

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

ESCOLA DE ENGENHARIA

DEPARTAMENTO DE ENGENHARIA ELÉTRICA

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

EDUARDO LUIS RHOD

PROPOSAL OF TWO SOLUTIONS TO COPE WITH THE
FAULTY BEHAVIOR OF CIRCUITS IN FUTURE

TECHNOLOGIES

Porto Alegre

2007

EDUARDO LUIS RHOD

PROPOSAL OF TWO SOLUTIONS TO COPE WITH THE
FAULTY BEHAVIOR OF CIRCUITS IN FUTURE

TECHNOLOGIES

 Dissertação de mestrado apresentada ao Programa de
Pós-Graduação em Engenharia Elétrica, da
Universidade Federal do Rio Grande do Sul, como
parte dos requisitos para a obtenção do título de Mestre
em Engenharia Elétrica.
 Área de concentração: Automação e Instrumentação
Eletro-Eletrônica

ORIENTADOR: Luigi Carro

Porto Alegre

2007

EDUARDO LUIS RHOD

PROPOSAL OF TWO SOLUTIONS TO COPE WITH THE
FAULTY BEHAVIOR OF CIRCUITS IN FUTURE

TECHNOLOGIES

 Esta dissertação foi julgada adequada para a obtenção
do título de Mestre em Engenharia Elétrica e aprovada
em sua forma final pelo Orientador e pela Banca
Examinadora.

Orientador: ____________________________________

Prof. Dr. Luigi Carro, UFRGS

Doutor pelo Programa de Pós-Graduação em Ciência da

Computação, UFRGS, Porto Alegre, Brasil

Banca Examinadora:

Prof. Dr. Marcelo Lubaszewski, UFRGS

Doutor pelo Institut National Polytechnique de Grenoble, Grenoble - França

Prof. Dr. Walter Fetter Lages, UFRGS

Doutor pelo Instituto Tecnológico de Aeronáutica (ITA), São José dos Campos -
Brasil

Prof. Dra. Fernanda Lima Kastensmidt, UFRGS

Doutora pela Universidade Federal do Rio Grande do Sul, Porto Alegre - Brasil

Coordenador do PPGEE: _______________________________

Prof. Dr. Marcelo Lubaszewski.

Porto Alegre, 25 de abril de 2007.

DEDICATÓRIA

Dedico este trabalho a todos os meus familiares em especial aos meus pais, não só

pelo esforço em garantir minha educação, mas também pelo apoio tanto material quanto

afetivo. Dedico também a minha namorada e toda a sua família pelo carinho e

companheirismo.

AGRADECIMENTOS

Ao Programa de Pós-Graduação em Engenharia Elétrica, PPGEE, e a todos os

funcionários da secretaria do curso de Engenharia Elétrica, pelo profissionalismo e seriedade

com que exerceram suas atividades. Agradeço em especial a secretária do PPGEE, Miriam

Rosek e ao professor Marcelo Lubaszewski, coordenador do PPGEE. Agradeço também a

todos os professores e colegas de turma que contribuíram enormemente na minha formação

durante o mestrado. Em especial aos professores Flávio Wagner, Erika Cota, Altamiro Susin

Agradeço aos colegas de aula Douglas Stein, Márcio Oliveira, Eduardo Brião, Victor Gomes,

Fábio Wronski e Elias T. S. Júnior. Aos colegas de laboratório além dos citados acima, Edgar

F. Correa, Antonio C. S. B. Filho, Júlio C. B. Mattos, Marco Wehrmeister, Mateus Rutzig,

Rodrigo Motta e Dalton Colombo pelas enormes contribuições e ajudas fornecidas durante os

trabalhos de pesquisa. Agradeço aos membros do laboratório SiSC da PUCRS por terem me

iniciado na pesquisa como bolsista de Iniciação Científica. Ao CNPQ pela provisão da bolsa

de mestrado, sem a qual não teria seguido com os estudos.

Agradeço em especial ao meu orientador Luigi Carro, por acreditar no meu trabalho e

por conduzir exemplarmente a minha orientação, me conduzindo na busca por um trabalho de

qualidade, mas ao mesmo tempo dando espaço para que eu exercesse a minha pesquisa com

criatividade e liberdade. Ao amigo e colega de pesquisa Carlos Arthur Lang Lisboa, pelos

conhecimentos compartilhados e pela enorme ajuda e contribuição para que os nossos

resultados e publicações atingissem o nível que atingiram.

Agradeço a todos os meus familiares e amigos de Lajeado pelo apoio e compreensão

da minha ausência nos diversos momentos em que estive dedicado aos meus estudos.

Agradeço a minha namorada Alexandra Barcelos e seus familiares pelo companheirismo e

amor. Em especial agradeço aos meus pais Pedro Valentin Rhod e Marta Regina Blasi Rhod

pela educação e por todas as oportunidades que me deram sem nunca medir esforços.

Agradeço os meus irmãos Guilherme Blasi Rhod e Amanda Rhod por fazerem parte na minha

vida.

RESUMO

A diminuição no tamanho dos dispositivos nas tecnologias do futuro traz consigo um grande
aumento na taxa de erros dos circuitos, na lógica combinacional e seqüencial. Apesar de
algumas potenciais soluções começarem a ser investigadas pela comunidade, a busca por
circuitos tolerantes a erros induzidos por radiação, sem penalidades no desempenho, área ou
potência, ainda é um assunto de pesquisa em aberto. Este trabalho propõe duas soluções para
lidar com este comportamento imprevisível das tecnologias futuras: a primeira solução,
chamada MemProc, é uma arquitetura baseada em memória que propõe reduzir a taxa de
falhas de aplicações embarcadas micro-controladas. Esta solução baseia-se no uso de
memórias magnéticas, que são tolerantes a falhas induzidas por radiação, e área de circuito
combinacional reduzida para melhorar a confiabilidade ao processar quaisquer aplicações. A
segunda solução proposta aqui é uma implementação de um IP de infra-estrutura para o
processador MIPS indicada para sistemas em chip confiáveis, devido a sua adaptação rápida e
por permitir diferentes níveis de robustez para a aplicação. A segunda solução é também
indicada para sistemas em que nem o hardware nem o software podem ser modificados. Os
resultados dos experimentos mostram que ambas as soluções melhoram a confiabilidade do
sistema que fazem parte com custos aceitáveis e até, no caso da MemProc, melhora o
desempenho da aplicação.

Palavras-chaves: Arquiteturas tolerantes a falhas, arquiteturas baseadas em memória,
SoCs confiáveis, técnicas de detecção de erros, taxa de soft error.

ABSTRACT

Device scaling in new and future technologies brings along severe increase in the soft error
rate of circuits, for combinational and sequential logic. Although potential solutions are being
investigated by the community, the search for circuits tolerant to radiation induced errors,
without performance, area, or power penalties, is still an open research issue. This work
proposes two solutions to cope with this unpredictable behavior of future technologies: the
first solution, called MemProc, is a memory based architecture proposed to reduce the fault
rate of embedded microcontrolled applications. This solution relies in the use magnetic
memories, which are tolerant to radiation induced failures, and reduced combinational circuit
area to improve the reliability when processing any application. The second solution proposed
here is an infrastructure IP implementation for the MIPS architecture indicated for reliable
systems-on-chip due to its fast adaptation and different levels of application hardening that
are allowed. The second solution is also indicated for systems where neither the hardware nor
the software can be modified. The experimental results show that both solutions improve the
reliability of the system they take part with affordable overheads and even, as in the case of
the MemProc solution, improving the performance results.

Keywords: Fault tolerant architectures, memory based architectures, reliable SoCs,
error detection techniques, soft error rate.

TABLE OF CONTENTS

1. INTRODUCTION…………………………………………………………………... 14
2. CONTEXT OF THE RESEARCH………………………………………………… 18
2.1 RADIATION SOURCES AND THEIR EFFECTS……………………………………….... 18
2.1.1 Sources of Radiation…………………………………………………………….. 18
2.1.1.1 Alpha Particles…………………………………………………………….... 19
2.1.1.2 High Energy Cosmic Neutrons…………………………………………….. 19
2.1.1.3 Boron Fission Induced by Low Energy Neutrons……………………….... 19
2.1.2 Effects of SEUs and SETs in Digital Circuits…………………………………. 20
2.2 Metrics to Evaluate the Vulnerability of Circuits to Soft Errors………………. 21
2.2.1 Failures in Time (FIT)………………………………………………………….. 22
2.2.2 Mean Time to Failure – MTTF……………………………………………….... 22
2.2.3 The Soft Error Rate Estimation………………………………………………... 22
2.3 Mitigation Techniques for SEUs and SETs……………………………………..... 24
2.3.1 Process Modification Related Techniques…………………………………....... 25
2.3.2 Component Hardening Techniques…………………………………………..... 26
2.3.3 Circuit Design SEU and SET Hardware Mitigation Techniques…………….. 27
2.3.3.1 Hardware Error Detection Techniques…………………………………..... 28
2.3.3.2 Hardware Error Detection and Correction Techniques………………….. 29
2.3.3.2.1 Triple Modular Redundancy – TMR……………………………………..... 29
2.3.3.2.2 Error Detection and Correction Code – EDAC…………………………..... 31
2.3.4 SEU and SET Error Mitigation Techniques for Software-Based Systems….. 32
2.3.4.1 Software Implemented Hardware Fault Tolerance (SIHFT) techniques... 33
2.3.4.2 Hardware Techniques for Software-Based Systems………………………. 36
2.3.4.2.1 Dynamic Implementation Verification Architecture – DIVA……………... 36
2.3.4.2.2 Simultaneous and Redundantly Treaded (SRT) Processor………………… 37
2.3.4.3 Hybrid Techniques………………………………………………………….. 38
3. USING MEMORY BASED CIRCUITS TO COPE WITH SEUS AND SETS..... 40
3.1 4x4-bit Memory Based Multiplier………………………………………………… 41
3.2 4-tap, 8-bit FIR Filter Memory Based Circuit…………..……………………..... 47
4. MEMPROC: A MEMORY BASED, LOW-SER EFFICIENT CORE
PROCESSOR ARCHITECTURE…………………………………………………. 51
4.1 The MemProc Architecture……………………………………………………….. 51
4.1.1 The Macroinstructions………………………………..………………………… 52
4.1.2 The Microcode…………………………………………………………………… 53
4.1.3 The Arithmetic and Logic Unit – ALU………………………………………… 53
4.2 Design Strategies that Improved Performance…………………………………... 56
4.3 Code Generation…………………………………………………………………… 58
5. MEMPROC: EXPERIMENTAL RESULTS……………………………………… 60
5.1 Architectures compared with MemProc………………………………………….. 60
5.2 Tools Used in the Fault Injection, Performance and Area Evaluation…………. 61
5.3 Fault Rate and Area Evaluation…………………………………………………... 64
5.4 Performance Evaluation……………………………..……………………………. 68

6. I-IP: A NON-INTRUSIVE ON-LINE ERROR DETECTION TECHNIQUE
FOR SOCS…………………………………………………………………………… 72
6.1 The Proposed Approach…………………………………………………………… 72
6.1.1 The I-IP…………………………………………………………………………... 73
6.1.2 The I-IP Modules………………………………………………………………... 76
6.2 Processor and Application Adaptations for MIPS………………………………. 79
7. I-IP EXPERIMENTAL RESULTS………………………………………………… 81
7.1 Fault Injection Experiments………………………………………………………. 81
7.2 Result Analysis……………………………………………………………………... 83
8. CONCLUSIONS AND FUTURE WORK…………………………………………. 86
8.1 Conclusions…………………………………………………………………………. 86
8.2 Future Work………………………………………………………………………... 87
REFERENCES……………………………………………………………………………. 89
APENDIX A: MEMPROC LIST OF INSTRUCTIONS………………………………. 94
APENDIX B: MEMPROC ARCHITECTURE DESCRIBED IN CACO-PS TOOL... 96
APENDIX C: MIPS ARCHITECTURE DESCRIBED IN CACO-PS TOOL……….. 97

LIST OF FIGURES

Figure 1.1: Evolution of SER: SRAM vs. logic………………………………............... 15
Figure 2.1: Boron fission induced by low energy neutron……………………………... 20
Figure 2.2: Sequential circuit…………………………………………………………... 20
Figure 2.3: Combinational circuit without radiation (a) and with radiation (b)………... 21
Figure 2.4: SRAM cell hardened by the inclusion of two feedback resistors………….. 27
Figure 2.5: Detection of an SEU in a memory element (a) and detection of an SET in a

combinational circuit (b) by using space (or hardware) redundancy.………..... 28
Figure 2.6: Use of time redundancy to detect an SET in a combinational circuit……… 29
Figure 2.7: Use of space redundancy to detect an SET in a combinational circuit…….. 30
Figure 2.8: TMR with time redundancy………………………………………………... 31
Figure 3.1: AND truth table……………………………………………………………..41
Figure 3.2: Fully combinational 4x4-bit multiplier….…………………………………. 42
Figure 3.3: Column multiplier circuit……………………………..……………………. 43
Figure 3.4: Line multiplier circuit……………………………………………………… 44
Figure 3.5: Combinational circuit for the 8-bit FIR filter with 4 taps………………….. 47
Figure 3.6: 8-bit FIR filter with 4 taps using memory………………………………..... 48
Figure 4.1: MemProc overall architecture……………………………………………... 51
Figure 4.2: Macroinstruction format…………………………………………………… 52
Figure 4.3: Microinstruction format……………………………………………………. 53
Figure 4.4: ALU for one bit operation…………………………………………………..54
Figure 4.5: Operation masks used during the addition operation…...…………………. 55
Figure 4.6: 2-bit addition using MemProc ALU……………………………………….. 55
Figure 4.7: 8-bit addition paradigm……………………………………………………. 56
Figure 4.8: Code generation process for MemProc……………………………………. 59
Figure 5.1: FemtoJava pipeline block scheme…………………………………………. 60
Figure 5.2: The MIPS pipeline architecture……………………………………………. 61
Figure 5.3: Error detection scheme…………………………………………………….. 64
Figure 5.4: Mean time to execute each type of instruction for all applications………... 69
Figure 5.5: The way MemProc does comparisons……………………………………... 70
Figure 6.1: I-IP overall architecture…………………………………………………… 74
Figure 6.2: Original instruction………………………………………………………… 74
Figure 6.3: Source operands and result fetching……………………………………….. 74
Figure 6.4: Architecture of the I-IP…………………………………………………….. 78
Figure 6.5: Error detection scheme…………………………………………………….. 82

LIST OF TABLES

Table 2.1: Architectural Vulnerability Factor (AVF) estimation approaches…...……..24
Table 3.1: Area for each solution in number of transistors……………………….…... 44
Table 3.2: Architectural Vulnerability Factor and timing results for single and double

Faults…………………………………………………………………………... 46
Table 3.3: Area results for the filter implementations, in number of transistors...……. 48
Table 3.4: AVF results for single faults in FIR filter implementations………..……… 49
Table 5.1: Area and time between fault injections…………………………………….. 65
Table 5.2: Fault rates for all architectures……………………………………………... 67
Table 5.3: Performance when executing benchmark applications…………………….. 68
Table 6.1: Runtime frequency of instructions…………………………………………. 83
Table 6.2: Error detection results for the two architectures…………………………… 83

LIST OF ABREVIATIONS

AVF Architectural Vulnerability Factor

ALU Arithmetic and Logic Unit

BPSG Boron Phospho-Silicate Glass

BCH Bose-Chaudhuri-Hocquenghem

CACO-PS Cycle-Accurate Configurable Power Simulator

CCA Control Flow Checking using Assertions

CFCSS Control Flow Checking by Software Signatures

CMOS Complementary Metal-Oxide-Semiconductor

DIVA Dynamic Implementation Verification Architecture

DWC Duplication with Comparison

DSP Digital Signal Processing

ECCA Enhanced Control Flow Checking using Assertions

EDAC Error Detection and Correction Code

ED4I Error Detection by Data Diversity and Duplicated Instructions

FIR Finite Impulse Response

FIT Failures in Time

FRAMs Ferroelectric Random Access Memories

GCC GNU Compiler Collection

LET Linear Energy Transfer

MBU Multiple Bit Upset

MIF Memory Initialization File

MRAMs Magnetic Random Access Memories

MTTF Mean Time to Failure

N-MR Modular Redundancy of order N

IMDCT Inverse Modified Discrete Cosine Transform

IP Intellectual Propriety

I-IP Infrastructure-IP

RAM Random Access Memory

RISC Reduced Instruction Set Computer

ROM Read-Only Memory

RS Reed-Solomon

SDC Silent Data Corruption

SE Soft Error

SER Soft Error Rate

SETs Single Event Transient

SEUs Single Event Upsets

SIHFT Software Implemented Hardware Fault Tolerance

SIMD Single Instruction Multiple Data Processor

SoC System-on-a-Chip

SOI Silicon-on-Insulator

SRAM Static Random Access Memory

TMR Triple Modular Redundancy

TVF Timing Vulnerability Factor

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

VLIW Very Large Instruction Word

14

1 INTRODUCTION

The constant growth of the semiconductor industry in the past years has led to a great

improvement in the fabrication of circuits with smaller and faster transistors. This new

technology era allows the fabrication of transistors with 100 nm and even smaller dimensions.

It allows the integration of billions of transistors in the same chip, giving the designer the

possibility to implement more functions in the same device. In this new scenario, designers

are developing systems that use more than one processing component in the same chip, with

ever growing computation capabilities. These systems are called system-on-chip (SoC) and

are used in the development of embedded systems such as cell phones, palm tops, GPS

systems, etc.

However, the technology improvement is bringing an increased concern regarding the

reliability of these new circuits. Although the good advance in terms of performance, these

new generations of technologies are more sensible to process variations due to their reduced

dimension transistors. Also, high energy particle strikes, such as neutrons from cosmic rays

and alpha particles from packaging material, once a concern only for spatial application

devices, are now becoming important sources of radiations that are affecting not only memory

components but also logic components at low altitude and even at sea level. These strikes can

produce or stimulate bit flips, also known as single event upsets (SEUs), or generate transient

pulses, known as single event transient (SETs), which in certain circumstances, can

compromise the correct functionality of the circuit, provoking soft errors (SE). A soft error is

a random error induced by an event that corrupts the data stored in or produced by the device,

but does not damage the device itself.

Not only the number of transistors, but also the chip density, in number of transistors

per area unit, has been growing exponentially in the past years. This fact has given

researchers a new concern related to multiple faults caused by a single particle hit, which is

15

called multiple bit upset (MBU). This phenomenon, in the past present only at memory

devices due to its high density, is now affecting the logic part of a circuit.

The reduced size of transistors provided by nanotechnology circuits makes them faster

than the ones in the previous technologies, which allows the circuit to run at higher clock

frequencies. This improvement in the clock frequency increases the number of operations that

can be performed per time unit. On the other hand, with higher frequencies and consequently

lower periods, the circuit is more likely to propagate a transient pulse to generate a bit flip or

even a multiple bit flip, according to the number of outputs generated by the hit component.

As shown in Figure 1.1, from (BAUMANN, 2005), while the soft error rate (SER) of SRAM

memories remains almost stable with technological scaling, the SER of logic has been always

increasing. This new scenario makes architects more concerned with the impacts of soft errors

on their designs. In future and even in today’s circuits, the SER is becoming as important as

the performance or power characteristics. In order to survive in this scenario, it is clear that

new fault tolerance techniques must be defined, not only for safety critical systems, but to

general purpose computing as well.

Figure 1.1: Evolution of SER: SRAM vs. Logic, from (BAUMANN, 2005)

Current fault tolerance techniques are effective, with some overhead, for SEUs and

SETs. However, they are unlikely to withstand in an efficient way the occurrence of multiple

16

simultaneous faults that is foreseen with those new technologies (CONSTANTINESCU,

2003; EDENFELD, 2004). To face this challenge, either completely new materials and

manufacturing technologies will have to be developed, or fully innovative circuit design

approaches must be taken.

Several techniques have been proposed to mitigate SEUs and SETs. There are

techniques in all stages of a circuit production, from process modifications to hardware and

software design techniques for dedicated systems or general purpose ones. Most of these

techniques are able to reduce significantly the number of faults, with some performance

and/or area and/or power overheads. Process variation solutions usually are too expensive for

low production volumes. Generally, hardware system solutions tend to have a considerable

cost in area, while software system solutions somehow affect the resulting performance of the

circuit. Thus, the search for reliability in digital systems still lacks efficient solutions, and

therefore there is still space for solutions that cope with single and multiple faults without

adding undesirable costs to the system development.

Geometric regularity and the extensive use of regular fabrics are being considered as a

probable solution to cope with parameter variations and improve the overall yield in

manufacturing with future technologies. Regularity brings the reduction of the cost of masks,

and also allows the introduction of spare rows and columns that can be activated to replace

defective ones in memory circuits (SHERLEKAR, 2004). Together with the proposal of using

regular fabrics, the introduction of new memory technologies that can withstand the effects of

transient faults, such as ferroelectric and magnetic RAMs (FRAMs and MRAMs,

respectively) (ETO, 1998), brings back the concept of using memory to perform

computations.

In this work, the use of memory is proposed as a novel mitigation technique for

transient faults, by reducing the area of the circuits that can be affected by soft errors. This

17

way, this work introduces a processor architecture to cope with the SEU/SET problem

without imposing any performance overhead, while favoring a regular architecture that can be

used to enhance yield in future manufacturing processes. The proposed architecture is a

memory-based embedded core processor, named MemProc, designed for use in control

domain applications as an embedded microcontroller.

There are situations in which neither the hardware nor the software can be modified,

due to the high costs involved in adding extra hardware or when the source code is not

available. In these cases, alternative techniques are needed for providing the system with an

adequate level of dependability. To deal with this kind of applications, this work proposes a

second alternative to improve the reliability in digital systems, that combines on-line software

modifications with a special-purpose hardware module (known as infrastructure IP, or I-IP)

which was previously proposed in (BERNARDI, 2006). The development of an I-IP core to

improve reliability of the MIPS RISC processor (PATTERSON, 2002) is presented in this

work.

This work is divided as follows: in the second chapter the context of this work is

reviewed. In the third chapter, the first experiments on using memory based circuits to

improve reliability are presented. The fourth chapter describes the developed architecture and

its key characteristics that contributed to the good fault tolerance and performance results.

The fifth chapter presents the obtained experimental results, in terms of fault coverage, area,

and performance. The sixth chapter presents the second solution that was developed to cope

with the faulty behavior of future technologies without applying any change to the hardware

or the software of the system. The seventh chapter presents the obtained results for the second

solution, in terms of fault detection, and its area and performance overhead. In the eighth

chapter the conclusions and possible evolution of the work that is presented here are

discussed.

18

2 CONTEXT OF THE RESEARCH

This chapter presents a description of the different types of spatial radiation that can

produce or stimulate bit flips in circuits. This chapter is divided in three sections. In the first

one, the most commonly found sources of radiation and their effects in digital circuits are

discussed. In the second section, the most used metrics that are applied to measure the

vulnerability of the circuits are described and, in the third and last section, some of the most

used and known techniques applied to detect and mitigate errors in digital circuits are

presented and analyzed, together with a discussion of the positive and negative aspects of

each technique.

2.1 RADIATION SOURCES AND THEIR EFFECTS

There are different types of space radiation that can cause soft errors. In this section

the most known and relevant types of radiation sources that can cause SEUs and SETs are

presented, and the effects that SEUs and SETs can cause,. and which are the conditions to an

error occur are discussed (HEIJMEN, 2002).

2.1.1 Sources of Radiation

The main sources of radiation catered from space are:

a) alpha particles;

b) high energy cosmic neutrons;

c) boron fission induced by low energy neutrons.

There are other kinds of particles that can cause soft errors, like heavy ions for

instance, but they will not be discussed here because they are only relevant for aero-space

applications, due to their occurrence only in space or in the highest parts of the earth

atmosphere.

19

2.1.1.1 Alpha Particles

An alpha particle is a doubly ionized helium atom, made of two protons and two

neutrons. Alpha particles can be found in circuits packaging materials, solder points of the

integrated circuits or in wafers, which are thin slices of semi-conductor material, upon which

circuits are constructed. When an alpha particle hits a beta or gamma ray, it looses energy and

generates transient current pulses that, depending on their intensity, can cause an SEU (single

event upset) which can result in a soft error if it compromises the correct functionality of the

circuit.

2.1.1.2 High Energy Cosmic Neutrons

This kind of particle is formed by the collision of galactic particles and solar wind

particles with the terrestrial atmosphere. Most of cosmic rays are reflected or captured by the

geomagnetic field of the earth, and only 1% of the high energy cosmic neutrons hit the earth

surface, generating a flux of 25 neutrons/cm2.hr (ZIEGLER, 1981) with energy higher than 1

MeV (1 million electron volt) at sea level. Only neutrons with 5 MeV or higher energy are

capable of generating soft errors.

2.1.1.3 Boron Fission Induced by Low Energy Neutrons

Another form of radiation can occur when low energy neutrons interact with boron

atoms (BAUMANN, 1995). As a result, a lithium core and an alpha particle are generated by

fission, as depicted in Figure 2.1. Both particles resulting from this reaction are capable of

generating SEUs or SETs that can cause the undesired soft errors.

20

Figure 2.1: Boron fission induced by low energy neutron, from (BAUMANN, 2001).

2.1.2 Effects of SEUs and SETs in Digital Circuits

A particle hit can affect a combinational as much as a sequential part of a circuit

(ALEXANDRESCU, 2002). In sequential circuits, like the one shown in Figure 2.2, SEUs

can occur only in memory elements (the registers in Figure 2.2). On the other hand, the

combinational components can be affected by SETs which, given the right circumstances, can

cause an error. The hit of a radiation particle in a memory element does not imply that an

SEU will be registered. In order to an SEU occur, it is necessary that this particle has enough

charge to create a significant current pulse. In other words, it is necessary that the charge

generated by the particle is greater than or equal to the so called critical charge (Qcritical) of the

hit element. The Qcritical will be explained with more details in the next section.

Combinational logic
input output

clock
Figure 2.2: Sequential circuit.

21

The occurrence of an SET in combinational logic, does not mean that an error will

result. In order to an error occur, a combination of events must happen, allowing the SET to

be captured or generate and erroneous operation. First, it is necessary that the charge

generated by the radiation source be equal or higher than the Qcritical of the element that was

hit. Second, the combinational circuit must be fast enough to propagate the error, and third,

the logic of the architecture must allow that the wrong logic value that was generated

propagates to some memory element during its latching window or generate an erroneous

operation. In Figure 2.3, one can see an example in which the combinational circuit does not

allow the SET propagation. The figure shows a little combinational circuit in two different

situations. In the first situation (a), the circuit is free of the radiation effects, while in the

second (b) the circuit is being affected by a source of radiation. One can see that in booth

circuits the result is the same even in the presence of radiation.

A

B 0

1 0
0

a) Without radiation

A

B 0

1 1
0

b) With radiation
Figure 2.3: Combinational circuit without radiation (a) and with radiation (b).

2.2 METRICS TO EVALUATE THE VULNERABILITY OF CIRCUITS TO SOFT ERRORS

The vulnerability of a circuit to soft errors indicates the probability of the circuit to

have an error. This probability indicates to the end user how much he can rely on the correct

operation of the circuit. With the growing concern about circuit reliability, companies are

using some metrics to evaluate their products. In this section, some of the most used metrics

proposed by scientists and designers to evaluate the vulnerability of the circuits, which is

known as the soft error rate (SER), are presented.

22

2.2.1 Failures in Time (FIT)

The fault rate of a circuit can be measured through the number of failures that occur in

a certain period of time. This metric is known as Failures in Time, or FIT. If a circuit has a

fault rate of 1 FIT, it means that in a period of 1 billion hours 1 fault will probably occur.

Some companies, like IBM, are using this metric as a reference to the design of their

products. IBM sets its target for undetected errors caused by SEUs to 114 FIT (BOSSEN,

2002), which means that 1 fault may occur in the time range of about 9 million (8.771.930 to

be more precise) hours of device operation. The additive property of FIT makes it convenient

for calculation of the fault rate of large systems, because the designer just needs to sum the

FIT of all components that are part of the system to have the system FIT.

2.2.2 Mean Time to Failure – MTTF

Another metric that can be applied to measure the fault rate of a system is the mean

time to failure. Differently from the FIT, the MTTF is more intuitive, because it indicates the

mean time that will elapse before an error occurs. The MTTF has an inverse relation to the

FIT, which is expressed by the following equation :

()
FIT

hoursMTTF
910

= (1)

2.2.3 The Soft Error Rate Estimation

The soft error rate (SER) of a system can also be expressed in terms of the nominal

soft error rates of individual elements that are part of the system, such as SRAMs, sequential

elements such as flip-flops and latches, combinational logic, and factors that depend on the

circuit design and the microarchitecture (NGUYEN, 2003; SEIFERT, 2004), as follows:

23

∑ ××=
i

ii

alno

i

design AVFTVFSERSER min (2)

where i stands for the ith element of the system.

The SERnominal for the ith element is defined as the soft failure rate of a circuit or node

under static conditions, assuming that all the inputs and outputs are driven by a constant

voltage. The TVFi, time vulnerability factor (also known as time derating) stands for the

fraction of the time that the element is susceptible to SEUs that will cause an error in the ith

element. The AVFi, architectural vulnerability factor (also known as logic derating) represents

the probability that and error in the ith element will cause a system-level error.

The SERnominal is defined by the probability of occurrence of an SEU in a specific node

of the element. This probability depends on the element type, transistor size, node capacitance

and other characteristics of the element. For instance, to estimate the SERnominal for a latch,

one must know the Qcritical, which identifies the minimum charge necessary to cause the

element to fail. This can be done by injecting waveforms of alpha an neutron particle hits on

all relevant nodes. Then, it is necessary to evaluate the alpha and neutron flux to which the

circuit is submitted. More details can be found in (NGUYEN, 2003).

The timing vulnerability factor can be summarized as the fraction of time that the

element can fail. For example, the timing vulnerability factor of a latch is equal to the portion

of the time that the latch is in its store mode. For combinational logic, the timing vulnerability

factor depends on its type, which can be data path or control path. More details on these and

other TVF evaluation aspects can be seen in (NGUYEN, 2003; SEIFERT, 2004).

The architectural vulnerability factor of an element can be understood as the

probability that a fault in that element causes an error in the system. In Table 2.1 some

approaches to estimate the AVF, its major issues, advantages and disadvantages are

presented.

24

Table 2.1: Architectural-vulnerability-factor (AVF) estimation approaches

source: (MITRA, 2005)

The AVF value of an element depends on its inputs and also on how important that

element is for the circuit considering its functionality. As an example, suppose that the

contents of a flip-flop are erroneous. If the flip-flop output drives to an AND gate with

another signal whose logic value is 0, the error will have no effect on the output of the AND

gate.

2.3 MITIGATION TECHNIQUES FOR SEUS AND SETS

In the first years of spatial exploration, the reliability of the circuits started to become

an important concern for designers. At that time, the major technique used to protect circuits

was shielding. This shielding technique worked by reducing the particle flow to smaller levels

and consequently, reducing the number of errors caused by particle hit to zero. During many

years this technique was widely used in aero-spatial applications and guaranteed the correct

Approach Description Major issues

Advantages

Disadvantages

Fault
injection

Inject error(s) and
simulate to see if
injected error(s)
cause(s) system-
level error(s) by
comparing the
system response
with simulated fault-
free response

* Which inputs
to simulate;

* How many
errors to
inject;

* Which signals
to inject errors
in;

* Which signals
to use for
comparison.

* Applicable
to any
design;

* Easy
automation.

* Long
simulation
time (several
days or
weeks) for
statistically
significant
results;

* Dependence
on chosen
stimuli.

Fault-free
simulation

Perform
architectural or logic
simulation and
identify situations
that do not
contribute to system-
level errors, such as
unused variables and
dead instructions.

* Which inputs
to simulate;

* How to
identify
situations that
do not
contribute to
system-level
errors.

* Much
faster
compared
to fault
injection;

* Easy
automation.

* Applicable to
very specific
designs and
not general
enough;

* Dependence
on chosen
stimuli.

25

operation of the circuits. However, with the technology evolution up to nanometer scale,

circuits became more susceptible to particle hit, making this shielding technique obsolete for

spatial circuits and even for circuits to be used at sea level.

Trying to reach the level of reliability that once belonged to shielding, scientists have

proposed several techniques in the past years, each one with its pros and cons, to mitigate

SEUs and SETs. In this section, some of these techniques are presented and their costs, in

terms of area and processing time overheads, are discussed.

2.3.1 Process Modification related techniques

Several process solutions have been proposed to reduce SER sensitivity of circuits,

including the usage of well structures, buried layers, deep trench isolation, and implants at the

most sensitive nodes. Also wafer thinning has been proposed as a way to reduce SEU

sensitivity (DODD, 2001). It was shown that the overall SEU threshold LET (linear energy

transfer) can be significantly increased if the substrate thickness is reduced to 0.5 µm. In

practice, however, several criteria would have to be met to make the thinning of fully

processed wafers possible. Another reduction of the SER can be achieved by reducing to

almost zero the contribution of errors caused by the particles resulted by the boron fission

reaction. This can be done by eliminating BPSG (boron phosphor-silicate glass) from the

process flow. If the use of BPSG is necessary, enriched 11B could be used in the BPSG layers

(BAUMANN, 2001). Silicon-on-insulator (SOI) technologies are relatively insensitive to soft

errors. Applying SOI technology instead of the corresponding bulk process improves the SER

with a factor in the range of 2 to 8 (HARELAND, 2001). However, the cost of materials,

especially of the wafers, is higher for SOI. In general, these process modification solutions are

expensive and are applied just for a few designs.

26

2.3.2 Component Hardening Techniques

There are two basic approaches to improve SER sensitivity at the circuit level. On one

hand, the components applied in the design can be modified such that they become less

susceptible to soft errors. The main goal of this approach, often named design hardening, is to

manufacture SER-reliable circuits using standard CMOS processing without additional masks

(VELAZCO, 1994). On the other hand, one can accept that soft errors occur at a certain rate

and include extra circuitry to detect and correct them. Error detection and correction

techniques are discussed in the next subsection.

Solutions to reduce the SER sensitivity of components can be categorized as

techniques to increase the capacitance of the storage node, to reduce the charge collection

efficiency, or to compensate for charge loss. The applied design style can have an important

effect on SER. For instance, in (SEIFERT, 2001) it is demonstrated that level-sensitive

latches using transmission gates are more sensitive than edge-triggered static latches, because

the former use floating nodes to store information.

Another method to improve SER sensitivity is to enlarge the critical charges by

increasing the capacitance of the storage nodes. In fact, if all critical charges are sufficiently

large, alpha particles are not able to upset a circuit and neutrons are the only source of soft

errors that can affect the circuit. In (KARNIK, 2001), an explicit feedback capacitor is added

to the node capacitances. In (OOTSUKA, 1998), a SER-hardened SRAM cell used stacked

cross-coupled interconnects to increase the capacitor area. Enlargement of the node

capacitances are not only applied in memory design, but were also shown to be an efficient

way to improve the SER sensitivity of sequential or domino nodes in high-performance

circuits (KARNIK, 2002). The main drawback of increasing the node capacitances is that

generally the cell area is increased affecting the memory overall area. The SER sensitivity of

SRAM cells and latches can also be improved by adding feedback resistors between the

27

output of one inverter and the input of the other, as shown in Figure 2.4. This SRAM cell

topology was proposed in (SEXTON, 1991). The transient pulse induced by an ionizing

particle is filtered by the two resistors, which slow down the circuit such that it does not have

sufficient time to flip state. However, the inclusion of feedback resistors in a memory element

has the drawback that the write speed is lowered (VELAZCO 1994).

Figure 2.4: SRAM cell hardened by the inclusion of two feedback resistors

2.3.3 Circuit Design SEU and SET Hardware Mitigation Techniques

As stated in a previous subsection, process modification solutions are expensive and

are used just in few designs with high volume. Also, component hardening techniques involve

costs in energy, area and performance that sometimes may not be reasonable for

manufacturers. Therefore, the development of techniques not related to the process variation

or component modification has been stimulated during the past years, and some design based

mitigation techniques have been proposed for the scientific community. In this section, some

of the most know and widely used design techniques that have been proposed by researchers

worldwide are presented. These techniques are divided into two main groups: error detection

techniques and error detection and correction techniques.

28

2.3.3.1 Hardware Error Detection Techniques

The error detection techniques are based in redundancy to detect if an error has

occurred. This redundancy can be hardware redundancy, also know as space redundancy, or

time redundancy. The hardware redundancy approach called duplication with comparison

(DWC) is based in the duplication of the module which failing behavior has to be detected,

followed by the comparison of the outputs of both modules. If the results do not match, an

error signal is activated. This technique can be used to detect either SETs in combinational

circuits or SEUs in memory elements. Figure 2.5 illustrates these two situations, time

(situation a) and space (situation b) redundancy, to detect SEU and SET, both with one error

detected.

FF 1

FF 2

1 => SEU detected

0 => SEU not detected
clock

clock

1

1

1

0
1

(a)

1

0

1 => SET detected

0 => SET not detected

1
Combinational

logic 1

Combinational

logic 2

(b)
Figure 2.5: Detection of an SEU in a memory element (a) and detection of an SET in a

combinational circuit (b) by using space (or hardware) redundancy.

Time redundancy can be used to detect SETs in combinational logic. This technique

detects SETs by capturing the output of the combinational circuit in two different moments in

time. The two captured values are compared, and in case of different values, an SET detection

is indicated. Figure 2.6 illustrates the use of time redundancy to detect an SET in a

combinational circuit.

29

FF 1

FF 2

1 => SET detected

0 => SET not detected

clock

0

1

0
1

Combinational logic

clock+ ∆

ocurred betwen clock and clock+∆

1

Figure 2.6: Use of time redundancy to detect an SET in a combinational circuit.

The circuit designer must set the “∆” time wide enough to allow the SET propagation,

but also short enough not to loose the pulse. If a particle hits one of the memory elements

used to capture the values, an SEU will be registered and an SET will be erroneously

detected. The main drawbacks of detection techniques based on duplication are: the hardware

area is more than doubled, and they are only able to detect the events, and not to avoid the

occurrence of an error. This way, if the designer wants the circuit to operate correctly, it is

necessary that the event detection flag indicates that the operation needs to be repeated and

the wrong value must be discarded.

2.3.3.2 Hardware Error Detection and Correction Techniques

With the necessity of not only detecting but also correcting the soft errors, researches

have proposed some detection and correction techniques based on redundancy of modules. In

this section some techniques that rely on redundancy to improve systems reliability are

presented.

2.3.3.2.1 Triple Modular Redundancy - TMR

The triple modular redundancy (JOHNSON, 1994) first proposed by Von Neumann in

1956, uses the redundancy of modules to guarantee the correct functionality of the circuits in

which it is implemented. This technique is based on the triplication of the protected module in

a way that, if any of the three modules fails, the other two will guarantee the correct operation

of the system. The redundancy used in this technique can be time redundancy or space

redundancy. In Figure 2.7, the use of space redundancy of the component that is being

30

protected, together with a voter block, is illustrated. The voter is the module that votes, or

chooses, for the majority result from the component blocks to be the circuit result.

Circuit

Module 1

Circuit

Module 2

Circuit

Module 3

Voter
Result

Figure 2.7: Use of space redundancy to detect an SET in a combinational circuit.

Since all the three modules operate in parallel, this technique corrects any failure in

one of the three modules with the performance penalty of the voter delay. On the other hand,

the area overhead is more 200%, due to the triplication of the protected module and the voter.

Depending on the size of the module, this area penalty can be a price that the designer can not

afford. In Figure 2.8, the use of TMR with time redundancy to correct a fault in one module is

illustrated. The TMR with time redundancy only triplicates the memory elements responsible

for capturing the result of the circuit at different moments in time. If we compare the area of

both TMRs, the time and the space one, we can say that the time TMR has the lower area

overhead if the size of the circuit is smaller than the memory element. On the other hand, the

time redundancy TMR will have bigger performance penalty due to the different need to

capture the circuit values at three different moments in time. Also, the clock circuit with the

two “∆” delays adds some extra complexity to the circuit design.

31

M 1

M 2

M 3

Circuit

clock

clock + ∆

clock + 2∆

Voter Result

Figure 2.8: TMR with time redundancy.

However, the voter is not free of faults and if a fault hits the voter, the system

reliability can be compromised. It is important to mention that the TMR technique is only

effective against single faults and in case of a double faults, which means two faults affecting

each one a different module, the voter can choose a wrong answer as if it were correct. To

guarantee the system reliability against multiple faults, the redundancy has to be increased.

This way, N-MR - Modular Redundancy of order N, uses a higher number of modules to

guarantee that the majority of the modules operates correctly. In case of double faults, the

number of duplicated modules must be five. This way, if two blocks fail, the other three will

operate correctly and the voter will be able to choose the right result from the majority.

Despite its tolerance to multiple faults, the N-MR has a huge area overhead, which gets to

more then 400% for the 5-MR, due to the addition of four copies of the protected module and

the voter block. Also, the size of the voter grows geometrically when compared to the TMR

version. Since the voter is sensible to faults, the reliability of the system can be compromised

if the size of the voter grows too much.

2.3.3.2.2 Error Detection and Correction Codes - EDAC

Error detection and correction codes are commonly used to protect storage devices

against single and multiple events. There are examples of software techniques (SHIRVANI,

2000), which will be discussed in the next section, and hardware techniques (REDINBO,

32

1993) that perform SEU mitigation using EDAC. An example of EDAC is the Hamming

code, which is useful to protect memories against SEUs because of its efficient ability to

correct single upsets per coded word with reduced area and performance overheads

(HENTSCHKE, 2002). However Hamming code is not effective in protecting memories

against multiple bit upsets (MBUs). For this kind of event, researchers have proposed Bose-

Chaudhuri-Hocquenghem (BCH) and Reed-Solomon (RS) codes, based on finite-field

arithmetic (also known as Galois field).

BCH codes can correct a given number of bits at any position of the word, whereas RS

codes group the bits in blocks to correct them. The drawback of these two approaches is that

they have complex and iterative decoding algorithms, and use tables of constants in the

algorithm. However, some studies have shown that the elimination of the table constants can

simplify the RS codes (NEUBERGER, 2003). In (NEUBERGER, 2005), the authors propose

a technique to improve the RS code through the individual optimization of the multipliers for

specific constants. However, the area overhead imposed by the parity bits required for this

technique may not be low for devices with small storage capacity. Also, the coder and

decoder blocks, necessary to the generation of the parity bits and the correction of faults, are

not protected against faults, and its correct functionality is crucial for the reliability of this

technique. Therefore, their reliability must be guaranteed by some other protection technique.

2.3.4 SEU and SET Error Mitigation Techniques for Software-Based Systems

In the previous sections some hardware techniques used to mitigate soft errors that add

some penalty in area, performance, or both, have been presented. However, when we are

dealing with complex architectures made of many different components, such as computer

architectures for instance, we can not simply triplicate the whole system like the TMR

technique proposes. This way, other solutions with less overhead must be proposed to

33

guarantee the reliability of these systems. This section presents some solutions for software-

based systems, divided into three broad categories: software-implemented techniques, which

exploit detection mechanisms implemented purely in software, hardware-based ones, which

add extra hardware, and hybrid ones, that combine both software and hardware error detection

mechanisms.

2.3.4.1 Software Implemented Hardware Fault Tolerance (SIHFT) techniques

Software based detection and correction techniques are based on modifying the

software executed by the processor, introducing some sort of redundancy, so that faults are

detected before they become errors. They focus on checking the consistency between the

expected and the executed program flow, either by inserting additional code lines or by

storing flow information in suitable hardware structures. In the next sections, some of these

software based techniques will be discussed with their pros and cons.

Software implemented hardware fault tolerance techniques exploit the concepts of

information, operation, and time redundancy to detect the occurrence of errors during

program execution. Some of those techniques can be automatically applied to the source code

of a program, thus simplifying the task of software developers and reducing development

costs significantly.

Techniques aiming at detecting the effects of faults that modify the expected

program’s execution flow are known as control flow checking techniques. These techniques

are based on partitioning the code of the program into basic blocks (AHO, 1986). Among the

most important solutions based on the notion of basic blocks proposed in the literature, there

are the Enhanced Control Flow Checking using Assertions (ECCA) (ALKHALIFA, 1999),

the Control Flow Checking using Assertions (CCA) (MCFEARING, 1995), and the Control

Flow Checking by Software Signatures (CFCSS) (OH, 2002b) techniques.

ECCA is able to detect all single inter-block control flow errors, but it is neither able

to detect intra-block control flow errors, nor faults that cause an incorrect decision in a

34

conditional branch. In (ALKHALIFA, 1999), ECCA technique was tested with an SET of

benchmark applications, and was able to detect an average of 98% of the control flow errors,

with a minimum of 78.5% and a maximum of 100% obtained for one of the benchmarks.

Although the authors claim that this technique implies in minimal memory and performance

overheads, the exact figures are not presented in the paper. However, the implementation of

the technique requires modification of the application software and a non trivial

performance/overhead analysis, and for this reason the authors themselves propose the

development of a preprocessor for the GCC compiler to insert the assertions in the code

blocks to be fortified.

The CFCSS technique works assigning a single and unique signature to each basic

block of the program. The runtime signature is held by a global variable and, in the absence of

errors, the variable contains the signature associated to the current basic block. At the

beginning of the program, the global variable is initialized with the signature of the first block

then, at the beginning of each basic block, an additional instruction computes the signature of

the destination block from the signature of the source block by computing the XOR function

between the signature of the current node and the signature of the destination node. If the

control can enter from multiple blocks, an adjusting signature is assigned in each source block

and used in the destination block to compute the signature. As a limitation, CFCSS cannot

cover control flow errors if multiple nodes share multiple destination nodes. The use of

control flow assertions was also proposed in (GOLOUBEVA, 2003) by inserting additional

assertions to check the control flow of the program. An SET of 16 benchmarks has been

hardened against transient errors using the proposed technique, and tested with SEU fault

injection in the bits of the immediate operands of branch instructions. The results have shown

that this approach has an improvement over CFCSS (OH, 2002b) and ECCA (ALKHALIFA,

35

1999), however the technique proved to be very expensive in terms of memory and

performance overheads, even though the overheads are application dependent.

CCA, ECCA and CFCSS only detect control flow errors in the program. As far as

faults affecting program data are considered, several techniques have been recently proposed

that exploit information and operation redundancy (CHEYNET, 2000; OH, 2002a). The most

recently introduced approaches modify the source code of the application to be hardened

against faults by introducing information redundancy and instruction duplication, and adding

consistency checks to the modified code to perform error detection. The approach proposed in

(CHEYNET, 2000) exploits several code transformation rules that require duplication of each

variable and each operation among variables. The approach proposed in (OH, 2002a), named

Error Detection by Data Diversity and Duplicated Instructions (ED4I), consists in developing

a modified version of the program, which is executed along with the original one. If results

mismatches are found, an error is reported. Both approaches introduce overheads in memory

and execution time. The approach proposed in (CHEYNET, 2000) minimizes the latency of

faults; however, it is suitable to detect transient faults only. Conversely, the approach

proposed in (OH, 2002a) exploits diverse data and duplicated instructions, and thus is suitable

for both transient and permanent faults. As a drawback, its fault latency is generally grater

than in (CHEYNET, 2000). The ED4I technique requires a careful analysis of the size of used

variables, in order to avoid overflow situations.

Although very effective, SIHFT techniques may introduce time overheads that limit

their adoption only to applications in which performance is not a critical issue. Also, in some

cases they imply a memory overhead to store duplicated information and additional

instructions, what demands an extensive work from the application programmer when the

automation is not possible. These approaches also require access to the source code of the

36

application, precluding the use of commercial off-the-shelf software components from a

library.

2.3.4.2 Hardware Techniques for Software-Based Systems

Software based solutions usually impose high cost to the system performance, which

for certain types of applications are simply not acceptable. For this kind of systems, hardware

techniques are more indicated, as their performance overhead is lower. In this section, some

hardware based solutions to cope with SEUs and SETs in software based systems are

presented.

2.3.4.2.1 Dynamic Implementation Verification Architecture - DIVA

“Dynamic verification”, a hardware-based technique, is detailed in (AUSTIN, 2000)

for a pipelined core processor. It uses a “functional checker” to verify the correctness of all

computations executed by the core processor. The checker only permits correct results to be

passed to the commit stage of the processor pipeline. The so-called DIVA architecture relies

on a functional checker that is simpler than the core processor, because it receives the

instruction to be executed together with the values of the input operands and of the result

produced by the core processor. This information is passed to the checker through the re-order

buffer (ROB) of the processor’s pipeline, once the execution of an instruction by the core

processor is completed. Therefore, the checker does not have to care about address

calculations, jump predictions and other complexities that are routinely handled by the core

processor. Once the result of the operation is obtained by the checker, it is compared with the

result produced by the core processor. If they are equal, the result is forwarded to the commit

stage of the processor’s pipeline, to be written to the architected storage. When they differ, the

result calculated by the checker is forwarded, assuming that the checker never fails. If a new

instruction is not released for the checker after a given time-out period, the pipeline of the

core processor is flushed, and the processor is restarted using its own speculation recovery

mechanism, executing again the instruction. The DIVA approach cannot be implemented in

37

SoCs based on FPGAs that have an embedded processor, because the checker is implemented

inside the processor’s pipeline. Also, it assumes that the checker never fails, due to the use of

oversized transistors in its construction and extensive verification in the design phase.

Originally conceived as an alternative to make a core processor fault-tolerant, this

work also evolved to the use of a similar checker to build self-tuning SoCs. To demonstrate

the benefits of the proposed solution, the authors implemented the DIVA architecture for the

Alpha 21264 and created the so called REMORA (WEAVER, 2001). Results of an

architectural simulation of nine SPEC95 benchmarks showed that the performance penalty

was less than 1%. The area and power overheads were 6% and 1.5% respectively. Although

the good results, the authors do not indicate which fault injection model was used. Also, in

case of memory bit flips the technique will not be reliable, because both processors will use

corrupted data to perform the operations.

2.3.4.2.2 Simultaneous and Redundantly Treaded (SRT) Processor

In (REINHARDT, 2000) the authors propose the use of a simultaneous and

redundantly treaded processor, which is derived from a Simultaneous Multi Threaded (SMT)

Processor (DEAN, 1996; DEAN, 1998), to detect faults by running two copies of the same

thread at the SRT processor. The authors introduce the concept of the sphere of replication,

which indicates what components will have the redundant execution mechanism to detect

faults. All activity and states within the sphere are replicated, either in time or in space.

Values that cross the boundary of the sphere of replication are the outputs and inputs that

require comparison and replication, respectively, and the components that are out of the

sphere of replication need other fault detection techniques. The proposed technique brings

some challenges that are not present at a lock-stepped, physically-replicated design, like

deciding when to compare the outputs and also when and which inputs need to be replicated.

To solve these questions, the authors propose the use of some queues and buffers to indicate

and store the values that need to be compared and keep the values that need to be replicated.

38

More details can be found in (REINHARDT, 2002). The proposed technique is only a

detection technique and needs a recovery mechanism or some jump trigger to a safe state to

guarantee the reliability of the processor. Also, the authors do not provide the overheads in

terms of area and performance implied by the proposed approach.

2.3.4.3 Hybrid Techniques

Hybrid techniques such as (BERNARDI, 2006) combine some SIHFT techniques with

an infrastructure IP core in the SoC. The software running on the processor core is modified

by inserting instruction duplication and information redundancy together with some

instructions for communication with the I-IP. The I-IP works concurrently with the main

processor, implements consistency checks among duplicated instructions, and verifies

whether the correct program execution flow is executed. Such techniques are effective, since

they provide a high level of dependability while minimizing the added overhead, both in

terms of memory occupation and performance degradation, but they require the availability of

the source code of the application.

There are cases in which the software of the application is not available or the costs

involved in modifying the application software are too high. To solve this problem, the

authors of (LISBOA, 2006) proposed the idea of introducing an I-IP between the 8051 multi-

cycle processor and the instructions memory, making the I-IP replace on-the-fly the fetched

code by a hardened one.

In this work a hybrid solution, such as the one proposed in (LISBOA, 2006) for the

MIPS RISC pipelined architecture, is also presented, and its effectiveness in detecting control

flow errors and instruction hardening caused by particle hits in the architecture registers,

without adding any memory overhead or architecture modification of the MIPS architecture,

is demonstrated.

In this chapter several techniques to improve the fault tolerance in all the stages of a

system production circuit design have been presented. As it was previously mentioned,

39

process modification techniques usually increase the production costs. On the other hand,

hardware redundancy techniques imply in high area overhead (greater than 200%), while

software redundancy techniques generally adds undesirable performance and memory

overheads.

The work presented here proposes two different solutions that provide improvement in

the system reliability without the overheads implicit in the existing solutions. The first

approach of this work proposes the replacement of the combinational circuit by magnetic

memory based circuits, which is intrinsically protected against radiation induced bit flips due

to its magnetic way of storing information. As we are just replacing part of the circuit, the

area overhead introduced by this technique is potentially low. Also, due to some key

architectural control techniques, the performance results showed that the proposed

architecture not only has no small overhead but is faster than the equivalent non protected

architectures that were compared to this work.

The second solution presented in this work is a hybrid technique that uses an I-IP to

improve the system reliability through instruction hardening and the detection of control flow

errors. This technique implies in neither memory overheads nor requires any modification of

the hardware, like the other software and hybrid techniques do.

40

3 USING MEMORY BASED CIRCUITS TO COPE WITH SEUS AND SETS

The use of memory not only as a storage device, but also as a computing device, has

been a subject of research for some time. In order to explore the large internal memory

bandwidth, designers decided to bring some functions executed by the processor into

memory, to make effective use of all these available data. In (ELLIOTT, 1999) the

Computational-RAM is presented, bringing processor functions into the memory. This

technique was originally used as a SIMD Processor (Single Instruction Multiple Data

Processor) in some DSP applications. Also, memories come with intrinsic protection against

manufacturing defects due to its spare columns and spare rows that can be activated to replace

the malfunctioning ones. Also, as it was previously mentioned, they can be protected by

Reed-Solomon codes, such as the one proposed in (NEUBERGER, 2005), with relatively low

overhead.

The fact that the contents stored in new memory technologies like MRAMs and

FRAMs can not be flipped by particle hits, together with the fact that faults affecting logic

components are becoming as common or even more than the ones affecting memory

elements, makes the use of memory based circuits a good design strategy to implement more

robust circuits for future technologies. So, if we reduce the quantity of combinational circuit,

by replacing it with memory components, we will reduce the overall architectural

vulnerability factor (AVF) and, consequently, the soft error rate.

To test this assumption, two memory based circuit for a 4x4-bit multiplier, and one

memory based circuit for a 4-tap 8-bit Finite Impulse Response (FIR) filter were

implemented, and compared with their combinational counterparts through single and double

simultaneous fault injection campaigns (RHOD, 2006a). All memory elements were protected

with the RS code proposed in (NEUBERGER, 2005), to tolerate multiple bit flips.

41

3.1 4X4-BIT MEMORY BASED MULTIPLIER

In those circuits based on the use of memory, the memory works as a truth table that

receives the inputs and returns the outputs according to the implemented function. Since the

size of a truth table depends on the width of the input and output, the memory size, in bits,

also depends on the input and output widths. This relationship can be described as follows:

 Size = I2 × O (3)

where I and O are the input and output widths, respectively, both in bits.

For instance, let us consider an AND gate with two inputs A and B. The memory

element that would replace this gate would have 2 inputs, representing the A and B values,

and one output, to drive the result of the AND operation. The memory size would be equal to

22 x 1, which gives us 4 bits. In Figure 3.1 the truth table of the 2 bits AND operation is

illustrated.

A B C
0 0 0
0 1 0
1 0 0
1 1 1

Figure 3.1: AND truth table.

In Figure 3.1, one can identify the inputs A and B which in our memory circuit will

become our address bits, and the result column indicated by the column C, which will be the

4-bits memory content. The memory content has to be organized according to the truth table,

which for this AND example means the positions 0, 1 and 2 have to hold the value ‘0’ and the

position 3 holds the value ‘1’.

It is important to mention here some self imposed design restrictions that we had to

comply with and that led us to the proposed solutions for the multiplier test case:

42

Very small memories are not area efficient, because a significant area is needed to

implement the decoders and a smaller proportion of area is used for data storage;

The size of the memory used to replace the combinational parts is smaller than the size

of the memory needed to implement the whole function, in our case, the 4x4-bit

multiplication; otherwise, we would have a fully truth table implementation of the function of

the circuit. So, in this case, the memory size must be smaller than 2048 bits;

The size of the combinational circuit must be smaller than the size of the fully

combinational circuit of the 4x4 bit multiplier of Figure 3.2, since the goal is to avoid faults in

the combinational circuit part.

In order to illustrate the different ways that a memory based circuit can be

implemented using memory, two different solutions for the 4x4-bit multiplier, with different

amounts of memory and combinational circuits, were proposed. The first one, here called the

column multiplier, had more combinational circuit and less memory than the second one, here

called the line multiplier. Using simulated fault injection to calculate the fault propagation

rates of these two solutions, we compared the obtained results with the Architectural

Vulnerability Factor (AVF) of the 4x4-bit multiplier implemented with the fully

combinational circuit shown in Figure 3.2.

Figure 3.2: Fully combinational 4x4-bit multiplier.

43

The column multiplier, as the name implies, makes the multiplication column by

column.

Therefore, to perform a 4x4-bit multiplication, 7 cycles of operation are necessary.

During the first cycle, all operations required to generate bit P0 (Figure 3.3) of the product are

performed. During the second cycle of operation, bit P1 is generated, and so on, until the last

cycle, when bits P6 and P7 are generated. In Figure 3.3 one can see the implemented column

multiplier circuit. In this circuit, memory performs the function of one to three full adders of a

column, depending on the column that is being calculated. Figure 3.3 also shows that some

additional circuitry has been added in order to properly generate control signals. To save the

carry-out signals for the next cycle, a 3-bit register is used. A 6-bit shift register was also

required to save and shift the product. Another control requirement was a 3-bit counter to

generate the selection signals for the multiplexer.

In Figure 3.3, the combinational circuit that is sensible to faults is highlighted with a

dashed rectangle.

Figure 3.3: Column multiplier circuit.

In the Line multiplier circuit, multiplication is performed line by line. In this case, the

number of cycles necessary to make a multiplication is equal to the number of bits of the

44

inputs, which in our case are four. During the first three cycles, only one result bit per cycle is

generated and the four remaining bits are calculated in the last cycle.

In Figure 3.4 we can see the implemented line multiplier circuit. In this circuit,

memory performs the function of all 4 full-adders in a line. Like in the previous

implementation, it was also necessary to include some additional circuitry for control and to

save some values from one cycle to other. But in this circuit only a 3-bit shift-register to store

and shift the product was necessary, against the 6-bit register used in the previous solution.

Figure 3.4: Line multiplier circuit.

The area characteristics of the proposed solutions are compared with those of the TMR

and 5-MR in Table 3.1. This table also shows the costs of the Reed Solomon protection used

for registers and the memory, together with the coder and decoder area costs, which were

obtained using the tool proposed in (NEUBERGER, 2005).

Table 3.1: Area for Each Solution in number of transistors.

Circuit Comb.
Circuit

Flip-Flops Voter Memory RS Cod.
/Decoder

Total

5-MR 3,270 - 672 - - 4,392
TMR 2,232 - 240 - - 2,472
Combin. 744 - - - - 744
Column 200 468 - 3,048 96 3,812
Line 42 346 - 7,650 96 8,134

45

To evaluate the area, we have considered that each bit of ROM memory demands 4

transistors. For the logic gates we computed the area as follows: 6 transistors for AND, OR

and XOR gates, 4 for NAND and NOR gates and 12 for each flip-flop.

One important thing that must be taken into consideration is the additional unprotected

area that the voters add to the TMR and 5-MR solutions. In TMR, the voter is almost 15% of

the total area, and in 5-MR it is more than 28%. In the memory solutions, the area added for

the Reed-Solomon encoder and decoder is less than 4% in the column multiplier solution and

less than 2% in the line multiplier solution.

The injection of faults was simulated using CACO-PS (Cycle-Accurate Configurable

Power Simulator) (BECK, 2003a), a cycle-accurate, configurable power simulator, which was

extended to support single and double simultaneous transient faults injection. The simulator

works as follows: first, it simulates the normal operation of the circuit and stores the correct

result. After that, for each possible fault combination in the circuit, the simulation is repeated.

Then, the output of each simulation is compared to the correct one. If any value differs, it

means that the fault was propagated to the output. All the process is repeated again, for each

combination of input signals of the circuit. Both implementations of the multiplier using

memory were compared with the fully combinational solution and with the classical TMR and

5-MR solutions. The resulting fault propagation rates can be seen in Table 3.2, for single and

two simultaneous faults injection. In the same table, one can also find the critical path timing

of all solutions. These results were obtained with electrical simulation of the circuits. We used

the Smash Simulator for 0.35 µm technology.

In Table 3.2, one can see that the architectural vulnerability factor for single faults (3rd

column) and for double faults (4th column) was higher in the solutions using memory than in

the TMR and 5-MR ones. That happened because we have reduced the area susceptible to

faults, and consequently increased the influence of that portion of the circuit in the final

46

result. But, if we take into account that the circuit with less area has less probability to be

affected by a transient fault, and make a proportional AVF evaluation (5th and 6th column), as

the percentage of observable faults at the output, one can see the benefits of the proposed

solutions.

Table 3.2: Architectural Vulnerability Factor and Timing Results for Single and
Double Faults

Circuit #of gates
that fail

AVF %
(1 fault)

AVF %
(2 faults)

Prop. AVF %
(1 fault)

Prop. AVF %
(2 faults)

Critical Path
Timing (ns)

5-MR 492 8.80 20.50 8.80 20.50 18.5
TMR 268 5.49 16.26 2.99 8.86 18.2
Combin. 76 49.11 63.60 7.59 9.82 17.5
Column 33 15.92 28.05 1.07 1.88 15.0
Line 9 36.22 54.07 0.66 0.99 16.5

When contrasting the results in Tables 3.1 and 3.2, one can notice that the 5-MR

solution almost doubles the area required for TMR, and also increases by a factor of 2.5 the

percentage of faults that are propagated to the output of the circuit. That happens due to the

significant increase in non-protected area introduced by the voter in the 5-MR approach. The

conclusion, then, is that future solutions based upon increasing the redundancy in terms of

modules will no longer be a good alternative when multiple simultaneous faults become a

concern. Another important observation is that, depending on the design alternative, the area

versus fault tolerance trade-off may impact quite differently, according to the adopted

solution, when contrasted with the TMR approach. For the column multiplier, the area

increases 1.5 times, while the fault propagation percentage is reduced 4.7 times. For the line

multiplier, however, the area increases by a factor of 3.2, while the AVF decreases by a factor

greater than 8.

When one looks at the timing results in Table 3.2, one can notice that the critical path

in the memory solutions has decreased. That happened because the proposed memory

solutions reduced most of the combinational circuit, and added a memory and flip-flop based

47

circuit that contributes less to the critical path than the combinational circuit that was

replaced. On the other hand, the total computation time has increased by a factor of almost 4

for the line memory and almost 7 for the column memory. That happened because the new

memory solutions compute the multiply in 4 and 7 cycles, for the line and column memory

solutions, respectively. The final computation time is bigger for the memory based circuits

than for the others. It is important to remember that the objective of this work was to show

that, when replacing a fully combinational circuit with a protected memory and a smaller

combinational circuit, we can have some benefits in terms of reliability, which for this

memory circuit was 4.7 for the column solution and more than 8 for the line solution,

respectively.

3.2 4-TAP, 8-BIT FIR FILTER MEMORY BASED CIRCUIT

In a second case study we implemented a 4-tap, 8-bit FIR filter. We compared the

fully combinational solution (Figure 3.5) with a solution using our approach, with memory

replacing part of the combinational circuit.

* * * *

+ + +

In 3 In 2 In 1 In 0

Coef 0 Coef 1 Coef 2 Coef 3

17 18 18

16 16 1616

Figure 3.5: Combinational circuit for the 8-bit FIR filter with 4 taps.

The filter implementation using memory to replace part of the combinational logic is

illustrated in Figure 3.6.

48

ROM MEMORY

(WITH COEF.)

IN0

IN1

IN3

1

1

1

+

IN2
1

10

REGISTER
10

10

11

y[6] y[7]y[5]y[4]y[3]y[2]y[1]y[0]y[17] y[8]

10

Circuit sensible to fault

Figure 3.6: 8-bit FIR filter with 4 taps, using memory.

The filtering function is performed in 8 cycles and the memory function can be

described by the following equation:

 (4)

where n is the bit position (from 0 to 7), k is the tap number (from 0 to 3) and M is the

order of the filter.

In our solution using memory, we pipelined the multiply and add operations, in order

to reduce the memory size. The comparison between the area of the combinational filter and

the memory one is shown in Table 3.3.

Table 3.3: Area results for the filter implementations in number of transistors.

Filter Circuit Combin.
Circ.

Flip-flops Memory RS cod./dec. Total

Combinational 16,494 - - - 16,494
Memory based 540 1,700 900 484 3,624

Since this is a pipelined filter, it was necessary to include a 10-bit adder to add the

partial products generated in each cycle, and drive the result to the output. We also included a

49

register to store the sum from one cycle to the next and an 8-bit shift register to shift and store

the 8 least significant bits, which are generated one per cycle.

Differently from the multiplier, it was not possible to simulate the injection of all

possible combinations of faults in the filter in an exhaustive way, because it would take too

long to get the results.

However, from the experience with a previous case study, where we noticed that only

a small number of randomly injected faults (less than one percent of the total number of

possible faults) was necessary to reach an approximately stable result, in terms of percentage

of faults that propagate to the output, we decided to use a randomly generated set of input

combinations and single/double faults injection to evaluate the AVF for the fully

combinational solution and for the one using memory.

To implement the fault injection in a faster way, the filter was implemented in VHDL

and both filter architectures have been synthesized in an FPGA (Altera EP20K200EFC484-

2X). The results are shown in Table 3.4, for single and double faults.

In this case study we can see, from Table 3.4, that the proportional AVF of the

memory solution was more than 20 times smaller than that of the combinational solution for

single and double simultaneous faults.

Table 3.4: AVF results for single fault in FIR filter implementations.

Circuit # of gates
that fail

Proportional
AVF (1 fault)

Proportional
AVF (2 faults)

Combinational 1,631 48,21 67.35
Memory 50 1.39 2.11

It is clear that the memory based solution has a greater performance overhead, but as it

was stated before, our objective with this work was to show the reduction of the AVF that one

can obtain when using a memory based circuit instead of the traditional combinational one,

since, as stated in the equation 2 from the previous chapter, the SER of a circuit is

50

proportional to its AVF. So, if we reduce the circuit AVF it is the same as reducing the circuit

soft error rate.

In this chapter, two different applications where traditional combinational circuits

were replaced by memory based ones to reduce their AVF were presented. We saw that,

depending on the application, and also on the designer strategy, different AVF reductions can

be achieved. Despite the good results obtained using this idea, it is not possible to propose a

memory based circuit for every combinational circuit that exists nowadays. Also, this idea

was proposed to improve only hardware modules, and sometimes it is simply too expensive to

convert a software algorithm into a hardware one to improve its reliability. This way, in the

next chapter a memory based core processor architecture is presented, as an evolution of the

idea proposed in this chapter.

51

4 MEMPROC: A MEMORY BASED, LOW-SER EFFICIENT CORE PROCESSOR

ARCHITECTURE

In the previous chapter a study on how the use of memory based circuits can affect the

AVF, and consequently the SER, of a circuit was presented. Despite the good results, the

proposed memory solutions imply some performance and area overheads and require a

different design for every application. Also, the costs involved to implement the proposed

idea for software applications might not be worth.

In this chapter, an innovative general purpose memory-based core processor, designed

to be reliable against SETs and SEUs, without adding significant performance or area

overhead is presented. At the same time, we favor a regular architecture that can be used to

enhance yield in future manufacturing processes. This architecture is called MemProc and

was presented in (RHOD, 2006b).

4.1 THE MEMPROC ARCHITECTURE

The processor architecture that is presented here is a multi-cycle 16-bit processor with

a Harvard architecture that performs its operations using a microcode memory. Figure 4.1

shows the main functional blocks of the proposed architecture.

52

ROM

RAM

Microcode

Memory

PC

ALU

Operation

Masks

Memory

Figure 4.1: MemProc overall architecture.

The microcode memory receives the initial address of the microcode that executes the

current operation from the ROM memory and generates the control signals for the data

memory, ALU, and operation masks memory. The operation masks memory is responsible for

passing the operation masks to the ALU. All arithmetic and logic operations results are stored

in the RAM memory, and the register bank is also mapped into this memory. Each logic or

arithmetic instruction takes at least 4 cycles to be executed. During the first cycle, the fetch

and decoding of the instruction are performed by the microcode memory, and all the operands

are fetched from the RAM memory during the second cycle. During the third cycle the

operation is executed, and its result is stored in the RAM memory during the fourth cycle.

4.1.1 The Macroinstruction

The macroinstruction of the MemProc architecture is 56 bits wide and is unique for all

types of instructions. In Figure 4.2, the macroinstruction format is illustrated, with its

different fields and the width of each field. The opcode field of the macroinstruction

represents the code of the operation that is being executed and is 8 bits wide. The operand1

and operand2 fields can indicate the address or the value of the operands used in the

53

instruction. The destination field indicates the destination address of the operation that is

being executed. In case of a branch instruction, the destination field indicates the address of

the branch.

opcode operand1 operand2 destination

8 16 16 16

55 0

Figure 4.2: Macroinstruction format.

As mentioned before, the MemProc architecture is a multi-cycle machine and,

depending on the instruction, the execution of the operation can take different numbers of

cycles. For instance, the instruction MOV can take from 2 to 4 cycles to be executed,

depending on the types of the operands. A complete list of the 48 instructions that were

implemented in MemProc up to now, and the number of cycles that each instruction takes in

the execution stage is in the Appendix A.

4.1.2 The Microcode

The microinstructions of the proposed architecture are 66 bits wide and composed by

three fields: the deviation address, the operation masks code and the control signals, as it can

be seen in Figure 4.3.

deviation. addr. oper. masks code control signals

32 7 27

65 0

Figure 4.3: Microinstruction format.

The deviation address field stores 4 possible deviation addresses in the microcode.

This field was introduced to allow deviations in the microcode to accelerate some instructions

and also to allow the reuse of the code. The operation masks code indicates to the “operation

masks memory” which are the operation masks that will be used in the next execution cycle.

54

The operation masks will be explained in more details in the next section. The control signals

field generates the control signals for all hardware structures of the architecture, such as:

memory enable, multiplexors selection and register enable signals.

4.1.3 The Arithmetic and Logic Unit - ALU

The MemProc architecture was designed with the purpose of reducing the area that is

more sensitive to SEUs and SETs. As mentioned before, there are several ways to protect

memory with low overhead, like EDAC or by using intrinsically protected memories like

MRAM, as it is used in this work. However, when it comes to protect the combinational logic,

the costs in area are relatively high. This way, in this architecture it is proposed to use

simplified combinational logic hardware and more memory elements to improve the

architecture reliability in the presence of particle hits. Therefore, due to its simplicity, the

ALU of MemProc is based on the Computational RAM approach (ELLIOTT, 1999).

The ALU is composed by 8:1 multiplexors, which are able to generate all the

minterms for a given 3-bit boolean function, according to the values of bits X, Y, and Z (or

M). Figure 4.4 depicts a MemProc ALU block for processing 1bit of data. The complete

MemProc ALU is 16-bit wide and its 16 blocks work in parallel, being able to perform bit

serial arithmetic and logic operations. To accelerate addition operations, two 8:1 muxes are

used, instead of a single one, as done in the Computational RAM approach; one is responsible

to calculate the sum and the other, to calculate the carry out.

The operation masks feed the ALU to calculate all arithmetic, logic and conditional

branch operations. Each line of the operation masks memory has 32 masks, with 8-bit width,

which gives a total of 256 bits of information. Figure 4.5 highlights a complete line of

operation masks used during the addition operation.

55

X Y Z M

3

8

RAM

8

Operation

code A

Operation

code B

shift

left shift

right

wired

or

Figure 4.4: ALU for one bit operation.

96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96

255 128

e8 e8 e8 e8 e8 e8 e8 e8 e8 e8 e8 e8 e8 e8 e8 e8

127 0

Figure 4.5: Operation masks used during the addition operation.

Figure 4.6 illustrates how the ALU works. In this figure, an addition operation for one

bit of the ALU is presented. One can see, from the truth table, that the hexadecimal values of

the operation masks for the “sum” and the “cout” (carry out) outputs of the multiplexors are

96 and e8, respectively. Also in Figure 4.6, one can see the presence of two wired-or buses.

These buses implement an “or” operation of all the multiplexors’ outputs. These wired-or

busse are extremely important to allow the control of stopping an arithmetic operation as soon

as the final result is ready, and also for the improvement in performance when executing

56

conditional branch instructions. The way these gains are achieved will be explained in more

details in the section that follows.

8

X Y Z M

3A B Cin Sum Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1
8

Operation

code B

(Cout)

Operation

code A

(Sum)

2-bit addition:

Truth table

96 e8

e8

96

wired or A

wired or B

Figure 4.6: 2-bit addition using MemProc ALU.

4.2 DESIGN STRATEGIES THAT IMPROVED PERFORMANCE

The MemProc architecture was designed to have a simplified combinational hardware

to reduce the sensible area of the architecture. As it was explained in the previous section, the

ALU is capable of 1-bit operations only; therefore, this introduces a performance degradation

for operations that need information from a previous cycle to compute the next cycle, like for

instance the addition operation, that needs the carry out from one cycle to calculate the sum

and the next carry out values. In order to accelerate some operations, we introduced the

wired-or buses and also an extra flip-flop called “M” to accelerate multiply operations.

The way MemProc achieves its high performance is based on the fact that it the

execution of any operation takes only the exact number of cycles necessary to get the

operation result. In traditional computer architectures, the ALU does its arithmetic and logic

57

operations using combinational hardware which takes always the same time to perform the

complete operation, regardless of the value of the operands. In MemProc, the hardware

executes only the number of cycles necessary to get the result, according to the carry

propagation chain. To explain it clearly, Figure 4.7 illustrates this paradigm with an 8-bit

addition operation.

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

0 1100000 1 1010000

0 0001000

0

MEMPROC

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

0 1100000 1 1010000

0 0001000

0

Traditional Architectures

used

not used

A = 5

B = 11

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

0 1100000 1 1010000

0 0001000

0

MEMPROC

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

0 1100000 1 1010000

0 0001000

0

Traditional Architectures

used

not used

A = 5

B = 11

Figure 4.7: 8-bit addition paradigm.

In Figure 4.7 we can see that MemProc needs to wait only for 5 of the 8 operating

units to complete their operations in order to get the result, which means that it takes 5/8 of

the time that traditional architectures require to perform this addition. To detect when the

operation is finished, MemProc uses the wired-or bus to evaluate when there are no more

carry outs to propagate, which means that the addition is finished. This way, we can say that

the proposed architecture takes advantage on the value of the operands. For instance, one

addition can require from 3 to 18 cycles to be performed, depending on the number of carries

to be propagated, which depends on the value of the operands.

Multiplications are also performed in order to take advantage of the value of the

operands, since the number of cycles depends on the number of bits equal to zero in the

operands. The multiplication operation is the same as a sequence of sums and shifts of one

58

operand, and the number of sums is proportional to the number of ‘1s’ that the operands have.

Therefore, the number of required cycles decreases as the number of bits equal to zero in the

operands increases.

So, in general, the lower the values of the operands the lower is the number of cycles it

will take to perform an operation. One could say that if the values of the operands are high the

proposed approach would not have any advantage. Nevertheless, in (RAMPRASAD, 1997)

results show that the transition activity for some multimedia benchmarks is more intense in

the 8 least significant bits. This means that, for this kind of application, most of the data tends

to be in the range from 0 to 255, and can be represented in 8 bits, which gives us a low

probability of the necessity of more than 8 carry propagations.

Other gains arising from the strategy of computing just the necessary can be achieved

when we are dealing with the “for loop” control structure. Most of the time, this loop structure

is used to count up by one,to control the number of repetitions of some block of code. If we

analyze just the addition operation present in this loop, we will see that this addition operation

produces no carry in 50% of the additions and only one carry in other 25% of the cases. This

way, we can assume that for this kind of loop structure, the MemProc architecture will take 3

cycles for 50% of the additions and 4 cycles for other 25%. More results related to MemProc

performance gains will be shown in the next chapter.

4.3 CODE GENERATION

In other to accelerate code generation, it was decided to generate the MemProc

program code based in another language. Instead of making a compiler or modifying an

existing one to, it was created a C program to work as a translator from the Java compiled

code to MemProc’s language. In Figure 4.8 the code generation process created for MemProc

is illustrated. During the first step, the application programmer writes the Java code of the

59

application. Since MemProc does not support dynamic space allocation, nor recursive

functions, the programmer can not use these programming resources when writing the Java

application code. Therefore, all variables and methods must be created statically to have their

space reserved. After the code is written, it is compiled and the mnemonic Java code (Java

bytecodes) is produced. At the next step, the code translator is applied and the MemProc

instruction code is obtained. Then, in the last step, the MIF generation program, also

developed as part of this work, is ran to obtain the Memory Initialization File (.mif) of the

MemProc program code.

Programmer

Java code

Compiler

javac

Mnemonic

code

iload_0

istore_2

iload_1

istore_3

getstatic

for(..;..;..) {

if(...)

a[i]=i;

}

Translator

MemProc

code

MOV 1fa, 10

CALL 5, 1f2, 2

MOV 1fe, 11

MOV 1fd, #8

RET 1f3

.mif file

Generator

MIF file

0 : 020000001001fa;
1 : 060005000201f2;
2 : 020000001101fe;
3 : 010000000801fd;
4 : 07000001f30000;
5 : 010000000001f9;
6 : 05001d00000000;
7 : 22000101fa01fe;

Developed as part of another work

Developed as part of this work
Figure 4.8: Code generation process for MemProc.

From the blocks that compose Figure 4.8, the code translator was the one that

demanded more time to be finished. That happened because the source code (the Java one), is

a stack based code, which in other words means that all operands need to be stacked before

they are used in any operation. On the other hand, the MemProc architecture is more like a

RISC one, which needs fewer instructions to perform the same operation. So, it was necessary

for the translator to make an intensive code analysis in other to find the correct operands for

each operation in the MemProc code.

60

5 MEMPROC: EXPERIMENTAL RESULTS

In order to evaluate the feasibility of the proposed architecture, both in terms of fault

tolerance, area, and performance, extensive simulations have been executed, to compare the

MemProc architecture with two different architectures: a 16-bit processor, with a 5-stage

pipeline, named FemtoJava (BECK, 2003b) and a well known RISC architecture, the MIPS

processor (PATTERSON, 2002). In the first section of this chapter the characteristics of the

two architectures that are being compared with MemProc are presented. The second section

shows the tools that were used to evaluate the architectures. At the third section the fault rate

and area evaluation experimental results are explained. Finally, in the last section, the

performance results of the proposed architecture are presented.

5.1 ARCHITECTURES COMPARED WITH MEMPROC

The first architecture that was compared with MemProc is the pipelined version of the

FemtoJava processor family. This processor family has a Harvard architecture that executes

Java bytecodes based on stack operations. The first version of the FemtoJava processor was

the multicycle version proposed by (ITO, 2001). The next version was the 16 and 32 bits, 5-

stage, pipelined version (BECK, 2003b), also called FemtoJava Low Power. In other to

explore dynamic parallelism and parallelism during compilation time, a superscalar and a

VLIW (Very Large Instruction Word) versions (BECK, 2004) have also been proposed. In

this work, the MemProc architecture is compared with the 16-bit 5-stage, pipelined version

presented in Figure 5.1.

Figure 5.1: FemtoJava pipeline block scheme.

61

The FemtoJava architecture illustrated in Figure 5.1 is a pipelined architecture with 5

stages: the instruction fetch stage, the decoding stage, the operand fetch stage, the write-back

stage and the execution stage. This architecture also counts with the forwarding unit in other

to accelerate the delivery of operands to the execution stage.

The other architecture that was used to evaluate the MemProc architecture is the 5-

stage pipelined MIPS illustrated in Figure 5.2. It is a Harvard architecture with a reduced

instruction set. Differently from FemtoJava, the MIPS architecture has the instruction decode

together with the operand fetch. On the other hand, the FemtoJava processor has the data

memory access together with the execution stage and in the MIPS processor they are in

different stages.

Figure 5.2: The pipelined MIPS architecture.

5.2 TOOLS USED IN THE FAULT INJECTION, PERFORMANCE AND AREA EVALUATION

All architectures were described in a tool named CACO-PS (BECK, 2003a). As the

name says, this tool is a cycle-accurate simulator, which performs the architectural behavioral

simulation cycle by cycle. The CACO-PS tool uses basically three descriptions files to work.

62

An architecture description file is used to list the components that take part of the

architecture, its inputs, outputs and control signals.

A behavioral description file describes all components that are part of the architecture.

In this file, the behavior of each component is described using the C language, and this

description allows each component to be instantiated as many times as necessary, and in any

architecture where it is required.

The third and last file is the power description file. This file has the description of the

function that will be executed to calculate the power consumption of the component,

according to its transition activity. In this work the power consumption was not evaluated,

therefore this file was not necessary.

The CACO-PS tool has the option to load the program and data codes from a memory

initialization file.

The FemtoJava architecture description file was already described by another student,

so it was only necessary to describe the MemProc architecture and the MIPS one in order to

run the performance evaluation. Both architecture description files can be found in the

Appendixes B and C respectively.

For the fault injection procedure it was necessary to add different components to the

architectural description file, in order to simulate the faulty behavior of all the three

architectures. To simulate the behavior of SETs in the combinational hardware, a component

to flip the selected bit of the hit component output just for the duration of one cycle was

created. On the other hand, if the component that was hit is a memory element, the kind of

event generated is a SEU, whose effects remain active until a new value is written in the

memory element. To simulate this faulty behavior, a function already present in the tool was

used to write values in memory elements.

63

To describe each architecture version for fault injection, it was necessary to add one

component to inject fault for each component in the architecture, according to the type of

event the component receives, SEU or SET. In other to accelerate the insertion of these extra

components for all the three architectures, it was created a C program that reads the

architecture description file and creates the architecture description file for fault injection

automatically, saving time and avoiding human errors in the conversion. To test if the

“conversion program” created the faulty architecture correctly, a simple test was done. The

“faulty” architecture ran a selected application without the fault injection and the program

result was compared with the normal architecture running the same application. This test was

repeated for all available applications and, since the final result was the same for both

architectures, it was verified that the “conversion program” did the conversion with no error.

In other to evaluate the maximum frequency each architecture supports, the

architectural critical paths of the three architectures were described in VHDL and synthesized

for a 0.35 µm cell library in the Leonardo Spectrum tool (MENTOR, 1981). This tool was

also used to evaluate the area consumption in terms of “equivalent gates” for the more

complex components such as the decoders and queues and registers of the FemtoJava and the

MIPS architecture. The other components were evaluated as follows: all AND, XOR, NAND,

NOR and NOT gates were considered to have the same area, equivalent to one “equivalent

gate” like the ones from the Leonardo tool. The 2:1 multiplexors were considered to be equal

to one “equivalent gate” and the other multiplexors were constructed with 2:1 multiplexors, to

be calculated as one “equivalent gate” for each 2:1 multiplexor.

64

5.3 FAULT RATE AND AREA EVALUATION

To evaluate the fault rate of the processors, random faults were injected during their

operation. During fault injection, the behavior of each processor was compared to the

behavior of its fault free version when executing the same application with the same data.

Since some faults may hit parts of the circuit which are not being used at a specific

moment in time, to detect if a fault has been propagated or not it is not necessary to compare

the value of all functional units or registers. It is only necessary to compare those components

that are vital for the correct operation of the system. For the FemtoJava and the MIPS

processors, the units to be checked are the program counter, in order to detect wrong

branches, and the RAM data and address registers during write operations, to identify silent

data corruption (SDC). In the case of MemProc, besides the program counter, the microcode

counter was checked to identify wrong branches and the write address and write data registers

contents were checked to identify SDC. Figure 5.3 depicts the fault injection scheme

implemented to measure fault rate in both processors. The CACO-PS tool has also been used

to implement the fault injection and detection circuits.

Gold

Processor

Fault

Sensitive

Processor

Random

Fault Injection

comparator

Error

Figure 5.3: Error detection scheme.

65

It is clear that the probability of a component being hit by a fault increases with the

area of the component. So, to be as realistic as possible, the random fault injector was

implemented following this probabilistic fault behavior. To do so, it was created a file with all

the important information about the components, such as component size in number of gates,

the component type (memory or combinational), number of outputs and outputs widths. When

the fault injection process starts, this component information file is loaded by the random

fault injector and is used to determine which is the component that fails in each fault injection

cycle, according to a probability based on its area.

Another important variable in the fault injection process is the amount of faults that

are injected and the interval between the fault injections. In this work, we decided to use a so

called environmental acceleration (MITRA, 2005), otherwise, we would have to wait for long

simulation times in order to get an error. To make calculations easier, we assumed that the

particle flow is able to produce 1 SEU or SET per cycle in the FemtoJava processor, which is

the one with the biggest sensible area. To calculate the corresponding number of faults per

cycle for the MIPS and the MemProc processors according to their sensible area and

maximum frequency, it was used the area and frequency information that was obtained with

the Leonardo Spectrum tool, as explained in the previous section. Table 5.1 illustrates those

results and the corresponding time between fault injections for all processors.

Table 5.1: Area and time between fault injections.

Architecture ROM
(bits)

Op. Masks
mem. (bits)

Opcode
mem. (bits)

of sensible
gates

Max. freq.
(MHz)

faults per
cycle

Time bet.
fault inj.

MemProc 1,792 19,712 40,326 1,409 254 1/130 514,3 ns
MIPS 2,488 - - 9,619 54 1/4 75,3 ns
FemtoJava 600 - - 23,918 33 1 30,3 ns

The first column of Table 5.1 presents the size of the ROM memory, also know as

code memory, for the “bubble sort” application. We can see that the FemtoJava architecture

has the lowest memory consumption. That happened because the Java code operates using the

66

operands that are at the top of the stack and stores the result of the operation at the top of the

stack automatically. This strategy saves some space, since the instruction does not need to

indicate where the operands are, nor where the result needs to be stored. Also, the MemProc

and the MIPS instructions have always the same size, even if the instruction does not use all

its width. On the other hand, the Java code has instructions with 1, 2, and 3 bytes of width,

and consequently does not waste memory space as the MIPS and the MemProc do.

Consequently, the FemtoJava decoder is more complex and demands more area than the

MIPS and the MemProc ones.

In Table 5.1 we can see why MemProc is called a memory-based processor. In the

MemProc architecture, the combinational circuit is very small when compared to the size of

its memory elements. In our approach, all memory contents are not sensible to faults, since we

are simulating the use of fault tolerant memory technologies, such as MRAM, FRAM, and

flash memories, already referred to. Even for the MRAM and FRAM technologies, the

decoding circuit is not tolerant to faults. So, to be as realistic as possible, the area

corresponding to these circuits was also counted together with the sensible gates of MemProc,

and the decoding circuit was constructed as a separated component at the architecture

description, to have its behavior simulated during the fault injection. The two MemProc

memories have more than 60,000 bits together. If we consider that each 2 bits of memory

have the same area of one equivalent gate, then the total area introduced by the memory

components is equal to more than 30,000 gates, which makes MemProc have the largest area

among the three processors. However, the area corresponding to the memory elements is not

sensible to faults.

The fault injection process injected random faults according to the probability of the

component being hit, together with the calculated time between fault injections, which is in

the 8th column of Table 5.1. In this process, faults were injected until one error or a silent data

67

corruption (SDC) was detected. This process was repeated 100 times and the mean time to

failure for these 100 errors for all the three architectures was calculated and is presented at

Table 5.2.

Table 5.2: Fault rates for all architectures.

Architecture # of injected faults # of errors # of SDC # of cycles MTTF (µµµµs)
MemProc 4,943 98 2 865,412 31.83
MIPS 2,160 90 10 4,320 1.83
FemtoJava 2,127 84 16 2,127 0.64

Table 5.2 lists the fault injection results for the MemProc, MIPS and Femtojava

processors. In the second column, the number of simulated injected faults in the entire process

until the detection of 100 errors or SDCs is shown. The third and fourth columns present the

number of errors and SDCs that occurred during this process, respectively. The fifth column

shows the total number of cycles that were necessary to detect all 100 errors and SDCs. In the

last column, one can see the corresponding Mean Time to Failure value. as one can see, the

MTTF of the MemProc architecture is more than 49 times bigger than the FemtoJava’s one.

When comparing the Mean Time to Failure of MemProc and the MIPS architecture,

one can see that the MTTF of the proposed architecture is more than 17 times bigger than the

MIPS one.

These results show the significant reduction in the MTTF that can be obtained by

using the proposed architecture. In the next section, performance results are presented, and

show that, despite the fault tolerance improvement introduced by the MemProc architecture,

no performance degradation is observed at the proposed architecture when compared to the

FemtoJava and the well known MIPS architectures.

68

5.4 PERFORMANCE EVALUATION

The performance evaluation was done using four different application programs, with

different processing characteristics: three sort algorithms (the bubble, insert and select sort

algorithms), one DSP algorithm, and the IMDCT (Inverse Modified Discrete Cosine

Transform) algorithm, part of the MP3 coding/decoding algorithm, were executed in

MemProc, MIPS and FemtoJava architectures. The obtained results are shown in Table 5.3.

Table 5.3: Performance when executing benchmark applications.

Application MIPS (54 MHz) FemtoJava (33 MHz) MemProc (254 MHz)
Performance
ratio compared

to:
 # of

cycles
Comp.
time (µµµµs)

of
cycles

Comp.
time (µµµµs)

of
cycles

Comp.
time
(µµµµs)

FJ MIPS

Bubble Sort 2,280 42.2 2,468 74.8 4,720 18.4 4.06 2.29
Insert Sort 1,905 35.3 1,571 47.6 2,508 9.8 4.86 3.60
Select Sort 1,968 36.4 1,928 58.4 2,501 9.7 6.02 3.75
IMDCT 38,786 718.3 41,061 1,244.2 142,951 562.8 2.23 1.28

From Table 5.3 we can see that MemProc executes the bubble sort algorithm in

approximately 4.7 thousand cycles, while FemtoJava and MIPS take the half of the number of

cycles. As stated before, MemProc requires several cycles to perform arithmetic (bit serial)

operations, and the number of cycles also depends on the value of the operands. That is the

reason why the number of cycles spent by MemProc is higher than the other architectures. On

the other hand, MemProc’s critical path is determined by the access time of the microcode

memory and the operational masks memory, while in FemtoJava and MIPS the critical path is

determined by the multiplier delay. So, the maximum frequency of MemProc is more than 7

times higher than that of FemtoJava and almost 5 times higher than that of MIPS, and, as

consequence, the MemProc is more that 4 times faster than FemtoJava and more than 2 times

faster than MIPS when running the sort algorithms.

69

If we look at the results when executing IMDCT we can see that MemProc was only

2.23 times faster than FemtoJava and 1.28 times faster that MIPS. That happened because this

algorithm makes intensive use of the multiply instruction, which can take up to 48 cycles to

be executed in MemProc. It is important to mention here that MemProc is a multi-cycle

machine, while FemtoJava and MIPS are pipelined ones, which are expected to be faster than

their multi-cycle versions. So, we can conclude that if we were comparing MemProc with the

multicycle versions of FemtoJava and MIPS, performance results would be even better. Also,

the performance gains of MemProc come from the fact that the number of cycles it takes to

perform an operation depends on the operation and on the operands value. For instance, let us

consider that FemtoJava needs 1 cycle to perform one add operation. Since MemProc’s

frequency is more than 7 times higher, if the operands are such that the number of carry

cycles is less than 7, MemProc will finish the addition operation earlier than FemtoJava.

To evaluate how the value of the operands contributes to the MemProc performance

gains, the mean time to execute each type of instruction in the MemProc and the MIPS

architectures were simulated for the sorts and the IMDCT algorithms. The results are

presented in Figure 5.4. The MIPS architecture always takes the same time to execute each

type of instruction, so its results are independent to the application.

Figure 5.4: Mean time to execute each type of instruction for all applications

0
10
20
30
40
50
60
70
80
90
100

Move Uncond. Branch Cond. Branch Sum Logic and Arith.
Type of instruction

IMDCT MemProc
Buble MemProc
Select MemProc
Insert MemProc
MIPS - all aplications

Time (ns)

70

In Figure 5.4 one can see that MemProc executes move instructions, conditional and

unconditional branches faster than MIPS. On the other hand, it is slower than MIPS to

execute logic and arithmetic operations, except for add instructions. That happened because

the proposed architecture takes larger number of cycles to implement the multiply and the

subtraction instructions. In the IMDCT application, the percentage of arithmetic and logic

instructions is 63%, which explains why MemProc’s performance for this application was

slower than for the sort applications, in which the percentage of logic and arithmetic

instructions was 51%, 36%, and 49% for bubble, select, and insert, respectively. One can

conclude that the lower the percentage of arithmetic instructions, such as multiplications and

subtractions, the higher is the performance of MemProc in comparison to MIPS. This results

show that MemProc has greater performance when executing control flow than data flow

applications. The reason for the good performance when executing conditional branches is the

unique way MemProc executes the comparison. In traditional architectures, such as MIPS and

FemtoJava, the comparison in the conditional branch is done by the subtraction operation. If

MemProc would do the comparison using subtraction it would take 18 cycles to get the result

of the comparison due to the time it takes to get the last carry propagation, which indicates the

signal of the subtraction. The way MemProc does the comparison of two values is by

identifying which is the value that has the most significant level ‘1’ bit in a position that the

other value does not have, by using binary search. For instance, let us consider the example in

Figure 5.5.

A (14) - 1110

B (10) - 1010

Figure 5.5: The way MemProc does comparisons.

71

In Figure 5.5, two values in decimal, 14 and 10, and their binary representations are

shown. From this figure, one can see that the value that has the most significant level ‘1’ bit in

a position that the other value does not have is the ‘A’ value, therefore the ‘A’ value is greater

than the ‘B’ value. MemProc performs binary search to find which of the two values is the

biggest and, for a value of 16 bits, MemProc takes at most 4 cycles to identify the biggest one.

In case of two negative values, the value that has the most significant level ‘1’ bit in a

position that the other value does not have is the lowest one, due to the 2’s complement

representation for negative values. Consequently, MemProc takes 1 cycle to identify if any of

the two numbers is negative, 1 more to see if they are equal and 4 more to identify which is

the biggest one, which gives us a total of only 6 cycles at most, to perform any comparison

operation. As it was said before, if MemProc would do comparison trough subtraction, it

would take 18 cycles, which is 2 times more cycles than MemProc actually takes.

72

6 I-IP: A NON-INTRUSIVE ON-LINE ERROR DETECTION TECHNIQUE FOR

SOCS

The growing demands and competitive needs of the embedded systems market, with

ever shrinking time to market requirements, has made the use of SoCs incorporating

previously tested IPs, or the use of FPGAs with built-in factory supplied processors, preferred

alternatives to provide fast deployment of new products. As to the software of SoCs, the use

of standard library applications, for which the source code is not always available, provides

another path to fast product development. Even for these systems, the technology evolution

towards nanoscale brings along higher sensitivity of the hardware to radiation induced soft

errors. For this kind of SoCs, neither the hardware nor the software can be modified, either

because of the high costs involved in adding extra hardware, or simply because the hardware

is not accessible or the source code is not provided.

In this chapter we describean infrastructure IP (I-IP) that can be inserted in the SoC

without any change in the core processor architecture, able to monitor the execution of the

application and detect control flow and instruction execution errors generated by transient

faults. In the first section the I-IP approach proposed in (LISBÔA, 2006) is presented,

together with a description of its internal blocks. The next section describes the adaptations

that were implemented in the I-IP for the MIPS processor case study.

6.1 THE PROPOSED APPROACH

The system to be protected is a SoC where a processor core is used to run a software

application, and the proposed approach can be used to harden applications executed by any

processor core, independent of its internal architecture. In order to confirm this assumption,

we have conducted experiments aiming the implementation of the I-IP in the well known and

widely used MIPS RISC processor. The proposed I-IP is inserted between the memory storing

73

the code and the main processor core, and monitors each instruction fetch operation. In this

work it is assumed that the bus connecting the instruction cache to the processor is not

accessible from outside the core, as it often happens for processor cores, and therefore it is

assumed that the instruction cache either does not exist, or is disabled. Moreover, it is

considered that the instruction memory and the data memory located outside the processor are

hardened with suitable error detection/correction codes or somehow protected, and so the data

read from memory can be considered reliable.

6.1.1 The I-IP

The I-IP aims at minimizing the overhead needed to harden a processor core, with

particular emphasis in minimizing the amount of memory used by the hardened application,

and in being applicable even when the application’s source code is not available, by

exploiting the concepts described in the following paragraphs.

Instruction hardening and consistency check: data processing instructions are executed

twice, producing two results that are checked for consistency; and an error is notified

whenever a mismatch occurs.

Control flow check: each time the processor fetches a new instruction, the fetch

memory address is compared with the expected one, and an error is notified if a mismatch is

detected.

As stated before, the I-IP is inserted between the processor core and the code and data

memories, as illustrated in Figure 6.1, with the indication of the address bus, control bus and

data bus. While the I-IP must be tailored to the specific core processor in a given SoC, the

architecture and the technique described here are generic, and can be implemented in any SoC

in which additional modules can be inserted.

74

µP I-IP MEMORIES

dbus

cbus

abus

ERROR

dbus

cbus

abus

Figure 6.1: I-IP overall architecture.

Whichever the core processor existing in the SoC, the I-IP implementing the concepts

of the proposed technique works as follows.

Instruction hardening and consistency check: the I-IP decodes the instructions fetched

by the processor. Each time a data processing instruction is fetched, like that shown in Figure

6.2, whose format is opcode dst,src1,src2, and which is stored in memory at address

FETCH_ADX, the I-IP replaces it with the sequence of instructions in Figure 6.3, which is

sent to the processor.

FETCH_ADX: opcode dst,src1,src2

Figure 6.2: Original instruction.

 store I-IP-adx,src1
 store I-IP-adx,src2
 opcode dst,src1,src2

 store I-IP-adx,dst
 branch FETCH_ADX+OFFSET

Figure 6.3: Source operands and result fetching.

Therefore, from the point of view of the processor, in this case the fetched instructions

are no more those contained in the code memory, but those issued by the I-IP. The sequence

of instructions that replaces each data processing one includes two instructions whose purpose

75

is to send to the I-IP the value of the source operands of the instruction. The third instruction

(in boldface) is the original instruction coming from the program, while the fourth one is used

to send to the I-IP the computed result. Finally, the last instruction is used to resume the

original program execution, starting from the instruction following the original one, which is

located as address FETCH_ADX+OFFSET, being OFFSET the size of the original instruction.

Concurrently to the main processor, the I-IP executes the fetched data processing instructions

by exploiting its own arithmetic and logic unit, and compares the obtained results with that

coming from the processor. In case a mismatch is found, it activates an error signal, otherwise

the branch instruction is sent to the core processor, in order to resume its normal program

flow.

Control flow check: concurrently with instruction hardening and consistency check,

the I-IP also implements a simple mechanism to check if the instructions are executed

according to the expected flow. Each time the I-IP recognizes the fetch of a memory transfer,

a data processing, or an I/O instruction stored at address A, it computes the address of the next

instruction in the program (Anext) as A+offset, where offset is the size of the fetched

instruction. Conversely, each time the I-IP recognizes the fetch of a branch instruction, it

computes the address of the next instruction in the two cases corresponding to the branch

taken situation (Ataken) and to the branch not taken one (Anext). The former is computed taking

into account the branch type, while the latter is computed as A+offset, where offset is the size

of the branch instruction. When the next instruction is fetched from address ‘D’, the I-IP

checks if the program is proceeding along the expected control flow by comparing the value

of D with the destination address calculated as described here. If D differs from both Anext and

Ataken, the error signal is raised to indicate that a fetch from an unexpected address has been

attempted.

76

6.1.2 The I-IP Modules

The I-IP that was developed is organized as shown in Figure 6.4, and it is composed of

the following modules:

1) CPU interface: connects the I-IP with the processor core. It decodes the bus

cycles the processor core executes, and in case of fetch cycles it activates the

other modules of the I-IP.

2) Memory interface: connects the I-IP with the code and data memories, to allow

access to the program instructions and to the data sent by the processor. This

module executes commands coming from the “Fetch logic”, and handles the

details of the communication with the memory.

3) Fetch logic: issues to the “Memory interface” the commands needed for

loading a new instruction in the I-IP and feeding it to the “Decode logic”.

4) Decode logic: decodes the fetched instruction, whose address in memory is A,

and sends the details about the instruction to the “Control unit”. This module

classifies instructions according to three categories:

i. Data processing: if the instruction belongs to the set of instructions

that the I-IP is able to harden, which is defined at design time, the I-

IP performs instruction hardening and consistency check.

Otherwise, the instruction is treated as “other”, as described in item

“c”. Moreover, for the purpose of the control-flow check, the

address Anext of the next instruction in the program is computed, as

described previously.

ii. Branch: the instruction may change the execution flow. The I-IP

forwards it to the main processor and it computes the two possible

77

addresses for the next instruction, Anext and Ataken, as described

previously.

iii. Other: the instruction does not belong to the previous categories.

The I-IP forwards it to the main processor and only computes the

address of the next instruction in the program (Anext), , as described

previously.

5) Control unit: supervises the operation of the I-IP. Upon receiving a

request for an instruction fetch from the “CPU interface”, it activates

the “Fetch logic”. Then, depending on the information produced by the

“Decode logic”, it either issues to the main processor the sequence of

instructions summarized in Figure 6.3, to implement instruction

hardening and consistency check, or it sends to the processor the

original instruction. Moreover, it implements the operations needed for

control-flow check. Finally, it receives interrupt requests (IRQs) and

forwards them to the processor core at the correct time. This means

that, in case an IRQ is received by the I-IP during the execution of a

substitute sequence of instructions sent by the I-IP to the core

processor, this IRQ will be forwarded to the core processor only after

all the hardening instructions have been fully executed.

6) ALU: it implements a subset of the main processor’s instruction set.

This module contains all the functional modules (adder, multiplier, etc.)

needed to execute the data processing instructions the I-IP manages. Its

complexity varies according to the set of instructions to be hardened,

which is chosen at design time.

78

CPU interface

Memories interface

Fetch
logic

Decode
logic

ALUControl
Unit

abus dbus cbus

abus dbus cbusIRQ

Figure 6.4: Architecture of the I-IP.

Two customization phases are needed to successfully deploy the I-IP in a SoC:

Processor adaptation: the I-IP has to be adapted to the main processor used in the SoC.

This customization impacts the “CPU interface”, the “Memory interface”, the “Fetch logic”,

and the “Control unit” only. This phase has to be performed only once, each time a new

processor is adopted. Then, the obtained I-IP can be reused each time the same processor is

employed in a new SoC.

Application adaptation: the I-IP has to be adapted to the application that will be

executed by the main processor (mainly affecting the set of data processing instructions to be

hardened by the I-IP). This operation impacts the “Decode logic” and the ALU of the I-IP, as

it defines which instructions the I-IP will execute and check. In this phase, designers must

decide which of the instructions of the program to be executed by the main processor have to

be hardened. The application adaptation phase may be performed several times during the

development of a SoC, for example when new functionalities are added to the program

running on the main processor, or when the designers tune the SoC

area/performance/dependability trade-off.

79

6.2 PROCESSOR AND APPLICATION ADAPTATIONS FOR MIPS

In this section we will present the processor and application adaptations that were

implemented in the proposed I-IP to harden the instruction execution and the control flow of

the widely used RISC MIPS processor. The MIPS used in our experiments has a 16-bit RISC

architecture, with a 5-stage pipeline, and no branch prediction. The selection of this

architecture was due to its widespread use in the implementation of SoCs by the industry.

Because the MIPS architecture has a 5-stage pipeline, with fetch, decode, execution,

memory write and write back stages, the I-IP works (only from the logical standpoint) as

being an additional stage, between the fetch and the decode stages. That happens because the

I-IP requires one cycle to decode the fetched instruction and decide which instruction(s) to

send to the processor, and that makes the processor receive the fetched instruction one cycle

later.

Due to this virtual extension of the number of pipeline stages, the I-IP needs to send a

different sequence of instructions, depending on the fetched one, to prevent erroneous

situations:

1) In the case of an unconditional branch, the number of instructions that need to

be flushed from the pipeline is increased by one, because, as explained before,

the I-IP works as an extra pipeline stage. To correct this situation, the I-IP

sends to the core processor an extra nop (no operation) instruction, each time

an unconditional branch is fetched.

2) When a jal (jump and link) - a subroutine call instruction - is executed, the

MIPS processor saves the subroutine return address in a register. Since the I-IP

causes a delay of one cycle in the execution of instructions, the saved address

is also one cycle ahead the correct one. To solve this problem, when fetching a

jal instruction the I-IP sends to the core processor one instruction that

80

restores the PC value to the correct one, followed by a j (jump) instruction,

instead of only sending the jal one. The first instruction is used to save the

correct address in the register that is used to store the return address, and the j

instruction performs the jump to the subroutine entry point;

3) In case of a jr (jump through register) instruction, the I-IP needs to get the

address value stored in the register that indicates the address, to check if the

branch was taken correctly. Therefore, the I-IP has to provide a sw (store

word) instruction to receive the target address of the branch before the original

jr instruction is executed.

Due to the pipelined architecture of MIPS, the I-IP must wait a few cycles until a

branch is executed and only then compare the calculated destination address with the one in

the program counter. Therefore, the I-IP has an internal circular register file, used to store up

to four destination addresses, that will be compared to the program counter a few cycles later.

In the next chapter the experimental results of the I-IP alternative for the MIPS RISC

processor are presented and compared with the results presented in (LISBOA, 2006).

81

7 I-IP EXPERIMENTAL RESULTS

This chapter presents the reduction of failures that can be obtained by applying the I-

IP technique to the MIPS architecture and compares the achieved results with those of the

implementation of the I-IP in the 8051 processor obtained in (LISBOA, 2006). In the first

section, the fault injection procedure that was implemented in order to test the proposed IP is

described. The second section presents the fault detection results obtained for the two

architectures, the 8051 and the MIPS, together with the area and performance overhead

discussions.

7.1 FAULT INJECTION EXPERIMENTS

To evaluate the performance of the I-IP in instruction hardening and control flow error

detection, the tool named CACO-PS (Cycle-Accurate Configurable Power Simulator),

described in a previous chapter, was used to simulate the architecture of the SoC and check

the results of fault injection.

The I-IP and the MIPS architectures were described in the language used by CACO-

PS. The fault model used in all experiments is the SEU in internal memory elements of the

core processor. During the fault injection procedure, 2,000 faults were injected randomly in

time and space, causing SEUs in randomly chosen bits of the MIPS architecture registers,

while executing a software implementation of the Viterbi algorithm for encoding a stream of

data, like it was done in (LISBOA, 2006) for the 8051 processor.

To detect if a fault caused an error, two copies of the SoC (including the MIPS core

processor, the I-IP and independent code memories), both running the same application, have

been used. Faults have been injected in one of the two architectures, while the other remained

free of faults. Then, at every core processor cycle, the simulation tool compared the value of

the program counters from both copies, to check if a control flow error occurred. In order to

82

check if an instruction execution error occurred, the RAM memory content was also

monitored, by comparing the address and the data of the memory write operations.

At the same time, all errors detected by the I-IP were recorded in a log file, indicating

the type of error that was detected and other information used in the analysis of the simulation

results, which will be discussed in the next section. Figure 6.5 illustrates the error detection

scheme described here.

Golden

Processor

Fault

Sensitive

Processor

Random

Fault Injection

comparator

Error

I-IPI-IP

MemoryMemory

Figure 6.5: Error detection scheme.

To evaluate how the quantity of hardened instructions impacts the area and

performance overheads, two experiments were implemented, one hardening only the ADDU

instruction and the other hardening the ADDU, ANDI and SRA instructions. In the MIPS

experiment, the choice of instructions to be hardened in the was based on runtime statistics,

shown in Table 6.1, and not on static analysis of the code, as in the 8051 experiment.

83

Table 6.1: Runtime frequency of instructions.

Viterbi execution
(7,182 instructions)

Instruction Frequency %
LW
SW
ADDU
ANDI
SRA
ADDIU
SLL
SUBU
JALL
SRL
JR
Others

2,105
1,349
1,072
716
716
429
271
152
77
76
76

143

29.3
18.8
14.9
10.0
10.0
6.0
3.8
2.1
1.1
1.0
1.0
2.0

Because the experiments with the MIPS core have been done using a cycle-accurate

simulator, only 1,000 faults have been injected in each of the implementations of the I-IP with

the MIPS core, and the obtained results are shown in Table 6.2.

Table 6.2: Error detection results for the two architectures.

Application 8051 MIPS

Hardened Instructions

INC INC
ADD

ADDU ADDU
ANDI
SRA

Reduction of failures (%) 81.3 87.5 74.5 79,2
Area overhead due to I-IP (%) 13.1 15.7 12.7 12.9
Performance overhead (%) 292.0 314.0 99.0 196.8

7.2 RESULT ANALYSIS

The experiments results described in (LISBOA, 2006) have shown that not all the

faults can be detected by the I-IP in the 8051 processor. Indeed, some failures have been

observed for the hardened SoC. Some of the escaped faults affected memory elements that

change the configuration of the processor core. For example, they change the register bank

select bit, switching from the used register bank to the unused one. This kind of fault makes

84

both the I-IP and the main processor fetch the operand from a wrong source, which makes

them produce the same wrong operation result. Since the I-IP detects faults by testing if the

two results are different, these faults escape from the error detection mechanisms provided by

the I-IP. The other type of faults that escaped affect the execution of branch instructions in

such a way that the taken branch is consistent with the program control flow, but it is taken to

the wrong destination. A typical example of this type of fault is an SEU affecting the carry bit

of the processor status word that hits the SoC before a conditional branch is executed. In this

case, the wrong execution path is taken, based on a wrong value of the carry flag. However,

the control flow is transferred to a legal basic block, which is consistent with the program’s

control flow, and therefore it escapes the control flow check that the I-IP employs. Finally,

some of the escaped faults affected un-hardened instructions, mainly the LW (load word) and

the SW (store word) instructions, due to its high occurrence in the program.

When it comes to the area overhead analysis, one can see from Table 6.2 that the I-IP

introduces a slightly smaller area overhead in the MIPS based SoC, due to the fact that the

MIPS core processor is much more complex, and therefore larger, than the 8051

microcontroller. However, the reduction was not very significant, because the I-IP

implemented with the MIPS core must keep track of the evolution of the instructions inside

the pipeline, which also requires a more complex hardware than that of the I-IP for the 8051.

Concerning performance, the implementation for MIPS has provided a significantly smaller

overhead. At this point, it is worth to recall that the performance overhead is mainly due to

the execution of additional instructions sent by the I-IP to the core processor, as it was

presented in the previous chapter, each time an instruction that must be hardened is fetched

from memory by the core processor.

When analyzing the percentage of reduction of failures, one can see that the ability to

detect faults in the MIPS implementation was smaller than that in the 8051 implementation.

85

The fault model used in all experiments is the SEU in internal memory elements of the core

processor. Therefore, since the MIPS processor is pipelined, there is a larger amount of

memory elements subject to SEUs in its architecture than in the 8051 microcontroller, where

most of the memory elements are registers used for data or address storage, not for control.

The use of a cycle-accurate simulator in the experiments with the MIPS processor,

however, provided more information about the cases in which faults are not detected by the I-

IP, thereby allowing a more detailed analysis of the problem. So, besides those cases already

mentioned for the 8051 microcontroller, our analysis has shown that, among the undetected

faults, a large number was due to SEUs affecting the register file of the MIPS processor

before the operands are read and their values forwarded to the I-IP. In those cases, the same

corrupted data values are used by the core processor and by the I-IP during the parallel

execution of the data processing instruction, and therefore the results are the same and no

error is flagged. These findings point out that the protection of some internal memory

elements of the core processor, such as the register file, would be an improvement factor for

the fault coverage, when the approach proposed here is applied.

86

8 CONCLUSIONS AND FUTURE WORK

8.1 CONCLUSIONS

In this work, two candidate solutions to cope with the SEU and SET problem that is

concerning designers of digital systems for future and even current technologies were

presented. The first solution presented here was the MemProc processor core architecture,

based on the use of memory technologies not sensible to SEU and reduced combinational

circuits. The second solution was the I-IP core for the MIPS processor, which is proposed for

cases where neither the hardware nor the software of the system can be modified.

Both solutions have their pros and cons. As an example, in the MemProc case the final

area of the solution, increased mainly due to the two memories (the microcode and the

operation masks memories), was more than 2 times larger than the one in MIPS and 1.3 times

than that of FemtoJava, but on the other hand, the fault tolerance and performance results

have shown a 17 times bigger mean time to failure, and more than 1.2 performance gain when

compared to MIPS and more than 49 times bigger MTTF and 2.2 performance gain when

compared to FemtoJava. The proposed architecture, while not being a final solution, reflects

the focus in the search for new processor design alternatives that might be used in the future,

when current ones will start to fail due to the weaknesses of new technologies. It innovates in

several design features, even providing better performance when compared to a well known

architecture for embedded applications (the MIPS processor), while providing much more

reliability against transient faults.

In the case of the I-IP core, results have shown that this approach can be implemented

for any kind of architecture, either RISC (like the MIPS case study presented here) or CISC

(like the 8051 presented in (LISBOA, 2006)). Although the performance overheads are

considerably high, due to the number of instructions hardened, the area overhead is below

87

15.7%, with more than 74.5% of the errors detected. The great advantage of this approach is

that it is neither hardware nor software intrusive, which makes it easily adaptable for any kind

of processor core, with the possibility of different configurations in the number of hardened

instructions and control flow error detection.

In this work, two different solutions were presented to cope with particle hit induced

events that is foreseen in the new technologies. Although the presented solutions do not

eliminate the possibility of a soft error occurrence, a significant reduction in the soft error rate

and error detection percentage, with considerably low overheads, were achieved with the

solutions here presented, which represent an important step towards a complete and feasible

solution for reliable systems in future technologies.

8.2 FUTURE WORK

The MemProc processor architecture presented here has shown great performance

results due to the architectural innovations that accelerated addition and comparison

operations, as it was described in a previous chapter. Although, some operations, such as

subtraction and multiplication, still need to be improved in other to reduce the number of

cycles they take to be executed, which are now 18 for the subtractions, and from 35 to 49 for

the multiplications. Another point that can be improved in the MemProc architecture is the

reduction of the size of the microcode and the operation masks memories, which will

positively impact the area overhead introduced by these components.

In the case of the I-IP, the next steps will be the repetition of the experiments with a

broader set of benchmark applications, and the development of tools to automate the

generation of new I-IP versions for other core processors, according to the set of instructions

that need to be hardened, and also the type of control flow instructions to be monitored.

88

Since this work proposes two widely different solutions, an innovative and interesting

evolution of this work is the integration of both solutions in an unique architecture designed

for fault tolerant applications. This way, the I-IP core will have to be modified to harden the

MemProc instruction set and monitor the two main sources of control deviation, which are the

microcode and the ROM memories. Since the MemProc architecture is vulnerable at the

instruction execution sector, the I-IP would complement the good results of MemProc by

hardening the instructions that are being executed. On the other hand, the I-IP vulnerability

stands at the memory elements, which in the MemProc case are hardened by the MRAM

technology. This way, the integration of these two solutions promises to provide good results

in terms improving the fault tolerance during the execution of critical applications.

89

REFERÊNCIAS

AHO, A.; SETHI, R.;ULLMAN, J. Compilers: principles, techniques and tools. Boston:
Addison-Wesley Longman Publishing Co., Inc, 1986. 796 p. ISBN:0-201-10088-6.

ALEXANDRESCU, D.; ANGHEL, L.; NICOLAIDIS, M. New methods for evaluating the
impact of single event transients in VDSM ICs. In: IEEE INTERNATIONAL SYMPOSIUM
ON DEFECT AND FAULT TOLERANCE IN VLSI SYSTEMS WORKSHOP, DFT, 17.,
Vancouver, Canada, November 2002. Proceedings… Los Alamitos, CA: IEEE Computer
Society, p. 99-107, 2002. ISBN: 0-7695-1831-1.

ALKHALIFA, Z. et al. Design and evaluation of system-level checks for on-line control flow
error detection. IEEE Transaction on Parallel and Distributed Systems. [S. l.] v. 10, n. 6,
p. 627-641, June 1999.

ANGHEL, L.; NICOLAIDIS, M. Cost reduction and evaluation of a temporary faults
detection technique. In: DESIGN, AUTOMATION, AND TEST IN EUROPE
CONFERENCE, DATE, Paris, France, 2000a. Proceedings… [S. l.]: ACM, Mar. 2000, p.
591-598.

ANGHEL, L.; ALEXANDRESCU, D.; NICOLAIDIS, M. Evaluation of soft error tolerance
technique based on time and/or space redundancy. In: SYMPOSIUM ON INTEGRATED
CIRCUITS AND SYSTEMS DESIGN, SBCCI, 13., Manaus, Brazil 2000. Proceedings…
Los Alamitos, CA: IEEE Computer Society, Sept. 2000b, p. 237-242.

AUSTIN, T. M. DIVA: A dynamic approach to microprocessor verification. The Journal of
Instruction-Level Parallelism. [S. l.], v. 2, May. 2000. Disponível em:
<http://www.jilp.org/vol2>. Acesso em: November 2006.

BAUMANN, R. C. et al. H. Boron compounds as a dominant source of alpha particles in
semiconductor devices. In: IEEE INTERNATIONAL RELIABILITY PHISICS
SYMPOSIUM, 1995, Las Vegas, USA. Proceedings… Los Alamitos, CA: IEEE Computer
Society, p. 297–302, 1995.

BAUMANN, R. C. Silicon amnesia: a tutorial on radiation induced soft errors. In: IEEE
INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM, 2001. [S. l.] Technical Note.
O arquivo pdf contendo os slides pode está disponível mediante requisição ao autor.

BAUMANN, R. C. Soft errors in advanced computer systems. IEEE Design and Test of
Computers, v. 22, n. 3, p. 258-266, May/June. 2005.

BECK Fo, A. C. S. et al. CACO-PS: a general purpose cycle-accurate configurable power-
simulator. In: BRAZILIAN SYMPOSIUM ON INTEGRATED CIRCUITS AND SYSTEMS
DESIGNS, SBCCI, 16., São Paulo, Brazil, 2003. Proceedings… Los Alamitos, CA: IEEE
Computer Society, p. 349, Sept. 2003a.

90

BECK Fo, A. C. S.; CARRO, L. Low power java processor for embedded applications. In:
INTERNATIONAL CONFERENCE ON VERY LARGE SCALE INTEGRATION, VLSI-
SOC, 2003, 12., Darmstadt, Germany. Proceedings… [S. l.: s. n.], 2003b. p. 239-244.

BECK, Fo. A. C. S. et al. A VLIW low power java processor for embedded applications. In:
SYMPOSIUM ON INTEGRATED CIRCUITS AND SYSTEMS DESIGNS, SBCCI, 17.,
Pernambuco, Brazil, Sept. 2004, Proceedings… New York, NY: ACM Press, Sept. 2004, p
157-162.

BERNARDI, P. et al. A new hybrid fault detection technique for systems-on-a-chip, IEEE
Transactions on Computers, [S. l.], v. 55, n. 2, p. 185-198, Feb. 2006.

BOSSEN, D.C. CMOS soft errors and server design. In: IEEE INTERNATIONAL
RELIABILITY PHYSICS SYMPOSIUM, IRPS, Dallas, USA, April 2002. Reliability
Physics Tutorial Notes: [S. l], IEEE Press, April 2002.

CONSTANTINESCU, C. Trends and challenges in VLSI circuit reliability. IEEE Micro, v.
23, n. 4, p. 14-19, New York-London: IEEE Computer Society, Jul.Aug. 2003.

CHEYNET, P. et al. Experimentally evaluating an automatic approach for generating safety-
critical software with respect to transient errors. IEEE Transactions on Nuclear Science.
New York, v. 47, n. 6, p. 2231-2236, Dec. 2000.

DEAN, M. et al. Exploiting choice: instruction fetch and issue on an implementable
simultaneous multithreading processor. In: INTERNATIONAL SYMPOSIUM ON
COMPUTER ARCHITECTURE, ISCA, 23., Philadelphia, USA, May 1996. Proceedings…
New York, NY: ACM Press, p. 191-202, May 1996.

DEAN, M. et al. Simultaneous multithreading: maximizing on-chip parallelism. In:
INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE, ISCA, 25.,
Barcelona, Spain, June 1998. Proceedings… New York, NY: ACM Press, p. 533-544, June
1998.

DODD, P.E. et al. Impact of substrate thickness on single-event effects in integrated circuits.
IEEE Transaction on Nuclear Science. New York, USA, v. 48, n. 6, p. 1865-1871, Dec.
2001.

EDENFELD, D. et al. Technology Roadmap for Semiconductors. IEEE Computer, New
York-London, v. 37, p. 47-56, Jan. 2004.

ELLIOTT, D.G. et al. Computational RAM: implementing processors in memory. IEEE
Design & Test of Computers, New York, USA, v. 16, n. 1, p. 32-41, Jan/Mar. 1999.

ETO, A. et al. Impact of neutron flux on soft errors in MOS memories. In: IEEE
INTERNATIONAL ELECTRON DEVICES MEETING, IEDM, San Francisco, USA, Dec.
1998. Proceedings… [S. l.: s. n.], p. 367–370, 1998.

GOLOUBEVA, O. et al. Soft error detection using control flow assertions. In: IEEE
INTERNATIONAL SYMPOSIUM ON DEFECT AND FAULT TOLERANCE, DFT, 18.,
Boston, USA, 2003. Proceedings… Los Alamitos, CA: Computer Society, Nov. 2003, p.
581-588.

91

HARELAND, S. et al. Impact of CMOS process scaling and SOI on the soft error rates of
logic processes. In: SYMPOSIUM ON VLSI TECHNOLOGY, Kyoto, Japan, 2001. Digest of
Technical Papers. [S. l.: s. n.], June 2001, p. 73–74.

HEIJMEN, T. Radiation-induced soft errors in digital circuits: a literature survey. Philips
Electronics Nederland BV 2002. [S. l.: s. n.], p. 7-20, 2002.

HENTSCHKE et al. Analyzing area and performance penalty of protecting different digital
modules with hamming code and triple modular redundancy. In: SYMPOSIUM ON
INTEGRATED CIRCUITS AND SYSTEMS DESIGNS, 15., Porto Alegre, Brazil, 2002.
Proceedings … Los Alamitos, CA: IEEE Computer Society, 2002. p. 95-100.

ITO, S.; CARRO, L.; JACOBI, R. Making java work for microcontroller applications. IEEE
Design & Test, New York, v. 18, n. 5, p.100-110, Sept.Oct. 2001.

JOHNSON, B. W. Design and Analysis of Fault Tolerant Digital Systems: solutions
manual. Reading, MA: Addison-Wesley Publishing Company, Oct. 1994.

KARNIK, T. et al. Scaling trends of cosmic ray induced soft errors in static latches beyond
0.18µ. Digest of Technical Papers. VLSI Circuits 2001. [S. l.], 2001, p. 61-62.

KARNIK, T. et al. Selective node engineering for chip-level soft error rate improvement.
Digest of Technical Papers. VLSI Circuits. [S. l.], 2002, p. 204-205.

LISBOA, C. A. L. et al. Online hardening of programs against SEUs and SETs. In: IEEE
INTERNATIONAL SYMPOSIUM ON DEFECT AND FAULT TOLERANCE IN VLSI
SYSTEMS, 21, 2006, Washington DC, USA. Proceedings… Los Alamitos, CA: IEEE
Computer Society, 2006.

MENTOR, G. Leonardo Express: version 2.11.15.0. Mentor Graphics Inc. 1981. Disponível
em: <http://www.mentor.com>. Acesso em: Nov. 2006.

MCFEARING, L.; NAIR, V.S.S. Control-Flow Checking Using Assertions. In:
INTERNATIONAL WORKING CONFERENCE ON DEPENDABLE COMPUTING FOR
CRITICAL APPLICATIONS, 5., 1995, [S. l.]. Proceedings…: [S. l.: s. n.], Sept. 1995.

MITRA, S. et al. Robust system design with built-In soft-error resilience. Computer Society.
[S. l.]: v. 38, i. 2, p. 43–52, Feb. 2005.

NEUBERGER et al. Multiple bit upset tolerant SRAM memory. ACM Transactions on
Desing Automation Electronic Systems. [S. l.]: v. 8, n. 4 p. 577-590, Oct. 2003.

NEUBERGER, G.; KASTENSMIDT, F. G. L.; REIS, R. An Automatic Technique for
Optimizing Reed-Solomon Codes to Improve Fault Tolerance in Memories. IEEE Desing &
Test for Computers: design for yield and reliability [S. l.: s. n.], p. 50-58, Jan/Feb. 2005.

NGUYEN, H. T.; YAGIL, Y. A systematic approach to SER estimation and solutions. In:
IEEE INTERNATIONAL RELIABILITY PHISICS SYMPOSIUM, 41., 2003, Dallas, USA.
Proceedings… [S. l.]: IEEE Press, 2003. p. 60-70.

92

OH, N.; MITRA, S.; MACCLUSKEY, E.J. ED4I: error detection by diverse data and
duplicated instructions. IEEE Transactions on Computers. [S. l.] v. 51, n. 2, p. 180-199,
Feb. 2002a.

OH, N.; SHIRVANI, P.P.;MCCLUSKEY, E.J. Control flow checking by software signatures.
IEEE Transactions on Reliability. [S. l.] v. 51, n. 2, p. 111-112, March 2002b.

OOTSUKA, F. et al. A novel 0.20 µm full CMOS SRAM cell using stacked cross couple with
enhanced soft error immunity. In: IEEE INTERNATIONAL DEVICES MEETING, IEDM,
1998, San Francisco, USA. Proceedings… New York: IEEE, 1998, p. 205-208.

PATTERSON, D.A.; HENNESSY, J. L. Computer Architecture: a quantitative approach. 3
ed., Amsterdam: Elsevier Science & Technology Books, June 2002. ISBN: 1558605967.

RAMPRASAD, S.; SHANBHAG, N. R.; HAJJ, I. N. Analytical estimation of transition
activity from word-level signal statistics. In: DESIGN AUTOMATION CONFERENCE, 34.,
1997, Anaheim, USA. Proceedings… New York: IEEE Computer Society, June 1997, p.
582-587.

REDINBO, G.; NAPOLITANO, L.; ANDALEON, D. Multibit correction data interface for
fault-tolerant systems. IEEE Transactions on Computers. [S. l.]: v. 42, n. 4. p. 433-446,
Apr. 1993.

REINHARDT, S. K.; MUKHERJEE, S. S. Transient fault detection via simultaneous
multithreading. In: INTERNATIONAL COMPUTER ARCHITECTURE, ISCA, 27., 2000,
Vancouver, Canada. Proceedings… [S. l.: s. n.], June 2000. p. 25-36.

SEIFERT, N. et al. Historical trend in alpha-particle induced soft error rates of the Alpha
microprocessor. In: IEEE INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM,
IRPS, 2001, Orlando, USA. Proceedings… [S. l.: s. n.]: Apr.May 2001, p. 259-265.

SEIFERT, N.; TAM, N. Timing vulnerability factors of sequentials. IEEE Transactions on
Device and Materials Reliability. [S. 1.], v. 4, n. 3, p. 516-522, Sept. 2004.

SEXTON, F.W. et al. SEU simulation and testing of resistor-hardened D-latches in the
SA3300 microprocessor. IEEE Teansaction on Nuclear Science. [S. l.], v. 38, n. 6, p. 1521-
1528, Dec. 1991.

SHERLEKAR, D. Design considerations for regular fabrics. In: INTERNATIONAL
SYMPOSIUM ON PHYSICS DESIGN, ISPD, 2004, Phoenix, USA. Proceedings … New
York: ACM Press, Jan. 2004, p. 97-102.

SHIRVANI, P.; SAXENA, N.; MCCLUSKEY, E. Software implemented EDAC protection
against SEUs. IEEE Transactions on Reliability. [S. l.], v. 49, n. 3, p. 273-284. Sept. 2000.

RHOD, E. L.; LISBOA, C. A. L. ; CARRO, L. . Using memory to cope with simultaneous
transient faults. In: IEEE LATIN-AMERICAN TEST WORKSHOP, LATW, 7., 2006,
Buenos Aires, Argentina. Proceedings… Porto Alegre: Evangraf, 2006, v. 1, p. 151-156.

RHOD, E. L. ; LISBOA, C. A. L. ; CARRO, L. . A low-SER efficient processor architecture
for future technologies. In: DESIGN, AUTOMATION AND TEST IN EUROPE

93

CONFERENCE, DATE, 2007, Nice, France. Proceedings… Los Alamitos, CA: IEEE
Computer Society, 2007, v. 1, p. 1448-1453.

VELAZCO, R. et al. Two CMOS memory cells suitable for the design of SEU-tolerant VLSI
circuits. IEEE Transaction on Nuclear Science. [S. l.], v. 41, n. 6, p.2229–2233, Dec. 1994.

WEAVER, C.; AUSTIN, T. A fault tolerant approach to microprocessor design. In: THE
INTERNATIONAL CONFERENCE ON DEPENDABLE SYSTEMS AND NETWORKS,
2001. Proceedings… [S. l.], Jul. 2001. p. 411-420.

ZIEGLER, J. F.; LANFORD, W. A. The effect of sea level cosmic rays on electronic devices.
Journal of Applied Physics, [S. 1.], p. 4305-4311, June 1981.

94

APENDIX A: MEMPROC LIST OF INSTRUCTIONS

Number
of cycles

Instruction Syntax Description

min max
NOP nop - 1 1

mov k, m copy constant k to mem. addr. ‘m’ 2 2
mov m2, m1 copy value in mem. addr. ‘m1’ to mem. addr. ‘m2’ 3 3

mov m2, *m1
copy value indicated by the pointer in ‘m1’ to mem.
addr. ‘m2’

3 3 MOV

mov *m2, m1
copy value in mem. addr. ‘m1’ to mem. addr. indicated
by the pointer ‘m2’

4 4

if_icmpeq k, m, j
if constant ‘k’ equal to value in mem. addr. ‘m’ then
jump to addr. ‘j’

4 4
IF_ICMPEQ

if_ icmpeq m1, m2, j
if value in mem. addr. ‘m1’ equal to value in mem.
addr. ‘m2’ then jump to addr. ‘j’

4 4

if_icmpne k, m, j
if constant ‘k’ not equal to value in mem. addr. ‘m’
then jump to addr. ‘j’

4 4
IF_ICMPNE

if_ icmpne m1, m2, j
if value in mem. addr. ‘m1’ not equal to value in mem.
addr. ‘m2’ then jump to addr. ‘j’

4 4

if_icmplt k, m, j
if constant ‘k’ less then value in mem. addr. ‘m’ then
jump to addr. ‘j’

4 9

if_icmplt m, k, j
if value in mem. addr. ‘m1’ less then constant ‘k’ then
jump to addr. ‘j’

4 9 IF_ICMPLT

if_icmplt m1, m2, j
if value in mem. addr. ‘m1’ less then value in mem.
addr. ‘m2’ then jump to addr. ‘j’

4 9

if_icmple k, m, j
if constant ‘k’ less or equal then value in mem. addr.
‘m’ then jump to addr. ‘j’

4 9

if_icmple m, k, j
if value in mem. addr. ‘m1’ less or equal then constant
‘k’ then jump to addr. ‘j’

4 9 IF_ICMPLE

if_icmple m1, m2, j
if value in mem. addr. ‘m1’ less or equal then value in
mem. addr. ‘m2’ then jump to addr. ‘j’

4 9

if_icmpgt k, m, j
if constant ‘k’ greater then value in mem. addr. ‘m’
then jump to addr. ‘j’

4 9

if_icmpgt m, k, j
if value in mem. addr. ‘m1’ greater then constant ‘k’
then jump to addr. ‘j’

4 9 IF_ICMPGT

if_icmpgt m1, m2, j
if value in mem. addr. ‘m1’ greater then value in mem.
addr. ‘m2’ then jump to addr. ‘j’

4 9

if_icmpge k, m, j
if constant ‘k’ greater or equal then value in mem.
addr. ‘m’ then jump to addr. ‘j’

4 9

if_icmpge m, k, j
if value in mem. addr. ‘m1’ greater or equal then
constant ‘k’ then jump to addr. ‘j’

4 9 IF_ICMPGE

if_icmpge m1, m2, j
if value in mem. addr. ‘m1’ greater or equal then value
in mem. addr. ‘m2’ then jump to addr. ‘j’

4 9

IFEQ ifeq m, j
if value in mem. addr. ‘m’ is equal to zero then jump to
addr. ‘j’

4 4

IFNE ifne m, j
if value in mem. addr. ‘m’ is not equal to zero then
jump to addr. ‘j’

4 4

IFLT iflt m, j
if value in mem. addr. ‘m’ is less then zero then jump
to addr. ‘j’

4 4

IFLE ifge m, j
if value in mem. addr. ‘m’ is less or equal to zero then
jump to addr. ‘j’

4 4

IFGT ifgt m, j
if value in mem. addr. ‘m’ is greater then zero then
jump to addr. ‘j’

4 4

IFGT ifge m, j
if value in mem. addr. ‘m’ is greater or equal then zero
then jump to addr. ‘j’

4 4

95

Number
of cycles

Instruction Syntax Description

min max

add d, m, k
adds value in mem. addr. ‘m’ to constant ‘k’ and stores
in mem. addr. ‘d’

3 18
ADD

add d, m1, m2
adds value in mem. addr. ‘m1’ to value in mem. addr.
‘m2’and stores in mem. addr. ‘d’

3 18

sub d, m, k
subtracts value in mem. addr. ‘m’ from constant ‘k’
and stores in mem. addr. ‘d’

18 18

sub d, k, m
subtracts constant ‘k’ from value in mem. addr. ‘m’
and stores in mem. addr. ‘d’

18 18 SUB

sub d, m1, m2
subtracts value in mem. addr. ‘m1’ from value in mem.
addr. ‘m2’ and stores in mem. addr. ‘d’

18 18

addc d, m, k
adds with carry value in mem. addr. ‘m’ to constant ‘k’
and stores in mem. addr. ‘d’

3 18
ADDC

addc d, m1, m2
adds with carry value in mem. addr. ‘m1’ to value in
mem. addr. ‘m2’ and stores in mem. addr. ‘d’

3 18

mul d, m, k
multiply value in mem. addr. ‘m’ by constant ‘k’ and
stores in mem. addr. ‘d’

35 49
MUL

mul d, m1, m2
multiply value in mem. addr. ‘m1’ by value in mem.
addr. ‘m2’and stores in mem. addr. ‘d’

35 49

iushr d, m, k
unsigned shift right the value in mem. addr. ‘m’ ‘k’
times

3 18
IUSHR

iushr d, m1, m2
unsigned shifts right the value in mem. addr. ‘m’ the
value in mem. addr. ‘m2’ times

3 18

ishl d, m, k shifts left the value in mem. addr. ‘m’ ‘k’ times 3 18
ISHL

ishl d, m1, m2
shifts left the value in mem. addr. ‘m1’ the value in
mem. addr. ‘m2’ times

3 18

NEG neg d, m
negates value in mem. addr. ‘m’ and stores in mem.
addr. ‘d’

3 18

and d, m, k
make “logic and” with the value in mem. addr. ‘m’
with the constant ‘k’ and stores in mem. addr. ‘d’

3 3
AND

and d, m1, m2
make “logic and” with the value in mem. addr. ‘m1’
and ‘m2’ and stores in mem. addr. ‘d’

3 3

or d, m, k
make “logic or” with the value in mem. addr. ‘m’ with
the constant ‘k’ and stores in mem. addr. ‘d’

3 3
OR

or d, m1, m2
make “logic or” with the value in mem. addr. ‘m1’ and
‘m2’ and stores in mem. addr. ‘d’

3 3

JMP jmp d jumps to the destination in mem. addr. ‘m’ 3 3

CALL call f, r
jumps to subroutine in the address ‘f’ and stores the
return addres in mem. addr. ‘r’

2 2

RET ret r returns to the address in mem. addr. ‘r’ 3 3

96

APENDIX B: MEMPROC ARCHITECTURE DESCRIBED IN CACO-PS TOOL

97

APENDIX C: MIPS ARCHITECTURE DESCRIBED IN CACO-PS TOOL

98

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

ESCOLA DE ENGENHARIA

DEPARTAMENTO DE ENGENHARIA ELÉTRICA

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

EDUARDO LUIS RHOD

SÍNTESE

Porto Alegre

2007

2

1 INTRODUÇÃO

O constante crescimento da indústria de semicondutores nos últimos anos tem

contribuído para o desenvolvimento de circuitos com transistores cada vez menores e mais

rápidos. Está surgindo uma nova era da tecnologia de circuitos chamada de nanotecnologia,

permitindo a integração de bilhões de transistores no mesmo chip. Neste novo cenário, os

projetistas de circuitos integrados estão desenvolvendo sistemas com mais de um elemento de

processamento, criando o que chamamos de sistemas em chip (system-on-chip (SoC))

encontrados nos sistemas chamados embarcados como por exemplo celulares, sistemas de

posicionamento global (GPS), sistemas de frenagem ABS, etc.

Entretanto, esta evolução na tecnologia está aumentando a preocupação dos projetistas

com a confiabilidade desses novos circuitos. Apesar de apresentarem melhor desempenho,

estas tecnologias de última geração são mais sensíveis à variação dos processos de fabricação

por possuírem dimensões muito reduzidas. Além disso, o choque de partículas de alta energia,

como nêutrons provenientes do espaço, até certo tempo consideramos preocupantes apenas

para aplicações espaciais, estão agora se tornando fontes de radiações significativas e estão

afetando não só componentes de memórias mas também componentes de lógica

combinacional instalados ou funcionando no nível do mar. O choque destas partículas pode

produzir ou estimular a mudança no valor lógico dos circuitos de momória, também

conhecida como SEUs ou single event upsets, ou gerar pulsos transientes conhecidos como

SETs ou single envent transients, os quais em certas circunstâncias podem ocasionar erros no

funcionamento do circuito, ocasionando os assim chamados SE ou soft errors.

Outro motivo de preocupação dos pesquisadores reside no fato de que não só o

número de transistores, mas também a densidade dos transistores no chip têm crescido

3

exponencialmente nos últimos anos. Estes crescimentos favorecem a ocorrência de múltiplas

falhas decorridas de apenas uma partícula se chocar com o circuito. A este fenômeno damos o

nome de MBUs ou multiple bit upsets, presente até pouco tempo apenas em circuitos de

memória, porém agora pode se manifestar em circuitos de lógica combinacional.

Outro problema decorre do fato que com transistores mais rápidos, teremos períodos

de relógio mais curtos, e conseqüentemente, o tempo de duração das falhas poderá durar mais

de um ciclo de relógio, além de facilitar a propagação de pulsos transientes para serem

capturados por elementos de memória gerando os chamados “bit-flip” ou “multiple-bit flips”.

Para sobrevivermos neste novo cenário, está claro que novas técnicas de tolerância a

falhas precisam ser definidas, não apenas para a segurança de sistemas críticos, mas também

para qualquer sistema computacional.

As técnicas de tolerância de tolerância a falhas que conhecemos são eficientes, com

um certo custo adicional, para mitigar SEUs e SETs porém, não são capazes de suportar

múltiplas falhas que serão previstas nas tecnologias futuras (CONSTANTINESCU, 2003;

EDENFELD, 2004). Para enfrentar este desafio, novos materiais e tecnologias de produção

precisam ser desenvolvidas ou também novas técnicas de projeto de circuitos que sejam

tolerantes a falhas precisam ser propostas.

Diversas técnicas visando mitigar os SEUs e SETs foram propostas nos últimos anos.

Existem técnicas que atuam em todos os estágios de fabricação de um circuito, deste as etapas

relacionadas ao processo de fabricação até técnicas de projeto que modificam o software e/ou

o hardware para sistemas dedicados ou sistemas de propósito geral. A maioria destas técnicas

são capazes de reduzir significamente o número de falhas, incluído para isso algum custo

adicional em desempenho e/ou área e/ou potência. As soluções relacionadas ao processo de

fabricação são geralmente muito caras para pequenos volumes de produção. Geralmente,

técnicas de hardware tendem a acrescentar custo considerável em área de circuito, enquanto

4

que técnicas de software afetam de alguma maneira o desempenho final do circuito. Portanto

a procura por uma solução que forneça confiabilidade aos circuitos na presença de falhas

simples e/ou múltiplas continua sendo um tópico de muito interesse que ainda requer soluções

eficientes.

A regularidade geométrica nos circuitos e o uso extensivo de fabricação de circuitos

regulares estão sendo considerados como uma possível solução para lidar com as variações

tecnológicas e aumentar a taxa de produtividade na fabricação dos circuitos nas tecnologias

futuras. A regularidade traz a redução no custo das máscaras e permite também a introdução

de linha e colunas sobressalentes que podem ser ativados para substituir linhas e colunas de

memória defeituosas (SHERLEKAR, 2004). Juntamente com a proposta de usar a fabricação

regular, a utilização de novas tecnologias de memória que podem suportar os efeitos de falhas

transientes, tais como as memórias RAM ferroelétricas e magnéticas (ETO, 1998), trás de

volta o conceito de computar utilizando memória.

Neste trabalho, o uso de memória é proposto como uma nova técnica de mitigação

para falhas transientes, através da redução da área do circuito que pode ser afetada por soft

errors. Desta forma, este trabalho introduz uma arquitetura de processadorque pode ser usada

para aumentar a taxa de produtividade nos processos de manufatura do futuro. A arquitetura

proposta é um núcleo de processador embarcado baseado em memória, aqui chamado de

MemProc, projetado para o uso em aplicações de controle como um microcontrolador

embarcado.

Existem casos em que nem o hardware nem o software podem ser modificados, devido

aos altos custos envolvidos em adicionar hardware extra ou até mesmo quando não possuímos

o código para modificá-lo. Nestes casos, técnicas alternativas são necessárias para prover ao

sistema um nível adequado de confiança. Para lidar com este tipo de aplicações, este trabalho

propõe uma segunda alternativa para aumentar a confiabilidade nos sistemas digitais, que

5

combina modificação do software a ser executado em tempo de execução com um módulo de

hardware de propósito específico conhecido como infrastructure IP ou I-IP, proposto

previamente em (BERNARDI, 2006). O desenvolvimento de um núcleo de I-IP para melhorar

a confiabilidade do processador de arquitetura RISC conhecido como MIPS (PATTERSON,

2002) é apresentado neste trabalho.

6

2 REVISÃO BIBLIOGRÁFICA

Nos primeiros anos de exploração espacial, a confiabilidade dos circuitos era garantida

através de técnicas de blindagem. Esta técnica funcionava através da redução do fluxo das

partículas que atingiam o circuito e conseqüentemente, reduzindo o numero de erros causados

pelo choque de partículas a zero. Entretanto, com a evolução tecnológica os circuitos se

tornaram mais sensíveis ao choque das partículas, o que tornou a técnica de blindagem

obsoleta em se tratando de proteger circuitos de tecnologia submicrométrica.

Buscando atingir o mesmo nível de proteção garantido pela blindagem, os cientistas

vêm propondo diversas técnicas para mitigar os SEUs e os SETs. Nesta seção são

apresentadas algumas destas técnicas e seus respectivos custos em termos de área e tempo de

processamento.

Diversas técnicas relacionadas aos processos de fabricação foram desenvolvidas

dentre as quais podemos destacar o wafer thining (DODD, 2001), a eliminação do BPSG

(boron phosphor-silicate glass) do processo de fabricação (BAUMANN, 2001) e o uso de

SOI ao invés do processo de poço tradicional (HARELAND, 2001). Entretanto, o custo dos

materiais envolvidos nestas técnicas é caro e se aplicam apenas a alguns projetos em especial.

Existem também técnicas chamadas de técnicas de fortificação de células. Estas técnicas

podem ser categorizadas em: técnicas para aumentar a capacitância dos nós críticos

(KARNIK, 2001; OOTSUKA, 1998; KARNIK 2002); técnicas para reduzir eficiência da

propagação das cargas que afetam o circuito ou técnicas para compensar a perda de cargas

(SEXTON 1991). Estas técnicas geralmente comprometem ou o consumo de energia do

7

circuito, ou o tempo de propagação do circuito ou a área do circuito e as vezes mais de um

desses fatores.

Devido aos altos custos das técnicas de proteção aplicadas na fase de processo, os

cientistas buscaram técnicas que afetassem os outros níveis presentes na fabricação de um CI.

Técnicas relacionadas ao projeto de circuitos foram apresentadas pela comunidade científica e

basicamente se dividem em técnicas de detecção de erros e técnicas de detecção e correção de

erros. Dentre as técnicas de detecção propostas, podemos citar como uma das mais

conhecidas a técnica de duplicação com comparação ou duplication with comparrison

(DWC). Essa técnica se baseia em duplicar o módulo de HW a ser protegido e comparar a

resposta dos dois módulos. Caso as respostas dos dois módulos forem diferentes, um erro foi

detectado. Esta técnica geralmente acarreta em um considerável custo de área de circuito já

que ela exige que o modulo a ser protegido seja duplicado, além de exigir nova computação

para garantir a resposta correta. Para solucionar o problema da re-computação os cientista

propuseram a técnica assim chamada de ou triple modular redundancy ou TMR (JOHNSON,

1994). Esta técnica se baseia em triplicar o modulo a ser protegido e adicionar um votador

para escolher a resposta correta com base nas três respostas dos módulos. A resposta que mais

for apresentada pela maioria dos módulos (pelo menos 2 módulos) é a resposta certa. Esta

técnica além de acrescentar um grande custo de área de circuito, não garante o correto

funcionamento no caso de uma falha atingir o votador nem protege o circuito contra falhas

múltiplas. Além das técnicas descritas acima, os cientistas propuseram técnicas baseadas em

códigos de detecção e correção de erros. Um exemplo clássico destas técnicas que detectam e

corrigem erros através de códigos é o código de Hamming. Este código é bastante utilizado

para proteger memórias contra falhas simples em palavras de memória (HENTSCHKE,

2002). Entretanto, o código de Hamming não protege memórias contra falhas múltiplas. Neste

caso técnicas como os códigos de Bose-Chaudhuri-Hocquenghen (BCH) e Reed-Solomon

8

(RS) (NEUBERGER, 2005) baseadas em aritmética de campos finitos, (também conhecidos

como Campos de Galois). Os códigos de BCH podem corrigir um certo número de bits em

qualquer posição da palavra de memória enquanto que o código de RS agrupa os bits em

blocos para corrigi-los.

Além das técnicas chamadas de técnicas de hardware acima apresentadas, existem

técnicas chamadas de técnicas de software. Estas técnicas são utilizadas quando ou não

queremos ou não podemos modificar o hardware do sistema. Podemos dividir as diversas

técnicas de proteção de software em três grandes grupos: técnicas implementadas em

software, técnicas que adicionam algum hardware e técnicas híbridas, ou seja, que modificam

o software e adicionam algum hardware. Dentre as técnicas implementadas em software

podemos destacar: a técnica Enhanced Control Flow Checking using Assertions (ECCA)

proposta por (ALKHALIFA, 1999), Control Flow Checking using Assertions (CCA) proposta

por (MCFEARING, 1995), Control Flow Checking by Software Signatures (CFCSS) proposta

por (OH, 2002b), e a técnica Error Detection by Data Diversity and Duplicated Instructions

(ED4I) proposta por (OH, 2002a). Apesar de muito efetivas, as técnicas implementadas em

software introduzem custos adicionais no tempo de processamento que limitem sua utilização

apenas para aplicações em que o tempo de processamento não é uma variável crítica. Além

disso, essas soluções implicam em custo adicional de memória para guardar o código extra

que deve ser adicionado pelo projetista. Estas soluções também necessitam de acesso ao

código fonte da aplicação, o que impossibilita o uso de componentes de software recém

lançados que possuem seu código fonte fechado.

Visto que os custos de se adotar uma solução de software para aumentar a tolerância a

falhas podem ser muito altos e muitas vezes impagáveis, os cientistas propuseram outras

soluções que se caracterizam por adicionar elementos de hardware em um sistema de

processamento de software. Dentre as técnicas que se encontram neste domínio de atuação,

9

podemos citar uma técnica chamada de DIVA, do inglês Dinamic Verification, proposta por

(AUSTIN, 2000). É uma técnica aplicada a processadores com pipeline que se utiliza de um

verificador funcional para verificar se as operações que estão sendo executadas pelo

processador principal estão corretas. Por ser mais simples do que o processador principal, o

hardware verificador possui um hardware extremamente simples, pois é formado apenas pelo

estágio de execução do processador principal, já que ele apenas recebe a indicação da

operação a ser verificada e os operandos a serem utilizados. Apesar de possuir um custo

adicional de hardware bem reduzido, esta solução não pode ser aplicada em sistemas em chip

baseados em FPGAs que possuem um processador embarcado, pois o hardware verificador é

implementado dentro do pipeline do processador principal. Além disso, está técnica assume

que o verificador nunca falha já que o mesmo é construído com transistores maiores e

conseqüentemente mais tolerantes a falhas provocadas pelo choque de partículas.

 Buscando a combinação dos benefícios das técnicas de software com as técnicas de

hardware, os cientistas propuseram técnicas chamadas de técnicas híbridas. Em (BERNARDI,

2006), os autores propõem o uso de re-execução das operações aritméticas e lógicas, através

da duplicação de instruções e acrescentando instruções de comunicação com um hardware

externo. Esta re-execução é comandada por um bloco de hardware chamado de I-IP do inglês

Infrastructure IP que trabalha concorrentemente com o processador principal, executando as

mesmas operações que o processador principal e comparando os resultados com os obtidos

pelo processador principal. Caso os resultados das operações forem diferentes, o processador

principal recebe a ordem de executar novamente a operação para obter um resultado correto.

Além disso, esta técnica permite verificar se o processador principal está executando

corretamente as instruções de desvio. Isso ocorre através da monitoração do contador de

programa ou program counter PC pelo I-IP. Está técnica possui o inconveniente de exigir que

o projetista modifique o código fonte. Existem situações em que esta exigência não pode ser

10

atendida ou exige muito trabalho do projetista. Pensando em solucionar este problema, em

(LISBOA, 2006), é proposto um I-IP que se localiza entre o processador principal e a

memória. Este I-IP identifica quais as instruções que estão sendo requisitadas pelo

processador principal e envia uma nova seqüência de instruções para que o processador

execute duplamente cada instrução para fazer a verificação se a operação foi realizada

corretamente. Desta forma esta técnica não necessita que o código da aplicação seja

modificado. Neste trabalho, uma solução híbrida tal como a solução proposta em (LISBOA,

2006) é apresentada para o processador MIPS de arquitetura RISC, sem exigir qualquer

modificação no código da aplicação ou na arquitetura do processador MIPS.

Neste capítulo foram apresentadas diversas técnicas de tolerância a falhas que atuam

em todos os estágios de produção de circuitos e sistemas baseados em processadores que

executam software. Foi visto que as técnicas relacionadas a produção dos circuitos geralmente

acarretam em custos de produção muito altos. Por outro lado, as técnicas de redundância de

hardware implicam em um custo de área que pode ultrapassar 200% enquanto que as técnicas

de redundância de software geralmente prejudicam o desempenho ou aumentam o tamanho da

memória do sistema.

O trabalho aqui apresentado propõe duas soluções diferentes que melhoram a

confiabilidade do sistema sem acrescentar os custos que são adicionados pelas soluções

previamente apresentadas. A primeira solução apresenta a substituição de circuito

combinacional por um circuito construído quase que na sua totalidade com memórias

magnéticas. Estas memórias são intrinsecamente protegidas contra os erros causados pelo

choque de partículas altamente carregadas. Foi visto que com algumas técnicas arquiteturais

de controle os resultados em termos de tempo de processamento desta nova arquitetura

quando comparados com a tradicional arquitetura do processador MIPS.

11

A segunda solução aqui apresentada foi uma técnica híbrida chamada de I-IP aplicada

ao processador MIPS para tornar suas operações mais robustas sem necessitar alteração no

código das aplicações ou na arquitetura do processador.

12

3 SÍNTESE DOS RESULTADOS

3.1 PRIMEIRA TÉCNICA: MEMPROC – PROCESSADOR BASEADO EM MEMÓRIA.

Para avaliar os pontos fortes e fracos da técnica proposta, foram realizadas simulações

para comparar a arquitetura proposta com outras duas arquiteturas, a primeira, um

processador chamado de FemtoJava (BECK, 2003b), com arquitetura de pilha e pipeline de 5

estágio. A segunda, o conhecido processador MIPS (PATTERSON, 2002). Foi utilizada a

ferramenta CACO-PS para simular o comportamento das arquiteturas sob a presença de

falhas. Além disso, foi utilizada a ferramenta Leonardo Spectrum para avaliar os custos de

área de circuito necessários para implementar as arquiteturas.

Os resultados mostraram que a arquitetura proposta apresenta maior área em relação às

duas arquiteturas comparadas, porém com melhor desempenho e mais robustez ao choque de

partículas altamente carregadas. Isto se deve ao fato de que a arquitetura proposta se baseia

em substituir o uso de circuito operacional por memória. Esta substituição acarretou em um

acréscimo considerável em área da arquitetura proposta por outro lado, melhorou a tolerância

a falhas, pois a memória acrescentada é imune à falhas causadas pelo choque de partículas.

13

3.2 SEGUNDA TÉCNICA: I-IP – UMA TÉCNICA NÃO-INTRUSIVA PARA DETECÇÃO DE

ERROS PARA SISTEMAS EM CHIP.

Esta técnica apresenta um IP (núcleo de propriedade intelectual) que pode ser inserido

em um sistema em chip sem nenhuma mudança na arquitetura do núcleo do processador. Este

IP é capaz de monitorar a execução da aplicação e detectar erros ocasionados por falhas

transientes em instruções lógicas e aritméticas além de instruções de deslocamento do fluxo

de execução do processador. Esta solução não exige nenhuma mudança no código da

aplicação, o que reduz em muito o tempo do projetista para introduzir o I-IP para monitorar

qualquer arquitetura desejada.

A arquitetura do I-IP foi descrita no simulador CACO-PS, e foi simulada junto com a

arquitetura do processador MIPS previamente descrita para simulação da primeira solução

aqui apresentada. A arquitetura do processador MIPS junto com I-IP foram simuladas em

ambiente com injeção de falhas. Foi observado que nem todas as falhas que causaram erros

foram detectadas. As falhas que atingiram os bits de seleção do banco de registrador não

puderam ser detectadas pois este tipo de erro troca o valor do operando a ser utilizado tanto

pelo I-IP quanto pelo processador principal. Desta forma, as duas vezes em que a operação é

executada (pelo I-IP e pelo processador principal) a resposta obtida foi igualmente errada e,

sendo igual, o erro não é detectado. Já os custos adicionados relacionados ao desempenho da

aplicação se mostraram pequenos, já que o I-IP executa as suas tarefas em paralelo a execução

do processador principal.

14

4 CONSIDERAÇÕES FINAIS

Este trabalho apresentou duas soluções candidatas a lidar com o problema ocasionado

pela presença de SEUs e SETs. Estes eventos preocupam os projetistas dos sistemas que serão

utilizados no futuro e até mesmo dos que estão sendo fabricados atualmente. A primeira

solução apresentou a arquitetura MemProc, construída com memórias magnéticas ao invés

circuitos combinacionais. A segunda solução, o núcleo I-IP para o processador MIPS, é

indicado para os casos em que nem o hardware do processador e nem o software da aplicação

podem ser modificados.

Ambas a soluções apresentadas possuem seus prós e contras. No caso da primeira

solução, a área final do MemProc aumentou principalmente pelo acréscimo das duas

memórias (a memória de microcódigo e a memória de operação de máscaras). A penalidade

de área foi mais de 2 vezes maior do que a área do MIPS e 1,3 vezes maior do que a área do

FemtoJava. Por outro lado, o tempo médio entre falhas foi 17 vezes melhor, ou seja, menor

que o tempo apresentado pelo MIPS e mais de 49 vezes do que o tempo apresentado pelo

FentoJava. Em se tratando do desempenho a arquitetura proposta também apresentou ganhos,

1,2 vezes mais rápida do que o MIPS e 2,2 vezes mais rápida que o FentoJava. A solução

proposta apesar de não se tratar de uma solução definitiva, aponta para um caminho em que as

arquiteturas de computadores terão que se preocupar mais com a questão da confiabilidade e a

tolerância à falhas.

No caso da segunda solução apresentada neste trabalho, os resultados mostram que a

idéia pode ser implementada em qualquer tipo de arquitetura RISC ou SISC. Apesar dos

custos em desempenho serem consideravelmente altos, os custos em termos de área adicional

15

de circuito são apenas cerca de 15% com uma taxa de erros detectados de 74,5%. Porém a

grande vantagem desta abordagem é que ela não é nem intrusiva no software e nem no

hardware, o que a torna uma solução atrativa para um certo nicho de sistemas em que as

outras soluções não podem ser implementadas.

ANEXOS – PUBLICAÇÕES

A seguir são apresentados os artigos publicados referentes aos dois assuntos

desenvolvidos no decorrer desse trabalho. São 5 publicações no total, sendo 3 referentes a

primeira solução proposta e 2 sobre a segunda solução aqui apresentada. Dentre estas 3

pubicações, pode-se destacar o artigo de título: “Using Memory to Cope with Simultaneous

Transient Faults” apresentado no 7
o
 Latin-American Test Workshop por ter recebido o

prêmio de Best Paper Award. Com relação a segunda idéia apresentada neste trabalho,

foram publicados 2 artigos sendo um destes um artigo publicado em revista IEEE. Os

artigos seguem apresentados no formato da publicação e em ordem cronológica referente a

data da publicação.

Title: Using Memory to Cope with Simultaneous Transient Faults

Authors:

Rhod, Eduardo
Depto. de Engenharia Elétrica

Av. Osvaldo Aranha, 103/206-B

90035-190 - Porto Alegre, RS, Brasil

Phone: +55 51 3316 3516

elrhod@eletro.ufrgs.br

Lisbôa, C. A. L.
Instituto de Informática

Av. Bento Gonçalves, 9500, Bloco IV

91501-970 - Porto Alegre, RS, Brasil

Phone: +55 51 3316 7748

calisboa@inf.ufrgs.br

Carro, Luigi
Av. Osvaldo Aranha, 103/206-B

90035-190 - Porto Alegre, RS, Brasil

Phone: +55 51 3316 3516

Depto. de Engenharia Elétrica

carro@eletro.ufrgs.br

Contact Person and Presenter:

Rhod, Eduardo
Depto. de Engenharia Elétrica

Av. Osvaldo Aranha, 103/206-B

90035-190 - Porto Alegre, RS, Brasil

Phone: +55 51 3316 3516

elrhod@eletro.ufrgs.br

Using Memory to Cope with Simultaneous Transient Faults

Rhod, Eduardo

Depto. de Engenharia Elétrica
1

elrhod@eletro.ufrgs.br

Lisbôa, C. A. L.

Instituto de Informática
2

calisboa@inf.ufrgs.br

Carro, Luigi

Depto. de Engenharia Elétrica
1

carro@eletro.ufrgs.br

1 Av. Osvaldo Aranha, 103/206-B - 90035-190 - Porto Alegre, RS, Brasil - Phone: +55 51 3316 3516
2 Av. Bento Gonçalves, 9500, Bloco IV - 91501-970 - Porto Alegre, RS, Brasil – Phone: +55 51 3316 7748

Abstract

Transistors in future technologies will be so small

that they will be heavily influenced by electromagnetic

noise and SEU induced errors. As a consequence, simple

gates will behave as expected only a fraction of the time,

and the probability of double soft errors occurring at the

same time will increase. In order to face this challenge,

new design approaches must be taken. In the memory

design arena, several techniques have already been

proposed in order to protect data. As an alternative to

fully combinational circuits and in order to reduce the

area susceptible to faults, the use of a companion

memory that allows circuits to withstand up to two

simultaneous faults is proposed here. The proposed

solution has been analyzed in two test cases, through the

simulation of fault injection. Experimental results show

a significant reduction in the sensible area of the circuit,

and in the probability of double simultaneous faults

being propagated to the output of the circuit.

1. Introduction

As the microelectronics industry moves towards

nanotechnologies, systems designers become

increasingly concerned about the reliability of future

devices, which will have propagation delays shorter

than the duration of transient pulses induced by

radiation attack, as well as smaller transistors, which

will be more sensitive to the effects of

electromagnetic noise, neutron and alpha particles

that may cause transient faults, even in fully tested

and approved circuits.

For this less reliable technology, it is likely that

common gates, such as a simple NAND, will behave

as expected only a fraction of the total time.

In order to survive in this new scenario, it is clear

that new fault tolerance techniques must be defined,

not only for safety critical systems, but to general

purpose computing as well. Current fault tolerance

techniques are effective for single event upsets

(SEUs) and single event transients (SETs). However,

they are unlikely to withstand the occurrence of

multiple simultaneous faults that is foreseen with

those new technologies [1,2].

To face this challenge, either completely new

materials and manufacturing technologies will have

to be developed, or fully innovative circuit design

approaches must be taken.

In this paper we propose a new approach to cope

with this faulty behavior of gates, through the use of

memory as an alternative to combinational circuits,

in order to provide tolerance to multiple soft faults

in digital circuits. The reason to extend the use of

memory in current circuits is that several techniques

have already been proposed in order to protect the

data stored in memory from the effects of SEUs,

even in the presence of two simultaneous upsets.

By combining memory circuits with

combinational circuits one can obtain a hardened

version of the original combinational circuit, at the

expense of extra area. Experimental results show

that, for two simultaneous faults, the proposed

approach is more robust than TMR or N-MR.

This paper is organized as follows: section 2

describes related work, while in section 3 we

describe the memory protection scheme used in this

work and the test cases used in the evaluation of the

proposed solution. Section 4 reports the results

obtained in the implementation of the test case

circuits. In section 5 we discuss the results obtained

in the experiments and our plan for future work on

this project.

2. Related Work

The possibility of increased incidence of soft

errors due to noise or high-energy particles in the

next technology generation is already a topic of

concern [1-3]. These soft errors are not caused by

poor design techniques or process defects, but rather

they derive from the incidence of external radiation

and/or electromagnetic noise, which become

stronger as technology features shrinks, and there

are fewer electrons to form the transistor channel.

What turns a soft error in combinational circuits

into a major concern nowadays is that the higher

frequencies to be reached by future circuits will lead

to cycle times shorter than the duration of transient

pulses caused by radiation and/or electromagnetic

noise. Therefore, those pulses will have a higher

probability of affecting the output of combinational

circuits, long enough to be captured and stored as

incorrect values in memory elements. Besides that,

shrinking transistor dimensions and lower operating

voltages will make circuits more sensible to neutron

and alpha particles, which also induce transient

pulses.

Considering current technology trends, it is clear

that multiple upsets or electromagnetic noise will

impact circuit behavior beyond the single upset

hypothesis. This way, a design paradigm able to

withstand multiple simultaneous upsets must be

devised.

Several techniques to maintain circuit reliability

even under those critical conditions have been

proposed, including hardware implemented parity

code and source level code modification [4],

time/space redundancy [5-6], triple modular

redundancy (TMR) and double modular redundancy

with comparison (DWC) with concurrent error

detection (CED) [7]. However, all these techniques

are targeted to the occurrence of a single upset in a

given time interval.

In parallel, research aiming the protection of

memories against faults has also evolved. The first

approaches, using the Hamming code, allowed to

protect the data against single bit flips in a data

word, allowing the correction of the wrong bit, as

well as detection of double bit flips (without

correction). The Reed-Solomon approach [8] is a

solution that allows the detection and recovery of

faulty bits in a single symbol, but is still susceptible

to errors when bit flips occur in two separate

symbols. The size of the symbols can be adjusted

according to the application and the method allows

the correction of as many faults (in a single symbol)

as the number of bits in the symbol.

Recently, another work [9] proposed the

combination of the Hamming and Reed-Solomon

protection schemes in order to cope with

simultaneous bit flips in two contiguous symbols.

With this technique, one can build memories that

tolerate two simultaneous faults occurring in the

same symbol or in two symbols in different words in

a memory array. This solution also allows the

detection and correction of double bit flips in

adjacent symbols of the same word, once a special

placement of the RS coded words and does not

impose an excessive penalty in area nor in delay.

Our work proposes the use of a combination of a

combinational circuit and a memory as a

replacement to the original combinational circuit,

thereby reducing the area susceptible to double

simultaneous faults and, in consequence, the

probability of transient faults affecting the output of

the circuit. This technique does not completely

eliminate the occurrence of errors, but reduces the

probability of those to a level that is acceptable for

many practical applications such as multimedia and

graphics processing, as we show in a filter test case.

Another strong argument to the use of memory is

its intrinsic fault protection that comes with its spare

columns and spare rows, like it is done today in

DRAMs.

3. Using Protected Memory to Reduce

Combinational Logic

The use of memory not only as a storage device, but

also as a computing device, has been a subject of

research for some time. In order to explore the large

internal memory bandwidth (which can get up to 2.9

Tbytes/s), designers decided to bring some functions

executed by the processor into memory, to make

effective use of all these available data. The so-called

Computational-RAM, presented in [10], brings

processor functions into the memory. This technique

was originally used as a SIMD (Single Instruction

Multiple Data) Processor in some DSP applications.

3.1 Area Analysis
In the proposed approach, the protected memory

works as a truth table that receives the inputs and returns

the outputs according to the implemented function.

Since the size of a truth table depends on the width of

the input and output, the memory size, in bits, also

depends on the input and output widths. This

relationship can be described as follows:

Size = 2
I
× O, (1)

where I is the input width and O is the output width,

both in bits.

Since the memory size grows exponentially with the

width of the inputs, it is unthinkable to use it as the sole

implementation means to develop a circuit able to

withstand two simultaneous faults. Our proposal is to

replace part of the combinational circuit by a memory

that withstands two simultaneous faults, without adding

a meaningful amount of unprotected hardware, like

TMR and N-MR approaches do by adding a voter.

At first sight, it seems that the amount of area

that one must add to the circuit will make the

proposed solution unfeasible, from the area cost

standpoint. However, as will be shown in the test

cases discussed in section 4, this drawback can be

significantly reduced with adequate design

approaches, as shown in next subsection.

3.2 Timing Analysis

When replacing combinational logic with

memory, a delay is added to the computing time of

the function, due to the memory access time, the set

and propagation times of flip-flops and the number

of cycles required to compute the new function.

However, at the same time, the critical path of the

combinational logic is significantly reduced, and this

must be taken into account when comparing the

performance of the proposed solution with that of

the fully combinational circuit.

Calling Tcomb the total computing time of the

original combinational function, Tprop the computing

time of the proposed solution, and N the number of

cycles required to perform the equivalent

combinational function, one has:

Tprop = N * (Tmem + Tnewcomb + TsetFFs)

and the goal of the designer will be to minimize the

Tprop / Tcomb ratio.

Even if the total delay time of the proposed

solution is larger than the one of the combinational

approach, by using the memory-based technique one

is trading performance for reliability.

4. Test Cases

In order to explain the proposed technique, two

test cases have been simulated: one 4x4-bit

multiplier is implemented using two different

approaches to replace combinational elements with

memory, and a 4-tap FIR filter with 8-bit inputs and

coefficients is implemented to illustrate the results

of our proposal in a practical application circuit.

4.1 The 4x4-bit Multiplier

To show the reduction of the fault propagation rate

obtained using our proposed approach, we chose one

4x4-bit multiplier as a case study. To illustrate this, we

implemented two solutions with different amounts of

memory and combinational circuit. The first one, here

called the column multiplier, has more combinational

circuit and less memory than the second one, here called

the line multiplier. Using simulated fault injection to

calculate the fault propagation rates of these two

solutions, we compared the obtained results with the

fault rate of the 4x4-bit multiplier implemented with the

fully combinational circuit shown in Figure 1.

Figure 1. Fully combinational 4x4 bit multiplier

It is important to mention here some self imposed

design restrictions that we had to comply with and that

led us to the proposed solutions for the multiplier test

case:

- very small memories are not area efficient, because

a significant area is needed to implement the decoders

and a smaller proportion of area is used for data storage;

- the size of the memory used to replace the

combinational parts is smaller than the size of the

memory needed to implement the whole function, in our

case, the 4x4-bit multiplication; otherwise, we would

have a fully truth table implementation of the function of

the circuit. So, in this case, the memory size must be

smaller than 2048 bits;

- the size of the combinational circuit must be

smaller than the size of the fully combinational circuit of

the 4x4 bit multiplier shown in Figure 1, since the goal

is to avoid faults in the combinational circuit part.

4.1.2 The Column Multiplier

The column multiplier, as the name implies, makes

the multiplication column by column. Therefore, to

perform a 4x4-bit multiplication, 7 cycles of operation

are necessary. During the first cycle, all operations

required to generate bit P0 (Figure 1) of the product are

performed. During the second cycle of operation, bit P1

is generated, and so on, until the last cycle, when bits P6

and P7 are generated. In Figure 2 one can see the

implemented column multiplier circuit. In this circuit,

memory performs the function of one to three full-

adders of a column, depending on the column that is

being calculated.

Figure 2 also shows that some additional circuitry has

been added in order to properly generate control signals.

To save the carry-out signals for the next cycle, a 3-bit

register is used. A 6-bit shift register was also required

to save and shift the product. Another control

requirement was a 3-bit counter to generate the selection

signals for the multiplexer. All the registers required in

this additional circuitry, as well as the memory, are

protected using the Reed Solomon method [9].

Figure 2. Column multiplier circuit.

The combinational circuit that is sensible to faults is

highlighted in Figure 2 with a dashed rectangle.

4.1.1 The Line Multiplier
In this circuit the multiplication is performed line by

line. In this case, the number of cycles necessary to

make a multiplication is equal to the number of bits of

the inputs, that in our case is four. During the first three

cycles, only one result bit per cycle is generated. The

four remaining bits are calculated in the last cycle. In

Figure 3 we can see the implemented line multiplier

circuit. In this circuit, memory performs the function of

all 4 full-adders in a line.

Like in the previous implementation, it was also

necessary to include some additional circuitry for

control and to save some values from one cycle to other.

But in this circuit only a 3-bit shift-register to store and

shift the product was necessary, against the 6-bit register

used in the previous solution.

Figure 3. Line multiplier circuit.

The size of the counter that generates the selection

signals for the multiplexer was also smaller (2 instead of

3). On the other hand, the shift register used to store

signals from one cycle to the other was larger. This and

other area characteristics from all the solutions are

compared in Table 1. This table also shows the costs of

the Reed Solomon protection, both for memory and

registers.

Table 1. Area for each solution (# of transistors).
Solution Combin.

Circuit

Flip-

flops

Voter Memory RS

cod/dec

Total

5-MR 1520 608 - - 2128

TMR 912 160 - - 1072

Comb 304 - - 304

Column 100 288 1536 80 2004

Line 36 296 3840 80 4252

The combinational circuit for the line multiplier was

smaller than the one in the column multiplier. That

happened because in the line multiplier only one bit of

input B is necessary for the AND operations, while in

the column multiplier each bit of input B is necessary for

the AND operation with one bit of input A. On the other

hand, the total area of the column multiplier was smaller

than the one of the line multiplier. That happened

because in the line multiplier more output signals from a

cycle become input signals to the next cycle and this

makes memory size grow. One important thing that must

be taken into consideration is the additional unprotected

area that the voters add to the TMR and 5-MR solutions.

In TMR, the voter is almost 15% of the total area, and in

5-MR it is more than 28%. In the memory solutions, the

area added for the Reed-Solomon encoder and decoder

is less than 4% in the column multiplier solution and less

than 2% in the line multiplier solution.

4.1.3 Fault Injection Simulations and Results
The fault injection was simulated using CACO-

PS [11], a cycle-accurate, configurable power

simulator, which was extended to support single and

double simultaneous transient fault injection. The

simulator works as follows: first, it simulates the

normal operation of the circuit and stores the correct

result. After that, for each possible fault combination

in the circuit, the simulation is repeated. Then, the

output of each simulation is compared to the correct

one. If any value differs, the fault was propagated to

the output. All the process is repeated again, for

each combination of signals of the circuit.

Both implementations of the multiplier using memory

were compared with the fully combinational solution of

Figure 1 and with the classical TMR solution [12]. The

resulting fault propagation rates can be seen in Table 2,

for single fault injection, and in Table 3 for two

simultaneous faults injection.

Table 2. Fault rate for single faults.

Circuit
of gates

that fail

Fault rate

(%)

Proportional

fault rate (%)

5-MR 532 8.80 8.80

TMR 268 5.49 2.77

Combinational 76 49.02 7.00

Column 33 46.82 2.90

Line 9 70.23 1.19

Table 3. Fault rates for two simultaneous faults.

Circuit
of gates

that fail

Proportional

fault rate (%)

5-MR 532 20.50

TMR 268 8.19

Combinational 76 8.95

Column 33 4.19

Line 9 1.53

In Table 2, one can see that the fault rate (3
rd

column) has increased in the solutions using memory.

That happened because we have reduced the area

susceptible to faults, and consequently increased the

influence of that portion of the circuit in the final result.

But if we take into account that the circuit with less area

has less probability to be affected by a transient fault,

and make a proportional fault rate evaluation (4
th

column), as the percentage of observable faults at the

output, one can see the benefits of the proposed

solutions. Therefore, in tables 3, 5, and 6, only the

proportional fault rate is shown.

4.1.4 Area versus Fault Tolerance Trade-off

When contrasting the results in tables 1 and 3, one

can notice that the 5-MR solution almost doubles the

area required for TMR, and also increases by a factor of

2.5 the percentage of faults that are propagated to the

output of the circuit. That happens due to the significant

increase in non-protected area introduced by the voter in

the 5-MR approach. The conclusion, then, is that future

solutions based upon increasing the redundancy in terms

of modules will no longer be a good alternative when

multiple simultaneous faults will be a concern.

Another important observation is that, depending on

the design alternative, the area × fault tolerance trade-off

may impact quite differently the adopted solution, when

contrasted with the TMR approach. For the column

multiplier, the area increases almost twice, while the

fault propagation percentage is reduced by the same

ratio. For the line multiplier, however, the area increases

by a factor of 4, while the fault rate decreases by a factor

greater than 5.

4.2 The 4-tap FIR Filter
In this second case study we implemented a 4-tap, 8-

bit FIR filter. We compared the fully combinational

solution (Figure 4) with a solution using our approach,

with memory replacing part of the combinational circuit.

Figure 4. Combinational circuit for the 8-bit FIR

filter with 4 taps.

The filter implementation using memory to replace

part of the combinational logic is illustrated in Figure 5.

Figure 5. Filter implementation using memory.

4.2.1 The proposed approach: using memory
The filtering function is performed in 8 cycles and the

memory function can be described by the following

equation:

Erro!

where n is the bit position (from 0 to 7), k is the tap

number (from 0 to 3) and M is the order of the filter.

In our solution using memory, we pipelined the

multiply and add operations, in order to reduce the

memory size. The area data is shown in Table 4. Since

this is a pipeline filter, it was necessary to add a 10-bit

adder to add the partial products generated in each cycle,

and drive the result to the output. We also included a

register to store the sum from one cycle to the next and

an 8-bit shift register to shift and store the 8 least

significant bits generated in each cycle.

Table 4 – Areas of the filter implementations

(# of transistors)
Solution Combin.

circuit

Flip-

flops

Memory RS

enc/dec

Total

Comb. 6524 - - 6524

Mem. 200 760 320 552 1832

4.2.2 Fault Injection Simulations and Results
Differently from the multiplier, it was not

possible to simulate the injection of all possible

combinations of faults in the filter in an exhaustive

way, because it would take too long to get the

results.

However, from the experience with a previous

case study, where we noticed that only a small

number of randomly injected faults (less than one

percent of the total number of possible faults) was

necessary to reach an approximately stable result, in

terms of percentage of faults that propagate to the

output, we decided to use a randomly generated set

of input combinations and single/double fault

injection to evaluate the fault rate for the fully

combinational solution and for the one using

memory.

To implement the fault injection in a faster way,

we implemented the filter in VHDL and synthesized

both filter architectures, using a FPGA (Altera

EP20K200EFC484-2X). The results are shown in

Table 5, for single faults, and in Table 6, for double

faults.

Table 5. Fault rate results for single faults in FIR

filter implementations.

Solution
of gates

that fail

Proportional

fault rate (%)

Comb. 1631 48.21

Memory 50 2.58

Table 6. Fault rate results for two simultaneous

faults in FIR filter implementations.

Solution
of gates

that fail

Proportional

fault rate (%)

Comb. 1631 67.35

Memory 50 2.96

In this case study we can see that the

proportional fault rate of the memory solution is

more than 20 times smaller than the combinational

solution for single and double simultaneous faults.

The area figures in table 4 show that the memory
∑
−

=

=
1

0

)()(
M

k

k nxcny M-k

solution has less than 3 times the area of the

combinational solution.

5. Conclusions and Future Work

This work proposed the use of a memory, protected

against double simultaneous transient faults using a

Reed-Solomon scheme, in order to reduce the area of

combinational logic susceptible to faults.

Two different circuits have been implemented in

order to analyze the feasibility of the proposed solution

in terms of tolerance to double simultaneous faults, and

through fault injection simulations the reduction of the

fault propagation rates has been demonstrated.

5.1 Discussion

The experiments conducted with the injection of

faults in the example circuits have shown that the

solution indeed reduces the probability of double

simultaneous faults affecting the output of the circuit,

since the area subject to faults (remaining combinational

logic) is much smaller than that in the fully

combinational implementations. Also, the hypothesis

that increased redundancy in the logic (n-MR) provides

higher reliability was not confirmed, since when two

simultaneous faults occur, strategies like the one

proposed here provide better results than n-MR, as

shown by the obtained results.

However, since we are replacing combinational logic

with memory, there is a penalty in performance, which

has yet to be improved.

In any case, when comparing performance, the cost

of failure must also be taken into consideration, since

there are many applications in which, if the circuit fails,

the cost will be unbearable. For those applications, fault

tolerance is the major concern and, therefore, the

proposed solution will be the most indicated, trading

performance for reliability.

5.2 Future Work

The next step in the exploration of the use of

memory to replace combinational logic will be the

evaluation of the impact of this technique in the

computing time of digital circuits for different purposes.

From the area figures shown in Tables 1 and 4, it can be

seen that there is no direct relation between the area of

the fully combinational circuit and that of the solutions

using memory. Concerning this issue, there is a large

design space to be explored, with different area

reduction/increase ratios, according to the expertise of

each designer, as can be noticed comparing the areas

obtained for the different multiplier implementations

(Table 1) and in the filter implementation (Table 4). The

definition of design techniques that will lead to the

optimal results, in terms of area vs. fault tolerance, is

another topic to be addressed in future works, aiming the

automation of this design step.

This work is part of a larger research project, aiming

the development of new design techniques tailored to

future technologies. Those techniques will be applied in

the construction of a whole processor that will be

tolerant to multiple simultaneous transient upsets.

6. References

[1] Constantinescu, C., “Trends and Challenges in VLSI

Circuit Reliability”, IEEE Micro, vol. 23, no. 4, pp. 14-19,

IEEE Computer Society, New York-London, July/August

2003.

[2] Edenfeld, D.; Kahng, A.B.; Rodgers, M.; Zorian, Y., “2003

Technology Roadmap for Semiconductors”, IEEE Computer,

vol. 37, pp. 47-56, IEEE Computer Society, New York-

London, January 2004.

[3] Semiconductor Industry Association. International

Technology Roadmap for Semiconductors - ITRS

2003,http://public.itrs.net/Files/2003ITRS/Home2003.htm.

Accessed in 17/11/2005.

[4] Pflanz, M. and Vierhaus, H. T., “Online Check and

Recovery Techniques for Dependable Embedded Processors”,

IEEE Micro, vol. 21, number 5, pp. 24-40, IEEE Computer

Society, New York-London, September-October 2001.

[5] Anghel, L., Alexandrescu, D. and Nicolaidis, M.,

“Evaluation of soft error tolerance technique based on time

and/or space redundancy”, in Proceedings of 13th Symposium

on Integrated Circuits and Systems Design (ICSD 2000), pp.

237-242, IEEE, Manaus, Brazil, September 2000.

[6] Anghel, L. and Nicolaidis, M., “Cost Reduction and

Evaluation of a Temporary Faults Detection Technique”, in

Proceedings of Design, Automation and Test in Europe

Conference (DATE 2000), pp. 591-598, ACM, Paris, France,

March 2000.

[7] Lima, F., Carro, L. and Reis, R., “Techniques for

Reconfigurable Logic Applications: Designing Fault Tolerant

Systems into SRAM-based FPGAs”, in Proceedings of the

International Design Automation Conference, DAC 2003, pp.

650-655, ACM, New York, 2003.

[8] Houghton, A. D., The Engineer’s Error Coding Handbook.

London, UK: Chapman & Hall, 1997.

[9] Neuberger, G., Kastensmidt, F., Reis, R. “An Automatic

Technique for Optimizing Reed-Solomon Codes to Improve

Fault Tolerance in Memories”, in IEEE Design and Test of

Computers, Volume 22, Issue 1, pp. 50-58. IEEE Computer

Society, New York, 2005.

[10] Elliott, D.G., Stumm, M., Snelgrove, W.M., Cojocaru, C.,

Mckenzie, R., “Computational RAM: implementing processors

in memory”, Design & Test of Computers, IEEE, vol. 16, no.

1, pp. 32-41, IEEE Computer Society, New York-London,

Jan/Mar 1999.

[11] Beck Fo, A. C. S., Mattos, J. C. B., Wagner, F. R. and

Carro, L., “CACO-PS: A General Purpose Cycle-Accurate

Configurable Power-Simulator”, in Proceedings of the 16th

Brazilian Symposium on Integrated Circuits and Systems

Design (SBCCI 2003), Sep. 2003.

[12] Johnson, B. W., Design and Analysis of Fault Tolerant

Digitals Systems: Solutions Manual. Reading, MA: Addison –

Wesley publishing Company, October 1994.

Fault Tolerance Against Multiple SEUs using Memory-Based Circuits to
Improve the Architectural Vulnerability Factor

Rhod, Eduardo1

elrhod@ece.ufrgs.br
Lisbôa, C. A. L. 2

calisboa@inf.ufrgs.br
Álisson Michels1

alisson.michels@ufrgs.br
Carro, Luigi1,2

carro@ece.ufrgs.br

1 Departamento de Engenharia Elétrica. Av. Osvaldo Aranha, 103/206-B - 90035-190 - Porto Alegre, RS, Brasil - Phone: +55 51 3316 3516
2 Instituto de Informática. Av. Bento Gonçalves, 9500, Bloco IV - 91501-970 - Porto Alegre, RS, Brasil - Phone: +55 51 3316 7748

Abstract

Technology trends for semiconductors forecast a
higher incidence of soft errors caused by radiation on
digital circuits implemented using sub 65nm
technologies. As a consequence, the single-fault
paradigm, which has been the model for circuit
designers for many years, will no longer hold, and new
design approaches are necessary to generate circuits
that are able to withstand multiple simultaneous
upsets. Newer memory technologies, like magnetic
RAM, ferroelectric RAM and flash, are not affected by
high energy particle strikes. Therefore, using small
memories as building blocks, this work proposes to
replace parts of combinational circuits with those
intrinsically protected memories, thus reducing the
overall architectural vulnerability factor (AVF), and,
consequently, the soft error rate. The proposed
approach has been applied to the implementation of
multipliers and a FIR filter and the simulated injection
of double transient faults has confirmed the initial
assumptions, with a 8 to 30 times reduction in AVF.

1. Introduction

The constant growth of the semiconductor industry
has led to great improvements in the performance of
electronic devices. However, this performance gain
brought increased concern regarding the reliability of
these advanced circuits. As nanotechnologies arrive,
circuits are becoming more susceptible to high energy
particle strikes such as neutrons from cosmic rays and
alpha particles from packaging material. These strikes
can produce or stimulate bit flips, also known as single
event upsets (SEUs), which can compromise the
correct functionality of the circuit, provoking soft
errors (SEs). Soft error rates (SER) for logic circuits
used to be negligible compared with the failure rate of
memory devices. However, for 100 nm technologies
and beyond, logic SER must to be taken into account.
For a comprehensive introduction to the subject of soft
errors, the reader is referred to [1].

Current fault tolerance techniques are effective for
SEUs and single event transients (SETs). However,
they are unlikely to withstand the occurrence of
multiple simultaneous faults that is foreseen with those
new technologies [2, 4]. The probability of multiple-bit
upsets increases relatively fast with technology scaling,
compared with the probability of an upset in a single
bit. In the near future SER will become as important as
the performance or power characteristics of electronic
circuits.

In this paper, we propose an alternative method to
reduce the soft error rate of combinational circuits, by
reducing its architectural vulnerability factor (AVF),
through the use of a companion memory. Our
technique aims to reduce the area susceptible to single
and double bit flips, using a memory based circuit in
the place of the traditional combinational one.

Soft errors occur in SRAM and DRAM devices, but
not in ferroelectric RAMs (FRAMs), magnetic RAMs
(MRAMs), or flash memories [5]. Our proposal is to
reduce SER by using a magnetic memory, and some
additional combinational circuit, to replace the fully
combinational one.

In order to explain the proposed technique, two
different versions of a 4x4-bit multiplier using memory
to replace logic have been implemented. As a practical
example of the application of our technique, the
implementation of a FIR filter, is also presented in
Section 5. Our results show that, with some penalty in
area and computational time, we can improve the AVF
by a factor of 8 against the TMR solution. With no
protection technique, our solution decreased the AVF
by a factor of 30. By reducing the overall AVF one
consequently reduces the SER.

This paper is organized as follows: section 2
describes related work, while section 3 details the SER
estimation approach used in this paper. Section 4
explains the memory characteristics and its influence
in area and performance results. Section 5 reports the
test cases and its results in terms of area, performance
and AVF. In section 6 we discuss the results obtained
in the experiments and our plans for future work on
this project.

2. Related Work

 Soft errors derive from the incidence of external
radiation, whose effects become stronger as
technology features shrink, and there are fewer
electrons to form the transistor channel. Shrinking
transistor dimensions and lower operating voltages will
make circuits more sensible to neutron and alpha
particles, which induce transient pulses.

Several techniques to maintain circuit reliability
have been proposed, including hardware implemented
parity code and source level code modification [6],
time/space redundancy [7, 8], triple modular
redundancy (TMR) and double modular redundancy
with comparison (DWC) with concurrent error
detection (CED) [9]. However, all these techniques are
targeted to the occurrence of a single upset in a given
time interval.

In parallel, research aiming the protection of
memories against faults has also evolved. The first
approaches, using Hamming code [10], allowed one to
protect the data against single bit flips in a data word,
allowing the correction of the wrong bit, as well as
detection of double bit flips (without correction). The
Reed-Solomon approach [10] is a solution that allows
the detection and recovery of faulty bits in a single
symbol, but is still susceptible to errors when bit flips
occur in two separate symbols. The size of the symbols
can be adjusted according to the application and the
method allows the correction of as many faults (in a
single symbol) as the number of bits in the symbol.

Recently, another work [11] proposed the
combination of the Hamming and Reed-Solomon
protection schemes in order to cope with simultaneous
bit flips in two contiguous symbols. With this
technique, one can build memories that tolerate two
simultaneous faults occurring in the same symbol or in
two symbols in different words in a memory array.
This solution also allows the detection and correction
of double bit flips in adjacent symbols of the same
word, once a special placement of the RS coded words
and does not impose an excessive penalty in area nor
in delay.

3. Soft Error Rate

The soft-error-rate (SER) of a design can be
expressed by the amount of errors manifested in a
given period of time. One of the most known ways to
measure the SER is evaluating the Failure in Time
(FIT) of the design [12]. For example, a soft error rate
of 10 FIT means that the circuit will have 10 errors in
1 million years. Another very commonly used metric

to express SER is the Mean Time to Failure (MTTF).
FIT and the MTTF are inversely related.

The soft-error rate of a design can also be expressed
[13, 14] as follows:

(1)

Where i represents the ith element of the design.
The SERnominal is defined by the probability of a

SEU occurring on a specific node of the element. This
probability depends on the element type, transistor
size, node capacitance, and other static characteristics
of the element. For instance, to estimate the SERnominal
for a latch, one must know Qcritic, which identifies the
minimum charge necessary to cause the element to
failure. More details can be found in [13].

The timing vulnerability factor (TVF) can be
summarized as the fraction of time that the element can
fail. For combinational logic, the timing vulnerability
factor depends on the type of logic, which can be data
path or control path. More details on these and other
TVF evaluation can be seen in [13,14]. In this paper
we propose an alternative to reduce the soft error rate
by reducing the overall architecture vulnerability factor
(AVF) of the system.

The architecture vulnerability factor of an element
can be understood as the probability that a fail in that
element cause a fail in the circuit. The AVF value of
an element depends on its inputs and also on the
importance of that element for the circuit. In this paper
we estimate the AVF by injecting faults and detecting
if those faults have caused system errors.

4. Using Magnetic Memory to Reduce
Combinational Logic

The use of memory not only as a storage device, but
also as a computing device, has been a subject of
research for some time. In our approach, the memory
works as a truth table that receives the inputs and
returns the outputs according to the implemented
function. Since the size of a truth table depends on the
width of the input and output, the memory size, in bits,
also depends on the input and output widths. This
relationship can be described as follows:

 Size = 2I × O (2)

where I and O are the input and output widths,
respectively, both in bits.

Since the memory size grows exponentially with the
width of the inputs, it is unthinkable to use it as the
sole implementation means to develop a circuit able to
withstand one or more simultaneous faults. Our

proposal is to replace part of the combinational circuit
by a magnetic memory, without adding a meaningful
amount of unprotected hardware, like TMR and N-MR
approaches do by adding a voter.

At first sight, it seems that the amount of area that
one must add to the circuit will make the proposed
solution unfeasible, from the area cost standpoint.
However, as will be shown in the test cases discussed
in section 5, this drawback can be significantly
reduced with adequate design approaches.

When replacing combinational circuits by
memories, a delay is added to the computing time of
the function, due to the memory access time, the flip-
flops set and propagation times and the number of
cycles required to compute the new function.
However, at the same time, the critical path of the new
combinational logic is significantly reduced, and this
must be taken into account when comparing the
performance of the proposed solution with that of the
fully combinational circuit. These aspects are further
discussed in section 5.

5. Test Cases

In order to explain the proposed technique, two test
cases have been simulated: one 4x4-bit multiplier is
implemented using two different approaches to replace
combinational elements with memory, and a 4-tap FIR
filter with 8-bit inputs and coefficients is implemented
to illustrate the results of our proposal in a practical
application circuit.

Figure 1. Fully Combinational 4x4-bit Multiplier

We implemented two architectures for the 4x4-bit

multiplier, with different amounts of memory and
combinational circuits. The first one, here called the
column multiplier, has more combinational circuit and
less memory than the second one, here called the line
multiplier. Using simulated fault injection to calculate
the fault propagation rates of these two solutions, we

compared the obtained results with the AVF of the
4x4-bit multiplier implemented with the fully
combinational circuit shown in Figure 1.

The column multiplier, as the name implies, makes
the multiplication column by column. Therefore, to
perform a 4x4-bit multiplication, 7 cycles of operation
are necessary.

In Figure 2 one can see the implemented column
multiplier circuit. In this circuit, memory performs the
function of one to three full adders of a column,
depending on the column that is being calculated.
Figure 2 also shows that some additional circuitry has
been added in order to properly generate control
signals. The combinational circuit that is sensible to
faults is highlighted in Figure 2 with a dashed
rectangle.

Figure 2. Column Multiplier Circuit.

In the Line multiplier circuit multiplication is

performed line by line. In this case, the number of
cycles necessary to make a multiplication is equal to
the number of bits of the inputs, that in our case is
four. During the first three cycles, only one result bit
per cycle is generated. The four remaining bits are
calculated in the last cycle.

Figure 3. Line multiplier circuit.

In Figure 3 we can see the implemented line
multiplier circuit. In this circuit, memory performs the
function of all 4 full-adders in a line. Like in the
previous implementation, it was also necessary to
include some additional circuitry for control and to
save some values from one cycle to other.

Area characteristics from all the solutions are
compared in Table 1. This table also shows the costs of
the Reed Solomon protection used for registers.

Table 1. Area for Each Solution

(# of transistors)
Circuit Comb.

Circuit
Flip-

Flops
Voter Memory RS Cod.

/Decoder
Total

5-MR 3,270 - 672 - - 4,392
TMR 2,232 - 240 - - 2,472
Comb. 744 - - - - 744
Column 200 468 - 3,048 96 3,812
Line 42 346 - 7,650 96 8,134

To evaluate the area, we have considered that each
bit of rom memory demands 1 transistor. For the logic
gates we computed the area as follows: 6 transistors
for AND, OR and XOR gates, 4 for NAND and NOR
gates and 12 for each flip-flop.

One important thing that must be taken into
consideration is the additional unprotected area that the
voters add to the TMR and 5-MR solutions. In TMR,
the voter is almost 15% of the total area, and in 5-MR
it is more than 28%. In the memory solutions, the area
added for the Reed-Solomon encoder and decoder is
less than 4% in the column multiplier solution and less
than 2% in the line multiplier solution.

The injection of faults was simulated using CACO-
PS [15], a cycle-accurate, configurable power
simulator, which was extended to support single and
double simultaneous transient fault injection. The
simulator works as follows: first, it simulates the
normal operation of the circuit and stores the correct
result. After that, for each possible fault combination
in the circuit, the simulation is repeated. Then, the
output of each simulation is compared to the correct
one. If any value differs, the fault was propagated to
the output. All the process is repeated again, for each
combination of signals of the circuit. Both
implementations of the multiplier using memory were
compared with the fully combinational solution and
with the classical TMR solution. The resulting fault
propagation rates can be seen in Table 2, for single and
two simultaneous fault injection. In the same table, one
can also find the critical path timing of all solutions.
These results were obtained with electrical simulation
of the circuits. We used the Smash Simulator for 0.35
µm

In Table 2, one can see that the architectural
vulnerability factor (3rd column) was higher in the
solutions using memory than in the TMR and 5-MR
ones. That happened because we have reduced the area
susceptible to faults, and consequently increased the
influence of that portion of the circuit in the final
result. But, if we take into account that the circuit with
less area has less probability to be affected by a
transient fault, and make a proportional AVF
evaluation (5th and 6th column), as the percentage of
observable faults at the output, one can see the benefits
of the proposed solutions. Therefore, in table 4, only
the proportional AVF is shown.

Table 2. Architectural Vulnerability Factor and
Timing Results for Single and Double Faults

Circuit #of
gates
that
fail

AVF %
(1 fault)

AVF %
(2 faults)

Prop.
AVF %
(1 fault)

Prop.
AVF % (2

faults)

Critical
Path

Timing
(ns)

5-MR 492 8.80 20.50 8.80 20.50 18.5
TMR 268 5.49 16.26 2.99 8.86 18.2
Comb. 76 49.11 63.60 7.59 9.82 17.5
Column 33 15.92 28.05 1.07 1.88 15.0
Line 9 36.22 54.07 0.66 0.99 16.5

When contrasting the results in tables 1 and 2, one

can notice that the 5-MR solution almost doubles the
area required for TMR, and also increases by a factor
of 2.5 the percentage of faults that are propagated to
the output of the circuit. That happens due to the
significant increase in non-protected area introduced
by the voter in the 5-MR approach. The conclusion,
then, is that future solutions based upon increasing the
redundancy in terms of modules will no longer be a
good alternative when multiple simultaneous faults
will be a concern. Another important observation is
that, depending on the design alternative, the area ×
fault tolerance trade-off may impact quite differently
the adopted solution, when contrasted with the TMR
approach. For the column multiplier, the area increases
1.5 times, while the fault propagation percentage is
reduced 4.7 times. For the line multiplier, however, the
area increases by a factor of 3.2, while the AVF
decreases by a factor greater than 8.

When one looks at the timing results in table 2, one
can notice that the critical path in the memories
solutions has decreased. That happened because the
proposed memory solutions reduced most of the
combinational circuit, and added a memory and flip-
flop based circuit that contributes less to the critical
path than the combinational circuit that was
substituted. On the other hand, the total computational
time has increased by a factor of almost 4 for the line
memory and almost 7 for the column memory. That

happened because the new memory solutions compute
the multiply in 4 and 7 cycles for the line and column
memory solutions respectively.

In this second case study we implemented a 4-tap,
8-bit FIR filter. We compared the fully combinational
solution (Figure 4) with a solution using our approach,
with memory replacing part of the combinational
circuit.

Figure 4. Combinational Circuit for the 8-bit
FIR Filter with 4 Taps.

The filter implementation using memory to replace

part of the combinational logic is illustrated in Figure
5.

Figure 5. The Proposed Approach: Using

Memory.

The filtering function is performed in 8 cycles and

the memory function can be described by the following
equation:

(3)

where n is the bit position (from 0 to 7), k is the tap
number (from 0 to 3) and M is the order of the filter.

In our solution using memory, we pipelined the
multiply and add operations, in order to reduce the
memory size.

The area data is shown in Table 3.

Table 3. Areas of the Filter Implementations
(# of Transistors)

 Comb. Flip-
Flops

Memory RS Cod./
Decoder

Total

Combin. 16,494 - - - 16,494
Memory 540 1,700 900 484 3,624

Since this is a pipeline filter, it was necessary to add

a 10-bit adder to add the partial products generated in
each cycle, and drive the result to the output. We also
included a register to store the sum from one cycle to
the next and an 8-bit shift register to shift and store the
8 least significant bits generated in each cycle.

Differently from the multiplier, it was not possible
to simulate the injection of all possible combinations
of faults in the filter in an exhaustive way, because it
would take too long to get the results.

However, from the experience with a previous case
study, where we noticed that only a small number of
randomly injected faults (less than one percent of the
total number of possible faults) was necessary to reach
an approximately stable result, in terms of percentage
of faults that propagate to the output, we decided to
use a randomly generated set of input combinations
and single/double fault injection to evaluate the AVF
for the fully combinational solution and for the one
using memory.

In this case study we can see that the proportional
AVF of the memory solution is more than 20 times
smaller than the combinational solution for single and
double simultaneous faults.

Table 4. AVF Results for Single Faults

in FIR Filter Implementations
Circuit # of gates

that fail
Proportional
AVF (1 fault)

Proportional
AVF (2 faults)

Combinational 1,631 48,21 67.35
Memory 50 1.39 2.11

6. Conclusions

This work proposed the use of a memory, in order
to reduce the area of combinational logic susceptible to
faults.

Two different circuits have been implemented in
order to analyze the feasibility of the proposed solution
in terms of tolerance to double simultaneous faults, and
through fault injection simulations the reduction of the
AVF has been demonstrated.

The experiments conducted with the injection of
faults in the example circuits have shown that the
solution indeed reduces the probability of double
simultaneous faults affecting the output of the circuit,
since the area subject to faults (remaining
combinational logic) is much smaller than that in the
fully combinational implementations. Also, the
hypothesis that increased redundancy in the logic (n-
MR) provides higher reliability was not confirmed,
since when two simultaneous faults occur, strategies
like the one proposed here provide better results than
n-MR, as shown by the obtained results.

However, since we are replacing combinational
logic with memory, there is a penalty in performance,
which has yet to be improved. In any case, when
comparing performance, the cost of failure must also
be taken into consideration, since there are many
applications in which, if the circuit fails, the cost will
be unbearable. For those applications, fault tolerance is
the major concern and, therefore, the proposed solution
will be the most indicated, trading performance for
reliability.

Even if the total delay time of the proposed solution
is larger than the one of the combinational approach,
by using the memory-based technique one is trading
performance for reliability.

This technique does not completely eliminate the
occurrence of errors, but reduces the probability of
those to a level that is acceptable for many practical
applications such as multimedia and graphics
processing [16].

The next step in the exploration of the use of
memory to replace combinational logic will be the
evaluation of the impact of this technique in the
computing time of digital circuits for other purposes.

7. References

[1] Ziegler J. F. et al., “IBM experiments in soft fails in
computer electronics (1978–1994),” IBM J. Res. Devel., vol.
40, no. 1, pp. 3–18, Jan. 1996.

[2] Constantinescu, C., “Trends and Challenges in VLSI
Circuit Reliability”, IEEE Micro, vol. 23, no. 4, pp. 14-19,
IEEE Computer Society, New York-London, July/August
2003.

[3] Edenfeld, D.; Kahng, A. B.; Rodgers, M.; Zorian, Y.,
“2003 Technology Roadmap for Semiconductors”, IEEE
Computer, vol. 37, pp. 47-56, IEEE Computer Society, New
York-London, January 2004.

[4] Semiconductor Industry Association. International
Technology Roadmap for Semiconductors - ITRS
2003,http://public.itrs.net/Files/2003ITRS/Home2003.htm.
Accessed in 17/11/2005.

[5] Eto, A.; Hidaka, M.; Okuyama, Y.; Kimura, K.; Hosono.
M., “Impact of neutron flux on soft errors in MOS
memories.”, In Proc. IEEE Int. Dev. Meet. (IEDM), pages
367–370, 1998.

[6] Pflanz, M.; Vierhaus, H. T., “Online Check and Recovery
Techniques for Dependable Embedded Processors”, IEEE
Micro, vol. 21, number 5, pp. 24-40, IEEE Computer
Society, New York-London, September-October 2001.

[7] Anghel, L.; Alexandrescu, D.; Nicolaidis, M.,
“Evaluation of soft error tolerance technique based on time
and/or space redundancy”, in Proceedings of 13th Symposium
on Integrated Circuits and Systems Design (ICSD 2000), pp.
237-242, IEEE, Manaus, Brazil, September 2000.

[8] Anghel, L.; Nicolaidis, M., “Cost Reduction and
Evaluation of a Temporary Faults Detection Technique”, in
Proceedings of Design, Automation and Test in Europe
Conference (DATE 2000), pp. 591-598, ACM, Paris, France,
March 2000.

[9] Lima, F.; Carro, L.; Reis, R., “Techniques for
Reconfigurable Logic Applications: Designing Fault
Tolerant Systems into SRAM-based FPGAs”, in Proceedings
of the International Design Automation Conference, DAC
2003, pp. 650-655, ACM, New York, 2003.

[10] Houghton, A. D., “The Engineer’s Error Coding
Handbook.”, London, UK: Chapman & Hall, 1997.

[11] Neuberger, G.; Kastensmidt, F.; Reis, R., “An
Automatic Technique for Optimizing Reed-Solomon
Codes to Improve Fault Tolerance in Memories”, in
IEEE Design and Test of Computers, Volume 22, Issue 1, pp.
50-58. IEEE Computer Society, New York, 2005.

[12] Mukherjee, S. S.; Emer, J.; Reinhardt, S. K., “The Soft
Error Problem: An Architectural Perspective”, in Proc. 11th
International Symposium on High-Performance Computer
Architecture (HPCA), Feb. 2005, San Francisco, pp. 243-
247.

[13] Nguyen, H.T.; Yagil, Y., “A Systematic Approach to
SER Estimation and Solutions”, Proc. IEEE Int’l Reliability
Physics Symp., IEEE Press, 2003, pp. 60-70.

[14] Seifert, N.; Tam, N., “Timing Vulnerability Factors of
Sequentials”, IEEE Trans. Device and Materials Reliability,
Sept. 2004, pp. 516-522.

 [15] Beck Fo, A. C. S.; Mattos, J. C. B.; Wagner, F. R.;
Carro, L., “CACO-PS: A General Purpose Cycle-Accurate
Configurable Power-Simulator”, in Proceedings of the 16th
Brazilian Symposium on Integrated Circuits and Systems
Design (SBCCI 2003), Sep. 2003.

[16] Johnson, B. W., “Design and Analysis of Fault Tolerant
Digitals Systems: Solutions Manual. Reading”, MA: Addison
– Wesley publishing Company, October 1994.

http://scholar.google.com/url?sa=U&q=http://ieeexplore.ieee.org/iel5/54/30431/01401824.pdf%3Farnumber%3D1401824
http://scholar.google.com/url?sa=U&q=http://ieeexplore.ieee.org/iel5/54/30431/01401824.pdf%3Farnumber%3D1401824
http://scholar.google.com/url?sa=U&q=http://ieeexplore.ieee.org/iel5/54/30431/01401824.pdf%3Farnumber%3D1401824

A non-intrusive on-line control flow error detection technique for SoCs

E. L. Rhod
1
, C. A. Lisbôa

2
, L. Carro

2
, M. Violante

3
, M. Sonza Reorda

3

1
Universidade Federal do Rio Grande do Sul, Escola de Engenharia, Dep. Engenharia Elétrica

2
Universidade Federal do Rio Grande do Sul, Instituto de Informática, Dep. Informática Aplicada

3
Politecnico di Torino, Dipartimento di Automatica e Informatica

eduardo.rhod@ufrgs.br,{calisboa, carro}@inf.ufrgs.br,{massimo.violante,matteo.sonzareorda}@polito.it

Abstract

The time to market demands of embedded systems

make the reuse of software and hardware components a

mandatory design approach, while the growing

sensitivity of hardware to soft errors requires effective

error detection techniques to be used even in general

purpose systems. Control flow error detection

techniques are usually either hardware or software

intrusive, requiring modification of the processor

architecture or changes in the application software.

This paper proposes a non-intrusive and low cost

technique to be used in SoC designs, that is able to

detect errors affecting the program counter with very

small area and performance overheads, without the

need of any changes in the core processor hardware

nor in the application software.

1. Introduction

The growing demands and competitive needs of the

embedded systems market, with ever shrinking time to

market requirements, has made the use of SoCs

incorporating previously tested IPs, or the use of

FPGAs with built-in factory supplied processors,

preferred alternatives to provide fast deployment of

new products. As to the software of SoCs, the use of

standard library applications, for which the source code

is not always available, provides another path to fast

product development.

At the same time, the technology evolution towards

nanoscale brings along higher sensitivity of the

hardware to radiation induced soft errors, caused by

collisions of particles with the silicon. These events

generate transient pulses that may change the logic

output value of the affected gate and the wrong value

may be propagated through an open logic path in the

circuit, and eventually be stored in a memory element.

Formerly a concern only for mission critical or space

applications, the increase of the soft error rate of

circuits manufactured with new technologies turned this

topic into a challenge for system designers.

Many different techniques for soft errors mitigation

have already been proposed, but most of them require

modification of the hardware or software of the SoC’s

core processor, or even both. Besides that, these

techniques frequently imply heavy area and/or

performance penalties, that may not be bearable for a

given application.

This paper proposes the use of an infrastructure IP

(I-IP) that can be inserted in the SoC without any

change in the core processor architecture, and is able to

monitor the execution of the application and detect

control flow errors generated by transient faults

affecting the program counter of the core processor. The

proposed technique does not require any modification

of the application software, being non-intrusive from

both hardware and software standpoints.

In fault injection tests of the proposed solution,

performed for an implementation of the I-IP for a SoC

based on a pipelined RISC core processor, running a

benchmark application, all errors affecting the program

counter have been detected.

This paper is organized as follows. Section 2

presents an overview of generic and control flow error

detection techniques, section 3 describes the proposed

approach, and section 4 presents the results obtained

with one implementation of the I-IP for a MIPS based

SoC. Section 5 summarizes the conclusions and points

to future works.

2. Transient errors detection techniques

This section focuses on techniques to detect transient

errors, i.e., those resulting from faults that may affect

the behavior of a system in a temporary fashion, thereby

allowing the system to eventually recover from the error

and return to a consistent state. Recovery techniques are

beyond the scope of this paper.

2.1. Generic online error detection techniques

Many on-line, or concurrent, error detection

techniques have been proposed so far. Those techniques

aim to detect errors that occur during the normal

operation of systems, and therefore cannot be detected

by test procedures in the manufacturing process.

According to the architectural level at which the

technique is applied, they can be divided into circuit-

level and system-level techniques. Self-checking

circuits, error detecting codes, and parity schemes are

examples of circuit-level techniques, while replication

and watchdog processors are system-level approaches

[1].

Another usual classification of those techniques

divides them into hardware based, software based, and

hybrid techniques [2].

Hardware based solutions generally imply the use of

redundancy or reconfiguration [3]. Examples are the

triple modular redundancy approach (TMR) [4], the use

of checker circuits that run in parallel with the main

processor to verify its operations [5], and the use of

spare units that can replace a faulty one when an error is

detected [6]. The main drawback of those approaches is

the need to modify the hardware of the system to be

hardened, which precludes their use to harden tested IP

core processors or commercial off-the-shelf processors

embedded in FPGA chips, which are frequently used in

SoCs designs as a means to shorten the time to market

of products.

In [2], a hardware based technique that uses an

external infrastructure IP that monitors the core

processor buses to harden applications, and therefore

does not require modification of the core processor

architecture nor of the application software, was

proposed. Using consistency check for data processing

instructions and also checking the core processor

control flow, the implementation of the proposed

solution to harden one application running on an 8051

microcontroller was proven to detect more than 81% of

errors when only one instruction was hardened by the I-

IP, and more than 87% with two hardened instructions.

Software based techniques are also system-level. In

general, they imply modification of the application to be

hardened, and this requires changes and/or additions to

the source code of the application, which is not always

available. Besides that, solutions in this class require

additional memory to store the hardened application,

and also have significant performance penalties [7, 8,

9].

Hybrid techniques, such as [10, 14], try to leverage

on the strengths of hardware and software based ones,

in order to optimize the area and performance

overheads according to the target market and

application.

2.2. Specific techniques for control flow error

detection

This work focuses specifically on those techniques

aiming to protect the system against transient faults that

cause SEUs in the program counter of a processor

during its operation, thereby causing control flow

errors, which are a subset of the types of errors that may

occur during the normal operation of a system. Control

flow error detection techniques are generally based in

the use of assertions or signature analysis [3], and some

of them are commented in the following paragraphs.

The use of watchdog processors is sometimes

suggested also for control flow check. In [11], an active

watchdog processor executes the program concurrently

with the core processor, and checks if its program flow

proceeds as that executed by the main processor. This

approach, however, has heavy penalties both in terms of

application performance and the additional area

required for the watchdog processor. Two alternative

approaches, using a passive watchdog processor that

computes a signature while observing the main

processor’s bus and performs consistency checks

whenever the program enter or leaves a basic block

within the program graph, are proposed in [12, 13].

While their area overhead is much smaller than that of

active watchdog processors, there is a performance

overhead introduced by instructions needed to

communicate with the watchdog.

In [14], two software based and one hardware based

mechanisms have been combined, in order to provide

increased tolerance to transient faults, and this

arrangement allowed the detection of 93% of the

control flow errors. This work presented improvements

obtained with the combination of the three techniques

over the use of them separately, but no overhead

analysis was provided.

In [15], a technique called Enhanced Control-Flow

Checking Using Assertions (ECCA), which combines

the use of application and system level mechanisms to

provide on-line detection of control flow errors, was

proposed. Tested with a set of benchmark applications,

the ECCA technique was able to detect an average of

98% of the control flow errors, with a minimum of

78.5% and a maximum of 100% obtained for one of the

benchmarks. Although the authors claim that this

technique implies in minimal memory and performance

overheads, the exact figures are not presented in the

paper. However, the implementation of the technique

requires modification of the application software and a

non trivial performance/overhead analysis, and for this

reason the authors themselves propose the development

of a preprocessor for the gcc compiler to insert the

assertions in the code blocks to be fortified.

Control Flow Checking by Software Signatures

(CFCSS) is another important software based technique

proposed in [8], which provided a dramatic reduction in

the number of undetected control flow errors when

tested with a set of benchmark applications. This

technique also requires modification of the application

code, and does not detect all control flow errors, due to

some limitations in the detection of certain types of

errors [9].

The use of control flow assertions was also proposed

in [9]. This software based approach requires the

introduction of additional executable assertions to check

the control flow of the program. A set of 16 benchmarks

has been hardened against transient errors using the

proposed technique, and tested with SEU fault injection

in the bits of the immediate operands of branch

instructions. The results have shown that this approach

has an improvement over CFCSS [8] and ECCA [15],

however the technique proved to be very expensive in

terms of memory and performance overhead, even

though the overheads are application dependent.

The hardware based technique proposed in [2] aims

to protect a core processor against transient faults, using

the SEU in the memory elements of the processor as the

fault model. As mentioned above, this technique did not

focus only in the control error detection, but also in

consistency check for the execution of data processing

instructions. Being a non-intrusive technique that does

not require modifications either in the application

software nor in the hardware of the core processor,

there is no need to access the source code of the

application. However, the technique did not detect all

control errors.

Another software based fault tolerant approach,

using time redundancy, proposed in [17], is evaluated in

[3], using a Toshiba TX 49 commercial processor, a 64-

bit radiation hardened processor, designed for space

applications, and injecting faults only in the program

counter. The experiments resulted in the detection of

more than 96% of the injected faults.

The technique proposed in this paper is a system

level, hardware based, non-intrusive one. It does not

require any modification of the application software to

be run in the SoC, allowing the reuse of applications

supplied only in object code format. Moreover, the I-IP

is connected externally to the buses of the core

processor, allowing its implementation without any

change in the core internal architecture.

3. Proposed Technique

The proposed technique is based on the insertion of

an I-IP between the processor core of the SoC and the

memory storing the instructions the processor core

executes. This way, the I-IP is able to intercept the fetch

addresses sent by the core processor and check if the

correct control flow is being followed. This overall

architecture is illustrated in Figure 1.

Code
memory

µP

abus

cbus

dbus

abus

cbus

dbus
I-IP

error

IRQ

IRQ
Figure 1. Overall architecture

By checking the fetch addresses, the I-IP monitors

the value of the program counter to identify if its

contents are correct or not, according to the control flow

of the program being executed. When the I-IP finds an

invalid address, it raises a flag indicating that an error

was found. It is important to mention here that the I-IP

does not correct the error, it only indicates that a fetch

from a wrong address was attempted.

In this work, as done in [5], we assume that the I-IP

is hardened by design and test, being tolerant to any

kind of faults that can lead to any type of failure

compromising its correct operation. We also assume

that the code memory is protected through some EDAC

(Error Detection and Correction) scheme, so that values

stored in memory cannot be corrupted. Finally, we

assume that the bus connecting the instruction cache to

the processor is not accessible, as it often happens for

processor cores, and therefore we assume that the

instruction cache either does not exist, or is disabled.

To detect when the program counter has a wrong

value, the I-IP identifies all fetched instructions by

decoding and classifying them into two main groups:

Branch instructions: are all the instructions that can

cause a deviation in the program control flow, such as

unconditional jump or conditional branch instructions;

Other instructions: all other instructions that do not

have the capacity to change the value of the program

counter, such as logic and arithmetic data processing

instructions, are classified in this group.

CPU interface

Memory interface

Fetch logic

Decode
logic

Control
Unit

abus dbus cbus

abus dbus cbusIRQ

IRC

Figure 2. Architecture of the I-IP

Figure 2 shows the different hardware blocks of the

I-IP, which will be described in the following

paragraphs.

1) CPU interface: connects the I-IP with the

processor core. It decodes the bus cycles the processor

core executes, and in case of fetch cycles it activates the

rest of the I-IP.

2) Memory interface: connects the I-IP with the

memory storing the application the processor executes.

This module executes commands coming from the

Fetch logic and handles the details of the

communication with the memory.

3) Fetch logic: issues to the Memory interface the

commands needed for loading a new instruction into the

I-IP and feeding it to the Decode logic.

4) Decode logic: decodes the fetched instruction,

whose address in memory is A, and sends the details

about the instruction to the Control unit. This module

classifies instructions according to the previously

described two categories: branch instructions and other

instructions. The branch instructions are also sub-

classified as conditional branches, such as the MIPS

instruction beq (branch if equal or zero) or

unconditional branches, such as the j instruction (jump

to address).

5) Control unit: supervises the operation of the I-IP.

Upon receiving a request for an instruction fetch from

the CPU interface, it activates the Fetch logic. Then,

depending on the information produced by the Decode

logic, it either issues to the main processor a different

sequence of instructions, as explained in the next

paragraph, or sends to the processor the original

instruction. Moreover, it implements the operations

needed for control-flow check, and, in case of error

detection, the error flag is activated. Finally, it receives

interrupt requests and forwards them to the processor

core at the correct time. A special care is taken with the

interrupt request handling by the I-IP, when a sequence

of instructions is sent to the core processor instead of

the original one. In order to allow a proper return from

interrupt service subroutines to the point in the

application program where the next instruction is

located, in those cases the I-IP only forwards the

interrupt request to the core processor after all

instructions of the substitute sequence have been sent.

In other words, the substitute sequence operation is

treated as an atomic operation, which cannot be

interrupted.

In order to correctly decode the instructions, when a

new core processor is adopted for the first time, the I-IP

must be tailored to the instruction set architecture of the

target processor. The designer needs to program the

decoding rules in the Decode logic block to indicate to

the Control unit block if the current instruction is a

branch instruction or not, and, depending on the branch

instruction, if it is necessary to issue to the processor a

different sequence of instructions. Such situation

happens when the branch destination address is not

included in the instruction word, together with the

instruction opcode, as in the jr (jump through register)

MIPS instruction. In this case, the I-IP needs to get the

address value stored in the register, to check if the

branch was taken correctly. Therefore, the designer has

to provide the sequence of instructions that the I-IP will

send to the processor in order to receive the branch

address and return to the normal program flow, to

continue execution.

Auxiliary tools to help the designer in the process of

adapting the I-IP to a given target core processor,

following the same model and design flow proposed in

[2], will be developed as part of future work.

The topology of the proposed approach allows the I-

IP to be used in any kind of SoC implementation in

which the code memory is external to the processor

core.

The use of this approach brings two advantages

when compared to the alternatives commented in

Section 2. First, from the software standpoint, it is non-

intrusive, since the designer does not need to know the

application code nor to modify this code. Second, since

the I-IP is inserted outside the core processor and

connects to it through to already available buses, no

changes to the core processor architecture are

necessary, which also characterizes this approach as

non-intrusive in terms of hardware.

4. Case study: hardening a MIPS core

In this section we will discuss the experimental

results obtained with an implementation of the proposed

I-IP to harden the control flow of a widely used RISC

core processor: a pipelined MIPS.

The MIPS used in our experiments has a 16-bit

RISC architecture, with a 5-stage pipeline, and no

branch prediction. The selection of this architecture was

due to its widespread use in the implementation of SoCs

by the industry.

Because the MIPS architecture has a 5-stage

pipeline, with fetch, decode, execution, memory write

and write back stages, the I-IP works (only from the

logical standpoint) as being an additional stage,

between the fetch and the decode stages. That happens

because the I-IP requires one cycle to decode the

fetched instruction and decide which instruction(s) to

send to the processor, and that makes the processor

receive the fetched instruction one cycle later.

Due to this virtual extension of the number of

pipeline-stages, the I-IP needs to send a different

sequence of instructions, depending on the fetched one,

to prevent erroneous situations:

a) in the case of an unconditional branch, the

number of instructions that need to be flushed

from the pipeline is increased by one, because,

as explained before, the I-IP works as an extra

pipeline stage. To correct this situation, the I-IP

sends to the core processor an extra nop (no

operation) instruction, each time an

unconditional branch is fetched;

b) when a jal (jump and link) - a subroutine call

instruction - is executed, the MIPS processor

saves the subroutine return address in a register.

Since the I-IP causes a delay of one cycle in the

execution of instructions, the saved address is

also one cycle ahead the correct one. To solve

this problem, when fetching a jal instruction, the

I-IP sends to the core processor one instruction

that restores the PC value to the correct one,

followed by a j instruction, instead of the jal

instruction. The first instruction is used to save

the correct address in the register used to store

the return address, and the j instruction performs

the jump to the subroutine entry point.

Due to the pipelined architecture of MIPS, the I-IP

must wait a few cycles until a branch is executed, and

only then compare the stored address with the one in the

program counter. Therefore, the I-IP has an internal

circular register file, used to store up to four addresses

that will be compared to the program counter a few

cycles later.

4.1. Fault injection experiments

To evaluate the performance of the I-IP in control

flow error detection, an in house tool named CACO-PS

(Cycle Accurate Configurable Power Simulation) [16]

was used to simulate the architecture of the SoC and

check the results of fault injection.

The I-IP and the MIPS architecture were described

in the language used by CACO-PS, which is System C

like. During the fault injection procedure, 2,000 faults

were injected randomly in time, causing SEUs in

randomly chosen bits of the MIPS program counter

register, while executing a software implementation of

the Viterbi algorithm for encoding a stream of data.

To detect if a fault caused an error, two copies of the

SoC (including the MIPS core processor, the I-IP and

independent code memories), both running the same

application, have been used. Faults have been injected

in one of the two architectures, while the other

remained free of faults. Then, at every core processor

cycle, the simulation tool compared the value of the

program counters from both copies, to check if an error

occurred. At the same time, all errors detected by the I-

IP were recorded in a log file, indicating the type of

error that was detected and other information used in

the analysis of the simulation results. Figure 3

illustrates the error detection scheme described here.

Fault
Sensitive
Processor

Random

Fault Injection

comparator

Error

I-IPI-IP

Golden
Processor

Fault
Sensitive
Processor

comparator

Error

I-IPI-IP

Memory Memory

Figure 3. Error detection scheme

4.2. Fault coverage analysis

The proposed I-IP detected all SEU errors affecting

the program counter bits during the fault injection

experiments using the Viterbi application. Some special

detection cases deserve a closer analysis, and are

described in the following paragraphs.

First, one must recall that the MIPS core processor

uses byte addressing to read from the code memory.

Therefore, all instruction addresses must be a multiple

of 4 and, in some MIPS implementations, a value

different from zero in the two low order bits of the PC

generates a processor exception. In the implementation

used in our experiments, this was not true, and the I-IP

itself was responsible to detect those errors by checking

if the two bits are equal to zero for every fetch.

Second, approximately 3% of the detected errors

were caused by faults that hit the 3
rd
 least significant bit

of the program counter. Due to the instruction

addressing scheme described in the previous paragraph,

when a bit flip from ‘1’ to ‘0’ of the 3
rd
 bit occurs, it is

equivalent to keep in the program counter the same

value that was used in the previous cycle, what would

make the processor execute the same instruction again,

sometimes affecting the results produced by the

program execution. In order to cope with these cases,

the I-IP checks if two consecutive fetch operations ask

for the same memory address and, if so, sends back a

nop instruction to the core processor. On the other hand,

when a SEU in the 3
rd
 bit causes a bit flip from ‘0’ to

‘1’, one instruction is skipped and not executed; in this

case, the I-IP detects the error because the fetch address

is not the expected one (address A + size of the

instruction).

Finally, although in this experiment all errors have

been detected, it is important to highlight that there is

one case in which the proposed I-IP fails in detecting an

incorrect branch. This very unlikely situation can

happen only with conditional branch instructions, for

which there are two alternative valid destination

addresses, one to be used when the branch is taken

(Ataken), and the other when the program has to proceed

with the instruction immediately following the branch

(Anext). It happens when a fault occurs exactly during

the execution cycle of a conditional branch instruction,

and that fault changes the value of the program counter

in such a way that the corrupted value is, by extreme

coincidence, equal to the other valid value for that

branch instruction, i.e., Ataken is transformed in Anext, or

vice versa.

In order to detect such situation, it would be

necessary to add new capabilities to the I-IP, allowing it

to duplicate all instructions that affect the condition

flags of the core processor and keep, inside the I-IP,

replicas of the condition codes, in order to use their

values to check the evaluation of conditions during the

execution of conditional branch instructions. The

additional area that would be required to implement

these features, as well as the performance and area

penalties that would be incurred, make this alternative

not feasible.

4.3. Performance and area analysis

As commented in Section 2, most of the control flow

error detection techniques proposed so far imply heavy

performance and/or area overheads.

The technique proposed in this paper, besides its

good error detection capability, requires very small

performance and area overheads, as shown in Table 1.

Table 1. Performance and area overheads
 Without I-IP With I-IP Overhead

Performance
(# of cycles)

8,779 9,972 13.59%

Area
(# of gates)

38,340 41,982 9.5%

The performance information in Table 1 relates only

to the execution of the specific Viterbi algorithm used

in the experiments, which is normally executed by the

core processor in 8,779 cycles. As described in Section

4, when the I-IP is present in the SoC, it replaces

branches and jump and link instructions by sequences of

instructions, thereby introducing some overhead. For

the Viterbi algorithm, 1,193 additional cycles were

necessary, a 13.59% increase in the computation time.

However, depending on the use of those specific

instructions, other applications may behave differently.

Concerning the area overhead, the circular register

file used by the I-IP to keep the addresses to be later

compared with the PC contents is responsible for most

of it. Because our technique has been designed to be

non-intrusive, the I-IP must store locally all information

needed to check the control flow from outside the target

processor.

As opposed to the performance overhead, the area

overhead is application independent, which means that

the area overhead figures in Table 1 will remain the

same for any other application.

5. Conclusions and future work

This paper proposes the use of an infrastructure IP as

a means to detect control flow errors caused by transient

faults affecting the program counter of the core

processor in a SoC.

The technique is non-intrusive, both from the core

processor hardware and application software

standpoints, and in our experiments has been able to

detect all errors caused by SEUs affecting the program

counter bits of a pipelined MIPS processor executing a

benchmark application, with small performance and

area overheads, when compared with most of the

alternative techniques discussed in Section 2.

As to the fault detection capability, the proposed

technique has shown to perform better than related

ones, with an error detection coverage of 100% for the

benchmark application used in the tests, and with only

one non detectable situation, which has an almost

negligible probability of occurrence.

The next steps in this project will be the repetition of

the experiments with a broader set of benchmark

applications, and the development of tools to automate

the generation of new I-IP versions for other core

processors.

6. References

[1] Mahmood, A., and McCluskey, E. J., “Concurrent Error

Detection Using Watchdog Processors – a Survey”, IEEE

Transactions on Computers, vol. 37, no. 2, IEEE Computer

Society, New-York-London, February 1988, pp 160-174.

[2] Lisbôa, C. A. L., Carro, L., Sonza Reorda, M., and

Violante, M. “Online Hardening of Programs against SEUs

and SETs”, in Proceedings of the 21st IEEE International

Symposium on Defect and Fault Tolerance in VLSI Systems -

DFT 2006, IEEE Computer Society, Los Alamitos, CA,

October 2006, pp. 280-288.

[3] Torellas, S., Nicolescu, B., Velazco, R., Valderas, M. G.,

and Savaria, Y., “Validation by fault injection of a Software

Error Detection Technique dealing with critical Single Event

Upsets”, in Proceedings of the 7th IEEE Latin-American Test

Workshop (LATW 2006), Evangraph, Porto Alegre, RS,

Brasil, March 2006, pp. 111-116.

[4] B. W. Johnson, Design and Analysis of Fault Tolerant

Digital Systems: Solutions Manual, Addison-Wesley

Publishing Company, Reading, MA, October 1994.

[5] Austin, T., “DIVA: A Reliable Substrate for Deep

Submicron Microarchitecture Design”. In MICRO32 -

Proceedings of the 32nd ACM/IEEE International Symposium

on Microarchitecture, pages 196-207, Los Alamitos, CA,

November, 1999.

[6] Breveglieri, L, Koren, I, and Maistri, P., “Incorporating

Error Detection and Online Reconfiguration into a Regular

Architecture for the Advanced Encryption Standard”. In

Proceedings of the 20th IEEE International Symposium on

Defect and Fault Tolerance in VLSI Systems - DFT 2005,

IEEE Computer Society, Los Alamitos, CA, October 2005,

pp. 72-80.

[7] K. H. Huang, J. A. Abraham, “Algorithm-Based Fault

Tolerance for Matrix Operations”, IEEE Transactions on

Computers, vol. 33, December 1984, pp. 518-528.

[8] N. Oh, P.P. Shirvani, and E.J. McCluskey. “Control flow

Checking by Software Signatures”, IEEE Transactions on

Reliability, Vol. 51, No. 2, March 2002, pp. 111-112.

[9] Goloubeva, O., Rebaundengo, M., Sonza Reorda, M., and

Violante, M., “Soft Error Detection Using Control Flow

Assertions”, in Proceedings of the 18th IEEE International

Symposium on Defect and Fault Tolerance (DFT 2003), IEEE

Computer Society, Los Alamitos, CA, November 2003, pp.

581-588.

[10] P. Bernardi, L. M. V. Bolzani, M. Rebaudengo, M. Sonza

Reorda, F. L. Vargas, M. Violante. “A New Hybrid Fault

Detection Technique for Systems-on-a-Chip”, IEEE

Transactions on Computers, Vol. 55, No. 2, February 2006,

pp. 185-198.

[11] M. Namjoo, “CERBERUS-16: An architecture for a

general purpose watchdog processor”, in Proceedings of the

13th International Symposium on Fault-Tolerant Computing

(FTCS-13), 1983, pp. 216-219.

[12] K. Wilken, J.P. Shen, “Continuous signature monitoring:

low-cost concurrent detection of processor control errors”,

IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, Vol. 9, No. 6, June 1990, pp. 629-641.

[13] J. Ohlsson, M. Rimen, “Implicit signature checking”, in

Digest of Papers of the 25th International Symposium on

Fault-Tolerant Computing (FTCS-25), 1995, pp. 218-227.

[14] Miremadi, G., and Torin, J., “Evaluating Processor

Behavior and Three Error-Detection Mechanisms Using

Physical Fault-Injection”, IEEE Transactions on Reliability,

vol. 44, no. 3, IEEE Computer Society, New-York-London,

September 1995, pp 441-454.

[15] Alkhalifa, Z., Nair, V. S. S., Krishnamurthy, N., and

Abraham, J. A., “Design and Evaluation of System-Level

Checks for On-line Control Flow Error Detection”, IEEE

Transactions on Parallel and Distributed Systems, vol. 10, no.

6, IEEE Computer Society, New-York-London, May-June

1999, pp 627-641.

[16] A. C. S. Beck Fo, J. C. B. Mattos, F. R. Wagner, and L.

Carro, “CACO-PS: A General Purpose Cycle-Accurate

Configurable Power-Simulator”, in Proceedings of the 16th

Brazilian Symposium on Integrated Circuits and Systems

Design (SBCCI 2003), Sep. 2003.

[17] Nicolescu, B., Savaria, B., and Velazco, R., “Software

detection mechanisms providing full coverage against single

bit-flip faults”. IEEE Transactions on Nuclear Science, vol.

51, no. 6, part 2, IEEE Computer Society, New-York-London,

May-December 2004, pp 3510-3518.

A Low-SER Efficient Core Processor Architecture for Future Technologies

E. L. Rhod, C. A. Lisbôa, L. Carro

Universidade Federal do Rio Grande do Sul

Escola de Engenharia and Instituto de Informática

Porto Alegre, RS, Brazil

eduardo.rhod@ufrgs.br, calisboa@inf.ufrgs.br, carro@inf.ufrgs.br

Abstract

Device scaling in new and future technologies brings

along severe increase in the soft error rate of circuits, for

combinational and sequential logic. Although potential

solutions have started to be investigated by the

community, the full use of future resources in circuits

tolerant to SETs, without performance, area or power

penalties, is still an open research issue. This paper

introduces MemProc, an embedded core processor with

extra low SER sensitivity, and with no performance or

area penalty when compared to its RISC counterpart.

Central to the SER reduction are the use of new magnetic

memories (MRAM and FRAM) and the minimization of

the combinational logic area in the core. This paper

shows the results of fault injection in the MemProc core

processor and in a RISC machine, and compares

performance and area of both approaches. Experimental

results show a 29 times increase in fault tolerance, with

up to 3.75 times in performance gains and 14 times less

sensible area.

1. Introduction

Previously a concern only for mission critical

applications, errors due to the effects of transient pulses

produced by radiation and other interferences, called soft

errors, are now being generally considered by the design

community, since these errors are very likely to occur in

future technologies. While successful mitigation

techniques, and new memory technologies such as

MRAM and FRAM, have already been devised to protect

memories against soft errors, the protection of

combinational logic, mainly against multiple

simultaneous upsets, is a relatively recent concern and

still lacks efficient solutions [1].

Due to the variability of their vulnerability periods, the

SER of combinational logic is harder to quantify, and so

far the mitigation of soft errors in those circuits has been

dealt with through redundancy and larger transistor

architectures, with obvious costs in area, power and even

performance. The technology evolution towards

nanoscale leads to the possibility of manufacturing chips

with up to 10
12
 devices. Not only the number of

transistors, but also the speed of the circuits has increased

with the advent of deep sub-micron technology. All

together, the result is a higher sensitivity of combinational

logic to soft errors. As shown in Figure 1, from [2], while

the SER of SRAM memories remains almost stable with

technological scaling, the SER of logic has been always

increasing.

For future technologies, solutions that impose

redundancy or larger areas impair the ability to

explore the advantages of the technology evolution.

Therefore, new paradigms must be adopted in the

design of combinational circuits to be manufactured

using those technologies.

Figure 1. Evolution of SER: SRAM vs. logic [2]

Geometric regularity and the extensive use of

regular fabrics is being considered as a probable

solution to cope with parameter variations and

improve the overall yield in manufacturing with

future technologies. Together with the reduction of

the cost of masks, regularity allows the introduction

of spare rows and columns that can be activated to

replace defective devices [3].

Together with the proposal of using regular

fabrics, the introduction of new memory technologies

that can withstand the effects of transient faults, such

as ferroelectric and magnetic RAMs [2], brings back

the concept of using memory to perform

computations. Already proposed in the past [4], but

precluded as a general purpose solution due to poor

performance and high cost, the use of memory now is

proposed here as a novel mitigation technique for

transient faults, by reducing the area of the circuits

that can be affected by soft errors.

In this paper, we try to cope with the SEU/SET

problem without imposing area or performance

overhead, at the same time that we favor a regular

architecture that can be used to enhance yield in

future manufacturing processes. We introduce a

memory-based embedded core processor architecture,

named MemProc, designed for use in control domain

applications as an embedded microcontroller. It is a

microcoded multicycle core processor that uses a

reduced combinational logic and some extra memory

to reduce the incidence of soft errors. Our technique

reduces the area of sequential logic, which is sensible

to faults, by using intrinsically protected memories.

The performance was evaluated by running in

MemProc different applications selected from the

targeted domain and comparing the results with those

obtained using a pipelined RISC architecture.

This paper is organized as follows: section 2

discusses related work and highlights the differences

between the proposed architecture and other

alternatives. Section 3 describes the MemProc

architecture, explaining how its simplified ALU

works and which are the main reasons for the good

performance results. Section 4 describes the fault

injection process, and presents simulation data that

confirms the superiority of MemProc concerning fault

rates, as well as the metrics of MemProc in terms of

circuit area and performance, in comparison to the

pipelined RISC core processor. In section 5 we

comment the achieved results and also future work.

2. Related Work

The reliability of circuits manufactured in future

technologies became a major topic of discussion and

research in recent years [5, 6], imposing tolerance to

transient faults as a mandatory design concern.

Among different approaches to cope with soft

errors found in the literature, the use of spatial or time

redundancy dominates as the major technique.

The use of time redundancy to avoid undesirable

errors, exploiting microarchitectural techniques that

are already incorporated in the processor due to

performance reasons, has been proposed in [7], and a

penalty of up to 30% in performance is incurred. The

use of simultaneous multithreading to detect transient

faults is also proposed in [8]. The area cost of such

duplication techniques is obviously high.

In [9], a self-repairing unit for microprogrammed

processors is proposed. In that work, the authors used

a dedicated built-in self-test (BIST) architecture to

provide an online status – either good or faulty – for

each block in the execution unit. For each processor

microinstruction, they defined a sequence of

microinstructions that can execute the same operation

using only fault-free units. This approach has a

significant area and performance overhead due to the

BIST and fault-free units added to the circuit.

In [10], the authors propose the use of a self-

stabilizing microprocessor to cope with any

combination of soft errors. The paper presents only

the initial studies of the behavior of the self-

stabilizing processor in the presence of soft errors.

Whenever affected by a transient fault, the processor

is able to converge to a safe state, from which the

normal fetch-decode-execute sequence can be

resumed during fault-free periods. Besides presenting

the design scheme for the processor, a new technique

for the analysis of the effects of soft errors is

introduced, which instead of using simulation is based

in an upper bound algorithm that does not take into

account the fault masking effects of the circuit.

The use of memory as a computing device, has

been subject of research in the past. In order to

explore the large internal memory bandwidth,

designers proposed to bring some functions executed

by the processor into memory [4]. This technique

apparently has been discarded due to its limited field

of application.

Back to the fault tolerance arena, another strong

argument to the use of memory to perform

computation functions is its intrinsic protection

against defects, due to the use of spare columns and

spare rows, such as in DRAMs. More recently, the

fact that new memory technologies, such as

ferroelectric RAMs (FRAMs), magnetic RAMs

(MRAMs), and flash memories, are virtually immune

to soft errors, due to their physical characteristics [2],

makes those types of memories an important

additional resource for the implementation of fault

tolerant systems. MRAMs are also more energy efficient

than other non-volatile memory technologies, since they

consume less power during read and write operations

[11].

Since memories are regular structures by nature,

memory systems will also benefit from the foreseen

advantages that regular fabrics will provide for future

technology.

The fact that the proposed MemProc processor

relies heavily in the use of memories adds the benefits

arising from regularity and immunity against soft

errors to the solution proposed in this paper. In order

to highlight the fault tolerance of the design, we

injected faults and compared the results with those

obtained for another core processor (MIPS), using the

same simulation tool. In this process, two

implementations of each architecture running in

parallel have been simulated and faults have been

injected in one of them, comparing the produced

results for each possible single event transient

occurrence. Therefore, all the possible fault incidence

cases have been considered, even those in which the

faults are masked by the architecture and do not

generate errors.

3. The Architecture of MemProc

The architecture proposed in this paper is a

microcoded multicycle 16-bit core processor with

Harvard architecture, in which part of the datapath has

been replaced with memory, thereby reducing the amount

of combinational logic. In Figure 2(a) the main functional

blocks of the proposed architecture are shown.

The application code, which is also called the

macroinstrucion code, is stored in the ROM memory.

The instructions in this code, as usual, indicate the

operations to be performed and their operands. The

microcode memory receives the initial microcode

address of the current operation from the ROM

memory, and generates the control signals for the data

memory, ALU and operation masks memory. The

operation masks memory is responsible for passing

the operation masks to the ALU. All arithmetic and

logic operations results are stored in the RAM

memory, and the register bank is also mapped into

this memory.

ROM

RAM

Microcode

MEM

PC

ALU

Operation

Masks

MEM

X Y Z M

3

8

RAM

8

Operation

code A

Operation

code B

shift

left shift

right

wired

or

 (a) (b)

8

X Y Z M

3A B Cin Sum Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1
8

Operation

code B
(Cout)

Operation

code A

(Sum)

2-bit addition:

Truth table

(c)

Figure 2. (a) MemProc architecture (b) ALU for
one bit operation (c) 2-bit addition using

MemProc ALU

In the MemProc ALU, operations are performed

by 8:1 multiplexors, which are able to generate all the

minterms for a given 3-bit boolean function,

according to the values of bits X, Y, and Z (or M).

Figure 2(b) depicts a MemProc ALU block for

processing 1-bit operands.

The complete MemProc ALU is 16-bit wide and

their 16 blocks work in parallel, being able to perform

bit serial arithmetic and logic operations. All

operation mask values are independent from each

other, so each processing element of the ALU can

perform a different Boolean function. To accelerate

addition operations, we use two 8:1 multiplexors

instead of a single one; one multiplexor is used to

calculate the sum and the other to calculate the carry

out. An extra flip-flop, called “M”, was also added, to

accelerate multiplications.

In figure 2(c) the addition of two 1-bit operands is

used to illustrate how the ALU works. We can see

from the truth table the operation masks for the “sum”

and the “cout” (carry out) outputs of the multiplexors.

Also in figure 2(c), we can se the presence of a wired-

or bus. This bus implements an “or” operation of all

the multiplexors’ outputs. This wired-or bus is an

extremely important element in what we call

“compute only the necessary to get the result”, which

will be discussed in the following paragraph.

The way MemProc achieves its high performance

is based on the fact that it computes just the necessary

cycles to get the operation result. In traditional

computer architectures, the ALU does its arithmetic

and logic operations using combinational hardware

that always takes the same time to compute the

operation, regardless of the value of the operands.

MemProc executes only the number of cycles required

to get the result, depending on the carry propagation

chain.

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

0 1100000 1 1010000

0 0001000

0

MEMPROC

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

0 1100000 1 1010000

0 0001000

0

Traditional Architectures

used

not used

A = 5

B = 11

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

0 1100000 1 1010000

0 0001000

0

MEMPROC

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

A B Cin

Cout S

0 1100000 1 1010000

0 0001000

0

Traditional Architectures

used

not used

A = 5

B = 11

Figure 3. 8-bit Addition paradigm.

In Figure 3 we can see that MemProc requires only

5 of the 8 operation units to perform the addition of

two 8-bit operands, which means that it takes 5/8 of

the time required by traditional architectures to

perform this operation. To detect when the operation

is finished, MemProc uses the wired-or bus to

evaluate when there are no more carry-outs to

propagate, which means that the addition has finished.

This way, we can say that the proposed architecture

takes advantage on the value of the operands. For

instance, one addition can require from 3 to 18 cycles

to be performed, depending on the number of carries

to be propagated. On the other hand, store operations

require only 2 cycles.

In multiplications, the number of cycles depends

on the number of bits equal to zero in the operands.

The number of required cycles decreases as the

number of bits equal to zero in the operands

increases. One could say that if the values of the

operands are high the proposed approach would not

have any advantage. However, as shown in [12], the

transition activity for some multimedia benchmarks is

more intense in the 8 least significant bits.

4. Experimental Results: fault tolerance, area

and performance metrics

The fault rate of a circuit, also known as soft error rate,

can be expressed by the amount of errors that affect the

circuit in a certain period of time.

The soft-error rate of a design can also be expressed by

the nominal soft-error rate of the individual circuit

elements that compose the design, like memory structures

such as SRAMs, sequential elements such as flip-flops

and latches, combinational logic and its architectural and

timing vulnerability characteristics [13, 14] as follows:

(2)

where i represents the i
th
 element of the design.

The SER
nominal

 for the i
th
 element is defined as the soft

failure rate of a circuit or node under static conditions,

assuming that all the inputs and outputs are driven by a

constant voltage. The TVFi, time vulnerability factor (also

known as time derating) stands for the fraction of the time

that the element is susceptible to SEUs, which will cause

an error in the i
th
 element. The AVFi, architectural

vulnerability factor (also known as logic derating)

represents the probability that and error in the i
th
 element

will cause a system-level error. In this study the time

vulnerability factor was not taken into account [13, 14].

One of the most usual ways to measure the SER of a

circuit is evaluating the number of Failures in Time (FIT),

which means one error every 10
9
 hours [13, 14]. A soft

error rate of 10 FIT means that the device will generate 10

errors in 1 million years. Another commonly used

metric to express SER is the Mean Time to Failure

(MTTF). As an example, a MTTF of 1000 hours

means that, in average, one error occurs after 1000

hours of device operation. FIT and MTTF are

inversely related, i.e., less FIT means better SER,

while higher MTTF means better SER [15]. In this

paper we use the MTTF metric to measure the fault

tolerance of the proposed architecture and MIPS.

In order to evaluate the feasibility of the architecture

proposed in this paper, both in terms of fault tolerance,

area, and performance, extensive simulations have been

executed, using an in-house developed simulation tool

named CACO-PS (a System C-like simulator) [16]. The

comparisons have been made against the well-known

MIPS 16-bit RISC architecture, with a 5-stage pipeline

and forwarding unit [17], widely used in real-world

embedded processors.

4.1 Fault Rate Evaluation

To evaluate the fault rate of the processors, random

faults were injected in both MIPS and MemProc

during their operation. During fault injection, the

behavior of each processor was compared to the

behavior of its fault free version when executing the

same application with the same data.

Since some faults may hit parts of the circuit which

are not being used at a specific moment in time, to

detect if a fault has been propagated or not it is not

necessary to compare the value of all functional units

or registers. It is only necessary to compare those

components that are vital for the correct operation of

the system. For the MIPS processor, the units to be

checked are the program counter, in order to detect

wrong branches, and wrong data or address values

during write operations, to identify silent data

corruption (SDC). In the case of MemProc, besides

the program counter, the microcode counter was

checked to identify wrong branches, and the write

address and write data contents were checked to

identify SDC.

Gold

Processor

Fault

Sensitive

Processor

Random

Fault Injection

comparator

Error

Figure 4. Error Detection Scheme

Figure 4 depicts the fault injection scheme

implemented to measure fault rate in both processors.

The CACO-PS tool has also been used to implement

the fault injection and detection circuits.

It is clear that the probability of a component being

hit by a fault increases with the area of the

component. So, to be as realistic as possible, we have

implemented the random fault injector following this

probabilistic fault behavior. To do so, we have

created a file with all the important information about

the components, such as component size, number of

outputs and outputs widths. Then, when the fault

injection process starts, this component information

file is loaded by the random fault injector and is used

to determine which is the component that fails in each

fault injection cycle, according to a probability based

on its area.

Another important variable in the fault injection

process is the amount of faults that are injected in

every cycle. In this work, we decided to use a

technique called environmental acceleration [18],

otherwise, we would have to wait for long simulation

times in order to get an error. To make calculations

easier, we assumed that the particle flow is able to

produce 1 SEU or SET every 2 cycles in the MIPS

processor, which is indeed a high rate assumption. To

calculate the corresponding number of faults per cycle

for the MemProc processor, we have used the

Leonardo Spectrum tool [19] to generate area and

timing information from the VHDL descriptions of

both processors. Table 1 shows those results and the

corresponding time gap between faults for both

processors. As one can see, this time gap is inversely

proportional to the number of SET sensible gates of

the processors, showing that the lower the sensible

area of a circuit, the lower is the probability of a

particle hit affecting that circuit.

As shown in Table 1, the combinational circuit (#

of sensible gates) in the MemProc architecture is very

small when compared to the size of its memory

elements. In our approach, the memory elements are

considered to be immune to soft errors, since we are

supposing the use of new memory technologies, such

as MRAM, FRAM, and flash memories, as mentioned

before. In order to allow a fair comparison, during the

fault injection process all memory elements of both

architectures have been considered immune to soft

errors.

Table 1. Area and number of faults per cycle.

Architecture MemProc MIPS

ROM (bits) 1,792 2,720

RAM (bits) 512 512

Op. Masks Mem. (bits) 128 x 256 -×-

Microcode Mem. (bits) 1024 x 68 -×-

of sensible gates 679 9,619

Frequency (MHz) 254 54

time between faults (ns) 523.62 37.04

The fault injection process injected random faults

according to the probability of the component being

hit and also the calculated number of faults per cycle.

In this process, faults were injected until one error or

a silent data corruption (SDC) was detected, in order

to determine the time to failure. This process was

repeated 100 times, and the mean time to failure

calculated as the average time to failure in the 100

experiments. The results are shown in Table 2, which

lists the fault injection results for the MemProc and

MIPS processors.

Table 2. Fault rates for both architectures.

Architecture MemProc MIPS

of cycles 585,945 4,320

of injected faults 4,404 2,160

of errors + SDCs 100 100

MTTF (µµµµs) 23.068 0.798

The first line of Table 2 shows the number of

cycles each processor had to execute until 100 errors

or SDCs were detected. The second line presents the

number of faults injected during the process. The

third line shows the total number of errors and SDCs

that occurred during this process. The fourth line

shows the corresponding Mean Time To Failure

value, showing that the MTTF of the MemProc

architecture is almost 29 times bigger than the

MIPS’s one. These results show the significant

reduction in the MTTF that can be obtained by using

the proposed architecture.

4.2 Performance Evaluation

The evaluation of the MemProc performance was

made using a cycle accurate simulation tool (CACO-PS

[16]) to measure the number of cycles taken by the

proposed architecture while executing a set of

benchmarks.

Using the description language of CACO-PS, which is

similar to System C, both MemProc and MIPS

architectures were described and simulated. The

performance evaluation was done using four different

application programs, with different processing

characteristics: three sort algorithms and the IMDCT

(Inverse Modified Discrete Cosine Transform, part of the

MP3 coding/decoding algorithm) function, which were

executed both in MemProc and MIPS. Those applications

have been selected because are widely used in the target

domain (control applications), and also because they use

most of the operations implemented in the MemProc

instruction set.

The maximum frequency of operation for both

architectures was evaluated using VHDL descriptions,

and the Leonardo Spectrum tool.

The obtained results are shown it Table 3, in which we

can see that MemProc executes the bubble sort algorithm

in approximately 4.7 thousand cycles, while MIPS takes

half this number of cycles to perform the same. As stated

before, MemProc requires several cycles to perform

arithmetic (bit serial) operations, and the number of

cycles also depends on the value of the operands. That is

the reason why the number of cycles spent by MemProc is

higher than that of MIPS. On the other hand, the critical

path of MemProc is determined by the access time of the

microcode memory, while in MIPS the critical path is

determined by the multiplier delay. So, the maximum

frequency of MemProc is more than 4 times higher than

that of MIPS, and, as consequence, the MemProc is

almost 3 times faster than MIPS running the sort

algorithms.

Table 3. Performance when executing
benchmark applications

MIPS (54 MHz)

Application
of Cycles

Computation

Time (µµµµs)

Bubble Sort 2,280 42.2

Insert Sort 1,905 35.3

Select Sort 1,968 36.4

IMDCT 38,786 718.3

MemProc (254 MHz)

Application
of Cycles

Computation

Time (µµµµs)

Perform.

Ratio

Bubble Sort 4,720 18.4 2.29

Insert Sort 2,508 9.8 3.60

Select Sort 2,501 9.7 3.75

IMDCT 142,961 562.8 1.28

The analysis of the results when executing IMDCT

shows that MemProc was only 1.28 times faster. That

happens because this algorithm uses the multiply

instruction, which can take up to 48 cycles to be executed

in MemProc.

It is important to mention here that MemProc is a

multicycle machine, while MIPS is a pipelined one, which

is expected to be faster than its multicycle version. So, we

can conclude that if we were comparing MemProc with

MIPS multicycle version, performance results would be

even better. Also, the performance gains of MemProc

comes from the fact that the number of cycles it takes to

perform an operation depends both on the operation and

on the values of the operands. For instance, let us consider

that MIPS needs 1 cycle to perform an add operation.

Since the frequency of MemProc is almost 5 times higher,

if the operands are such that the number of carry cycles

are less than 5, MemProc will finish the addition

operation earlier than MIPS. Also, store operations take

only 2 cycles in MemProc, which is more than 2 times

faster than in MIPS.

In order to stress that the primary goal of the proposed

technique is fault tolerance, and not performance, the

execution of the IMDCT application has been executed

once again, this time with MemProc running at 198.44

MHz, which gives the same computation time for both

MIPS and MemProc running that application. The fault

injection process was then repeated for MemProc running

at that frequency and the MTTF has been recomputed.

The resulting MTTF was 18.7 µs, which is still more than

23 times longer than that of MIPS. This confirms our

claim, that the approach proposed in this paper is well

suited to a higher reliability embedded processor.

5. Conclusions and Future Work

This work proposes a novel fault tolerant architecture

for embedded core processors for use in control

applications, which uses microcoded memory to execute

macroinstructions, and uses as ALU sixteen 8:1

multiplexors to perform all logic and arithmetic

operations.

Simulation results have shown that the Mean Time to

Failure of the proposed architecture is more than 29 times

longer than the MIPS one, due to the reduction of the area

sensitive to faults, without having any performance

degradation, on the contrary, with improved performance.

Also, results showed that, despite requiring several cycles

to execute its bit serial operations, MemProc was 1.28

times faster than MIPS. While the main goal of this work

was to propose a new fault tolerant architecture, the

performance gains come from the fact that MemProc

exploits the benefits of using bit serial operations, and

differently from MIPS, it can require less cycles to make

the same operation, depending on the value of the

operands.

The proposed architecture, while not being a final

solution, reflects our focus in the search for new

processor design alternatives that might be used in the

future, when current ones will start to fail due to the

weaknesses of new technologies. It innovates in

several design features, even providing better

performance when compared to a well known

architecture for embedded applications, while

providing much more reliability against transient

faults. In order to stress that fault tolerance is the

major goal of this work, a lower frequency version of

MemProc, which delivers exactly the same

performance of the alternative architecture for the

sample application, has been used in one experiment.

6. References

[1] Rossi, D., Omaña, M., Toma, F. and Metra, C., “Multiple

Transient Faults in Logic: An Issue for Next Generation ICs ?”,

in Proceedings of th 20th IEEE International Symposium on

Defect and Fault Tolerance in VLSI Systems (DFT 2005), pp.

352-360, IEEE Computer Society, Los Alamitos, CA, Oct ‘05.

[2] Baumann, R., “Soft Errors in Advanced Computer Systems”,

IEEE Design and Test of Computers, vol. 22, no. 3, pp 258-266,

IEEE Computer Society, May-June 2005.

[3] Sherlekar, D., “Design Considerations for Regular Fabrics”,

in Proceedings of the 2004 International Symposium on

Physical Design (ISPD 2004), pp. 97-102.

[4] Elliott, D.G., Stumm, M., Snelgrove, W.M., Cojocaru, C.,

Mckenzie, R., “Computational RAM: implementing processors

in memory”, Design & Test of Computers, IEEE, vol. 16, no. 1,

pp. 32-41, IEEE Computer Society, Jan/Mar 1999.

[5] Constantinescu, C., “Trends and Challenges in VLSI Circuit

Reliability”, IEEE Micro, vol. 23, no. 4, pp. 14-19, IEEE

Computer Society, New York-London, July-August 2003.

[6] Semiconductor Industry Association. International

Technology Roadmap for Semiconductors – ITRS 2005, last

access July, 2006. http://www.itrs.net/Common/2005ITRS/

Home2005.htm.

[7] Rotenberg, E., “AR-SMT: A Microarchitectural Approach to

Fault Tolerance in Microprocessors,” in Digest of Papers of the

29th Annual International Symposium on Fault-Tolerant

Computing, pp. 84-91, IEEE Computer Society, New York-

London, 1999, ISBN: 0-7695-0213-X.

[8] Reinhardt, S. K., and Mukherjee, S. S., “Transient Fault

Detection via Simultaneous Multithreading,” in Proceedings of

the 27th Annual International Symposium on Computer

Architecture (ISCA 2000), pp. 25-36, ACM Press, May 2000.

[9] Benso, A.; Chiusano, S.; Prinetto, P.,”A self-repairing

execution unit for microprogrammed processors”, in IEEE

Micro, vol. 21, issue 5, pp. 16-22, IEEE Computer Society, New

York-London, sept-oct 2001.

[10] Dolev, S.; Haviv, Y.A., “Self-Stabilizing Microprocessor:

Analyzing and Overcoming Soft Errors” in IEEE Transactions

on Computers, vol. 55, no. 4, pp. 385-399, IEEE Computer

Society, New York-London, April 2006, ISSN: 0018-9340.

[11] Tehrani, S. et al., “Magnetoresistive Random Access

Memory using Magnetic Tunnel Junctions”, in Proceedings of

the IEEE, vol. 91, no. 5, pp 703-714, IEEE Computer Society,

London-New York, May 2003. ISSN: 0018-9219.

[12] Ramprasad, S., Shanbhag, N. R., Hajj, I. N., “Analytical

Estimation of Transition Activity from Word-level Signal

Statistics”, in Proc. of the 34th Design Automation Conference

(DAC’97), pp. 582-587, IEEE Comp. Soc., June 1997.

[13] H.T. Nguyen and Y. Yagil, “A Systematic Approach to

SER Estimation and Solutions,” Proc. IEEE Int’l Reliability

Physics Symp., IEEE Press, 2003, pp. 60-70.

[14] N. Seifert and N. Tam, “Timing Vulnerability Factors of

Sequentials,” IEEE Trans. Device and Materials Reliability, V4,

N3, Sept. 2004, pp. 516-522.

[15] S. S. Mukherjee, J. Emer, and S. K. Reinhardt, "The Soft

Error Problem: An Architectural Perspective," in Proceedings of

the 11th International Symposium on High-Performance

Computer Architecture (HPCA), pp. 243-247, IEEE Computer

Society, Los Alamitos, CA, Feb. 2005, San Francisco.

[16] A. C. S. Beck Fo, J. C. B. Mattos, F. R. Wagner, and L.

Carro, “CACO-PS: A General Purpose Cycle-Accurate

Configurable Power-Simulator”, in Proceedings of the 16th

Brazilian Symposium on Integrated Circuits and Systems

Design (SBCCI 2003), Sep. 2003.

[17] Patterson, D.A., and Hennessy, J. L.. Computer

Architecture: a Quantitative Approach, 3rd Edition, Elsevier

Science & Technology Books, June 2002. ISBN: 1558605967.

[18] Mitra, S., Seifert, N., Zhang, M., Shi, Q., Kim, K.S.,

“Robust system design with built-in soft-error resilience”, in

Computer, vol. 38, issue 2 pp. 43-52, feb 2005.

[19] Last access: July, 2006. http://www.mentor.com/products/

fpga_pld/synthesis/leonardo_spectrum/.

Hardware and Software Transparency in the Protection
of Programs Against SEUs and SETs

Eduardo Luis Rhod & Carlos Arthur Lang Lisbôa &

Luigi Carro & Matteo Sonza Reorda & Massimo Violante

Received: 27 November 2006 /Accepted: 18 June 2007
Springer Science + Business Media, LLC 2007

Abstract Processor cores embedded in systems-on-a-chip
(SoCs) are often deployed in critical computations, and
when affected by faults they may produce dramatic effects.
When hardware hardening is not cost-effective, software
implemented hardware fault tolerance (SIHFT) can be a
solution to increase SoCs’ dependability, but it increases the
time for running the hardened application, as well as the
memory occupation. In this paper we propose a method that
eliminates the memory overhead, by exploiting a new
approach to instruction hardening and control flow check-
ing. The proposed method hardens an application online
during its execution, without the need for introducing any

change in its source code, and is non-intrusive, since it does
not require any modification in the main processor’s
architecture. The method has been tested with two widely
used architectures: a microcontroller and a RISC processor,
and proven to be suitable for hardening SoCs against
transient faults and also for detecting permanent faults.

Keywords SEU . SET. Infrastructure IP.

Instruction hardening

1 Introduction

The introduction of new semiconductor technologies is
making possible the implementation of very powerful
computer systems: constantly shrinking feature sizes allow
the integration of more functions in a single chip, while a
higher clock frequency significantly increases the number
of operations that can be performed per time unit. Although
designers can exploit all these benefits for devising highly
efficient systems, known as systems-on-a-chip (or SoCs),
those new technologies are very sensitive to soft errors,
induced either by particles strikes, or by other types of
interferences. Therefore, when a SoC is intended for safety
or mission-critical applications, designers must guarantee
that soft errors have negligible impact on its behavior.

SoCs are often designed resorting to intellectual property
(IP) cores. IP cores are usually guaranteed only to function
correctly (since debugged and validated by IP vendors),
while their correct behavior in presence of soft errors is
normally not guaranteed. Therefore, it is up to the designers
of safety or mission-critical SoCs to guarantee that their
systems are hardened against soft errors.

As far as processor cores are concerned, a possible
approach to guarantee dependability lies in the adoption of

J Electron Test
DOI 10.1007/s10836-007-5018-2

Responsible Editor: N. A. Touba

E. L. Rhod (*)
Escola de Engenharia,
Universidade Federal do Rio Grande do Sul,
Porto Alegre, Brazil
e-mail: eduardo.rhod@ufrgs.br

C. A. L. Lisbôa : L. Carro
Instituto de Informática,
Universidade Federal do Rio Grande do Sul,
Porto Alegre, Brazil

C. A. L. Lisbôa
e-mail: calisboa@inf.ufrgs.br

L. Carro
e-mail: carro@inf.ufrgs.br

M. Sonza Reorda :M. Violante
Dipartimento di Automatica e Informatica, Politecnico di Torino,
Torino, Italy

M. Sonza Reorda
e-mail: matteo.sonzareorda@polito.it

M. Violante
e-mail: massimo.violante@polito.it

the so-called Software Implemented Hardware Fault Toler-
ance (SIHFT) techniques [9, 10, 17]. They are based on
modifying the software executed by the processor (or
controller), introducing some sort of redundancy, so that
errors are detected before they become failures. SIHFT
techniques are characterized by their ease of use, however,
their adoption is often limited by the high overhead they
introduce, both in terms of memory, and of performance.

Memory occupation increases due to the additional
information the software has to deal with, and the extra
instructions to process them. Performance degradation
arises from the execution of redundant instructions inserted
in the software [9, 10, 17].

A hybrid approach, that minimizes the introduced
overhead by combining software modifications with a
special-purpose hardware module (known as infrastructure
IP core, or I-IP core) is presented in [5].

SIHFT, and even its more optimized hybrid implemen-
tation, may increase memory occupation by a factor ranging
from 2 up to 7. As to redundant instructions, they are
intrinsic to the concept of SIHFT and cannot be avoided;
they can only be minimized, as shown in [5], but at a cost
of additional silicon area occupation.

In some types of applications, neither SIHFT nor its
hybrid version are applicable, because of stringent costs or
power budget. Moreover, when the SoC runs commercial
off-the-shelf software components, SIHFT is simply not
applicable, since the source code is not available. In this
case, alternative techniques are needed for providing the
system with an adequate level of dependability.

In this paper we propose a novel technique to cope
with errors that may affect a processor core, which
combines ideas from SIHFT and hybrid techniques, and
introduces the novelty of hardware and software trans-
parency. The technique exploits instruction hardening and
consistency check by performing twice the computation of
selected instructions, and controlling the consistency of
the attained results. The main novelties of this work are
that the designer is freed from the burden of modifying the
source code of the application running on the main
processor core, and that the implementation of the I-IP is
non-intrusive as far the main processor architecture is
concerned. Indeed, an I-IP located close to the main
processor takes care of on-the-fly instruction hardening,
consistency checks, and control flow checking, by
transparently modifying the sequence of instructions
fetched by the processor. The I-IP constantly monitors
the instructions fetched by the main processor, and each
time a data processing instruction is recognized, it
generates a sequence of instructions that are passed to
the main processor, executes itself the data processing
instruction and compares the results with what is comput-
ed by the main processor. The I-IP also recognizes the

branch instructions the main processor fetches, and checks
the correctness of the control flow execution.

Several advantages stem from this approach. Since the
source code of the application running on the processor
core is no longer needed, commercial off-the-shelf software
components can be hardened, as well. Since the application
running on the main processor is hardened on-the-fly, no
additional instructions need to be stored and information
redundancy is not necessary. Designers only have to
guarantee the consistency of the information the SoC stores
in memory, for example by resorting to cost-effective codes
like parity.

The approach is scalable, allowing the designers to trade
the area overhead and the performance degradation the I-IP
introduces for the attained dependability level. Designers
decide which of the instructions the processor executes
should be replicated on-the-fly by the I-IP, thus minimizing
the amount of hardware resources needed to implement the
I-IP. Finally, this approach can be used to detect the
occurrence of transient faults (SEUs affecting the proces-
sor’s memory elements, and SETs affecting the processor’s
combinational logic during normal operation of the SoC),
and also permanent faults (during manufacturing final
tests).

The paper is organized as follows. Section 2 presents an
overview of the already available approaches to harden a
processor-based SoC. Section 3 details the approach
presented in this paper, while Section 4 presents an
experimental analysis of the approach using two of the
most popular architectures for SoC core processors: one
microcontroller (the Intel 8051 microcontroller, which has
been subject of our previous work [11]), and one RISC
processor (a 16-bit pipelined MIPS processor). Finally,
Section 5 draws some conclusions.

2 Previous Work

Error detection techniques for software-based systems
can be organized in three broad categories: software-
implemented techniques, which exploit purely software
detection mechanisms, hardware-based ones, which ex-
ploit additional hardware, and hybrid ones, that combine
both software and hardware error detection mechanisms.
Such techniques focus on checking the consistency between
the expected and the executed program flow, recurring to the
insertion of additional code lines or by storing flow
information in suitable hardware structures, respectively.

SIHFT techniques exploit the concepts of information,
operation, and time redundancy to detect the occurrence of
errors during program execution. In the past five years
some techniques have been developed that can be automat-
ically applied to the source code of a program, thus

J Electron Test

simplifying the task for software developers: the software is
indeed hardened by construction, and the development
costs can be reduced significantly. Moreover, the most
recently proposed techniques are general, and thus they can
be applied to a wide range of applications.

Techniques aiming at detecting the effects of faults that
modify the expected program’s execution flow are known
as control flow checking techniques. These techniques are
based on partitioning the program’s code into basic blocks
(sequences of consecutive instructions in which, in the
absence of faults, the control flow always enters at the
beginning and leaves at the end) [1].

Among the most important solutions based on the notion
of basic blocks proposed in the literature, there are the
techniques called Enhanced Control Flow Checking using
Assertions (ECCA) [2] and Control Flow Checking by
Software Signatures (CFCSS) [17].

ECCA is able to detect all the single inter-block
control flow errors, but it is neither able to detect intra-
block control flow errors, nor faults that cause an
incorrect decision on a conditional branch. CFCSS
cannot cover control flow errors if multiple nodes share
multiple nodes as their destination nodes. As far as faults
affecting program data are considered, several techniques
have been recently proposed that exploit information and
operation redundancies [6, 16]. The most recently intro-
duced approaches modify the source code of the applica-
tion to be hardened against faults by introducing
information redundancy and instruction duplication.
Moreover, consistency checks are added to the modified
code to perform error detection. The approach proposed in
[6] exploits several code transformation rules that mandate
for duplicating each variable and each operation among
variables. Moreover, each time a variable is read, a
consistency check between the variable and its replica
should be performed.

Conversely, the approach proposed in [16], named Error
Detection by Data Diversity and Duplicated Instructions
(ED4I), consists in developing a modified version of the
program, which is executed along with the unmodified
program. After executing both the original and the modified
versions, their results are compared: an error is detected if
any mismatch is found.

Both approaches introduce overheads in memory and
execution time. By introducing consistency checks that are
performed each time a variable is read, the approach
proposed in [6] minimizes the latency of faults; however,
it is suitable for detecting transient faults only, since the
same operation is repeated twice. Conversely, the approach
proposed in [16] exploits diverse data and duplicated
instructions, and thus it is suitable for both transient and
permanent faults. As a drawback, its fault latency is
generally greater than in [6]. The ED4I technique requires

a careful analysis of the size of used variables, in order to
avoid overflow situations.

SIHFT techniques are appealing, since they do not
require modification of the hardware running the hardened
application, and thus in some cases they can be imple-
mented with low costs. However, although very effective in
detecting faults affecting both program execution flow and
program data, the software-implemented approaches may
introduce significant time overheads that limit their adop-
tion only to those applications where performance is not a
critical issue. Also, in some cases they imply a non-
negligible increase in the amount of memory needed for
storing the duplicated information and the additional
instructions. Finally, these approaches can be exploited
only when the source code of the application is available,
precluding its application when commercial off-the-shelf
software components are used.

Hardware-based techniques exploit special purpose
hardware modules, called watchdog processors [12], to
monitor the control flow of programs, as well as memory
accesses. The behavior of the main processor running the
application code is monitored using three types of operations.

Memory access checks consist in monitoring for unex-
pected memory accesses executed by the main processor,
such as in the approach proposed in [15], where the
watchdog processor knows at each time during program
execution which portion of the program’s data and code can
be accessed, and activates an error signal whenever the
main processor executes an unexpected access.

Consistency checks of variables contents consists in
controlling if the value a variable holds is plausible. By
exploiting the knowledge about the task performed by the
hardened program, watchdog processors can validate each
value the main processor writes or reads through range
checks, or by exploiting known relationships among
variables [13].

Control flow checks consist in controlling whether all
the taken branches are consistent with the Program Graph
of the software running on the main processor [14, 18, 21,
25]. As far as the control flow check is considered, two
types of watchdog processors may be envisioned. An
active watchdog processor executes a program concur-
rently with the main processor. The Program Graph of the
watchdog’s program is homomorphic to the main proces-
sor’s one. During program execution, the watchdog
continuously checks whether its program evolves as that
executed by the main processor or not [14]. This solution
introduces minimal overhead in the program executed by the
main processor; however, the area overhead needed for
implementing the watchdog processor can be non-negligible.
A passive watchdog processor does not execute any
program; conversely, it computes a signature by observing
the main processor’ bus. Moreover, it performs consistency

J Electron Test

checks each time the main program enters/leaves a basic
block within the Program Graph. A cost-effective imple-
mentation is described in [25], where a watchdog processor
observes the instructions the main processor executes, and
computes a runtime signature. Moreover, the code running
on the main processor is modified in such a way that, when
entering a basic block, an instruction is issued to the
watchdog processor with a pre-calculated signature, while
the main processor executes a NOP instruction. The
watchdog processor compares the received pre-computed
signature with that computed at runtime, and it issues an
error signal in case of mismatch. An alternative approach is
proposed in [18], where the watchdog processor computes a
runtime signature on the basis of the addresses of the
instructions the main processor fetches. Passive watchdog
processors are potentially simpler than active ones, since
they do not need to embed the Program Graph, and since
they perform simpler operations: signature computation can
be demanded to LFSRs, and consistency checks to com-
parators. However, an overhead is introduced in the
monitored program: instructions are indeed needed for
communicating with the watchdog.

Dynamic verification, another hardware-based tech-
nique, is detailed in [3] for a pipelined core processor. It
uses a “functional checker” to verify the correctness of all
computation executed by the core processor. The checker only
permits correct results to be passed to the commit stage of the
processor pipeline. The so-called DIVA architecture relies on
a functional checker that is simpler than the core processor,
because it receives the instruction to be executed together with
the values of the input operands and of the result produced by
the core processor. This information is passed to the checker
through the re-order buffer (ROB) of the processor’s pipeline,
once the execution of an instruction by the core processor is
completed. Therefore, the checker does not have to care about
address calculations, jump predictions and other complexities
that are routinely handled by the core processor.

Once the result of the operation is obtained by the checker,
it is compared with the result produced by the core processor.
If they are equal, the result is forwarded to the commit stage of
the processor’s pipeline, to be written to the architected
storage. When they differ, the result calculated by the checker
is forwarded, assuming that the checker never fails. If a new
instruction is not released for the checker after a given time-
out period, the core processor’s pipeline is flushed, and the
processor is restarted using its own speculation recovery
mechanism, executing again the instruction.

Originally conceived as an alternative to make a core
processor fault tolerant, this work also evolved to the use of
a similar checker to build self-tuning SoCs [24].

While being a well balanced solution, in terms of area
and performance impacts, the DIVA approach has two main
drawbacks. First, since the checker is implemented inside

the processor’s pipeline, it cannot be implemented in SoCs
based on COTS processors or FPGAs that have an embedded
off-the-shelf processor, such as an ARM or Power PC core.
Second, the fundamental assumption behind the proposed
solution is that the checker never fails, due to the use of
oversized transistors in its construction and also to extensive
verification in the design phase. In case this is not feasible, the
authors suggest the use of conventional alternatives, such as
TMR and concurrent execution with comparison, which have
been already studied in several other works.

Hybrid techniques (for example [5]) combine the
adoption of some SIHFT techniques in a minimal version
(thus reducing their implementation cost) with the intro-
duction of an I-IP into the SoC. The software running on
the processor core is modified so that it implements
instruction duplication and information redundancy; more-
over, instructions are added to communicate to the I-IP the
information about basic block execution. The I-IP works
concurrently with the main processor, it implements
consistency checks among duplicated instructions, and it
verifies whether the correct program’s execution flow is
executed by monitoring the basic block execution.

Hybrid techniques are effective, since they provide a
high level of dependability while minimizing the intro-
duced overhead, both in terms of memory occupation and
performance degradation. However, in order to be adopted
they mandate the availability of the source code of the
application the processor core should run, and this
requirement cannot be always fulfilled.

The idea of introducing an I-IP between the processor and
the instructions memory, and of charging the I-IP of
substituting on-the-fly the fetched code with hardened one,
was preliminarily introduced in [20]. However, the I-IP
proposed in [20] was much simpler (it does not include
either an ALU or a control unit), and is not supported by a
suitable design flow environment, as proposed here. More-
over, the performance overhead of the method in [20] was
significant, and the method cannot cover permanent faults.

3 The Proposed Approach

The approach we developed aims at minimizing the
overhead needed to harden a processor core, with particular
emphasis in minimizing the amount of memory used by the
hardened application, and in being applicable even when
the application’s source code is not available, by exploiting
the following concepts:

& Instruction hardening and consistency check: data
processing instructions are executed twice, producing
two results that are checked for consistency; and an
error is notified whenever a mismatch occurs.

J Electron Test

& Control flow check: each time the processor fetches a
new instruction, the memory address is compared with
the expected one, and an error is notified if a mismatch
is detected.

In the following we describe how these concepts are
implemented, firstly by stating the assumptions upon which
it is based on, then by describing the overall architecture of
the SoC adopting the proposed technique, and finally by
detailing the I-IP architecture and the design flow to
support its deployment in a SoC.

3.1 Assumptions

The system we intend to protect is a SoC where a processor
core is used to run a software application, and the proposed
approach can be used to harden applications executed by
any processor core, independent of its internal architecture.
In order to confirm this assumption, we have conducted
experiments aiming the implementation of the I-IP in two
different well known and widely used architectures: the
Intel 8051 microcontroller and a MIPS RISC processor.

We assume that a suitable I-IP core can be inserted in the
SoC, able to implement instruction hardening and control
flow checking. The SoC can be either implemented through
an ASIC, or an FPGA embedding a processor core (such as
the Xilinx’s Virtex II Pro, which embeds a PowerPC core,
or Actel’s M7 proASIC3/E, which embeds an ARM core).

The I-IP we propose is inserted between the memory
storing the code and the main processor core, and monitors
each instruction fetch operation. In this work we assume that
the bus connecting the instruction cache to the processor is not
accessible, as it often happens for processor cores, and
therefore we assume that the instruction cache either does
not exist, or is disabled. While, at first sight, this assumption
might be considered a weakness of the proposed approach,
because cache memories play a significant role in perfor-
mance improvement, it is important to highlight that the
original goal of this work was to work with COTS
components, in which one seldom has access to the cache-
processor connection. Given that condition, one must remeber
that in several applications (e.g., in the automotive market)
low cost microcontrollers, which often do not have caches, are
used, and our method would be perfectly tailored to this kind
of cores. Moreover, there are several versions of ARM, MIPS
or Texas processors in which one can actually disconnect the
cache when working in a COTS project, and hence the
techniques here proposed could also be used in those cases.

Moreover, we assume that the instruction memory and
the data memory located outside the processor are either
hardened with suitable error detection/correction codes or
implemented using technologies that are intrinsically
immune to soft errors. In either case, it must be noted that,

in a SoC design, it is often possible to intervene on the
memory global structure, by for example including extra
circuitry covering error detection and correction, while it is
much less common to be able to modify the processor core,
which is often bought from third parties, or is reused from
previous projects.

The use of error detection and correction codes is a
relatively low cost technique, concerning area overhead,
because the extra area required for coding grows logarith-
mically with the size of the memory to be protected,
making this technique a natural one to be adopted for high
reliability systems. A second alternative to achieve protec-
tion of the memory is the use of new memory technologies,
such as magnetic RAMs (MRAMs) or flash memories,
which are not sensitive to radiation effects, and therefore
are intrinsically immune to soft errors [8].

In developing our technique, we adopt the SEU in the
processor’s memory elements as fault model. Possible fault
locations are therefore the register file, and the registers not
accessible through the instruction set (for example, the
pipeline’s boundary registers). However, the approach is
general, and it can be exploited to cope with other fault
models, like the single stuck-at one, or the single event
transient one.

3.2 Overall Architecture

The technique we developed is based on inserting an I-IP
between the processor core and the memory storing the
instructions the processor core executes, as illustrated in
Fig. 1. While the I-IP must be tailored to the specific core
processor in a given SoC, according to the design flow
described in Section 3.4, the architecture and the technique
described here are generic, and can be implemented in any
SoC in which additional modules can be inserted.

Whichever the core processor existing in the SoC, the I-
IP implementing the concepts of our technique works as
follows.

Instruction hardening and consistency check: the I-IP
decodes the instructions the processor fetches. Each time a
data processing instruction is fetched, like that in Fig. 2,
whose format is opcode dst, src1, src2, and which is stored
in memory at address FETCH_ADX, the I-IP replaces it
with the sequence of instructions in Fig. 3, which is sent to
the processor.

Therefore, from the point of view of the processor, the
fetched instructions are no more those contained in the code
memory, but those issued by the I-IP. The sequence of
instructions that substitutes each data processing one
includes two instructions whose purpose is to send to the
I-IP the value of the source operands the instruction
elaborates.

J Electron Test

The third instruction (in boldface) is the original
instruction coming from the program, while the fourth
one is used to send the I-IP the computed result. Finally,
the last instruction is used to resume the original program
execution, starting from the instruction following the
replicated one, which is located at address FETCH_ADX
+OFFSET, being OFFSET the size of the replicated
instruction.

Concurrently to the main processor, the I-IP executes the
fetched data processing instructions by exploiting its own
arithmetic and logic unit, and it compares the obtained
results with that coming from the processor. In case a
mismatch is found, it activates an error signal, otherwise the
branch instruction is sent to the core processor, in order to
resume its normal program flow.

Some additional comments, specific for the implemen-
tation of this technique with pipelined core processors, are
presented in Section 4.2.

Control flow check: concurrently with instruction hard-
ening and consistency check, the I-IP also implements a
simple mechanism to check if the instructions are executed
according to the expected flow.

Each time the I-IP recognizes the fetch of a memory
transfer, a data processing, or an I/O instruction stored at
address A, it computes the address of the next instruction
Anext in the program as A+offset, where offset is the size of
the fetched instruction. Conversely, each time the I-IP
recognizes the fetch of a branch instruction, it computes
the address of the next instruction in the two cases
corresponding to the branch taken situation (Ataken) and
to the branch not taken one (Anext).

The former is computed taking into account the
branch type, while the latter is computed as A+offset,
where offset is the size of the branch instruction. At the
fetch of the next instruction at address A′, the I-IP controls
if the program is proceeding along the expected control
flow. If A′ differs from both Anext and Ataken, the error
signal is raised to indicate that an instruction located in an
unexpected address has been fetched.

Control flow check is disabled when the processor
fetches a return instruction that transfers the execution
flow from a subroutine to its caller, or that ends an
interrupt service routine. In both these cases a stack is
required to implement control flow check correctly. We
opted for not implementing this stack since it would
increase significantly the I-IP’s area occupation.

Interrupt requests are not allowed to interfere with the
execution of the sequence of instructions in Fig. 3. For this
reason the I-IP receives interrupt requests through the IRQ
signal, and it forwards them to the processor core only after
the sequence of instructions in Fig. 3 has been completely
executed. This approach preserves the correct operation of
the I-IP, which is able to harden interrupt service routines,
too, at a cost of slightly increased interrupt latency.

3.3 The I-IP

The I-IP we developed is organized as Fig. 4 shows, and it
is composed of the following modules:

1 CPU interface: it connects the I-IP with the processor
core. It decodes the bus cycles the processor core executes,
and in case of fetch cycles it activates the rest of the I-IP.

Code
memory

µP

abus

cbus

dbus

abus

cbus

dbus
I-IP

error

IRQ

IRQ

Fig. 1 Overall architecture

FETCH_ADX: opcode dst, src1, src2

Fig. 2 Original instruction

store I-IP-adx, src1
store I-IP-adx, src2
opcode dst, src1, src2

store I-IP-adx, dst
branch FETCH_ADX+OFFSET

Fig. 3 Source operands and result fetching

CPU interface

Memory interface

Fetch
logic

Decode
logic

ALUControl
Unit

abus dbus cbus

abus dbus cbusIRQ

IRQ

Fig. 4 Architecture of the I-IP

J Electron Test

2 Memory interface: it connects the I-IP with the memory
storing the application the processor executes. This
module executes commands coming from the Fetch
logic and handles the details of the communication with
the memory.

3 Fetch logic: it issues to the Memory interface the
commands needed for loading a new instruction in the
I-IP and feeding it to the Decode logic.

4 Decode logic: it decodes the fetched instruction, whose
address in memory is A, and sends the details about the
instruction to the Control unit. This module classifies
instructions according to three categories:

4.1 Data processing: if the instruction belongs to the
set of instructions the I-IP is able to process,
which is defined at design time, the I-IP performs
instruction hardening and consistency check.
Otherwise, the instruction is treated as “other”,
as described in item “c”. Moreover, for the
purpose of the control flow check, the address
Anext of the next instruction in the program is
computed, as described in Section 3.2.

4.2 Branch: the instruction may change the execution
flow. The I-IP forwards it to the main processor
and it computes the two possible addresses for the
next instruction, Anext and Ataken, as described in
Section 3.2.

4.3 Other: the instruction does not belong to the
previous categories. The I-IP forwards it to the
main processor and it computes the address Anext

of the next instruction in the program, only, as
described in Section 3.2.

5 Control unit: it supervises the operation of the I-IP.
Upon receiving a request for an instruction fetch from
the CPU interface it activates the Fetch logic. Then,
depending on the information produced by the Decode
logic, it either issues to the main processor the sequence
of instructions summarized in Fig. 3 to implement
instruction hardening and consistency check, or it sends
to the processor the original instruction. Moreover, it
implements the operations needed for control flow
check. Finally, it receives interrupt requests and for-
wards them to the processor core at the correct time.

6 ALU: it implements a subset of the main processor’s
instruction set. This module contains all the functional
modules (adder, multiplier, etc.) needed to execute the
data processing instructions the I-IP manages.

Two customization phases are needed for deploying
successfully the I-IP in a SoC:

Processor adaptation: the I-IP has to be adapted to the
main processor the SoC employs. This customization
impacts on the CPU interface, the Memory interface, the
Fetch logic, and the Control unit, only. This phase has to be

performed only once, each time a new processor is adopted.
Then, the obtained I-IP can be reused each time the same
processor is employed in a new SoC.

Application adaptation: the I-IP has to be adapted to the
application the main processor is executing (mainly
affecting the set of data processing instructions to be
hardened by the I-IP). This operation impacts the Decode
logic, and the I-IP’s ALU, as it defines which instructions
the I-IP replicates. In this phase, designers must decide
which of the instructions of the program to be executed by
the main processor have to be hardened. Moreover, in this
phase designers decide how often instructions have to be
hardened. This phase may be performed several times
during the development of a SoC, for example when new
functionalities are added to the program running on the
main processor, or when the designers tune the SoC area/
performance/dependability trade-off. For this reason, we
developed an automatic design flow, described in Sec-
tion 3.4, that supports this phase.

3.4 The Design Flow

We developed the prototype of a tool that supports the automatic
design flow depicted in Fig. 5 to implement the application
adaptation phase. A disassembler tool reads the binary code of
the application that should run on the SoC’s main processor,
and it generates a report describing the application’s instruction
mix, where the instructions composing the binary code are
listed, along with their frequency in the code (i.e., how often an
instruction appears in the code). A second tool, the I-IP
generator, reads the instruction mix, and a set of constraints
provided by the designer, and generates the VHDL model for
the I-IP, whose Decode and ALU modules are adapted to the
given application. Specific versions of those tools have been
developed for each processor core used in the experiments
described in Section 4.

The designer’s constraints specify which instructions in
the instruction mix have to be hardened by the I-IP and
which should be ignored (i.e., when fetched, the I-IP
forwards them directly to the main processor, without
performing any other operation, except control flow check).

In the current implementation of the design flow the
designers select the instructions to be hardened, according

Binary
code

Disassembler

Instruction
mix

I-IP
generator

I-IP VHDL

model

Constraints

Fig. 5 The design flow to support the application adaptation phase

J Electron Test

to their frequency in the code. We are now working to
enrich the information we provide to designers with
profiling information coming from the analysis of the
frequency of execution of each instruction during the
evaluation of a representative workload.

4 Experimental Results

To assess the effectiveness of the proposed technique, and
its applicability to SoCs based on different core processors,
we developed two prototypical implementations of SoCs,
one using the Intel 8051 microcontroller as the core
processor and the other using a five-stage pipelined MIPS
processor. The selection of those two processors was due to
their widespread use in the implementation of SoCs by the
industry.

4.1 Using a CISC Microcontroller

This experiment implements the Viterbi encoding of a
stream of data. The SoC is composed of a processor core
implementing the Intel 8051 instruction set, which runs a
software implementation of the Viterbi algorithm. We
exploited Synopsys’ Design Compiler to obtain a gate-
level model of the SoC (exploiting an in-house developed
technology library). The SoC area occupation is
52,373 μm2, including the processor core and its instruc-
tion/data memory.

In order to evaluate the impact of the adoption of the I-IP
on the SoC design, we developed an Intel 8051 compatible
version of the I-IP that implements the control flow check
approach, as well as instruction hardening and consistency
check. Moreover, in order to evaluate the benefits stemming
from the adoption of our technique, we evaluated its
capability of detecting errors that may affect the SoC.

In particular, we focused on SEUs affecting the
processor core’s internal memory elements. For this
purpose, we performed several fault injection campaigns
by exploiting the fault injection environment presented in
[7], during which 10,000 randomly selected faults were
injected in the processor’s memory elements (the register
file, the control registers, and the hidden registers the Intel
8051’s control unit embeds).

During the experiments, we considered two different
implementations of the I-IP’s ALU, where different sets of
instructions are replicated. The first implementation repli-
cates only the increment (INC) instruction, which is the
most used instruction in the program, while the second
implementation replicates both the increment and the add
(ADD) instructions. The selection of the instructions to be
hardened, in these experiments, was based on the static
count of instructions in the code to be executed by the core

processor. Table 1 lists the results we attained, in terms of
percent reduction of failures (i.e., faults for which the
outputs of the faulty SoC differ from the expected correct
ones) that we observed with respect to the unhardened SoC,
area overhead the I-IP introduces, and performance over-
head with respect to the unhardened SoC.

As the reader can observe, the approach increases
significantly the dependability of the system. In case the most
frequently used instruction (INC) is hardened, the number of
observed failures is reduced by 81%. When the ADD
instruction is also hardened, the reduction of observed failures
is about 88%.

Moreover, the figures concerning the area overhead and
the performance degradation show that, by selecting which
instructions to harden, the designers can trade dependability
for area increase and speed reduction.

Please note that the introduced area overhead is far
below the amount of silicon area needed to duplicate the
whole system, as well as lower than that of the alternative
approaches we adopted to harden the same system. When
the SIHFT approach described in [6] is exploited, its area
overhead (due to the increased memory requirement) is
significantly higher than that of the approach presented
here, while the performance degradation and the fault
detection capabilities of the two methods are comparable.
When the hybrid approach [5] is considered, its area
overhead is still higher than the approach presented in this
paper. However, the hybrid approach presented in [5]
shows lower performance degradation and slightly higher
fault detection capability. The method presented in [24] can
not be easily compared, since it was implemented for a
different processor. However, that method is clearly
characterized by a lower area overhead, a higher perfor-
mance overhead, and a lower fault coverage.

The experiments also show that not all the faults can be
detected; indeed, some failures have been observed for the
hardened SoC. Some of the escaped faults affected memory
elements that change the configuration of the processor core.
For example, they change the register bank select bit, switching
from the used register bank to the unused one. For this type of

Table 1 Intel 8051 results

Method Proposed here Proposed
in [6]

Proposed
in [5]

Hardened
Instructions

INC INC ADD n.a. n.a.

Reduction of
failures (%)

81.3 87.5 81.8 92.5

Area overhead
due to I-IP (%)

13.1 15.7 76.2 51.8

Performance
overhead (%)

292.0 314.0 388.3 108.9

J Electron Test

faults the I-IP fetches the operand for the hardened instruction
from a wrong source, as the operation executed by the main
processor does. As a result, this type of fault escapes the error
detection mechanisms provided by the I-IP. Some of the
escaped faults affect the execution of branch instructions in
such a way that the taken branch is consistent with the program
control flow, but it is taken at the wrong time. A typical example
of this type of fault is a SEU affecting the carry bit of the
processor status word that hits the SoC before a conditional
branch is executed. In this case, the wrong execution path is
taken, based on a wrong value of the carry flag. However, the
control flow is transferred to a legal basic block, which is
consistent with the program’s control flow, and therefore it
escapes the control flow check that the I-IP employs. Finally,
some of the escaped faults affected unhardened instructions
(mainly those concerning the return from a subroutine).

As a final remark, it is worth noting that the method is
able to detect all the permanent faults affecting the
processor’s ALU, since data manipulation instructions are
executed in parallel by the I-IP.

4.2 Using a RISC Microprocessor

In order to check the adequacy of the proposed technique
for a different architecture, another implementation of the I-
IP, using a SoC with a 5-stage pipelined MIPS processor
has also been simulated.

In this experiment, the same fault model (SEUs affecting
internal memory elements of the processor) and methodol-
ogy of the experiment with the 8051 core have been used,
but a cycle-accurate simulator [4] has been used to check
the fault tolerance of the system.

The simulated SoC now is composed of a processor core
that implements the MIPS instruction set, and runs the same
Viterbi encoding algorithm used in the experiments
described in Section 4.1.

Two different implementations of the I-IP, hardening one
or three data processing instructions, have been tested, both
providing instruction hardening, consistency check, and
control flow check. This time, the choice of instructions to
be hardened in the experiment was based on runtime
statistics, shown in Table 2, and not on static analysis of the
code, as in the 8051 experiment.

First, only the most used data processing instruction
(ADDU) has been hardened, and the fault injection process
executed. In a second step, a different version of the I-IP
has been implemented, hardening also the second and third
most executed data processing instructions in the Viterbi
application (ANDI and SRA), and the fault injection
experiments repeated.

Because the experiments with the MIPS core have been
done using a cycle-accurate simulator, which takes a long
time to run the application once, only 1,000 fault injection

campaigns have been executed with each of the above
mentioned implementations of the I-IP using the MIPS
core, and the obtained results are shown in Table 3.

The fault injection process consisted in running the
Viterbi application 1,000 times, and for each execution one
fault has been injected. The cycle in which the fault was
injected and the specific bit of the internal memory element
that the fault affected were choosen randomly in each
execution.

In order to be able not only to detect errors using the I-
IP, but also to check if every error was detected or not, the
fault injection experiments were executed using two copies
of the system running in the simulator, and injecting faults
in only one of them, using the results of the second copy
(golden processor) as a reference to check the results of the
computation.

At the end of every execution cycle, the contents of the
program counter, the memory address register, and the
memory data register of the faulty system were compared
with those of the golden one, in order to check if an error
that was not detected by I-IP occurred. If so, information
concerning this error was logged.

Table 2 Runtime frequency of instructions

Viterbi execution (7,182 instructions)

Instruction Frequency Percent

LW 2,105 29.3
SW 1,349 18.8
ADDU 1,072 14.9
ANDI 716 10.0
SRA 716 10.0
ADDIU 429 6.0
SLL 271 3.8
SUBU 152 2.1
JALL 77 1.1
SRL 76 1.0
JR 76 1.0
Others 143 2.0

Table 3 MIPS results

Hardened Instructions Control flow +
instructions

Control flow
only

ADDU ADDU ANDI
SRA

Reduction of
failures (%)

74.5 79.2 64.6

Area overhead due
to I-IP (%)

12.7 12.9 13.6

Performance
overhead (%)

99.0 196.8 9.5

J Electron Test

Moreover, when an injected fault caused an error that
was detected by the I-IP, the execution was interrupted and
all the pertinent information about the fault was logged.

Since the works described in [5] and [6] did not use the
same core processor, the comparison with the results
obtained in the current experiments is not possible.

Contrasting the figures for reduction of failures in
Table 3 with those obtained for the 8051 microcontroller,
shown in Table 1, one can see that smaller percentages of
faults have been detected by the I-IP for the MIPS
architecture while running the Viterbi application. Also, in
this work we have logged separately not only the errors in
the execution of the hardened instructions in different
experiments, but also the control flow errors detected by the
proposed mechanism. The results shown in Table 3 are
further analyzed in Section 4.3.

The I-IP introduces a slightly smaller area overhead in
the MIPS based SoC, due to the fact that the MIPS core
processor is much more complex, and therefore larger, than
the 8051 microcontroller. However, the reduction was not
that significant, because the I-IP implemented to work with
the MIPS core must keep track of the evolution of the
instructions inside the pipeline, which also requires a more
complex hardware than that of the I-IP for the 8051.

Nevertheless, it is important to highlight that the area
overhead, for both processors, is very small, when
compared to other approaches.

Concerning performance, the implementation for MIPS
has provided a significantly smaller overhead. At this point,
it is worth to recall that the performance overhead is mainly
due to the execution of additional instructions sent by the I-
IP to the core processor, as shown in Fig. 3, each time an
instruction that must be hardened is fetched from memory
by the core processor.

4.3 Fault Coverage Analysis

As shown in the previous sections, the proposed approach
is adequate for use with SoCs based on CISC micro-
controllers or RISC processors, but the ability to detect
faults in the MIPS implementation is smaller than that in
the 8051 implementation.

The fault model used in all experiments is the SEU in
internal memory elements of the core processor. Therefore,
since the MIPS processor is pipelined, there is a larger
amount of memory elements subject to SEUs in its
architecture than in the 8051 microcontroller, where most
of the memory elements are registers used for data or
address storage, not for control. In the specific case of the
MIPS version used in the simulations, the register file alone
represents 56% of the total memory elements inside the
processor, the remaining 44% corresponding to the pipeline
registers, special ALU registers (such as the high-order and

low-order registers used only in multiplications) and other
memory elements used by the control logic. This was
confirmed by the analysis of the log reports of the fault
injection experiments.

The use of a cycle-accurate simulator in the experiments
with the MIPS processor, however, provided more infor-
mation about the cases in which faults are not detected by
the I-IP, thereby allowing a more detailed analysis of the
problem. So, besides those cases already mentioned for the
8051 microcontroller, in Section 4.1, our analysis has
shown that, among the undetected faults, a large number
was due to SEUs affecting the register file of the MIPS
processor before the operands are read and their values
forwarded to the I-IP. In those cases, the same corrupted
data values are used by the core processor and by the I-IP
during the parallel execution of the data processing
instruction, and therefore the results are the same and no
error is flagged.

These findings point out that the protection of some
internal memory elements of the core processor, such as the
register file, would be an improvement factor for the fault
coverage, when the approach proposed here is applied.

While the requirement for register file protection may
seem unfeasible, the analysis of recent industry trends
shows that it may become a standard design practice in the
near future. High-end processors available in the market
already provide EDAC protection for internal memory
elements [19]. Also, during a panel discussion at the
International Test Conference 2005 [22, 23], in which the
adequate level of concern for soft errors was discussed,
audience members from the industry reported that the
protection of internal registers against soft errors is already
a practice being adopted also for processors targeted at the
desktop and high-performance embedded systems markets.

This overall tendency to protect internal register banks
goes in the same direction that favors the I-IP technique
proposed here.

5 Conclusion

In this paper, a new approach able to harden SoCs against
transient errors in the processor core they embed has been
presented. The method is based on introducing in the SoC a
further module (I-IP), whose architecture is general, that
needs to be customized to the adopted processor core.

The I-IP monitors the processor buses and performs two
main functions: when the processor fetches a data process-
ing instruction belonging to a design time selected set, it
acts on the bus and lets the processor fetch a sequence of
instructions generated on-the-fly, instead of the original
one. The sequence of instructions allows the I-IP to get the
operands of the original data processing instructions, which

J Electron Test

is then executed both by the processor and by the I-IP; the
results obtained by the processor and the I-IP are then
compared for correctness. The I-IP also checks the
correctness of the address used by the processor to fetch
each new instruction, thus detecting a number of control
flow errors.

The method is inspired in SIHFT and hybrid techniques,
but it does not introduce any memory overhead in the
hardened system (code redundancy is introduced on-the-
fly). Moreover, no change is required on the application
code, whose source version is not required to be available.
Finally, the method allows designers to trade-off costs and
reliability, mainly by suitably selecting the subset of data-
manipulation instructions to be hardened.

In order to validate the proposed approach, two
implementations of the I-IP with different core processor
architectures have been simulated and tested against fault
injection, using SEUs in the internal memory elements as
the fault model. The experimental results show that the
approach is able to increase the dependability of a SoC
based on a processor core, while giving to designers the
possibility of trading off dependability with area overhead
and performance degradation.

The experiments with MIPS also have shown that most
of the non detected errors are due to SEUs affecting the
register file of the processor before the operands are read
and their values forwarded to the I-IP. In order to avoid
these errors, the register file should be protected using
EDAC techniques, what would imply in changes in the
internal architecture of the processor.

Since one of the main goals of the technique proposed
here is to be non-intrusive, i.e., not to modify the
architecture of the core processor, an important outcome
of this study is that the use of EDAC techniques to protect
the contents of the internal registers of the core processor
should be a recommended design rule to be adopted by the
industry for SoCs using future technologies.

In a future extension of this work, assuming that in future
processors all internal memory elements will be protected
against SEUs, the effectiveness of the I-IP to protect the SoC
against other types of transient faults affecting the combina-
tional logic of the processor will be assessed.

References

1. Aho A, Sethi R, Ullman J (1986) Compilers: principles,
techniques and tools. Addison-Wesley, Reading, MA

2. Alkhalifa Z, Nair VSS, Krishnamurthy N, Abraham JA (1999)
Design and evaluation of system-level checks for on-line control flow
error detection. IEEE Trans Parallel Distrib Syst 10(6):627–641 (Jun)

3. Austin TM (2000) DIVA: a dynamic approach to microprocessor
verification. Journal of Instruction Level Parallelism 2(May)1–6
http://www.jilp.org/vol2

4. Beck F, Mattos JCB, Wagner FR, Carro L (2003) CACO-PS: a
general purpose cycle-accurate configurable power-simulator. In:
Proceedings of the 16th Brazilian symposium on integrated
circuits and systems design (SBCCI 2003), September 2003

5. Bernardi P, Bolzani LMV, Rebaudengo M, Sonza Reorda M, Vargas
FL, Violante M (2006) A new hybrid fault detection technique for
Systems-on-a-Chip. IEEE Trans Comput 55(2):185–198 (Feb)

6. Cheynet P, Nicolescu B, Velazco R, Rebaudengo M, Sonza
Reorda M, Violante M (2000) Experimentally evaluating an
automatic approach for generating safety-critical software with
respect to transient errors. IEEE Trans Nucl Sci 47(6 part 3):
2231–2236 (Dec)

7. Civera P, Macchiarulo L, Rebaudengo M, Sonza Reorda M,
Violante M (2001) Exploiting circuit emulation for fast hardness
evaluation. IEEE Trans Nucl Sci 48(6):2210–2216 (Dec)

8. Eto A, Hidaka M, Okuyama Y, Kimura K, Hosono M (1998)
Impact of neutron flux on soft errors in MOS memories. In:
Proceedings of the IEEE international electronic devices meeting
(IEDM), IEEE Computer Society, Los Alamitos, CA, pp 367–380

9. Goloubeva O, Rebaudengo M, Sonza Reorda M, Violante M (2003)
Soft-error detection using control flow assertions. In: Proceedings of
the 18th IEEE international symposium on defect and fault tolerance
in VLSI systems—DFT 2003, November 2003, pp 581–588

10. Huang KH, Abraham JA (1984) Algorithm-based fault tolerance
for matrix operations. IEEE Trans Comput 33:518–528 (Dec)

11. Lisbôa CAL, Carro L, Sonza Reorda M, Violante M (2006)
Online hardening of programs against SEUs and SETs. In:
Proceedings of the 21st IEEE international symposium on defect
and fault tolerance in VLSI systems—DFT 2006, IEEE Computer
Society, Los Alamitos, CA, October 2006, pp 280–288

12. Mahmood A, McCluskey EJ (1988) Concurrent error detection
using watchdog processors—a survey. IEEE Trans Comput 37
(2):160–174 (Feb)

13. Mahmood A, Lu DJ, McCluskey EJ (1983) Concurrent fault
detection using a watchdog processor and assertions. In Proceed-
ings of the IEEE international test conference 1983 (ITC ’83), pp.
622–628

14. Namjoo M (1983) CERBERUS-16: an architecture for a general
purpose watchdog processor. In: Proceedings of the 13th
international symposium on fault-tolerant computing (FTCS-13),
pp 216–219

15. Namjoo M, McCluskey EJ (1982) Watchdog processors and
capability checking. In: Proceedings of the 12th international
symposium on fault-tolerant computing (FTCS-12), pp 245–248

16. Oh N, Mitra S, McCluskey EJ (2002) ED4I: error detection by
diverse data and duplicated instructions. IEEE Trans Comput 51
(2):180–199 (Feb)

17. Oh N, Shirvani PP, McCluskey EJ (2002) Control flow Checking
by Software Signatures. IEEE Trans Reliab 51(2):111–112 (Mar)

18. Ohlsson J, Rimen M (1995) Implicit signature checking. In:
Digest of papers of the 25th international symposium on fault-
tolerant computing (FTCS-25), pp 218–227

19. Quach N (2000) High availability and reliability in the Itanium
processor. IEEE MICRO 20(5):61–69 (Sep–Oct)

20. Schillaci M, Sonza Reorda M, Violante M (2006) A new approach
to cope with single event upsets in processor-based systems. In:
Proceedings of the 7th IEEE Latin–American test workshop—
LATW 2006, March 2006, pp 145–150

21. Schuette MA, Shen JP (1987) Processor control flow monitoring
using signatured instruction streams. IEEE Trans Comput 36
(3):264–276 (Mar)

22. Stolicny C (2006) ITC 2005 panels. IEEE Des Test Comput 20
(5):164–166 (Mar–Apr)

23. Vijaykrishnan N (2005) Soft-errors: is the concern for soft errors
overblown? In: Proceedings of the IEEE international test
conference 2005 (ITC 2005), November 2005 (2 pages)

J Electron Test

http://www.jilp.org/vol2

24. Weaver C, Gebara FF, Austin T, Brown R (2002) Remora: a dynamic
self-tuning processor. University of Michigan CSE Technical Report
CSE-TR-460-02, July 2002. University of Michigan, MI, USA

25. Wilken K, Shen JP (1990) Continuous signature monitoring: low-
cost concurrent detection of processor control errors. IEEE Trans
Comput-Aided Des Integr Circuits Syst 9(6):629–641 (Jun)

Eduardo Luis Rhod was born in Lajeado, Brazil, in 1981. He
received his degree in Automation and Control Engineering from
Pontifícia Universidade Católica do Rio Grande do Sul in 2004. He is
finishing his master degree in Electrical Engineering at Universidade
Federal do Rio Grande do Sul and his research interests are computer
architecture and fault tolerant systems.

Carlos Arthur Lang Lisbôa was born in Porto Alegre, Brazil, in
1950. He received the Civil Engineering and MSc degrees from
Universidade Federal do Rio Grande do Sul (UFRGS), Brazil, in 1971
and 1976, respectively. He is a faculty member of the Applied
Informatics Department at the Informatics Institute of UFRGS since
1972. He is currently enrolled in the Ph.D. program of the Graduation
Program in Computer Science at UFRGS. His research interests are
computer architecture and fault tolerant systems.

Luigi Carro was born in Porto Alegre, Brazil, in 1962. He received
the Electrical Engineering and the MSc degrees from Universidade
Federal do Rio Grande do Sul (UFRGS), Brazil, in 1985 and 1989,
respectively. From 1989 to 1991 he worked at ST-Microelectronics,
Agrate, Italy, in the R&D group. In 1996 he received the Ph.D. degree
in the area of Computer Science from Universidade Federal do Rio

Grande do Sul (UFRGS), Brazil. He is presently a professor at the
Applied Informatics Department at the Informatics Institute of
UFRGS, in charge of computer architecture disciplines at the
undergraduate level. He is also a member of the Graduation Program
in Computer Science at UFRGS, where he is responsible for courses
on embedded systems, digital signal processing, and VLSI design. His
primary research interests include mixed-signal design, digital signal
processing, mixed-signal and analog testing, and rapid system
prototyping. He has published more than 120 technical papers on
those topics and is the author of the book Digital systems Design and
Prototyping (in Portuguese) and co-author of the book Fault-Tolerance
Techniques for SRAM-based FPGAs, 1. ed., Dordrecht: Springer,
2006.

Matteo Sonza Reorda took his M.S. degree in Electronics (1986) and
Ph.D. degree in Computer Engineering (1990) from Politecnico di
Torino, Italy. Currently, he is a Full Professor at the Department of
Computer Engineering of the same institution. His main research
interests include testing and fault tolerant design of electronic systems.
He published more than 200 papers on these topics. He has been the
General (1998) and Program Co-chair (2002, 2003) of the IEEE
International Online Testing Symposium. Currently, he is the chair of
the committee on Test Generation, Simulation and Diagnosis of the
DATE 2007 conference.

Massimo Violante received the M.S. degree in Computer Engineering
(1996) and the Ph.D. degree in Computer Engineering (2001) from
Politecnico di Torino, Italy. Currently, he is an Assistant Professor
with the Department of Computer Engineering of the same institution.
His main research interests include design, validation, and test of
fault-tolerant electronic systems.

J Electron Test

	1. Introduction
	2. Related Work
	3. Soft Error Rate
	4. Using Magnetic Memory to Reduce Combinational Logic
	5. Test Cases
	Circuit
	Memory

	6. Conclusions
	7. References
	Hardware and Software Transparency in the Protectionof Programs Against SEUs and SETs
	Abstract
	Introduction
	Previous Work
	The Proposed Approach
	Assumptions
	Overall Architecture
	The I-IP
	The Design Flow

	Experimental Results
	Using a CISC Microcontroller
	Using a RISC Microprocessor
	Fault Coverage Analysis

	Conclusion
	References

