
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

RENAN DE QUEIROZ MAFFEI

Translating sensor measurements into texts
for localization and mapping

with mobile robots

Thesis presented in partial fulfillment
of the requirements for the degree of
Doctor of Computer Science

Advisor: Prof. Dr. Edson Prestes e Silva Jr.
Coadvisor: Prof. Dr. Mariana Luderitz Kolberg

Porto Alegre
April 2017

CIP — CATALOGING-IN-PUBLICATION

Maffei, Renan de Queiroz

Translating sensor measurements into texts for localization
and mapping
with mobile robots / Renan de Queiroz Maffei. – Porto Alegre:
PPGC da UFRGS, 2017.

163 f.: il.

Thesis (Ph.D.) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2017. Advisor: Edson Prestes e Silva Jr.; Coadvisor: Mariana
Luderitz Kolberg.

1. Mobile Robots. 2. Localization. 3. Mapping. 4. Place
Recognition. 5. Free-Space Density. 6. n-grams. I. Silva Jr.,
Edson Prestes e. II. Kolberg, Mariana Luderitz. III. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Rui Vicente Oppermann
Vice-Reitora: Profa. Jane Fraga Tutikian
Pró-Reitor de Pós-Graduação: Prof. Celso Giannetti Loureiro Chaves
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do PPGC: Prof. João Luiz Dihl Comba
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“It’s just a question of reassembling the components in the correct sequence...”

— ALAN MOORE & DAVE GIBBONS, “WATCHMEN”, 1985

AGRADECIMENTOS

Em primeiro lugar, agradeço aos meus pais Sérgio e Elenice e à minha irmã Letícia,

por tudo que me proporcionaram e seguem proporcionando na vida. Não há outra família

como essa.

Agradeço aos meus orientadores professores Edson Prestes e Mariana Kolberg, não

apenas pela orientação que foi muito importante para que este trabalho alcançasse o re-

sultado atual, mas também pela excelente convivência (no caso do Edson, por quatro

continentes).

Agradeço aos professores Silvia Botelho (FURG), Mário Campos (UFMG) e Paulo

Engel (UFRGS), membros da banca na avaliação da proposta de Tese. Seus comentários

foram fundamentais para o aprimoramento deste trabalho.

Agradeço ao colega e amigo Vitor A. M. Jorge com o qual trabalhei diariamente du-

rante todo esse tempo, tanto em assuntos de nossas teses de doutorado, quanto em muitos

outros trabalhos. Diga-se de passagem, foi uma bela dupla. Da mesma forma, agradeço

a Vitor F. Rey que por um bom tempo fez essa dupla virar um ótimo trio. É importante

ressaltar que todos os trabalhos apresentados nesta tese foram desenvolvidos em total co-

laboração com os dois Vitors. Agradeço também aos outros amigos do grupo Phi Robotics

Research e ao amigo Rodrigo Oliveira pela companhia diária nesses anos todos.

Por fim, agradeço a Mariane, que além de colaborar neste trabalho, tem sido a melhor

companhia que eu poderia esperar um dia ter.

ABSTRACT

Simultaneous Localization and Mapping (SLAM), fundamental for building robots with

true autonomy, is one of the most difficult problems in Robotics and consists of estimat-

ing the position of a robot that is moving in an unknown environment while incrementally

building the map of such environment. Arguably the most crucial requirement to obtain

proper localization and mapping is precise place recognition, that is, determining if the

robot is at the same place in different occasions just by looking at the observations taken

by the robot. Most approaches in literature are good when using highly expressive sensors

such as cameras or when the robot is situated in low ambiguous environments. However

this is not the case, for instance, using robots equipped only with range-finder sensors in

highly ambiguous indoor structured environments. A good SLAM strategy must be able

to handle these scenarios, deal with noise and observation errors, and, especially, model

the environment and estimate the robot state in an efficient way. Our proposal in this

work is to translate sequences of raw laser measurements into an efficient and compact

text representation and deal with the place recognition problem using linguistic processing

techniques. First, we translate raw sensor measurements into simple observation values

computed through a novel observation model based on kernel-density estimation called

Free-Space Density (FSD). These values are quantized into significant classes allowing

the division of the environment into contiguous regions of homogeneous spatial density,

such as corridors and corners. Regions are represented in a compact form by simple

words composed of three syllables – the value of spatial density, the size and the variation

of orientation of that region. At the end, the chains of words associated to all observations

made by the robot compose a text, in which we search for matches of n-grams (i.e. se-

quences of words), which is a popular technique from shallow linguistic processing. The

technique is also successfully applied in some scenarios of long-term operation, where

we must deal with semi-static objects (i.e. that can move occasionally, such as doors and

furniture). All approaches were evaluated in simulated and real scenarios obtaining good

results.

Keywords: Mobile Robots. Localization. Mapping. Place Recognition. Free-Space

Density. n-grams.

Traduzindo leituras de sensores em textos

para localização e mapeamento de robôs móveis.

RESUMO

Localização e Mapeamento Simultâneos (SLAM), fundamental para robôs dotados de

verdadeira autonomia, é um dos problemas mais difíceis na Robótica e consiste em esti-

mar a posição de um robô que está se movendo em um ambiente desconhecido, enquanto

incrementalmente constrói-se o mapa de tal ambiente. Provavelmente o requisito mais im-

portante para localização e mapeamento adequados seja um preciso reconhecimento de

local, isto é, determinar se um robô estava no mesmo lugar em diferentes ocasiões apenas

analizando as observações feitas pelo robô em cada ocasião. A maioria das abordagens da

literatura são boas quando se utilizam sensores altamente expressivos, como câmeras, ou

quando o robô está situado em ambientes com pouco ambiguidade. No entanto, este não

é o caso, por exemplo, quando o robô equipado apenas com sensores de alcance está em

ambientes internos estruturados altamente ambíguos. Uma boa estratégia deve ser capaz

de lidar com tais ambientes, lidar com ruídos e erros nas observações e, especialmente,

ser capaz de modelar o ambiente e estimar o estado do robô de forma eficiente. Nossa

proposta consiste em traduzir sequências de medições de laser em uma representação de

texto eficiente e compacta, para então lidar com o problema de reconhecimento de local

usando técnicas de processamento lingüísticos. Nós traduzimos as medições dos senso-

res em valores simples computados através de um novo modelo de observação baseado

em estimativas de densidade de kernel chamado de Densidade de Espaço Livre (FSD).

Estes valores são quantificados permitindo a divisão do ambiente em regiões contíguas

de densidade homogênea, como corredores e cantos. Regiões são representadas de forma

compacta por simples palavras descrevendo o valor de densidade espacial, o tamanho e

a variação da orientação daquela região. No final, as cadeias de palavras compõem um

texto, no qual se buscam casamentos de n-gramas (isto é, sequências de palavras). Nossa

técnica também é aplicada com sucesso em alguns cenários de operação de longo-prazo,

onde devemos lidar com objetos semi-estáticos (i.e. que se movem ocasionalmente, como

portas e mobílias). Todas as abordagens foram avaliadas em cenários simulados e reais

obtendo-se bons resultados.

Palavras-chave: Robôs móveis, Localização, Mapeamento, Reconhecimento de local,

Densidade de Espaço Livre, n-gramas.

LIST OF ABBREVIATIONS AND ACRONYMS

EKF Extended Kalman Filter

FSD Free-Space Density

HIMM Histogramic In-Motion Mapping

ICP Iterative Closest Point

KDE Kernel Density Estimate

LIDAR Light Detection And Ranging

MCL Monte-Carlo Localization

RBPF Rao-Blackwellized Particle Filter

SIR Sampling-Importance-Resampling

SLAM Simultaneous Localization And Mapping

LIST OF ALGORITHMS

2.1 Monte Carlo Localization ...31

2.2 HIMM ...36

2.3 Gauss-Newton algorithm for pose graph optimization ...43

3.1 Free-Space Density ...54

4.1 Basic N-Gram SLAM algorithm...73

4.2 Build contiguous region..77

4.3 Build Word..78

5.1 Build Extended Word..96

5.2 Build Multi-level Words ...98

5.3 Find matches of multi-level words n-grams ...101

6.1 Compute number of free-space frontiers ..126

LIST OF FIGURES

Figure 1.1 Difficulty of loop closing detection. ..18
Figure 1.2 Noisy channel model for transmission of information.20
Figure 1.3 Core idea of our proposal. ...21

Figure 2.1 State estimation problems in mobile robotics..27
Figure 2.2 Graphical models of Localization, Mapping and SLAM.27
Figure 2.3 Example of the sampling, importance weighting and resampling in a

particle filter. ...32
Figure 2.4 Example of particle filter convergence in Monte Carlo Localization............33
Figure 2.5 Computing HIMM at each grid cell in the sensor’s field-of-view instead

of using ray-casting is required to avoid holes in the free-space region.................34
Figure 2.6 HIMM model. ..35
Figure 2.7 Example of mapping using HIMM..36
Figure 2.8 Example of pose graph construction. ..37
Figure 2.9 Pose graph optimization in a dataset recorded at MIT Killian Court.39
Figure 2.10 Error between observed relative pose of node xj from node xi and

expected relative pose. ..41
Figure 2.11 Computing kernel density estimates in four different positions of an

image...44
Figure 2.12 Uniform kernel...45
Figure 2.13 Gaussian kernel..46
Figure 2.14 Inverted kernel. ..46
Figure 2.15 Example of kernel density estimation made with IKh.47

Figure 3.1 Example of FSD values, in two different time steps.53
Figure 3.2 Maps of densities varying kernel profile and kernel bandwidth.55
Figure 3.3 Evaluating the orientation of particles using the gradient of the FSD

scalar field. ..59
Figure 3.4 Scenarios used in the experiments for global localization.............................61
Figure 3.5 Localization in Scenario C using different kernels profiles and bandwidths.63
Figure 3.6 Mean errors and mean times per iteration for scenarios A, B and C.............66

Figure 4.1 Example of the picket fence problem in an environment.71
Figure 4.2 Example of a topological map obtained from a densities map by just

applying a threshold over density values. ...72
Figure 4.3 Result of the density quantization using Mean Shift.74
Figure 4.4 Different robot motion directions lead to different FSD values because

the area observed by the robot changes. ...75
Figure 4.5 Differences on the results of soft and hard FSD due to variations in the

robot motion direction...76
Figure 4.6 Example of the algorithm for building contiguous regions.77
Figure 4.7 Computing the angle variation of a region. ...78
Figure 4.8 Example of construction of words and n-grams..79
Figure 4.9 Example of place recognition using n-grams. ...81
Figure 4.10 Scenarios used in the experiments. ..83
Figure 4.11 Similarity matrices associated to each scenario. ...85
Figure 4.12 Results of precision and recall obtained in each scenario according to

the variations in the size of the grams and in the length threshold.86

Figure 4.13 Variation of precision and recall over time in all scenarios.........................88
Figure 4.14 Topological maps of Scenarios A and C..89

Figure 5.1 Changes in the environment, such as an open/closed door, affect the
word construction..94

Figure 5.2 Example of a region described by three words in a given situation and
by an alternative word in another potential situation. ...97

Figure 5.3 Example of n-grams matching using multi-level words..............................100
Figure 5.4 Association of regions and nodes from pose-graph.....................................103
Figure 5.5 Variation of raw density values (Ψ) obtained in the regions shown in

Figure 5.1. ...104
Figure 5.6 Environment used in the experiments, along with an example of three

laps in the robot trajectory...105
Figure 5.7 Variation of environment configurations in Scenarios B and C...................106
Figure 5.8 Examples of environment configurations. ...107
Figure 5.9 Precision × Recall plots obtained in each scenario for the single level

approach and for two-levels approaches fixing the threshold of level-0 and
varying the thresholds of level-1. ...108

Figure 5.10 Results of precision (top) and recall (bottom) in relation to the mini-
mum size of n-grams to accept matches in level-1 of a two-level approach.110

Figure 6.1 Simulated scenarios S1, S2 and S3..117
Figure 6.2 Real scenarios R1 and R2. ...118
Figure 6.3 Real scenario R3. ...119
Figure 6.4 Variation of the free-space density in the robot position considering the

sequence of observations that compose each word...122
Figure 6.5 Variation, in degrees, of the robot orientation considering the sequence

of observations that compose each word. ...124
Figure 6.6 Example of the number of frontiers of free-space in different types of

regions...127
Figure 6.7 Variation of the number of free-space frontiers surrounding the robot

considering the sequence of observations that compose each word.129
Figure 6.8 Decision tree for semantic classification. ..131
Figure 6.9 Classification results for simulated scenarios. ...132
Figure 6.10 Classification results for real scenarios. ..134

LIST OF TABLES

Table 2.1 Example of n-grams extracted from a sentence. ...49

Table 4.1 Robot paths in each scenario ...83
Table 4.2 Comparison with ICP in Scenario C. ..90

Table 5.1 Comparisons of precision, recall and average time (to process one lap in
the environment). ..110

Table 6.1 Information about the datasets of real scenarios. ..116
Table 6.2 Semantic division of all observations according to the ground-truth............120
Table 6.3 Expected words according to the ground-truth ...120
Table 6.4 Parameters used in semantic classification..130

LIST OF SYMBOLS

xt robot pose (x, y, θ)T at instant t. Each component of xt, can be

refered by x(xt), y(xt) and θ(xt).

ut action that moves the robot from xt−1 to xt.

zt vector of K observations (z1
t , z

2
t , · · · , zKt)T made by the robot

at instant t. Dependent on the type of sensor used: it may cor-

respond to observations of K landmarks, or to K readings of a

range finder sensor. In this case, an observation zkt = (r, θ)T

indicates the measured range r obtained at angle θ.

m map of the environment, i.e. vector (m1,m2, · · · ,mN)T of

all objects (e.g. feature or grid cell) describing the scenario.

In occupancy grids, a cell mi = (x, y, occ)T is associated to a

position (x, y) and an occupancy value occ.

Xt set {p1,p2, · · · ,pM} of particles estimating the robot state at

instant t.

p
[m]
t = 〈x, w〉 them-th particle ofXt at instant t. p[m]

t is composed of the pose

x and the importance weight w.

G = 〈s,A〉 pose graph with nodes given by the state vector s = (x0,x1, · · · ,xt)T

of all robot poses, and arcs (i.e. edges of directed graph) given

by the set A = {a01, · · · ,aij, · · · }.

aij = 〈r,Ω〉 observed arc between nodes xi and xj , where r is the observed

pose1 of node xj relatively to node xi, and Ω is the information

matrix describing the uncertainty of the estimate.

r̂(aij, s) expected arc between nodes xi and xj , computed based on the

current values on the state vector s.

e(aij, s) error associated to the arc between nodes xi and xj , given by

the difference between r̂(aij, s) and r(aij).

J ij =
∂e(aij ,s)

∂s

∣∣∣
s=s̆

Jacobian matrix of the error e(aij, s) computed at the state

guess s̆.

1Information obtained after analyzing sensor measurements, e.g. through scan matching.

f̂h(x) estimation of a probability density function f at point x ob-

tained using a kernel function Kh(d).

Kh(d) circular kernel function with bandwidth h that operates over a

point at distance d.

UKh(d), GKh(d), IKh(d) three different kernel profiles with bandwidth h: uniform, Gaus-

sian and inverted, respectively.

Ψ soft free-space density (FSD). It can be obtained in complete or

incomplete maps.

Ψ� hard free-space density (FSD). Only obtained in complete maps,

otherwise is undefined (UNDΨ).

ot = 〈Ψ, d,xt〉 observation made at instant t, composed of a FSD value (Ψ)

with its associated density class (d), and the current robot pose

(xt) given by odometry.

Ri the i-th contiguous region visited by the robot. Ri = [oj, · · · ,oj+k]

is described by a list of sequential observations of same density

class.

O list of all observations made by the robot. It is equivalent to the

concatenation2 of all regions visited by the robot O = [R0 ⊕

R1 ⊕ · · ·].

W = 〈d, s, a〉 word that describes a segment of the robot path with homoge-

neous FSD. It has three syllables: the density class of all obser-

vations in the segment (d), the size of the segment (s), and the

angle variation in the segment (a).

ρs(Wi, Wj) ratio between the sizes of two words, Wi and Wj , used to compute

the matching of words.

εs size tolerance to accept a match of two words.

εa angle tolerance to accept a match of two words.

W = 〈d, s, a, P, O〉 word used in the multi-level approach. It is composed by the

same three syllables (d, s, a) of the original definition of word,

2We define the symbol ⊕ as the operator to concatenate lists.

W, along with a list of predecessor words (P) and the list of

observations associated to the word (O).

Wl list of words of the l-th level,Wl = [W0,l,W1,l, · · ·Wn,l], with

Wj,l being the j-th word of such level.

g n-gram match, i.e. a list of n sequential pairs of words that can

be matched, [〈Wi,Wu〉, 〈Wi+1,Wu+1〉, · · · , 〈Wi+n−1,Wu+n−1〉]

εg minimum number of words required to accept an n-gram match.

O list of lists of word occurrences, used to speed up the initial

search for n-gram matches.

M list of all matches of n-grams that occur at each instant.

δ best alignment between two sequences of observations.

f number of frontiers of free-space in the boundaries of a kernel,

Kh, centered at the robot position.

CONTENTS

1 INTRODUCTION...17
1.1 Hypothesis and Goals ...19
1.2 Current Contributions..23
1.3 Organization..24
2 THEORETICAL BACKGROUND...25
2.1 State Estimation in Mobile Robotics ...25
2.1.1 Monte Carlo Localization ..30
2.1.2 Histogramic In-Motion Mapping (HIMM)..33
2.1.3 Graph-based SLAM...37
2.1.3.1 Pose graph optimization via Gauss-Newton ...40
2.2 Kernel Density Estimation on Images...43
2.3 n-grams: an efficient technique from shallow linguistic processing47
3 FREE-SPACE DENSITY (FSD): TRANSLATING RAW SENSOR MEA-

SUREMENTS INTO SIMPLE OBSERVATION VALUES51
3.1 Introduction...51
3.2 The Free-Space Density ..51
3.2.1 Building a local map ..52
3.2.2 Computing the free-space density..53
3.2.3 Using different kernel profiles to compute FSD ..54
3.3 Case Study: Mobile robot localization..56
3.3.1 FSD-based Monte Carlo localization...58
3.3.2 Experiments ...61
3.3.2.1 Evaluating the FSD observation model ..62
3.3.2.2 Comparing FSD with other techniques...63
3.4 Related Work...67
3.5 Summary..68
4 N-GRAM SLAM: TRANSLATING SIMPLE OBSERVATION VALUES INTO

WORDS AND SOLVING SLAM WITH A SHALLOW LINGUISTIC
PROCESSING TECHNIQUE ...70

4.1 Introduction...70
4.2 SLAM using n-grams of FSD-based words ..73
4.2.1 Building a contiguous spatial region..73
4.2.2 Translating regions into words...77
4.2.3 Matching current and past observations using n-grams ..78
4.2.4 Topological Map Construction ..82
4.3 Experiments...82
4.3.1 Evaluation Scenarios..82
4.3.2 Analysis of Results ..84
4.4 Related Work...90
4.5 Summary..92
5 LONG-TERM PLACE RECOGNITION USING MULTI-LEVEL WORDS

OF SPATIAL DENSITIES...93
5.1 Introduction...93
5.2 Building multi-level words of spatial densities for place recognition in life-

long operation..95
5.2.1 Extending the previous definition of word...95
5.2.2 Building multi-level words ..97
5.2.3 Performing place recognition...99

5.2.4 Fast adjustment of matches by evaluating raw spatial densities102
5.3 Experiments...104
5.3.1 Evaluation Scenarios..104
5.3.2 Analysis of Results ..106
5.4 Related Work...111
5.5 Summary..112
6 ANALYSIS OF FSD-BASED WORDS AND THEIR USE FOR SEMANTIC

MAPPING ...114
6.1 Introduction...114
6.2 An in-depth study of FSD-based words generated in different environments 115
6.2.1 Ground-truth classification of several scenarios ..115
6.2.2 Syllable d: the characteristics of free-space density in different places121
6.2.3 Syllable s: the characteristics of region length in different places122
6.2.4 Syllable a: the characteristics of angle variation in different places123
6.2.5 Summary of the analysis..124
6.3 Investigating the number of frontiers of free-space...125
6.4 A preliminary approach based on free-space density for environments clas-

sification ...129
6.5 Summary..135
7 CONCLUSION AND FUTURE WORK ..137
APPENDIXA EXPERIMENT APPARATUS - P3-DX MOBILE ROBOT............142
APPENDIXB DERIVATION OF GAUSS-NEWTON ALGORITHM FOR GRAPH-

BASED SLAM...144
APPENDIXC KERNEL DENSITY ESTIMATION...149
REFERENCES...151

17

1 INTRODUCTION

In the “age of the robots” – label given to the 21st century by many roboticists –

we are witnessing intelligent autonomous robots gradually coming out of factories and

entering peoples’ homes (SICILIANO; KHATIB, 2008). That being said, a minimum re-

quirement for truly autonomous robots is the capability of moving, without supervision,

through real-world environments. Therefore their autonomy strongly relies on their abil-

ity to maintain the knowledge of their pose, which means localizing themselves when a

map of the environment is known a priori, or, otherwise, simultaneously building a map

of the environment and self-localizing (SIEGWART; NOURBAKHSH, 2004). The lat-

ter problem, called SLAM (Simultaneous Localization and Mapping), is one of the most

challenging problems in mobile robotics because it is a kind of chicken-and-egg problem:

building a map of the environment requires the robot pose to be known, yet, the uncer-

tainty regarding the robot pose increases as the robot moves due to accumulated errors in

odometry, and this uncertainty can only be reduced by comparing the robot observations

with a map of the environment (THRUN; BURGARD; FOX, 2005).

During the last decades, the Robotics community has deeply studied the problem of si-

multaneous localization and mapping (DURRANT-WHYTE; BAILEY, 2006). Solutions

to such problem propose ways of dealing with sensors uncertainties and properly repre-

senting the scenario, while accurately distinguishing ambiguities in the environment. De-

spite numerous robust approaches presented in the literature – such as based on Kalman

filters (SMITH; SELF; CHEESEMAN, 1990; JULIER; UHLMANN, 1997), particle fil-

ters (MONTEMERLO et al., 2002; ELIAZAR; PARR, 2004), or graph optimization (LU;

MILIOS, 1997a; BOSSE et al., 2003; THRUN; MONTEMERLO, 2006; GRISETTI et

al., 2010b) – the area still poses great challenges, specially regarding place recognition,

which is crucial for loop closing detection. For example, as illustrated in Figure 1.1(a), a

robot that starts at a given point P in an environment and then travels around a large loop

that goes back to P, may do not realize, based on dead reckoning, that its current position

is actually P. The accumulation of errors arising from integration of odometry readings,

discretization of odometry sensors or even wheel slippages lead to significant discrepancy

in the pose estimate, as shown in Figure 1.1(b). Therefore, determining if observations

made by the robot in different occasions correspond to the same region of the environment

is a fundamental task for proper localization and mapping.

An important element of a place recognition strategy is the sensor observation model,

18

Figure 1.1: Difficulty of loop closing detection. (a) Real robot path in a situation of loop
closure. (b) Estimated robot path distorted from the real one due to cumulative odometry
errors.

P P??
?

(a) (b)

which depends on the type of sensor used by the robot. For instance, robots equipped with

cameras solve place recognition through sum of absolute differences of image patches

(MILFORD; WYETH, 2012), comparisons of color histograms of images (WERNER;

SITTE; MAIRE, 2012), comparisons of features extracted from images (CUMMINS;

NEWMAN, 2008), etc. Robots equipped with range finders, such as sonars or LIDAR
1, solve place recognition by comparing the ranges measured by the sensor, or by match-

ing the endpoints of the sensor beams, among other strategies (BESL; MCKAY, 1992;

THRUN; BURGARD; FOX, 2005; SONG; LI, 2012).

Another important element is the world modeling, which must be adapted to the type

of the environment. Using sets of lines or planes to represent obstacles may be a good

approach if we are working in indoor/structured environments, but not suitable for out-

door terrains (SACK; BURGARD, 2003). In the latter cases, many methods use point

clouds to represent the environment. The problem of using point clouds is the low rep-

resentativeness of the information, that makes difficult both the visualization process and

the robot decision process for navigation (BURGARD; HEBERT, 2008). Some world

modeling approaches more representative than point clouds are: occupancy grids, which

discretize the environment into squared cells through a process that is easy to imple-

ment and fast to update, but expensive in terms of memory consumption (HAHNEL et

al., 2003a; GRISETTI; STACHNISS; BURGARD, 2007; PRESTES et al., 2003); irreg-

ular meshes, or collections of convex polygons, which can represent more accurately the

real environment, but are more computationally expensive to maintain than grids; ele-

vation grids and cost maps, that project 3D information into a 2D grid representation

(LACROIX et al., 2002); among others. Finally, there are topological maps, which rep-

1LIDAR: Light Detection and Ranging, i.e. laser range finder

19

resent the environment using a graph, where nodes are locally contiguous regions of the

environment. There are many approaches for node generation, e.g., nodes may be associ-

ated to uniform-sized segments of the robot trajectory, or to vertices of a Voronoi diagram

extracted from the environment, or even may have a semantic meaning, such as rooms

and corridors (WERNER et al., 2009; BEESON; JONG; KUIPERS, 2005; CHOSET;

NAGATANI, 2001).

A last fundamental element of a place recognition strategy is how we match sets of ob-

servations. A possible approach is to search one-to-one matches of observations (CUM-

MINS; NEWMAN, 2008), which is appropriate when there are highly distinguishable

features in the environment, otherwise it may generate countless false positives. Other

possible approach is the sequential match of observations. This makes sense given that

a robot that is revisiting a place will generally obtain a sequence of observations that is

similar to some other sequence observed in the past. In fact, it has been shown by many

methods that analyzing sequential information is a way to disambiguate seemingly indis-

tinguishable regions (MILFORD; WYETH, 2012; WERNER et al., 2009). However, this

type of approach strongly depends on a model that is compact and efficient in the man-

agement of large sets of data. Additionally, the model should be robust to uncertainties

inherent to sensor readings and small changes in the environment, because the chances of

finding exact matches of long sequences of measurements are extremely low.

In summary, the key problems associated with robot localization and mapping that we

will address in this thesis are

• How to efficiently solve place recognition in indoor structured environments that

are highly ambiguous?

• How to model the observations and the environment with a robust and compact

representation?

• How to deal with noise and errors in the robot pose estimate and sensor observa-

tions, especially in lifelong operation?

1.1 Hypothesis and Goals

As summarized in previous section, to solve the SLAM problem, and more specifically

the place recognition problem, we must deal with large amounts of information (i.e. sen-

sor measurements) that are noisy, possibly contaminated with outliers and, in many cases,

20

Figure 1.2: Noisy channel model for transmission of information. Figure adapted from
(JURAFSKY; MARTIN, 2000).

DecoderSource information noisy
information

guess at
original

information

Noisy Channel

highly ambiguous. We must correct and simplify this information in order to extract a co-

herent understanding from it (i.e. the map of the environment and the robot localization),

which can be done by searching and identifying existing correspondences inside the data.

This process resembles what Shannon described, in the seminal paper about information

theory (SHANNON, 1948) back in the 1940s, as the metaphor of the “noisy channel” for

the transmission of language, illustrated in Figure 1.2. The idea is that the information

received in a communication process is a noisy version of the original information, i.e.

the information emitted by the source is transformed after passing through a noisy com-

munication channel. Then, we must try to figure out how the channel modified the ‘true’

information in order to correct it. During decades the problems of correction and predic-

tion of information transmitted according to a language have been the focus of study of

different fields in computer science, such as computational linguistics, natural language

processing and speech recognition.

We conjecture that the problem of state estimation in robotics can be viewed in the

light of linguistic processing. Our idea is that the sequential description of sensor mea-

surements obtained by a robot corresponds to a message describing an information (i.e

the environment where the robot is located) that is transmitted through a noisy channel

(i.e. contaminated by systematic and non-systematic errors of the robot sensors and ac-

tuators). The received information must be analyzed, simplified and corrected to allow

the comprehension of the original information. For example, we can view the problem of

place recognition as finding matches of very similar strings in the full sequence of trans-

mitted messages. Furthermore, if we define a text description for the sequences of sensor

measurements, that is robust and much more compact than the raw readings, than we can

efficiently handle the problem with the aid of techniques from linguistic processing.

Our proposal in this work is to translate into a text the observations made by a robot

equipped with a laser range finder and to deal with the place recognition problem us-

ing techniques from shallow linguistic processing, such as n-grams2. The core idea of

2An n-gram is an ordered sequence of size n. A gram can be a word (as in our case), a syllable, a letter,
etc. n-grams are used for language identification, string matching, among other applications (JURAFSKY;
MARTIN, 2000).

21

Figure 1.3: Core idea of our proposal. (a) Incremental abstraction of raw sensor mea-
surements into a simple text representation. (b) Input: sequence of raw range-finder mea-
surements (dark gray areas in front of the robot). (c) Goal: sequence of words describing
different types of regions, such as bifurcations (blue), corridors (green) and corners (red).

text

WORDa, WORDb, WORDc, WORDd, · · ·

odometry density

x1, y1, θ1 Ψ1

x2, y2, θ2 Ψ2

x3, y3, θ3 Ψ3
...

odometry laser measurements

x1, y1, θ1 z11 , z
2
1 , z

3
1 , · · · , z1781 , z1791 , z1801

x2, y2, θ2 z12 , z
2
2 , z

3
2 , · · · , z1782 , z1792 , z1802

x3, y3, θ3 z13 , z
2
3 , z

3
3 , · · · , z1783 , z1793 , z1803
...

t2
t3 t4 t5

t1

t6 t7 t8

t9

t2
t3 t4 t5

t1

t6 t7 t8

t9

(b)

t2
t3 t4 t5

t1

t6 t7 t8

t9

(a) (c)

our approach is abstraction, as illustrated in Figure 1.3(a). We start from a sequence

of raw measurements, i.e. odometry values (xi, yi, θi) and laser range-finder readings

(z1
i , z

2
i , · · · , z179

i , z180
i), as exemplified in Figure 1.3(b). The range-finder information is

transformed into density values (Ψi) using a simple (and efficient) observation model,

then we compose more significant information by grouping sequences of similar elemen-

tary data. This significant information is translated into words (WORDa, WORDb, · · ·), and

sequences of words are grouped into a text. Place recognition is made by finding matches

of sequences of words, or n-grams. By the end of the process, all the sensors mea-

surements obtained during the robot navigation are converted into a corpus that is much

smaller and easy to work than the original raw information.

The human readability of the resulting words is low (as will be presented in Chapter 4,

the words are composed by three syllables describing free-space density, region length and

variation of orientation), however, this is not an issue for the place recognition problem.

Nevertheless, later in this thesis, we study a simple way of adding semantic information

to the words. For example, the robot path shown in Figure 1.3(c) passes over three types

of places: bifurcations (blue), corridors (green) and corners (red). We show that the words

generated by our approach serve as a good basis for classification techniques, indicating

a great potential for further studies in the area of semantic mapping.

22

1.2 Current Contributions

The main contributions presented in this work to give support to our conjecture are:

• The translation of raw sensor readings into simplified observation values, that are

obtained with a novel observation model called Free-Space Density (FSD). This

model computes a single-valued density measure by applying a kernel density es-

timate (KDE) over the free space surrounding the robot position. The proposed

density measure is independent of orientation, what allows an efficient pre-caching

step, substantially boosting the computation time of the process. Using the gradient

of the densities field, our strategy is able to estimate orientation information that

helps to restrict the localization search space.

• An efficient application of the proposed model in the global localization problem

using particle filters, where we know the map a priori but do not have initial estimate

of the robot pose. We also test combinations of densities obtained by kernels of

different sizes and profiles to improve the quality of the acquired information.

• The translation of simplified observation values (described according to the FSD

model) into a text. We use the novel observation model as the basis to build words

representing regions of the environment. These words are classified based on the

density of free space, number of observations and variation in the robot orientation

while visiting the corresponding region.

• A place recognition strategy that matches sequences of consecutive words describ-

ing the environment. In this case, we consider a robot lost in an unknown environ-

ment trying to construct a topological map to localize itself. The analysis of word

sequences, i.e. n-grams, is a popular technique used for prediction and correction of

information in shallow linguistic processing. We show that our approach for place

recognition is much faster than a sequence of Iterative Closest Point (ICP) matches,

in experiments performed in real and simulated static scenarios.

• A multi-level extension of the place recognition approach for lifelong operation. In

such case, we must deal with environments that contain semi-static objects, such as

doors and furniture, which change in a much slower rate than dynamic objects, such

as people walking by the robot, and therefore, are harder to properly handle. Every

time that a word is built, our approach verifies the possibility of creating alternative

23

words to contemplate the situation where the density variation is caused by a semi-

static object. Experiments reveal improvements in relation to the original approach

for static scenarios.

• An in-depth analysis from a semantic viewpoint of the proposed FSD-based words.

We examine the words associated to different types of places, such as bifurca-

tions, corridors and corners, in simulated and real scenarios (that are widely used

in SLAM literature). Our analysis verifies what are the most robust features that

can be used to classify each type of place (e.g. positive FSD variations always oc-

cur in corners and bifurcations, differently from corridors and rooms). Finally, as

a kick-off application of our technique in semantic mapping, we propose a sim-

ple decision-tree for word classification based on the results of the analysis, which

obtains good results in most of the places of the tested scenarios.

1.3 Organization

This thesis is organized as follows. First, in Chapter 2, we provide the theoretical back-

ground of this thesis, reviewing some of the main problems in robot state estimation (e.g.

localization, mapping and SLAM), and three techniques used throughout this thesis in

assistance to our contributions. We also review kernel density estimation and the n-grams

technique used in shallow linguistic processing. In Chapter 3 we detail the Free-Space

Density, our novel observation model based on kernel density estimation. In Chapter

4 we describe our approach for building a text from sensor observations, and solving the

place recognition problem with techniques from shallow linguistic processing. In Chapter

5 we describe the extension of our place recognition approach for long-term operation. In

Chapter 6, we present an analysis of the words generated by our method with a semantic

viewpoint. Lastly, in Chapter 7, we draw conclusions about the current work and discuss

future directions.

24

2 THEORETICAL BACKGROUND

This chapter presents a theoretical background detailing techniques used throughout

this thesis. First, we address the basic concepts from state estimation in mobile robotics.

Our focus in this thesis is the SLAM problem, however we also address mapping and

localization individually. Just illustrating, our first contribution is a novel observation

model that maps the information surrounding the robot to a single density value. Such

technique is tested in the global localization problem. Therefore, we present a review of

the three problems (localization, mapping and SLAM), detailing methods that serve as

basis for this work.

We also present a review on kernel density estimation and its application to image

processing, which serves as basis for our novel observation model, presented in Chapter 3,

that computes the free-space density in the environment. Later, we introduce a brief

background on linguistic processing and the n-grams technique, which is a fundamental

point of our place recognition strategy presented in Chapter 4 and extended in Chapter 5.

2.1 State Estimation in Mobile Robotics

An autonomous mobile robot should be able to move in an environment to fulfill its

tasks, which demands that the robot knows its location along with the location of nearby

obstacles. In realistic scenarios such information is not directly available, and the robot

must use its sensors, which carry only partial and noisy information about the scenario

state (THRUN; BURGARD; FOX, 2005).

In summary, there are four variables in the context of state estimation in mobile robotics:

• xt is the robot pose (x, y, θ)T at instant t.1 The trajectory followed by the robot is

represented by x0:t = {x0,x1,x2, · · · ,xt}, where x0 is the initial robot pose.

• mi is the position of an object i in the environment. The map of the environment is

given by the vector of all objects, i.e. m = (m1,m2, · · · ,mN)T .

• ut is the control vector applied at instant t − 1 that takes the robot to the pose

xt at instant t. It is generally given by the odometry measurement between the

instants t − 1 and t. The history of control commands is represented by u1:t =

1We use the following functional notation to refer to components of variables represented by tuples or
vectors: component(variable). For instance, the components of xt are referred as x(xt), y(xt) and θ(xt).

25

{u1,u2, · · · ,ut}.

• zit is the i-th observation made by the robot at instant t. zt = (z1
t , z

2
t · · · , zKt)T is

the vector of all observations made by the robot at instant t, while z1:t = {z1, z2, · · · , zt}

represents the history of all observations.

The set of controls u1:t and observations z1:t are always known, given that they repre-

sent proprioceptive2 and exteroceptive3 sensors information, respectively. The robot state

x0:t and the map m may be known or unknown. In fact, as shown in Figure 2.1, there are

three main state estimation problems:

• Localization: estimating the robot pose when the map is known;

• Mapping: estimating the map when the robot pose is known;

• SLAM (Simultaneous Localization and Mapping): estimating both the robot pose

and the map.

Localization is the problem of determining the pose of a robot in relation to a map of

the environment known a priori. It can be seen as a problem of coordinate transforma-

tion, i.e. establishing correspondence between a global coordinate system, in which all

objects of interests are expressed, and the local coordinate system of the robot (THRUN;

BURGARD; FOX, 2005). There are two types of localization problems considering the

knowledge available at the start of the process and at run-time. In local localization, or

position tracking, the initial robot pose is known, therefore the localization method must

only accommodate the uncertainty in robot motion, generally using a Gaussian distribu-

tion. The other type, global localization, is more complex and has two variations: the

wake-up robot problem, where the initial robot pose is unknown, thus it requires multi-

modal probability distributions to model the localization uncertainty; and the kidnapped

robot problem, where a well localized robot is teleported to arbitrary locations. This

variation of the problem measures the ability of the localization strategy to recover from

failures, since when a kidnapping occurs the robot thinks that knows where it is but in fact

it does not.

The global localization graphical model, which shows the sequences of variables and

the causal relationships between them, is presented in Figure 2.2(a). In the localization
2Proprioception: measurements of movements relative to an internal frame of reference of the robot.

Example: odometry measurements. (MURPHY, 2000)
3Exteroception: measurements of the layout of the environment and objects relative to the robot’s frame

of reference. Example: laser range finder measurements. (MURPHY, 2000)

26

Figure 2.1: State estimation problems in mobile robotics. (a) Estimating the robot pose.
(b) Estimating the map. (c) Estimating the map and the robot pose at the same time.

Estimate
of robot

pose

Real
robot
pose

Real
object
pose

Estimate
of object

pose

CAPTION

(a) Localization (b) Mapping (c) SLAM

Figure 2.2: Graphical models of Localization, Mapping and SLAM. Robot pose x0:t

and/or the map m must be estimated based on the observed states, which include controls
u1:t and measurements z1:t. Adapted from (THRUN; LEONARD, 2008).

…

…

1 2 3 …

1 2 3 t0

1 2 3 t

t

…

1 2 3 …

1 2 3 t

t

estimated observed

…

…

1 2 3 …

1 2 3 t0

1 2 3 t

t

(a) Localization (b) Mapping (c) SLAM

problem, the sequences of robot poses x0:t must be estimated from the controls u1:t, the

measurements z1:t and the map m. (In position tracking x0 is also an observable vari-

able). A traditional way to solve the localization problem is through Markov localization,

by applying the Bayes Filter over the belief, p(xt|u1:t, z1:t,m), about the robot pose at

instant t. Such approach follows the Markov assumption – or complete state assumption –

which states that the previous belief is sufficient to represent the past history of the robot.

In other words, the Bayes filter computes the belief at time t based on the belief at time

t − 1. It is noteworthy that the Markov assumption in robotics is only an approximation,

due to unmodeled dynamics and other inaccuracies. Yet, as shown in the literature, Bayes

27

filters are robust in practice (THRUN; BURGARD; FOX, 2005).

Among the most popular implementations of the Markov localization are the Kalman

filters (LEONARD; DURRANT-WHYTE, 1991), which assume Gaussian noise and lin-

ear motion models; grid-based filters (BURGARD et al., 1998b), which discretize the

state space into a grid to deal with multi-modal distributions; and particle filters (DEL-

LAERT et al., 1999), which maintain a weighted set of samples (particles) to represent the

posterior distribution. The latter approach, also called Monte Carlo Localization (MCL),

proved to be one of the most powerful implementations of robot localization, and is the

one used in this work.

Mapping (with known poses) is the problem of estimating the belief about the map,

p(m |x1:t, z1:t), that is, an accurate representation of the environment based on the obser-

vations made by the robot during a known trajectory. Figure 2.2(b) presents the graphical

model of the mapping problem. Differently from the localization problem, the map m is

the unknown variable, while the sequences of robot poses x1:t and sensor measurements

z1:t are known. The set of controls u1:t are also known, because they are measures of

proprioceptive sensors, however they are irrelevant for the mapping process given that

the robot state is known. We also discard x0 from the mapping process because, by con-

vention, the sensor observations are made after the robot motion, therefore there are no

observations made in the initial state.

Different types of maps are used in mobile robotics but generally they are divided in

two main approaches: based on features or on locations. In feature-based maps, fea-

ture extractors are applied over the observations (e.g. scan readings and camera images)

to obtain features, such as corners (HARRIS; STEPHENS, 1988; ROSTEN; PORTER;

DRUMMOND, 2010), lines (SACK; BURGARD, 2003; CHOI; LEE; OH, 2008; JORGE,

2012), or other visual features (LOWE, 2004; BAY; TUYTELAARS; GOOL, 2006). On

the other hand, location-based maps discretize the environment into specific locations.

In this case, each component, mi, of the map is associated to a region of the environment.

Occupancy grid maps are the most popular location-based maps (MORAVEC; ELFES,

1985; HAHNEL et al., 2003b; ELIAZAR; PARR, 2004). They regularly divide the envi-

ronment into cells, i.e. square regions, where each cell, mi = (x, y, occ)T , is defined by a

position in space (x, y) and an occupancy value (occ). An issue of occupancy grids is that

good precision for large environments may require excessive storage space. However,

they are easy to maintain, have constant access time, do not rely on any feature extractors

and can model not only obstacles, but also free space and unknown regions.

28

The map of the environment can be considered a set of independent components, which

allows the mapping problem to be broken into a collection of separate problems. This

assumption neglects dependencies among neighboring objects, nevertheless it makes the

map estimation easier by considering the posterior over maps as the product of individual

probabilities (THRUN; BURGARD; FOX, 2005)

p(m |x1:t, z1:t) =
N∏
i=1

p(mi |x1:t, z1:t) (2.1)

In this thesis, we use the HIMM grid strategy as basis for our methods, which is an

efficient variation of occupancy grids (BORENSTEIN; KOREN, 1991).

Finally, Simultaneous Localization And Mapping (SLAM), arguably the hardest

state estimation problem in mobile robotics, consists in estimating both the robot state xt

and the map m based on the measurements z1:t and controls u1:t made by the robot, as

shown by the graphical model in Figure 2.2(c). By convention, the initial robot pose x0

is known4, otherwise we do not have an initial place to start building the map.

From a probabilistic perspective there are two different forms of SLAM: online SLAM

and full SLAM. Online SLAM consists in estimating the belief p(xt,m | z1:t,u1:t,x0),

i.e. the posterior probability on the current robot state xt and the map m. Full SLAM

estimates the belief p(x1:t,m | z1:t,u1:t,x0), i.e. the posterior probability over the entire

path traversed by the robot x1:t, instead of just the current robot pose, along with the map

m.

Online SLAM methods implement the Bayes Filter, that is, they perform successive

steps of prediction and correction, respectively considering the control ut and the obser-

vations zt. The earliest online SLAM approaches are based on Extended Kalman Filters

(EKF) (SMITH; SELF; CHEESEMAN, 1990; JULIER; UHLMANN, 1997), which lin-

earize motion and observation models (typically non-linear) to estimate the robot state

and a feature-based map with Kalman filters. The main drawbacks of such approaches is

the quadratical growth in computation cost and memory in terms of the number of features

in the map; and the difficulties in dealing with non-linearities in motion and observation

models.

More recently, an approach that became very popular was the Rao-Blackwellized par-

ticle filter (RBPF) (MONTEMERLO et al., 2002; HAHNEL et al., 2003a; ELIAZAR;

PARR, 2004; GRISETTI; STACHNISS; BURGARD, 2007; STACHNISS; GRISETTI;

4x0 is usually considered as (0, 0, 0)T , but any other value is equally valid.

29

BURGARD, 2005; MAFFEI et al., 2013), where each particle represents a hypothesis

about the robot trajectory and is associated to one map. RBPFs are able to represent

multi-modal distributions, do not require precise solutions for the data association prob-

lem and are probably the easiest algorithm to implement. Notwithstanding, they can be

too costly or simply diverge when operating in large environments, where the required

number of particles may be substantially high. Even though each particle describes the

full robot trajectory, RBPFs are not full SLAM approaches, in which all data is processed

at the same time. RBPFs follow the Markov assumption, i.e. they estimate the current

state of the robot based on one previous state, what makes them incremental and unable to

correct previous estimates (THRUN; LEONARD, 2008). In fact, high risk of divergence

is an intrinsic issue of online SLAM approaches, because once the state estimate largely

deviates from the true solution, the recovery becomes impossible.

That said, full SLAM approaches are now the most popular SLAM form in the lit-

erature and generally rely on very powerful graph optimization techniques that operate

on the complete set of observations (LU; MILIOS, 1997a; THRUN; MONTEMERLO,

2006; GRISETTI et al., 2010b). These methods have a high cost associated, which was a

critical problem in the past, however, in recent years, this constraint has been minimized

due to the advances in graph optimization solutions and computational power.

In next sections we describe some state estimation techniques in details. First, we ex-

plain the Monte Carlo Localization technique, used in a case study presented in Chapter

3. Next, we explain the HIMM technique used in the mapping problem, which is used

as first step for computing our novel observation model, the free-space density, also pre-

sented in Chapter 3. At last, we discuss the graph-based SLAM approach in more details,

given that one of the main works in this thesis is a place recognition strategy applied in a

graph-based SLAM approach, presented in Chapters 4 and 5.

2.1.1 Monte Carlo Localization

The Monte Carlo Localization (MCL) (DELLAERT et al., 1999) is a nonparametric

implementation of the Bayes filter, which approximates the posterior p(xt|u1:t, z1:t,m)

using a set of M particles,

Xt = {p[1]
t ,p

[2]
t , · · · ,p

[M]
t }, (2.2)

30

where each particle p
[m]
t = 〈x, w〉 has an importance weight w associated to its pose x at

time t.

Algorithm 2.1 presents the MCL algorithm, which estimates the particle set Xt re-

cursively from the set Xt−1 through a Sampling-Importance-Resampling (SIR) process.

The first step of the algorithm is the sampling (lines 3-4). In this step, each particle is

propagated according to the control ut, which is made by applying the motion model

p(xt |ut,xt−1) over the previous pose of the particle, i.e x(p
[m]
t−1).

Algorithm 2.1: Monte Carlo Localization
Input: Xt−1,ut, zt,m
Output: Xt

1 X̄t = Xt = ∅
2 for m in 1...M do
3 xt−1 = x(p

[m]
t−1)

4 sample x ∝ p(xt |ut,xt−1)
5 w = p(zt |x,m)

6 p
[m]
t = 〈x, w〉

7 X̄t = X̄t ∪ {p[m]
t }

8 for m in 1...M do
9 draw p

[i]
t from X̄t with probability ∝ w(p

[i]
t)

10 Xt = Xt ∪ {〈x[i]
t , 1/M〉}

11 return Xt

The second step of the algorithm is the importance weighting (line 5), in which an

individual weight is assigned to each particle. This weight is obtained using the ob-

servation model, by comparing the real sensor measurements to the particle’s estimated

sensor measurements. The idea is to compute the similarity between the target distri-

bution, p(xt | z1:t,u1:t,m), and the proposal distribution, p(xt | z1:t−1,u1:t,m) (the one

obtained after sampling). The propagated and weighted particles compose a temporary

particle set X̄t (lines 6-7).

The third and final step of the MCL algorithm is the resampling (lines 9-10). The

method randomly selects with replacement the same quantity M of particles from X̄t and

add them to a new set Xt. A simple technique that can be chosen to draw samples is the

wheel-roulette algorithm, commonly used in genetic algorithms, that sets the probability

of selecting each particle p
[m]
t in proportion to its weight w(p

[m]
t). Resampling is fun-

damental to a particle filter because it is the responsible for approximating the particles

distribution to the true posterior. In general, during the resampling, particles with higher

weights will be more likely to be replicated than those with lower weights (those tend to

31

be discarded), which makes the filter to converge.

Figure 2.3: Example of the sampling, importance weighting and resampling in a particle
filter. (a) Difference between proposal and target distributions. (b) Sampling. (c) Weight-
ing. (d) Resampling. (e) Comparison of the resulting distribution with the proposal and
target distributions. Adapted from (MONTEMERLO; THRUN, 2007).

Target
Distribution

Proposal
Distribution

(a)

(b)

(c)

(d)

(e)

Figure 2.3 illustrates the importance of the resampling step in the MCL. In (a), the

target distribution (green solid line) is a multi-modal distribution, while the proposal dis-

tribution (blue dashed line) is a simple Gaussian. Since the sampling step, in (b), is

performed according to the proposal distribution, the resulting samples (black vertical

lines) must be weighted to approximate them to the target distribution. The weighting

is performed, in (c), and samples of regions where the proposal distribution is underesti-

mated in relation to the target distribution receive higher weights (taller black lines) than

regions where the proposal distribution is overestimated. In the resampling step, (d), the

probability of drawing particles from a given region of the distribution (i.e. bucket of the

histogram of weights, in blue) is proportional to the summation of the particles weights

of such region (i.e. the height of the corresponding bucket). In the end, as shown in (e),

32

the resulting distribution (blue histogram) must approximate the target distribution (green

line). In fact, when we increase the number of particles the filter better approximates to

the target distribution.

At last, we should note that Algorithm 2.1 describes the localization process during a

single step of the robot trajectory, that is, the movement from instant t−1 to t. A complete

result of MCL is depicted in Figure 2.4. Initially, in (a), particles are generated in all free

space because the robot can be anywhere in the beginning of the process. As the robot

moves, the uncertainty decreases. Yet, after only a small displacement, shown in (b), the

robot does not have a clue about its location yet. In (c), the robot turns to the right in a

corner and the uncertainty drops significantly, because there are only four corners in the

environment. Finally, in (d), the robot turns again to the right and the last ambiguities are

resolved.

2.1.2 Histogramic In-Motion Mapping (HIMM)

Histogramic In-Motion Mapping (HIMM) is an efficient mapping method that uses a

two-dimensional Cartesian histogram grid for obstacle representation measured by range

Figure 2.4: Example of particle filter convergence in Monte Carlo Localization, with
particles shown in pink, and the robot and its trajectory shown in green. The particles
converge when the robot moves enough to resolve the ambiguities in the environment.

(a) t1 (b) t2

(c) t3 (d) t4

33

finder sensors (BORENSTEIN; KOREN, 1991). Different from early occupancy grid

methods (MORAVEC; ELFES, 1985), which express occupancy probabilities with like-

lihoods and odds obtained using Bayes rule, the HIMM method divides the occupancy

probability space into few possible integer values and updates the occupancy of cells

along the acoustic axis of the sensor through simple increments and decrements.

One way to implement HIMM is through the projection, via ray-casting, of each in-

dividual sensor reading, zkt = (r, θ)T , over the grid to find the cells to be updated. The

problem of this approach is that sampling problems lead to “holes” (i.e. cells with un-

known occupancy value) in the middle of the free-space region, as illustrated in Figure

2.5(a). This can be problematic for applications like kernel density estimation, which is

the case of the novel observation model that will be presented in Chapter 3. A way to

circumvent this problem, although possibly more costly, is to compute the occupancy of

all grid cells surrounding the robot inside the perceptual field of the sensor, as shown in

Figure 2.5(b).

Figure 2.5: Computing HIMM at each grid cell in the sensor’s field-of-view instead of
using ray-casting is required to avoid holes in the free-space region. Grid cells updated
by current scan readings are illustrated in green, and by past scan readings in gray.

t = 0 t = 1 t = 2
(a) HIMM using ray-casting.

t = 0 t = 1 t = 2
(b) HIMM computed at each grid cell.

Figure 2.6 and Algorithm 2.2 present the HIMM sensor model and HIMM updating

strategy, respectively. The minimum occupancy value of a cell is 0, while the maximum

is 15, totalizing a range of 16 values (all those values were empirically determined by

Borenstein and Koren). At the beginning, all cells are initialized with the minimum value

(0), if we consider a priori that the map is empty, or with a middle value (8), representing

34

Figure 2.6: HIMM model. (a) Robot detecting an obstacle at distance d. (b) Update of
grid cells. Only the cells in the axis of the sensor are updated. The occupation of the
green cells in free region (white) is diminished and of the red cells in occupied region
(dark gray) is augmented. Adapted from (MURPHY, 2000).

Unknown

Probably occupied

Probably free

Region occupation:

Cell update:

Increase occupation

Decrease occupation

-1

-1

-1

+3

-1

d

dmax

Obstacle

(a) (b)

the initial lack of knowledge about obstacles. At each step of the robot navigation, we first

translate5 the current robot pose to the corresponding grid cell mrobot (line 1 of Algorithm

2.2).

Next, we check all cells in the map, m, that are inside the perceptual field of zt (lines

3-4). In practice, if we consider that the maximum sensor range is defined by rmax (in

meters), which corresponds to dmax in terms of number of cells, then we can just check

the cells disting at most dmax from mrobot. For each cell, mi, we compute the difference,

φi, between the angle of the vector connecting mrobot to mi and the robot orientation,

θ(xt) (line 5). We use this angle φi to find which sensor beam, zkt , is used to update the

cell mi (line 6). Finally, we compare the distance di, between the positions of cells mi

and mrobot (line 7), and the distance d, corresponding to the sensor beam measurement

zkt (line 8). If the cell is around the distance measured by the sensor – i.e. ||di − d|| < εd,

where εd is a small distance tolerance – then it belongs to a region probably occupied by

obstacles. If the cell is closer to the robot than the distance measured by the sensor, i.e.

di < d, then it belongs to a free region. The update of the cell occupancy is done as

follows (lines 9-12): occupied cells are incremented of 3, and free cells are decreased of

1 (totaling at maximum 15 and at minimum 0).

An example of map produced by HIMM is shown in Figure 2.7. As the robot moves,

the method consolidates the certainty about what is free space and what are obstacles.

Regions that are barely observed, such as frontiers of the sensor’s scan, tend to be less

5In the algorithm we use two functions, pose2grid and dist2grid, to, respectively, represent the trans-
lation of a pose coordinate to a cell coordinate, and a distance value in meters to a distance value in cells.

35

Algorithm 2.2: HIMM
Input: xt, zt,m, rmax
Output: m

1 mrobot = pose2grid(xt)
2 dmax = dist2grid(rmax)

3 for each cell mi in m do
4 if mi in perceptual field of zt then

5 φi = atan2(y(mi)− y(mrobot), x(mi)− x(mrobot))− θ(xt)
6 k = arg minj |φi − θ(zjt)|

7 di =
√

(x(mi)− x(mrobot))2 + (y(mi)− y(mrobot))2

8 d = dist2grid(r(zkt))

9 if ||di − d|| < εd ∧ di < dmax then
10 occ(mi) = min(15, occ(mi) + 3)
11 else if di < d− εd then
12 occ(mi) = max(0, occ(mi)− 1)

13 return m

certain.

Figure 2.7: Example of mapping using HIMM. In this visualization, the brighter the cells
are, the higher is the evidence of being free space (vice versa for obstacles).

(a) t1 (b) t2

(c) t3 (d) t4

36

2.1.3 Graph-based SLAM

Approaches based on graph optimization, which dominate the state-of-the-art of the

SLAM literature, solve the problem through nonlinear sparse optimization of a graph

of robot poses (LU; MILIOS, 1997a; THRUN; MONTEMERLO, 2006; GRISETTI et

al., 2010b). In pose graphs (GRISETTI et al., 2010b), nodes represent robot poses and

arcs represent rigid transformations between them. Other methods (THRUN; MONTE-

MERLO, 2006) also represent features or landmarks as nodes, and corresponding bearing

measurements as arcs. In this thesis we work with pose graphs.

A SLAM pose graph G = 〈s,A〉 is composed of:

• a state vector s = (x0,x1, · · · ,xi, · · · ,xt)T representing the nodes of the graph,

where each robot pose xi is a node;

• a set of arcs (i.e. edges of a directed graph) A = {a01, · · · ,aij, · · · }, where

aij = 〈r,Ω〉 is the arc connecting the node xi to the node xj . aij is defined

by r, the observed relative pose of xj regarding xi, and Ω, the information matrix6

representing the uncertainty of such estimate.

Figure 2.8 shows a pose graph construction from a sequence of robot poses. As we

can see, there are two types of graph arcs: those arising from odometry-based constraints,

which connect every consecutive pair of robot poses xi and xi−1 (gray arcs); and those

obtained through matchings of observations, which happen when the robot returns to a

visited region (green arcs).

Figure 2.8: Example of pose graph construction. Odometry-based constraints are shown
in gray, while observation-based constraints are shown in green.

1

2

4

5

6

7

8

9

3

1

2

4

5

6

7

8

9

3

1 2 4 5 6 7 8 93

(a) Pose graph (b) Adjacency matrix

6The information matrix (Ω) corresponds to the inverse of the covariance matrix (Σ−1).

37

Building the graph is considered the front-end of graph-based SLAM. In order to

find the correct associations between nodes the front-end must be able to detect loop clo-

sures, i.e. to solve the place recognition problem. Since the beginning of the 1990s,

numerous strategies for place recognition using laser scans have been proposed, such as

aligning points to line segments (COX, 1991), matching points through the iterative clos-

est point (ICP) algorithm (BESL; MCKAY, 1992; LU; MILIOS, 1997b), computing a

correlative scan matching (OLSON, 2009), extracting local descriptor from scan read-

ings and matching them (GRANSTROM et al., 2009; TIPALDI; ARRAS, 2010), etc.

Camera-based front-ends also have been widely proposed in literature and many of them

are based on matching of image descriptors, such as SIFT (LOWE, 2004), SURF (BAY;

TUYTELAARS; GOOL, 2006), or ORB (RUBLEE et al., 2011; MUR-ARTAL; MON-

TIEL; TARDÓS, 2015), while others match image patches and bag-of-words (CUM-

MINS; NEWMAN, 2008; MILFORD; WYETH, 2012).

Nevertheless, just building the correct associations in the front-end is not enough be-

cause, since the robot state is initially defined based on odometry, there are errors between

odometry-based constraints and observation-based constraints, as shown in Figure 2.9.

The correction of such errors is made through an optimization phase, which is referred

as the back-end of graph-based SLAM. It is worth noting that if we consider only the

odometry-based constraints, looking back at Figure 2.8(b), the adjacency matrix would

be a tridiagonal matrix7. Thus, the observation-based constraints are the responsible for

populating the remaining of the matrix, and fortunately, in most cases in SLAM, the re-

sulting matrix is sparse, which allows an efficient optimization step.

Several types of approaches can be used as graph-based SLAM back-end, such as

Gauss-Newton, Levenberg-Marquardt, stochastic gradient descent, among others. All

those strategies minimize the errors of the graph, and should obtain the same optimal

result if the SLAM problem was strictly convex. However this is not the case due to the

usual high non-linearity of motion and observation models (AGARWAL, 2015).

Lu and Milios (LU; MILIOS, 1997a) are the pioneers in refining a map through the

minimization of errors of a graph, however their solution includes the costly inversion

of large matrices8. Gutmann and Konolige (GUTMANN; KONOLIGE, 1999) propose

an incremental estimation algorithm that was able to reduce the impact of the matrix in-

7A tridiagonal matrix is a sparse matrix whose non-zero entries are confined to the main diagonal and
to the first diagonals above and below the main diagonal.

8Increasing the number of graph nodes implies in a cubic increase in the cost of the matrix inversion
required to solve the optimization problem (LU; MILIOS, 1997a).

38

Figure 2.9: Pose graph optimization in a dataset recorded at MIT Killian Court. Figure
extracted from (GRISETTI et al., 2010b).

(a) Before optimization (b) After optimization

versions. Dellaert and Kaess (DELLAERT; KAESS, 2006) propose the method called
√
SAM (square root smoothing and mapping), which is the first method to exploit ma-

trix sparsity by performing factorizations, such as QR, LU and Cholesky decomposition.

By avoiding ordinary matrices inversions, their method is able to solve the optimization

problem much more efficiently than the previous methods in literature. Frese (FRESE,

2006) proposes Treemap, which improves sparsification by ignoring weak correlations

between distant nodes. Kaess et al. propose iSAM (KAESS; RANGANATHAN; DEL-

LAERT, 2007), an incremental version of
√
SAM that performs partial reorderings in the

sparse matrix to improve the factorization efficiency, and iSAM2 (KAESS et al., 2011),

an improved version of iSAM using a more efficient data structure.

Another popular approach is to minimize errors through relaxation techniques such as

stochastic gradient descent, as proposed by Olson et al. (OLSON; LEONARD; TELLER,

2006). The idea of relaxation methods, which are generally more robust to poor initial

estimates than the least-squares approaches, is to move the nodes, one at a time, to reduce

the errors. Grisetti et al. (GRISETTI et al., 2007) propose TORO, an extension of Olson’s

method, that uses a tree parametrization of nodes to increase efficiency. Lastly, there are

hierarchical methods that improve the optimization efficiency by dividing the process into

multiple levels of submaps (BOSSE et al., 2003; ESTRADA; NEIRA; TARDOS, 2005;

NI; DELLAERT, 2010; GRISETTI et al., 2010a).

Due to the high complexity of the problem and the independence between front-end

and back-end, some researchers have been focusing on such questions separately. In this

39

thesis, we focus on the front-end, introducing a novel approach based on techniques from

linguistic processing. As back-end, we use a traditional Gauss-Newton approach, which

will be detailed next.

2.1.3.1 Pose graph optimization via Gauss-Newton

We present a traditional graph-based SLAM back-end using the Gauss-Newton algo-

rithm and matrix factorization, as described in (GRISETTI et al., 2010b). See AppendixB

for the complete derivation of the algorithm, and more implementation details. In short,

the core of Gauss-Newton algorithm is to minimize the errors of the arcs, i.e., the errors

between the observed and the expected relative poses between nodes.

The observed relative pose, r(aij), of node xj as viewed from node xi is obtained

by the SLAM front-end (e.g. analyzing odometry readings or finding matches of obser-

vations). On the other hand, the expected relative pose r̂(aij, s) is generated by the

transformation between the current poses of nodes xi and xj in the state s,

r̂(aij, s) = xj 	 xi, (2.3)

where the operator 	 computes the relative pose between two poses9.

The definition of error, e(aij, s), associated to the arc aij connecting the nodes xi

and xj at the current state s (as illustrated in Figure 2.10) is given by the relative pose

between the observed and the expected relative poses:

e(aij, s) = r̂(aij, s)	 r(aij), (2.4)

An algorithm for optimizing a pose graph must search for the configuration of robot

states (nodes) that minimizes the errors of the graph arcs. Defining the sum of squared

errors of all the observations as

F (s) =
∑

aij ∈ A

e(aij, s)T Ω(aij) e(aij, s), (2.5)

9We define the operator 	, that computes the relative pose of xb in relation to xa, as follows:

xb 	 xa =

 cos(θ(xa)) sin(θ(xa)) 0
− sin(θ(xa)) cos(θ(xa)) 0

0 0 1

x(xb)− x(xa)
y(xb)− y(xa)
θ(xb)− θ(xa)



40

Figure 2.10: Error between observed relative pose r(aij) of node xj from node xi and
expected relative pose r̂(aij, s). The uncertainty associated to aij is given by the infor-
mation matrix Ω(aij).

poses at the
current state

observed pose

CAPTION

the optimal configuration s∗ that leads to the minimum F (s) is

s∗ = argmin
s

F (s). (2.6)

Equation 2.6 can be solved through Gauss-Newton algorithm by applying successive

linearizations of the error around a guess s̆. The linearization is done through a first-order

Taylor series expansion,

e(aij, s̆ + ∆s) ' e(aij, s̆) + J ij∆s (2.7)

where J ij is the Jacobian of the error computed at s̆, which is non-zero only in the blocks

associated to xi and xj , and it has a 3×3n dimension (i.e. J ij has a 3×3 block of partial

derivatives for each one of the n nodes):

J ij =
∂e(aij, s)

∂s

∣∣∣∣
s=s̆

=

(
0 · · ·0 Aij︸︷︷︸

∂eij(s)

∂xi

0 · · ·0 Bij︸︷︷︸
∂eij(s)

∂xj

0 · · ·0

)
(2.8)

We approximate F (s) with F (s̆ + ∆s) by applying the results of Equation 2.7 in

Equation 2.5:

F (s̆ + ∆s) =
∑

aij ∈ A

(
e(aij, s̆ + ∆s)T Ω(aij) e(aij, s̆ + ∆s)

)
(2.9)

' c+ 2bT∆s + ∆sTH∆s (2.10)

41

where

c =
∑

aij ∈ A

cij = e(aij, s̆)TΩ(aij)e(aij, s̆)

bT =
∑

aij ∈ A

bTij =
∑

aij ∈ A

e(aij, s̆)TΩ(aij)J ij

H =
∑

aij ∈ A

H ij = JT
ijΩ(aij)J ij

We find the optimal ∆s∗ that minimizes the approximated F (s̆ + ∆s) by solving the

linear system

H∆s∗ = −b. (2.11)

Finally, we obtain the resulting state by adding ∆s∗ to the initial guess.

s∗ = s̆ + ∆s∗ (2.12)

An important aspect of Equation 2.11 is that H is the information matrix of the full

state, obtained using the Jacobians to project the measurement error into the trajectories

space. Additionally, H is a sparse matrix, that allows the use of efficient techniques to

solve the problem, such as Cholesky factorizations10. The sparsity of H is consequence

of the product of the Jacobians, which are only non-zero in a couple of blocks, as shown

in Equation 2.8.

The outline of the iterative Gauss-Newton algorithm for optimizing a pose graph is

presented in Algorithm 2.3. For each constraint aij of the graph, we first compute the

error e(aij, s̆) and the Jacobians’ non-zero components Aij and Bij (lines 5-7). Then,

we update only the corresponding blocks11 of matrix H and vector b (lines 8-13). Be-

fore solving the linear system, we must fix in zero the variation of one node (line 14),

otherwise there would be infinite solutions to the linear system and the algorithm would

not converge. To do this we add the identity matrix to the block H [00] corresponding to

the first node (any node can be chosen). The linear system is solved (e.g. via Cholesky

factorization) and the initial guess is updated (lines 15-16). After the convergence of the

solution, the first node is released (line 17) and the robot state is updated (lines 18-19).

10We used the efficient implementation of Cholesky factorization from the Eigen library (GUEN-
NEBAUD; JACOB et al., 2010)

11We use the notation H [ij] to indicate the 3× 3 block from matrix H that is respectively associated to
the nodes xi and xj (the block goes from row 3i to row 3i + 2 and from column 3j to column 3j + 2).
Similarly, the notation b[i] indicates the 3 × 1 block from vector b that is associated to node xi (the block
goes from row 3i to row 3i+ 2).

42

Algorithm 2.3: Gauss-Newton algorithm for pose graph optimization
Input: s̆,A
Output: s∗, H∗

1 while ¬ converged do
2 H = 0
3 b = 0
4 for aij in A do
5 e(aij, s̆) = r̂(aij, s)	 r(aij)

6 Aij =
∂e(aij ,s)

∂xi

∣∣∣
s=s̆

7 Bij =
∂e(aij ,s)

∂xj

∣∣∣
s=s̆

8 H [ii] += AT
ijΩ(aij)Aij

9 H [ij] += AT
ijΩ(aij)Bij

10 H [ji] += BT
ijΩ(aij)Aij

11 H [jj] += BT
ijΩ(aij)Bij

12 b[i] += AT
ijΩ(aij)e(aij, s̆)

13 b[j] += BT
ijΩ(aij)e(aij, s̆)

14 H [00] += I3×3

15 ∆s∗ = solve(H∆s∗ = −b)
16 s̆ += ∆s∗

17 H [00] −= I3×3

18 s∗ = s̆
19 H∗ = H
20 return s∗, H∗

2.2 Kernel Density Estimation on Images

Density estimation is the process of estimating the probability density function f of a

random variable X , given a set of observed data points sampled from f (SILVERMAN,

1986). Kernel density estimation12 (KDE), f̂h(x), is a non-parametric estimate of f com-

puted at point x, defined as

f̂h(x) =
1

n

n∑
i=1

Kh(x− xi), (2.13)

where Kh(d) is a circular kernel function that operates over all points at distance d ≤ h

from x, where h is called the bandwidth of the kernel.

KDE is widely used in applications of numerous fields such as data analysis, pattern

recognition and image processing (SCOTT, 1992; SMITH; BRADY, 1997; ELGAM-

12Further details on kernel density estimation are presented in AppendixC.

43

MAL et al., 2002; MITTAL; PARAGIOS, 2004; LIU; ZHANG; YOU, 2007; JORGE,

2012). Elgammal et al. (ELGAMMAL et al., 2002) use kernel density estimation for

background and foreground detection on image sequences. They estimate, for each pixel

of an image, the probability of belonging to foreground/background by computing a KDE

using the color intensity variation over time, that is, the KDE is composed of the same

pixel at successive instants of time. High density values result from low intensity vari-

ations (i.e. a pixel with constant color), which is a property of background elements.

Conversely, low density values are associated to moving objects, which are considered

foreground elements. Defining a good kernel bandwidth is a problem of KDE, thus one

possible approach to circumvent this issue is using variable-size kernels. Mittal and Para-

gios (MITTAL; PARAGIOS, 2004) propose a method that combines two simple strate-

gies: adapting bandwidth at each estimation point x (“balloon estimator”) and for each

data point xi (“sample-point estimator”).

Figure 2.11: Computing kernel density estimates in four different positions of an image.
In gray we illustrate the USAN areas (pixels with similar color to the center pixel of the
mask).

1

2

3

4

(a) Original image

1

2

3

4

1.00

0.51

0.26

0.08

(b) Density estimates

Our work is inspired on techniques that use KDE for feature detection on images, dat-

ing back to the seminal paper of Smith and Brady that introduces the SUSAN principle for

edges and corners detection (SMITH; BRADY, 1997), which is illustrated in Figure 2.11.

Kernel density estimates are computed applying a circular mask (circle with black border)

over the pixels of an image, as shown in (a). In the example, the mask is applied at four

different positions (1,2,3,4). At each position, the pixels inside the mask are compared to

the “nucleus”, i.e. the center pixel of the mask (black cross), in terms of a given attribute,

e.g. color intensity. The kernel density estimate is defined by the ratio between the area

of pixels of similar attribute, known as the “Univalue Segment Assimilating Nucleus” or

USAN (shown in gray in Figure 2.11(b)), and the total area of the kernel. The USAN area

is at maximum when the mask is over a uniform region of the image surface (position 1),

it decreases to 50% near the straight edge of a wide region (position 2), to around 25%

44

just inside a corner (position 3), and to near 0% over thin lines (position 4). The smallest

USAN area – or simply SUSAN – occurs exactly over edges or corners, therefore it is a

powerful tool for feature detection.

Different kernel profiles can be used depending on the application to enhance particular

aspects of the estimates. Among the variety of kernel profiles present in the literature, two

of the most popular are the uniform kernel, UKh, and the Gaussian kernel, GKh, defined

as

UKh(d) =

 a , if d ≤ h

0 , otherwise
, (2.14)

GKh(d) =
1√

2πh2
e−

1
2

d2

h2 , (2.15)

where d is the distance ||x−xi|| from a cell xi to the kernel nucleus x, and a is the height

of the uniform kernel – typically a = 1
2h

in 1D and a = 1
πh2

in 2D. The uniform kernel

gives the same importance to all cells inside the kernel mask that share the same attribute

with the nucleus. Therefore the result of a KDE using the uniform kernel is basically

the count of similar cells, which corresponds to an approximation of the area occupied

by those cells. On the other hand, the Gaussian kernel gives more importance to cells

near the center of the kernel, which reduces noise influence. Figures 2.12 and 2.13 show

the uniform and the Gaussian kernel, respectively, where (a) in each figure is the one-

dimensional kernel profile, (b) is the two-dimensional kernel profile, and (c) is a 2 1/2 D

representation of the two-dimensional kernel profile.

Figure 2.12: Uniform kernel.

(a) 1D kernel (b) 2D kernel (c) Half view in 2 1/2 D

Liu and Zhang apply Gaussian kernel density estimation to detect wide lines in many

different applications, such as detection of palm print lines, tongue cracks and vascu-

lar stenosis in x-ray images (LIU; ZHANG, 2005; LIU; ZHANG; YOU, 2007; LIU;

ZHANG, 2008). Beyond structural information given by traditional edges detection tech-

niques, the aforementioned applications require width information, that can be estimated

by the density of pixels with similar attribute on a line.

45

Figure 2.13: Gaussian kernel.

(a) 1D kernel (b) 2D kernel (c) Half view in 2 1/2 D

Jorge (JORGE, 2012) proposes a wide line detector technique using an inverted kernel

profile, IKh, which gives more weight to cells in the border of the kernel. The kernel is

defined by the subtraction of an oblate ellipsoid from the uniform circular kernel,

IKh(d) =

 h(b+ c)−
(√

h2 − d2
)
c , if d ≤ h

0 , otherwise
(2.16)

where b+ c is the height of the uniform circular kernel and c is the length of the semi-axis

of the oblate ellipsoid, with b ≈ 0.871c. Figure 2.14 illustrates the inverted kernel profile

in 1D and 2D.

Figure 2.14: Inverted kernel.

(a) 1D kernel (b) 2D kernel (c) Half view in 2 1/2 D

To illustrate the motivation behind IKh, consider a kernel with bandwidth h and two

points in line, x1 and x2, as depicted in Figure 2.15. The point x1 is at the center of the

line and the point x2 is at its border. The densities computed using UKh or GKh with

bandwidth h will result in different values for both points, i.e. f̂h(x1) > f̂h(x2), as shown

in the table in Figure 2.15(b). This is true for any monotonic decreasing kernel. However,

this may not be true for monotonic increasing kernels, such as IKh. Thus, Jorge defines

the values of b and c in Equation 2.16 such that f̂h(x1) = f̂h(x2), that is, the densities

computed as the kernel moves towards the center of the line tend to stay constant.

46

Figure 2.15: Kernel density estimation made with IKh (a monotonic decreasing kernel
profile) obtains the same result in points x1 and x2, while monotonic increasing kernel
profiles

(
UKh and GKh

)
obtain different results. (a) Kernels at two points in a wide line.

(b) Estimates obtained with UKh, GKh and IKh.

UKh GKh IKh

f̂h(x1) 0.61 0.64 0.50

f̂h(x2) 0.50 0.50 0.50

(a) (b)

2.3 n-grams: an efficient technique from shallow linguistic processing

Speech and language processing is the study of techniques that process human lan-

guage, encompassing applications such as word counting, text parsing, spoken and writen

language translation, etc (MANNING; SCHÜTZE, 1999). The knowledge of language

used as the basis for such applications can be separated into six categories: Phonetics and

Phonology, i.e. the study of linguistic sounds; Morphology, i.e. the study of the mean-

ingful components of words; Syntax, i.e. the study of the structural relationships between

words; Semantics, i.e. the study of meaning; Pragmatics, i.e. the study of how language

is used to accomplish goals; and Discourse, i.e. the study of linguistic units larger than a

single utterance (JURAFSKY; MARTIN, 2000).

Solving ambiguities at one of those six levels is the basic problem of most tasks in

this area. Jurafsky and Martin illustrate the different types of ambiguities in human lan-

guage by using the following simple sentence: “I made her duck” (JURAFSKY; MAR-

TIN, 2000). There are several possible interpretations for this sentence: I cooked a duck

(aquatic bird) for her; I cooked a duck belonging to her; I somehow created the duck

belonging to her; I caused her to quickly get down; or I magically turned her into a bird.

As we can see, the word duck can be a verb or a noun, the word her can be a dative or a

possessive pronoun, the word made is a verb that can take a single direct object or take

two objects or take another verb. Ambiguities like these happen because analyzing only a

few words out of context is usually not enough.

For decades, these problems have been studied in several science fields such as linguis-

tics, computer science, electrical engineering and psychology (MANNING; SCHÜTZE,

1999; JURAFSKY; MARTIN, 2000). The origins of those studies date back to the half

of the 20th century with the seminal works on automata, regular expressions (SHANNON,

1948; KLEENE, 1956), and formal language theory (CHOMSKY, 1956; BACKUS, 1959;

47

NAUR et al., 1963). Shannon, which applied probabilistic models of discrete Markov

process to automata for language processing, brought the concept of entropy from ther-

modynamics to measure the information content of a language. He measured the entropy

of English13 using n-grams, which were defined by Shannon as sequences of n letters

(SHANNON, 1951).

An n-gram is a contiguous sequence of n elements from a given text, where the el-

ements can be words, syllables, letters (as originally defined by Shannon), etc. Using

n-grams is one of the most straightforward techniques in language processing: it does not

perform any analysis of morphology, syntax or semantics. On the contrary, it is only based

on counting occurrences of sequences of elements in a corpus14 (JURAFSKY; MARTIN,

2000).

Table 2.1 shows examples of n-grams extracted from the sentence: “the ghost of elec-

tricity howls in the bones of her face.”15. In the top table, a gram corresponds to a letter,

thus a unigram (1-gram) is just one letter, bigrams (2-grams) are sequences of two letters,

trigrams (3-grams) are sequences of three letters, etc. In the bottom table, a gram cor-

respond to a word, that is, in this case n-grams are sequences of n words. When using

letter-based n-grams, the total number of grams (TG) extracted from the text is larger

than when using word-based n-grams. However, the amount of possible grams is much

smaller, thus the total number of repeated grams (TRG) is substantially larger. The same

situation happens when using large sequences of grams (independently from the gram

type). For instance, the sequence of letters ‘t-h-e’ is usually much less common than the

single letter ‘t’ (in fact, it is at least as common). Likewise, the single word “of ” is ob-

viously more common, in general, than the sequence “of electricity howls”. In this thesis

proposal a gram correspond to a word.

n-Grams are widely used for word identification and prediction, which are fundamen-

tal for tasks such as speech recognition and spelling error detection. Naive spell checkers,

which just verify the correctness of words by searching for them in a dictionary, do not

always work properly because many times spelling errors result in real words due to am-

biguities in the language. In such cases, the context of the words, that can be obtained

from the previous sequence of words, gives us an indication of the word correctness.

The basic idea behind the use of n-grams is to assign probabilities to every sequence of

13Shannon experiments were made over the 484-pages book “Jefferson the Virginian” (1948), part of the
series “Jefferson and his time” by Dumas Malone, and the word frequency tables in (DEWEY, 1923).

14corpus is a collection of texts – plural: corpora.
15Excerpt from the song “Visions of Johanna” from the album Blonde on Blonde (1966) by Bob Dylan.

48

Table 2.1: Example of n-grams extracted from a sentence, with n varying from 1 to 3
(i.e. unigrams, bigrams and trigrams). Grams are defined by letters in the top table, and
by words in the bottom table. For greater ease of understanding, each different gram is
associated to a unique (superscripted) index. First occurrences of grams are shown in
black, while repetitions are shown in red. The total number of grams (TG) and the total
number of repeated grams (TRG) are presented for each configuration.

Sentence
“the ghost of electricity howls in the bones of her face.”

Letter n-Grams

n Grams TG TRG

1 t (1), h (2), e (3), _ (4), g (5), h (2), o (6), s (7), t (1), _ (4), o (6), f (8), _ (4), e (3), l (9),
e (3), c (10), t (1), r (11), i (12), c (10), i (12), t (1), y (13), _ (4), h (2), o (6), w (14), l (9),
s (7), _ (4), i (12), n (15), _ (4), t (1), h (2), e (3), _ (4), b (16), o (6), n (15), e (3), s (7), _
(4), o (6), f (8), _ (4), h (2), e (3), r (11), _ (4), f (8), a (17), c (10), e (3)

55 38

2 th (1), he (2), e_ (3), _g (4), gh (5), ho (6), os (7), st (8), t_ (9), _o (10), of (11) , f_ (12),
e (13), el (14), le (15), ec (16), ct (17), tr (18), ri (19), ic (20), ci (21), it (22), ty (23), y
(24), _h (25), ho (6), ow (26), wl (27), ls (28), s_ (29), _i (30), in (31), n_ (32), _t (33), th
(1), he (2), e_ (3), _b (34), bo (35), on (36), ne (37), es (38), s_ (29), _o (10), of (11), f_
(12), _h (25), he (2), er (39), r_ (40), _f (41), fa (42), ac (43), ce (44)

54 10

3 the (1), he_ (2), e_g (3), _gh (4), gho (5), hos (6), ost (7), st_ (8), t_o (9), _of (10), of_
(11), f_e (12), _el (13), ele (14), lec (15), ect (16), ctr (17), tri (18), ric (19), ici (20), cit
(21), ity (22), ty_ (23), y_h (24), _ho (25), how (26), owl (27), wls (28), ls_ (29), s_i (30),
in (31), in (32), n_t (33), _th (34), the (1), he_ (2), e_b (35), _bo (36), bon (37), one
(38), nes (39), es_ (40), s_o (41), _of (10), of_ (11), f_h (42), _he (43), her (44), er_ (45),
r_f (46), _fa (47), fac (48), ace (49)

53 4

Word n-Grams

n Grams TG TRG

1 the (1), ghost (2), of (3), electricity (4), howls (5), in (6), the (1), bones (7), of (3), her
(8), face (9)

11 2

2 the ghost (1), ghost of (2), of electricity (3), electricity howls (4), howls in (5), in the
(6), the bones (7), bones of (8), of her (9), her face (10)

10 0

3 the ghost of (1), ghost of electricity (2), of electricity howls (3), electricity howls in (4),
howls in the (5), in the bones (6), the bones of (7), bones of her (8), of her face (9)

9 0

words based on their occurrences in a corpus. In the statistical n-gram model, high prob-

abilities are associated to very common sequences, while low probabilities are associated

to rare sequences, which can be a good indication on possible input errors. The n-gram

model can be used to predict the next word in an incomplete sentence, i.e. finding the like-

lihood of a word given a sequence of words. The probability of a complete sequence of t

words, when considering the words occurrences in their locations as independent events,

is given by P (W1, W2, · · · , Wt−1, Wt) (or simply P (W1:t)), where the t-th word is represented

49

by Wt. This probability can be decomposed, using the chain rule, into

P (W1:t) = P (W1)P (W2|W1)P (W3|W1:2) · · ·P (Wt|W1:t−1). (2.17)

The Markov assumption says that the current state of a system can be modeled based

only on the previous one, which means that events too far into the past do not impact

on the current state of the system. This is the definition of a first-order Markov model,

however there are Markov models of higher order, i.e, models that depend not only on

the previous state but on a few previous states. The n-gram model is a (n − 1)-th order

Markov model because it looks n − 1 words into the past to estimate the probability of

the current word (JURAFSKY; MARTIN, 2000).

However, computing P (Wt|W1:t−1) is not feasible for large t’s, because it requires count-

ing occurrences of very long sequences, which results in extremely low probabilities due

to the huge number of word combinations. Hence, n-grams adopt the Markov assumption

to approximate the probability of a word given all previous words to the probability given

only the n previous words,

P (Wt|W1:t−1) ≈ P (Wt|Wt−n:t−1). (2.18)

Besides many applications of n-grams in text prediction (SHANNON, 1951; REI-

THINGER et al., 1996; GARAY-VITORIA; ABASCAL, 2006), they also have been used

in compression algorithms (MILLAR et al., 2006; PAULS; KLEIN, 2011), information

retrieval (WANG; MCCALLUM; WEI, 2007; SIDOROV et al., 2014), activities predic-

tion (ARNDT et al., 2013), plagiarism detection (BARRÓN-CEDEÑO; ROSSO, 2009;

STAMATATOS, 2011), among other topics. In our work, n-grams are used for approx-

imate matching of word sequences representing the environment observed by a robot.

In other words, we use n-grams for detecting loops in the simultaneous localization and

mapping problem.

50

3 FREE-SPACE DENSITY (FSD):

TRANSLATING RAW SENSOR MEASUREMENTS

INTO SIMPLE OBSERVATION VALUES

3.1 Introduction

Choosing an adequate world representation is an important aspect that should be con-

sidered in tasks of robotics. For instance, we can describe an environment using a set of

points extracted from laser readings, or with an arrangement of features extracted from

camera images, however, such approaches can be too costly and unsuitable for dealing

with highly ambiguous scenarios. Sometimes it is interesting to describe an environment

using more abstract information, like ‘the robot is in a long and narrow region’ or ‘the

robot is entering a wide space’, etc. For obtaining this type of higher-level knowledge

about the environment, we need a compact and efficient low-level representation of sen-

sors information.

In this chapter1, we propose an observation model that estimates, what we denomi-

nated, the Free-Space Density (FSD) of a region. By applying a kernel density estimate,

as described in Section 2.2, over the local map surrounding the robot, we obtain a single-

valued density that represents the amount of free-space in that location – where low densi-

ties are associated to tight/narrow spaces, and high densities are associated to large empty

spaces. We evaluate our proposal in a global localization case study using particle filters.

Given that the FSD measure is independent of orientation, it is possible to implement

an efficient pre-caching step in order to improve the performance of the process. We

show through experiments in comparison with traditional approaches that our method is

efficient and effective in the tested scenarios.

3.2 The Free-Space Density

Our novel observation model estimates the Free-Space Density (FSD) of a given region

surrounding a cell m0 of the environment by computing a kernel density estimate, Ψ,

1The core idea of this chapter was originally published in the paper “Fast Monte Carlo Localization using
spatial density information” (MAFFEI et al., 2015a), presented at the 2015 IEEE International Conference
on Robotics and Automation (ICRA’15).

51

centered on m0 by

Ψ(m0) =
∑
mi

s(mi,m0)K(||mi −m0||) (3.1)

where

s(mi,m0) =

 1 , if mi is a cell that belongs to the free space region connected to m0

0 , otherwise
(3.2)

The first step required for computing the FSD in the robot location is to build a local

grid map of the robot surroundings. Then, we apply a simple flood-fill algorithm to de-

termine all cells, inside a given kernel radius, that are connected to the cell at the robot

position. A kernel density estimate is computed using these cells, and depending on the

chosen kernel profile, different results can be obtained. We will discuss these topics in

details next.

3.2.1 Building a local map

Inaccuracies in the mapping process arise from errors in the robot motion and sensor

observations. Usually the observation model for range finder sensors such as laser is

highly precise, but the same is generally not true for the motion model of mobile robots.

In fact, we can say that a local map obtained by a discrete set of laser measurements and

few odometry readings is locally consistent. This assumption is supported by evidences

found in previous works of simultaneous localization and mapping (BOSSE et al., 2003;

MAFFEI et al., 2013).

We build the local map using the simple and efficient Histogramic In-Motion Mapping

technique (HIMM) (BORENSTEIN; KOREN, 1991), detailed in Section 2.1.2, but any

standard grid mapping technique can be used (MORAVEC; ELFES, 1985; MURPHY,

2000; HAHNEL et al., 2003b). Our approach only keeps cell information up to a certain

maximum radius, rmax. Once the robot moves (along with the center of the local map),

we disregard the information of distant cells, i.e. cells that are positioned farther than

rmax from the robot, to keep map consistency (see Figure 3.1).

52

Figure 3.1: Example of FSD values, in two different time steps. The red circle delimits
the frontier of the local grid map (rmax = 9m), the black circle delimits the region under
the kernel influence (h = 4m) and the yellow region corresponds to the visited space
covered by the kernel.

(a) t1 (b) t2

3.2.2 Computing the free-space density

With a local map available, we can determine the free-space density using a simple

flood-fill algorithm, as described in Algorithm 3.1. The density associated to a cell m0 is

obtained by applying the kernel functionKh to each free-space cell, mi, within the kernel

radius of bandwidth h. Free-space cells have occupancy value2 smaller than the threshold

εf , while occupied cells have occupancy value larger than the threshold εo (empirically,

we set εf = 3 and εo = 12). The algorithm starts by adding cell m0 to a queue Q (line

1). Then it processes all cells in Q (lines 3-4) that are inside the bandwidth h of kernel

Kh (lines 5-6). Each cell has its importance given by its distance di to the center of the

kernel (line 8). The flood-fill algorithm, computed only over free-space cells (line 7), is

performed via Von Neumann neighborhood (i.e. four-neighborhood: ↑,→, ↓,←) (line 9-

10). An important issue occurs when the expansion reaches unknown cells, that is, when

εf ≤ occmi
≤ εo (lines 11-12). In this case, we know that the local map is incomplete,

which can often happen given that we use a range finder with a 180◦ field-of-view, and the

density estimate is possibly smaller than the one obtained with a fully known map. For

this situation we designed two different free-space density measures that are computed

for each cell:

• Ψ: the soft FSD, which represents the density estimate in either complete or in-

complete local maps.

2In the HIMM method (BORENSTEIN; KOREN, 1991), the occupancy value of each cell is an integer
that varies from 0 (highest certainty of being free-space) to 16 (highest certainty of being obstacle). For
more details, see Section 2.1.2.

53

• Ψ�: the hard FSD, which is only defined in complete local maps. In incomplete

local maps, it is marked as undefined (Ψ� = UNDΨ).

When there are no reachable unknown cells inside the kernel radius, the soft FSD is

exactly the same as the hard FSD (lines 13-14).

Algorithm 3.1: Free-Space Density
Input: m0,m, Kh, εf , εo
Output: Ψ,Ψ�

1 Q = [m0]
2 Ψ = Ψ� = 0
3 while Q 6= [] do
4 mi = pop_front(Q)

5 di =
√

(x(mi)− x(m0))2 + (y(mi)− y(m0))2

6 if di < h then
7 if occmi

< εf then
8 Ψ = Ψ +Kh(di)
9 foreach (non processed) neighbor mk of mi do

10 push_back(mk, Q)

11 else if εf ≤ occ(mi) ≤ εo then
12 Ψ� = UNDΨ

13 if Ψ� 6= UNDΨ then
14 Ψ� = Ψ
15 return Ψ,Ψ�

3.2.3 Using different kernel profiles to compute FSD

Different kernel profiles and kernel bandwidths can be used to compute different dis-

tributions of free-space density. Figure 3.2 shows density maps of a same environment

that were built using three kernel profiles – uniform, Gaussian and inverted – and four

bandwidths – 10, 20, 30 and 40 cells. Each corridor of the environment is 3 meters wide,

or 30 cells, given that the grid discretization of the environment is 10 cells per meter.

We define the measure ρ, as the ratio between the kernel bandwidth (i.e. 10, 20, 30, or

40) and the width of the corridor (i.e. 30), to classify the size of the kernel considering

the environment, and examine the implications of varying the kernel bandwidth:

• very small (ρ < 0.5): exemplified by h = 10 cells (ρ = 0.333), see Figures 3.2(a)(e)(i).

It is good to determine proximity to obstacles, because, most of the time, small ker-

nels will be fully contained inside the free-space, thus the density only significantly

changes close to walls.

54

Figure 3.2: Maps of densities varying kernel profile and kernel bandwidth. Rows (from
top to bottom): uniform kernel, Gaussian kernel and inverted kernel. Columns (from left
to right): bandwidths of 10, 20, 30 and 40 cells (1, 2, 3 and 4 meters).

(a) UK10 (b) UK20 (c) UK30 (d) UK40

(e) GK10 (f) GK20 (g) GK30 (h) GK40

(i) IK10 (j) IK20 (k) IK30 (l) IK40

• small (ρ < 1.0): exemplified by h = 20 cells (ρ = 0.666), see Figures 3.2(b)(f)(j).

It is able to identify proximity to obstacles and differentiate regions of the environ-

ment. However, it is not recommended because it often may lead to confusion, for

55

instance, the density in the center of a corridor can be the same as the density near

walls in a corner.

• proper (ρ = 1.0): exemplified by h = 30 cells, see Figures 3.2(c)(g)(k). It is

the better choice if we want to segment the environment into different contiguous

regions, such as corridors, rooms, corners and bifurcations.

• large (ρ > 1.0): exemplified by h = 40 cells (ρ = 1.333), see Figures 3.2(d)(h)(l).

It is not recommended because the densities obtained with such kernels tend to be

hard to differentiate. In fact, as we increase the kernel bandwidth, the FSD values

in this environment decrease as a whole because the area of the kernel occupied by

free-space cells becomes smaller, and therefore, it is more difficult to differentiate

the places.

Regarding the kernel profile, we can say that the impact of choosing different profiles

is much smaller than the impact of choosing different bandwidths. All three profiles – uni-

form, Gaussian and Inverted – have similar distributions considering the same bandwidth,

but slightly shifted. The largest density values are usually obtained with the uniform ker-

nel, while the smallest values are obtained with the inverted kernel. An important feature

of the inverted kernel is that if we choose a bandwidth proper to the width of corridors,

like h = 30 in this case, the obtained density is constant at every position throughout the

corridor, as shown in Figure 3.2(k).

3.3 Case Study: Mobile robot localization

In this section we detail the application of the free-space density to the global local-

ization problem of a mobile robot. Mobile robot localization is one major area of study in

robotics (MAKARENKO et al., 2002). A robot cannot properly interact with the environ-

ment or execute relevant tasks without knowing its pose in the world. While simultaneous

localization and mapping (SLAM) and integrated exploration techniques are able to build

a map and, at the same time, to localize the robot inside this map (BOSSE et al., 2003;

MAFFEI et al., 2013), such methods are sometimes unnecessary. This is the case when

we already have a precise map of an environment, such as the floor plan of a building.

Robots can access adapted versions of such maps prepared for mobile robot localization.

Most localization approaches model the robot pose as a probability distribution, such

as Gaussians (LEONARD; DURRANT-WHYTE, 1991), histograms (BURGARD et al.,

56

1998a) or particle filters (DELLAERT et al., 1999). In these cases, the Bayesian approach

is adopted, where the previous robot state is assumed to be sufficient to infer the next one.

At each step, a prediction about the robot state is made respecting the robot motion model.

Then, readings from sensors are used to correct the estimate using a sensor measurement

model.

The modeling using unimodal Gaussian strategies, either to track single (LEONARD;

DURRANT-WHYTE, 1991) or multiple hypotheses (COX; LEONARD, 1994), usually

works well with the assumption of small uncertainty. However they require mechanisms

to extract salient features in the environment, such as geometric beacons (LEONARD;

DURRANT-WHYTE, 1991; COX; LEONARD, 1994). In contrast, non parametric ap-

proaches, such as histogram and particle filters, can work direct with raw sensor readings.

Histogram filters precompute the distance from walls in every cell of a grid represent-

ing the map, from a discrete set of orientations. They can obtain high accuracy in the

localization depending on the coarseness of the grid, nonetheless they may require large

amounts of memory to store all available robot states in the map, which may as well

imply in prohibitive computation time. Particle filters, as defined in the Monte Carlo Lo-

calization (DELLAERT et al., 1999), solve the localization problem spreading particles

(samples) throughout the map. Its cost is linear in the number of particles, but it can

become expensive as the number of samples increases – e.g., in large maps. Still, par-

ticle filters are highly popular to solve the localization problem due to their underlying

simplicity and robustness (THRUN; BURGARD; FOX, 2005).

The efficiency of such localization strategies relies on the way sensor observations are

modeled. In turn, the measurement model of a single reading of a range finder involves

a probability distribution – or a combination of probability distributions – considering

parameters such as the measured distance as well as sensor position and orientation. When

using a sensor that performs multiple readings at a single time step – e.g. a laser range

finder – the probabilities of all readings are combined to provide a single probability

of a given position in the map. So, the observation probability must be computed for

each hypothesis of the robot pose. Thus, it may become costly when the number of

particles is large. Some alternatives to speed-up the process are the subsampling of the

measurements and the pre-computation of the ray-casting in each discrete combination of

position/orientation available in the map. However, depending on the scale of the map

being processed, these modifications imply in the reduction of precision and a substantial

increase in memory requirements (THRUN; BURGARD; FOX, 2005; BURGARD et al.,

57

1998a).

Our proposal basically computes and compares the free-space density in the surround-

ings of the robot with those in the surroundings of samples in the map. The FSD of each

position in free space is precomputed and used to match the observations made by the

robot in a given instant in time. Furthermore, it is orientation independent and has a low

cost both in terms of processing time and memory requirements. Our method is particu-

larly good to reach the pose tracking stage, due to the large number of samples that it can

efficiently handle.

3.3.1 FSD-based Monte Carlo localization

The Monte Carlo Localization (MCL) algorithm is a simple and efficient particle filter

strategy for robot localization, as described in Algorithm 2.1 (back on Section 2.1.1). It

has three steps: the sampling of particles (pose hypotheses) based on the motion model,

the importance weighting of each particle based on the observation model, and the resam-

pling of particles based on the computed weights to approximate the posterior distribution

about the robot state to the target distribution. To use our novel observation model we just

have to modify the importance weighting step, that is, to define how to update the parti-

cles’ weights.

In our approach, we consider the map as a discrete regular grid. Each cell in the grid

map contains a free-space density value which is precomputed for future use. In other

words, we apply the FSD over the entire map to obtain a scalar field of density estimates.

Given that the map is fully known, the computed densities are the hard FSD (Ψ�), thus we

must also compute the hard FSD over the local map built using the robot observations.

The weight w of each particle p
[i]
t = 〈x, w〉 is computed using two factors: one based

on the density estimates, fΨ(p
[i]
t), and other based on orientation estimates, fα(p

[i]
t).

w(p
[i]
t) = fΨ(p

[i]
t) · fα(p

[i]
t) (3.3)

The first term of the expression is computed by comparing the density value at the

current robot position extracted from the local map, Ψ�(mrobot), to the one associated to

58

the current particle in the global map, Ψ�(mpart),

fΨ(p
[i]
t) =

 1 , if (|Ψ�(mrobot)−Ψ�(mpart)| ≤ εd) ∨ (Ψ�(mrobot) = UNDΨ)

0.5 , otherwise
,

(3.4)

where mpart = pose2grid(x(p
[i]
t)) is the grid cell corresponding to the particle’s pose.

fΨ(p
[i]
t) is used to reduce the importance of particles with FSD values that are highly

different than the FSD value observed by the robot. More specifically, we compute the

difference between the FSD value of a particle, Ψ�(mpart), and the FSD value measured

by the robot, Ψ�(mrobot), and check if this difference is larger than a density threshold

εd. We set the weight of particles which failed the test as half of those which passed.

Additionally, we keep the particles unaltered when the robot obtains an undefined density

value (UNDΨ). This situation happens just before the robot go through an opening in the

environment (e.g. door), because there will be reachable unknown cells inside the kernel,

which means that the measure made by the robot is not fully reliable. After the robot

passes through such opening and updates those unknown cells, then the newly computed

FSD will represent a proper value.

Figure 3.3: Evaluating the orientation of particles using the gradient of the FSD scalar
field. (a) αrobot and αpart are the angle information respectively associated to the robot
(yellow circle) and to the particles (white circles), and are computed by the differences
between the heading of the robot/particle (black arrow) and the gradient of the FSD scalar
field (red arrow) in the cell corresponding to the robot/particle position. (b) Example of
robot’s angle information obtained in the local grid map. The red arrow points in the
direction of the smallest FSD value. (c) Example of particles’ angle information obtained
in the global grid map.

robot particle

(a)

(b) (c)

From the scalar density field it is also possible to obtain orientation information using

59

standard gradient extraction methods, which we use to compute fα(p
[i]
t). In this paper

we use the Sobel operator3, but one can also pre-calculate approximate orientations with

methods such as used by Liu et al. (LIU; ZHANG; YOU, 2007). To estimate orienta-

tion information using densities, we compute the angle difference, αrobot, between the

robot orientation, θ(xt) and the gradient descent of the FSD scalar field. Then, for ev-

ery particle, we obtain the difference, αpart, between the orientation of the particle and

the pre-computed gradient stored in the map. Figure 3.3 illustrates the concepts of αrobot

and αpart, where the black arrows represent the heading of the robot/particles and the

red arrows represent the gradient descent of the FSD scalar field in the position of the

robot/particles, which always point to the region of smallest density value (usually, near

walls). The angle tolerance filter is calculated checking if the difference between αrobot

and αpart is smaller than a threshold εθ.

fα(p
[i]
t) =

 1 , if |αrobot − αpart| ≤ εθ

0.5 , otherwise
(3.5)

Equation 3.5 gives less importance to particles with incorrect angle differences. Unfor-

tunately, angle cuts have shown noisy behavior next to and at local maxima, local minima

and walls. Therefore, we compute the weight only in regions where the gradient of the

densities is stable (i.e. places where the direction of the gradient does not drastically

vary between adjacent cells). Taking such precautions, and setting the threshold εθ to

considerably large differences, the results are useful.

Finally, we also can combine different free-space densities with different kernel band-

widths to improve global localization results. The advantage of our method is the com-

putation time – one order of magnitude faster than traditional methods –, which is an

important factor for robots with limited processing power. Thus, the combination of a

small number of kernels implies small extra online computation time. In order to facili-

tate the notation, let us rename the weight w(p
[i]
t) of Equation 3.3 to w(p

[i]
t , Kj), i.e. the

weight obtained using a given kernel Kj . Then, we can define the weight w(p
[i]
t) of a

particle considering multiple kernel density estimates as just the product of the individual

3The Sobel operator is a discrete differentiation operator, which approximates the gradient of the val-
ues in a grid (SZELISKI, 2010). Considering the values associated to the 8-neighbors of a cell mc as tl tc tr
ml mc mr

bl bc br

, the Sobel operator defines the gradient vector as
(
tr + 2mr + br − tl − 2ml − bl
tl + 2tc + tr − bl − 2bc − br

)
.

60

weights, i.e.,

w(p
[i]
t) =

∏
j

w(p
[i]
t , Kj). (3.6)

3.3.2 Experiments

Our experiments were conducted using the platform described in AppendixA – a Pio-

neer 3DX robot equipped with a SICK LMS-200 laser range finder, and a notebook with

a Intel R© QuadCoreTM i7 processor with 16GB of RAM memory. The proposed observa-

tion model was evaluated in three different simulated scenarios, each one with a specific

trajectory (see Fig. 3.4). Scenarios A and B are composed of corridors arranged in adja-

cent loops, which are highly symmetrical configurations, specially Scenario B. Scenario

A contains two small loops of same length (46m) and two larger loops of different lengths

(58m and 78m), while scenario B contains three loops of same length (72m). Scenario

C contains several small rooms in two separate galleries, inside an area of approximately

25m× 25m.

Figure 3.4: Scenarios used in the experiments, showing the initial robot position (yellow
star), final robot position (blue circle), robot path (pink) and path direction (black arrows).

(a) Scenario A

(b) Scenario B

(c) Scenario C

All maps were discretized using a regular grid with 10x10cm2 cells. In all experiments,

we set rmax = 9m (radius of the local map), εd = 0.2 (density threshold) and εθ =

61

45◦ (orientation threshold)4. Tests were divided in two subsections, the first considering

only the proposed observation model, and the second showing a comparison with other

strategies. For this experiment, we do not pre-compute the gradient angle for each of

the stored density maps, but this could also be done, reducing the computation time even

further.

3.3.2.1 Evaluating the FSD observation model

In this section, we present an evaluation of different kernels regarding localization

capabilities and computation time in Scenario C (robot path, starting and ending positions

are presented in Figure 3.4(c)). Figures 3.5(a)-(c) show the mean localization errors for

UK, GK, and IK considering bandwidths of 15, 30, 40, and 50 cells. Figure 3.5(d)

presents three approaches, each one combining kernels of same profile and different radius

(15, 30 and 50 cells). We performed 15 tests for each configuration, setting the number of

particles to 40.000. We did not reset the filter in the case of filter divergence to observe

the full behavior of our strategy.

We can see in Figure 3.5 that before the final convergence the errors vary substantially.

This happens because the environment is symmetric, thus the particles distribution will

be divided in multiple modes. However, in almost all cases the error drops to near zero

around iteration 600. Analyzing Scenario C (Figure 3.4(c)), there are two twin galleries

connected by a corridor. As the robot leaves the first gallery and enters the corridor, which

happens around iteration 600, a mode of the particles distribution hits a wall and vanishes.

Afterwards, all particles should ideally converge to the correct solution. However, this

does not always happen with large kernels, as can be seen in Figures 3.5(a) and 3.5(b). The

problem is that the hard FSD is unreliable when there are unvisited cells inside the kernel

(centered in the robot). That said, the high number of gaps and doors in this map results

in numerous undefined FSD occurrences when using large kernels, since the observation

model erases information of distant cells in order to preserve local consistency of the

online constructed map. The best results were presented by the multi-kernel approaches

as we can see in Figure 3.5(d). This is expected given that such approaches are able to

extract more information from the map.

Regarding the computation time, each filter iteration of the approaches using single

kernel profiles (Figures 3.5(a), 3.5(b) and 3.5(c)) was performed in around 30ms. The

mean computation time for approaches combining three kernels (Fig. 3.5(d)) was three

4Those values were perceived as adequate thresholds in preliminary experiments

62

Figure 3.5: Localization in Scenario C using different kernels profiles and bandwidths. (a)
Uniform kernel. (b) Gaussian kernel. (c) Inverted kernel. (d) Homogeneous combinations
of kernel profiles having different radius – 15, 30 and 50 cells.

(a) (b)

(c) (d)

times larger, around 90ms.

3.3.2.2 Comparing FSD with other techniques

We compare the proposed observation model with two strategies. The first is an adap-

tation of the basic beam observation model (which will denoted by bb, for short, from now

on) described by Fox et al. (FOX; BURGARD; THRUN, 1999). The bb method projects

each laser beam for each particle using ray-casting and compares to the real sensor ob-

servations. To increase performance the authors propose sampling laser beams spaced by

10◦. We do not pre-compute selected orientations as a possible improvement suggested

by the authors because such action can lead to an unreasonable amount of memory. For

instance, consider that we pre-compute all measurements in a map having 2.000×2.000

cells (the size of our grid), sampling 8 from 181 laser beams and varying the robot ori-

63

entation at each five degrees. In this case, such approach would require an unfeasible

storage space of more than 8GB of memory. In comparison, our method using densities

requires the pre-caching of gradients and density estimates for each cell that consume

approximately 91MB.

The second strategy is the cosine similarity measure between two sets of readings

(which we will denote cs). We consider the set of laser beams as a N -dimensional vector,

where each row of the vector corresponds to the range measured by a laser beam. Thus,

for each particle, we compute the cosine distance between the normalized vector vr as-

sociated to the robot and the normalized vector vp associated to the particle. The idea

is the smaller the angle between two vectors the more similar they are. This measure is

efficiently computed through the dot product of the vectors.

cs(vr,vp) = vr.vp (3.7)

However, in practice cs presents a slow decay, which implies in setting similar impor-

tances for most particles. Thus, we modify Equation 3.7 to obtain a fast decay of the

function associated to the particles weights (since all values are normalized, we empiri-

cally decided to modify cs through exponentiation).

fcs(vr,vp) = (cs(vr,vp))4 (3.8)

In order to compare all techniques, experiments were performed in the Scenarios A, B

and C, varying the number of particles. We performed 15 runs in each scenario for each

technique and computed the mean error per step as well as the mean time per iteration

step (see Fig. 3.6). In all scenarios, bb and fcs were compared with FSD using three

homogeneous combinations of kernel profiles UK, GK, and IK, with kernel bandwidths

of h = {15, 30, 50} cells. Since the computational cost of the methods is different, we

decided to perform them with different number of particles to allow the methods to run

in similar time (between 0.05 and 0.15 seconds per iteration). Both bb and fcs were

tested with 500 particles in Scenario A, 1000 particles in Scenario B and 2000 particles in

Scenario C, while our proposed techniques were tested with 20000 particles in Scenario

A, 30000 particles in Scenario B and 40000 particles in Scenario C.

As we can see, in spite of the large differences in the number of particles, we observe

in Figures 3.6(b), 3.6(d), 3.6(f) that FSD is considerably faster than the competing meth-

ods. Also, as expected, the increase in the number of particles from 500 to 1000 and 2000,

64

implies linear increase in the mean computation time of the competing methods. Thus,

substantially increasing the number of particles can be problematic for both competing

methods. On the other hand, the proposed observation model does not suffer with such

problem. In fact, the change in the number of particles from 20000 to 30000 and 40000,

resulted in modest changes in the mean computation time. Note that, even though the

observation model can use kernels of considerably large bandwidths and a large amount

of particles, the overall computation time is small. The kernel density estimate surround-

ing the robot is computed only once per step, what makes the kernel size computationally

inexpensive when compared with the cost of weighting and resampling all particles ac-

cording to their pre-computed density values.

Figures 3.6(a), 3.6(c), and 3.6(e) present the mean error per step considering 15 runs

of each observation model. In scenario A, all techniques converge to the correct robot

position at most after step ≈ 1.100. We can see that the fcs method (cyan) converges

faster than bb (purple), with the exception of Figure 3.6(c) in which both methods do

not converge. However, the methods based on free-space density (UK - dark blue; GK -

green; and IK - red) converge much faster (around step 100), while using a set of particles

40 times larger than fcs and bb.

Scenario B, the largest one, renders weak results for the competing methods, meaning

that 1.000 particles is probably not enough to resolve the global localization problem

in such map. The degree of ambiguity in such scenario easily makes particles diverge.

The FSD techniques were the only ones to properly converge to the correct solution,

maintaining a computation time about 50% smaller than the competing methods.

The situation is similar for scenario C, where we see bb converging to the wrong

particle and keeping them until ambiguity is eliminated by the motion model near step

600. The fcs method cannot properly converge even at the end of the process. Once

again, the results of the proposed method were the ones with the smaller error.

65

Figure 3.6: Mean errors (a, c and e) and mean times per iteration (b, d and f) for sce-
narios A, B and C, respectively, displaying: bb (purple), fcs (cyan), and FSD using three
homogeneous combinations of kernel profiles UK (dark blue), GK (green), and IK (red)
presented in Section 3.3.2.1 using a set of bandwidths h = {15, 30, 50 cells}. Observe
that our technique presents considerably faster times.

(a) (b)

(c) (d)

(e) (f)

66

3.4 Related Work

State estimation problems, such as localization and SLAM, require models that trans-

late sensors observations to a map representation. The so-called observation models are

used to evaluate the similarity between true robot observations and observation hypothe-

ses extracted from a specific location given a map of the environment.

Early works relied mostly on feature-based observation models, for instance extract-

ing geometric beacons (e.g. walls, corners) from sonar data (LEONARD; DURRANT-

WHYTE, 1991; COX; LEONARD, 1994). Nowadays, feature-based methods are popular

due to the use of cameras, making the definition of such models directly linked with the

area of computer vision (LOWE, 2004; BAY; TUYTELAARS; GOOL, 2006; CHOI;

LEE; OH, 2008). Still, range finders remain highly popular in robotics due to their preci-

sion and robustness.

Fox et al. (FOX; BURGARD; THRUN, 1999) propose an observation model for laser

range finders, which describes a beam model considering noise in the measurement, er-

rors due to unexpected objects and errors due to failures in object detection. The main

problem of such approach is that it requires ray-casting computations, that can be com-

putationally expensive depending on the application. In fact, every time that we want to

evaluate an observation from a different pose (x, y, θ) of the map we need to project all

scans using ray-casting. If the map is known – for instance in the localization problem –

the ray-casting can be pre-computed reducing substantially the time cost. However, such

pre-caching drastically increases the memory requirements. Thrun et al. (THRUN, 2001)

propose the likelihood field model, which avoids ray-casting by only evaluating the prox-

imity to obstacles of sensor beams endpoints . Their method obtains fast results, but since

it only checks the endpoints of a reading, it consider readings that pass through obstacles.

Another way to model sensor observations is with correlation measures. Weiss et

al. (WEISS; WETZLER; PUTTKAMER, 1994) propose cross-correlations of orientation

and translational histograms of scan readings. Olson (OLSON, 2009; OLSON, 2015) re-

lies on the likelihood field model to propose efficient multi-level strategies for correlative

scan-matching. Duckett and Nehmzow (DUCKETT; NEHMZOW, 2001) present a tech-

nique which stores a pair of histograms of free cells and obstacles over a discrete grid

obtained by measurements taken at a specific orientation. They use a robot equipped with

a compass, which is used to ensure that the robot is at that same orientation when per-

forming measurements. Matching is performed convolving the two histograms obtained

67

by the robot with every pair of histograms previously calculated and stored in each cell of

the map.While their results are good, the assumption about the compass and the ability to

know the precise robot orientation is a major drawback of their method.

Lastly, the more compact form of representing observations is translating them to a

single value. Zhang et al. proposes a single-valued observation model called Similar

Energy Region (SER) (ZHANG; ZAPATA; LÉPINAY, 2012). SER is a value associated

to each position in the free-space, corresponding to the sum of the ranges of all readings

made by the robot at such position. Since they use a robot able to get readings in 360◦,

their measure of energy is virtually independent of orientation (this is only true under the

assumption of a perfectly circular robot, with uniformly distributed sensors). A problem

of such strategy is that the simple sum of measured ranges can easily produce misleading

values, i.e., similar results on very different regions.

Our proposal is similar to the concept of SER, but we avoid misleading values by

constraining our measurement to a local circular region. Instead of obtaining an absolute

measurement of free space surrounding the robot, we compute a kernel density estimate

(KDE) that returns a free-space ratio in terms of the maximum area of the local region.

3.5 Summary

In this chapter we have proposed the Free-Space Density (FSD) which is a novel ob-

servation model based on kernel density estimates of the free-space cells surrounding the

robot. We have evaluated FSD in the problem of global localization of a mobile robot

using particle filters. As the experiments have shown, the computation time of our tech-

nique is remarkably low in comparison with other techniques, but obtaining similar and

better quality of results.

The main advantages of our proposal are:

(i) Conciseness – Each position in space is associated to a single value;

(ii) Robustness – Small variations or noise in the robot position do not strongly im-

pact on the FSD, because the variation of the density values is always smooth, as

illustrated in Figure 3.2. Note that the FSD smoothness increases with the kernel

size.

(iii) Estimation of the robot orientation using the gradient of the scalar field of FSDs, as

described in Section 3.3.1;

68

(iv) Low memory consumption – Differently from approaches such as Fox et al. (FOX;

BURGARD; THRUN, 1999), in which pre-caching the measurements estimates

adds a considerable memory burden to the process, the pre-caching of FSD implies

the addition of only one value per cell of the grid (see Section 3.3.2.2);

(v) Low time cost – The computational time of measuring any position in a pre-computed

map correspond to a single-valued table look-up.

Note that the proposed method performs a dimensionality reduction of the informa-

tion. While this allows all the benefits mentioned above, we highlight that it decreases its

precision and effectiveness. If we use a small number of particles to localize the robot, the

method will most certainly be unsuccessful. Fortunately, we can do a massive increase in

the number of samples, with minimum impact on processing time.

Our method also depends on known cells surrounding the robot. For instance, when

the robot is approaching corners and bifurcations, the method is unable to establish a valid

observation until the current local map is complete – at least in the surroundings of the

robot. If we always use the current local map, correspondence problems may arise. For

example, looking back at Figure 3.1, and supposing that the robot is going upwards and

not downwards (i.e., from the position in (b) to the position in (a)). Then, part of the

yellow area shown in Figure 3.1(a), which contributes to the computation of the kernel

density estimate, will be unobservable until the robot actually enters the block of rooms.

This may cause large disparities in the value of the soft FSD (Ψ), while the hard FSD stays

undefined (Ψ� = UNDΨ). To circumvent this problem, our localization method avoids

refining the state estimate in such situation, thus, increasing the uncertainty of the filter.

The aforementioned characteristics make our method better for global localization than

tracking. In particular, it is suited for global localization in large maps, where a large

number of hypothesis must be tested at once. It is possible to combine the proposed ob-

servation model with others to achieve better localization results once the rough position

of the robot is found – e.g. changing to a more accurate and computationally expensive

observation model with less particles.

69

4 N-GRAM SLAM:

TRANSLATING SIMPLE OBSERVATION VALUES

INTO WORDS AND SOLVING SLAM WITH A

SHALLOW LINGUISTIC PROCESSING TECHNIQUE

4.1 Introduction

A critical part of simultaneous localization and mapping (SLAM) is its front-end, that

is, to solve the place recognition problem. Even if we use the best optimization algorithm

available in the literature as SLAM back-end, the resulting map will be poor if the front-

end is not good. Nonetheless, while wrong place recognition can be disastrous for the

SLAM process, proper place recognition provides essential information for the correction

of localization and mapping errors (THRUN; BURGARD; FOX, 2005; STACHNISS;

HAHNEL; BURGARD, 2004; GRISETTI et al., 2010b). It is important to store observa-

tions made by a robot during its trajectory in order to be able to match regions observed in

different moments, which means to detect when the robot is revisiting an already known

place (WERNER et al., 2009; MILFORD; WYETH, 2012).

There are basically two criteria for a precise place recognition (OLSON, 2009). The

first criterion – global sufficiency – ensures that the matched region is large enough to

be unambiguous, that is, distinct from all other regions where the robot can be located

considering the robot uncertainty. If the robot has large uncertainty about its location,

then the search space for matches is also large, possibly containing many ambiguous

places. Thus, the larger the matched region inside the search space, the smaller will be

the chances of obtaining a false matching. The second criterion – local uniqueness –

ensures that the matched region is unique inside its surrounding area, meaning that the

match is probably correct, otherwise the position uncertainty of the robot is extremely

wrong. Most methods focus on finding and matching highly distinguishable features in

the environment to ensure local uniqueness. However, in many situations, depending on

the ambiguity level of the environment and the sensors used, it is very hard to fulfill such

criterion. This happens in the so-called picket fence problem, illustrated in Figure 4.1:

many possible good matches are nearby and can be obtained by simple translations, like

skipping fence posts of a picket.

The core assumptions in our work are that the robot equipped with a laser range-

70

Figure 4.1: Example of the picket fence problem in an environment. Multiple local am-
biguities can lead to wrong place recognition. Figure adapted from (OLSON, 2009)

B

A

A’s
uncertainty

finder moving inside a structured indoor environment does not know where it is; it has no

information about the map; and the uncertainty of its odometry is high. Additionally, the

robot may perform multiple runs starting from different initial points, i.e. we may have

to try matching different trajectories. In such situation, local uniqueness is extremely

hard to obtain, therefore the only solution is to find matches of long regions. However,

comparing long sequences of raw sensor readings not only can be costly, but also suffer

in the presence of noise.

Our proposal1 is to view this problem as a prediction and correction problem of in-

formation transmitted through a noisy channel, which has been widely studied in fields

like computational linguistics. Defining a robust and compact text description for the se-

quences of sensor readings allows us to efficiently handle the place recognition problem

with the aid of techniques from linguistic processing, such as n-grams. That said, the

novel observation model described in last chapter, the Free-Space Density (FSD), per-

forms a large compression of the information measured by the robot at each time step: all

sensor data is transformed into a single value. Additionally, some of the most valuable

features of FSD are stability and robustness. The variation of free-space density measures

is smooth, that is, we do not get abrupt density changes in an environment (except if using

really small kernels, which is useless in general). This way we can adopt FSD to easily

classify each point of the environment and generate coherent regions.

In Figure 4.2(a), we present a map of densities obtained using the inverted kernel with

bandwidth of 30 cells, as shown earlier in Figure 3.2. As we can see, when the free-

space density varies, such variations gradually go from light green (Ψ� ≈ 0.4) to dark

1The core idea of this chapter was originally published in the paper “Using n-grams of spatial densities
to construct maps” (MAFFEI et al., 2015b), presented at the 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS’15).

71

blue (Ψ� ≈ 0.7) and vice-versa. Conversely, the densities stay constant in large uniform

regions of the environment, e.g. corridors. Thus, if we discretize the density values into

a small number of classes we are able to divide the environment into contiguous regions

of homogeneous density. As shown in Figure 4.2(b), the simple segmentation of densities

into two classes, such as low (Ψ� ≤ 0.5) and high (Ψ� > 0.5), allows the separation

of corridors from corners and bifurcations. Furthermore, a topological representation of

the environment can be easily built considering this information, as illustrated in Figure

4.2(c).

Figure 4.2: Example of a topological map obtained from a densities map by just applying
a threshold over density values. The original densities, in (a), are divided into two classes,
in (b), resulting in two types of contiguous regions represented in the graph, in (c).

L

H

L

H

L

H

H

HLH H

L

H

L

L

LL

L

L

L

L

L

H

L

L

H

L

0.0 1.00.5 0.0 1.00.5
L H

(a) Continuous densities map (b) Discrete densities map (c) Topological map

The segmentation of the FSD space is a way to translate relevant spatial information

of the environment into a very compact representation. We can compress large sets of raw

laser readings into sequences of few density values. Such information can be described

by simple words. Place recognition is performed matching ordered sequences of n words,

also denominated n-grams, reaching maximum precision for some scenarios. We apply

our front-end on a graph-based SLAM framework using a traditional Gauss-Newton back-

end for graph optimization, previously described in Section 2.1.3.

We begin this chapter presenting a review on n-grams, which is a simple technique

used in shallow linguistic processing for word prediction, matching of texts, among other

72

applications. Later, we detail the main steps of the proposed SLAM strategy: the transla-

tion of density signatures into words, the matching of n-grams, and the topological map

construction. The evaluation of our method is made through experiments in different

environments and sets of configurations. Finally, we draw some conclusions about the

proposed algorithm.

4.2 SLAM using n-grams of FSD-based words

Our SLAM approach is based on the idea that spatial regions have aspects, e.g. free-

space density, that remain fairly consistent even when being traversed using different

paths. By translating such aspects into words we reduce the search space for place recog-

nition. We also analyze the ordered sequence of words, i.e. n-grams, to efficiently disam-

biguate similar regions.

The general algorithm that we developed for place recognition is presented in Algo-

rithm 4.1. Each step is following described in details.

Algorithm 4.1: Basic N-Gram SLAM algorithm
while exploring do

1 Build contiguous spatial region.
2 Translate region into word.
3 Match current sequence of words with past words using n-grams.
4 Update the topological map.

4.2.1 Building a contiguous spatial region

The first step of the algorithm is to obtain a contiguous region of similar free-space

density (FSD). At each robot pose, we compute the FSD as described by Algorithm 3.1

in Chapter 3. Then, the density values are discretized into few significant density classes.

This is fundamental not only to reduce noise effects, but also to posteriorly obtaining a

low-dimensional space of words. We can just uniformly quantize the density values into

classes of same interval range, or divide the classes more properly considering the history

of observations. For this, we use the Mean Shift algorithm over the histogram of all past

observations (CHENG, 1995). Figure 4.3 shows an example of density classification us-

ing Mean Shift for a given robot path. The histogram, depicted in the center of the image,

73

Figure 4.3: Result of the density quantization using Mean Shift. The algorithm detected
three peaks in the histogram of densities, as shown in the center of the image. The densi-
ties obtained in each point of the robot’s path are depicted using the color associated with
the corresponding density quantization.

presents three maxima in the colors green, blue and red, which represent, respectively, the

average densities of corridors, corners and crossroads/bifurcations. However, the distri-

bution of densities may change over time due to new areas being explored. To deal with

such problem, the Mean Shift can be periodically updated. If it results in a drastically dif-

ferent partition of density classes, the words corresponding to all previous observations

must be regenerated considering the new density partitions.

An important point of the algorithm is that, instead of using the hard FSD (Ψ�), we

use the soft FSD (Ψ), which always computes a valid density, even when unknown map

cells are found nearby the robot. Figure 4.4 illustrates a situation in which the densities

assume different values in the same point because of variations in the direction of the

robot motion. When the robot is going up the vertical corridor just before turning right at

the corner, as shown in (a), there are unknown cells inside the kernel that are reachable

from the robot position. In this case, the hard FSD is undefined, while the soft FSD

corresponds to an unreliable value, i.e. only occurs when the robot moves in that specific

direction. In contrast, when the robot is moving in the reversed direction, as shown in (b),

all reachable cells inside the kernel are known (either obstacles or free-space), therefore,

the values of soft and hard FSD are the same.

Given that situations like the presented in Figure 4.4 are quite common, the problem

of using hard FSD is that many times the density values are undefined. Note that there

are no points where the hard FSD will be always undefined, in fact, this is something that

depends on the robot path. This can be observed in Figure 4.5, in which we present soft

74

and hard FSD values computed in segments of robot paths varying the motion direction.

The hard FSD is undefined in large part of the paths, as shown in (a) and (b), while the

soft FSD is always valid, as shown in (c) and (d). Furthermore, if the robot is revisiting

a place with unknown areas (e.g. a corridor with doors to unexplored rooms) in the same

direction, the method will obtain the same sequence of soft FSD values.

Figure 4.4: Different motion directions lead to different FSD values because the area
observed by the robot changes. (a) Unreliable FSD value, i.e. Ψ 6= Ψ�, because reachable
unknown cells inside the kernel lead to Ψ� = UNDΨ. (b) Reliable FSD value, i.e. Ψ =
Ψ�. Description: kernel boundaries (red circle), known area (gray region), known area
inside the kernel that is reachable from the robot position (green region), motion direction
(black arrows).

(a) (b)

Observations made by the robot are grouped in a list O = [o0, · · · ,ot], where

ot = 〈Ψ, d,xt〉 (4.1)

is the observation made by the robot at instant t and it is composed of a density value

(Ψ) with its associated density class (d), and the robot pose (xt) given by odometry at

instant t. Our method divides O into smaller lists of observations representing contiguous

regions, that is, a region Rn is the n-th sequence of observations in O that share the same

density class. We can rewrite O as a concatenation2 of all built regions, followed by a

list P of “pending observations”, which correspond to the last observations made by the

robot that are still not associated to any region,

O = R0 ⊕R1 ⊕ · · · ⊕Rn−1 ⊕Rn ⊕ P. (4.2)

The algorithm for building contiguous regions, by clustering sequential observations

of similar densities, is described in Algorithm 4.2 and its input is the list of pending ob-

servations. The algorithm is executed whenever a variation in the density class occurs. In
2We define the symbol ⊕ as the operator to concatenate lists.

75

Figure 4.5: Differences on the results of soft and hard FSD due to variations in the robot
motion direction. (a)-(b) Regarding hard FSD, there are large segments of undefined
density value. (c)-(d) Regarding soft FSD, there are discrepancies near corners and in the
region near the door to the room, which considers the known area inside the room (larger
when the robot is moving to the left). Description: FSD values in the robot path (colored
thick lines), known area (gray region), motion direction (black arrows).

CAPTION

Low FSD Medium FSD High FSD Undefined FSD

(a) (b)

(c) (d)

order to exclude wrong observations resulting from noise or temporary partial occlusions

(e.g. fast moving obstacles), we set a threshold (to) as the minimum size of a valid region.

Thus, if the size of P is smaller than to, no region is generated (lines 2-3). If this is not

the case, then a region is created containing the sequence of all observations that shares

the same density class (dnew) of the initial observation (lines 4-8). The output of the algo-

rithm is the new contiguous region (Rnew), along with the remaining of the list of pending

observations (P). When we are able to successfully generate a new region, Rnew, we

must replace the original P (used as input for the algorithm) in O, by the concatenation

of Rnew and the updated P .

Figure 4.6 exemplifies a few steps of the algorithm. At instant t, the last built region

is represented by the observations in Rn, that ends before ot−k. Therefore, the list P

contains the last k observations made by the robot. At instant t + 1, a variation in the

density class occurs (as illustrated by the difference of colors), causing the generation of

a new region. At instant t + 2, the list P is updated to start with the observation that

76

Figure 4.6: Example of the algorithm for building contiguous regions. The density class
of each region is represented by a different color. The algorithm’s input is the list P of the
last observations that are not associated to any region, which at instant t corresponds to
[ot−k, · · · ,ot]. A region is built at every transition of density class, which, in the example,
occurs at instant t+ 1. After this, the list P is updated to start at the observation ot+1.

...

...

...

New Region

follows the new built region.

Algorithm 4.2: Build contiguous region
Input: P = [ot−k,ot−k+1, · · · ,ot−1,ot]
Output: Rnew, P

1 Rnew = []

2 if size(P) ≤ to then
3 return Rnew, P

4 o = pop_front(P)
5 dnew = d(o)

6 while d(o) == dnew or size(Rnew) ≤ to do
7 push_back(o, Rnew)
8 o = pop_front(P)

9 push_back(o, P)
10 return Rnew, P

4.2.2 Translating regions into words

Each contiguous region is translated into a word composed of three syllables,

W = 〈d, s, a〉, (4.3)

that corresponds to information of free-space density, size and angle variation, respec-

tively. Algorithm 4.3 shows the process of word building. The list of consecutive similar

observations that compose the region, R, is passed as input to the algorithm. The first

77

syllable of the word, d, represents the density class of all observations in R, which is the

density class of the initial observation, d(oi) (line 1). The second syllable, s, is the size

of the region, given by the number of observations (line 2). The last syllable, a, is the

difference of the angle between median and final poses of the sequence of observations,

and the angle between initial and median poses (line 3). Figure 4.7 shows an example of

the angle variation in a segment of the robot path. In the example the robot turns to the

left in a corner, which results in an angle of approximately 90 degrees.

Algorithm 4.3: Build Word
Input: R = [oi, · · · ,om=(i+f)/2, · · · ,of]
Output: W

1 d = d(oi)
2 s = size(R)

3 a = arctan

(
y(xf)−y(xm)
x(xf)−x(xm)

)
−arctan

(
y(xm)−y(xi)
x(xm)−x(xi)

)
4 W = 〈d, s, a〉
5 return W

Figure 4.7: Computing the angle variation of a region. (a) Segment of the robot path. (b)
Highlighting the poses of initial, median, and final observations, i.e. xi, xm and xf . (c)
The angle variation (a = 84◦) is the difference between the angle formed by the final and
median positions (89◦) and the angle formed by the median and initial positions (5◦).

89º 5º

- =
 84º

89º

5º

=

(a) (b) (c)

4.2.3 Matching current and past observations using n-grams

Place recognition is performed by finding matches of n-grams, i.e. sequence of n

words, which is a technique widely used in shallow linguistic processing3. At each in-

stant, we compare the most recent n-gram with all possible n-grams over the entire path.
3See Section 2.3 of Chapter 2 for a detailed background on the n-grams technique.

78

Figure 4.8 shows an example of construction of words and n-grams. In (a), we can see

the densities quantization, which separates the environment in three different types of re-

gions – corridors, corners and bifurcations. Three consecutive words are presented in (b),

along with their descriptions in (c). For instance, the first highlighted word {B, 18, 90}

corresponds to a segment of density class B, composed of 18 observations, and an angle

variation of 90◦ (i.e. a left turn). Figures 4.8(d)-(e) show, respectively, the 2-grams and

the 3-gram that can be originated from the sequence of those words.

A match between two n-grams is considered successful only if there are matches be-

tween all words of both n-grams. In the same way, the matching between two words

considers all three syllables 〈d, s, a〉. The density check is binary, i.e. either the words

are in the same density class or they are not. The matching of the other two syllables

have pre-defined tolerances. The size matching requires the computation of a ratio, ρs,

between the size differences of the two words being compared and the size of the largest

word,

ρs(Wi, Wj) =
|s(Wi)− s(Wj)|

max(s(Wi), s(Wj)
. (4.4)

We accept matches when ρs is smaller than a given threshold εs (e.g 20%). The angle

Figure 4.8: Example of construction of words and n-grams. (a) Density quantization into
three classes. (b) Highlighting three consecutive regions visited by the robot. (c) De-
scription of the words associated to the three regions. (d) Description of the two possible
2-grams. (e) Description of the possible 3-gram.

A A

A A

AA

A

A
A

A
A

A

A A

A

C

C

C C C C

C

C

B

B

B B

B

B

B

B

BB

B

B

(a)

A

B

C
motion
direction

(b)

Words: 2-Grams: 3-Grams:
⟨B,18,90⟩
⟨A,7,0⟩
⟨C,23,5⟩

-⟨B,18,90⟩ ⟨A,7,0⟩
⟨A,7,0⟩ ⟨C,23,5⟩-

-⟨B,18,90⟩ ⟨A,7,0⟩ ⟨C,23,5⟩-

(c) (d) (e)

79

tolerance, εa, is set to 30 degrees, a value that we empirically determined as significant in

our experiments for differing typical robot subpaths such as turning right or going straight

ahead.

Figure 4.9 shows a complete illustration of the place recognition strategy. In (a), we

have a robot path that is divided into 47 segments of homogeneous densities and crosses

every region of the environment more than once.4 In (b), it is possible to see that, due to

the structured nature of this environment (and due to the density quantization into three

classes), there are only 10 different types of words that can be generated, which are: turn-

ing to the left and to the right at corners (W1, W2) and bifurcations (W3,W4); going straight in

bifurcations (W5); or going straight in corridors, which have five different sizes (W6 to W10).

In (c), the 47 segments of the robot path are translated into words. This allows searching

for n-grams matches with extreme efficiency, because all history of observations made by

the robot is now compressed into a few hundreds of bytes. In (d), we show all matches

of n-grams that happen with this robot path. When using 2-grams, there are 27 matches

(of 13 different types of 2-grams), but only 10 of those matches are indeed correct. When

using 3-grams, the total number of matches drops to 12, from which 7 are correct. When

using 4-grams, there are 4 matches, all of them correct. Finally, the largest n-grams that

still obtain matches are 5-grams, with 2 correct matches. Note that we do not match words

that occur in the same place but in reverse directions, like words number 20 (of the type

W1, i.e. a left turn) and number 34 (of the type W2, i.e. a right turn).

As the example demonstrates, the choice of n to be matched is very important. Using

n-grams of small sizes, such as two or three, will lead to a large number of incorrect

matches, because such sequences are hardly unique to some path of the environment,

specially in ambiguous structured scenarios like the one in Figure 4.9(a). On the other

hand, large values of n lead to better matches, since the presence of a same large sequence

in different paths through the environment requires the existence of a highly symmetrical

environment. However, choosing extremely large n sizes can lead to zero matches.

4Note that paths running over the same place are drawn with a significant displacement between them,
which could lead to different density values. However, this was done in the illustration just for ease of
understanding.

80

Figure 4.9: Example of place recognition using n-grams. (a) Robot path (starting at white
diamond and ending at large arrow) is divided into 47 segments (b) All segments can be
described using 10 different possible words. (c) Robot path translated to a sequence of 47
words. (d) All possible matches of n-grams (there are no matches with n > 5).

1

2

3

4

5

6

7

8

9

14

12

13

10

11

15

16

17

18 19 20

21

22

23242526

27

28 29 30

31

32

33

34

3536

3738

39

40

41

42 43 44

45

46

47

(a)

Possible words in this environment

W1: left turn at corner W2: right turn at corner
W3: left turn at bifurcation W4: right turn at bifurcation
W5: straight on bifurcation W6: straight on very short corridor
W7: straight on short corridor W8: straight on medium corridor
W9: straight on long corridor W10: straight on very long corridor

(b)

Word associated with each segment of the robot path

1 2 3 4 5 6 7 8 9 10
W6 W2 W8 W5 W8 W5 W7 W2 W9 W2
11 12 13 14 15 16 17 18 19 20
W7 W4 W6 W3 W8 W5 W8 W3 W6 W1
21 22 23 24 25 26 27 28 29 30
W10 W3 W6 W5 W6 W4 W7 W2 W9 W2
31 32 33 34 35 36 37 38 39 40
W7 W5 W10 W2 W6 W5 W6 W2 W8 W5
41 42 43 44 45 46 47
W8 W4 W6 W4 W8 W5 W8

(c)

All matches of n-grams

2-grams
Total Matches: 27 Correct: 10 Wrong: 17 Types: 13

W6-W2 (1-2;37-38); W2-W8 (2-3;38-39); W8-W5 (3-4;5-6;15-16;39-40;45-46)
W5-W8 (4-5;16-17;40-41;46-47); W7-W2 (7-8;27-28); W2-W9 (8-9;28-29)

W9-W2 (9-10;29-30); W2-W7 (10-11;30-31); W4-W6 (12-13;42-43); W3-W6 (18-19;22-23)
W6-W5 (23-24;35-36); W5-W6 (24-25;36-37); W6-W4 (25-26;43-44)

3-grams
Total Matches: 12 Correct: 7 Wrong: 5 Types: 7

W6-W2-W8 (1-3;37-39); W2-W8-W5 (2-4;38-40)
W8-W5-W8 (3-5;15-17;39-41;45-47); W7-W2-W9 (7-9;27-29)

W2-W9-W2 (8-10;28-30); W9-W2-W7 (9-11;29-31); W6-W5-W6 (23-25;35-37)

4-grams
Total Matches: 4 Correct: 4 Wrong: 0 Types: 4

W6-W2-W8-W5 (1-4;37-40); W2-W8-W5-W8 (2-5;38-41)
W7-W2-W9-W2 (7-10;27-30); W2-W9-W2-W7 (8-11;28-31)

5-grams
Total Matches: 2 Correct: 2 Wrong: 0 Types: 2
W6-W2-W8-W5-W8 (1-5;37-41); W7-W2-W9-W2-W7 (7-11;27-31)

(d)

81

4.2.4 Topological Map Construction

We use the graph-SLAM back-end discussed in Section 2.1.3, which performs the

Gauss-Newton graph optimization to build the topological map of the environment. Re-

garding the front-end, our method generates one node for each region, where its pose is

set as the pose of the median observation of each word. Edges connect nodes representing

adjacent words, as well as those associated by the proposed matching strategy. The obser-

vation associated to the first type of edge corresponds to the odometry difference, while

the observation associated to the second type is set to 0, because nodes that are matched

are ideally the same. Both types of edge use a fixed information matrix. If the densities

quantization changes due to an update of Mean Shift, the back-end is set to reconstruct

the graph from scratch to accommodate such changes.

4.3 Experiments

4.3.1 Evaluation Scenarios

Our strategy was evaluated through experiments using the platform described in Ap-

pendixA – a Pioneer 3DX robot equipped with a SICK LMS-200 laser range finder, and

a notebook with a Intel R© QuadCoreTM i7 processor with 16GB of RAM memory. Fig-

ure 4.10 presents the three scenarios where the experiments were performed: simulated

scenario A has four adjacent loops with lengths varying from 44m to 78m; simulated

scenario B has three nested loops – the largest has 88m of length; and the real scenario C

has two adjacent loops with 60m and 90m. We highlight specific places in each map that

we use to describe the paths in a simplified way, as shown in Table 4.1. Note that these

places do not correspond to the regions generated by our method, since, in our case, the

regions correspond to segments of the environment where the density is homogeneous. In

scenarios A and B, the robot has traveled for long periods of time, guided by the Potential

Rails algorithm (MAFFEI et al., 2014)5. In scenario C, instead of a long run, our method

tries to find matches among multiple small runs.

For all scenarios we performed experiments varying the size of the grams from 1 to

20. We also varied the thresholds for accepting matches of grams. Free-space densities

5Potential Rails is one of our works on integrated exploration using boundary value problem with focus
on generating exploratory and patrolling behaviors for mobile robots (MAFFEI et al., 2014).

82

Figure 4.10: Scenarios used in the experiments.

A B

C

F G

H

D

E

A B

CD
H

L

E
I J

K
G

F

(a) Scenario A (b) Scenario B

A

D
E

B

C

(c) Scenario C

Table 4.1: Robot paths in each scenario

Scenario A

ABCD ABCH GCDA BCHG BADC BABH GCDA BCHE DCGH DABC DEGB FEAB CHGB FHDA BCDE GBFE
ABCH GBFH ABCD EGBF EABC HGBF HDAB CDEG CHGB FEAB CDAF HCGH DEGB ADCB FHDE GCDA
BCHG BFED CBAD HEDC GHDA FGBA EHCB FDCG HDAB CDEG BFEA BCHG BFHD ABCD EGBF EABC
HGBF HDAB CDEG BFEA B

Scenario B

AFGHIJ KLEBCD AFGHIJ KLEBCD AFGHIJ KLEBCD AFGHIJ KLEBCD AFGHIJ KLEBCD AFGHIJ KLEBCD
AFGHLK JIEBCD AFGHLK JIEFGD ABCHEF KLIJGD ABCHEF GDABCH IJKLEF GDABCH LKJIEF GDABCH
IJKLEF GDABCH IJKLIJ GDAFGH EBCDAF KLIJGH EBCDAF GHIJKL EBCDAF GHIJKL EBCDAF GHEFKL
IJGDAB CHE

Scenario C

(1) DEBCEA DEBCEA DEBC

(2) DEBCEA DEBCEA DEBCEA DEBC

(3) DEBCEA DEBCEA DEBCEA DEBCEA D

(4) DEADEB CEBCEA DEADE

83

were computed using a uniform kernel profile of radius 4m. Three configurations of size

tolerance for matches, εs, were tested: 10%, 20% and 30%.

Before examining the results, we present in Figure 4.11 the similarity matrices asso-

ciated to each scenario that indicate the moments of loop closure based on ground-truth.

In each plot, the robot position at each step (vertical axis) is compared to all previous

robot positions (horizontal axis). Matches are shown in white, while positions that do

not match are shown in black (those correspond to the vast majority of situations). White

lines descending to the right represent sequences of matches obtained in the same visit-

ing order. In contrast, white lines descending to the left represent sequence of matches

obtained in reverse direction. Our strategy only searches for matches in the same visiting

order. Lastly, long white lines are associated to long sequences of matches, which our

method can identify quite well, therefore by simply looking at Figure 4.11, we should

expect the best results in Scenario C.

4.3.2 Analysis of Results

Results of precision and recall varying gram sizes and thresholds for scenario A are

shown in Figure 4.12a. We can observe that the highest recall was obtained with the most

tolerant threshold, i.e. 30%, but, as expected, with the smallest precision. In terms of

gram size, the precision obtained using large sizes of grams was much higher than the

precision obtained with small sizes. This happens because there is a reduction of ambi-

guities when the size of the matched sections of environment is increased. Figure 4.13a

shows the variation of both precision and recall over time, considering different gram

sizes and a threshold of 20%. We can see that using grams of large size the method may

take a long time to detect matches, and, generally, the recall stays small. This can be prob-

lematic because sometimes using only few true matches in the graph optimization is not

sufficient to obtain an adequate map. Still, it is better than situations with false matches.

Lastly, we present the resulting topological map of Scenario A built using 12-grams. The

ground truth, the raw odometry and the estimated map are respectively shown in Fig-

ures 4.14a, 4.14c and 4.14e. The obtained matches are topologically correct. However,

there are regions with no matches, which cannot be properly corrected during the graph

optimization. We could reduce the size of the grams to obtain more matches, although

this measure increases the occurrences of false positives.

Figures 4.12b and 4.13b show the results obtained in Scenario B. In comparison with

84

Figure 4.11: Similarity matrices associated to each scenario. The robot position at each
instant (vertical axis) is compared to all previous robot positions (horizontal axis). White
lines represent true correspondences. Scenario C is composed of multiple runs.
t0

tf
t0 tf

(a) Scenario A

t0

tf
t0 tf

(b) Scenario B

t0

tf
t0 tf

start of new run

(c) Scenario C

85

Figure 4.12: Results of precision and recall obtained in each scenario according to the
variations in the size of the grams (1 to 20) and in the length threshold (10% to 30%).

Precision Recall

5 10 15 20
Gram Size

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

5 10 15 20
GramSize

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l

30%20%10%

(a) Scenario A

Precision Recall

5 10 15 20
Gram Size

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

5 10 15 20
GramSize

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l

30%20%10%

(b) Scenario B

Precision Recall

5 10 15 20
Gram Size

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

5 10 15 20
GramSize

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l

30%20%10%

(c) Scenario C

86

Scenario A, the recall was better but the precision was much worse. Looking at Fig-

ure 4.13b, we can see that both precision and recall stay high until half of the path and

decrease after such point. This can be explained if we look back into the trajectory de-

scribed in Table 4.1. Its initial phase is highly repetitive, therefore it is easy for the method

to obtain correct matches. The problem is that, just after the robot leaves its repetitive be-

havior, no match can be found, which instantaneously reduces the recall. The precision

also drops due to erroneous matches related to the high level of symmetry in the map.

Ideally, the larger the size of the gram, the higher the precision. Unfortunately, if we

increase too much the minimum gram size to accept a match we tend to obtain zero re-

call, i.e. inability to find any match (either true or false). Examining the results obtained

with the threshold of 10%, the precision decreases when using large grams. A possible

explanation for this is that a false positive (expected to happen in symmetric maps) can

drastically reduce the precision if the number of matches is too small, which is likely to

occur using a small threshold and large size of grams. This environment represents the

worst case scenario for our method, preventing the construction of a useful map.

Finally, results of Scenario C are presented in Figures 4.12c and 4.13c. This dataset

is the most consistent one, in spite of being obtained from multiple runs. That said, the

precision is high even using a small gram size. The ground truth, the raw odometry and the

resulting topological map of Scenario C built using 6-grams is shown in Figures 4.14b,

4.14d and 4.14f, respectively. The detected matches are correct, but they are too few,

which prevents the construction of an accurate map. One cause for this problem is that the

initial and final sections from each test cannot be matched, since they represent incomplete

segments. Additionally, there is an important missing match in the intersection of the two

loops, which cannot be solved by the method, because the robot visited this part of the

map in different directions, i.e. generating different words. At this moment, this is a

limitation of our method.

Nonetheless, Scenario C is specially interesting since it illustrates situations of multi-

ple runs, in which the robot does not have any indication of its position in relation to the

other trajectories. The only approach that can be taken in this case is to check all possibili-

ties, which is impractical for traditional matching techniques such as ICP (RUSINKIEWICZ;

LEVOY, 2001). In fact, we performed the ICP over points extracted from the same local

map used in our approach, varying the acceptance tolerance, and the resulting precision

was low. Table 4.2 shows a comparison between results obtained with our method and

with ICP. The best result obtained by ICP in this scenario was a precision of 11% with a

87

Figure 4.13: Variation of precision and recall over time in scenarios A, B and C. Each
row corresponds to the values obtained with a specific gram size.

Precision Recall

(a) Scenario A

Precision Recall

(b) Scenario B

Precision Recall

(c) Scenario C

88

Figure 4.14: Topological maps of Scenarios A and C. Red nodes represent the median
position of each word. Black lines represent edges connecting adjacent words. Blue lines
represent edges connecting matched words.

Ground Truth

(a) Scenario A (b) Scenario C

Odometry

(c) Scenario A (d) Scenario C

Estimated

(e) Scenario A (f) Scenario C

89

Table 4.2: Comparison with ICP in Scenario C.

Precision Recall Checkings per 100 msec

ICP 100 pts 0.1181 0.3568 30
20-gram 0.9822 0.3211 60.000.000

recall of 35%, while the best result obtained by our method was a precision of 98% with

a recall of 32%. Another important point is that, once the words and the grams are built,

the computation time required by our method is about six orders of magnitude lower than

ICP, because the matching process is reduced to simple queries. In fact, the computation

of free-space density and posterior creation of words are the slowest parts of the method –

in average we compute the densities of 40 robot observations in an interval of 100 msec.

4.4 Related Work

Place recognition strategies are seen as the front-end of Simultaneous Localization

and Mapping (SLAM) algorithms. An important element to be considered is an effi-

cient observation model which is associated to the type of sensor been used. Another

important element is the algorithm applied to match sets of observations into loop clo-

sures. The loop detection algorithm is concerned on how observations will be used to

find loops. One way to approach the problem is to match the current observation with

others to detect a loop (CUMMINS; NEWMAN, 2007; CUMMINS; NEWMAN, 2009).

This, however, does not take into account the sequential nature of the problem, since

revisiting a known location generally includes experiencing a similar sequence of ob-

servations. Evidences (HO; NEWMAN, 2007; MILFORD; WYETH, 2012) show that

matching a sequence of observations can offer superior results for place recognition than

unique matches alone. Even more, it has been shown that the analysis of sequential infor-

mation can disambiguate seemingly indistinguishable regions (WERNER et al., 2009).

Vision-based approaches are extensively used for loop detection (CUMMINS; NEW-

MAN, 2009; MILFORD; WYETH, 2012; GALVEZ-LÓPEZ; TARDOS, 2012). FABMAP (CUM-

MINS; NEWMAN, 2007; CUMMINS; NEWMAN, 2009) combines feature detection

and bag-of-words (BoW) to perform loop closing. Outdoor SLAM (HO; NEWMAN,

2007) matches sequences of similar frames and explore the time space correlations among

them. SeqSLAM (MILFORD; WYETH, 2012) also performs sequence matching, but as-

sumes that the robot moves with constant speed following the same path that was traversed

90

before (e.g. like a train that moves over the same tracks). One of the key aspects behind

SeqSLAM is the dimensionality reduction of sensor information (frame data), which is

segmented into normalized intensity patches of a reduced image. Frame comparison is

performed using the sum of absolute differences, which is robust to drastic illumina-

tion changes when the method’s assumptions hold. Binary Visual BoW can be used to

perform loop closing with high precision and online performance considering in-plane

camera motion (GALVEZ-LÓPEZ; TARDOS, 2012). Again, the way sensor information

is translated into an observation model is key to achieve performance improvements.

The use of range finders for place recognition is also possible. Even so, depending

on how the observation model is computed and the size of the measurement vector, place

recognition can still be computationally expensive. One way to match regions is to use

the Iterative Closest Point (ICP) algorithm (NUCHTER et al., 2005) or one of its vari-

ations (RUSINKIEWICZ; LEVOY, 2001). However, matching a subset of points with

the entire set of points is sometimes infeasible. Kumar et al. (KUMAR; GUIVANT;

DURRANT-WHYTE, 2004) show that compact representation of the environment can

be built through non-linear dimensionality reduction strategies, preserving perceptually

meaningful structures of the environment. Chen et al. (CHEN; WANG, 2006) use Prin-

cipal Component Analysis over every range finder scan, to convert scans into Gaussian

distributions. They note that similar observations, encoded in low dimensional represen-

tations, tend to group themselves into distinct clusters having similar appearance. These

clusters can be used to connect a topological map using Bayesian inference. Werner et

al. (WERNER et al., 2009) use the transitive connection of nodes of the Voronoi dia-

gram of the environment to disambiguate similar places. Nodes are labeled with symbols

which represent sensor information (e.g. distance to nearest obstacle obtained with a

sonar). Then, a particle filter based on n-grams (corresponding to sequences of nodes) is

used to determine the smallest topological graph representing the environment.

Our approach is similar to Werner’s approach (WERNER et al., 2009) by using n-

grams to match sequences of regions in the environment. However, in our case, the words

that compose the n-grams are defined by contiguous regions of similar free-space density.

Another difference is that our method also encodes orientation and the traveled distance

into each word. Finally, we extensively search for n-grams matches in an efficient way,

given the highly reduced data that emerges from the construction of words. In next sec-

tion, we present a review of the n-grams technique, originally from the field of speech

and language processing, that plays a central role in our algorithm.

91

4.5 Summary

In this work the key contributions are:

(i) An efficient method for place recognition which matches sequences of words using

a laser range finder;

(ii) A compact representation of sets of similar observations into a single word;

(iii) The word representation which includes topological neighborhood information, the

number of observations and orientation;

(iv) A strategy to quantize FSD information, which results in segmentation of the envi-

ronment into relevant topological structures;

Our experiments show that FSDs can be successfully used as main features to build

words associated to regions in the map. The comparison of words is performed consider-

ing the number of observations, the angle variation, and the quantized FSD. The adoption

of Mean Shift seems to segment the environment into relevant topological structures. Still,

future studies should include strategies to deal with long term and abrupt changes in the

probability distribution function of observations (histogram of densities). When Mean

Shift quantization is performed, the topological graph must be reconstructed and mini-

mized again from the start. This may result in no back-end convergence. Better strategies

should be employed to take advantage of topological information acquired from previous

quantizations. Additionally, we can choose to reconstruct the graph only when there is a

significant change in the histogram of densities.

Furthermore, the strategy to determine the size of the n-gram to be used is still an open

issue. Even though large sequences seem to present 100% precision, it is not advisable

to increase the size of the n-gram indefinitely, since no matches might be found. On the

other hand, considerably reducing the size of the n-gram seems to drastically impact the

method’s precision.

92

5 LONG-TERM PLACE RECOGNITION USING MULTI-LEVEL WORDS OF

SPATIAL DENSITIES

5.1 Introduction

Long-term mobile robot operation is a field that has attracted the interest of many

roboticists (BIBER; DUCKETT, 2005; BIBER; DUCKETT, 2009; WALCOTT et al.,

2012). With the increasing integration of robots in human activities, it is essential that they

have the ability to adapt to changes in the environment. For example, a robot equipped

with a laser range finder moving inside a building must differentiate static objects, such

as walls and columns, from highly dynamic objects, such as people in motion. It must

also differentiate both types of objects from semi-static objects, such as doors, tables, and

other furniture, which can move occasionally.

Although most of the Simultaneous Localization and Mapping (SLAM) techniques

work well in static environments and many techniques are able to deal with highly dy-

namic environments (e.g. by filtering moving objects in the robot’s field-of-view (HAH-

NEL et al., 2003b)), the identification of semi-static objects is a very difficult problem.

This comes from the fact that a robot cannot distinguish between static or dynamic objects

that are standing still during a single visit to a place. Thus, revisiting an environment that

suffered changes in the disposition of its objects will lead to conflicting sensor measure-

ments, which can rather hinder the localization and mapping process. Nonetheless, such

revisiting behavior is required in order to keep an updated map.

Some SLAM techniques that operate in dynamic environments divide the problem into

building two distinct maps: one for static objects and other for dynamic objects (WOLF;

SUKHATME, 2005; WANG et al., 2007). However, in long-term operation, objects can

move in highly different time scales. Some authors propose a representation with multi-

ple maps, where each one is updated in a specific time scale (BIBER; DUCKETT, 2005;

BIBER; DUCKETT, 2009), others propose a single dynamic occupancy grid, which

stores, for each grid cell, a probabilistic estimate of changes in the environment (TIPALDI

et al., 2011; TIPALDI et al., 2012). A more recent approach is the dynamic pose graph

(DPG) (WALCOTT et al., 2012), which is updated whenever changes in the environment

occur, by inserting or removing nodes or connections between nodes. An important as-

pect of DPG is that it maintains a history of changes in the environment, instead of just

keeping an updated current map.

93

Figure 5.1: Changes in the environment, such as an open/closed door, affect the word con-
struction. The higher density region (in blue, pointed by the blue arrow) is only obtained
when the door is open.

(a) Closed door (b) Open door

An assumption made by most long-term SLAM approaches is that the starting and

ending point of the robot trajectory are known. In situations where this is not the case (e.g.

when we simply start the robot navigation from an unknown place), the data association

problem becomes much more difficult. A successful place recognition is fundamental

for SLAM. In fact, the occurrence of a few false positives can fully degrade the solution

(THRUN; BURGARD; FOX, 2005; GRISETTI et al., 2010b).

In the previous chapter, we introduce a place recognition method based on sequences

of low dimensional observations acquired by a robot using a laser range finder. Such

information is obtained by computing kernel density estimates (KDE) of the free space.

The method quantizes the information into density classes, and generates simple words to

represent regions of the environment. Place recognition is made by matching sequences

of words. While the method obtains good results in structured environments and performs

fast searches for long sequences of observations, it is focused on static environments.

When an environment is not static, we cannot assure that all information been observed

will always be constant. Considering our idea of using words to represent regions, what

happens if a word that was just created does not belong to a static object? Changes in the

environment may affect the density estimates and degrade the performance of the word

matching. For instance, when the robot is visiting the region in Fig. 5.1(a) and all doors in

the corridor are closed, the method generates a single large green segment (described by

a specific word) to represent such region. However, if there is an open door, as shown in

Fig. 5.1(b), the method generates three words to represent the green-blue-green regions.

Basically, we must consider the possibility of not always finding the same words when

revisiting a region.

94

Our new approach1 takes the idea of using words to represent regions and expands it

for the problem of long-term operation. The proposal is that every time a word is built,

we also try to build alternative words that would exist in the absence of the observed

one. That is, when building a new word, we also consider the case where the density

change was brought by a non-static object and create a new word sequence assuming the

previous density remained present in the new word’s location. Place recognition is made

by searching n-grams of words (both real or alternatives). Experiments performed in real

and simulated scenarios are shown, and demonstrate the advantages associated to the use

of multi-level words.

We begin this chapter detailing the expansion for long-term place recognition of our

previous method based on n-grams, followed by a density-based strategy used for fine

tuning of matches. Next, we present the results of experiments in long-term operation.

Finally, we discuss related work and draw our conclusions.

5.2 Building multi-level words of spatial densities for place recognition in lifelong

operation

When the robot is in lifelong operation, changes in the environment affect the density

estimates. In this case, words that describe the same place but are generated at different

occasions will not match. We circumvent this problem in a multi-level approach by gen-

erating alternative (and possibly corrected) words for all regions. Basically, we start with

the case where one word is wrong, such as the open door in Figure 5.1(b), and expand it

to cases where multiple consecutive words are wrong.

5.2.1 Extending the previous definition of word

Before proceeding with the details of our strategy, we need to introduce a new defini-

tion of word,W, extending the previous definition of word, W, presented in Equation 4.3

of Section 4.2.2.

W = 〈d, s, a, P, O〉 (5.1)

1The core idea of this chapter was originally published in the paper “Long-term place recognition using
multi-level words of spatial densities” (MAFFEI et al., 2016), presented at the 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS’16).

95

The new word is composed of the three original syllables of W (i.e. the density class d, the

size s, and the angle variation a) along with two more elements:

• P: the list of predecessor words, that is, the real and alternative words immediately

before the word W. In the single-level approach presented last chapter, each word

has only one predecessor, which can be obtained directly (i.e. the predecessor of the

word Wn is the word Wn−1). In the novel multi-level approach, besides the previous

real word that is always a predecessor, each word can have multiple alternative

words as predecessors (at most one for each level), thus we need to explicit state

what those words are.

• O: the list of observations that compose the region described by the word W. In

the single-level approach, we do not need to maintain such information after the

creation of the word. However, in the multi-level approach, the list of observations

associated to existing words may be used in the future to create alternative words.

We also redefine the algorithm for building a word given a contiguous regionR associ-

ated to observations from same density class. The new Algorithm 5.1 is almost the same

as the original Algorithm 4.3. The syllable d corresponds to the density class of the initial

observation in R (line 1). The syllable s is the size of the region in terms of number of

observations (line 2). The syllable a is the difference of the angle between median and fi-

nal poses of the sequence of observations, and the angle between initial and median poses

(line 3). The list of predecessors words, P, is initially empty (line 4). Posteriorly, P will be

updated in Algorithm 5.2 for building multi-level words. Lastly, the list of observations,

O, is associated to the observations in R (line 5).

Algorithm 5.1: Build Extended Word
Input: R = [oi, · · · ,om=(i+f)/2, · · · ,of]
Output: W

1 d = d(oi)
2 s = size(R)

3 a = arctan

(
y(xf)−y(xm)
x(xf)−x(xm)

)
−arctan

(
y(xm)−y(xi)
x(xm)−x(xi)

)
4 P = []
5 O = R
6 W = 〈d, s, a, P, O〉
7 returnW

96

5.2.2 Building multi-level words

Our strategy for long-term place recognition generates words in different levels. In the

l-th level, we detect sequences of l + 2 words (i.e. l + 2-grams) which start and end with

words of the same density class but have l words in between them with different density

classes. Those sequences are then fused into a larger word having the same density class.

That is, we generate alternative words replacing l consecutive words. For instance, when

the robot is visiting the region in Figure 5.2(a), the method will generate three words for

the green-blue-green segment of the trajectory, but it will also generate a larger single

green word and associate it to the same segment. This is a guess of a possible word that

could occur due to some variation in the environment, such as a closed door, as shown in

Figure 5.2(b). The description of the words are presented in Figures 5.2(c) and (d), and

later in this section they will be further analyzed.

Algorithm 5.2 presents the strategy for building multi-level words, which runs always

that a new contiguous region R is built. The algorithm’s input is the new contiguous

region R, along with the current lists of words in each level, W0,W1, · · ·WL, where

Wl = [W0,l,W1,l, · · ·Wn,l] withWj,l being the j-th word of the l-th level. The first step is

the creation of a new level-0 word,Wnew, i.e. the real word (line 1). Then, we must add

the last level-0 word,Wlast, to the list of predecessors ofWnew (lines 2-3) and addWnew

Figure 5.2: Example of a region described by three words in a given situation, (a), and
by an alternative word in another potential situation, (b). At the bottom are presented the
descriptions of the three original words at level 0, (c), and of the alternative word at level
1, (d).

(a) (b)

Wn−2,0 = 〈A, 12,−2, PA, Rn−2〉
Wn−1,0 = 〈B, 9, 2, PB , Rn−1〉
W n ,0 = 〈A, 10, 1, PC , Rn 〉

(c)

Wm,1 = 〈A, 31, 0.5, PA, (Rn−2 ⊕Rn−1 ⊕Rn)〉

(d)

97

to the list of level-0 words,W0 (line 5).

Algorithm 5.2: Build Multi-level Words
Input: W0,W1, ...,WL, R
Output: W0,W1, ...,WL

1 Wnew = BuildExtendedWord(R)
2 n = size(W0)
3 Wlast =W(n−1),0

4 push_back(Wlast, P(Wnew))
5 push_back(Wnew,W0)

6 for l in 1...L do
7 Wfirst =W(n−l−2),0

8 if d(Wfirst) == d(Wlast) then
9 R′ = O(Wfirst)⊕ · · · ⊕ O(Wlast)

10 Walt = BuildExtendedWord(R′)
11 P(Walt) = P(Wfirst)
12 push_back(Walt, P(Wnew))
13 push_back(Walt,Wl)

14 returnW0,W1, ...,WL

Next, for each l upper level, we check if the last level-0 word (Wlast) and the level-0

word that is l + 1 positions before it (Wfirst = W(n−l−2),0) have the same density class

(lines 7-8). If this is the case, the new alternative word, Walt, is computed using the

concatenation2 of all observations associated to the last l + 2 words (lines 9-10). After,

the list of predecessors forWalt is copied from the word at level-0 having the same start

position (Wfirst), given that they share the same predecessors (line 11). Additionally, the

new alternative word is added to the predecessors list of the recently created level-0 word

(line 12). Lastly,Walt is added to the list of level-l words,Wl (line 13).

We look back at the example in Figure 5.2 to further clarify the multi-level word

construction process. As described in Figure 5.2(d), the alternative level-1 word has

the same density class (d = A) of the first and last level-0 words, described in Fig-

ure 5.2(c). The size of the alternative word (s = 31) is the sum of the sizes of the merged

level-0 words. This is expected given that the observations associated to the alternative

word is the concatenation of all observations associated to the last three level-0 words

(O = Rn−2 ⊕ Rn−1 ⊕ Rn). The angle variation is near zero in the example (a = 0.5), but

note that this is something totally dependent on the shape of the robot trajectory. The re-

maining element, which is the list of predecessors (P = PA), is equal to the one associated

2As previously defined in Section 4.2.1, we use the symbol ⊕ as the operator to concatenate lists.

98

to the first level-0 word.

5.2.3 Performing place recognition

Place recognition is performed by searching n-grams combining multi-level words.

We define an n-gram match,

g = [〈Wi,Wu〉, 〈Wi+1,Wu+1〉, · · · , 〈Wi+n−1,Wu+n−1〉], (5.2)

as a list of sequential pairs of words that can be truly matched according to the rules

used in our previous approach, that is, with specific tolerances for each one of the three

syllables (d, s, a), as presented in Section 4.2.3. We also define M as the list of all

matches of n-grams that occur at each instant. Like in our previous approach, we set a

minimum number of words, εg, that must be reached to accept a match. Small n-gram

sizes lead to large number of matches, but potentially low precision, while large ones give

rise to low recall. Thus, determining good thresholds is an important aspect to take into

consideration.

An important aspect of the novel strategy is that we tend to generate more matches by

using more levels of words because we expand the number of possible n-grams that can

be created. Therefore, n-grams composed of alternative words usually are more easy to

match than n-grams (of the same size) composed of words from the lowest level. This

is good for improving the recall, but prejudicial to the precision. Therefore, we must use

different thresholds for accepting matches of n-grams composed of words from different

levels. Due to this fact, the search for matches is incremental regarding the levels of

words, i.e., at first it is performed considering only the lowest level, then it is performed

considering the two lowest levels, and so on. We do this to keep matches obtained in the

lowest levels that could be lost when checking matches in higher levels.

Algorithm 5.3 presents the strategy for matching multi-level words, while Figure 5.3

shows an example of the matching process with 12 level-0 words, 4 level-1 words and 1

level-2 word. In the example, there are 11 different types of words (represented from A

to K) that are divided in three different density classes (e.g. green, blue or yellow nodes).

The search starts by checking for matches of the last level-0 word, Wlast, which in

Figure 5.3(a) isW11,0 (of the type F). Instead of sweeping the whole trajectory, we speed

up the search by keeping a list of lists of word occurrences, O, which is exemplified in

99

Figure 5.3: Example of n-grams matching using multi-level words. (a) Search of matches
start from the last word from level-0. (b) Occurrences of each word. (c) Search of matches
through predecessors words (d) Largest n-gram match.

:

:

:

J

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3

0
K

D

DIH

FFFE EGB BC CA

(a)

(0,0)

(1,0) (7,0)

(2,0) (6,0)

(3,0) (3,1)

(4,0) (10,0)

(5,0) (8,0) (11,0)

(9,0)

(0,1)

(1,1)

(2,1)

(0,2)

Words occurrences

A

B

C

D

E

F

K

J

I

H

G

(b)

C (6,0)

D (3,1)

E (10,0)

(11,0)

G (9,0)

(5,0) (1,0)

C (2,0)

D (3,0)

E (4,0)

(5,0)

(1,1)

(8,0)

B (7,0)

Current words Past occurrences of current words

F FF

I

F B

(0,1)H

(c)

:

:

:

J

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3

0
K

D

DIH

FFFE EGB BC CA

(d)

100

Algorithm 5.3: Find matches of multi-level words n-grams
Input: Wlast,O
Output:M

1 M = []
2 Mtemp = []

3 forWmatched in occurrences(O,Wlast) do
4 g = [〈Wlast,Wmatched〉]
5 push_front(g,Mtemp)

6 whileMtemp 6= [] do
7 g = pop_front(Mtemp)
8 s = size(Mtemp)
9 〈WI ,WII〉 = front(g)

10 forWprevI in P(WI) do
11 forWprevII in P(WII) do
12 ifWprevI ==WprevII then
13 push_front(〈WprevI ,WprevII〉,g)
14 push_front(g,Mtemp)

15 if size(Mtemp) == s ∧ size(g) > εg then
16 push_front(g,M)

17 returnM

Figure 5.3(b). For each occurrence of words that are equal to the wordWlast, we generate

a new match g that is added to a list,Mtemp, of temporary matches to be posteriorly ex-

panded (lines 3-5). In the example of Figure 5.3, the 5-th and 8-th words of the level-0 are

equal toW11,0, thus our method starts with the matches 〈W11,0,W5,0〉 and 〈W11,0,W8,0〉.

Following this one-word match, we just extend the search visiting the predecessors

of the matched words. From each match g in Mtemp, we get the front pair of words,

〈WI ,WII〉, (lines 7-9), and check if there is some pair of equal predecessors, 〈WprevI ,WprevII〉,

(lines 10-12). If this is the case, we add each pair of equal predecessors to g (line 13).

Back in our example, one of the initial matched pair of words (〈W11,0,W5,0〉) has a pair

of equal predecessors (〈W10,0,W4,0〉), therefore we can expand g to a bigram.

Our search continues recursively through the predecessors of WprevI and WprevII by

adding the expanded n-gram match toMtemp (line 14). When it is not possible to expand

g, i.e. there are no pairs of equal predecessors, and the size of g is larger than a given

threshold εg, we add g to the final solutionM (lines 15-16). In our example, the largest

101

n-gram match is a sequence of four words (of the types C ← D ← E ← F),

[〈W6,0,W2,0〉, 〈W3,1,W3,0〉, 〈W10,0,W4,0〉, 〈W11,0,W5,0〉].

Note that the third match (reading from right to left) happens between a word from level-0

and an alternative word from level-1. If we only considered matches of level-0 words (as

in our previous single-level approach), the solution would be interrupted in the second

match of words.

5.2.4 Fast adjustment of matches by evaluating raw spatial densities

Our strategy of density-based words to represent regions of an environment focus on

finding topologically correct matches. As shown last chapter, the original approach asso-

ciates each region (described by a single word) with one node in the pose graph represent-

ing the robot trajectory. Then, word matches simply connect the nodes associated to the

words. With our new approach, we sometimes describe regions using alternative words

that may encompass multiple original words.

A possible graph-building strategy could be to create nodes for the original words

(exactly like the previous approach), and to find proper correspondences between nodes

associated to original and alternative words. However, as exemplified in Figure 5.4, this

strategy can be problematic. Figure 5.4(a) shows a match of a 3-gram composed of origi-

nal words (obtained at time tj) with a 3-gram that includes an alternative word (obtained

at time ti). The alternative word from time ti is equivalent to four original words, thus,

following the proposed strategy, we have the problem of trying to associate one node from

time tj with four nodes from time ti, as shown in Figure 5.4(b).

We could avoid this problem by creating one node for each word, disregarding if it is

original or alternative. This strategy increases the number of nodes in the graph in pro-

portion to the number of levels of alternative words, which is not bad when only using

a few levels. Nevertheless, a major problem of this strategy is that we may insert too

much error in the pose graph by associating single nodes with alternative words that rep-

resent very long regions. Note that, during the graph construction, the pose associated to

each node comes from odometry readings, therefore, the error between very distant adja-

cent nodes may be too big to be corrected during the graph optimization. Also, another

point of adopting only a topological view is that the match of any two regions have the

102

Figure 5.4: Association of regions and nodes from pose-graph. (a) Example of match of a
3-gram including a region described by an alternative word. (b) Problem that arise when
each original word is associated to one node. (c) Association of each region to uniformly
spaced nodes.

 (alternative word)

matching

(a)

?

(b)

(c)

same importance. However, the impact of matching different sizes of regions drastically

influences the quality of a final metric map.

In short, while finding correct topological correspondences is a fundamental task, this

time we also deepen the investigation of translating our n-grams matches into more pre-

cise metric matches. Our idea is to translate all regions to equivalent sets of points, which

are generated in constant intervals. When a match occurs between two words, the regions

represented by those words are converted into subsets of the existing set of points that

must be connected. Figure 5.4(c) illustrates the association of regions and nodes for the

example of 3-grams matching. As we can see, it does not matter if words are original or

alternative, with this approach the main problem consists in determining a proper align-

ment between two node sequences that have a size proportional to the size of the matched

regions.

In order to find a proper connection between node sequences, we propose a fine tuning

method using raw densities values. When we quantize the raw densities signatures to build

103

Figure 5.5: Variation of raw density values (Ψ) obtained in the regions shown in Figure
5.1. In (c), all values match well, with exception of the small bump associated to the open
door.

(a) closed door (b) open door (c) alignment

words, we are simplifying the information to facilitate the matching of large trajectory

segments. However, we can still compare the raw density values of the observations

associated to the words to obtain better similarity measures. Therefore, we search the

best alignment, δ, between two sequences of observations that minimizes the sum of the

squared error between density values,

δ = argmin
−δMax<d<δMax

n∑
i=0

(
Ψ(o(s1+i+d))−Ψ(o(s2+i))

)2
, (5.3)

where s1 and s2 are the starting observations of both words, n is the size of the smallest

word between the two, and δMax is the maximum displacement that we are searching.

Figure 5.5 shows an example of raw density values from the matched regions presented

in Figure 5.1. As we can observe, the two curves of density values are similar, with the

only significant difference occurring in the exact position associated to the open door

(as pointed by the blue arrow). Still, considering that changes in the environment are

generally small and somewhat distant from each other, such alignment method can obtain

good results.

5.3 Experiments

5.3.1 Evaluation Scenarios

We evaluated our method using a Pioneer 3-DX mobile robot equipped with a SICK

LMS 200 laser range finder and a notebook with a Intel R© QuadCoreTM i7 processor with

16GB of RAM memory, as described in AppendixA. All tests were made considering the

104

same configuration for generating words: kernel radius of 2.5m for estimating the free-

space density, density quantization into 8 classes, and size and angle thresholds during

matches of 25% and 30◦, respectively.

The robot performed multiple runs starting from different positions in the environment

shown in Figure 5.6(a), which is an indoor environment in our university. Regarding the

navigation used in the tests, the robot always went forward in corridors and corners, and

turned in 50% of the times that it has reached a bifurcation (there are only two bifurcations

in the middle of the environment, near rooms 226 and 221).

Figure 5.6: Environment used in the experiments, (a), along with an example of three laps
in the robot trajectory, (b).

204 202

206

208

210

214

216

218

222

226

228

230

244

246

248

234

236

240

242

203

205

207

211

213

215

217

219

221

223

227

241

243

247

229

231

235

237

201

249

251

250

252

209

220

224

225

232

233

238

239

249

204
202

206

208

210

214

216

218

222

226

228

230

244

246

248

234

236

240

242

203

205

207

211

213

215

217

219

221

223

227

241

243

247

229

231

235

237

201

249

251

250

252

209

220

224

225

232

233

238

239

249

lap 1
lap 2
lap 3

(a) (b)

Three scenarios were chosen to evaluate the performance of the method. Scenario

A is a real unsupervised scenario, where the measurement data was obtained without

any control on the dynamics of the environment, such as open/closed doors, or people

passing by the robot. Scenarios B and C are simulated scenarios that suffer changes in

the environment from time to time. The robot performed around 8 laps in Scenario A, and

40 laps in Scenarios B and C, summing up several runs starting at different points in the

environment. We use the term lap to describe the full external circuit of the environment,

that is, a circuit passing one time by each of the four long corridors of the environment.

105

For instance, Figure 5.6(b) shows an example of three laps performed by the robot.

Figure 5.7: Variation of environment configurations in Scenarios B and C. (a) There are
12 changes of environment during the 40 laps covered by the robot in each test. (b)
Description of the configurations used in each scenario.

configuration

0

11109876543210

5 10 15 20 353025

laps

40

(a)

Configuration 0 1 2 3 4 5 6 7 8 9 10 11

Length (%) 21.4 7.1 2.4 1.2 10.7 4.8 9.6 21.4 7.1 2.4 1.2 10.7

Scenario B E0 EB1 EB2 E0 EB1 EB2 EB1 E0 EB1 E0 EB2 EB1

Scenario C E0 EC1 EC2 EC3 EC4 EC5 E0 E0 EC1 EC2 EC3 EC4

(b)

Further discussing the simulated scenarios, we defined some environment configura-

tions (e.g. EB1, EB2, EC1, EC1, ...) representing variations of semi-static objects, in

this case, rooms with open doors, as illustrated in Figure 5.8. During the tests in each

scenario, 12 configuration changes occurred in the period of 40 laps. The configurations

also occurred for different time lengths, i.e., some configurations were keeped for long

periods of time, while others were momentary. As shown in Figure 5.7, the initial config-

uration stays for 21.4% of the test (from lap 0 to 8), the next configuration stays for 7.1%

(from lap 8 to 11), and so on. The order in which the configurations occurred in each

scenario are described in Figure 5.7(b). Comparing both scenarios, Scenario B presents

small changes in the environment. Particularly, we only alter from the configuration with

all doors closed (E0) to two configurations with a single open door for each corridor (EB1

and EB2). Scenario C presents bigger changes in the environment. We alter from the

closed doors configuration (E0) to other five configurations with multiple doors opening

in the same corridor or opening near corners (EC1 to EC5).

5.3.2 Analysis of Results

In a first moment, we compared the performance of single level runs against two-levels

runs. In the single level runs, we just varied the minimum size of grams for accepting

matches, εg, from 1 to 10 words. We only varied εg until 10, because above this value

106

Figure 5.8: Examples of environment configurations. (a) Basic configuration used in
both scenarios. (b)-(c) Configurations used in Scenario B. (d)-(h) Configurations used in
Scenario C.

204 202

206

208

210

214

216

218

222

226

228

230

244

246

248

234

236

240

242

203

205

207

211

213

215

217

219

221

223

227

241

243

247

229

231

235

237

201

249

251

250

252

209

220

224

225

232

233

238

239

249

(a) E0

204 202

206

208

210

214

216

218

222

226

228

230

244

246

248

234

236

240

242

203

205

207

211

213

215

217

219

221

223

227

241

243

247

229

231

235

237

201

249

251

250

252

209

220

224

225

232

233

238

239

249

(b) EB1

204 202

206

208

210

214

216

218

222

226

228

230

244

246

248

234

236

240

242

203

205

207

211

213

215

217

219

221

223

227

241

243

247

229

231

235

237

201

249

251

250

252

209

220

224

225

232

233

238

239

249

(c) EB2

204 202

206

208

210

214

216

218

222

226

228

230

244

246

248

234

236

240

242

203

205

207

211

213

215

217

219

221

223

227

241

243

247

229

231

235

237

201

249

251

250

252

209

220

224

225

232

233

238

239

249

(d) EC1

204 202

206

208

210

214

216

218

222

226

228

230

244

246

248

234

236

240

242

203

205

207

211

213

215

217

219

221

223

227

241

243

247

229

231

235

237

201

249

251

250

252

209

220

224

225

232

233

238

239

249

(e) EC2

204 202

206

208

210

214

216

218

222

226

228

230

244

246

248

234

236

240

242

203

205

207

211

213

215

217

219

221

223

227

241

243

247

229

231

235

237

201

249

251

250

252

209

220

224

225

232

233

238

239

249

(f) EC3

204 202

206

208

210

214

216

218

222

226

228

230

244

246

248

234

236

240

242

203

205

207

211

213

215

217

219

221

223

227

241

243

247

229

231

235

237

201

249

251

250

252

209

220

224

225

232

233

238

239

249

(g) EC4

204 202

206

208

210

214

216

218

222

226

228

230

244

246

248

234

236

240

242

203

205

207

211

213

215

217

219

221

223

227

241

243

247

229

231

235

237

201

249

251

250

252

209

220

224

225

232

233

238

239

249

(h) EC5

107

Figure 5.9: Precision × Recall plots obtained in each scenario for the single level ap-
proach and for two-levels approaches fixing the threshold of level-0 and varying the
thresholds of level-1.

(a) Scenario A (b) Scenario B

(c) Scenario C

the recall was near zero. In the two-levels runs, we fixed the threshold for the first level

in different configurations (starting at εg = 4, because below this value the precision was

very poor) and varied the threshold for the second level (from 1 to 18). Figure 5.9 shows

plots of precision × recall for the three scenarios. Given that our search for matches only

happens in the same direction of the robot trajectory, we decided to consider in the recall

calculation only matches that could be obtained in the same direction. All results show

that, with similar precision, the recall of multi-level approaches (solid lines) is higher than

the recall of single level approaches (dotted lines).

Analyzing the individual results, all strategies obtained the highest recalls in Scenario

A. This is somewhat expected because A is the shortest scenario, meaning that the main

variations are caused by people walking, which are small in comparison to opening and

closing doors. On the other hand, the lowest recalls were obtained in Scenario C. This

108

was also expected because C is the most dynamic scenario, and it has situations that our

current algorithm does not cover well, such as density variations occurring near corners.

Making an analogy to Figure 5.5, a variation occurring near corners do not produce a

density bump in the middle of a homogeneous region, but a density bump over another

existing density bump, which is more difficult to detect.

An aspect shared by all results is that the precision drops drastically when the accep-

tance threshold, i.e. the size of the n-grams required to accept matches, becomes too

low. Figure 5.10 shows separated plots of precision and recall in relation to the the min-

imum size of n-grams to accept matches in level-1 of a two-level approach (while fixing

the acceptance threshold of level-0). We observe that increasing the size of n-grams the

precision improves significantly only until some point (e.g. around n = 9 as shown by

the vertical dotted lines). After that, the precision stays basically the same and the recall

decreases. Based on these results, we can say that n = 9 is a good acceptance threshold

for the three scenarios.

Finally, we evaluate the running time of the proposed method. One of the main ad-

vantages of the approach presented in last chapter is its high speed to compute place

recognition in all trajectory. As expected, the use of multiple levels of words to improve

recall makes the approach slower. Table 5.1 shows the comparison among ourthree con-

figurations of our method3 – a single level run, a two-level run and a three-level run –

and ICP4. Each level that is added, reduces the speed of the method, however, even with

three levels of words the method is faster than a traditional point matching technique such

as ICP with few points. Comparing the results of precision and recall, each added level

improves the recall with little damage to the precision. In relation to ICP, the proposed

method is able to obtain much higher precision, because it can match very long segments

of the trajectory in an efficient way.

3The acceptance thresholds were set to 7 at level-0, 10 at level-1 and 13 at level-2. We have chosen
thresholds that increase with the level number, because we are usually able to detect larger matches when
using more levels. In other words, if we use one threshold for all levels, the number of false positives will
be much higher in the multi-level approaches.

4ICP was performed using 150 points extracted from regions created at each 20 steps

109

Figure 5.10: Results of precision (top) and recall (bottom) in relation to the minimum size
of n-grams to accept matches in level-1 of a two-level approach. A threshold above n = 9
for level-1 (indicated by the vertical dotted line) seems good for these scenarios, given
that with such thresholds the precision stays constant and the recall gradually decreases.

(a) Scenario A (b) Scenario B

(c) Scenario C

Table 5.1: Comparisons of precision, recall and average time (to process one lap in the
environment).

Scenario A Scenario B Scenario C
Precision Recall Precision Recall Precision Recall Time(s)

1-level 0.905 0.103 0.931 0.106 0.964 0.070 2.5
2-levels 0.910 0.238 0.903 0.274 0.912 0.169 11
3-levels 0.935 0.346 0.890 0.308 0.913 0.188 38

ICP 0.048 0.040 0.047 0.011 0.219 0.040 96

110

5.4 Related Work

The solution of the SLAM problem requires a precise loop closing strategy (i.e. the

so-called front-end of the SLAM system), which serves as basis for the map optimization

(i.e the back-end of the SLAM system). Erroneous associations between places lead to

drastically wrong results in the optimization process, therefore they must be avoided in

all circumstances. However, the incorrect rejection of proper associations lead to less ac-

curacy (CADENA et al., 2016). The difficulty of the problem increases when the robot is

operating in long-term, due to the presence of unmodeled dynamics, such as semi-static

objects (e.g. furniture) in indoor environments or seasonal changes in outdoor environ-

ments.

During the last years, various approaches for place recognition in dynamic scenarios

have been presented in the literature, mostly based on computer vision and using a wide

range of different strategies to find matches, such as template matching, feature extrac-

tion, Bag of Words, etc (CUMMINS; NEWMAN, 2008; GALVEZ-LÓPEZ; TARDOS,

2012; MILFORD; WYETH, 2012). On the other hand, place recognition based only on

laser measurements suffers from the high level of ambiguity associated with the sensors

information. For instance, a robot that is moving inside a structured environment can ob-

tain the same information in multiple occasions at different places, and thus the chance

of producing false matches is large. In cases like this, the only way to disambiguate sim-

ilar regions is by considering sequential information. Many works show that exploring

sequences of observations during the place recognition process leads to better results than

matching single observations (BOSSE; ZLOT, 2008; MILFORD; WYETH, 2012).

Some of the earliest long-term SLAM strategies, proposed by Biber and Duckett

(BIBER; DUCKETT, 2005; BIBER; DUCKETT, 2009), use local maps that are sampled

at different time scales, in order to create maps with short and long-term objects. Such

type of approach is able to cover variations from moving objects to structural changes in

the environment in time scales of weeks. However, their solution requires large amounts

of memory and only operates over an initial static map, which means that cannot incor-

porate new map sections. Konolige and Bowman (KONOLIGE; BOWMAN, 2009) also

present a strategy with multiple representations of dynamic environments, but are able

to deal with incremental map additions and large changes in the environment. Tipaldi

et al. (TIPALDI et al., 2011; TIPALDI et al., 2012) propose using a single dynamic oc-

cupancy grid, instead of multiple maps, to deal with changes in the environment. Their

111

method, which represents the grid cells (states of the environment) with a hidden Markov

model, is able to considerably minimize the memory requirements, in comparison to the

previous methods. A different way of facing the long-term SLAM problem, as proposed

by Krajník et al. (KRAJNIK et al., 2014), is modeling the spatio-temporal dynamics of

an environment by its frequency spectrum, which allows the efficient detection of regu-

larly occurring process (e.g. opening/closing doors). Their approach is specially good for

predicting future states of a well-behaved environment with high accuracy.

A major issue of long-term SLAM is that the size of the state to be estimated (map and

robot trajectory) can grow unbounded, given that the robot operates for extended periods

of time in a continuous exploration process. One way to reduce the size growth of the

long-term SLAM problem is through sparsification methods, which improve computa-

tional efficiency and reduce memory requirements, at the cost of information loss (CA-

DENA et al., 2016). Johannson et al. (JOHANNSSON et al., 2013) is a graph-based

method that avoids indefinite growth by adding extra constraints to the existing nodes, in-

stead of adding new nodes with redundant poses to the graph. Walcott-Bryant et al. (WAL-

COTT et al., 2012) propose the dynamic pose graph, which keeps nodes associated to

dynamic local grid maps. Regularly, their method removes “inactive” nodes, i.e. associ-

ated to regions whose occupancy information is outdated. An assumption of their method

is that the robot starts and ends in known points of the environment to avoid alignment

errors.

Our approach deals with the size problem of long-term SLAM by compressing all

information obtained by the robot sensors into simple words. Like some other works

(BIBER; DUCKETT, 2005; KONOLIGE; BOWMAN, 2009; WALCOTT et al., 2012),

we handle the dynamics of the environment by generating multiple representations of the

same place, which in our case are described by words. Lastly, we do not make assump-

tions about initial robot poses of each test section.

5.5 Summary

In this chapter we propose a strategy for long-term place recognition by matching

sequences of words built from spatial density information. We can detect changes in

the environment by creating multiple words associated to the same region. That means,

given a density variation observed in the robot trajectory, our method builds a word to

represent such variation and build other words to represent what the robot should be seeing

112

if such variation did not exist. Experiments were made in real and simulated scenarios

of an indoor environment, and have demonstrated that the multi-level approach obtained

improvements in the matching results when compared to the single-level approach.

The main contributions of the approach are:

(i) A novel representation of dynamic regions associating words of spatial density in

multiple levels;

(ii) A fast strategy for finding matches in sequences of multi-level words;

(iii) A fine-tuning adjustment of matches using raw kernel density estimates of the free

space.

We have observed that detecting changes in the environment near places with high

variations of densities is still a problem for the method. At this moment, the method only

deals with variations that are preceded and succeeded by densities of the same class. Thus,

we are studying ways of generating alternative words for dynamic objects in situations

like that.

Finally, our current method only searches for matches in the same direction that was

visited by the robot, since it is based on n-grams, i.e. ordered sequences of words. As

future work, we also want to generate reversed words, and find matches using such infor-

mation.

113

6 ANALYSIS OF FSD-BASED WORDS AND THEIR USE FOR SEMANTIC MAP-

PING

6.1 Introduction

Robots must have good localization and mapping capabilities in order to operate along-

side people in real-world environments. Usually, most of the mapping approaches in the

literature focus on the construction of consistent metric maps. In other words, they repre-

sent the environment using specific metric representations, such as occupancy grids and

sets of landmarks. While such type of information can be easily handled by robots, the

same cannot be said in relation to humans. In fact, the interaction between humans and

robots is much improved if the robots are able to deal with semantic information associ-

ated to the environment (KOSTAVELIS; GASTERATOS, 2015).

A person analyzing indoor environments, such as the ones investigated in this thesis,

would typically divide them into regions like rooms, corridors and corners. This type

of qualitative description of the environment can be used in human-robot interaction, for

instance, to facilitate the assignment of tasks. In general, it is much more intuitive for a

human to tell a robot to "go forward in the corridor and turn right at the corner" than

saying "go to pose x = 20m, y = 5m, θ = 90◦". Notwithstanding, for this truly works,

the robot must be able to understand this type of information which is done by the process

of semantic mapping.

Our main proposal in this thesis is a technique that divides the environment into re-

gions and describe them with words. Then, we search for matches of sequences of words

to solve the place recognition problem. Methods of place recognition are similar to meth-

ods of semantic mapping, still there is an important difference between them. In place

recognition, the goal is to find matches between regions, which can be done with the aid of

a wide range of techniques, such as scan-matching (CHEN; WANG, 2006), image align-

ment (MILFORD; WYETH, 2012), feature-matching (CUMMINS; NEWMAN, 2009;

MUR-ARTAL; MONTIEL; TARDÓS, 2015), among others. It does not matter neither

how the information is represented, nor whether there is any intuitive meaning behind, it

only matters that the correspondences are correct. Semantic mapping approaches usually

include some form of place recognition, nevertheless, they must also include place cate-

gorization, which means the capability of classifying places using intuitive labels (MO-

ZOS, 2010). Among the approaches for semantic mapping, many perform classification

114

of places by manually defining models to deal with sensors information, for example by

defining that corridors are equivalent to two parallel lines of obstacles, (NÜCHTER et

al., 2003; GALINDO et al., 2005); while many perform classification using machine

learning techniques such as hidden markov models (HMM) (STACHNISS; MOZOS;

BURGARD, 2006), support vector machines (SVM) (WOLF; SUKHATME, 2008), Ad-

aboost (ROTTMANN et al., 2005; MOZOS; BURGARD, 2006), etc.

This chapter presents a brief study of our method in the light of semantic mapping.

We analyze how is the behavior of the FSD-based words associated to different types

of regions, such as corridors, corners and bifurcations. We check if such behavior is

consistent not only in simulated scenarios, but also in real scenarios filled with dynamic

obstacles, apertures (e.g. open doors) and other unconventional features (e.g curved cor-

ridors). Later, based on this study, we propose a simple strategy to attribute semantic

meanings to the words created by our method.

6.2 An in-depth study of FSD-based words generated in different environments

6.2.1 Ground-truth classification of several scenarios

Before starting our analysis, we present the environments to be studied in Figures 6.1,

6.2 and 6.3. For each scenario we present two types of maps: one showing the robot path

and one showing the ground-truth of semantic division. We made the semantic division

of each environment by manually coloring regions of the same type. In our study, we are

analyzing five different types of regions that can be found in indoor environments:

• corridors: narrow passageways, delimited by two parallel walls, with apertures/doors

for adjacent rooms;

• corners: segments of corridors with abrupt change of direction (usually, around 90

degrees);

• bifurcations: regions connecting three or more passages, such as T-junctions (when

a corridor ends in the middle of another corridor) or crossroads (when there is a

crossing of two orthogonal corridors);

• dead-ends or rooms: small regions surrounded by walls with, usually, only one

access area;

115

• halls: large entrances or rooms.

Six indoor scenarios were selected for experiments: three simulated and three real.

Figure 6.1 shows the three simulated scenarios – S1, S2, and S3. We created those sce-

narios using the MobileSim Simulator from Adept MobileRobots, and actually, they are

some of the scenarios used throughout this thesis: S1 and S2 are static environments

analyzed in Chapters 3 and 4, and S3 is a semi-static environment analyzed in Chap-

ter 5. Figures 6.2 and 6.3 show three real scenarios – R1, R2, and R3. Those are public

datasets1 widely used by the SLAM community. Table 6.1 presents information about

these datasets.

Table 6.1: Information about the datasets of real scenarios.

Scenario R1 Original Name ACES3, Austin
Provider Patrick Beeson Date 07 May 2004

Description ACES building on Univ. Texas Austin campus

Scenario R2 Original Name Intel
Provider Dirk Hähnel and Dieter Fox Date 13 May 2003

Description Interior of the Intel Research Lab in Seattle

Scenario R3 Original Name MIT Infinite Corridor
Provider Mike Bosse and John Leonard Date 11 Sep 2002

Description Interior of MIT Killian Court

All observations made by the robot in each scenario were classified according to the

ground-truth. This classification was made by checking the robot positions, from where

the observations were taken, in the maps of semantic divisions that are presented in Fig-

ures 6.1, 6.2 and 6.3. The distribution of all observations2 in the five semantic classes –

in absolute number of observations (shown in black) and percentage of total observations

in each scenario (shown in gray) – is presented in Table 6.2, . In terms of number of

observations made by the robot, the simulated scenarios – particularly S1 and S3 – are

the longest ones. This happens because, differently from the real scenarios, the simulated

scenarios were aimed for long-term tests, which implies in extensive revisiting of known

areas. Nonetheless, the real scenario R3 is also very long because it is associated to an en-

vironment much larger than all the other environments (note the different scales of Figure

6.3 and Figures 6.1 and 6.2).

1The three datasets of real environments were obtained from the Photogrammetry Lab website from
University of Bonn, headed by prof. Cyrill Stachniss, <http://www.ipb.uni-bonn.de/datasets/>, and were
originally available in the Robotics Data Set Repository (Radish) (HOWARD; ROY, 2003). Thanks go to
Beeson, Hahnel, Fox, Bosse, Leonard and Stachniss for providing this data.

2In all scenarios, the sampling rate is 10 observations by 1m traveled by the robot.

http://www.ipb.uni-bonn.de/datasets/

116

Figure 6.1: Simulated scenarios S1, S2 and S3.
CAPTION

corner corridorbifurcation dead-end

or room free-spacerobot path

0 25m

(a) Scenario S1: map and robot path (b) Scenario S1: semantic division

(c) Scenario S2: map and robot path (d) Scenario S2: semantic division

(e) Scenario S3: map and robot path

(f) Scenario S3: semantic division

117

Figure 6.2: Real scenarios R1 and R2.

corner corridorbifurcation dead-end

or room

CAPTION

hallfree-spacerobot path

0 25m

(a) Scenario R1: map and robot path (b) Scenario R2: map and robot path

(c) Scenario R1: semantic division (d) Scenario R2: semantic division

118

Figure 6.3: Real scenario R3.
CAPTION

corner corridorbifurcation dead-end

or room free-spacerobot path

0 25m

(a) Scenario R3: map and robot path

(b) Scenario R3: semantic division

119

Table 6.2: Semantic division of all observations according to the ground-truth

Scenarios
bifurcation corner corridor dead-end hall TOTAL

% # % # % # % # %

S1 7008 25.3 3794 13.7 16888 61.0 0 0.0 0 0.0 27690
S2 1202 16.4 1346 18.4 4773 65.2 0 0.0 0 0.0 7321
S3 7537 19.3 3825 9.8 27781 71.0 0 0.0 0 0.0 39143
R1 543 26.9 81 4.0 1282 63.6 0 0.0 111 5.5 2017
R2 1150 30.9 59 1.6 1851 49.8 658 17.7 0 0.0 3718
R3 1968 12.7 1577 10.2 11896 77.0 0 0.0 0 0.0 15441

In all scenarios, the robot passes over three types of regions: corridors, corners and

bifurcations. Corridors are the most common part of all environments, reaching 77.0% of

the visited space in scenario R3. Dead-ends/rooms are only visited by the robot in scenario

R2, corresponding to 17.7% of the visited space. Finally, there is only one visited hall in

all environments, which is located in scenario R1, corresponding to 5.5% of the visited

space.

Table 6.3 shows the ground-truth of expected words obtained from the robot path in

each one of the six scenarios. This distribution of words is made considering repetitions,

i.e., we are not excluding possible multiple instances of the same word generated by

revisits of the same place.

Table 6.3: Expected words according to the ground-truth

Scenarios
bifurcation corner corridor dead-end hall TOTAL

% # % # % # % # %

S1 231 33.2 116 16.7 348 50.1 0 0.0 0 0.0 695
S2 38 19.9 57 29.8 96 50.3 0 0.0 0 0.0 191
S3 185 32.5 159 27.9 225 39.5 0 0.0 0 0.0 569
R1 17 44.7 2 5.3 15 39.5 0 0.0 4 10.5 38
R2 34 35.1 3 3.1 34 35.1 26 26.8 0 0.0 97
R3 39 30.5 29 22.7 60 46.9 0 0.0 0 0.0 128

The goal of our method for building words is to create one word for each path segment

that passes over a contiguous region of the environment. For example, if the robot starts

in a bifurcation, traverses a corridor, and turns in a corner, the best outcome should be a

sequence of three words associated to bifurcation, corridor and corner. In practice, it is

not easy to exactly predict the expected sequence of words due to variations associated

to dynamic objects, or in the robot path, etc. Still, there are some distinguishable char-

acteristics that arise in specific types of regions, which can be used to better build words

according to semantic concepts. Next, we investigate each type of region in terms of the

three syllables that compose our proposed words: free-space density, length of the region,

120

variation in the robot orientation traversing that region.

6.2.2 Syllable d: the characteristics of free-space density in different places

As shown in Chapter 4, we perceived that in well-behaved scenarios, such as S1, the

densities of corridors, corners and bifurcations are different. Corners tend to have smaller

density values than bifurcations, and larger density values than corridors. However, this

is only valid considering constant width for all corridors, corners and bifurcations, which

many times is not the case.

Figure 6.4 shows the variation of free-space density in each type of region (vertical di-

vision) for all six scenarios (horizontal division). Each colored line represents an instance

of a word, where the x-axis indicates the sequence of observations composing the word

and the y-axis indicates the density associated to each observation. All words are centered

in 0 regarding the x-axis, which means that a line that goes from −50 to 50 corresponds

to a sequence of 101 observations. This center alignment of words is made in the plot

because the information of what happens in the beginning, the middle and the end of the

regions may help us to classify them.

In terms of density variation, one of the most important information that we can extract

from Figure 6.4 is that usually the free-space density in bifurcations and corners varies

in a predictable way: it starts with a given value, than it climbs to some maximum value

(which tends to occur in the middle of the region), and finishes falling back to the original

value. In contrast, the free-space density in corridors tends to stay flat in the majority of

the region, only varying a little in both ends (i.e., in the transition to other regions).

In terms of absolute density values, we are not able to say much about bifurcation,

corners, corridors and dead-ends. However, we can extract an important information

about halls in scenario R1. Given that halls are large empty spaces, they tend to be quite

predictable because the free-space density stays near 1.0 (i.e. the maximum possible

value) in this type of environment.

Summing up, based only on the density information, we can try to differentiate corri-

dors from bifurcations and corners, and also to detect halls. Still, in some scenarios the

density variation may be too noisy to infer something with good accuracy. For example,

looking back at scenarios R1 and R2 in Figure 6.2, we can see that there are numerous

open doors in the corridors visited by the robot, and all these doors distort the free-space

density. Thus, more information sources are needed to distinguish all regions.

121

Figure 6.4: Variation of the free-space density in the robot position (y-axis) considering
the sequence of observations (x-axis) that compose each word.

6.2.3 Syllable s: the characteristics of region length in different places

We can also verify in Figure 6.4, by looking at the x-axis, if some reliable information

can be obtained from the length of different types of regions, i.e. from the size of the

sequences of observations obtained in each region. Usually, the longest regions are always

associated to corridors. In fact, with the exception of a few outliers in scenarios R2 and

R3, all words with region length larger than 100 observations (∼ 10m) correspond to

122

corridors. However, short words cannot be classified based only on their lengths, given

that they can be associated to practically all types of regions, such as bifurcations, corners,

dead-ends, or even small corridors.

6.2.4 Syllable a: the characteristics of angle variation in different places

The variation of the robot orientation in each region (vertical division) for the six

scenarios (horizontal division) can be analyzed in Figure 6.5. Analogous to Figure 6.4,

each instance of a word is represented by a colored line, where the x-axis indicates the

sequence of observations composing the word and the y-axis indicates the variation, in

degrees, of the robot orientation. This variation of orientation is computed following the

definition of the syllable a presented in Chapter 4, but now we are computing it at each

robot pose (considering a range of 10 poses), instead of only computing it in the middle

pose of each region3.

The behavior of the robot orientation clearly changes from corridors to corners. While

in corridors the robot orientation stays fixed most of the time, in corners the orientation

always varies. One important point is that the orientation information in corridors is much

more stable than the information of free-space density, since apertures in the environment

does not affect this type of information. Bifurcations are a problem to classify because

the robot orientation changes in different ways depending on the trajectory made by the

robot. Many times they will look the same as corners, and other times they will look

similar to corridors (although, in this case, they are easy to differentiate based on density

information). Regarding other types of regions, the information about robot orientation is

very good for the identification of dead-ends (and rooms). As shown in the plot associated

to scenario R2, the orientation drastically varies when the robot visits such places, which

can be explained by a simple fact: the robot enters the room in a given direction and,

usually, turns 180 degrees to leave the room.

3As a recap, the variation is given by the difference of the angle between median and final poses of
the sequence of observations, and the angle between initial and median poses. For more details, see the
explanation of the Algorithm 4.3 in Section 4.2.2.

123

Figure 6.5: Variation, in degrees, of the robot orientation (y-axis) considering the se-
quence of observations (x-axis) that compose each word.

6.2.5 Summary of the analysis

After the analysis of the three types of information associated to the words built by our

method, we are able to extract some general aspects about each type of region:

• Corridors have low variation of free-space density and low variation of robot orien-

tation. They can also be very long, differently from all the other regions;

124

• Corners have high variation of free-space density (but, usually, the density returns

to the original value) and high variation of robot orientation;

• Bifurcations have high variation of free-space density (just like corners). Unfortu-

nately, not much can be stated in terms of robot orientation or region length;

• Dead-ends (or rooms) have very high variation of robot orientation;

• Halls have very high peaks of free-space density.

Corridors, dead-ends and halls have some unique characteristics (e.g. low variation of

free-space density, or very high peaks of free-space density), and thus, they are the most

distinguishable regions in the tested scenarios. On the other hand, corners and bifurcations

share many characteristics. For instance, if the robot is turning 90◦ and we are detecting

a high variation of free-space density, there is a high chance that the robot is in a corner

or bifurcation, but we will not be able to easily decide between the two.

It was shown in previous chapters, that the information of the three syllables d, s, and

a are suitable for the problem of place recognition. However, it is important to note that in

such case we are only interested in finding matches of existing words, without mattering

what they mean. In this section, we can see that the same information of the three syllables

is not sufficient for a proper semantic classification of all regions. Still, as presented in

some of the most prominent works on semantic mapping (MOZOS, 2010; ROTTMANN

et al., 2005; STACHNISS; MOZOS; BURGARD, 2006), there are plenty of other types

of information that can be used to improve disambiguation, such as the shape or perimeter

of the region measured by the robot, the number of gaps in the sensors measurements, etc.

Since we are already using a circular kernel to compute the free-space density, we decided

to briefly investigate another kernel-based feature: the number of frontiers of free-space

in the borders of the kernel.

6.3 Investigating the number of frontiers of free-space

As described in Chapter 3, the free-space density is computed with a flood-fill strategy

applied inside a circular kernel. With some minor modifications to the original algorithm,

we can extract the cells at the border of the kernel. Those cells can be used to compute

some metrics such as the perimeter of free-space, or the numbers of frontiers of free-space.

Given that we want to find some environment feature that helps us to differentiate corners

125

from bifurcations, we have preferred to analyze the number of frontiers of free-space.

Algorithm 6.1 describes the strategy to compute the number, f, of frontiers of free-

space in the boundaries of a kernelKh centered at cell m0. The first part of the algorithm,

which is quite similar to Algorithm 3.1 for computing the free-space density, consists in

finding the cells at the border of the kernel, and adding them to a list B (lines 1-11). A

flood-fill technique is used to expand all free-space cells whose distance to the center cell,

di, is smaller than the kernel bandwidth h (lines 5-7). The border cells are the reachable

free-space cells slightly outside the kernel boundaries (lines 10-11).

The second part of the algorithm is the segmentation of the border cells in contiguous

frontiers (lines 12-23). Each frontier F is built by initially removing from B one cell,

mi (line 14), and then recursively removing from B all neighbors that are connected to

mi (lines 17-21). The frontier is complete when no more cells can be added to F . When

this happens, a new frontier starts to be generated from another random cell in B. We

only keep frontiers with size larger than a given threshold4 εf (lines 22-23), because tiny

4We empirically defined εf as 5% of the kernel perimeter.

Algorithm 6.1: Compute number of free-space frontiers
Input: m0,m,Kh, εf
Output: f

1 B = []
2 Q = [m0]
3 while Q 6= [] do
4 mi = pop_front(Q)
5 if mi is free-space then
6 di =

√
(x(mi)− x(m0))2 + (y(mi)− y(m0))2

7 if di < h then
8 foreach (non processed) neighbor mk of mi do
9 push_back(mk, Q)

10 else
11 push_back(mi, B)

12 f = 0
13 while B 6= [] do
14 mi = pop_front(B)
15 F = []
16 Q = [mi]
17 while Q 6= [] do
18 mj = pop_front(Q)
19 push_back(mj , F)
20 foreach existing neighbor mk of mj in B do
21 push_back(mk, Q)

22 if size(F) > εf then
23 f += 1

24 return f

126

frontiers are generally the result of holes in the grid map.

Figure 6.6 presents some examples of how the number of frontiers of free-space varies

in different types of regions. In corridors and corners, as shown in (a) and (b), there are

usually two frontiers (one in the front, and one behind the robot). However, if the region

has moderate/large apertures the number of frontiers increase (in practice, such situations

are viewed as bifurcations). In small rooms the number of frontiers tends to drop because,

in general, there are only small apertures of free-space, as shown in (c), and our algorithm

Figure 6.6: Example of the number of frontiers of free-space, f, in different types of
regions.

(a) corridor, f = 2 (b) corner, f = 2 (c) small room, f = 0

(d) bifurcation, f = 2 (e) bifurcation, f = 3 (f) bifurcation, f = 4

(g) hall, f = 2 (h) hall, f = 1 (i) hall, f = 3

127

discards small frontiers of free-space. Around bifurcations, the number of frontiers grows

from two to three, four, or even higher, depending on the type of the region, as shown

in (d)-(f). In halls, the number of frontiers tends to decrease to one, because the whole

kernel around the robot enters the free-space, as shown in (g)-(h). Still, it is important to

keep in mind that the presence of dynamic obstacles in all types of regions may affect this

metric, as shown in (i).

We evaluated this metric in all scenarios – S1, S2, S3, R1, R2, R3 – and the results are

shown in Figure 6.7. The colored lines represent instances of words, the x-axis indicates

the sequence of observations composing the words and the y-axis indicates the number

of free-space frontiers associated to each observation. Since this number is discrete, we

apply a smoothing filter to reduce the influence of noise. Analyzing the simulated sce-

narios, we observe that there is always a high positive variation in the number of frontiers

in bifurcations. Basically, the sequence of observations usually starts with two frontiers,

climbs to three or more frontiers, and returns to two. In corners and corridors, the vari-

ation is generally much smaller. However, analyzing the real scenarios, we see that high

variations may also occur in corners and, specially, in corridors, due to open doors and

dynamic obstacles. This is the main reason that makes the smoothing step necessary, as

well as the discard of tiny frontiers. To conclude, dead-ends and halls are usually associ-

ated to negative variations in the number of frontiers, either because the robot enters large

free-space areas or because the robot is almost completely surrounded by obstacles.

128

Figure 6.7: Variation of the number of free-space frontiers surrounding the robot (y-axis)
considering the sequence of observations (x-axis) that compose each word.

6.4 A preliminary approach based on free-space density for environments classifica-

tion

Based on the analysis results presented in this chapter, we propose and evaluate a

simple technique of word classification. Our strategy classifies words according to the

variation of the free-space density, the maximum value of density values, the length of

the region, the variation in the robot orientation and the number of free-space frontiers.

129

As done by many authors in the literature (MASON; MARTHI, 2012; RUSU et al., 2008;

NÜCHTER et al., 2006; ALTHAUS; CHRISTENSEN, 2003), we manually define the

parameters of our model. Surely, in the future, the investigation of machine learning

techniques is recommended to automatically determine the best parameters and features

to improve the semantic mapping (KOSTAVELIS; GASTERATOS, 2015; PRONOBIS;

JENSFELT, 2012; MOZOS, 2010). Nevertheless, the main idea here is to show that we

can easily add semantic information to our textual representation of observations.

The first step before classifying the places visited by the robot is the segmentation of

the sequence of observations. In Chapters 4 and 5, we proposed the quantization of free-

space density into classes, and the translation of sequences of densities from same class

into words. This approach works well for place recognition because in such problem we

are matching observations obtained inside the same environment. For example, there is

no problem for place recognition if the words associated to corridors in an environment

are completely different from the words associated to corridors in other environment. For

semantic mapping, however, the segmentation must be made in a more clever way, i.e.,

we need to use some information independent from the environment. As we saw in the

current chapter, the free-space density in corridors is stable, while in all the other places

the density fundamentally varies. Therefore, our proposal for segmentation is based on

the variation of free-space density: a segmentation happens whenever the FSD starts or

stops to vary5. Given that in structured indoor environments, the robot generally moves

between corridors and some other region, this strategy works quite well.

After the generation of words associated to all segments of the robot path, we perform

their classification into five possible classes: bifurcations, corners, corridors, dead-ends

and halls. Figure 6.8 presents the proposed strategy for semantic classification in the form

of a decision tree. The (empirically defined) parameters associated to each one of the

tested conditions are described in Table 6.4. First, words associated to very long regions

5The density values are smoothed with a mean filter to reduce the influence of noise.

Table 6.4: Parameters used in semantic classification.
Metric Condition Threshold

density variation high > 0.1
density value high > 0.8

number of frontiers low < 1.5 frontiers
number of frontiers high > 2.3 frontiers

orientation variation very high > 120◦

orientation variation low < 20◦

region length very long > 100 obs. ≈ 10m

130

Figure 6.8: Decision tree for semantic classification.

YESNO

orientation
variation:

low?

NO YES

density
value:
high?

number of
frontiers:

high?

orientation
variation:
very high?

number of
frontiers:

low?

density
variation:

high?

region
length:

very long?

YESNO
YESNO

YESNO

YESNO

YESNO

Bifurcation Corridor Hall

Corner Corridor

Dead-end

Corridor

Corridor

or with low density variation are classified as corridors. Next, we classify places with low

number of free-space frontiers in two ways: as halls, if they reach high density values;

or as corridors, otherwise. Places with high number of free-space frontiers are classified

as bifurcations. Finally, places with huge variation on the robot orientation are classified

as dead-ends; places with low variation are classified as corridors; and the remaining are

classified as corners.

Our strategy was evaluated in three simulated scenarios (S1, S2, S3) and three real

scenarios (R1, R2, R3), and the results are presented in Figures 6.9 and 6.10, respectively.

For each scenario, we have computed a confusion matrix6 that indicates the predictions

made by our method in relation to the actual occurrences of each type of place. We also

highlight the most predicted value among the actual occurrences of each type of place

(solid circles), and the actual value that most occurred among the predicted occurrences

of each type of place (dashed circle). Additionally, for each scenario we present a table

with the precision7 and recall8 associated to each type of place.

6The confusion matrices always have five columns because, at each instant, the method can predict any
of the five possible types of places. However, the number of rows depends on the actual occurrences of
types of places in each scenario.

7Precision is the fraction of total predictions from some class (TP+FP) that really occurred (TP).
8Recall is the fraction of total occurrences from some class (TP+FN) that are properly predicted (TP).

131

Figure 6.9: Classification results for simulated scenarios. left: confusion matrix showing
predicted × actual values, with highlights of the most predicted value among the true
occurrences of each type of region (solid circle), and the actual value that most occur
among the predicted occurrences (dashed circle). right: table of true positives (TP), false
positives (FP), false negatives (FN) and true negatives (TN), along with precision and
recall for each type of place.

Place TP FP FN TN Prec. Rec.
bifurcation 7008 20 0 20662 99.7 100.0

corner 3674 32 120 23864 99.1 96.8
corridor 16856 100 32 10702 99.4 99.8
dead-end 0 0 0 27690 — —

hall 0 0 0 27690 — —

(a) S1 - Confusion Matrix (b) S1 - Precision and Recall

Place TP FP FN TN Prec. Rec.
bifurcation 655 88 547 6031 88.2 54.5

corner 844 441 502 5534 65.7 62.7
corridor 4724 569 49 1979 89.2 99.0
dead-end 0 0 0 7321 — —

hall 0 0 0 7321 — —

(c) S2 - Confusion Matrix (d) S2 - Precision and Recall

Place TP FP FN TN Prec. Rec.
bifurcation 7516 661 21 30945 91.9 99.7

corner 2275 160 1550 35158 93.4 59.5
corridor 27087 1444 694 9918 94.9 97.5
dead-end 0 0 0 39143 — —

hall 0 0 0 39143 — —

(e) S3 - Confusion Matrix (f) S3 - Precision and Recall

Regarding the evaluation process, we count hits/misses in terms of observations asso-

ciated to the regions, which means the prediction of a region has weight proportional to

the length of the region. Additionally, it is hard to define an exact transition between two

regions, such as corridors and bifurcations, therefore we allow small shifts in the limits

of each word by applying a tolerance of 1m (10 observations) in the transitions between

regions. Considering that each pixel in the ground-truth maps presented in Figures 6.1,

6.2 and 6.3 corresponds to a 0.1m × 0.1m grid cell, we are allowing a variation of 10

pixels over the drawn borders between regions.

132

Analyzing the results obtained in simulated scenarios shown in Figure 6.9, we can see

that the best results are, clearly, obtained in scenario S1 and the worst in scenario S3.

Among the predicted occurrences of each type of place, the values that most occur are

the expected ones, as shown by the dashed circles in the confusion matrix. Furthermore,

the number of true positives in each class is always higher than the sum of false positives,

which means precision above 50%. In fact, the average precisions are 99.4% in scenario

S1, 81.0% in scenario S2, and 93.4% in scenario S3. The worst precision result (65.7%)

happened with corners in scenario S2, due to some confusion between corners and bifur-

cations. The most predicted values among the actual occurrences of each type of place

are also the expected ones, as shown by the solid circles in the confusion matrix. Like-

wise precision, the number of true positives is higher than the sum of false negatives in

each class, thus all recalls stay above 50%. The average recalls are 98.9% in scenario S1,

72.1% in scenario S2, and 85.6% in scenario S3. The worst recalls occur with bifurcations

(54.5%) and corners (62.7%) in scenario S2, and corners (59.5%) in scenario S3.

Concerning the issue with bifurcations, our method generated around zero false nega-

tives in scenarios S1 and S3, nonetheless 45% of the occurrences of bifurcations in sce-

nario S2 are false negatives. It seems, looking back at the map of Figure 6.1(d), that the

number of free-space frontiers is not a good metric to classify bifurcations such as the

ones in scenario S2 (actually, Figure 6.7 shows that the variation in the number of fron-

tiers in bifurcations of scenario S2 is smaller than in other scenarios). Regarding corners,

the problem is the confusion with corridors. Since corners are connected to corridors in

all environments, we think that the main issue is probably the decision of where corridors

end and corners start (and vice-versa).

Analyzing the results obtained in real scenarios shown in Figure 6.10, we observe a

general decrease of quality in relation to the simulated scenarios. Notwithstanding, the

quality of prediction drastically varies depending on the type of the place. The predic-

tion of corridors and bifurcations is good: the average precision and average recall are

respectively 86.4% and 89.5% for corridors, and 77.9% and 72.0% for bifurcations. Halls

and dead-ends (or rooms) – the two types of places absent in simulated scenarios – are

predicted with maximum precision, that is, there are no false positives of both types of

places. However, the prediction of halls and dead-ends, although correct, only happens

after the robot totally enters those two types of places, which implies in a moderate recall.

The worst performance in real scenarios is associated to corners, where the average

precision and recall are only 27.4% and 49.7%, respectively. The results are specially

133

Figure 6.10: Classification results for real scenarios (see caption of Figure 6.9 for detailed
description).

Place TP FP FN TN Prec. Rec.
bifurcation 385 101 158 1373 79.2 70.9

corner 39 181 42 1755 17.7 48.1
corridor 1154 101 128 634 92.0 90.0
dead-end 0 0 0 2017 — —

hall 56 0 55 1906 100.0 50.5

(a) R1 - Confusion Matrix (b) R1 - Precision and Recall

Place TP FP FN TN Prec. Rec.
bifurcation 644 206 506 2362 75.8 56.0

corner 24 218 35 3441 9.9 40.7
corridor 1595 630 256 1237 71.7 86.2
dead-end 401 0 257 3060 100.0 60.9

hall 0 0 0 3718 — —

(c) R2 - Confusion Matrix (d) R2 - Precision and Recall

Place TP FP FN TN Prec. Rec.
bifurcation 1753 473 215 13000 78.8 89.1

corner 951 784 626 13080 54.8 60.3
corridor 10983 497 913 3048 95.7 92.3
dead-end 0 0 0 15441 — —

hall 0 0 0 15441 — —

(e) R3 - Confusion Matrix (f) R3 - Precision and Recall

poor in scenarios R1 and R2. As shown in Figures 6.10(a) and (c), the actual values

that most occur in the prediction of corners are bifurcations in scenario R1, and corridors

in scenario R2. The percentage of false negatives is also high, particularly in scenario

R2, where corridors are the most predicted place at actual occurrences of corners. The

apparent problem with scenario R1, as shown in the map of Figure 6.2(a), is that there

are some bifurcations that look very similar to corners (i.e. bifurcations with narrow

passageways where the robot turned 90◦) and only two actual corners, both with several

open doors, that looked similar to bifurcations. In scenario R2, as shown in the map of

134

Figure 6.2(c), there is only one small corner, which is visited a single time (corresponding

to 1.5% of all observations). This corner is connected to a long corridor at one side and

to a large bifurcation at the other side, which makes it quite different from the corners in

the other scenarios. Unfortunately, when considering the very few actual occurrences of

corners, the impact of one prediction error is huge, which causes the high precision drop.

6.5 Summary

This chapter presents an in-depth study of the characteristics of words based on free-

space density, focusing on semantic mapping. We analyzed the discernibility and consis-

tency of words associated to five different types of places: bifurcation, corners, corridors,

dead-ends (or rooms) and halls. While the experiments in previous chapters were made

in highly structured and well-behaved scenarios, now, the evaluation process considered

some real datasets from SLAM literature with high presence of dynamic obstacles, aper-

tures (e.g open doors) and a few unusual structures.

The analysis of the word components (i.e. the variation of free-space density in each

type of place, region length and variation in the robot orientation) showed that corridors,

dead-ends and halls are easy to distinguish. On the other hand, bifurcations and corners

are usually very similar, thus it is very hard to tell the difference between them. As

expected, this is a serious issue for semantic classification, however it does not strongly

affect our place recognition strategy. In such problem we only search for matches among

the existing words, it does not matter to what places the words are associated, and, more

importantly, we consider long sequences of words to reduce ambiguities.

As a matter of fact, we intend to investigate the use of sequential information as a

way to improve the process of semantic classification. For instance, we may use n-grams

to predict what place comes after some sequence of n places (e.g. corridor-· · · -corner-

corridor). Still, this type of strategy seems to be heavily map dependent, which, although

good for place recognition, is not suitable for semantic classification. Actually, sequences

of places that are common in some environments may not appear at all in other environ-

ments.

Nevertheless, considering that the original information of the three syllables from our

proposed words did not seem enough to provide an easy semantic classification of all

places, we studied another type of kernel-based information, which is the number of fron-

tiers of free-space in the surroundings of the robot. This metric proved to be good to

135

distinguish bifurcations from corners, however dynamic obstacles and apertures in the

environment (that usually happen in corridors) eventually generate unexpected results.

Lastly, a simple strategy for semantic classification of the words is presented in the

form of a manually-defined decision tree, which is based on ideas captured in the analy-

sis. Good results were obtained in the simulated scenarios, but some problems have arisen

in real scenarios, in special concerning the classification of corners. The problems mainly

originate from the high number of unexpected apertures in the environments, the high

dynamism of the scenarios (i.e. too many people passing by the robot), and the unpre-

dictability of the robot trajectory. In spite of that, this basic strategy achieved precisions,

in real scenarios, of 86.4% and 77.9% for corridors and bifurcations, and 100% for halls

and dead-ends.

We have shown in this chapter that the addition of semantic information to the words

describing the regions visited by the robot is a feasible task. Moreover, considering the

acquired results, the achievable lower bound of the classification process is good for sev-

eral types of places. As shown by many methods of semantic mapping (KOSTAVELIS;

GASTERATOS, 2015; MOZOS, 2010; PRONOBIS; JENSFELT, 2012), the application

of techniques from machine learning can be useful to improve the quality of the classifi-

cation, and therefore is a valuable starting point for future work.

136

7 CONCLUSION AND FUTURE WORK

In this thesis, we have studied a way to view the problem of state estimation in robotics

through the lens of linguistic processing. Our focus is on the place recognition problem,

which is a fundamental task for localization and mapping, and consists in determining

if different observations made by a robot are taken from the same place. Most methods

in literature usually compare raw sensor readings or extract salient features in the envi-

ronment and compare them. The problem is that practically all environments are highly

ambiguous, specially structured ones, leading to wrong associations.Our approach trans-

lates long sequences of raw measurements into an efficient, compact, and much more

abstract, text representation.

Summing up, we propose a novel observation model, called Free-Space Density (FSD),

based on kernel density estimates of the known free-space in a region. The model is ro-

bust to moderate variations in robot position, and, due to its orientation independence,

can represent each position of the environment with a single value. It also implies in low

memory consumption and exceptional performance in comparisons (e.g. comparing pairs

of observations is equivalent to a single floating-point operation). FSD was successfully

applied to the global localization problem of a mobile robot using particle filters. Experi-

ments showed similar quality of results, and even better quality in some cases than other

traditional techniques, however with much smaller computational time. Basically, the ef-

ficiency of our novel observation model allowed an impressive increase in the number of

particles, which was good for compensating the high dimensionality reduction of sensors

readings.

Given that density transitions are smooth, the quantization of FSD into classes of den-

sities allows the creation of regions of homogeneous density that can be represented in

a very compact way – words. The word representation of a region is composed of three

syllables describing the general free-space density, the size and the orientation variation

of that region. With such compact representation we are able to easily classify topologi-

cal and metric information of the environment. After converting raw sensor readings into

words, all observations made by the robot are represented in a simple text. Place recog-

nition is performed by searching for matches of words in texts. However, ambiguous

environments lead to ambiguities in the text, which are solved by analyzing sequences

of words (i.e. n-grams). Our place recognition method simply searches for matches of

n-grams. The larger the length of the n-gram, the more probable of being correct is the

137

obtained match.

Despite being originally aimed for static environments, our approach can also be ex-

tended to long-term mobile robot operation, where we must deal with not only static or

highly dynamic objects, but also semi-static objects, which can move occasionally (e.g.

doors, furniture, etc). If a word describing some region is not associated to a static object,

then we must consider the possibility of not finding this particular word when revisiting

this region. The core of our long-term place recognition proposal is to generate alternative

“corrected” words for all regions. Every time a word is built, we also consider the case

where the density change was brought by a non-static object. In this case, we create a new

word sequence assuming the previous density remained present in the new word’s loca-

tion. Experiments made in real and simulated scenarios have shown that this extension of

our word-based approach produced improvements in the matching results.

Finally, we perform an analysis of the proposed FSD-based words in diverse types of

simulated and real scenarios. We evaluate if words associated to specific types of places,

such as corridors, bifurcations and corners, have noticeable features that may be used to

distinguish them, and thus, to serve as basis for an approach of semantic mapping. For

each word built, we check information such as the variation of free-space density, the

variation in the robot orientation, the region length associated to the word, and the vari-

ation in the number of free-space frontiers. A simple classification strategy is proposed

based on some notions obtained during the analysis and the performance was generally

good. The biggest issues occurred in real scenarios due to distortions in the free-space

density caused by unexpected apertures that lead to confusion between corners/corridors

and bifurcations; or places with high presence of dynamic obstacles.

Even though the techniques presented in this thesis have obtained good results that

support our proposal, there are numerous aspects that can be improved in further studies.

In the future, we want to investigate the use of other information sources, besides free-

space density, to build words. In Section 6.3, we verify that the variation in the number

of frontiers of free-space surrounding the robot can be used to improve disambiguation

among different types of places. Likewise, many other features can be explored, like the

shape of the regions where the robot is located, which can be contemplated using metrics

such as graph spectrum (OLIVEIRA; SILVA; BARONE, 2015) or Voronoi skeletonization

(SAEEDI et al., 2012). Furthermore, we could try to explore information from other types

of sensors (e.g. cameras), such as the distribution of visual features in the environment,

or even the density of colors in images.

138

A drawback of our place recognition strategy is that we only search for sequential

matches in the direction visited by the robot, which means that if the robot traverses a

region twice, but with opposite directions, we will probably not detect the true correspon-

dences. The problem is that, since the robot field-of-view is limited (180◦), the obser-

vations made by the robot can be far different depending on what direction the robot is

heading. As a result, the generated words tend to be slightly different. A possible form of

minimizing such problem is to try to predict the observations behind the robot, and also

to study ways of generating reverse words.

One of the main limitations of our approach is that it relies on a handful of empirically

chosen fixed parameters. Some of them are dependent of the environment, for instance,

the kernel size used to compute the free-space density cannot be too small or too big,

otherwise the density will almost not vary. As we observed in experiments of Chapter

3, the ideal kernel size is the usual width of corridors in the environment (around 3 ∼ 4

meters), which makes our method suitable for indoor environments. Other parameters,

like the minimum n-gram size required for accepting matches depends on the character-

istics of the environment and on the robot trajectory. In highly ambiguous scenarios we

only must allow matches of very long sequences of words. Due to this, the strategy to

determine such threshold is still an open issue. A possible, but burdensome, approach to

circumvent this problem of parameters tuning is to study the migration of our proposal

to a probabilistic paradigm, that incorporates noise and uncertainty. For example, instead

of words we would deal with states, and instead of n-grams we would deal with hidden

Markov models.

Another area of study with enormous potential is word classification and semantic

mapping. Although the latest contribution of this thesis is a simple classification strategy

with a decision-tree that generally works well, there is plenty of room for improvements

with the study of machine learning techniques. Some of the most promising techniques

that are widely used in natural language processing are Word Embeddings (BENGIO et

al., 2003). Those techniques perform the mapping of words (and sequences of words)

to vectors of numbers, which can be made using neural networks, probabilistic models

(e.g. n-grams models), among others. The main idea is that words sharing semantical

similarities should be represented near each other in the vectorial space. Applying word

embeddings in our approach, we could automatically learn the best parameters to describe

corridors, bifurcations, etc. Additionaly, we could use this type of approach to extend our

proposal to handle, not only the information acquired by laser range-finders, but also the

139

information captured by cameras.

Finally, we can apply some of our techniques in other contexts such as the motion

planning problem. For instance, strategies of integrated exploration (JORGE et al., 2015;

MAFFEI et al., 2014) and robot path planning (MACHARET et al., 2013; PRESTES;

IDIART, 2010) may use the proposed textual representation of the robot path as a high-

level guide for the planning algorithms.

140

Appendices

141

AppendixA EXPERIMENT APPARATUS - P3-DX MOBILE ROBOT

All techniques proposed in this work were designed and evaluated using the Pioneer

3-DX mobile robot from Adept MobileRobots, which is a small lightweight two-wheel

two-motor differential drive robot for indoor use, shown in Figure A.1. The robot is

equipped with a SICK LMS-200 laser range finder, which is able to scan 180◦, with

maximum resolution of 0.25◦ and maximum range of 80m. A detailed description of the

robot specifications is shown in Table A.1.

Figure A.1: Pioneer 3-DX mobile robot. (a) Picture of the robot equipped with a SICK
LMS-200 laser range finder. (b) Dimensions of the robot (in mm).

top view

381

side view
455

62 195

210
237

(a) (b)

Besides experiments with the real robot, we also performed simulations using the Mo-

bileSim software, which is an open source 2D simulator from Adept MobileRobots. Figure

A.2 shows a screenshot of the simulator.

All experiments were performed in a notebook with a 4x Intel R© Core TM i7 processor

with 16GB of RAM memory.

142

Figure A.2: Screenshot of the MobileSim simulator. The robot is shown in red, laser
readings are shown in blue, obstacles are shown in black.

Table A.1: Specifications of the robot.
Physical Characteristics

Length (cm) 45.5
Width (cm) 38.1
Height (cm) 23.7
Clearance (cm) 6.0
Clearance bumpers (cm) 3.5
Weight (kg) 9
Payload (kg) 25

Mobility

Wheels 2 foam-filled
tread knobby
diam (mm) 195.3
width (mm) 47.4

Caster(mm) 75
Steering Differential
Gear ratio 38.3:1
Swing (cm) 26.7
Turn (cm) 0
Translate speed max (mm/sec) 1,400
Rotate speed max (deg/sec) 300
Traversable step max (mm) 20
Traversable gap max (mm) 89
Traversable slope max (grade) 25%
Traversable terrains Wheel-chair accessible

Sensors

SICK LMS-200 laser range finder
Angular resolution (deg) 0.25; 0.5; 1
Scanning angle (deg) 180
Resolution (mm) 10
Range max (m) 80

Sonar Front Array (one each side, six forward @ 20 intervals) 8
Encoders (2 ea)

counts/rev 76,600
counts/mm 128
counts/rotation 33,500

143

AppendixB DERIVATION OF THE GAUSS-NEWTON ALGORITHM

FOR GRAPH-BASED SLAM

Following the concepts introduced in Section 2.1.3 of this thesis and the work de-

scribed in (GRISETTI et al., 2010b), we present the derivation of the Gauss-Newton

algorithm used for least squares optimization of graph-based SLAM. Its goal is to find the

optimal configuration, s∗, which minimizes the sum of squared errors of all edges, given

the current state vector s.

F (s) =
∑

aij ∈ A

e(aij, s)T Ω(aij) e(aij, s), (B.1)

s∗ = argmin
s

F (s). (B.2)

The first step to solve Equation B.2 is linearizing the error around a guess s̆, through a

first-order Taylor series expansion,

e(aij, s̆ + ∆s) ' e(aij, s̆) + J ij∆s (B.3)

where J ij is the Jacobian of the error computed at s̆, which is non-zero only in the blocks

associated to xi and xj , and it has a 3×3n dimension (i.e. J ij has a 3×3 block of partial

derivatives for each one of the n nodes):

J ij =
∂e(aij, s)

∂s

∣∣∣∣
s=s̆

=

(
∂e(aij, s)

∂x0

· · · ∂e(aij, s)

∂xi
· · · ∂e(aij, s)

∂xj
· · · ∂e(aij, s)

∂xt

)

=

(
0 · · ·0 Aij︸︷︷︸

∂eij(s)

∂xi

0 · · ·0 Bij︸︷︷︸
∂eij(s)

∂xj

0 · · ·0

)
(B.4)

We approximate F (s) with F (s̆ + ∆s) by applying the results of Equation B.3 in

144

Equation B.1:

F (s̆ + ∆s) =
∑

aij ∈ A

(
e(aij, s̆ + ∆s)T Ω(aij) e(aij, s̆ + ∆s)

)
(B.5)

'
∑

aij ∈ A

((
e(aij, s̆) + J ij∆s

)T
Ω(aij)

(
e(aij, s̆) + J ij∆s

))
(B.6)

=
∑

aij ∈ A

(
e(aij, s̆)TΩ(aij)e(aij, s̆)︸ ︷︷ ︸

T1

+ e(aij, s̆)TΩ(aij)J ij∆s︸ ︷︷ ︸
T2

+ ∆sTJT
ijΩ(aij)e(aij, s̆)︸ ︷︷ ︸

T3

+ ∆sTJT
ijΩ(aij)J ij∆s︸ ︷︷ ︸

T4

)
(B.7)

Now, we analyze each term of Equation B.7. The first term, T1, corresponds to a scalar,

T1 = e(aij, s̆)T︸ ︷︷ ︸
1×3

Ω(aij)︸ ︷︷ ︸
3×3

e(aij, s̆)︸ ︷︷ ︸
3×1

= cij. (B.8)

The sum of the second and third terms, (T2 + T3), can be redefined following a basic

property of matrices manipulation1. Then, we rewrite the resulting term, by isolating ∆s,

T2 + T3 = 2T2 = 2 e(aij, s̆)T︸ ︷︷ ︸
1×3

Ω(aij)︸ ︷︷ ︸
3×3

J ij︸︷︷︸
3×3n

∆s = 2 bTij︸︷︷︸
1×3n

∆s. (B.9)

Finally, the last term, T4, is also rewritten by isolating ∆s,

T4 = ∆sT JT
ij︸︷︷︸

3n×3

Ω(aij)︸ ︷︷ ︸
3×3

J ij︸︷︷︸
3×3n

∆s = ∆sT H ij︸︷︷︸
3n×3n

∆s (B.10)

We replace the new terms in Equation B.7:

F (s̆ + ∆s) '
∑

aij ∈ A

(
cij + 2bTij∆s + ∆sTH ij∆s

)
(B.11)

Applying the summation, we obtain

F (s̆ + ∆s) ' c+ 2bT∆s + ∆sTH∆s (B.12)

1Following equation 5 of section 1 from the Matrix Cookbook (PETERSEN; PEDERSEN, 2012), the
transposition of the product of matrices, (ABCD)T , is equal to the reversed product of transposed ma-
trices, DTCTBTAT . Thus, ABCD + DTCTBTAT = ABCD + (ABCD)T , which is equal to
2ABCD. This can be applied in our case because Ω(aij) is symmetric, i.e. Ω(aij) = Ω(aij)

T .

145

where

c =
∑

aij ∈ A

cij and bT =
∑

aij ∈ A

bTij and H =
∑

aij ∈ A

H ij.

The matrix H is the information matrix of the full state, obtained using the Jacobians

to project the measurement error into the trajectories space. H is sparse because the

Jacobians that compose it are also sparse. In fact, each constraint aij between two nodes

only updates two non-zeroes blocks in the vector bij and four non-zeroes blocks in the

matrix H ij (they are previously defined in Equations B.9 and B.10, respectively), as

shown next,2

bij =

(
e(aij, s̆)TΩ(aij)J ij

)T

= JT
ijΩ(aij)e(aij, s̆)

=



...

AT
ij

...

BT
ij

...


Ω(aij)e(aij, s̆) =



...

AT
ijΩ(aij)e(aij, s̆)

...

BT
ijΩ(aij)e(aij, s̆)

...


(B.13)

H ij = JT
ijΩ(aij)J ij

=



...

AT
ij

...

BT
ij

...


Ω(aij)

(
· · · Aij · · · Bij · · ·

)

=



. . .

AT
ijΩ(aij)Aij · · · AT

ijΩ(aij)Bij

...

BT
ijΩ(aij)Aij · · · BT

ijΩ(aij)Bij

. . .


(B.14)

We can find the optimal ∆s∗ that minimizes the approximated F (s̆+ ∆s) by comput-

2We omitted the zeroes blocks for simplicity of notation.

146

ing the derivative3 of Equation B.12 and setting it to zero.

∂F (s̆ + ∆s)

∂∆s
' 2b + 2H∆s∗ = 0 (B.15)

The solution for the increment can be obtained by solving the linear system

H∆s∗ = −b. (B.16)

Then, we obtain the resulting state by adding ∆s∗ to the initial guess.

s∗ = s̆ + ∆s∗ (B.17)

To conclude, we present the detailed values of the error function, e(aij, s), and the

Jacobians of the error, Aij and Bij , which must be determined for each constraint added

to the graph. After computing these three fundamental components, we can trivially build

the matrix H and vector b through matrices multiplication, and proceed to solve the linear

system of Equation 2.11.

Just for text simplification, we define the following notation shown in Table B.1 to

refer to components of xi, xj and r(aij).

Table B.1: Simplified notation used in this section
xi = (xi, yi, θi) si = sin θi ci = cos θi
xj = (xj , yj , θj)
r(aij) = (xij , yij , θij) sij = sin θij cij = cos θij

3Following equations 69 and 81 of section 2.4 from the Matrix Cookbook (PETERSEN; PEDERSEN,
2012), the derivative of a quadratic form function f(x) = bTx + xTHx is equal to ∂f(x)

x = b + (H +

HT)x. Since in our case H is symmetric, then (H + HT) = 2H .

147

e(aij, s) = r̂(aij, s)	 r(aij) = (xj 	 xi)	 r(aij)

=


cij sij 0

−sij cij 0

0 0 1





ci si 0

−si ci 0

0 0 1



xj − xi
yj − yi
θj − θi

−

xij

yij

θij




=


cij sij 0

−sij cij 0

0 0 1



ci(xj − xi) + si(yj − yi)− xij
−si(xj − xi) + ci(yj − yi)− yij

θj − θi − θij



=


(cijci − sijsi)(xj − xi) + (cijsi + sijci)(yj − yi)− cijxij − sijyij

(−sijci − cijsi)(xj − xi) + (−sijsi + cijci)(yj − yi) + sijxij − cijyij
θj − θi − θij


(B.18)

Aij =
∂e(aij, s)

∂xi

=


(−cijci + sijsi) (−cijsi − sijci) (−cijsi − sijci)(xj − xi) + (cijci − sijsi)(yj − yi)

(sijci + cijsi) (sijsi − cijci) (sijsi − cijci)(xj − xi) + (−sijci − cijsi)(yj − yi)

0 0 −1


(B.19)

Bij =
∂e(aij, s)

∂xj
=


(cijci − sijsi) (cijsi + sijci) 0

(−sijci − cijsi) (−sijsi + cijci) 0

0 0 1

 (B.20)

148

AppendixC KERNEL DENSITY ESTIMATION

In statistics, a probability density function f is a natural description of the distribution

of a random variable X . The probability of X falling within a specific range of values a

and b, is given by the integral of f over the range (a, b). The probability density function is

always non-negative and adds to one over the entire space (SILVERMAN, 1986; SCOTT,

1992).

p(a < X < b) =

∫ b

a

f(x) dx ∀a < b (C.1)

p(a < X < b) =

∫ ∞
−∞

f(x) dx = 1 (C.2)

Intuitively, the probability density, f(x), at a given point x can be expressed as

f(x) = lim
h→0

p(x− h < X < x+ h)

2h
, (C.3)

where p(x − h < X < x + h) is the probability of sampling X inside the range (x −

h, x+ h), and 2h is the width of the range.

In practice, we have

f̂(x) =
1

2h

(nx
n

)
, (C.4)

where nx is the number of samples that fall inside the range (x − h, x + h), from a total

of n samples.

Defining a kernel function Kh as

Kh(d) =


1

2h
if |d| ≤ h

0 otherwise
, (C.5)

we can rewrite Equation C.4 as the kernel density estimation (KDE) given by

f̂(x) =
1

n

n∑
i=1

Kh(x− xi), (C.6)

where xi is the i−th sample of X .

However, instead of using the simple uniform kernel profile, described in Equation

C.5, many other different profiles can be used to estimate a pdf. Provided the kernel itself

is a probability density function and non-negative everywhere, the resulting KDE will be

149

a proper probability density function. Additionaly, the KDE will inherit the continuity

and differentiability properties of the kernel (SILVERMAN, 1986). Figure C.1 shows a

KDE of an arbitrary function built from 6 samples using a Gaussian kernel profile.

Figure C.1: Kernel density estimate (blue) obtained from the application of individual
Gaussian kernels (red) over 6 samples (black). Figure extracted from Wikipedia.1

1Available in <https://en.wikipedia.org/wiki/Kernel_density_estimation>

https://en.wikipedia.org/wiki/Kernel_density_estimation

150

REFERENCES

AGARWAL, P. Robust Graph-Based Localization and Mapping. Thesis (PhD) —
University of Freiburg, Department of Computer Science, April 2015.

ALTHAUS, P.; CHRISTENSEN, H. I. Behavior coordination in structured environments.
Advanced Robotics, v. 17, n. 7, p. 657–674, 2003. Available from Internet:
<http://dx.doi.org/10.1163/156855303769157009>.

ARNDT, M.; WILLE, S.; SOUZA, L. d.; REY, V. F.; WEHN, N.; BERNS, K.
Performance evaluation of ambient services by combining robotic frameworks and
a smart environment platform. Robotics and Autonomous Systems, v. 61, n. 11, p.
1173–1185, 2013. ISSN 0921-8890. Ubiquitous Robotics. Available from Internet:
<http://www.sciencedirect.com/science/article/pii/S0921889013000614>.

BACKUS, J. W. The syntax and semantics of the proposed international algebraic
language of the zurich acm-gamm conference. In: Proceedings of the International
Conference on Information Processing. Paris, France: UNESCO, 1959. p. 125–131.

BARRÓN-CEDEÑO, A.; ROSSO, P. On automatic plagiarism detection based on
n-grams comparison. In: BOUGHANEM, M.; BERRUT, C.; MOTHE, J.; SOULE-
DUPUY, C. (Ed.). Proceedings of the 31th European Conference on IR Research on
Advances in Information Retrieval. Berlin, Heidelberg: Springer-Verlag, 2009. (ECIR
’09), p. 696–700. ISBN 978-3-642-00958-7.

BAY, H.; TUYTELAARS, T.; GOOL, L. V. Surf: Speeded up robust features. In:
LEONARDIS, A.; BISCHOF, H.; PINZ, A. (Ed.). Computer Vision – ECCV 2006.
Berlin, Heidelberg: Springer Berlin / Heidelberg, 2006. v. 3951, chp. Lecture Notes in
Computer Science, p. 404–417. ISBN 978-3-540-33832-1.

BEESON, P.; JONG, N. K.; KUIPERS, B. Towards autonomous topological place
detection using the extended voronoi graph. In: Proceedings of the 2005 IEEE
International Conference on Robotics and Automation (ICRA). Piscataway, NJ,
USA: IEEE Press, 2005. p. 4373–4379.

BENGIO, Y.; DUCHARME, R.; VINCENT, P.; JANVIN, C. A neural probabilistic
language model. Journal of Machine Learning Research, v. 3, p. 1137–1155,
2003. Available from Internet: <http://dblp.uni-trier.de/db/journals/jmlr/jmlr3.html#
BengioDVJ03>.

BESL, P. J.; MCKAY, N. D. A method for registration of 3-d shapes. IEEE Transactions
on Pattern Analysis and Machine Intelligence, IEEE Computer Society, Washington,
DC, USA, v. 14, n. 2, p. 239–256, feb 1992. ISSN 0162-8828. Available from Internet:
<http://dx.doi.org/10.1109/34.121791>.

BIBER, P.; DUCKETT, T. Dynamic maps for long-term operation of mobile service
robots. In: Proceedings of the 2005 Robotics: Science and Systems (RSS) Conference.
Cambridge, MA, USA: MIT Press, 2005.

BIBER, P.; DUCKETT, T. Experimental analysis of sample-based maps for long-term
slam. The International Journal of Robotics Research, Sage Publications, Inc.,

http://dx.doi.org/10.1163/156855303769157009
http://www.sciencedirect.com/science/article/pii/S0921889013000614
http://dblp.uni-trier.de/db/journals/jmlr/jmlr3.html#BengioDVJ03
http://dblp.uni-trier.de/db/journals/jmlr/jmlr3.html#BengioDVJ03
http://dx.doi.org/10.1109/34.121791

151

Thousand Oaks, CA, USA, v. 28, n. 1, p. 20–33, jan 2009. ISSN 0278-3649. Available
from Internet: <http://dx.doi.org/10.1177/0278364908096286>.

BORENSTEIN, J.; KOREN, Y. Histogramic in-motion mapping for mobile robot
obstacle avoidance. IEEE Transactions on Robotics and Automation, v. 7, n. 4, p.
535–539, Aug 1991. ISSN 1042-296X.

BOSSE, M.; NEWMAN, P.; LEONARD, J.; SOIKA, M.; FEITEN, W.; TELLER, S. An
atlas framework for scalable mapping. In: Proceedings of the 2003 IEEE International
Conference on Robotics and Automation (ICRA). Piscataway, NJ, USA: IEEE Press,
2003. v. 2, p. 1899–1906. ISSN 1050-4729.

BOSSE, M.; ZLOT, R. Map matching and data association for large-scale two-
dimensional laser scan-based slam. The International Journal of Robotics Research,
v. 27, n. 6, p. 667–691, 2008. Available from Internet: <http://ijr.sagepub.com/content/
27/6/667.abstract>.

BURGARD, W.; CREMERS, A. B.; FOX, D.; HÄHNEL, D.; LAKEMEYER, G.;
SCHULZ, D.; STEINER, W.; THRUN, S. The interactive museum tour-guide robot.
In: Proceedings of the 1998 National Conference on Artificial Intelligence (AAAI).
Menlo Park, CA, USA: AAAI Press, 1998.

BURGARD, W.; DERR, A.; FOX, D.; CREMERS, A. B. Integrating global position
estimation and position tracking for mobile robots: the dynamic markov localization
approach. In: Proceedings of the 1998 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). Piscataway, NJ, USA: IEEE Press, 1998. v. 2,
p. 730–735.

BURGARD, W.; HEBERT, M. World modeling. In: Springer handbook of robotics.
Berlin, Heidelberg: Springer, 2008. p. 853–869.

CADENA, C.; CARLONE, L.; CARRILLO, H.; LATIF, Y.; SCARAMUZZA, D.;
NEIRA, J.; REID, I.; LEONARD, J. J. Past, present, and future of simultaneous
localization and mapping: Toward the robust-perception age. IEEE Transactions on
Robotics, v. 32, n. 6, p. 1309–1332, Dec 2016. ISSN 1552-3098.

CHEN, C.; WANG, H. Appearance-based topological bayesian inference for loop-closing
detection in a cross-country environment. The International Journal of Robotics
Research, v. 25, n. 10, p. 953–983, 2006.

CHENG, Y. Mean shift, mode seeking, and clustering. IEEE Transactions on Pattern
Analysis and Machine Intelligence, v. 17, n. 8, p. 790–799, Aug 1995. ISSN 0162-8828.

CHOI, Y.-H.; LEE, T.-K.; OH, S.-Y. A line feature based slam with low grade
range sensors using geometric constraints and active exploration for mobile robot.
Autonomous Robots, v. 24, n. 1, p. 13–27, 2008.

CHOMSKY, N. Three models for the description of language. IRE Transactions on
Information Theory, v. 2, n. 3, p. 113–124, September 1956. ISSN 0096-1000.

CHOSET, H.; NAGATANI, K. Topological simultaneous localization and mapping
(slam): toward exact localization without explicit localization. IEEE Transactions on
Robotics and Automation, v. 17, n. 2, p. 125–137, Apr 2001. ISSN 1042-296X.

http://dx.doi.org/10.1177/0278364908096286
http://ijr.sagepub.com/content/27/6/667.abstract
http://ijr.sagepub.com/content/27/6/667.abstract

152

COX, I. J. Blanche - an experiment in guidance and navigation of an autonomous robot
vehicle. IEEE Transactions on Robotics and Automation, v. 7, n. 2, p. 193–204, Apr
1991. ISSN 1042-296X.

COX, I. J.; LEONARD, J. J. Modeling a dynamic environment using a bayesian multiple
hypothesis approach. Artificial Intelligence, v. 66, n. 2, p. 311–344, 1994. ISSN
0004-3702. Available from Internet: <http://www.sciencedirect.com/science/article/pii/
0004370294900299>.

CUMMINS, M.; NEWMAN, P. Probabilistic appearance based navigation and loop
closing. In: Proceedings of the 2007 IEEE International Conference on Robotics
and Automation (ICRA). Piscataway, NJ, USA: IEEE Press, 2007. p. 2042–2048. ISSN
1050-4729.

CUMMINS, M.; NEWMAN, P. Fab-map: Probabilistic localization and mapping in the
space of appearance. The International Journal of Robotics Research, v. 27, n. 6,
p. 647–665, 2008. Available from Internet: <http://ijr.sagepub.com/content/27/6/647.
abstract>.

CUMMINS, M.; NEWMAN, P. Highly scalable appearance-only slam - fab-map 2.0.
In: Proceedings of the 2009 Robotics: Science and Systems (RSS) Conference.
Cambridge, MA, USA: MIT Press, 2009.

DELLAERT, F.; FOX, D.; BURGARD, W.; THRUN, S. Monte carlo localization for
mobile robots. In: Proceedings of the 1999 IEEE International Conference on
Robotics and Automation (ICRA). Piscataway, NJ, USA: IEEE Press, 1999.

DELLAERT, F.; KAESS, M. Square root sam: Simultaneous localization and
mapping via square root information smoothing. The International Journal of
Robotics Research, v. 25, n. 12, p. 1181–1203, 2006. Available from Internet:
<http://ijr.sagepub.com/content/25/12/1181.abstract>.

DEWEY, G. Relative Frequency of English Speech Sounds. Cambridge, MA, USA:
Harvard University Press, 1923. (Harvard Studies in Education).

DUCKETT, T.; NEHMZOW, U. Mobile robot self-localisation using occupancy
histograms and a mixture of gaussian location hypotheses. Robotics and Autonomous
Systems, v. 34, n. 2–3, p. 117–129, 2001. ISSN 0921-8890. European Workshop on
Advanced Mobile Robots.

DURRANT-WHYTE, H.; BAILEY, T. Simultaneous localization and mapping: part
i. Robotics Automation Magazine, IEEE, v. 13, n. 2, p. 99–110, june 2006. ISSN
1070-9932.

ELGAMMAL, A.; DURAISWAMI, R.; HARWOOD, D.; DAVIS, L. S. Background
and foreground modeling using nonparametric kernel density estimation for visual
surveillance. Proceedings of the IEEE, v. 90, n. 7, p. 1151–1163, Jul 2002. ISSN
0018-9219.

ELIAZAR, A. I.; PARR, R. Dp-slam 2.0. In: Proceedings of the 2004 IEEE
International Conference on Robotics and Automation (ICRA). Piscataway, NJ,
USA: IEEE Press, 2004. v. 2, p. 1314–1320. ISSN 1050-4729.

http://www.sciencedirect.com/science/article/pii/0004370294900299
http://www.sciencedirect.com/science/article/pii/0004370294900299
http://ijr.sagepub.com/content/27/6/647.abstract
http://ijr.sagepub.com/content/27/6/647.abstract
http://ijr.sagepub.com/content/25/12/1181.abstract

153

ESTRADA, C.; NEIRA, J.; TARDOS, J. D. Hierarchical slam: Real-time accurate
mapping of large environments. IEEE Transactions on Robotics, IEEE Press,
Piscataway, NJ, USA, v. 21, n. 4, p. 588–596, aug. 2005. ISSN 1552-3098.

FOX, D.; BURGARD, W.; THRUN, S. Markov localization for mobile robots in dynamic
environments. Journal of Artificial Intelligence Research, p. 391–427, 1999.

FRESE, U. Treemap: An o(log n) algorithm for indoor simultaneous localization
and mapping. Autonomous Robots, Kluwer Academic Publishers, Hingham, MA,
USA, v. 21, n. 2, p. 103–122, sep 2006. ISSN 0929-5593. Available from Internet:
<http://dx.doi.org/10.1007/s10514-006-9043-2>.

GALINDO, C.; SAFFIOTTI, A.; CORADESCHI, S.; BUSCHKA, P.; FERNANDEZ-
MADRIGAL, J. A.; GONZALEZ, J. Multi-hierarchical semantic maps for mobile
robotics. In: Proceedings of the 2005 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). Piscataway, NJ, USA: IEEE Press, 2005. p.
2278–2283. ISSN 2153-0858.

GALVEZ-LÓPEZ, D.; TARDOS, J. D. Bags of binary words for fast place recognition in
image sequences. IEEE Transactions on Robotics, v. 28, n. 5, p. 1188–1197, Oct 2012.
ISSN 1552-3098.

GARAY-VITORIA, N.; ABASCAL, J. Text prediction systems: a survey. Universal
Access in the Information Society, v. 4, n. 3, p. 188–203, 2006. ISSN 1615-5297.
Available from Internet: <http://dx.doi.org/10.1007/s10209-005-0005-9>.

GRANSTROM, K.; CALLMER, J.; RAMOS, F.; NIETO, J. Learning to detect
loop closure from range data. In: Proceedings of the 2009 IEEE International
Conference on Robotics and Automation (ICRA). Piscataway, NJ, USA: IEEE Press,
2009. p. 15–22. ISBN 978-1-4244-2788-8. ISSN 1050-4729. Available from Internet:
<http://dx.doi.org/10.1109/ROBOT.2009.5152495>.

GRISETTI, G.; KUMMERLE, R.; STACHNISS, C.; FRESE, U.; HERTZBERG, C.
Hierarchical optimization on manifolds for online 2d and 3d mapping. In: Proceedings
of the 2010 IEEE International Conference on Robotics and Automation (ICRA).
Piscataway, NJ, USA: IEEE Press, 2010. p. 273–278. ISSN 1050-4729.

GRISETTI, G.; KUMMERLE, R.; STACHNISS, C.; BURGARD, W. A tutorial on
graph-based slam. IEEE Intelligent Transportation Systems Magazine, IEEE Press,
Piscataway, NJ, USA, v. 2, n. 4, p. 31–43, winter 2010. ISSN 1939-1390.

GRISETTI, G.; STACHNISS, C.; BURGARD, W. Improved techniques for grid mapping
with rao-blackwellized particle filters. IEEE Transactions on Robotics, IEEE Press,
Piscataway, NJ, USA, v. 23, n. 1, p. 34–46, feb. 2007. ISSN 1552-3098.

GRISETTI, G.; STACHNISS, C.; GRZONKA, S.; BURGARD, W. A tree
parameterization for efficiently computing maximum likelihood maps using gradient
descent. In: Proceedings of the 2007 Robotics: Science and Systems (RSS)
Conference. Cambridge, MA, USA: MIT Press, 2007.

GUENNEBAUD, G.; JACOB, B. et al. Eigen v3. 2010. Available from Internet:
<http://eigen.tuxfamily.org>.

http://dx.doi.org/10.1007/s10514-006-9043-2
http://dx.doi.org/10.1007/s10209-005-0005-9
http://dx.doi.org/10.1109/ROBOT.2009.5152495
http://eigen.tuxfamily.org

154

GUTMANN, J. S.; KONOLIGE, K. Incremental mapping of large cyclic environments.
In: Proceedings of the 1999 IEEE International Symposium on Computational
Intelligence in Robotics and Automation (CIRA). Piscataway, NJ, USA: IEEE Press,
1999. p. 318–325.

HAHNEL, D.; BURGARD, W.; FOX, D.; THRUN, S. An efficient fastslam algorithm for
generating maps of large-scale cyclic environments from raw laser range measurements.
In: Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). Piscataway, NJ, USA: IEEE Press, 2003. v. 1, p. 206–211.

HAHNEL, D.; TRIEBEL, R.; BURGARD, W.; THRUN, S. Map building with mobile
robots in dynamic environments. In: Proceedings of the 2003 IEEE International
Conference on Robotics and Automation (ICRA). Piscataway, NJ, USA: IEEE Press,
2003. v. 2, p. 1557–1563. ISSN 1050-4729.

HARRIS, C.; STEPHENS, M. A combined corner and edge detector. In: Proceedings of
the 4th Alvey Vision Conference. Sheffield, UK: University of Sheffield Printing Unit,
1988. p. 147–151.

HO, K. L.; NEWMAN, P. Detecting loop closure with scene sequences. International
Journal of Computer Vision, v. 74, n. 3, p. 261–286, 2007. ISSN 1573-1405. Available
from Internet: <http://dx.doi.org/10.1007/s11263-006-0020-1>.

HOWARD, A.; ROY, N. The Robotics Data Set Repository (Radish). 2003. Available
from Internet: <http://radish.sourceforge.net/>.

JOHANNSSON, H.; KAESS, M.; FALLON, M.; LEONARD, J. J. Temporally
scalable visual slam using a reduced pose graph. In: Proceedings of the 2013 IEEE
International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE
Press, 2013. p. 54–61. ISSN 1050-4729.

JORGE, V. A. M. Color Wideline Detector and Local Width Estimation. Dissertation
(Master) — Universidade Federal do Rio Grande do Sul, 2012.

JORGE, V. A. M.; MAFFEI, R.; FRANCO, G. S.; DALTROZO, J.; GIAMBASTIANI,
M.; KOLBERG, M.; PRESTES, E. Ouroboros: Using potential field in unexplored
regions to close loops. In: Proceedings of the 2015 IEEE International Conference
on Robotics and Automation (ICRA). Piscataway, NJ, USA: IEEE Press, 2015. p.
2125–2131.

JULIER, S. J.; UHLMANN, J. K. A new extension of the kalman filter to nonlinear
systems. In: Proceedings of the 11th International Symposium on Aerospace/Defense
Sensing, Simulation and Controls. Bellingham, WA, USA: SPIE, 1997.

JURAFSKY, D.; MARTIN, J. H. Speech and Language Processing (2nd Edition).
Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 2000. ISBN 0131873210.

KAESS, M.; JOHANNSSON, H.; ROBERTS, R.; ILA, V.; LEONARD, J. J.;
DELLAERT, F. isam2: Incremental smoothing and mapping using the bayes tree.
The International Journal of Robotics Research, 2011. Available from Internet:
<http://ijr.sagepub.com/content/early/2011/12/19/0278364911430419.abstract>.

http://dx.doi.org/10.1007/s11263-006-0020-1
http://radish.sourceforge.net/
http://ijr.sagepub.com/content/early/2011/12/19/0278364911430419.abstract

155

KAESS, M.; RANGANATHAN, A.; DELLAERT, F. isam: Fast incremental smoothing
and mapping with efficient data association. In: Proceedings of the 2007 IEEE
International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE
Press, 2007. p. 1670–1677. ISSN 1050-4729.

KLEENE, S. C. Representation of events in nerve nets and finite automata. In:
SHANNON, C.; MCCARTHY, J. (Ed.). Automata Studies. Princeton, NJ: DTIC
Document, 1956. p. 3–41.

KONOLIGE, K.; BOWMAN, J. Towards lifelong visual maps. In: Proceedings of
the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). Piscataway, NJ, USA: IEEE Press, 2009. p. 1156–1163.

KOSTAVELIS, I.; GASTERATOS, A. Semantic mapping for mobile robotics tasks:
A survey. Robotics and Autonomous Systems, v. 66, p. 86–103, 2015. ISSN
0921-8890. Available from Internet: <//www.sciencedirect.com/science/article/pii/
S0921889014003030>.

KRAJNIK, T.; FENTANES, J. P.; CIELNIAK, G.; DONDRUP, C.; DUCKETT, T.
Spectral analysis for long-term robotic mapping. In: Proceedings of the 2014 IEEE
International Conference on Robotics and Automation (ICRA). Piscataway, NJ,
USA: IEEE Press, 2014. p. 3706–3711. ISSN 1050-4729.

KUMAR, S.; GUIVANT, J.; DURRANT-WHYTE, H. Informative representations
of unstructured environments. In: Proceedings of the 2004 IEEE International
Conference on Robotics and Automation (ICRA). Piscataway, NJ, USA: IEEE Press,
2004. v. 1, p. 212–217. ISSN 1050-4729.

LACROIX, S.; MALLET, A.; BONNAFOUS, D.; BAUZIL, G.; FLEURY,
S.; HERRB, M.; CHATILA, R. Autonomous rover navigation on unknown
terrains: Functions and integration. The International Journal of Robotics
Research, v. 21, n. 10-11, p. 917–942, 2002. Available from Internet: <http:
//ijr.sagepub.com/content/21/10-11/917.abstract>.

LEONARD, J. J.; DURRANT-WHYTE, H. F. Mobile robot localization by tracking
geometric beacons. IEEE Transactions on Robotics and Automation, v. 7, n. 3, p.
376–382, Jun 1991. ISSN 1042-296X.

LIU, L.; ZHANG, D. Palm-line detection. In: Proceedings of the 2005 IEEE
International Conference on Image Processing (ICIP). Piscataway, NJ, USA: IEEE
Press, 2005. v. 3, p. –269. ISSN 1522-4880.

LIU, L.; ZHANG, D.; YOU, J. Detecting wide lines using isotropic nonlinear filtering.
IEEE Transactions on Image Processing, v. 16, n. 6, p. 1584–1595, June 2007. ISSN
1057-7149.

LIU, L. L.; ZHANG, D. Extracting tongue cracks using the wide line detector. In:
ZHANG, D. (Ed.). Medical Biometrics. Berlin, Heidelberg: Springer, 2008. p. 49–56.

LOWE, D. G. Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision, Springer Netherlands, Dordrecht, Netherlands, v. 60, n. 2,
p. 91–110, 2004. ISSN 0920-5691.

//www.sciencedirect.com/science/article/pii/S0921889014003030
//www.sciencedirect.com/science/article/pii/S0921889014003030
http://ijr.sagepub.com/content/21/10-11/917.abstract
http://ijr.sagepub.com/content/21/10-11/917.abstract

156

LU, F.; MILIOS, E. Globally consistent range scan alignment for environment
mapping. Autonomous Robots, Kluwer Academic Publishers, v. 4, n. 4, p. 333–349,
1997. ISSN 0929-5593. Available from Internet: <http://dx.doi.org/10.1023/A%
3A1008854305733>.

LU, F.; MILIOS, E. Robot pose estimation in unknown environments by matching 2d
range scans. Journal of Intelligent and Robotic Systems, Springer, v. 18, n. 3, p.
249–275, 1997.

MACHARET, D. G.; NETO, A. A.; NETO, V. F. d. C.; CAMPOS, M. F. M. Efficient
target visiting path planning for multiple vehicles with bounded curvature. In:
Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). Piscataway, NJ, USA: IEEE Press, 2013. p. 3830–3836. ISSN
2153-0858.

MAFFEI, R.; JORGE, V.; KOLBERG, M.; PRESTES, E. Segmented dp-slam. In:
Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). Piscataway, NJ, USA: IEEE Press, 2013. p. 31–36. ISSN
2153-0858.

MAFFEI, R.; JORGE, V. A. M.; PRESTES, E.; KOLBERG, M. Integrated exploration
using time-based potential rails. In: Proceedings of the 2014 IEEE International
Conference on Robotics and Automation (ICRA). Piscataway, NJ, USA: IEEE Press,
2014. p. 3694–3699.

MAFFEI, R.; JORGE, V. A. M.; REY, V. F.; KOLBERG, M.; PRESTES, E. Fast monte
carlo localization using spatial density information. In: Proceedings of the 2015 IEEE
International Conference on Robotics and Automation (ICRA). Piscataway, NJ,
USA: IEEE Press, 2015. p. 6352–6358.

MAFFEI, R.; JORGE, V. A. M.; REY, V. F.; FRANCO, G. S.; GIAMBASTIANI, M.;
BARBOSA, J.; KOLBERG, M.; PRESTES, E. Using n-grams of spatial densities to
construct maps. In: Proceedings of the 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). Piscataway, NJ, USA: IEEE Press, 2015. p.
3850–3855.

MAFFEI, R.; JORGE, V. A. M.; REY, V. F.; KOLBERG, M.; PRESTES, E. Long-term
place recognition using multi-level words of spatial densities. In: Proceedings of
the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). Piscataway, NJ, USA: IEEE Press, 2016. p. 3269–3274.

MAKARENKO, A. A.; WILLIAMS, S. B.; BOURGAULT, F.; DURRANT-WHYTE,
H. F. An experiment in integrated exploration. In: Proceedings of the 2002 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). Piscataway, NJ,
USA: IEEE Press, 2002. v. 1, p. 534–539.

MANNING, C. D.; SCHÜTZE, H. Foundations of Statistical Natural Language
Processing. Cambridge, MA, USA: MIT Press, 1999. ISBN 0-262-13360-1.

MASON, J.; MARTHI, B. An object-based semantic world model for long-term change
detection and semantic querying. In: Proceedings of the 2012 IEEE/RSJ International

http://dx.doi.org/10.1023/A%3A1008854305733
http://dx.doi.org/10.1023/A%3A1008854305733

157

Conference on Intelligent Robots and Systems (IROS). Piscataway, NJ, USA: IEEE
Press, 2012. p. 3851–3858. ISSN 2153-0858.

MILFORD, M. J.; WYETH, G. F. Seqslam: Visual route-based navigation for
sunny summer days and stormy winter nights. In: Proceedings of the 2012 IEEE
International Conference on Robotics and Automation (ICRA). Piscataway, NJ,
USA: IEEE Press, 2012. p. 1643–1649. ISSN 1050-4729.

MILLAR, E.; SHEN, D.; LIU, J.; NICHOLAS, C. Performance and scalability
of a large-scale n-gram based information retrieval system. Journal of Digital
Information, v. 1, n. 5, 2006. ISSN 1368-7506. Available from Internet: <https:
//journals.tdl.org/jodi/index.php/jodi/article/view/22>.

MITTAL, A.; PARAGIOS, N. Motion-based background subtraction using adaptive
kernel density estimation. In: Proceedings of the 2004 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ,
USA: IEEE Press, 2004. v. 2, p. –302. ISSN 1063-6919.

MONTEMERLO, M.; THRUN, S. FastSLAM: A Scalable Method for the
Simultaneous Localization and Mapping Problem in Robotics. Secaucus, NJ, USA:
Springer-Verlag New York, Inc., 2007. (Springer Tracts in Advanced Robotics). ISBN
3540463992.

MONTEMERLO, M.; THRUN, S.; KOLLER, D.; WEGBREIT, B. Fastslam: A factored
solution to the simultaneous localization and mapping problem. In: Proceedings of the
AAAI National Conference on Artificial Intelligence. Edmonton, Canada: AAAI,
2002.

MORAVEC, H.; ELFES, A. High resolution maps from wide angle sonar. In:
Proceedings of the 1985 IEEE International Conference on Robotics and
Automation (ICRA). Piscataway, NJ, USA: IEEE Press, 1985. v. 2, p. 116–121.

MOZOS, Ó. Semantic Labeling of Places with Mobile Robots. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010. (Springer Tracts in Advanced Robotics, v. 61). ISBN
978-3-642-11209-6.

MOZOS, O. M.; BURGARD, W. Supervised learning of topological maps using
semantic information extracted from range data. In: Proceedings of the 2006 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). Piscataway, NJ,
USA: IEEE Press, 2006. p. 2772–2777. ISSN 2153-0858.

MUR-ARTAL, R.; MONTIEL, J. M. M.; TARDÓS, J. D. Orb-slam: A versatile and
accurate monocular slam system. IEEE Transactions on Robotics, v. 31, n. 5, p.
1147–1163, Oct 2015. ISSN 1552-3098.

MURPHY, R. R. An Introduction to AI Robotics (Intelligent Robotics and
Autonomous Agents). The MIT Press, 2000. ISBN 0262133830. Available from
Internet: <http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=
ASIN/0262133830>.

https://journals.tdl.org/jodi/index.php/jodi/article/view/22
https://journals.tdl.org/jodi/index.php/jodi/article/view/22
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0262133830
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0262133830

158

NAUR, P.; BACKUS, J. W.; BAUER, F. L.; GREEN, J.; KATZ, C.; MCCARTHY, J.;
PERLIS, A. J.; RUTISHAUSER, H.; SAMELSON, K.; VAUQUOIS, B. et al. Revised
report on the algorithmic language algol 60. Communications of the ACM, v. 6, n. 1, p.
1–17, 1963.

NI, K.; DELLAERT, F. Multi-level submap based slam using nested dissection. In:
Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). Piscataway, NJ, USA: IEEE Press, 2010. p. 2558–2565. ISSN
2153-0858.

NUCHTER, A.; LINGEMANN, K.; HERTZBERG, J.; SURMANN, H. 6d slam with
approximate data association. In: Proceedings of the 12th International Conference
on Advanced Robotics (ICAR). Piscataway, NJ, USA: IEEE Press, 2005. p. 242–249.

NÜCHTER, A.; SURMANN, H.; LINGEMANN, K.; HERTZBERG, J. Semantic scene
analysis of scanned 3d indoor environments. In: Proceedings of the 8th International
Fall Workshop on Vision, Modeling, and Visualization (VMV). Berlin, Germany:
Akademische Verlagsgesellschaft Aka GmbH, 2003.

NÜCHTER, A.; WULF, O.; LINGEMANN, K.; HERTZBERG, J.; WAGNER, B.;
SURMANN, H. 3d mapping with semantic knowledge: Robot soccer world cup ix.
In: . Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. p. 335–346. ISBN
978-3-540-35438-3. Available from Internet: <http://dx.doi.org/10.1007/11780519_30>.

OLIVEIRA, A. B. d.; SILVA, P. R. d.; BARONE, D. A. C. A novel 2d shape
signature method based on complex network spectrum. Pattern Recognition
Letters, v. 63, p. 43–49, 2015. ISSN 0167-8655. Available from Internet:
<http://www.sciencedirect.com/science/article/pii/S0167865515001749>.

OLSON, E. Recognizing places using spectrally clustered local matches. Robotics and
Autonomous Systems, v. 57, n. 12, p. 1157–1172, 2009. ISSN 0921-8890. Inside Data
Association. Available from Internet: <http://www.sciencedirect.com/science/article/pii/
S0921889009001018>.

OLSON, E. M3rsm: Many-to-many multi-resolution scan matching. In: Proceedings
of the 2015 IEEE International Conference on Robotics and Automation (ICRA).
Piscataway, NJ, USA: IEEE Press, 2015.

OLSON, E.; LEONARD, J.; TELLER, S. Fast iterative alignment of pose graphs with
poor initial estimates. In: Proceedings of the 2006 IEEE International Conference
on Robotics and Automation (ICRA). Piscataway, NJ, USA: IEEE Press, 2006. p.
2262–2269. ISSN 1050-4729.

OLSON, E. B. Real-time correlative scan matching. In: Proceedings of the 2009 IEEE
International Conference on Robotics and Automation (ICRA). Piscataway, NJ,
USA: IEEE Press, 2009. p. 4387–4393. ISSN 1050-4729.

PAULS, A.; KLEIN, D. Faster and smaller n-gram language models. In: Proceedings
of the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies - Volume 1. Stroudsburg, PA, USA: Association for
Computational Linguistics, 2011. (HLT ’11), p. 258–267. ISBN 978-1-932432-87-9.
Available from Internet: <http://dl.acm.org/citation.cfm?id=2002472.2002506>.

http://dx.doi.org/10.1007/11780519_30
http://www.sciencedirect.com/science/article/pii/S0167865515001749
http://www.sciencedirect.com/science/article/pii/S0921889009001018
http://www.sciencedirect.com/science/article/pii/S0921889009001018
http://dl.acm.org/citation.cfm?id=2002472.2002506

159

PETERSEN, K. B.; PEDERSEN, M. S. The Matrix Cookbook. Technical
University of Denmark, 2012. Version 20121115. Available from Internet:
<http://www2.imm.dtu.dk/pubdb/p.php?3274>.

PRESTES, E.; IDIART, M. Computing navigational routes in inhomogeneous
environments using bvp path planner. In: Proceedings of the 2010 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). Piscataway, NJ,
USA: IEEE Press, 2010. p. 1427–1432. ISSN 2153-0858.

PRESTES, E.; TREVISAN, M.; IDIART, M. A. P.; ENGEL, P. M. Bvp-exploration:
further improvements. In: Proceedings of the 2003 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). Piscataway, NJ, USA: IEEE
Press, 2003. v. 4, p. 3239–3244.

PRONOBIS, A.; JENSFELT, P. Large-scale semantic mapping and reasoning with
heterogeneous modalities. In: Proceedings of the 2012 IEEE International Conference
on Robotics and Automation (ICRA). Piscataway, NJ, USA: IEEE Press, 2012. p.
3515–3522. ISSN 1050-4729.

REITHINGER, N.; ENGEL, R.; KIPP, M.; KLESEN, M. Predicting dialogue acts
for a speech-to-speech translation system. In: Proceedings of the 4th International
Conference on Spoken Language Processing (ICSLP). Piscataway, NJ, USA: IEEE
Press, 1996. v. 2, p. 654–657.

ROSTEN, E.; PORTER, R.; DRUMMOND, T. Faster and better: A machine learning
approach to corner detection. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, v. 32, n. 1, p. 105–119, jan. 2010. ISSN 0162-8828.

ROTTMANN, A.; MOZOS, Ó. M.; STACHNISS, C.; BURGARD, W. Semantic place
classification of indoor environments with mobile robots using boosting. In: Proceedings
of the 20th National Conference on Artificial Intelligence - Volume 3. AAAI
Press, 2005. (AAAI’05), p. 1306–1311. ISBN 1-57735-236-x. Available from Internet:
<http://dl.acm.org/citation.cfm?id=1619499.1619543>.

RUBLEE, E.; RABAUD, V.; KONOLIGE, K.; BRADSKI, G. Orb: An efficient
alternative to sift or surf. In: Proceedings of the 2011 IEEE International Conference
on Computer Vision (ICCV). Piscataway, NJ, USA: IEEE Press, 2011. p. 2564–2571.
ISSN 1550-5499.

RUSINKIEWICZ, S.; LEVOY, M. Efficient variants of the icp algorithm. In:
Proceedings of the 3rd International Conference on 3-D Digital Imaging and
Modeling (3DIM). Piscataway, NJ, USA: IEEE Press, 2001. p. 145–152.

RUSU, R. B.; MARTON, Z. C.; BLODOW, N.; DOLHA, M.; BEETZ, M. Towards 3d
point cloud based object maps for household environments. Robotics and Autonomous
Systems, v. 56, n. 11, p. 927–941, 2008. ISSN 0921-8890. Semantic Knowledge in
Robotics. Available from Internet: <http://www.sciencedirect.com/science/article/pii/
S0921889008001140>.

SACK, D.; BURGARD, W. A comparison of methods for line extraction from range
data. In: Proceedings of the 5th IFAC Symposium on Intelligent Autonomous
Vehicles (IAV). Amsterdam, Netherlands: Elsevier Science, 2003.

http://www2.imm.dtu.dk/pubdb/p.php?3274
http://dl.acm.org/citation.cfm?id=1619499.1619543
http://www.sciencedirect.com/science/article/pii/S0921889008001140
http://www.sciencedirect.com/science/article/pii/S0921889008001140

160

SAEEDI, S.; PAULL, L.; TRENTINI, M.; SETO, M.; LI, H. Efficient map merging using
a probabilistic generalized voronoi diagram. In: Proceedings of the 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). Piscataway, NJ,
USA: IEEE Press, 2012. p. 4419–4424. ISSN 2153-0858.

SCOTT, D. W. Multivariate Density Estimation: Theory, Practice, and Visualization.
Hoboken, NJ, USA: John Wiley & Sons, Inc., 1992. (Wiley Series in Probability and
Statistics). ISBN 9780470316849.

SHANNON, C. A mathematical theory of communication. Bell System Technical
Journal, ACM, v. 27, n. 1, p. 379–423, 1948.

SHANNON, C. E. Prediction and entropy of printed english. Bell System Technical
Journal, v. 30, p. 50–64, jan 1951.

SICILIANO, B.; KHATIB, O. (Ed.). Springer Handbook of Robotics. Berlin,
Heidelberg: Springer, 2008. ISBN 978-3-540-23957-4. Available from Internet:
<http://dx.doi.org/10.1007/978-3-540-30301-5>.

SIDOROV, G.; VELASQUEZ, F.; STAMATATOS, E.; GELBUKH, A.; CHANONA-
HERNÁNDEZ, L. Syntactic n-grams as machine learning features for natural
language processing. Expert Systems with Applications, v. 41, n. 3, p. 853–860,
2014. ISSN 0957-4174. Methods and Applications of Artificial and Computational
Intelligence. Available from Internet: <http://www.sciencedirect.com/science/article/pii/
S0957417413006271>.

SIEGWART, R.; NOURBAKHSH, I. R. Introduction to Autonomous Mobile Robots.
Scituate, MA, USA: Bradford Company, 2004. ISBN 026219502X.

SILVERMAN, B. W. Density estimation for statistics and data analysis. 26. ed.
London: Chapman & Hall, 1986. (Monographs on Statistics and Applied Probability,
v. 26).

SMITH, R.; SELF, M.; CHEESEMAN, P. Estimating uncertain spatial relationships
in robotics. In: COX, I. J.; WILFONG, G. T. (Ed.). Autonomous Robot Vehicles.
Secaucus, NJ, USA: Springer-Verlag New York, Inc., 1990. v. 8, chp. Autonomous
robot vehicles, p. 167–193. ISBN 0-387-97240-4. Available from Internet:
<http://dl.acm.org/citation.cfm?id=93002.93291>.

SMITH, S. M.; BRADY, J. M. Susan - a new approach to low level image processing.
International journal of computer vision, Springer, v. 23, n. 1, p. 45–78, 1997.

SONG, J.; LI, Z. Sequential scan matching with sensor order. In: Proceedings of
the 2012 IEEE International Conference on Robotics and Automation (ICRA).
Piscataway, NJ, USA: IEEE Press, 2012. p. 4956–4961. ISSN 1050-4729.

STACHNISS, C.; GRISETTI, G.; BURGARD, W. Recovering particle diversity in a
rao-blackwellized particle filter for slam after actively closing loops. In: Proceedings
of the 2005 IEEE International Conference on Robotics and Automation (ICRA).
Piscataway, NJ, USA: IEEE Press, 2005. p. 655–660.

http://dx.doi.org/10.1007/978-3-540-30301-5
http://www.sciencedirect.com/science/article/pii/S0957417413006271
http://www.sciencedirect.com/science/article/pii/S0957417413006271
http://dl.acm.org/citation.cfm?id=93002.93291

161

STACHNISS, C.; HAHNEL, D.; BURGARD, W. Exploration with active loop-closing
for fastslam. In: Proceedings of the 2004 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). Piscataway, NJ, USA: IEEE Press, 2004. v. 2,
p. 1505–1510.

STACHNISS, C.; MOZOS, O. M.; BURGARD, W. Speeding-up multi-robot exploration
by considering semantic place information. In: Proceedings of the 2006 IEEE
International Conference on Robotics and Automation (ICRA). Piscataway, NJ,
USA: IEEE Press, 2006. p. 1692–1697. ISSN 1050-4729.

STAMATATOS, E. Plagiarism detection using stopword n-grams. Journal of the
American Society for Information Science and Technology, Wiley Subscription
Services, Inc., A Wiley Company, v. 62, n. 12, p. 2512–2527, 2011. ISSN 1532-2890.

SZELISKI, R. Computer Vision: Algorithms and Applications. 1st. ed. New York,
NY, USA: Springer-Verlag New York, Inc., 2010. ISBN 1848829345, 9781848829343.

THRUN, S. A probabilistic on-line mapping algorithm for teams of mobile robots. The
International Journal of Robotics Research, v. 20, n. 5, p. 335–363, 2001. Available
from Internet: <http://ijr.sagepub.com/content/20/5/335.abstract>.

THRUN, S.; BURGARD, W.; FOX, D. Probabilistic Robotics (Intelligent Robotics
and Autonomous Agents series). Cambridge, MA, USA: MIT Press, 2005. (Intelligent
robotics and autonomous agents). ISBN 9780262201629. Available from Internet:
<http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/
0262201623>.

THRUN, S.; LEONARD, J. J. Simultaneous localization and mapping. In: SICILIANO,
B.; KHATIB, O. (Ed.). Springer handbook of robotics. Berlin, Heidelberg: Springer,
2008. p. 871–889.

THRUN, S.; MONTEMERLO, M. The graph slam algorithm with applications to
large-scale mapping of urban structures. The International Journal of Robotics
Research, Sage Publications, Inc., Thousand Oaks, CA, USA, v. 25, n. 5-6, p. 403–429,
2006. Available from Internet: <http://ijr.sagepub.com/content/25/5-6/403.abstract>.

TIPALDI, G.; MEYER-DELIUS, D.; BEINHOFER, M.; BURGARD, W. Simultaneous
localization and dynamic state estimation in reconfigurable environments. In: IEEE/RSJ
IROS Workshop on Metrics and Methodologies for Autonomous Robot Teams in
Logistics (MMART-LoG). Piscataway, NJ, USA: IEEE Press, 2011.

TIPALDI, G. D.; ARRAS, K. O. Flirt - interest regions for 2d range data. In: Proceedings
of the 2010 IEEE International Conference on Robotics and Automation (ICRA).
Piscataway, NJ, USA: IEEE Press, 2010. p. 3616–3622. ISSN 1050-4729.

TIPALDI, G. D.; MEYER-DELIUS, D.; BEINHOFER, M.; BURGARD, W. Lifelong
localization and dynamic map estimation in changing environments. In: Proceedings
of the 2012 Robotics: Science and Systems (RSS) Workshop on Robots in Clutter:
Manipulation, Perception and Navigation in Human Environments. Cambridge,
MA, USA: MIT Press, 2012.

http://ijr.sagepub.com/content/20/5/335.abstract
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0262201623
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0262201623
http://ijr.sagepub.com/content/25/5-6/403.abstract

162

WALCOTT, A.; KAESS, M.; JOHANNSSON, H.; LEONARD, J. J. Dynamic pose
graph slam: Long-term mapping in low dynamic environments. In: Proceedings of
the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). Piscataway, NJ, USA: IEEE Press, 2012.

WANG, C.-C.; THORPE, C. E.; THRUN, S.; HEBERT, M.; DURRANT-WHYTE, H. F.
Simultaneous localization, mapping and moving object tracking. I. J. Robotic Res.,
v. 26, n. 9, p. 889–916, 2007.

WANG, X.; MCCALLUM, A.; WEI, X. Topical n-grams: Phrase and topic discovery,
with an application to information retrieval. In: Proceedings of the Seventh IEEE
International Conference on Data Mining (ICDM 2007). Piscataway, NJ, USA: IEEE
Press, 2007. p. 697–702. ISSN 1550-4786.

WEISS, G.; WETZLER, C.; PUTTKAMER, E. V. Keeping track of position and
orientation of moving indoor systems by correlation of range-finder scans. In:
Proceedings of the 1994 IEEE/RSJ/GI International Conference on Intelligent
Robots and Systems (IROS). ’Advanced Robotic Systems and the Real World’.
Piscataway, NJ, USA: IEEE Press, 1994. v. 1, p. 595–601.

WERNER, F.; MAIRE, F.; SITTE, J.; CHOSET, H.; TULLY, S.; KANTOR, G.
Topological slam using neighbourhood information of places. In: Proceedings of
the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). Piscataway, NJ, USA: IEEE Press, 2009. p. 4937–4942.

WERNER, F.; SITTE, J.; MAIRE, F. Topological map induction using neighbourhood
information of places. Autonomous Robots, Springer US, v. 32, n. 4, p. 405–
418, 2012. ISSN 0929-5593. Available from Internet: <http://dx.doi.org/10.1007/
s10514-012-9276-1>.

WOLF, D. F.; SUKHATME, G. S. Mobile robot simultaneous localization and mapping
in dynamic environments. Auton. Robots, Kluwer Academic Publishers, Hingham,
MA, USA, v. 19, n. 1, p. 53–65, jul 2005. ISSN 0929-5593. Available from Internet:
<http://dx.doi.org/10.1007/s10514-005-0606-4>.

WOLF, D. F.; SUKHATME, G. S. Semantic mapping using mobile robots. IEEE
Transactions on Robotics, v. 24, n. 2, p. 245–258, April 2008. ISSN 1552-3098.

ZHANG, L.; ZAPATA, R.; LÉPINAY, P. Self-adaptive monte carlo localization for
mobile robots using range finders. Robotica, v. 30, n. 02, p. 229–244, 3 2012. ISSN
1469-8668.

http://dx.doi.org/10.1007/s10514-012-9276-1
http://dx.doi.org/10.1007/s10514-012-9276-1
http://dx.doi.org/10.1007/s10514-005-0606-4

	Front Page
	Agradecimentos
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Algorithms
	List of Figures
	List of Tables
	List of Symbols
	Contents
	1 Introduction
	1.1 Hypothesis and Goals
	1.2 Current Contributions
	1.3 Organization

	2 Theoretical Background
	2.1 State Estimation in Mobile Robotics
	2.1.1 Monte Carlo Localization
	2.1.2 Histogramic In-Motion Mapping (HIMM)
	2.1.3 Graph-based SLAM
	2.1.3.1 Pose graph optimization via Gauss-Newton

	2.2 Kernel Density Estimation on Images
	2.3 n-grams: an efficient technique from shallow linguistic processing

	3 Free-Space Density (FSD): translating raw sensor measurements into simple observation values
	3.1 Introduction
	3.2 The Free-Space Density
	3.2.1 Building a local map
	3.2.2 Computing the free-space density
	3.2.3 Using different kernel profiles to compute FSD

	3.3 Case Study: Mobile robot localization
	3.3.1 FSD-based Monte Carlo localization
	3.3.2 Experiments
	3.3.2.1 Evaluating the FSD observation model
	3.3.2.2 Comparing FSD with other techniques

	3.4 Related Work
	3.5 Summary

	4 N-Gram SLAM: translating simple observation values into words and solving SLAM with a shallow linguistic processing technique
	4.1 Introduction
	4.2 SLAM using n-grams of FSD-based words
	4.2.1 Building a contiguous spatial region
	4.2.2 Translating regions into words
	4.2.3 Matching current and past observations using n-grams
	4.2.4 Topological Map Construction

	4.3 Experiments
	4.3.1 Evaluation Scenarios
	4.3.2 Analysis of Results

	4.4 Related Work
	4.5 Summary

	5 Long-term place recognition using multi-level words of spatial densities
	5.1 Introduction
	5.2 Building multi-level words of spatial densities for place recognition in lifelong operation
	5.2.1 Extending the previous definition of word
	5.2.2 Building multi-level words
	5.2.3 Performing place recognition
	5.2.4 Fast adjustment of matches by evaluating raw spatial densities

	5.3 Experiments
	5.3.1 Evaluation Scenarios
	5.3.2 Analysis of Results

	5.4 Related Work
	5.5 Summary

	6 Analysis of FSD-based words and their use for semantic mapping
	6.1 Introduction
	6.2 An in-depth study of FSD-based words generated in different environments
	6.2.1 Ground-truth classification of several scenarios
	6.2.2 Syllable d: the characteristics of free-space density in different places
	6.2.3 Syllable s: the characteristics of region length in different places
	6.2.4 Syllable a: the characteristics of angle variation in different places
	6.2.5 Summary of the analysis

	6.3 Investigating the number of frontiers of free-space
	6.4 A preliminary approach based on free-space density for environments classification
	6.5 Summary

	7 Conclusion and Future Work
	AppendixA Experiment Apparatus - P3-DX Mobile Robot
	AppendixB Derivation of Gauss-Newton algorithm for Graph-based SLAM
	AppendixC Kernel Density Estimation
	References

