd 2013] shows a new algorithm called

Adaptive Incremental Neural Gas (AING), which is similar to IGNG and its variants,

with an additional goal: to be parameter-free. This feature is important when dealing

with data streams and lifelong tasks in general, since we have less information about the

data distribution in order to select adequate meta parameters. This goal is achieved by

using a distance threshold which is a combination of I2GNG and SOINN approaches,

while setting each neuron’s learning rate to 1
|xy | (the inverse of the number of data points

associated with neuron y). Finally, Jockusch and Ritter (1999) propose another approach

(which predates IGNG) for a GNG-like algorithm appropriate for data streams, the In-

stantaneous Topological Map (ITM). It works by constructing a Delaunay triangulation

of data incrementally (see figure 2.7). This criterion alone can deal with creation and

removal of neurons, leaving only one meta parameter for the ITM, which controls its den-
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sity. Neuron updating is optional and needs a learning rate when used. It was verified

in my current research that adopting an AING-like automatic learning rate improves the

quality of the resulting network, decreasing the number of necessary neurons.

Figure 2.7 – Example of a two-dimensional ITM with 66 clusters constructed from a single pass
through data.

2.6 Incremental Gaussian Mixture Network

The Incremental Gaussian Mixture Network (IGMN) [Heinen 2011] is a super-

vised algorithm that uses as its base an incremental approximation of the EM algo-

rithm [Dempster et al. 1977]. It creates and continually adjusts a probabilistic model

consistent with all sequentially presented data, after each data point presentation, and

without the need to store any past data points (this is how we define "incremental" in this

work). Its learning process is sample-efficient, meaning that only a single scan through the

data is necessary to obtain a consistent model. Together with the ART, AING, SOINN and

ITM, the IGMN is are able to learn from single data points and discard them thereafter, as

opposed to batch learning, which requires the entire dataset beforehand and requires full

retraining when new data points arrive.

But differently from these other sample-efficient algorithms, IGMN adopts a Gaus-

sian mixture model of distribution components that can be expanded to accommodate new

information from an input data point, or reduced if spurious components are identified

along the learning process. Each data point assimilated by the model contributes to the
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sequential update of the model parameters based on the maximization of the likelihood

of the data. The parameters are updated through the accumulation of relevant informa-

tion extracted from each data point. Since each component is a multivariate Gaussian, in

contrast to other methods which only store means, the IGMN is more expressive and has

higher generalization capabilities (each component is a linear regressor itself and is not

restricted to local approximations).

The IGMN is capable of supervised learning, simply by assigning any of its input

vector elements as outputs (any element can be used to predict any other element, like

auto-associative neural networks [Rumelhart and McClelland 1986]). This architecture is

depicted in figure 2.8. Next subsections describe the algorithm in more detail.

Figure 2.8 – An example of IGMN with 3 input nodes and 5 Gaussian components. Any input
element can be predicted by using any other element, which means that the input vector can
actually be divided into input and output elements.

2.6.1 Learning

The algorithm starts with a single component centered at the first data point, and

more components are created as necessary (see subsection 2.6.2). Given input x (a single

instantaneous data point), the IGMN algorithm processing step is as follows. First, the

squared Mahalanobis distance d2(x, j) for each component j is computed:

d2
M(x, j) = (x− µj)

TΣ−1
j (x− µj) , (2.8)

where µj is the jth component mean, Σj its full covariance matrix . If any d2(x, j) is

smaller than χ2
D,1−β (the 1−β percentile of a chi-squared distribution with D degrees-of-

freedom, whereD is the input dimensionality and β is a user defined meta-parameter, e.g.,

0.1), an update will occur, and posterior probabilities are calculated for each component
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as follows:

p(x|j) =
1

(2π)D/2
√
|Σj|

exp

(
−1

2
d2
M(x, j)

)
, (2.9)

p(j|x) =
p(x|j)p(j)

K∑
k=1

p(x|k)p(k)

∀j , (2.10)

whereK is the number of components. Now, parameters of the algorithm must be updated

according to the following equations:

vj(t) = vj(t− 1) + 1 , (2.11)

spj(t) = spj(t− 1) + p(j|x) , (2.12)

ej = x− µj(t− 1) , (2.13)

ωj =
p(j|x)

spj
, (2.14)

∆µj = ωjej , (2.15)

µj(t) = µj(t− 1) + ∆µj , (2.16)

e∗j = x− µj(t) , (2.17)

Σj(t) = (1− ωj)Σj(t− 1) + ωje∗je
∗T
j −∆µj∆µT

j , (2.18)

p(j) =
spj

M∑
q=1

spq

, (2.19)

where spj and vj are the accumulator and the age of component j, respectively, and p(j)

is its prior probability. The equations are derived using the Robbins-Monro stochastic

approximation [Robbins and Monro 1951] for maximizing the likelihood of the model.
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This derivation can be found in [Engel and Heinen 2011, Engel 2009].

2.6.2 Creating New Components

If instead of having any p̄(x|j) greater than a threshold τmax, we have all p̄(x|j)

below some threshold τmin (e.g., 0.001) (or there are no components) and a stability crite-

rion is satisfied, which means having all vj greater than some agemin (e.g., D + 1, where

D is the input space dimensionality; this only applies to data-flows which vary slowly in

time, such as most time-series and real-world signals, such as sonar data from a mobile

robot, otherwise, agemin = 0 would be better), then a new component j is created and

initialized as follows:

µj = x; spj = 1; vj = 1; p(j) =
1

K∑
i=1

spi

; Σj = σ2
iniI ,

where K already includes the new component and σini can be obtained by:

σini = δstd(x) , (2.20)

where δ is a manually chosen scaling factor (e.g., 0.01) and std is the standard deviation

of the dataset. Note that the IGMN is an online and incremental algorithm and therefore

it may be the case that we do not have the entire dataset to extract descriptive statistics.

In this case the standard deviation can be just an estimation (e.g., based on sensor limits

from a robotic platform), without impacting the algorithm.

In recent implementations, a feature called auto− τmin was added, which adjusts

the τmin parameter automatically. Its workings are straightforward: whenever a compo-

nent is created, store the largest p̄(x|j) obtained in that time step (which should be smaller

than τmin, according to the component creation rule). If this new component is removed

later, set taumin to its stored p̄(x|j) value. The rationale is that if some component is

created according to some p̄(x|j) and later this component is removed, then taumin is be-

ing too tolerant and should be reduced to avoid creating another component in the same

situation again.
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2.6.3 Removing Spurious Components

Optionally, a component j is removed whenever vj > vmin and spj < spmin,

where vmin and spmin are manually chosen (e.g., 5.0 and 3.0, respectively). In that case,

also, p(k) must be adjusted for all k ∈ K, k 6= j, using (2.19). In other words, each

component is given some time vmin to show its importance to the model in the form of an

accumulation of its posterior probabilities spj . Those components are entirely removed

from the model instead of merged with other components, because we assume they rep-

resent outliers. Since the removed components have small accumulated activations, it

also implies that their removal has almost no negative impact on the model quality, often

producing positive impact on generalization performance due to model simplification (a

more throughout analysis of parameter sensibility for the IGMN algorithm can be found

in [Heinen 2011]).

2.6.4 Inference

Figure 2.9 – An example of IGMN with 3 input nodes and 5 Gaussian components. Two of
the input elements were selected for estimating the third one. The different color intensities inside
each Gaussian component represent their different posterior probabilities after seeing data xi (only
the given elements), and are used to weight the contributions of each component to the final result.

In the IGMN, any element can be predicted by any other element. In other words,

inputs and targets are presented together as inputs during training. Thus, inference is done

by reconstructing data from the target elements (xt, a slice of the entire input vector x) by

estimating the posterior probabilities using only the given elements (xi, also a slice of the
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entire input vector x), as follows:

p(j|xi) =
p(xi|j)p(j)

M∑
q=1

p(xi|q)p(q)
∀j . (2.21)

It is similar to (2.10), except that it uses a modified input vector xi with the target elements

xt removed from calculations. After that, xt can be reconstructed using the conditional

mean equation:

x̂t =
M∑
j=1

p(j|xi)(µj,t + Σj,tiΣ
−1
j,i (xi − µj,i)) , (2.22)

where Σj,ti is the sub-matrix of the jth component covariance matrix associating the

unknown and known parts of the data, Σj,i is the sub-matrix corresponding to the known

part only and µj,i is the jth’s component mean without the element corresponding to the

target element. This division can be seen below:

Σj =

 Σj,i Σj,it

Σj,ti Σj,t

 .

The inference procedure is depicted in figure 2.9.

It is also possible to estimate the conditional covariance matrix for a given in-

put, which allows us to obtain error margins for the inference procedure. It is computed

according to the following equation:

Σ̂(t) = Σj,t −Σj,tiΣ
−1
j,iΣj,it . (2.23)

2.7 Conclusion

This chapter reviewed six incremental supervised learning algorithms and their

variants, namely: multi-layer perceptron, self-organizing map, adaptive resonance theory,

growing neural gas, incremental neural gas and incremental Gaussian mixture network.

Among those, adaptive resonance theory, incremental neural gas and incremental Gaus-

sian mixture network are the most appropriate for the proposed work, since they can grow

and shrink as necessary, rendering the resulting agent more adaptive to different environ-

ments with less meta parameter tuning.
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3 REINFORCEMENT LEARNING

The reinforcement learning task consists of learning optimal behaviors (called

policies, or a function that maps states and actions into a probability distribution) in certain

environments from sparse information regarding the quality of the demonstrated behav-

iors, in an interactive way, i.e., there is no constant information about chosen decisions in

the form of right or wrong examples (like in supervised learning), just sporadic rewards

which give a performance indication until then, and everything is learned by means of

interaction with the environment. This is also known as a credit assignment problem,

since it is necessary to discover which actions along the time contributed to the obtained

reward.

In reinforcement learning problems, the environment is represented by a Markov

decision process (MDP), which is defined as a 5-tuple (S,A, P·(·, ·), R·(·, ·), γ), where

• S is a finite set of states;

• A is a finite set of actions (alternatively, As is the finite set of actions available from

state s);

• Pa(s, s′) = Pr(st+1 = s′ | st = s, at = a) is the probability that action a in state s

at time t will lead to state s′ at time t+ 1;

• Ra(s, s
′) is the immediate reward received after transition to state s′ from state s by

taking action a;

• γ ∈ [0, 1] is the discount factor, which represents the difference in importance

between future rewards and present rewards.

Finding the optimal policy π for an MDP means finding a function π : S → A or π : S ×

A→ [0, 1] which produces the maximum possible accumulated reward during interaction

with the environment. However, it is often easier to learn a value function instead of

learning a policy directly, and then using this value function for selecting the best action

at each state, thus indirectly providing a policy. In this kind of algorithm, called value

iteration, the optimal value function can then be found by solving the Bellman optimality

equation:

V ∗(s) := max
a

∑
s′

Pa(s, s
′) (Ra(s, s

′) + γV ∗(s′)) . (3.1)

There are various algorithms for solving this problem, among them TD-Learning

[Sutton 1984], Sarsa [Sutton and Barto 1998] and Q-Learning [Watkins and Dayan 1992]

are the most popular. Instead of computing Pa(s, s
′) directly, all of these algorithms
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sample the environment by interacting with it and V is incrementally updated. Also, all

of these algorithms deal with discrete states and actions, meaning that the value function

can be learned in tabular form.

3.1 TD-Learning

Temporal difference learning (TD-Learning) works by updating a value function

after each interaction with the environment. Let rt be the reward on time step t and V̄t

be the correct prediction that is equal to the discounted sum of all future reward. The

discounting is done by powers of a factor of γ resulting in less important rewards at

distant time steps. Starting from this definition:

V̄t =
∞∑
i=0

γirt+i , (3.2)

where 0 ≤ γ < 1. It can be rewritten as

V̄t = rt + γV̄t+1 . (3.3)

Thus, the TD-error (the difference between V̄t above and current estimate Vt) is defined

as

δt = rt + γV̄t+1 − Vt . (3.4)

But since we do not know the correct value function V̄ , it can be approximated by our

current estimating, resulting in

δt = rt + γVt+1 − Vt , (3.5)

and the value function update becomes

Vt+1(s) = Vt(s) + αδt , (3.6)

where α is a learning rate. Note that the value function is updated based on its current es-

timate, which is called bootstrapping. Also, note that TD-learning is just a value updating

algorithm which does not provide a way for controlling an agent.

The above algorithm updates a single V (s) each step, resulting in very slow con-
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vergence. An extension to TD-learning, TD(λ) aims to reduce this problem by updating

the value of various states per step. This is done by means of an eligibility trace. Each

eligibility trace starts at 0 and is updated by

et(s) = λγet−1(s) (3.7)

at each step, for 0 ≤ λ ≤ 1 (note that the original algorithm is then called TD(0), since it

is equivalent to set λ to 0). An eligibility trace e(s) is set to 1 each time state s is visited.

Then, the new value update formula becomes

Vt+1(s) = Vt(s) + αδtet(s),∀s ∈ S . (3.8)

In [Seijen and Sutton 2014], an improved TD(λ) update procedure was presented

for continuous spaces. It notes that the conventional TDλ) algorithm assumes that the

value estimates are constant during an episode, and thus is not exact.

3.2 SARSA

As noted in the previous section, TD-learning is not a control algorithm, i.e., it

does not provide a way for selecting actions. SARSA, on the other hand, is a complete

control algorithm for reinforcement learning. Instead of updating a value function V (s),

it updates a state-action Q(s, a) function. It means that, for any state s, we can search for

the maximum Q(s, a) value by checking each action a, resulting in a greedy policy. In

SARSA, the value update formula becomes

Q(s, a) = Q(s, a) + α[r +Q(s′, a′)−Q(s, a)] , (3.9)

where a′ is the action chosen at the resulting state s′. It means that SARSA is an on-policy

algorithm: values are updated based on the actual policy being executed. The SARSA(λ)

algorithm extends SARSA in the same way that TD(λ) extends TD-learning, by including

eligibility traces.
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3.2.1 Exploration-Exploitation Dilemma

SARSA has guaranteed convergence as long as all states are visited an infinite

number of times. In order to make it possible, a greedy policy is not adequate. What

may seem an optimal policy may be due to the fact that other more promising states were

not explored and better solutions were not found. Thus, exploitation (acting greedily)

must be balanced with exploration (choosing non-optimal actions). This is known as

the exploration-exploitation dilemma. A practical solution for this is using a ε-greedy

policy, that is, choosing a random action with probability ε and acting greedily the rest

of the time. In the case of the SARSA algorithm, it means that the learned Q-values will

incorporate expectations from a random policy, which may result in slow convergence.

Also, it is necessary to anneal ε to 0 in order to converge to the optimal policy. Because

of this, we say that SARSA is an on-policy algorithm (it updates its value estimates based

on the executed policy).

3.3 Q-Learning

An off-policy alternative to the SARSA algorithm is Q-learning. It means that Q-

learning is able to execute some ε-greedy policy π′ while it updates its value estimates

based on greedy policyπ. The resulting updating formula is as follows:

Q(s, a) = Q(s, a) + α[r + max
a
Q(s′, a)−Q(s, a)] . (3.10)

Note that we do not need to know the selected action in the resulting state anymore.

Instead, we use the Q-value related to the greedy policy, i.e., the action that results in the

maximum Q-value for state s′. It means that even while exploring, Q-learning will be

updating its Q-values according to a greedy policy.

Q-learning can also be extended to include eligibility traces, but there is more

than one way of doing this. In [Watkins 1989], eligibility traces are reset each time an

exploration action is taken. This gives Watkins’ version little advantage over conventional

one-step Q-learning. [Peng and Williams 1996] fixes this problem by creating a hybrid of

SARSA(λ) and Watkins’ Q(λ). The resulting algorithm is partially on-policy and partially

off-policy, but converges to the off-policy solution when the exploration rate ε is annealed

to 0 during learning.
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3.4 Dyna-Q

In contrast to model-free techniques introduced in previous sections, now we turn

to model-based approaches. It means that a model of the environment, i.e., the Pa(s, s′)

and Ra(s, s
′) functions, will be constructed along with learning the value function. This

brings advantages from the data-efficiency point-of-view, since values could be updated

without actual interaction with the environment [Atkeson and Santamaria 1997, Kuvayev

and Sutton 1997].

The Dyna-Q algorithm presented in [Sutton 1990] works by interleaving actual

environment interactions with n steps of simulations starting from random states based on

a learned model. It is shown that the number of episodes necessary for solving problems is

greatly reduced as n is increased. In [Hester, Quinlan and Stone 2012], a real-time version

of Dyna-Q, RT-Dyna-Q, is presented, where a separate process runs as many simulations

as possible in parallel.

In [Moore and Atkeson 1993], a more focused version of Dyna-Q, called pri-

oritized sweeping (PS), is introduced. The new approach employs a priority queue of

state-action pairs which is updated at each time step. The priority of each state-action

pair is related to the change in Q-value of its successors, since recently updated pairs im-

ply that their predecessors should be updated too. PS is shown to improve yet more on

the data-efficiency provided by Dyna-Q.

3.5 R-Max

The R-max algorithm [Brafman and Tennenholtz 2003] improves upon previous

model-based approaches by giving optimistic predictions for transitions and rewards at

less visited states. It means that the world model includes information about what is con-

sidered a known or unknown region of state-action space, by means of a counter. Using

this information, it is possible to initialize the value of the Ra(s, s
′) function for unknown

experiences (experiences with less than m visits) optimistically with the maximum pos-

sible reward, thus the name R-max. This initialization strategy guides the agent to less

explored regions only while necessary, turning to a greedy policy as soon as possible.

Another difference from R-max to Dyna-Q is that R-max performs complete value itera-

tion steps at each timestep using the model, while Dyna-Q performs just n random update

steps. This makes R-max much more data efficient than Dyna-Q in practice.
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R-max is proven to be Probably Approximately Correct for Markov Decision Pro-

cesses (PAC-MDP). According to Kakade et al. (2003), an algorithm is PAC-MDP if it

is guaranteed to act near optimally with high probability on all but a polynomial number

of samples (over the number of states and actions). An improvement over R-max, V-

max [Rao and Whiteson 2012] has the same theoretical PAC-MDP bounds, but is shown

empirically to converge faster. It is due to the fact that R-max acts randomly during the

first m visits to state-action pairs, even if there is already useful information for better

decisions. V-max solves this by interpolating between the initial optimistic estimates and

the updated estimates as the number of visits approaches m.

In [Grande, Walsh and How 2014], Gaussian processes (GP) [Rasmussen 2006]

are combined with R-max, resulting in a sample-efficient reinforcement learning algo-

rithm for continuous spaces. It also presents a model-free algorithm using GPs, and it

is worth to note that they reach the same conclusions that Agostini and Celaya (2010)

find for Gaussian mixture models: due to the non-stationarity of the Q value estimates it

is necessary to periodically reset the algorithm learning rates, which in the case of GPs

is related to the variance parameter. Also, in order to make this model-free algorithm

sample-efficient (in the PAC-MDP sense), it was necessary to use ideas from Delayed

Q-Learning [Strehl et al. 2006]. Finally, it is also important to note that the naïve imple-

mentation of GPs (storing all data samples) has cubic complexity on the number of data

samples.

3.6 Delayed Q-Learning

In general, sample-efficient reinforcement learning algorithms are also model-

based algorithms, like R-max. An exception to this is the Delayed Q-Learning (DQL)

algorithm [Strehl et al. 2006]. The idea behind this algorithm is to perform mini batch

updates to Q values. All values Q(s, a) are optimistically initialized and are updated

only after m "update attempts" (situations where it may be possible to update Q(s, a)),

and only if the new estimate is significantly smaller than the previous value. Then, the

updated Q(s, a) value is put into a "dormant" state and will not be allowed to receive

updates until another Q(s′, a′) value is updated (when one Q value is updated, changes

may be necessary to other Q values). Note that exploration is done implicitly at the initial

m steps for each Q(s, a), as they contain optimistic values. This relatively simple mod-

ification to Q-Learning is enough to make it PAC-MDP. In fact, its sample-efficiency is
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optimal in relation to the number of states [Strehl, Li and Littman 2009]. This algorithm

is also the inspiration to the widely used Double Q-Learning algorithm [Hasselt 2010] ,

very popular among the deep learning approaches.

3.7 RTMBA

Real-Time Model-Based Architecture (RTMBA) [Hester, Quinlan and Stone 2012]

aims to make model-based reinforcement learning practical for real-time applications like

robotics. This is achieved by separating the algorithm in three threads: one that inter-

acts with the environment and produces actions as soon as requested; another one that

learns the model; and one for planning, which updates the Q values. This architecture not

only allows for real-time execution in robots but also easily enables multicore process-

ing. Besides those differences to previously presented model-based algorithms, RTMBA

also differs on the planning step: instead of performing full value iteration as R-max or n

random updates like Dyna-Q, RTMBA performs Monte Carlo Tree Search (MCTS) [Koc-

sis and Szepesvári 2006] to plan approximately starting from the current state, obtaining

a more lightweight and focused solution. RTMBA was shown to be able to control an

autonomous car in real-time and to learn its task very fast.

3.8 Conclusion

This chapter introduced basic concepts of reinforcement learning such as the Bell-

man optimality equation, bootstrapping, the exploration-exploitation dilemma, the dif-

ference between on-policy and off-policy algorithms, and also introduced some classic

model-free tabular (for discrete state-action spaces) learning algorithms. Being model-

free means that those algorithms do not depend on given nor learned models of the en-

vironment. This will serve as a base for the next chapters where continuous state-action

spaces will be explored.

Model-based reinforcement learning algorithms provide an excellent approach for

increasing data efficiency. By learning a model of the environment, the value function can

be learned with minimal interaction. Dyna-Q performs updates by randomly sampling the

model for a fixed number of times per interaction. Prioritized Sweeping improves Dyna-

Q by focusing updates on regions where improvement is expected. But none of them
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present theoretical PAC-MDP guarantees as does the R-max algorithm. By updating the

value function through full value iteration and exploring less visited states through opti-

mism in the face of uncertainty, it provides, with high probability, a polynomial bound on

the number of performed non-optimal actions. V-max accelerates the process by turning

the binary condition of known/unknown states into a real-valued one and interpolating

between both behaviors. But still, value iteration at every timestep implies heavy com-

putation from both algorithms. RTMBA mitigates this problem by executing planning,

model updates and environment interaction in three different threads, as well as focusing

the planning on more relevant states instead of doing full value iteration. However, it

has no PAC-MDP guarantees and works with discretization of continuous spaces, which

may cause aliasing effects (similar states end in different bins, preventing generalization,

while distant states end in the same bin, producing suboptimal policies). [Li, Littman and

Littman 2008] shows that substituting value iteration for prioritized sweeping can keep

the PAC-MDP bounds of R-max while being much faster. In [Grześ and Hoey 2011], this

idea is applied successfully, resulting in a very fast algorithm.
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4 CONTINUOUS REINFORCEMENT LEARNING

Previously presented reinforcement algorithms are very limited by the environ-

ments in which they can work efficiently, because they use a tabular representation to

store information, which is not suitable for large environments or even continuous ones.

Many extensions and new algorithms were already developed to address such problem,

and this chapter aims to review such extensions and algorithms.

According to Santamaría, Sutton and Ram (1997), Gaskett, Wettergreen and Zelin-

sky (1999), Smart (2002) and Gourdin and Sigaud (2009), the following properties are

desirable for a continuous space reinforcement learning algorithm:

• Resolution: Refers to the granularity of the function approximator and its capacity

to represent different values in small regions of the input space. Thus, the ability of

the function approximator to be able to accurately represent the Q-function depends

on the resolution.

• Storage: Refers to the memory resources used to implement the function approx-

imator. The more storage the function approximator needs, the less usable it be-

comes, owing to the cost associated with its maintenance. Additionally, in most

cases, the storage compromises with the resolution of the function approximator,

because the finer resolution, the larger the storage needs.

• Action Selection: Finds action with the highest expected value quickly.

• State Evaluation: Finds value of a state quickly as required for the Q-update equa-

tion. A state’s value is the value of highest valued action in that state.

• Q Evaluation: Stores or approximates the entire Q-function as required for the

Q-update equation.

• Model-Free: Requires no model of system dynamics to be known or learned.

• Flexible Policy: Allows representation of a broad range of policies to allow free-

dom in developing a novel controller.

• Continuity: Actions can vary smoothly with smooth changes in state.

• State Generalization: Generalizes between similar states, reducing the amount of

exploration required in state space.

• Action Generalization: Generalizes between similar actions, reducing the amount

of exploration required in action space.

• Incremental: We are interested in on-line learning, so the algorithm must be capa-



43

ble of learning one data point at a time. We should not have to wait until we have a

large batch of data points before training the algorithm.

• Sample-Efficient: The algorithm should be capable of producing reasonable pre-

dictions based on only a few training points. Since we are learning on-line, we want

to use the algorithm to make predictions early on, after only a few training points

have been supplied.

• Confidence Estimates: The predictions supplied by the algorithm are used to gen-

erate new training points for it. Any error in the original prediction quickly snow-

balls, causing the learned approximation to become worthless. In addition to pro-

viding a prediction for a query point, the algorithm should be able to indicate how

confident it is of this prediction. Predictions with low confidence should not be used

to create new training instances.

• Non-destructive: Since we will typically be following trajectories through state-

action space, the training point distribution will change over time. The algorithm

should not be subject to destructive interference or "forgetting" of old values, in

areas of the space not recently visited.

• Locality: If the system learns something around a particular state, we do not want

the modification to impair something learned elsewhere in the state space.

• Readability: The more interpretable the output of the learning process is, the easier

it is to debug and reuse the expressed knowledge.

And we add the following:

• Continuous Time: The learning algorithm must be able to deal with continuous

time domains or tasks with very small time steps which produce very small modifi-

cations to the state.

The algorithms described in this work will be analyzed according to those criteria.

This chapter is structured as follows: In section 4.1, methods for reinforcement

learning in continuous state spaces are presented. After that, in section 4.2, methods

for reinforcement learning with continuous actions are described. Then, in section 4.3,

methods for continuous time reinforcement learning are shown. Section 4.4 finishes this

work with concluding remarks.
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4.1 Continuous States

Working with discrete states is clear and easy, but it is limited to tasks with small

numbers of states. The problem, besides the memory needed for large tables, is the time

and data needed to fill in them accurately. Thus, the key issue is that of generalization.

So, what is needed is a way so that experience with a limited subset of the state space can

be usefully generalized to produce a good approximation over a much larger subset.

In many tasks to which we would like to apply reinforcement learning, most states

encountered have never been experienced exactly before. This is the case with continuous

variables or complex perceptions, such as a visual image. The only way to learn anything

on these tasks is to generalize from previously experienced states to ones that have never

been seen, so generalization is not only an improvement but also a necessity in many

cases.

Generalization from examples has already been extensively studied, and to a large

extent, we need only to combine reinforcement learning methods with existing general-

ization methods. The kind of generalization we require is often called function approx-

imation because it takes examples from the desired function (e.g., a value function) and

attempts to generalize from them to construct an approximation of the entire function.

Function approximation is an instance of supervised learning, the primary topic studied

in machine learning, artificial neural networks, pattern recognition, and statistical curve

fitting. In principle, any of the methods studied in these fields can be used in reinforce-

ment learning, and some of them will be described in the following sections. None of

them meet the Action Selection and Continuity criteria, which are left for section 4.2.

Neither they meet the continuous time criterion, which is left for section 4.3. Taking this

into consideration, they serve as building blocks for all continuous actions and continuous

time algorithms which also approximate the state-space.

4.1.1 Linear Function Approximation

One of the simplest forms of function approximation is linear function approxi-

mation. In this case, the underlying function (e.g., the value function V (s)) to be approx-

imated is supposed to be linear, i.e., the output is a linear combination of its features.

One class of learning methods for this kind of function approximation (and many

others) is gradient descent. In gradient descent methods, the parameter vector is a column
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vector with a fixed number of real-valued components θ, and Vt(s) is a smooth differen-

tiable function.

Gradient-descent methods minimize error on the observed examples by adjusting

the parameter vector after each example by a small amount in the direction that would

most reduce the error in that example:

θt+1 = θt + α[R + γV (st+1)− V (st)]∇θtV (st) , (4.1)

where α is a positive step-size parameter and γ is the discount factor. This kind of method

is called gradient descent because the overall step is proportional to the negative gradi-

ent of the example’s squared error. This is the direction in which the error falls most

rapidly. But this simple algorithm does not have convergence guarantees for continuous

reinforcement learning. Instead, the residual gradient is more appropriate:

θt+1 = θt + α[R + γV (st+1)− V (st)][∇θtV (st)− γ∇θtV (st+1)] . (4.2)

The convergence of the residual gradient algorithm for continuous reinforcement

learning was proved in [Baird et al. 1995]. Also, in [Sutton, Maei and Szepesvári 2009],

the Gradient Temporal Difference (GTD) algorithm is presented, which is a fully off-

policy and convergent version of Q-learning with linear function approximation.

Linear function approximation is usually employed in conjunction with some non-

linear mapping of the input space, as described in the next sections, and is also useful by

itself in many applications.

4.1.2 Tile Coding

Tile coding [Sutton 1996] is a form of coarse coding that is particularly well suited

for using on sequential digital computers and for efficient on-line learning. In tile coding,

the receptive fields of the features are grouped into exhaustive partitions of the input

space. Each such partition is called a tiling, and each element of the partition is called a

tile. Each tile is the receptive field for one binary feature.

Because tile coding uses exclusively binary (0-1-valued) features, the weighted

sum making up the approximate value function is almost trivial to compute. Rather than

performing multiplications and additions, one simply computes the indices of the present
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features and then adds up the corresponding components of the parameter vector. This

kind of structure can be seen in figure 4.1

Figure 4.1 – A tile coding structure with 2 4x3 tilings. The given point activates 1 cell in each
tiling.

In [Whiteson et al. 2007], adaptive tile coding was presented, an extension that

automates this design process for tile coding by beginning with a simple representation

with few tiles and refining it during learning by splitting existing tiles into smaller ones.

This approach has small storage and resolution efficiency.

Tile coding was successfully applied to a walking robot in [Schuitema et al. 2005]

and [Tedrake, Zhang and Seung 2005], while in [McGovern 1998] and [Frommberger

2007] it was used to learn behaviors for mobile robots with rich sensors. In [Bowling and

Veloso 2003], tile coding was applied to a multi-robot environment with success.

4.1.3 Radial Basis Function Neural Network

Radial basis functions (RBFs) are a generalization of coarse coding to continuous

values. Rather than each feature being either 0 or 1, it can be anything in the interval [0, 1].

A typical RBF feature has a Gaussian response dependent only on the distance between

the input state and the feature’s center, and relative to the feature’s width, as illustrated

in figure 4.2. So, instead of defining boundaries as in tile coding, using RBFs requires a

selection of centroids.

An RBF network is a linear function approximator using RBFs for its features.

Learning is exactly as in other linear function approximators. The primary advantage of

RBFs over binary features is that they produce approximate functions that vary smoothly

and are differentiable. In addition, some learning methods for RBF networks change the
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Figure 4.2 – An RBF gaussian receptive field. Activation increases as the point gets near to the
receptive field center.

centers and widths of the features as well. Such nonlinear methods may be able to fit the

target function much more precisely. The downside to RBF networks, and to nonlinear

RBF networks especially, is greater computational complexity and, often, more manual

tuning before learning is robust and efficient. RBF networks may have better resolution

than tile coding and smaller storage requirements.

In general, a useful feature of RBF networks (and also tile coding) is local learn-

ing, which allows for non-destructive learning, i.e., new information does not destroy

previously learned information. This is essential for reinforcement learning, as an agent

can not forget about less explored regions of the environment or regions not explored for

a long time. The algorithm employed in this research uses a kind of radial basis function

for this very reason.

In [Kretchmar and Anderson 1997], RBFs were compared with tile coding in a re-

inforcement learning task, achieving better performance with RBF features. RBF approx-

imators were applied with success to visual object recognition in [Paletta and Pinz 2000]

and [Boada, Barber and Salichs 2002]. It was also used in [Li and Duckett 2005], [Hurst

and Bull 2006] and [Jun et al. 2006] for mobile robot behavior learning.

4.1.4 Multi-Layer Perceptron

Multi-Layer Perceptrons and mostly any kind of similar neural networks do not

meet the non-destructive, readability, confidence estimates, aggressive and locality crite-

ria, while having good resolution, storage efficiency and state/action generalization.

In [Lin 1992], QCon (Connectionist Q-Learning) was proposed, in which one
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MLP is created for each possible action. Each network receives states as inputs and esti-

mates a Q value as output. Action selection consists in choosing the action corresponding

to the network with the highest Q value for the given state.

Probably one of the most notable achievements of function approximation by a

multi-layer perceptron in reinforcement learning (and in the whole reinforcement learning

field in general) was TD-Gammon [Tesauro 1994]. The agent was capable of achieving

master-level performance by simply playing against itself. In this case, a single network

was used, and the actions were fed together with the state into the input. In order to select

an action, it is necessary to feed the network once for each possible action and chose the

one with the highest estimated value at the output.

Reinforcement learning was also integrated into the deep learning framework by

means of the Deep Q-Learning Network (DQN) algorithm [Mnih et al. 2015]. A deep

neural network was responsible for approximating the Q-value function for each action.

With this approach, it was possible to achieve human-level performance on various high-

dimensional tasks, namely the Atari games available in the Arcade Learning Environment

[Bellemare et al. 2013]. DQN learned directly from screen frames from the games.

In [Silver et al. 2016], a DQN (combined with other techniques) was able to defeat the

European Go champion with a 5-0 score, while in 2016 it managed to defeat the world

champion by 4-1. DQN was also extended to continuous actions in [Lillicrap et al. 2015]

and [He et al. 2015]. The DQN algorithm is not considered in the present work due to

its highly resource demanding nature, as well as for the multi-layer perceptron drawbacks

mentioned above.

4.1.5 Instantaneous Topological Map (ITM)

In [Braga and Araújo 2003], an Instantaneous Topological Map (ITM) was em-

ployed as a function approximator for the continuous state-space. Besides very fast learn-

ing of the state-space, the proposed algorithm, called topological reinforcement learning

agent (TRLA), propagates Q-values through neighboring nodes of the topological map,

which accelerates reinforcement learning as well. The influence zone algorithm proposed

in [Braga and Araújo 2006] is an improvement over TRLA, which reduces the number of

updated neighbors, restricting them to precedent states and only when the accumulated

TD-error is large. It was shown to be statistically similar to Dyna-Q with respect to con-

vergence speed and quality of results, but much better at recovering from non-stationary
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environment changes. Topological Q-learning (TQ-learning) [Hafez and Loo 2015] im-

proves upon previous algorithms by introducing guided exploration. This exploration is

controlled by both the value update at each node (somewhat reminiscent of prioritized

sweeping) and the quantization error of the map for each node, resulting in faster conver-

gence and higher quality policies.

A lesson to be taken from the ITM algorithms above is that more relevant updates

per interaction result in more data-efficient algorithms. Also, better (guided) exploration

policies are necessary in order to increase data efficiency.

4.1.6 Fourier Basis Functions

In [Konidaris 2008], the state space is approximated by a set of multivariate Fourier

basis, which are fed to a linear function approximator in order to estimate Q values

through the Sarsa algorithm. After some simplifications (dropping the sin terms), the

nth order Fourier basis for d variables are defined as:

φi(x) = cos(πci · x) , (4.3)

where ci = [c1, ..., cd], cj ∈ [0, ..., n], 1 ≤ j ≤ d. A full Fourier function approximation

done this way requires (n+ 1)d basis. If c is restricted to have only one variable different

from zero, only dn + 1 basis are necessary, but the approximation may be poor. Also

note that all basis functions are fixed, not learned. Examples of different bidimensional

Fourier basis can be seen in figure 4.3.

This technique was applied to three reinforcement learning tasks in [Konidaris

2008], including the mountain car task, which is included in the experiments in this thesis.

While it showed faster learning when compared to RBF approximators, it did not "solve"

the problem according to the criteria adopted in the current work and the Open AI Gym.

According to the criteria used here, the mountain car task is considered solved when the

agent reaches the top of the mountain in 110 or less steps, and keeps this performance

(on average) for 100 subsequent episodes. Also, it has only 200 steps per episode to find

the solution (see section 5.1.1 for a detailed description of the success criteria). Although

exact numbers are not given, it can be inferred from the graphs that the Fourier method

could reach the top of the mountain with something around 150 steps after 20 episodes,

and it does not seem to have any limit on the number of steps, as it reaches the top in more
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Figure 4.3 – Some examples of bidimensional Fourier basis functions.

than 1000 steps in the first episodes. It is not clear if it could keep improving until the 110

steps threshold.

4.2 Continuous Actions

The methods described until now were devised to cope with continuous states but

not with continuous actions. Even when dealing with discrete actions, they require that

every possible action is verified for its estimated value, so that the best one can be selected.

On the other hand, when dealing with a large number of actions or continuous actions,

this kind of approach would quickly become infeasible. It would be interesting to have

a method which can give the best action directly, without exhaustive enumeration. Some

methods of this kind are described in this section.

4.2.1 Sequential Monte Carlo

Bonarini (2008) proposed a Sequential Monte Carlo learning procedure (SMC-

learning). This procedure consists of keeping a set of possible actions for each state.

Action selection for a state is performed by stochastically choosing an action from its

action set, weighted by their values. At each state, after the action-value function is

updated, every action on its set is evaluated (using its action-value or Q value) and their

weights are updated. During learning, actions with small weights get removed and new
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actions are sampled by copying the best actions (for each set) and performing a smoothing

step to diversify the resulting actions. This process lends to a good resolution around the

most promising regions of action space, while keeping the number of sample actions

small. The drawback of this approach is that, while it solves the problem of continuous

action spaces, it works only for discrete state spaces, not meeting the state generalization

criterion.

4.2.2 Self-Organizing Map (SOM)

Most SOM-like, unsupervised learning neural networks and clustering algorithms

in general have good resolution, since they are adaptive around different space regions,

and have good storage efficiency too, since only prototypes are stored. They usually meet

the locality, non-destructive and readability criteria and can give confidence estimates

but, in general, they are not aggressive.

In [Smith 2002], a SOM is used to quantize a continuous input space into a dis-

crete representation. The SOM maps the input space in response to the real-valued state

information, and each unit is then interpreted as a discrete state of the environment occu-

pying its own column of the Q-table. A second SOM is used to represent the action space,

with each unit of this second map corresponding to a discrete action occupying its own

row in the Q-table. For each state-action pair, an estimate of expected return is maintained

using any action value estimation technique. This approach does not meet the continuity

and action selection criteria.

The work presented by Touzet (1997) encoded state-action-Q triplets as inputs for

a SOM, which learned them simultaneously. Action selection is done by using the SOM

as an associative neural network: given only the current state and the maximum Q value

as input, and omitting the action, a triplet containing the best action is returned. This kind

of approach still does not meet the continuity criterion, since the actions are piecewise

constant, but it provides fast action selection. Moreover, it is an interesting approach for

integrating the function approximator with reinforcement learning in a single algorithm,

and will be explored in the present research.
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4.2.3 Adaptive Resonance Theory

Based on the FusionART algorithm [Tan 2004], Tan (2007) proposes a similar

approach to Touzet’s, but employing an ART (Adaptive Resonance Theory [Carpenter

and Grossberg 1986]) network instead of the SOM, resulting in the TD-Falcon algorithm.

It has the advantage of creating new neurons as necessary, improving its resolution and

storage efficiency. In [Feng and Tan 2016], this algorithm was applied to the control of an

autonomous agent inside a first person shooter (FPS) game. Interestingly, the same model

is used both for imitation learning (learning to copy the behavior of a human player in a

supervised fashion) and reinforcement learning. For activating the behavior learned from

imitation, the current state is presented to the algorithm and the corresponding action is

produced. For action selection in reinforcement learning, the current state is presented

together with the maximum Q-value and the action corresponding to a greedy policy is

produced. This feature is expected from the present research too. This has the advantage

of providing a good initial policy very quickly before starting reinforcement learning,

which is aligned with the goal of data-efficiency.

4.2.4 Neural Fields

Gross, Stephan and Krabbes (1998) proposed a neural fields approach for con-

tinuous action reinforcement learning. The action space is represented by a topological

map of the same dimension as the action space. This topological map is a kind of recur-

rent neural network which evolves its neuron activity by means of differential equations.

Blobs of activation form on the map, corresponding to each candidate action, where the

height encodes each action’s value, as can be seen in figure 4.4.

Figure 4.4 – A topographic map generated by the neural fields approach with 3 activity blobs.

The equation governing the dynamics of the neural field is the following:

τ
d

dt
z(r, t) = −z(r, t)− h(t) + x(r, t) +

∫
R

w(r, r′)S(z(r′, t))d2r′ . (4.4)
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The change of activation of neuron at position r in the field is a function of its state

z(r, t), the global inhibition h(t), the input activity x(r, t), and spatially integrated ac-

tivity of the neurons in the neighborhood R weighted by the neighborhood function

w(r, r′) = woexp(−‖r−r
′‖2

2σ2 ) − H0, where S is a sigmoid activation function. The di-

mensionality of the field is defined by the dimensionality of the action space. Because of

the topological coding and selection principle, it is possible to code any real-valued action

in the neural field with just a small number of neurons per dimension. In the same way,

continuous actions can be easily selected from the center of gravity of the winner blob.

It is also possible to easily insert "action suggestions" in the neural field by activating

corresponding neurons at the beginning of the process. This is also used to implement the

exploration strategy, by activating random neurons as suggestions.

This approach does not meet the action selection criterion, due to its iterative

action selection nature.

For continuous states, neural gas clustering was used to quantize the state space.

This method was successfully applied to a real world robot docking task. The drawback

here is that action selection is not immediate, since it is necessary to iterate the dynamics

of the neural field.

4.2.5 Hedger

Hedger [Smart and Kaelbling 2000, Smart and Kaelbling 2002, Smart and Kael-

bling 2002,Smart 2002] is an instance-based learning algorithm, based on locally weighted

regression (LWR). This is a variation of standard linear regression techniques, in which

training points close to the query point have more influence over the fitted regression

surface than those further away. A new regression is performed for every query point,

which in this case is a state-action pair. This results in a globally nonlinear model while

retaining simple, locally linear models that can be estimated with well-understood tech-

niques. Training points in LWR are weighted according to a function of their distance

from the query point. This function is typically a kernel function, such as a Gaussian,

with a “width” parameter known as the bandwidth. Large bandwidths mean that points

further away have more influence, resulting in a globally smoother approximated func-

tion. Small bandwidths allow more high-frequency variations in the learned model. An

important detail of this algorithms is that not every stored point is used for state-action

evaluation or action selection: only some region around the winner point is considered
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when making regressions. This proved to be essential in the experiments.

The Hedger algorithm uses an iterative quadratic fit similar to Newton’s method

for action selection, making it quite inefficient in this matter. Another drawback is its

storage requirements, since every experienced state-action pair must be stored. Neverthe-

less, it is an easy algorithm to implement and gives good results in tasks with continuous

state and actions spaces, including robotics tasks.

Hedger does not meet the action selection criterion due to the iterative nature of its

action selection, while maintaining the advantages of the SOM-like algorithms mentioned

earlier.

4.2.6 ITPM

In [Millán, Posenato and Dedieu 2002], an Incremental Topology Preserving Map

(ITPM) was proposed. It consists in a variation of the Growing Neural Gas (GNG)

[Fritzke 1995] algorithm, but more suited for infinite-horizon learning. The algorithm

clusters the input space and each cluster contains a discrete set of possible actions. Se-

lecting an action is done by a weighted average of the actions inside the winning clus-

ter, weighted by their Q values. The action values are then updated according to their

contributions as follows: the discrete actions are ordered increasingly; i.e., in the case

of controlling the direction of movement of a mobile robot, these actions correspond to

steering commands from totally left to totally right. Assume that unit i is the nearest to

the situation x and that action al is its discrete action with the highest Q-value, Q(i, l).

Neighboring actions to the left and right of al are then weighted by the difference between

their Q-values and the highest one. This may not be the best action selection criterion,

since the average of two actions might not be a valid action itself. Figure 4.5 shows an

example of a learned ITPM model.

Figure 4.5 – Example of a learned ITPM model with 2 units mapping to different regions of a
robot trajectory.
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4.2.7 CACLA

In [Hasselt and Wiering 2007], a Continuous Actor-Critic Learning Automaton

(CACLA) is presented. The idea in this approach is to store the value function with a

function approximator (specifically in their work, a neural network is used, the critic net-

work), and use another function approximator to produce actions given states, in other

words, a policy approximator (the actor network). This constitutes an actor-critic archi-

tecture. The specificity here is how the actor network learns: whenever it produces an

action, Gaussian noise is applied to the action. If the perturbed action is better than the

originally proposed action (according to the critic network), learning occurs as following:

IFδt > 0 : θAci,t+1 = θAci,t + α(at − Act(st))
∂Act(st)

∂θAci,t
, (4.5)

where δt is the TD error (critic network error) at time step t, θAci are the actor parameters

(weights) for the ith action output, Act(st) is the proposed action for a given state in time

step t and at is the perturbed action. In other words, it only learns when the perturbed

action is better than the proposed one and ignores the exact TD error (only its signal

matters). This approach is very stable and has shown to work better than other continuous

action approaches at least in 2 continuous state and action tasks (target tracking and cart-

pole balancing). It shares all drawbacks of the Multilayer Perceptron (section 2.1), but

allows for fast action selection.

4.2.8 ADHDP

From a more control-theory centric view, Action-Dependent Heuristic Dynamic

Programming (ADHDP) [Prokhorov, Wunsch et al. 1997, Werbos 1977] was developed

as a generalization of Q-learning [Watkins and Dayan 1992]. While a critic network tries

to minimize the TD-error (Q value prediction error) having state and action as inputs, an

actor network tries to select the action that maximizes the Q value in the critic, given

the current state, forming an actor-critic architecture. In order to get a gradient of the Q

value with respect to the actor network’s weights, we simply backpropagate ∂Q/∂Q (i.e.,

the constant 1) through the network as an artificial error, meaning that we always want a

higher (+1) value. This gives us ∂Q/∂A and ∂Q/∂WA for all action inputs to the critic

network and all the actor’s weights WA, respectively. This architecture can be seen in
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figure 4.6. Its characteristics are similar to CACLA (section 4.2.7).

Figure 4.6 – The ADHDP architecture. The J is used in the control literature instead of the Q
value.

4.2.9 Wire-fitted Neural Network Q-Learning

Gaskett, Wettergreen and Zelinsky (1999) propose Wire-fitted Neural Network Q-

Learning, which is a continuous state, continuous action Q-learning method. It couples a

single feedforward artificial neural network with an interpolator ("wire-fitter"), as seen in

figure 4.7.

Figure 4.7 – Wirefitting with 3 wires before and after update according to selected action (red
dot). Each point contains the action itself and its Q value.

The output of the feedforward neural network is a point in the continuous action
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space, and the Q values are extracted by interpolation of the known values for previously

known actions.

4.2.10 Growing Neural Gas (GNG)

In [Montazeri, Moradi and Safabakhsh 2011], one growing neural gas (GNG) net-

work is used for approximating the state space while another one approximates the action

space, performing a kind of discretization of both spaces. This allows the algorithm to im-

plement tabular Q-learning between both networks, since each state neuron corresponds

to a row and each action corresponds to a column of the Q table. Action selection is

done like in tabular Q-learning, but since actions are discretized, it also applies a small

perturbation to selected action in order to explore the action space.

4.2.11 Gaussian Mixture Model Reinforcement Learning

In [Agostini and Celaya 2010], the authors use online EM in order to learn a single

Gaussian mixture model (GMM) of the joint state-action-Q-value space. The algorithm

is incremental, but it starts with some randomly placed Gaussian components instead of

an empty model like the IGMM. Its component creation rule is based on an inference

error threshold, as well as a Mahalanobis distance criterion. Continuous action selection

is done approximately by computing the Q-value of a few random actions and selecting

the one with the largest value. Matrix inverses are computed at each step, something that

we will show how to avoid in the next chapter. An important contribution here is the use

of Q-value estimation variance provided by the GMM to drive exploration, resulting in

something reminiscent of Q-value sampling in Bayesian Q-learning [Dearden, Friedman

and Russell 1998]. Another important insight is the need to forget old values, as Q-values

are non-stationary and learned through bootstrapping, meaning that old values are wrong.

Unfortunately, there is only one experiment, and since it involves continuous actions, it

will not be possible to compare it to our approach in chapter 5, as it is intended only for

discrete actions.
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4.2.12 IGMN

The IGMN algorithm meets almost all criteria described in section 1 due to its lo-

cal linear mixture nature, combining the advantages of the SOM-like approaches (section

2.2) and linear approximators (section 4.1.1). Since each cluster is itself a linear regressor,

action selection is not piecewise constant like with SOM.

In [Heinen, Bazzan and Engel 2011], the IGMN was applied to a traffic simula-

tor with continuous action selection similar to the one described in section 2.2, i.e., the

algorithm is fed with the current state and the maximum stored Q value and outputs the

greedy action. The difference here is that it outputs the action variance too, allowing for

exploration by Gaussian noise around the greedy action, with the interesting feature that

this variance is also adaptive, so the exploration rate becomes adaptive and relative to

each state region. Another advantage in relation to the use of a SOM is that IGMN can

linearly generalize inside each component, making the predictions smoother. However,

the above work did not employ a model of the environment nor experience replay for

reducing the number of interactions, and did not use appropriate formulas for continuous

time. The current research will include both mechanisms, but will be targeted at discrete

action environments instead of continuous actions.

4.2.13 Policy Search Methods

Policy search methods differ from the previous ones in that they do not learn value

functions. Instead, they try to directly learn the policy, avoiding intermediate steps. This

has the advantage of being able to work with discrete states, actions and time in the same

way as when dealing with their continuous counterparts. Also, policy search algorithms

usually have few meta parameters. On the other hand, its disadvantages are, in general,

low sample-efficiency, on-policy only, and local maxima, but there are specific policy

search methods which avoid or mitigate them.

One of the simplest policy search algorithms, which is also widely used, is the

Cross-Entropy Method (CEM) [Boer et al. 2005]. Supposing one wants to use the Gaus-

sian distribution, it works as follows:

• Initialize the policy parameter vector µ and its corresponding variance σ2 randomly

(usually a high value for the variance);
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• Generate N sample policies from N (µ,σ2);

• Compute the total reward for each policy;

• Select the top Ne policies (the "elite") and discard the rest;

• Update µ and σ2 according to the sample mean and sample variance of the selected

policies, respectively;

• Repeat until convergence.

As it becomes evident from the above algorithm, this is very close to Genetic

Algorithms [Whitley 1994] and Simulated Annealing [Hwang 1988]. In fact, these kinds

of optimization algorithms are very well suited for policy search as well.

Policy Improvement with Path Integrals (PI2) [Theodorou, Buchli and Schaal 2010]

can be seen as a close relative to CEM, as shown in [Stulp and Sigaud 2012]. The differ-

ences lie in how to define the elite and its respective weights. While CEM selects only

a small portion of the population as the elite and gives the same weight to each of them,

PI2 uses the entire population with weights proportional to the total reward of each policy.

Also, PI2 updates only the means, leaving the variances fixed. A hybrid between PI2 and

CMAES [Hansen and Ostermeier 2001] is proposed by Stulp and Sigaud (2012), combin-

ing the strengths of both algorithms. The general idea of these procedures is represented

in figure 4.8.

Figure 4.8 – Step-by-step representation of the CMAES algorithm. CEM and PI2 produce similar
behavior, except that PI2 does not change the size or shape of the Gaussian.

PILCO (Probabilistic Inference for Learning Control) [Deisenroth and Rasmussen
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2011,Deisenroth, Fox and Rasmussen 2015] is a model-based policy search reinforcement

learning algorithm. It employs probabilistic models through Gaussian Processes (GPs)

in order to reduce model bias and increase efficiency. Note that what is called "data-

efficiency" in the above works is actually interaction runtime, so it is not sample-efficient

in a PAC-MDP sense. Also, as it applies GPs to all acquired data in order to build the

model, it is not scalable on the number of samples (GPs have cubic complexity on the

number of samples; unless only diagonal covariance matrices are used, which reduces

the quality of the model). Another policy search algorithm that uses GPs is the the one

proposed in [Kuindersma, Grupen and Barto 2012], but this one applies it to learn the cost

function in policy parameter space. By using confidence bounds, it is capable of assessing

the risk of different policies.

While all the above algorithms rely only on the accumulated rewards themselves

for each evaluated policy (they are called derivative free), it is also possible to use gra-

dient information to improve policy search. Some algorithms in this category include

REINFORCE [Williams 1992], Natural Policy Gradient [Kakade 2001], Trust Region

Policy Optimization (TRPO) [Schulman et al. 2015] (the main idea here being to avoid

parameter updates that change the policy too much), Deep Deterministic Policy Gradient

(DDPG) [Lillicrap et al. 2015] and Q-Prop [Gu et al. 2016] (the last two combine an off-

policy critic with policy search). While using extra information in the form of gradients

has the potential to accelerate the policy search, increasing sample-efficiency [Nemirovski

2005], it also makes these algorithms more prone to get stuck into local maxima [Peters

and Bagnell 2011].

4.3 Continuous Time

Model-free tabular reinforcement learning, like Q-learning and Sarsa, needs com-

paratively very little computation per update, however, it is helpful to think about how the

required amount of updates scales with noise or with the length of a time step, ∆t. An im-

portant consideration is the relation between Q values for the same state, and between Q

values for the same action. The Q values Q(x, u1) and Q(x, u2) represent the long-term

reinforcement values received when beginning in state x and performing action u1 or u2

respectively, followed by optimal actions thereafter.

In a typical reinforcement learning task with continuous states and actions, it is

often the case that selecting one wrong action in a long sequence of optimal actions will
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have very little impact on the total reinforcement. In such case, Q(x, u1) and Q(x, u2)

will have comparatively close values. On the other hand, the values of widely separated

states will typically not be near each other. Therefore, Q(x1, u) andQ(x2, u) might differ

greatly for some choices of x1 and x2. Thus, if the function approximator representing the

Q function makes even small errors, the policy derived from it will have massive errors.

Because the time step length ∆t approaches zero, the penalty for one wrong action in a

sequence decreases, the Q values for different actions in a certain state become closer,

and the policy becomes even more sensitive to noise and function approximation error.

In the limit, for continuous time, the learned Q function does not have any information

concerning the policy. Therefore, Q-learning would be expected to learn slowly once

the time steps are of short duration, due to the sensitivity to errors, and it is incapable

of learning in continuous time. This problem is not a property of any specific function

approximation system; rather, it is inherent in the definition of Q values.

This section describes algorithms that work in continuous time or with very small

time steps, thus meeting the continuous time criterion.

4.3.1 Q-Learning for SMDPs

Semi-Markov decision problems (SMDPs) are continuous time generalizations

of discrete-time Markov Decision Problems, which conventional reinforcement learning

methods are built on. In [Duff 1995], extensions of well-known reinforcement algorithms

for continuous time are proposed, including Q-Learning for SMDPs. The new Q value

update equation then becomes

Qt+1(x, a) = Qt(st, at)+αt

[
1− e−βτ

β
r(x, y, a) + e−βτ max

a′
Qt(st+1, a

′)−Qt(st, at)

]
,

(4.6)

where τ is the transition time between Qt and Qt+1 and β is the discount factor. This

method is very general and can be applied to modify any previously presented method

based on discrete time Q-learning. This method was applied with success to a network

routing control problem by Duff, and is part of the algorithm currently implemented in

this research.
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4.3.2 Advantage Updating

In the Advantage updating algorithm presented by Baird (1994), two kinds of

data are kept. For every state x, the value V (x) is stored, which represents the total

discounted return expected once starting in state x and carrying out optimal actions. For

every state x and action u, the advantage, A(x, u), is kept, representing the amount to

which the expected total discounted reinforcement is increased by undertaking action u

(followed by optimal actions afterward) in regard to the action presently deemed best.

After convergence to optimality, the value function V ∗(x) corresponds to the real value

of each state. The advantage function A∗(x, u) will be zero if u is the optimal action

(as u confers no advantage in relation to itself) and A∗(x, u) is going to be negative for

any suboptimal u (since a suboptimal action has a negative advantage in relation to the

best action). For a given action u, Q∗(x, u) corresponds to the utility of that action, and

therefore the advantage A∗(x, u) corresponds to the utility of that action in relation to the

optimal action. The new update equations in advantage updating are as follows:

A(xt, ut) = (1−α)A(xt−1, ut−1)+α

(
Aref (xt) +

R∆t(xt, ut) + γ∆tV (xt+∆t)− V (xt)

∆t

)
,

(4.7)

V (xt) = (1− β)V (xt−1) + β (V (xt) + [Arefnew(xt)− Arefold(xt)]/α) , (4.8)

A(x, u) = (1− ω)A(x, u) + ω (A(x, u)− Aref (x)) , (4.9)

where α, β and ω are learning rates, A(x, u) is the advantage function of a state-action

pair, V (x) is the value function of a state and Aref (x) is the maximum advantage value

for state x.

In [Harmon and Baird 1996], an improvement over advantage updating was pro-

posed, called Advantage Learning. It is simpler in the sense that it is not necessary to

have 2 functions anymore, having only A(x, u), and the normalization step (equation 4.9)

is also removed.

Finally, Bakker (2002) proposed an extension of advantage learning with eligibil-

ity traces, called Advantage(λ) Learning.

Successful applications of Advantage Updating and its extensions in the real world

include [Wettergreen, Gaskett and Zelinsky 1999], where an underwater robot learned
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with visual sensors, [Gaskett, Fletcher and Zelinsky 2000], where the algorithm was ap-

plied to a visual servoing task, [Bucak and Zohdy 1999], applied to a bouncing cart,

and [Bartha 1994] where the controller for an obstacle avoiding mobile robot was learned.

4.3.3 Continuous Actor Critic

In [Doya 2000], a Continuous Actor Critic (CAC) architecture was proposed based

on the Hamilton-Jacobi-Bellman (HJB) equation for infinite horizon, discounted reward

problems, which is the continuous-time counterpart of Bellman equation. As an actor-

critic algorithm, it consists of 2 function approximators, one for the critic and one for

the actor. Extensions for eligibility traces, advantage updating and inclusion of a system

dynamics model are presented, turning this architecture into a very general framework for

continuous states, actions and time. Updating of the critic function approximator is done

by the following equation:

ẇi = ηδ(t)

[
−
(

1− ∆t

τ

)
∂V (x(t); w)

∂wi
+
∂V (x(t−∆t); w)

∂wi

]
, (4.10)

where δ is the TD error given by

δ(t) = r(t) +
1

∆t

[(
1− ∆t

τ

)
V (t)− V (t−∆t)

]
. (4.11)

Extending those equations to use eligibility traces is done according to

ẇi = ηδ(t)ei(t) , (4.12)

ei(t+ ∆t) =
κ−∆t

τ −∆t
γei(t) +

∂V (x(t); w)

∂wi
. (4.13)

Improving the policy is done by updating the actor according to

ẇAi = ηAδ(t)n(t)
∂A(x(t); wA)

∂wAi
, (4.14)

where (n) is noise added to the actor output.

This algorithm was successfully applied to a robot stand up control task in [Mo-

rimoto and Doya 1998], while Sheynikhovich et al. (2005) applied it to robot navigation.

However, this method incurs the usage of two separate function approximators, resulting
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in higher memory requirements and possibly information redundancy. It was also con-

ceived for use with gradient descent, which limits the choices of function approximators.

4.4 Conclusions

In this chapter, diverse approaches to reinforcement learning in continuous do-

mains (continuous states, continuous actions and continuous time) were described and

briefly analyzed. Reinforcement learning in continuous domains is essential for real world

applications, mainly in robotic tasks. By organizing information about those approaches,

we hope to facilitate future works that improve on current algorithms and extend their

capabilities.

Among the analyzed algorithms in this chapter, it is clear that large progress has

been made on continuous state and actions domains, while continuous time domains are

a less concerning issue for the research community (or the currently available approaches

are sufficient). Reinforcement learning in continuous states domains is mostly a solved

problem which depends only on the type of function approximators used, while contin-

uous actions domains have room for improvement and radically new approaches. The

IGMN algorithm conformed to most of the proposed criteria, missing just the continuous

time capabilities. It seems that combining it with some of the described continuous time

algorithms may give us a promising approach for a large variety of tasks.
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5 PROPOSED ALGORITHMS

From the algorithms presented in previous chapters, it can be seen that the combi-

nation of reinforcement learning with Gaussian mixture models is not usual. Mainstream

algorithms often resort to neural networks in order to apply reinforcement learning to

continuous spaces, as is the case with deep learning. Those algorithms solve important

issues when dealing with continuous spaces, such as the real-world, but they leave out the

other important aspect of this kind of environment: learning in the real-world is costly and

must be done fast. On the other hand, the IGMN algorithm shows excellent data-efficient,

learning difficult tasks with single scans through data [Pinto, Engel and Heinen 2012].

Having this in mind, I propose to unify both approaches, reinforcement learning

and the IGMN, in order to achieve data-efficient learning from delayed rewards. This is

where the IGMN comes in. Function approximation itself must be fast. It means that not

only the function approximator must be computationally fast, but also that it must learn

from few data points, i.e., it must be a sample-efficient approximator, ideally a single-pass

one.

In order to achieve this goal with these restrictions, I propose to explore the com-

bination of the IGMN algorithm with reinforcement learning. While the IGMN algorithm

has been applied to reinforcement learning before [Heinen, Bazzan and Engel 2011],

the employed approaches did not focus on speed nor were general. Here, I propose to

perform reinforcement learning experiments focused on data-efficiency and general ap-

plicability. However, there is still an issue with the IGMN algorithm which goes against

the proposed goals: its cubic complexity on the number of dimensions. This requires

a preceding step before working on the reinforcement learning algorithm: reducing the

complexity of IGMN. While computational complexity does not affect data-efficiency, it

can reduce the algorithm’s applicability to real-world problems, reducing its relevance

and limiting the number of experiments that could be performed in a given time window.

Thus, computational complexity will be dealt with too.

This proposal’s contributions can be divided into two parts, to be shown in next

sections: the Fast Incremental Gaussian Mixture Network (FIGMN) and the GMM re-

inforcement learning model. Each part includes its own experiments and results, show-

ing that both goals (lower computational complexity and higher data-efficiency) were

reached.
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5.1 Fast IGMN

The IGMN suffers from cubic time complexity due to matrix inversion operations

and determinant computations. Its time complexity is O
(
NKD3

)
, whereN is the number

of data points, K is the number of Gaussian components and D is the problem dimen-

sion. It makes the algorithm prohibitive for high-dimensional tasks (like visual tasks)

and thus of limited use. One solution would be to use diagonal covariance matrices, but

this decreases the quality of the results, as already reported in previous works [Heinen

2011, Pinto, Engel and Heinen 2011]. In [Pinto and Engel 2015], rank-one updates for

both inverse matrices and determinants are applied to full covariance matrices, thus re-

ducing the time complexity to O
(
NKD2

)
for learning while keeping the quality of a full

covariance matrix solution.

In this section, the more scalable version of the IGMN algorithm, the Fast In-

cremental Gaussian Mixture Network (FIGMN) is presented. It is an improvement over

the version presented in [Pinto and Engel 2015]. The main issue with the IGMN algo-

rithm regarding computational complexity lies in the fact that Equation 2.8 (the squared

Mahalanobis distance) requires a matrix inversion, which has a asymptotic time complex-

ity of O
(
D3
)
, for D dimensions (O

(
Dlog27+O

(
1
))

for the Strassen algorithm or at best

O
(
D2.3728639

)
with the most recent algorithms to date [Gall 2014]). This renders the en-

tire IGMN algorithm as impractical for high-dimension tasks. Here we show how to work

directly with the inverse of covariance matrix (also called the precision or concentration

matrix) for the entire procedure, therefore avoiding costly inversions.

Firstly, let us denote Σ−1 = Λ, the precision matrix. Our task is to adapt all

equations involving Σ to instead use Λ.

We now proceed to adapt Equation 2.18 (covariance matrix update). This equation

can be seen as a sequence of two rank-one updates to the Σ matrix, as follows:

Σ̄j(t) = (1− ωj)Σj(t− 1) + ωje∗je
∗T
j , (5.1)

Σj(t) = Σ̄j(t)−∆µj∆µT
j . (5.2)

This allows us to apply the Sherman-Morrison formula [Sherman and Morrison 1950]:

(A + uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u
. (5.3)
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This formula shows how to update the inverse of a matrix plus a rank-one update. For the

second update, which subtracts, the formula becomes

(A− uvT )−1 = A−1 +
A−1uvTA−1

1− vTA−1u
. (5.4)

In the context of IGMN, we have A = (1 − ω)Σj(t − 1) = (1 − ω)Λ−1
j (t − 1)

and u = v =
√
ωe∗ for the first update, while for the second one we have A = Σ̄j(t) and

u = v = ∆µj . Rewriting 5.3 and 5.4 we get (for the sake of compactness, assume all

subscripts for Λ and ∆µ to be j)

Λ̄(t) =
Λ(t− 1)

1− ω
−

ω
(1−ω)2

Λ(t− 1)e∗e∗TΛ(t− 1)

1 + ω
1−ωe∗TΛ(t− 1)e∗

, (5.5)

Λ(t) = Λ̄(t) +
Λ̄(t)∆µ∆µT Λ̄(t)

1−∆µT Λ̄(t)∆µ
. (5.6)

These two equations allow us to update the precision matrix directly, eliminating the need

for the covariance matrix Σ. They have O
(
N2
)

complexity due to matrix-vector products.

It is also possible to combine the two rank-one updates into one, and this step

was not present in previous works. The first step is to combine 5.1 and 5.2 into a single

rank-one update, by using equations 2.13 to 2.17, resulting in the following:

Σj(t) = (1− ωj)Σj(t− 1) + eeTω(1 + ω(ω − 3)) . (5.7)

Then, by applying the Sherman-Morrison formula to this new update, we arrive at the

following precision matrix update formula for the FIGMN:

Λ(t) =
Λ(t− 1)

1− ω
+ Λ(t− 1)eeTΛ(t− 1)

ω(1− 3ω + ω2)

(ω − 1)2(ω2 − 2ω − 1)
. (5.8)

Although less intuitive than 5.1 and 5.2, the above formula is smaller and more efficient,

requiring much less vector / matrix operations, making FIGMN yet faster and even more

stable (5.2 depends on the result of 5.1, which may be a singular matrix).

Following on the adaptation of the IGMN equations, Equation 2.8 (the squared

Mahalanobis distance) allows for a direct substituion, yielding the following new equa-

tion:

d2
M(x, j) = (x− µj)

TΛj(x− µj) , (5.9)
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which now has a O
(
N2
)

complexity, since there is no matrix inversion as the original

equation. Note that the Sherman-Morrison identity is exact, thus the Mahalanobis compu-

tation yields exactly the same result, as will be shown in the experiments. After removing

the cubic complexity from this step, the determinant computation will be dealt with next.

Since the determinant of the inverse of a matrix is simply the inverse of the deter-

minant, it is sufficient to invert the result. But computing the determinant itself is also a

O
(
D3
)

operation, so we will instead perform rank-one updates using the Matrix Deter-

minant Lemma [Harville 2008], which states the following:

|A + uvT | = |A|(1 + vTA−1u) , (5.10)

|A− uvT | = |A|(1− vTA−1u) . (5.11)

Since the IGMN covariance matrix update involves a rank-two update, adding a term and

then subtracting one, both rules must be applied in sequence, similar to what has been

done with the Λ equations. Equations 5.1 and 5.2 may be reused here, together with the

same substitutions previously showed, leaving us with the following new equations for

updating the determinant (again, j subscripts were dropped):

|Σ̄(t)| = (1− ω)D|Σ(t− 1)|
(

1 +
ω

1− ω
e∗TΛ(t− 1)e∗

)
, (5.12)

|Σ(t)| = |Σ̄(t)|(1−∆µT Λ̄(t)∆µ) . (5.13)

Just as with the covariance matrix, a rank-one update for the determinant update is also

derived (again, using the definitions from 2.13 to 2.17):

|Σ(t)| = (1− ω)D|Σ(t− 1)|
(

1 +
ω(1 + ω(ω − 3))

1− ω
eTΛ(t− 1)e

)
. (5.14)

This was the last source of cubic complexity, which is now quadratic.

Finishing the adaptation in the learning part of the algorithm, we just need to

define the initialization for Λ for each component. What previously was Σj = σ2
iniI

now becomes Λj = σ−2
iniI, the inverse of the variances of the dataset. Since this matrix is

diagonal, there are no costly inversions involved. And for initializing the determinant |Σ|,

just set it to
∏

σ2
ini, which again takes advantage of the initial diagonal matrix to avoid
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costly operations. Note that we keep the precision matrix Λ, but the determinant of the

covariance matrix Σ instead. See algorithms 1 to 3 for a summary of the new learning

algorithm.

Algorithm 1 Fast IGMN Learning
Input: δ,β,X
K = 0, σ−1

ini = (δstd(X))−1,M = ∅
for all input data vector x ∈ X do

if K = 0 or ∃j, d2
M(x, j) < χ2

D,1−β then
update(x)

else
M ←M ∪ create(x)

end if
end for

Algorithm 2 update
Input: x

for all Gaussian componentS j ∈M do
d2
M(x, j) = (x− µj)

TΛj(x− µj)
p(x|j) = 1

(2π)D/2
√
|Σj |

exp
(
−1

2
d2
M(x, j)

)
p(j|x) = p(x|j)p(j)

K∑
k=1

p(x|k)p(k)

vj(t) = vj(t− 1) + 1
spj(t) = spj(t− 1) + p(j|x)
ej = x− µj(t− 1)

ωj = p(j|x)
spj

µj(t) = µj(t− 1) + ωjej
Λ(t) = Λ(t−1)

1−ω + Λ(t− 1)eeTΛ(t− 1) ω(1−3ω+ω2)
(ω−1)2(ω2−2ω−1)

p(j) =
spj

M∑
q=1

spq

|Σ(t)| = (1− ω)D|Σ(t− 1)|
(

1 + ω(1+ω(ω−3))
1−ω eTΛ(t− 1)e

)
end for

Finally, the inference Equation 2.22 must also be updated in order to allow the

IGMN to work in supervised mode. This can be accomplished by the use of a block matrix

decomposition (the i subscripts stand for "input", and refers to the input portion of the

covariance matrix, i.e., the dimensions corresponding to the known variables; similarly,

the t subscripts refer to the "target" portions of the matrix, i.e., the unknowns; the it and
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Algorithm 3 create
Input: x
K ← K + 1
return new Gaussian component K with µK = x, ΛK = σ−1

iniI, |ΣK | = |ΛK |−1,
spj = 1, vj = 1, p(j) = 1

K∑
k=1

spi

ti subscripts refer to the covariances between these variables):

Λj =

Σj,i Σj,it

Σj,ti Σj,t

−1

=

Λj,i Λj,it

Λj,ti Λj,t


=

 (Σj,i −Σj,itΣ
−1
j,tΣj,ti)

−1 −Σ−1
j,iΣj,it(Σj,t −Σj,tiΣ

−1
j,iΣj,it)

−1

−Σ−1
j,tΣj,ti(Σj,i −Σj,itΣ

−1
j,tΣj,ti)

−1 (Σj,t −Σj,tiΣ
−1
j,iΣj,it)

−1

 .

(5.15)

Here, according to Equation 2.22, we need Σj,ti and Σ−1
j,i . But since the terms that con-

stitute these sub-matrices are relative to the original covariance matrix (which we do not

have), they must be extracted from the precision matrix directly. Looking at the decompo-

sition, it is clear that Λj,itΛ
−1
j,t = −Σ−1

j,iΣj,it = −Σj,tiΣ
−1
j,i (the terms between parenthesis

in Λj,ti and Λj,t cancel each other, while Σj,it = ΣT
j,ti due to symmetry). So Equation

2.22 can be rewritten as:

x̂t =
M∑
j=1

p(j|xi)(µj,t −Λj,itΛ
−1
j,t (xi − µj,i)) , (5.16)

where Λj,it and Λj,t can be extracted directly from Λ. However, we still need to compute

the inverse of Λj,t. So we can say that this particular implementation has O
(
NKD2

)
complexity for learning and O

(
NKD3

)
for inference. The reason for us to not worry

about that is that d = i + o, where i is the number of inputs and o is the number of

outputs. The inverse computation acts only upon the output portion of the matrix. Since,

in general, o� i (in many cases even o = 1), the impact is minimal, and the same applies

to the Λj,itΛ
−1
j,t product. In fact, Weka (the data mining platform used in this work [Hall

et al. 2009]) allows for only 1 output, leaving us with just scalar operations.

A new conditional variance formula was also derived to use precision matrices, as

it was not present in previous works. Looking again at 2.23, we see that it is the Schur

Complement of Σj,i in Σ [Zhang 2006]. By analysing the block decomposition equation,



71

it becomes obvious that, in terms of the precision matrix Λ, the conditional covariance

matrix has the form:

Σ̂(t) = Λ−1
j,t . (5.17)

Thus, we are now able to compute the conditional covariance matrix during the inference

step of the FIGMN algorithm, which can be useful in the reinforcement learning setting

(providing error margins for efficient directed exploration). And better yet, Λ−1
j,t is already

computed in the inference procedure of the FIGMN, which leaves us with no additional

computations.

5.1.1 Experiments and Results

The first experiment was meant to verify that both IGMN implementations pro-

duce exactly the same results. They were both applied to 7 standard datasets distributed

with the Weka software (table 5.1). Parameters were set to δ = 0.5 (chosen by 2-fold

cross-validation) and β = 4.9E − 324, the smallest possible double precision number

available for the Java Virtual Machine (and also the default value for this implemen-

tation of the algorithm), such that Gaussian components are created only when strictly

necessary. The same parameters were used for all datasets. Results were obtained from

10-fold cross-validation (resulting in training sets with 90% of the data and test sets with

the remaining 10%) and statistical significances came from paired t-tests with p = 0.05.

As can be seen in table 5.2, both IGMN and FIGMN algorithms produced exactly the

same results, confirming our expectations. The number of clusters created by them

was also the same, and the exact quantity for each dataset is shown in table 5.3. The

Weka packages for both variations of the IGMN algorithm, as well as the datasets used

in the experiments can be found at [Pinto 2015]. The MNIST dataset can be found at

<http://yann.lecun.com/exdb/mnist/>, while the CIFAR10 dataset is available at <http:

//www.cs.toronto.edu/~kriz/cifar.html>.

Table 5.1 – Datasets

Dataset Instances (N) Attributes (D) Classes
breast-cancer 286 9 2
pima-diabetes 768 8 2
Glass 214 9 7
ionosphere 351 34 2
iris 150 4 3
labor-neg-data 57 16 2
soybean 683 35 19
MNIST [LeCun et al. 1998] 70000 784 10
CIFAR-10 [Krizhevsky and Hinton 2009] 60000 3072 10

http://yann.lecun.com/exdb/mnist/
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html
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Besides the confirmation we wanted, we could also compare the IGMN/FIGMN

classification accuracy for the referred datasets against other four algorithms: Random

Forest (RF), Neural Network (NN), Linear SVM and RBF SVM. The neural network is a

parallel implementation of a state-of-the-art Dropout Neural Network [Hinton et al. 2012]

with 100 hidden neurons, 50% dropout for the hidden layer and 20% dropout for the input

layer (this specific implementation can be found at https://github.com/amten/NeuralNetwork).

The four algorithms were kept with their default parameters. The IGMN algorithms pro-

duced competitive results, with just one of them (Glass) being statistically significant be-

low the accuracy produced by the Random Forest algorithm. This value was significantly

inferior for all other algorithms too. On average, the IGMN algorithms were the second

best from the set, losing only to the Random Forest. Note, however, that the Random For-

est is a batch algorithm, while the IGMN learns incrementally from each data point. Also,

the resulting Random Forest model used 6 times more memory than the IGMN model. We

also tested the FIGMN accuracy on the MNIST dataset, but even after parameter tuning,

the results were not on par with the state-of-the-art (above 99%), reaching a maximum

of around 93% accuracy. Possible causes for this (such as overfitting and catastrophic

interference) are suggested and solutions are proposed in chapter 6.

Table 5.2 – Accuracy of different algorithms on standard datasets

Dataset RF NN Lin. SVM RBF SVM IGMN FIGMN
breast-cancer 69.6± 9.1 75.2± 6.5 69.3± 7.5 70.6±1.5 71.4±7.4 71.4±7.4
pima-diabetes 75.8± 3.5 74.2± 4.9 77.5± 4.4 65.1±0.4 • 73.0±4.5 73.0±4.5
Glass 79.9± 5.0 53.8± 7.4 • 62.7± 7.8 • 68.8±8.7 • 65.4±4.9 • 65.4±4.9 •
ionosphere 92.9± 3.6 92.6± 2.4 88.0± 3.5 93.5±3.0 92.6±3.8 92.6±3.8
iris 95.3± 4.5 95.3± 5.5 96.7± 4.7 96.7±3.5 97.3±3.4 97.3±3.4
labor-neg-data 89.7±14.3 89.7±14.3 93.3±11.7 93.3±8.6 94.7±8.6 94.7±8.6
soybean 93.0± 3.1 93.0± 2.4 94.0± 2.2 88.7±3.0 • 91.5±5.4 91.5±5.4
Average 85.2 82.0 83.1 82.4 83.7 83.7

• statistically significant degradation

Table 5.3 – Number of Gaussian components created

Dataset # of Components
breast-cancer 14.2 ± 1.9
pima-diabetes 19.4 ± 1.3

Glass 15.9 ± 1.1
ionosphere 74.4 ± 1.4

iris 2.7 ± 0.7
labor-neg-data 12.0 ± 1.2

soybean 42.6 ± 2.2

Table 5.4 – Training and testing running times (in seconds)

Dataset IGMN Training FIGMN Training IGMN Testing FIGMN Testing
MNIST 32,544.69 1,629.81 3,836.06 230.92

CIFAR-10 2,758,252* 15,545.05 - 795.98
* estimated time projected from 100 data points
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A second experiment was performed in order to evaluate the speed performance

of the proposed algorithm, both the original and improved IGMN algorithms, using the

parameters δ = 1 and β = 0, such that a single component was created and we could focus

on speedups due only to dimensionality (this also made the algorithm highly insensitive

to the δ parameter). They were applied to the 2 highest dimensional datasets in table

5.1, namely, the MNIST and CIFAR-10 datasets. The MNIST dataset was split into a

training set with 60000 data points and a testing set containing 10000 data points, the

standard procedure in the machine learning community [LeCun et al. 1998]. Similarly,

the CIFAR-10 dataset was split into 50000 training data points and 10000 testing data

points, also a standard procedure for this dataset [Krizhevsky and Hinton 2009].

Results can be seen in table 5.4. Training time for the MNIST dataset was 20

times shorter for the fast version while the testing time was 16 times shorter. It makes

sense that the testing time has shown a bit less improvement, since inference only takes

advantage from the incremental determinant computation but not from the incremental

inverse computation. For the CIFAR-10 dataset, it was impractical to run the original

IGMN algorithm on the entire dataset, requiring us to estimate the total time, linearly

projecting it from 100 data points (note that, since the model always uses only 1 Gaussian

component during the entire training, the computation time per data point does not in-

crease over time). It resulted in 32 days of CPU time estimated for the original algorithm

against 15545s (∼ 4h) for the improved algorithm, a speedup above 2 orders of mag-

nitude. Testing time is not available for the original algorithm on this dataset, since the

training could not be concluded. Additionally, we compared a pure clustering version of

the FIGMN algorithm on the MNIST training set against batch EM (the implementation

found in the Weka software). While the FIGMN algorithm took ∼ 7.5h to finish, using

208 Gaussian components, the batch EM algorithm took ∼ 1.3h to complete a single it-

eration (we set the fixed number of components to 208 too) using 4 CPU cores. Besides

generally requiring more than one iteration to achieve best results, the batch algorithm

required the entire dataset in RAM. The FIGMN memory requirements were much lower.

Finally, both versions of the IGMN algorithm with δ = 1 and β = 0 were com-

pared on 11 synthetic datasets generated by Weka. All datasets have 1000 data points

drawn from a single Gaussian distribution (90% training, 10% testing) and an exponen-

tially growing number of dimensions: 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 and 1024. This

experiment was performed in order to compare the scalability of both algorithms. Results

for training and testing can be seen in Fig. 5.1:
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Figure 5.1 – Training and testing times for both versions of the IGMN algorithm with growing
number of dimensions

5.2 Reinforcement Learning with FIGMN

The final goal of this research is to develop a data-efficient (and here we define

it empirically, without theoretical guarantees such as in the PAC-MDP framework) rein-

forcement learning algorithm for continuous state spaces. We argue that other algorithms’

inefficiencies come partially from the slow function approximators they use, i.e., neural

networks. Hence, a data-efficient function approximator should be used instead. The al-

gorithm chosen here is the FIGMN, due to its qualities shown in previous sections. Other

algorithms which could be suitable for this task are the ITM and similar clustering al-

gorithms. They can be applied to supervised learning by joint modelling of inputs and

outputs, but the output would be stepwise. Instead, the FIGMN produces fine-grained

approximations, since each cluster is also a linear approximator. The FIGMN can be

combined with reinforcement learning in various ways, for instance:

• By modelling the state space only, and using the Gaussian components’ activations

(likelihoods or posteriors) as inputs for linear Q-learning, which is similar to con-

ventional feature extraction approaches like tile coding and RBF. This architecture

is depicted in figure 5.2, and will be called FIGMN-Q from now on. The type of

actions allowed by this architecture depends on the specific reinforcement learning

algorithm used at the output layer. In the case of linear Q-learning as used here,

only discrete actions are allowed;

• By modelling the joint space of states and Q-values (one Q-value for each possi-

ble action), as this is FIGMN’s standard way of doing supervised learning. This

architecture is shown in figure 5.3, and will be called Unified FIGMN-Q (or U-

FIGMN-Q) from now on. It allows only discrete actions, but, on the other hand,
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allows for fast action selection (just input the current state and select the action

corresponding to the largest Q-value). Algorithm 4 describes the behavior of this

architecture;

• By modelling the joint space of states, actions and Q-values (a single Q-value is

produced for a state-action input). This has the advantage of allowing continuous

actions, but also the disadvantage of having to perform 1 inference for each action

while doing action selection in the case of discrete actions, or performing some

tricks seen in previous chapters for selecting continuous actions. This architecture

can be seen in figure 5.4.

Figure 5.2 – FIGMN-Q: The FIGMN models the densities of the input space and feeds likelihoods
to linear Q-learning. Resulting states, rewards and actions are used in the learning algorithm.

Here, we limit our experiments to the first two alternatives, as the third one has

been explored in previous works [Heinen, Bazzan and Engel 2011].

5.2.1 Experiments and Results

The mountain car task consists in controlling an underpowered car in order to

reach the top of a hill. It must go up the opposite slope to gain momentum first. The agent

has three actions at its disposal, accelerating it leftward, rightward, or no acceleration at
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Figure 5.3 – Unified FIGMN-Q: The FIGMN models the densities of the joint space of states
and Q-values. Resulting states, rewards and actions are used in the learning algorithm, which is
embedded into the FIGMN itself.

Figure 5.4 – In this case, the FIGMN models the densities of the joint space of states, actions and
Q-values. Resulting states and rewards are used in the learning algorithm, which is embedded into
the FIGMN itself.

all. The agent’s state is made up of two features: current position and speed. Only 200

steps are available for the agent to explore during each episode. This task is considered

solved after 100 consecutive episodes with an average of 110 steps or less to reach the top

of the hill. A snapshot of this environment can be seen in figure 5.5

The cart-pole task consists in balancing a pole above a small car which can move

left or right at each time step. Four variables are available as observations: current position

and speed of the cart and current angle and angular velocity of the pole. Version 0 requires

the pole to be balanced for 200 steps, while version 1 requires 500 steps. This task is

considered solved after 100 consecutive episodes with an average of 195 steps for version

0 and 475 steps for version 1 without dropping the pole. A snapshot of this environment

can be seen in figure 5.6

Finally, the acrobot task requires a 2-joint robot to reach a certain height with

the tip of its "arm". Torque in two directions can be exerted on the 2 joints, resulting
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Algorithm 4 U-FIGMN-Q Algorithm
Input: A is a set of actions, D is the number of dimension in the state space, γ is the

discount factor, ε is the exploration rate
Initialize FIGMN
Observe current state s
repeat

if FIGMN is empty or U(0, 1) < ε then
a← random action from A

else
x← {s1, s2, ..., sD}
feed x into the FIGMN in inference mode, obtain Q for each action in A
a← argmaxa′Q[s, a′]

end if
perform action a
observe reward r and state s′
store s, a, r, s′ into the experience replay buffer
if experience replay buffer is full or episode ended then

for all experience ∈ buffer, from most recent to least recent do
retrieve s, a, r, s′ from the experience
obtain maxa′Q[s′, a′] from the FIGMN in inference mode using s′ as input
Qtarget ← r + γmaxa′Q[s′, a′]
x← {s1, s2, ..., sD, Q1, Q2, ..., Q|A|} where Qa = Qtarget, Q6=a = null
feed x into the FIGMN in learning mode, ignoring dimensions with null values

end for
clear experience replay buffer

end if
s← s′

until termination

in 4 possible actions. Current angle and angular velocity of each joint are provided as

observations. There are 200 steps per episode available for exploration. This task is

considered solved after 100 consecutive episodes with an average of 100 or less steps to

reach the target height. A snapshot of this environment can be seen in figure 5.7

The FIGMN algorithm was compared to other 3 algorithms with high scores on

OpenAI Gym: Sarsa(λ) with Tile Coding, Trust Region Policy Optimization (TRPO; a

policy gradient method, suitable to continuous states, actions and time, but which works

in batch mode and has low data-efficiency) [Schulman et al. 2015] and Dueling Double

DQN (an improvement over the DQN algorithm, using two value function approximators

with different update rates and generalizing between actions; it is restricted to discrete

actions) [Wang, Freitas and Lanctot 2015]. These algorithms were chosen according the

OpenAI Gym rank at the time of writing. Table 5.5 shows the number of episodes required

for each algorithm to reach the required reward threshold for the 3 tasks. Results were
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Figure 5.5 – The mountain car environment running inside OpenAI Gym.

extracted on June-2016 and January-2017 1.

Table 5.5 – Number of episodes to solve each task.

Environment U-FIGMN-Q 2 FIGMN-Q 3 Sarsa(λ) 4 TRPO 5 Duel DDQN 6

Cart-Pole V0 0.5 ± 0.56 112.40 ± 25.17 557 2103.50 ± 3542.86 51.00 ± 7.24
Cart-Pole V1 4.70 ± 5.40 - - - -

Mountain Car V0 0.0 241.80 ± 39.62 1872.50 ± 6.04 4064.00 ± 246.25 -
Acrobot V0* 0.0 204.50 ± 32.56 742 2930.67 ± 1627.26 31

* This task is not available on the OpenAI Gym server anymore, so the result can be verified only locally.

It is evident that FIGMN-Q produces better results than Sarsa(λ) with tile coding.

Its results are also superior to TRPO’s by a large margin. Duel DDQN is 2 to 10 times

more data-efficient than FIGMN-Q, possibly due to its fixed topology, which simplifies

the learning procedure, and also due to other tricks it employs, like the double estimator

and the dueling architecture. Note, however, that FIGMN-Q does not take advantage

of FIGMN’s data-efficiency while approximating the Q-values, since the reinforcement

learning portion is performed by Q-learning. Also, in this case, Continuous Time Q-

Learning was used, as the discrete time algorithm did not give satisfactory results. Typical

learning curves for this algorithm in all tasks can be seen in figures 5.8, 5.9 and 5.10. A

solution to the cart-pole v1 task could not be found which satisfied the Gym solving

1<https://gym.openai.com/algorithms?groups=classic_control>
2<https://gym.openai.com/algorithms/alg_gt0l11Rf6hkwUXjVsRcw>
3<https://gym.openai.com/algorithms/alg_afmTV5JfT4yQWZXunlFv9w>
4<https://gym.openai.com/algorithms/alg_hJcbHruxTLOa1zAuPkkAYw>
5<https://gym.openai.com/algorithms/alg_yO8abVs8Spm21Icr60SB8g>
6<https://gym.openai.com/algorithms/alg_zy3YHp0RTVOq6VXpocB20g>

https://gym.openai.com/algorithms?groups=classic_control
https://gym.openai.com/algorithms/alg_gt0l11Rf6hkwUXjVsRcw
https://gym.openai.com/algorithms/alg_afmTV5JfT4yQWZXunlFv9w
https://gym.openai.com/algorithms/alg_hJcbHruxTLOa1zAuPkkAYw
https://gym.openai.com/algorithms/alg_yO8abVs8Spm21Icr60SB8g
https://gym.openai.com/algorithms/alg_zy3YHp0RTVOq6VXpocB20g
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Figure 5.6 – The cart-pole environment running inside OpenAI Gym.

criteria, but it learned to balance the pole for more than 200 steps nevertheless. Between

tens and hundreds of Gaussian components were needed to solve these problems with

FIGMN-Q. This is due to the fact that each Gaussian component is associated with a

single Q-value through the output weight of the linear regressor, thus acting like a simple

(soft) discretizer.

And then we have U-FIGMN-Q, in which the Q-value updates are performed by

the FIGMN itself, taking advantage of its data-efficiency. Albeit being very difficult to

tune (random search [Bergstra and Bengio 2012] in the hyper-parameter space, plus man-

ual fine tuning were used here), it proved to be the most data-efficient reinforcement

learning algorithm in this set of experiments. It was able to solve each of the tasks in

very few episodes. In fact, it solved them in zero episodes in most of the evaluations,

meaning that its first 100 consecutive episodes are enough to reach the average reward

threshold. It was much better than expected, since the conventional Q-learning update

rule was employed. No continuous time was necessary. Typical learning curves for this

algorithm in all tasks are shown in figures 5.11, 5.12, 5.13 and 5.14. Note that, when this

experiment was performed, acrobot v0 was not available anymore at the Gym server, so

experiments were kept locally. The acrobot learning curve shown is for v1, where physics

where improved, there are 500 available time steps per episode instead of 200 and there

is no reward threshold, so it is not trivial to compare algorithms regarding data-efficiency.

Its learning curve is still informative, nevertheless. Another interesting result is that the
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Figure 5.7 – The acrobot environment running inside OpenAI Gym.

Figure 5.8 – Example of a single evaluation of the FIGMN-Q algorithm on the mountain car v0
environment.

FIGMN solved most of the tasks with a single Gaussian component, implying that their

Q-value function is (at least approximately) linear. The mountain car task, on the other

hand, required 8 Gaussian components (its Q-value function has a spiral surface).

However, a single trick was essential in order to guarantee this data-efficiency: we

employed a kind of experience replay buffer. But instead of sampling it randomly and

repeatedly at each time step (as commonly done in most works with neural networks),

it was sampled from the most recent observation to the oldest one (randomly sampling

the experience replay buffer also works here, but performance degrades), in a single pass

(which means that we still perform only one update per step, they are just shifted and

accumulated), and learning only happens when the buffer is full; after that, it is emptied

again. Interestingly, time correlated data does not impairs the FIGMN’s performance

as it does with neural networks. In fact, it is shown in the original Incremental Gaussian



81

Figure 5.9 – Example of a single evaluation of the FIGMN-Q algorithm on the cart-pole v0
environment.

Figure 5.10 – Example of a single evaluation of the FIGMN-Q algorithm on the acrobot v0
environment.

Mixture Model paper [Engel and Heinen 2010] that data should vary slowly (i.e., it should

not be independent and identically distributed (i.i.d.), exactly the opposite condition for

neural networks). From another point-of-view, this could be seen as mini-batch learning.

This technique drastically improved the algorithm, and there seems to be 2 effects taking

place to explain this:

• First, it is common knowledge that conventional Q-learning with function approxi-

mation diverges due to the non-stationary nature of the Q-values [Sutton and Barto

1998]. The Q-learning update rule uses the function approximator itself to provide

a target, which changes immediately, while action selection is also done using the

same ever-changing approximator. By doing updates in mini-batches, this issue is

Figure 5.11 – Example of a single evaluation of the Unified FIGMN-Q algorithm on the cart-pole
v0 environment.
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Figure 5.12 – Example of a single evaluation of the Unified FIGMN-Q algorithm on the cart-pole
v1 environment.

Figure 5.13 – Example of a single evaluation of the Unified FIGMN-Q algorithm on the acrobot
v1 environment.

minimized, as action selection is performed over a stable function approximator.

Then, it is updated all at once, and after that, actions can be selected from a sta-

ble approximator again. This bears resemblance to Double Q-Learning, where 2

estimators are used in order to the select actions from a stable approximator which

is updated once in a while from the second estimator (which updates constantly),

except we use a single estimator with sporadic updates instead;

• The second effect produced by this mini-batch approach is similar to trace decays:

while conventional Q-learning updates a single state-action per step, trace decays

allow us to update a large portion of the state-action history at once. So, when a

goal is reached, its value is rapidly propagated backwards. The mini-batch approach

results in something very much like it: since the most recently visited states are

updated first, older states will receive updated values immediately, eliminating the

Figure 5.14 – Example of a single evaluation of the Unified FIGMN-Q algorithm on the mountain
car v0 environment.
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need to visit those states again in order to "see" the new values. A difference is

that trace decays perform all these updates at every time step, resulting in high

computational demands.

In general, larger buffer sizes improved the results. For small episodic tasks like

the ones presented here, it is enough to set the maximum buffer size as the maximum

number of steps per episode for each task, resulting in episodic batch updates (note, how-

ever, that FIGMN updates are always incremental, i.e., each experience is presented to

the algorithm and then discarded).

Additionally, in the mountain car task, it was necessary to apply other techniques

to ensure stability and convergence:

• The first one was to set an independent learning rate α (with its own annealing

schedule) for the Q-value variables in the FIGMN. It means that equation 2.14

(reproduced below) should only apply to the state variables when updating the mean

and also the precision matrix.

ωj =
p(j|x)

spj
. (5.18)

When updating the means and precision matrices for variables corresponding to the

Q-values, the following equation should be used instead:

ωj = p(j|x)α . (5.19)

This is necessary in some cases, since the default FIGMN learning rate ω given by

the original equation decreases very fast, which may not be appropriate for a given

task. Also, that equation results in the component mean converging to the true mean

of all input data, which is expected when dealing with stationary data, but not with

non-stationary data as is the case of the Q-values. The same problem was found

by [Agostini and Celaya 2010] and solved in a way which was appropriate for the

used algorithm, but it would be analogous to applying a decay rate to spj in the

FIGMN, thus making ω to decrease slower. It is not the same as the independent

learning rate, as it affects all variables and not only the Q-values. It is possible that

there exists a solution to the mountain car task using this sp decay technique, but,

at least in the current experiments, hyperparameter search found the independent

learning rate solution.
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• The second one was a technique akin to early stopping, which is used in neural

networks to avoid overfitting. Here, a reward threshold (in this case of −122) was

set in order to stop learning. When this threshold is reached, the ε exploration pa-

rameter, the α learning rate and the τ component creation threshold are all set to 0,

effectively stopping any learning. This is necessary to avoid new components being

created in overlapping positions with old ones, producing catastrophic forgetting.

An alternative, which is left for future works, would be to improve the stability of

the FIGMN itself by avoiding overlaps automatically.

Figure 5.15 – Policy learned by the U-FIGMN-Q algorithm on the mountain car task. The
coloured bands are just very elongated ellipses.

The learned policy is shown in figure 5.15. Actions are shown according to the

largest Q-value in the Gaussian means. It is possible to verify that most components

suggest the "right" action, having a single "none" action on the lower half of the graph.

It is expected, as the optimal policy involves applying torque in the same direction as

the car’s current speed. Upon analyzing the covariance matrices of components #3 and

#6, negative covariances were found between the state variables and the "left" action,

meaning that when the car is moving left (negative speed), the Q-value for the "left"

action increases, which matches the expected policy. This is something impossible to

achieve with (non-unified) FIGMN-Q, since components only generalize the state space.

The same happens with other local feature representations like RBF and Tile Coding, as

Q-values do not vary inside a single unit. This explains why U-FIGMN-Q is able to solve

problems with much fewer Gaussian components (often 1) than FIGMN-Q, which also,

in turn, makes it much faster.
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5.3 Conclusions

In this chapter, an improved incremental Gaussian mixture model algorithm was

presented. By avoiding matrix inversions and determinant computations, it achieves

quadratic computational complexity on the number of input dimensions, which is bet-

ter than the usual cubic complexity when dealing with Gaussian mixtures. This algorithm

is capable of learning highly accurate models from a single pass through data, as was

shown in many classification tasks, as it is capable of supervised learning.

This high data-efficiency suggests that the FIGMN could be employed towards

more efficient reinforcement learning with function approximation. This hypothesis was

confirmed in four different continuous reinforcement tasks, where the use of a FIGMN

as a feature extractor was enough to show improvements in relation to other techniques,

while the most integrated version of the algorithm (which approximates the Q-values in-

side the FIGMN itself) was capable of learning most tasks in a single episode. Moreover,

some limitations found in neural networks are not present in the FIGMN, allowing it to

dismiss the use of techniques that are essential to neural networks when combined with

reinforcement learning.

In the next chapter, the implications of these findings will be further discussed,

while proposing more improvements to the FIGMN and to its integration with reinforce-

ment learning.



86

6 DISCUSSION AND FUTURE WORKS

This dissertation presented the results of my Ph.D. research on the combination of

incremental Gaussian mixture models with reinforcement learning. An improved version

of the Incremental Gaussian Mixture Network (IGMN) was implemented, resulting in

a more scalable algorithm (FIGMN), a requirement for dealing with high-dimensional

spaces like the physical world. This algorithm was employed as a function approximator

for the state space of three classic continuous reinforcement learning tasks. Results show

that, when employed as a feature extractor, it is competitive with existing approaches.

However, when it is used to approximate the Q-value function itself, it presents astounding

data-efficiency, learning the three tasks within a single episode or very few episodes.

This can be attributed to the algorithm’s similarity to double Q-Learning, delayed Q-

Learning and trace decays, all of which are known to improve data-efficiency, combined

with a data-efficient function approximator itself. However, due to time constraints, the

algorithm could only be tested on relatively simple environments, where this performance

is not that much impressive. New experiments in more complex environments (e.g., Atari)

should be conducted in future works in order to assess the generality and scalability of

this solution.

A survey of reinforcement learning algorithms was also presented, which con-

tributes with many ideas that could be incorporated into a new algorithm. In fact, the

unified FIGMN-Q algorithm took inspiration from trace decays, experience replay and

double Q-learning, techniques to which its excellent data-efficiency can be attributed.

An interesting discovery found while using these techniques is that some drawbacks of

conventional neural networks which require some workarounds are not present in the

FIGMN, allowing it to take full advantage of these procedures. For instance, the FIGMN

does not require i.i.d. data (in theory, it requires non-i.i.d. data, but in practice, we have

shown in the classification experiments that this is not the case), so experience replay

does not need to be sampled randomly. Also, due to its high data-efficiency, only a sin-

gle scan through the experience replay buffer is necessary. By updating the model only

sporadically, simultaneous use of the Q-function estimate for action selection and updat-

ing is avoided, improving convergence, which draws parallels with double Q-learning.

Thus, one of the main contributions of this research is to show how non-mainstream algo-

rithms can be successfully combined with reinforcement learning, suggesting that neural

networks (in their current forms) are not the only possibility.
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The main obstacles found reside in the non-stationary nature of the Q-value func-

tion, which is not appropriate for the learning rate annealing schedule of the FIGMN. The

FIGMN finds means of input data, while the Q-value updates require emphasis on more

recent data, in some cases even totally overwriting previous inaccurate values (due to

bootstrapping). We fixed this issue by providing a separate learning rate for the Q-values,

as well as implementing a tighter control over its variance in order to avoid singularities.

Another issue introduced by learning the Q-values together with all other variables is that

states and actions may dominate the distance computations, making it difficult to select

greedy actions directly from states and high Q-values, but only if a single Q-value is esti-

mated from states and actions on each inference. This method of combining the FIGMN

with Q-learning was not experimented with, since it is already present in previous works

on the IGMN algorithm. Instead, the unified approach presented in this thesis considers

the joint space of states and Q-values, one for each possible action. In this way, it is pos-

sible to greedily select actions by simply feeding the current state into the FIGMN and

estimating the Q-values for all actions at once.

Another main obstacle found during the experiments was FIGMN’s high sensitiv-

ity to its hyper-parameters (tau and delta). A very small change in these parameters is

enough to make the algorithm create more or less Gaussian components, which has huge

impact on the final model. Moreover, excessive creation of components can cause overfit,

as well as catastrophic forgetting. New components can have large overlapping regions

with old components, interfering with what has been previously learned. Thus, we pro-

pose that, in future works, this issue must be addressed with certain urgency, as this can

deter practical use of the FIGMN. Two ideas here may be worth exploring:

• Firstly, to change the component creation criterion. The currently used test veri-

fies only the highest likelihood among all Gaussian components. But this is ignor-

ing the fact that the output of the FIGMN inference is produced by the mixture of

all components. Thus, while the component which most fits the data may not be

close enough (in a Mahalanobis distance sense), the complete set of components

may be enough to model the incoming data properly. This would mean that the

likelihood test should not be performed on the best component only, but over the

sum of likelihoods instead. It is expected that fewer components would be created

withing this approach, producing less overfit and equally or better models than the

current approach. Besides considering the representational power of the full model,

this would have the beneficial side-effect of decreasing the probability of creating
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new components the higher is the number of current components, producing a kind

of regularization. An example of this new component creation criterion in action is

depicted in figure 6.1.

Figure 6.1 – Visualizing the proposed component creation criterion modification. Left: the model
is composed by 2 Gaussian components and new data (the cross) arrives. Middle: How the current
component creation criterion would behave. The closest component is not good enough, so a new
component is created, resulting in overfitting. Right: How the proposed component creation cri-
terion would behave. The model is sufficiently complex to model the new point withouth creating
new components.

• Secondly, the initial component size must be adaptive. Currently, the δ parame-

ter and the data amplitude / deviation are used from the beginning of the learning

process until its end. This does not only puts a large responsibility and sensitivity

on a single hyper parameter, as well as it results in inappropriate component sizes

along the process. Inappropriate, in this context, would mean overlapping regions

with old components or too small components in a large unoccupied space. While

the first case can produce catastrophic forgetting, the second one leaves the model

prone to overfitting. The suggestion, here, would be to limit the initial component

sizes in a way that avoids overlapping (possibly by using the Bhattacharyya dis-

tance [Bhattacharyya 1946]). This would leave the user more free to set larger δ

values, reducing its sensitivity and avoiding very small components. A visualiza-

tion of this mechanism is shown in figure 6.2.

Figure 6.2 – Visualizing the proposed component initial size adaptation. Left: the model is
composed by 1 Gaussian component and new data (the cross) arrives. Middle: How the cur-
rent component initial size would behave, considering large enough δ. It overlaps the existing
component, resulting in catastrophic forgetting in its topmost region. Right: How the proposed
component adaptive initialization would behave. The initial size is reduced to avoid overlap.

Another issue with the FIGMN’s current form lies on its somewhat large dissimi-

larity with conventional neural network models. By rephrasing it as a conventional feed-
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forward architecture, it would be possible to make better comparisons, to employ existing

techniques used in neural networks and to use available tools and existing neural networks

and computational graphs frameworks, which are ubiquitous nowadays [Bahrampour et

al. 2015], taking advantage of parallel processing. It also would be possible to trans-

fer some of FIGMN’s principles to neural networks as well, possibly making them more

data-efficient. A possible starting point would be to consider a feedforward neural net-

work with a linear layer (for rotation and scaling transformations) followed by an RBF

layer, which would be able to produce elongated multivariate Gaussians over the input

space.

While the original proposal for this research included model-based learning and

improved exploration strategies (using upper confidence bounds), the developed algo-

rithm worked well enough to dispense these features, at least in the tasks where it was

tested. In order to verify the benefits offered by these additional techniques, new exper-

iments with more complex environments would be necessary. Unfortunately, the time

window left for the conclusion of this research is not large enough, and this will be left

for future works. Also left for future works is the exploration of different architectures,

possibly less coupled, since learning the Q-values jointly with the state space features pro-

duced the issues mentioned in the mountain car experiment, and could possibly cause the

same issues in many other environments. In general, we see a lot of room for investigation

and improvement.
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APPENDIX A — RESUMO EM PORTUGUÊS

A.1 Introdução

Aprendizagem por reforço se tornou mainstream nos últimos anos, principalmente

graças aos esforços da equipe da Google Deep Mind. Eles conseguiram obter performance

de nível humano em jogos de Atari [Mnih et al. 2015] e derrotaram o campeão mundial

de go [Silver et al. 2016], e aprendizagem por reforço está no coração de ambas estas

conquistas, através de um algoritmo chamado Deep Q-Learning Network (DQN). Isso

não é apenas uma questão de preferência ou hype, mas uma constatação das virtudes da

aprendizagem por reforço para produzir agentes inteligentes com comportamentos autô-

nomos de alta qualidade com mínima supervisão humana. É um excelente paradigma

para permitir aprendizagem a apartir de recompensas esparsas sem objetivos explícitos

ou supervisão humana contínua, justamente como nos seres vivos. Isto torna a aprendiza-

gem por reforço numa candidata óbvia para avançar os campos de inteligência artificial e

robôs autônomos.

No entanto, apesar de ser o estado-da-arte nessas tarefas, as abordagens menci-

onadas sofrem com baixa eficiência de dados, o que significa que um grande número

de episódios de treinamento são necessários para que o agente adquira o nível desejado

de competência em diversas tarefas. Os algoritmos da Deep Mind requerem milhões de

interações agente-ambiente devido a uma aprendizagem muito ineficiente. Não parece

ser assim que os humanos funcionam e não isto não é aceitável para algumas classes de

tarefas, tais como a robótica, onde falhas e danos precisam ser minimizados. Existem

soluções para este problema, mas a maioria delas lida com ambientes de espaços discre-

tos em vez de ambientes contínuos, i.e., ambientes com um número infinito de estados

e, possivelmente, infinitas ações, tal como o mundo físico. [Gu et al. 2016] apresentou

uma possível solução para aprimorar a DQN com aprendizagem por reforço baseada em

modelo, mas os resultados ainda estão muito aquém do ideal, possivelmente devido à sua

dependência em aproximadores de função ineficientes como redes neurais treinadas por

descida do gradiente (elas requerem muitas épocas para aproximar suas funções-alvo).

Esta pesquisa propõe uma nova solução para este problema, integrando um aproximador

de funções eficiente com aprendizagem por reforço, reduzindo o número de interações

necessárias com o ambiente real.
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A.1.1 Motivação

As abordagens atuais para resolver tarefas de aprendizagem por reforço em domí-

nios contínuos frequentemente usam redes neurais como aproximadores de função. Isto

provou ser uma abordagem eficaz para a resolução de tarefas de aprendizagem por re-

forço difíceis. No entanto, aproximar lentamente e iterativamente o espaço de estados

é muitas vezes o caso, o que não é aceitável para robótica e tarefas do mundo real em

geral. Um robô não pode se dar ao luxo de cair de escadas mil vezes antes de aprender a

evitá-las. São necessários algoritmos mais eficientes em termos de dados. No caso ideal,

um único episódio deveria ser suficiente para aprender uma determinada tarefa. Enquanto

outros trabalhos focam no lado da aprendizagem de reforço para a eficiência de dados, o

lado da aproximação de funções é frequentemente negligenciado. Dessa forma, este é o

foco desta pesquisa: integrar aproximadores de função eficientes com aprendizagem por

reforço para oferecer uma solução complementar a outros métodos de aceleração.

A.1.2 Visão Geral da Pesquisa

A solução proposta para os problemas mencionados na seção anterior consiste em

desenvolver um algoritmo de aprendizagem por reforço baseado na Incremental Gaus-

sian Mixture Network (IGMN) [Heinen and Engel 2011]. A IGMN é capaz de aprender

modelos eficazes em uma única passagem pelos dados, o que reduz a quantidade de in-

teração necessária para a aprendizagem em um ambiente físico, onde os dados são caros.

Ela também fornece estimativas de variância para suas previsões, que podem ser usadas

para orientar a exploração de ações promissoras e para evitar exploração excessiva de

ações pouco promissoras [Heinen, Bazzan and Engel 2011]. Finalmente, ela é capaz de

inferir qualquer uma de suas variáveis de entrada a partir de qualquer outro conjunto de

variáveis. Isso significa que ela poderia ser usada para prever recompensas esperadas,

selecionar ações e prever as consequências de suas ações, tudo em um único modelo, se

desejado. Uma abordagem sem modelo (sem previsão de consequências) para combinar

a IGMN com aprendizagem por reforço foi apresentada em [Heinen 2011], mas não foi o

foco da pesquisa e a eficiência de dados não foi analisada. A viabilidade e as proprieda-

des desta ideia serão exploradas nesta pesquisa. Uma abordagem menos sinérgica onde a

IGMN apenas modela a densidade do espaço de estados será explorada primeiramente e,

em seguida, usando a mesma IGMN para modelar o espaço de estados e aproximar uma
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função de valores Q.

Mas a IGMN também tem suas desvantagens: ela possui complexidade cúbica

no número de dimensões dos dados. Se quisermos fornecer uma solução para tarefas do

mundo real (a maioria das quais são de alta dimensionalidade), isto não é aceitável. As-

sim, antes de aplicá-la à aprendizagem por reforço, a redução da complexidade temporal

do algoritmo IGMN é essencial. O processo para alcançar esse objetivo e o algoritmo

resultante serão apresentados.

Para explorar essas ideias, foram selecionadas as seguintes questões de pesquisa:

• A complexidade do algoritmo IGMN pode ser reduzida evitando inversões matrici-

ais?

• Em que formas o algoritmo IGMN pode ser usado como um aproximador de fun-

ções para a aprendizagem por reforço?

• Como ele pode ser usado para aproximar apenas o espaço de estados?

• Como ele pode aprender a distribuição conjunta de estados e valores Q em um único

modelo?

• O algoritmo resultante aumenta a eficiência de dados da aprendizagem de reforço?

A.1.3 Metodologia

Em relação à necessidade de responder à primeira questão de pesquisa, sobre a

redução da complexidade da IGMN, foram conduzidos experimentos na plataforma Weka

[Hall et al. 2009] usando a linguagem de programação Java. Esta plataforma permite

medir e comparar o tempo de execução de vários algoritmos em vários conjuntos de dados

(que são distribuídos juntamente com Weka). Se a complexidade for, de fato, reduzida,

são esperadas reduções no tempo de execução comparadas com a IGMN original, e essas

reduções devem ser mais drásticas à medida que o número de dimensões dos conjuntos de

dados aumenta (a redução da complexidade está relacionada ao número de dimensões).

Além disso, o algoritmo resultante deve produzir exatamente os mesmos resultados que o

original.

Para responder às questões restantes, é necessário testar e comparar algoritmos de

aprendizagem por reforço. Três itens são necessários para isso:

• Algoritmos propostos;

• Ambientes / tarefas;
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• Algoritmos para comparação.

Além de levar muito tempo para implementar e correr o risco de reinventar a roda, os

dois últimos itens removeriam foco da parte importante deste trabalho, que são os al-

goritmos propostos. A melhor solução encontrada para resolver este problema é usar o

OpenAI Gym [Brockman et al. 2016] como plataforma principal para testar os algorit-

mos propostos. Esta plataforma de código aberto, recentemente lançada, oferece dezenas

de ambientes de aprendizagem por reforço prontos para uso, bem como uma página de

ranking comparando o desempenho de algoritmos de diferentes usuários, incluindo os

algoritmos mais comuns como Q-learning. O desempenho é medido por dois fatores: nú-

mero de episódios para resolver o problema (eficiência de dados) e recompensa média.

Cada ambiente tem alguma recompensa acumulada a ser alcançada. Mais precisamente,

o agente deve obter uma recompensa acumulada média igual ou superior à meta durante

100 episódios consecutivos. Tempo para resolver é definido como o primeiro episódio

desta janela de 100 episódios. Os autores devem publicar, juntamente com seus algo-

ritmos, instruções precisas para reprodução. Isto melhora muito o valor científico desta

abordagem.

Como a plataforma OpenAI Gym suporta apenas a linguagem Python atualmente,

esta foi a linguagem de escolha para a implementação das experiências finais. Uma im-

plementação de código aberto existente 1 do algoritmo IGMN nesta linguagem foi usada

no início. Esta implementação já foi utilizada com sucesso em trabalhos anteriores [Pe-

reira, Engel and Pinto 2012]. Em seguida, o código foi convertido para o algoritmo mais

escalável FIGMN, que faz parte das contribuições desta pesquisa.

A.1.4 Contribuições

Esta pesquisa contribui para o campo da aprendizagem de máquina através do

algoritmo Fast IGMN. Ele consiste em um procedimento online de Expectation Maximi-

zation (EM) desprovido de inversões matriciais e cálculos de determinantes. Também

são apresentadas formulações para a regressão por mistura gaussiana usando a matriz de

covariância inversa diretamente. Esta é uma peça importante para os algoritmos restantes

a serem implementados.

A aprendizagem de reforço em tempo contínuo em espaços de estados contínuo

1https://github.com/renatopp/liac/blob/master/liac/models/igmn.py
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através do uso da FIGMN é também apresentada como uma nova contribuição. Além

disso, a principal contribuição deste trabalho consiste em um algoritmo combinando a

FIGMN com o Q-Learning para aprendizado de reforço com estados contínuos, e apren-

dizagem no espaço conjunto de estados e valores Q. Com isso, um algoritmo de apren-

dizagem por reforço mais eficiente é esperado como o resultado final, que deve ser mais

apropriado para tarefas de robótica. A arquitetura proposta será testada em problemas de

aprendizagem de reforço clássico fornecidos pela plataforma OpenAI Gym [Brockman et

al. 2016].

A.2 Algoritmos Propostos

A partir de análise da literatura na área, verifica-se que a combinação de apren-

dizagem por reforço com modelos de misturas gaussianas não é usual. Os algoritmos

mainstream recorrem frequentemente a redes neurais para aplicar aprendizagem por re-

forço a espaços contínuos, como é o caso de deep learning. Esses algoritmos resolvem

questões importantes ao lidar com espaços contínuos, como o mundo real, mas eles dei-

xam de fora o outro aspecto importante deste tipo de ambiente: aprender no mundo real

é caro e deve ser feito rapidamente. Por outro lado, o algoritmo IGMN mostra exce-

lente eficiência de dados, aprendendo tarefas difíceis com uma única passada através dos

dados [Pinto, Engel and Heinen 2012].

Tendo isto em mente, unificação de ambas as abordagens, a aprendizagem por

reforço e a IGMN, é proposta, a fim de conseguir uma aprendizagem eficiente em termos

de dados a partir de recompensas. É neste ponto que a IGMN entra. A aproximação de

função em si deve ser rápida. Isso significa que não somente o aproximador de funções

deve ser computacionalmente rápido, mas também que ele deve aprender com poucos

pontos de dados, isto é, ele deve ser um aproximador eficiente, idealmente um que aprenda

em uma única passada sobre os dados.

Para alcançar este objectivo com estas restrições, proponho explorar a combinação

do algoritmo IGMN com a aprendizagem por reforço. Embora o algoritmo IGMN já tenha

sido aplicado à aprendizagem por reforço em trabalhos anteriores, as abordagens empre-

gadas não se concentraram na eficiência e nem foram gerais. Aqui, proponho realizar

experiências de aprendizagem por reforço centradas na eficiência de dados e aplicabili-

dade geral. No entanto, ainda há um problema com o algoritmo IGMN que vai contra os

objetivos propostos: a sua complexidade cúbica sobre o número de dimensões. Isso requer
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uma etapa anterior antes de trabalhar no algoritmo de aprendizagem por reforço: reduzir

a complexidade da IGMN. Embora a complexidade computacional não afete a eficiência

dos dados, ela pode reduzir a aplicabilidade do algoritmo aos problemas do mundo real,

reduzindo sua relevância e limitando o número de experimentos que podem ser realizados

em uma determinada janela de tempo. Assim, a complexidade computacional será tratada

também.

As contribuições desta proposta podem ser divididas em duas partes, a serem mos-

tradas nas próximas seções: a Fast Incremental Gaussian Mixture Network (FIGMN) e

a aprendizagem por reforço com misturas de gaussianas incremental. Cada parte inclui

suas próprias experiências e resultados, mostrando que ambos os objetivos (menor com-

plexidade computacional e maior eficiência de dados) foram alcançados.

A.3 Fast IGMN

A IGMN possui complexidade computacional cúbica devido a operações de in-

versão matricial e computação de determinantes. Sua complexidade é de O
(
NKD3

)
,

onde N é o número de pontos de dados, K é o número de componentes gaussianas e D

é a dimensão do problema. Isso torna o algoritmo proibitivo para tarefas de alta dimen-

sionalidade (como tarefas visuais) e, portanto, de uso limitado. Uma solução seria usar

matrizes de covariância diagonais, mas isso diminui a qualidade dos resultados, como já

relatado em trabalhos anteriores [Heinen 2011,Pinto, Engel and Heinen 2011]. Em [Pinto

and Engel 2015], atualizações de posto 1 para matrizes inversas e determinantes são apli-

cadas a matrizes de covariância completas, reduzindo assim a complexidade de tempo

para O
(
NKD2

)
para a aprendizagem, mantendo a qualidade de uma solução de matriz

de covariância completa.

Apresentamos, então, uma versão mais escalável do algoritmo IGMN, a Fast In-

cremental Gaussian Mixture Network (FIGMN). Ela é uma melhoria em relação à versão

apresentada em [Pinto and Engel 2015]. O principal problema com o algoritmo IGMN em

relação à complexidade computacional reside no fato de que a equação 2.8 (a distância

quadrática de Mahalanobis) requer uma inversão matricial, que tem uma complexidade

assintótica de O
(
D3
)
, para D dimensões (O

(
Dlog27+O

(
1
))

para o algoritmo de Strassen

ou, no máximo, O
(
D2.3728639

)
com os algoritmos mais recentes [Gall 2014]). Isso torna

o algoritmo IGMN impraticável para tarefas de alta dimensionalidade. Neste trabalho,

mostramos como trabalhar diretamente com a inversa da matriz de covariância (também
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chamada de matriz de precisão) para todo o procedimento, evitando operações onerosas.

Para detalhes nas derivações das fórmulas, veja a seção 5.1.

A.3.1 Experimentos e Resultados

A primeira experiência foi destinada a verificar se ambas as implementações IGMN

produzem exactamente os mesmos resultados. Ambas foram aplicadas a 7 conjuntos de

dados (tabela 5.1). Os resultados foram obtidos a partir da validação cruzada de 10 ve-

zes (resultando em conjuntos de treinamento com 90% dos dados e conjuntos de teste

com os 10% restantes) e as significâncias estatísticas vieram de testes t pareados com

p = 0, 05. Como pode ser visto na tabela 5.2, os algoritmos IGMN e FIGMN produ-

ziram exatamente os mesmos resultados, confirmando nossas expectativas. O número

de clusters criados por eles também foi o mesmo, e a quantidade exata para cada con-

junto de dados é mostrada na tabela 5.3. Os pacotes Weka para ambas as variações do

algoritmo IGMN, bem como os conjuntos de dados usados nos experimentos podem ser

encontrados em [Pinto 2015]. O conjunto de dados MNIST pode ser encontrado em

<http://yann.lecun.com/exdb/mnist/>, enquanto o conjunto de dados CIFAR10 está dis-

ponível em <http://www.cs.toronto.edu/~kriz/cifar.html>.

Além da confirmação que queríamos, podemos também comparar a acurácia de

classificação da IGMN / FIGMN para os conjuntos de dados comparados a outros qua-

tro algoritmos: Random Forest (RF), Rede Neural (NN), SVM Linear e SVB RBF. A

rede neural é uma implementação paralela de uma rede neural estado-da-arte com Dro-

pout [Hinton et al. 2012] com 100 neurônios ocultos, 50% de dropout para a camada

oculta e 20% de dropout para a camada de entrada (esta implementação específica pode

ser encontrada em https://github.com/amten/NeuralNetwork). Os algoritmos IGMN pro-

duziram resultados competitivos, com apenas um deles (Glass) sendo estatisticamente

significativo abaixo da acurácia produzida pelo algoritmo Random Forest. Este valor foi

significativamente inferior para todos os outros algoritmos também. Em média, os algorit-

mos IGMN foram o segundo melhor do conjunto, perdendo apenas para a Random Forest.

Note, no entanto, que a Random Forest é um algoritmo de lote, enquanto a IGMN aprende

incrementalmente a partir de cada ponto de dados. Além disso, o modelo Random Forest

resultante usou 6 vezes mais memória do que o modelo IGMN.

Um segundo experimento foi realizado para avaliar a velocidade do algoritmo pro-

posto, tanto o algoritmo original como o algoritmo IGMN aprimorado, utilizando os pa-

http://yann.lecun.com/exdb/mnist/
http://www.cs.toronto.edu/~kriz /cifar.html
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râmetros δ = 1 e β = 0, de modo que um único componente foi criado e podemos nos

concentrar em no aprimoramento devido apenas à dimensionalidade (isso também tornou

o algoritmo altamente insensível ao parâmetro delta). Eles foram aplicados aos 2 con-

juntos de dados de maior dimensão na tabela 5.1, ou seja, os conjuntos de dados MNIST

e CIFAR-10. O conjunto de dados MNIST foi dividido em um conjunto de treinamento

com 60000 pontos de dados e um conjunto de testes contendo 10000 pontos de dados, o

procedimento padrão na comunidade de aprendizagem de máquina [LeCun et al. 1998].

Da mesma forma, o conjunto de dados CIFAR-10 foi dividido em 50000 pontos de dados

de treinamento e 10000 pontos de dados de teste, também um procedimento padrão para

este conjunto de dados [Krizhevsky and Hinton 2009].

Os resultados podem ser vistos na tabela 5.4. O tempo de treinamento para o con-

junto de dados MNIST foi 20 vezes mais curto para a FIGMN, enquanto o tempo de teste

foi 16 vezes menor. Faz sentido que o tempo de teste tenha mostrado uma melhoria um

pouco menor, uma vez que a inferência só tira proveito da computação incremental dos

determinantes, mas não da computação incremental das inversas. Para o conjunto de da-

dos CIFAR-10, foi impraticável executar o algoritmo IGMN original em todo o conjunto

de dados, exigindo-nos estimar o tempo total, projetando-o linearmente a partir de 100

pontos de dados (note que, como o modelo sempre usa apenas 1 componente gaussiano

durante todo o treinamento, o tempo de computação por ponto de dados não aumenta

ao longo do tempo). Isso resultou em 32 dias de tempo de CPU estimado para o algo-

ritmo original contra 15545s (∼ 4h) para o algoritmo melhorado, uma aceleração acima

de 2 ordens de grandeza. O tempo de teste não está disponível para o algoritmo original

neste conjunto de dados, uma vez que o treinamento não pode ser concluído. Adicio-

nalmente, nós comparamos uma versão puramente de clustering do algoritmo FIGMN

no treinamento do conjunto MNIST contra o Expectation Maximization (EM) em lotes

(a implementação encontrada no software Weka). Enquanto o algoritmo FIGMN levou

∼ 7.5h para terminar, usando 208 componentes gaussianas, o algoritmo EM em lote levou

∼ 1.3h para completar uma única iteração (fixamos o número de componentes para 208

também) usando 4 núcleos de CPU. Além de requerer geralmente mais de uma iteração

para obter melhores resultados, o algoritmo de lote exigiu o conjunto de dados inteiro na

RAM. Os requisitos de memória da FIGMN foram muito menores.

Finalmente, ambas as versões do algoritmo IGMN com δ = 1 e β = 0 foram

comparadas em 11 conjuntos de dados sintéticos gerados pelo Weka. Todos os conjuntos

têm 1000 pontos de dados extraídos de uma única distribuição gaussiana (90% de trei-
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namento, 10% de testes) e um número exponencialmente crescente de dimensões: 1, 2,

4, 8, 16, 32, 64, 128, 256, 512 e 1024. Esta experiência foi realizada para comparar a

escalabilidade de ambos os algoritmos. Os resultados para treinamento e teste podem ser

vistos na figura 5.1.

A.4 Aprendizagem por Reforço com a FIGMN

O objetivo final desta pesquisa é desenvolver um algoritmo de aprendizagem por

reforço com alta eficiência de dados para espaços de estados contínuos (e aqui, nós de-

finimos esta eficiência empiricamente, sem garantias teóricas como no framework PAC-

MDP). Argumentamos que as ineficiências de outros algoritmos vêm parcialmente dos

aproximadores de funções lentos que eles utilizam, isto é, redes neurais com descida do

gradiente estocástica. Assim, um aproximador de funções eficiente deve ser usado em

vez disso. O algoritmo escolhido aqui é o FIGMN, devido às suas qualidades mostradas

nas seções anteriores. Ele pode ser combinado com aprendizagem por reforço de várias

maneiras, por exemplo:

• Modelando apenas o espaço de estados e usando as ativações das componentes

gaussianas (verossimilhanças ou posteriors) como entradas para o Q-learning linear,

que é similar às abordagens convencionais de extração de features como tile coding

e RBF. Esta arquitetura é representada na figura 5.2, e será chamada FIGMN-Q

de agora em diante. O tipo de ações permitidas por esta arquitetura depende do

algoritmo de aprendizagem por reforço específico usado na camada de saída. No

caso do Q-learning linear usado aqui, somente ações discretas são permitidas;

• Modelando o espaço conjunto de estados e valores Q (um valor Q para cada ação

possível). Esta arquitetura é mostrada na figura 5.3, e será chamada Unified FIGMN-

Q (ou U-FIGMN-Q) a partir de agora. Ela permite somente ações discretas, mas,

por outro lado, permite uma seleção de ação rápida (basta inserir o estado atual e

selecionar a ação correspondente ao maior valor Q);

• Modelando o espaço conjunto de estados, ações e valores Q (um único valor Q

é produzido para uma entrada de estado e ação). Isso tem a vantagem de permitir

ações contínuas, mas também a desvantagem de ter que realizar uma inferência para

cada ação enquanto faz a seleção de ações no caso de ações discretas, ou realizar

uma busca para selecionar ações contínuas. Esta arquitetura pode ser vista na figura
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5.4.

Aqui, limitamos nossos experimentos às duas primeiras alternativas, como a ter-

ceira foi explorada em trabalhos anteriores [Heinen, Bazzan and Engel 2011].

A.4.1 Experimentos e Resultados

A tarefa do Mountain Car consiste em controlar um carro a fim alcançar o alto

de uma colina. Ele deve subir a inclinação oposta para ganhar impulso primeiramente.

O agente tem três ações à sua disposição, aceleração para a esquerda, para a direita, ou

nenhuma aceleração. O estado do agente é composto de duas variáveis: posição atual

e velocidade. Apenas 200 etapas estão disponíveis para o agente explorar durante cada

episódio. Esta tarefa é considerada resolvida após 100 episódios consecutivos com uma

média de 110 passos ou menos para chegar ao topo da colina.

A tarefa do Cart-Pole consiste em equilibrar um mastro acima de um carro pe-

queno que pode se mover para a esquerda ou direita em cada passo. Quatro variáveis

estão disponíveis como observações: posição e velocidade atuais do carro e ângulo atual

e velocidade angular do mastro. A versão 0 exige que o mastro seja equilibrado por 200

passos, enquanto que a versão 1 requer 500 passos. Esta tarefa é considerada resolvida

após 100 episódios consecutivos com uma média de 195 passos para a versão 0 e 475

passos para a versão 1 sem deixar cair o mastro.

Finalmente, a tarefa Acrobot requer que um robô com 2 articulações atinja uma

determinada altura com a ponta do seu "braço". O torque em duas direções pode ser

exercido nas 2 juntas, resultando em 4 ações possíveis. O ângulo atual e a velocidade

angular de cada junta são fornecidos como observações. São disponibilizados 200 passos

por episódio para a exploração. Esta tarefa é considerada resolvida após 100 episódios

consecutivos com uma média de 100 passos ou menos para atingir a altura alvo.

O algoritmo FIGMN foi comparado a outros 3 algoritmos com pontuação alta no

OpenAI Gym: Sarsa (λ) com Tile Coding, Trust Region Policy Optimization (TRPO), um

método de gradiente de políticas, adequado a estados, ações e tempo contínuos, mas que

funciona em modo de lote e tem baixa eficiência de dados) [Schulman et al. 2015] e Du-

eling Double DQN (uma melhoria em relação ao algoritmo DQN, usando dois aproxima-

dores de função de valor Q com diferentes taxas de atualização e também generalização

entre ações, e é restrita a ações discretas) [Wang, Freitas and Lanctot 2015]. Estes al-
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goritmos foram escolhidos de acordo com a pontuação no OpenAI Gym no momento da

escrita. A tabela 5.5 mostra o número de episódios necessários para que cada algoritmo

atinja o limiar de recompensa necessário para as 3 tarefas. Os resultados foram extraídos

em junho-2016 e janeiro-2017 2.

É evidente que a FIGMN-Q produz melhores resultados do que o Sarsa (λ) com

Tile Coding. Seus resultados também são superiores aos do TRPO por uma grande mar-

gem. A Duel DDQN é 2 a 10 vezes mais eficiente em termos de dados do que a FIGMN-Q,

possivelmente devido à sua topologia fixa, que simplifica o processo de aprendizagem, e

também devido a outros truques que emprega, como o duplo estimador e a arquitetura

"dueling". Perceba, contudo, que a FIGMN-Q não tira proveito da eficiência de dados

da FIGMN enquanto aproxima os valores de Q, uma vez que a parte de aprendizagem

por reforço é realizada por Q-learning linear. Além disso, neste caso, Continuous Time

Q-Learning foi utilizado, como o algoritmo tempo de discreto não produziu resultados

satisfatórios em alguns casos. Não foi possível encontrar uma solução para a tarefa do

Cart-Pole-V1 que satisfizesse os critérios de resolução do Gym, mas o algoritmo apren-

deu a equilibrar o mastro por mais de 200 passos. Entre dezenas e centenas de componen-

tes gaussianas foram necessárias para resolver esses problemas com a FIGMN-Q. Isto se

deve ao fato de que cada componente gaussiana está associada a um único valor Q através

do peso de saída do regressor linear, agindo assim como um discretizador simples.

E então temos a U-FIGMN-Q, na qual as atualizações de valores Q são realizadas

pela própria FIGMN, aproveitando sua eficiência de dados. Apesar de ser muito difícil

de ajustar seus meta-parâmetros, ela provou ser o algoritmo de aprendizagem por reforço

mais eficiente em termos de dados neste conjunto de experiências. Ela foi capaz de re-

solver cada uma das tarefas em muito poucos episódios. Na verdade, ela os resolveu em

zero episódios na maioria das avaliações, o que significa que seus primeiros 100 episódios

consecutivos são suficientes para atingir o limiar de recompensa médio. Ela se saiu muito

melhor do que o esperado, já que a regra de atualização do Q-learning convencional foi

empregada. Tempo contínuo não foi necessário. Observe que, quando essa experiência

foi realizada, o acrobot-v0 não estava mais disponível no servidor do Gym, portanto os

experimentos foram mantidos localmente. Na versão 1, há 500 passos disponíveis por

episódio em vez de 200 e não há nenhum limiar de recompensa, portanto, não é trivial

comparar algoritmos com relação à eficiência de dados nesta tarefa. Outro resultado inte-

ressante é que a U-FIGMN-Q resolveu a maioria das tarefas com uma única componente

2<https://gym.openai.com/algorithms?groups=classic_control>

https://gym.openai.com/algorithms?groups=classic_control
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gaussiana, implicando que sua função de valores Q é (pelo menos aproximadamente) li-

near. A tarefa do Mountain Car, por outro lado, exigiu 8 componentes gaussianas (sua

função de valores Q tem uma superfície espiral).

No entanto, um truque foi essencial para garantir essa eficiência de dados: foi

empregado um tipo de buffer de replay de experiência. Mas em vez de amostragem alea-

tória e repetida em cada passo de tempo (como comumente feito na maioria dos trabalhos

com redes neurais), foi amostrado a partir da observação mais recente para a mais antiga,

em uma única passagem (o que significa que nós ainda executamos apenas uma atuali-

zação por passo, elas são apenas deslocadas e acumuladas), e a aprendizagem só ocorre

quando o buffer está cheio (depois disso, ele é esvaziado novamente). Curiosamente, os

dados correlacionados no tempo não prejudicam o desempenho da FIGMN como ocorre

com redes neurais. De fato, é mostrado no artigo original da IGMM [Engel and Hei-

nen 2010] que os dados devem variar lentamente (isto é, não devem ser independentes e

identicamente distribuídos (i.i.d.), exatamente a condição oposta para redes neurais). De

outro ponto-de-vista, isso pode ser visto como um aprendizado em mini-lote. Esta técnica

melhorou o algoritmo drasticamente, e parece haver 2 efeitos que ocorrem para explicar

isso:

• Em primeiro lugar, é de conhecimento geral que o Q-learning convencional com

aproximação de funções diverge devido à natureza não-estacionária dos valores

Q [Sutton and Barto 1998]. A regra de atualização do Q-learning usa o próprio

aproximador de funções para fornecer um alvo, que muda imediatamente, enquanto

a seleção de ação também é feita usando o mesmo aproximador em constante mu-

dança. Fazendo atualizações em mini-lotes, este problema é minimizado, como a

seleção de ação é realizada sobre um aproximador de funções mais estável. En-

tão, ele é atualizado de uma só vez, e depois disso, as ações podem ser selecio-

nadas de um aproximador estável novamente. Isto tem semelhança com o Double

Q-Learning, onde 2 estimadores são usados para selecionar as ações de um apro-

ximador estável que é atualizado esporadicamente a partir do segundo estimador

(que é atualizado constantemente), exceto que usamos um único estimador com

atualizações esporádicas em vez de 2;

• O segundo efeito produzido por essa abordagem de mini-lote é semelhante aos

trace decays: enquanto o Q-learning convencional atualiza um único estado-ação

por passo, o trace decay nos permite atualizar uma grande parte do histórico de

estados-ações de uma só vez. Assim, quando um objetivo é alcançado, seu va-
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lor é rapidamente propagado para trás. A abordagem de mini-lote resulta em algo

muito parecido: uma vez que os estados mais recentemente visitados são atuali-

zados primeiro, estados mais antigos receberão valores atualizados imediatamente,

eliminando a necessidade de visitar esses estados novamente para "ver"os novos

valores. Uma diferença é que o trace decay executa todas essas atualizações em

todos os passos, resultando em altas demandas computacionais.

Em geral, tamanhos de buffer maiores melhoraram os resultados. Para pequenas

tarefas episódicas como as aqui apresentadas, é suficiente definir o tamanho máximo do

buffer como o número máximo de passos por episódio para cada tarefa, resultando em

atualizações de lote episódicas (observe, no entanto, que as atualizações da FIGMN são

sempre incrementais).

Além disso, na tarefa do Montain Car, foram usadas outras técnicas que garanti-

ram a estabilidade e a convergência do algoritmo:

• A primeira foi definir uma taxa de aprendizado independente α para as variáveis

do valor Q na FIGMN. Isso significa que a equação 2.14 só deve se aplicar às

variáveis de estado ao atualizar a média e também a matriz de precisão. Isso é ne-

cessário em alguns casos, uma vez que a taxa de aprendizado da FIGMN padrão ω

dada pela equação original diminui muito rapidamente, o que pode não ser apro-

priado para uma determinada tarefa. Além disso, essa equação resulta na média da

componente convergindo para a média verdadeira de todos os dados de entrada, o

que é esperado quando se lida com dados estacionários, mas não com dados não

estacionários, como é o caso dos valores Q. O mesmo problema foi encontrado

por [Agostini and Celaya 2010] e resolvido de uma forma apropriada para o al-

goritmo usado, mas seria análogo a aplicar uma taxa de decaimento para spj na

FIGMN, fazendo assim ω diminuir mais lenamente. Não é o mesmo que a taxa de

aprendizagem independente, porque afeta todas as variáveis e não somente os valo-

res Q. É possível que exista uma solução para a tarefa do Mountain Car usando esta

técnica do decaimento de sp, mas, pelo menos nas experiências realizadas, a busca

de hiperparâmetros encontrou a solução de taxa de aprendizado independente.

• A segunda foi uma técnica semelhante ao early stopping, que é usado em redes

neurais para evitar o sobreajuste. Aqui, um limiar de recompensa (neste caso de

−122) foi definido para interromper a aprendizagem. Quando esse limiar é atin-

gido, o parâmetro de exploração ε, a taxa de aprendizado α e o limiar de criação
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τ são definidos como 0, efetivamente interrompendo qualquer aprendizado. Isso é

necessário para evitar que novas componentes sejam criadas em posições sobrepos-

tas com as antigas, produzindo o esquecimento catastrófico. Uma alternativa, que

é deixada para trabalhos futuros, seria melhorar a estabilidade da própria FIGMN

evitando sobreposições automaticamente.

A.5 Conclusões

Esta tese apresentou os resultados da minha pesquisa sobre a combinação de mo-

delos incrementais de misturas de gaussianas com aprendizagem por reforço. Uma versão

melhorada da Incremental Gaussian Mixture Network (IGMN) foi implementada, resul-

tando em um algoritmo mais escalável (FIGMN), uma exigência para lidar com espaços

de alta dimensionalidade como o mundo físico. Este algoritmo foi empregado como um

aproximador de funções para o espaço de estados em três tarefas de aprendizagem por

reforço contínuo clássicas. Os resultados mostram que, quando empregado como extrator

de features, ele é competitivo com as abordagens existentes. No entanto, quando é usado

para aproximar a função de valores Q em si, ele apresenta uma surpreendente eficiên-

cia de dados, aprendendo as três tarefas dentro de um único episódio ou pouquíssimos

episódios.

O algoritmo Unified FIGMN-Q obteve inspirações em trace decays, experience

replay e Double Q-learning, técnicas às quais sua excelente eficiência de dados pode

ser atribuída. Uma descoberta interessante encontrada ao utilizar estas técnicas é que

alguns inconvenientes das redes neurais convencionais que requerem algumas soluções

alternativas não estão presentes na FIGMN, permitindo-nos usufruir plenamente destes

procedimentos. Por exemplo, a FIGMN não requer dados i.i.d., e portanto o buffer de

experience replay não precisa ser amostrado aleatoriamente. Além disso, devido à sua

alta eficiência de dados, apenas uma única varredura através deste buffer é necessária.

Ao atualizar o modelo apenas esporadicamente, o uso simultâneo da estimativa da fun-

ção Q para seleção e atualização de ações é evitado, melhorando a convergência, o que

demonstra paralelos com o Double Q-learning. Assim, uma das principais contribuições

desta pesquisa é mostrar como algoritmos não-mainstream podem ser combinados com

sucesso com aprendizagem por reforço, sugerindo que as redes neurais (nas suas formas

atuais) não são a única possibilidade ou a melhor delas.

Os principais obstáculos encontrados residem na natureza não-estacionária da fun-
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ção de valores Q, o que não é apropriado para a redução da taxa de aprendizagem como

ocorre na FIGMN. A FIGMN encontra médias dos dados de entrada, enquanto que as

atualizações dos valores Q requerem ênfase em dados mais recentes, em alguns casos até

mesmo sobrescrevendo totalmente valores imprecisos anteriores (devido ao bootstrap-

ping). Nós corrigimos esse problema fornecendo uma taxa de aprendizado separada para

os valores Q, bem como implementando um controle mais estrito sobre sua variância, a

fim de evitar singularidades. Outra questão introduzida pela aprendizagem dos valores Q

juntamente com todas as outras variáveis é que estados e ações podem dominar os cál-

culos de distância, tornando difícil a seleção de ações diretamente a partir de estados e

valores Q elevados, mas somente se um único valor Q for estimados a partir de estados e

ações em cada inferência. Este método de combinação da FIGMN com o Q-learning não

foi experimentado, uma vez que já está presente em trabalhos anteriores sobre o algoritmo

IGMN. Em vez disso, a abordagem unificada apresentada nesta tese considera o espaço

conjunto de estados e valores Q, um para cada ação possível. Desta forma, é possível

selecionar ações rapidamente simplesmente alimentando o estado atual para a FIGMN e

estimando os valores Q para todas as ações de uma só vez.

Outro grande obstáculo encontrado durante os experimentos foi a alta sensibili-

dade da FIGMN aos seus hiperparâmetros (tau e delta). Uma alteração muito pequena

nesses parâmetros é suficiente para fazer com que o algoritmo crie mais ou menos com-

ponentes gaussianas, o que tem um enorme impacto no modelo final. Além disso, a

criação excessiva de componentes pode causar sobreajuste, bem como o esquecimento

catastrófico. Novas componentes podem ter grandes regiões sobrepostas com componen-

tes antigas, interferindo com o que foi aprendido anteriormente. Assim, propomos que,

em trabalhos futuros, esta questão deve ser tratada com certa urgência, pois isso pode

impedir o uso prático da FIGMN. Duas ideias aqui podem valer a pena serem exploradas:

• Em primeiro lugar, alterar o critério de criação de componentes. O teste utili-

zado atualmente verifica apenas a maior probabilidade entre todas as componentes

gaussianas. Mas isso está ignorando o fato de que a saída da inferência da FIGMN

é produzida pela mistura de todas as componentes. Assim, enquanto a componente

que mais se encaixa nos dados pode não ser suficientemente próxima (em um sen-

tido de distância de Mahalanobis), o conjunto completo de componentes pode ser

suficiente para modelar os dados de entrada corretamente. Isto significa que o teste

de verossimilhança não deveria ser realizado apenas na melhor componente, mas

sim na soma das probabilidades. Espera-se que menos componentes sejam criadas
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com esta abordagem, produzindo menos sobreajuste e modelos tão bons ou melho-

res que a abordagem atual. Além de considerar o poder de representação do modelo

completo, isso teria o efeito colateral benéfico de diminuir a probabilidade de criar

novas componentes, quanto maior o número de componentes atuais, produzindo

uma espécie de regularização.

• Em segundo lugar, o tamanho inicial das componentes deve ser adaptativo. Atu-

almente, o parâmetro δ e a amplitude / desvio padrão dos dados são usados desde o

início do processo de aprendizagem até o seu fim. Isso não só coloca uma grande

responsabilidade e sensibilidade em um único hiperparâmetro, como também re-

sulta em tamanhos de componentes inadequados ao longo do processo. Inadequado,

nesse contexto, significa sobreposição de regiões com componentes antigas ou com-

ponentes muito pequenas em um grande espaço desocupado. Enquanto o primeiro

caso pode produzir o esquecimento catastrófico, o segundo deixa o modelo pro-

penso a sobreajuste. A sugestão, aqui, seria limitar os tamanhos de componentes

iniciais de uma maneira que evite a sobreposição (possivelmente usando a distância

Bhattacharyya [Bhattacharyya 1946]). Isso deixaria o usuário mais livre para de-

finir valores δ maiores, reduzindo sua sensibilidade e evitando componentes muito

pequenas.

Outro problema com a forma atual da FIGMN reside na sua dissimilaridade um

tanto grande com os modelos de redes neurais convencionais. Ao reformulá-lo como

uma arquitetura feedforward convencional, seria possível fazer comparações melhores,

empregar técnicas existentes usadas em redes neurais, usar as ferramentas já disponíveis,

redes neurais existentes e frameworks de grafos computacionais, que são ubíquos hoje

em dia [Bahrampour et al. 2015], aproveitando melhor o processamento paralelo. Seria

também possível transferir alguns dos princípios da FIGMN para redes neurais, tornando-

as mais eficientes em termos de dados. Um possível ponto de partida seria considerar

uma rede neural feedforward com uma camada linear (para as transformações de rotação

e escalonamento) seguida por uma camada RBF, que seria capaz de produzir gaussianas

multivariadas alongadas sobre o espaço de entrada.

Embora a proposta original para esta pesquisa incluísse aprendizagem baseada em

modelos e estratégias de exploração melhoradas (usando limites superiores de confiança),

o algoritmo desenvolvido funcionou bem o suficiente para dispensar esses recursos, pelo

menos nas tarefas onde foi testado. Para verificar os benefícios oferecidos por essas téc-

nicas adicionais, novos experimentos com ambientes mais complexos seriam necessários.
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