
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

EDUARDO MAYER TERROSO

An Image Organizer with Content-Based
Image Retrieval

Undergraduate Thesis presented in partial
fulfillment of the requirements for the degree of
Bachelor of Computer Science

Prof. Dr. Marcelo Johann
Advisor

Porto Alegre, June 2008

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. José Carlos Ferraz Hennemann
Vice-Reitor: Pedro Cezar Dutra Fonseca
Pró-Reitor de Graduação: Carlos Alexandre Netto
Diretor do Instituto de Informática: Prof. Flávio Rech Wagner
Coordenador da Comgrad/CIC: Prof. Raul Fernando Weber
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

CONTENTS

LIST OF ABBREVIATIONS AND ACRONYMS 5

LIST OF FIGURES . 6

ABSTRACT . 7

RESUMO . 8

1 INTRODUCTION . 9
1.1 Objectives . 9
1.2 Results . 9
1.3 Organization . 10

2 CONTENT-BASED IMAGE RETRIEVAL 11
2.1 Design Issues . 11
2.1.1 Which features to use? . 12
2.1.2 Which measure of similarity to use? . 12
2.1.3 How to index the features? . 12
2.1.4 How to weight the features for a given query? 12
2.1.5 Which types of queries should be supported? 13
2.1.6 How to make use of relevance feedback? 13

3 SELF-ORGANIZING MAPS . 14
3.1 Network Structure . 14
3.2 Training Algorithm . 15
3.3 Tree-Structured Self-Organizing Maps 16
3.3.1 Training Algorithm . 16

4 THE LACAIO SYSTEM . 18
4.1 Graphical User Interface . 19
4.2 Implementation . 20
4.2.1 Feature Extraction and TS-SOM Training 20
4.2.2 Querying . 22

5 FEATURE VECTORS . 24
5.1 Average Colors . 24
5.2 Scalable Color . 24
5.3 Texture . 24
5.4 Edge Histogram . 25

6 EVALUATION . 26

7 CONCLUSIONS . 30
7.1 Discussion and Further Work . 30

REFERENCES . 31

LIST OF ABBREVIATIONS AND ACRONYMS

AI Artificial Intelligence

CBIR Content-Based Image Retrieval

FV Feature Vector

GUI Graphical User Interface

MPEG-7 Moving Pictures Expert Group Multimedia Content Description Interface

QPE Query by Pictorial Example

RF Relevance Feedback

SOM Self-Organizing Map

TS-SOM Tree-Structured Self-Organizing Map

LIST OF FIGURES

Figure 3.1: The two main SOM topologies, rectangular (a) and hexagonal (b) and
its corresponding neighborhood shapes. (CHOPPIN, 1998) 14

Figure 3.2: A 2D rectangular grid SOM fitted to 3D input vectors plotted in its
feature vector space. (CHOPPIN, 1998) 15

Figure 3.3: Adjustment of the BMU and its neighborhood to input vector X.
(VESANTO et al., 1999) . 16

Figure 3.4: Example of a three-layer TS-SOM (PAKKANEN; IIVARINEN, 2002) 17

Figure 4.1: A screenshot of the main window. 19
Figure 4.2: Database structure. 21
Figure 4.3: The bottommost layer of a TS-SOM after computing the scores of

each node (left) and after applying a Gaussian filter (right). The dark-
est the node, the higher the score. 22

Figure 5.1: Matrix used in Texture feature extraction. 24
Figure 5.2: The five types of edges (horizontal (a), vertical (b), 45◦ (c), 135◦ (d)

and non-directional (e)) and their corresponding edge detection filters. 25
Figure 5.3: The subdivisions of an image - An image divided in 9 sub-images (a),

a sub-image divided in blocks (b) and a block divided in 4 sub-blocks
(c). 25

Figure 6.1: Precision-recall curves for each of the seven classes. 28
Figure 6.2: Distributions of the image classes over the bottommost layer of the

maps. 29

ABSTRACT

In the last years, digital cameras and image sharing sites became very popular. That
allied to the constantly increasing capacity of storage devices made personal photo col-
lections become huge. However, to manage these collections without an effective tool is
almost impossible. Presently, there is a plenty of photo organizing software available, but
almost all of them rely only on textual metadata manually added to the images. Many
researches have been done addressing the problem of searching images in unannotated
databases and many Content-Based Image Retrieval systems were developed. However,
most of them are for online searches in existing databases or to find duplicated images in
a hard disk. This work is about the implementation of LACAIO (“Lacaio is A Cbir Aided
Image Organizer”), which is an image organizer that allows user to search images by
visual similarity. LACAIO utilizes four Tree-Structured Self-Organizing Maps to index
images by four different feature vectors. Even with a very simple GUI, it allows search by
keywords, search by sketch and an iterative interactive search by similarity with relevance
feedback.

Keywords: CBIR, query by pictorial example, query by sketch, TS-SOM, relevance feed-
back.

RESUMO

Um Organizador de Imagens com Busca Baseada em Conteúdo

Nos últimos anos, câmeras digitais e sites de compartilhamento de imagens se torna-
ram muito populares. Isso aliado ao constante aumento de capacidade dos dispositivos
de armazenamento fez com que as coleções de fotos se tornassem imensas. Entretanto,
gerenciar essas coleções sem uma ferramenta efetiva é quase impossível. Atualmente,
existem muitos organizadores de imagens disponíveis, mas quase todos se baseiam so-
mente em meta-dados textuais adicionados às imagens manualmente. Muitas pesquisas
têm sido feitas a respeito do problema de procurar imagens em bancos não anotados e
muitos sistemas de CBIR (Content-Based Image Retrieval) foram desenvolvidos, mas a
maioria deles é para buscas online em bancos de dados já existentes ou para encontrar
imagens duplicadas em um disco rígido. Este trabalho é sobre a implementação de LA-
CAIO (“Lacaio is A Cbir Aided Image Organizer”), que é um organizador de imagens
que permite que o usuário faça buscas baseadas em similaridade visual entre as imagens.
LACAIO utiliza quatro TS-SOMs (Tree-Structured Self-Organizing Maps) para indexar
imagens por quatro diferentes vetores de características. Mesmo tendo uma interface
muito simples, ele permite busca por palavras-chave, busca por desenho e uma busca
interativa e iterativa por similaridade com feedback de relevância.

Palavras-chave: busca baseada em similaridade visual, organizador de imagens.

9

1 INTRODUCTION

In last years, digital cameras and image sharing sites became very popular. Today,
every user can easily have gigabytes of stored images, but manage such large collections
is quite a challenge.

Presently, there is a plenty of photo organizing software available, but almost all of
them rely only on textual metadata manually added to the images. Photo or image or-
ganizers usually provide means to organize images in overlapping categories, unlike file
system hierarchy. Most of them also allow users to search images by keywords and add
new keywords to images. These software are useful tools that provide an interface much
richer than a general use file manager does, but they are not enough.

As the capacity of hard disks and flash cards increases, people become less selective
about what to photograph and what to store. It is easy to have thousands of photos, but
it is not easy to annotate thousands of photos. To easily retrieve images using a regular
photo organizer, the user has to spend a long time classifying and adding keywords to
each image and it is unlikely that most common users would do that. The consequence is
that these software become of very little use for most people.

Many researches have been done addressing the problem of searching images in unan-
notated databases and many CBIR software were developed, but most of them are not
intended for common users. Most CBIR systems available are for online searches in ex-
isting databases. There are software to find duplicated images that use CBIR techniques
(VISUALPHOTOCOMPARE, 2004) and even a framework for CBIR (GIFT, 2000), but
only two image organizers that use CBIR were found: Octagon (OCTAGON, 2005) and
imgSeek (IMGSEEK, 2007).

1.1 Objectives

The aim of this work is to develop an image organizer to organize partially annotated
personal photo collections. The target user is a common user, that is, no technical knowl-
edge, talent, or special skill is assumed and thus the GUI must be as simple as possible.

1.2 Results

The LACAIO system was developed and some tests were made to evaluate it. The
name “LACAIO” derives from the recursive acronym “Lacaio is A Cbir Aided Image
Organizer”. The tests show that the system is promising and can be very helpful to manage
unannotated or partially annotated collections, but to be ready to end users it would need
further work.

10

1.3 Organization

Chapter 2 defines some concepts involved in Content-Based Image Retrieval and dis-
cusses design issues of CBIR systems. Chapter 3 gives an overview about Self-Organizing
Maps and Tree-Structured Self-Organizing Maps, the structure used by LACAIO to index
image features.

Chapter 4 is about the LACAIO system itself. The system is compared to existing
systems and its implementation and user interface are explained in detail. Chapter 5
describes the four feature vectors used by LACAIO and Chapter 6 presents the results of
the evaluation of the system.

11

2 CONTENT-BASED IMAGE RETRIEVAL

There are basically three ways to retrieve images from a database:

1. Free Browsing: The users navigate through the database, possibly categorized,
until they find what they are looking for.

2. Text Based: The users enter words or phrases and the system shows images related
to these words or phrases.

3. Content-Based: The search is based on information automatically extracted from
the images, ranging from low level features to complex hierarchical descriptions of
the items contained in the image. The query method may vary, but one commonly
used is specifying an example image and the system looks for the images that are
most similar to it.

Free browsing is adequate when the database is small and the user is eventual, but
with large databases it is impractical and having to navigate through the whole database
every time you look for an image is frustrating. To enable text based searches, the images
in the database must be annotated (i.e., adding textual metadata to each image). This
process is tedious and time-consuming, especially for large databases. The quality of the
search is only as good as the metadata added in this process and it is often incomplete and
inaccurate.

Neither of these two techniques is easily scalable to huge collections. This is why
many researchers started to investigate ways to retrieve images based only on automat-
ically extracted information. Content-Based Image Retrieval (CBIR) is using computer
vision techniques to retrieve images from a database based on their visual content. Au-
tomatically extracting the semantic information from the images is currently an unsolved
problem, since it would require a strong AI system capable of understanding abstract
ideas and thinking like the human mind. Rather than trying to extract semantic informa-
tion, most CBIR systems use low level features like statistical data about color, texture
and shape.

2.1 Design Issues

In the last years the research field of CBIR has been very active as can be seen in
(DATTA et al., 2008). Despite all the progress made, there are many open issues. When
designing a CBIR system, some questions arise:

12

2.1.1 Which features to use?

This is a critical part of the system. The features extracted are all the information the
system will have about the images. The chosen features must be meaningful enough to
enable the system to measure similarity between images. A human user will probably
consider two images similar based on high level semantic features. The lack of coinci-
dence between the information contained in the low level features automatically extracted
from visual content and the interpretation this same visual content would have to a user is
referred to in the literature as semantic gap (SMEULDERS et al., 2000).

CBIR systems usually use color and texture features, some also extract information
about frequency and shape. More specific systems might benefit from specialized features
like face detection related information, for instance.

Choosing the right features to satisfactorily capture relevant information about images
while tolerating noise that would be tolerated by a human is not an easy task. Besides
that, the features must be represented in a way that allows fast similarity measurement to
achieve satisfactory results in a reasonable time.

Each system may have its own features represented in its own way, which makes
difficult to evaluate and compare results from different systems. To try to standardize
the multimedia content description, the MPEG-7 (MPEG-7, 2004), or formally “Moving
Pictures Expert Group Multimedia Content Description Interface”, standard was defined.
It defines general purpose content descriptors for audio, video and still images. Some
CBIR systems already adopted standardized features defined by MPEG-7.

2.1.2 Which measure of similarity to use?

Without a measure of similarity, features are completely useless. The system must
be able to somehow determine how similar two given images are. Typically, correlated
features (e.g., the bins of a histogram) are organized in feature vectors. One possible
measure is the Euclidean distance in the feature vector space. The main advantage of this
approach is its simplicity, but it does not take human visual perception into account. A
similarity measure based on human perception is proposed in (SAHA; DAS; CHANDA,
2007).

2.1.3 How to index the features?

To search over the whole database processing each feature vector of each image for
each query is extremely inefficient, thus unacceptable for huge databases. It is necessary
to index the feature vectors to reduce the complexity of the search, but to index points in
a multidimensional vector space is not trivial.

There is a wide range of distinct techniques for indexing images based on their fea-
tures. In (JORMA LAAKSONEN MARKUS KOSKELA, 2002), Scalar Quantization,
Vector Quantization and Self-Organizing Maps techniques are compared and according
with this work, SOMs yield better results.

2.1.4 How to weight the features for a given query?

The system needs to know which features are more relevant for each query. What is
very important in one query may be completely irrelevant in the next one and the system
must know how to deal with this. One possibility is to ask the user to explicitly weight
the low level feature vectors, but this may be a difficult task even for technical users.
Other possibility is to use machine learning techniques to infer these weights based on

13

user relevance feedback.

2.1.5 Which types of queries should be supported?

Defining the types of queries to support depends on the purpose of the system and the
target users. To a technical user, having numerous types of queries with various options
may be interesting, but for non-technical users it would likely be more confusing than
helpful. These are some of the existing query types:

Free Browsing The user navigates freely through the collection. Useful when the user is
not looking for something specific, but wants to have a general view of the entire
collection. Clustering based on visual features can help automatically organizing
the images somehow.

Category Browsing The user navigates through a hierarchy and can possibly perform
new queries inside the selected subset of images. Categories can overlap if desired.
Requires a time-consuming manual categorization of the images.

Query by Text Also requires a time-consuming manual annotation, but CBIR and ma-
chine learning techniques can be used to implement a semi-automatic annotation
system like proposed in (WENYIN et al., 2001).

Query by Pictorial Example (QPE) Probably the most commonly used query method
in CBIR. The user specifies an example image, contained or not in the database, and
the system returns the images most similar to it in decreasing order of similarity.
Requires an adequate sample image.

Query by Sketch Very similar to the previous, but instead of requiring an example im-
age, the system provides an interface that allows user to draw the sample image. In
order to be used by users with little or no designing skills, the drawing must be very
simple, although if too simple it becomes useless.

All query types have limited use, but a good combination of methods allied with a
good relevance feedback technique can be powerful.

2.1.6 How to make use of relevance feedback?

Relevance Feedback is the process of automatically adjusting a query using the user
feedback about the relevance of its retrieved results. The goal is to adjust the query such
that the results of the adjusted query will be more relevant than the previous ones.

Due to the problem of weighting feature vectors addressed in Sub-section 2.1.4, it is
unlikely that a CBIR system will retrieve satisfactory results in its first attempt. There-
fore, relevance feedback is commonly used by CBIR systems, turning the search into an
interactive and iterative process.

To make use of RF, it is necessary to provide some tool that allows users to express
their opinion about the relevance of the images presented so far. This feedback can be
from a simple boolean value (i.e., relevant or not) to a numerical value specifying how
good a retrieved image is. More critical than the GUI modifications is to adjust the query
based on user feedback. This can be done, for instance, by adjusting the weights of the
feature vectors. If relevant images are concentered in some feature vector space, that
feature vector must be relevant to this particular query, thus its weight must be increased.
On the other hand if relevant images are isolated in a feature space, maybe this feature
vector must be ignored for this query.

14

3 SELF-ORGANIZING MAPS

A Self-Organizing Map is a type of unsupervised learning neural network. It is used
in clustering and dimensionality reduction. A standard SOM has a fixed topology, usually
a 2D grid, that adapts to the input space. Typically, the input space is high-dimensional
and the SOM is two-dimensional. As the map adapts itself to the inputs, similar inputs
are mapped to the same nodes or to neighboring nodes, reducing dimensionality and pre-
serving the topological properties of the input space.

3.1 Network Structure

A SOM consists of a network of nodes or neurons. The most usual topology is a
2D rectangular grid, but it can be 3D, an hexagonal grid, toroidal, etc. In fact, it can be
any connected graph, but a rectangular grid is very simple to implement and is useful for
visualization purposes. Figure 3.1 shows representations of rectangular and hexagonal
grids. Associated with each node is a feature vector of the same size of the input vectors.
These vectors are the only thing that change during the training process. This way a SOM
can be thought as an elastic structure, but with fixed topology in a multidimensional space.
This can be seen in Figure 3.2.

Input vectors can be mapped to nodes of the map by finding the node which has the
vector most similar to them. This node is called the Best Matching Unit (BMU) for that
input. A SOM is useful as an index because input vectors that are close in the feature
space are mapped to nodes close to each other in the map. This way, to find other vectors
close to a given vector, instead of having to compare it to every single vector, one can just
find the BMU for the given vector and take the nodes that were mapped to the same node.

Figure 3.1: The two main SOM topologies, rectangular (a) and hexagonal (b) and its
corresponding neighborhood shapes. (CHOPPIN, 1998)

15

Figure 3.2: A 2D rectangular grid SOM fitted to 3D input vectors plotted in its feature
vector space. (CHOPPIN, 1998)

If more vectors are needed, the vectors mapped to BMU’s neighbors can be used then.

3.2 Training Algorithm

The goal of the training process is to adapt the map to the specific input vectors pre-
sented to the SOM. Sub-spaces containing more input vectors will have more map nodes
and sub-spaces which don’t have any input vectors most likely won’t have any nodes
either. The initial values in the vectors of the nodes can be random or, if there is any
previous information about the inputs, they can be initialized to values close to them to
increase training speed.

The training process consists of many iterations of the following steps:

1. Choose an input vector from the training set.

2. Find the closest node to the input vector (BMU).

3. Calculate the neighborhood of the BMU. This region is large when the training
starts and gets smaller as the training proceeds.

4. Nodes within the BMU’s neighborhood, including the BMU, are adjusted, such that
they become closer to the input vector. The closer the node is to the BMU, the more
it is adjusted.

Details about each step are very application dependent. The measure of distance be-
tween the input vector and the map nodes, for instance, can be any. The neighborhood
depends on the size and topology of the map. The adjustment of the nodes can also be
any as long as it makes the adjusted nodes become closer to the input node. One possible
approach is to use a weighted mean where the weight of the input vector depends on the
iteration and on the distance from the BMU. A Gaussian function can be used to deter-
mine how distance affects the weights and the neighborhood size can be determined by a
threshold on the computed weight.

16

Figure 3.3: Adjustment of the BMU and its neighborhood to input vector X. (VESANTO
et al., 1999)

Initially the adjustment and the neighborhood must be large, so that the map adapts
quickly to the input data. Later these values must gradually decrease, making the map
converge. There is not a general answer to how to do this. Figure 3.3 represents the
adjustment of the BMU and its neighbors. The black nodes connected by solid edges are
their initial positions and the gray nodes connected by dashed edges are their positions
after moving toward the input vector position, marked by an X.

3.3 Tree-Structured Self-Organizing Maps

The standard SOM is powerful, but the training process can become very computa-
tionally expensive as the number of nodes increases. To properly use a SOM as an index,
it must have a proper size. If too many vectors are mapped to the same nodes, it becomes
useless. Hence, to map huge amounts of input vectors without degrading to lists, huge
SOMs are necessary.

During the training phase, the most computationally expensive operation is finding
the BMU. To find the closest node to a given input vector, the distance from each node to
the input must be calculated. Thus, the cost of this operation increases linearly with the
SOM size. The Tree-Structured Self-Organizing Map (TS-SOM) reduces the comparisons
needed by using a hierarchical structure. It uses a multi-layered map to reduce complexity
from O(n) to O(log(n)).

Figure 3.4 partially shows the structure of a TS-SOM in which, each layer is a rectan-
gular grid with side twice as big as its upper layer. The dashed lines show the parent-child
relation.

3.3.1 Training Algorithm

The training of a TS-SOM starts from the root node and proceeds, one layer at a time,
until the layer of the leaves is reached. After a layer is trained, its nodes are frozen. Each
layer is trained like a regular SOM, the only differences are the initialization and the way
the BMU is found. Instead of searching over the whole layer, the previous layers are used
as an index to limit the region in which the BMU will be searched.

17

Figure 3.4: Example of a three-layer TS-SOM (PAKKANEN; IIVARINEN, 2002)

Following are the steps to train a TS-SOM:

1. Train the upper layer exactly like a standard SOM.

2. Copy the vectors of the nodes of the last trained layer to their children.

3. Move each of these children a little toward their neighbors.

4. Train the next layer.

5. Repeat the last three steps until all layers are trained.

Note that each layer after the first one is initialized based on the previous layer. This
initialization considerably improves efficiency. The main difference is in the search for
the BMU, which is made recursively. The region considered is only a small region around
the children of the BMU of the upper layer.

18

4 THE LACAIO SYSTEM

In last years, many researches have been done addressing the problem of searching
images in unannotated databases and many CBIR software were developed, but among
them only two image organizers were found: Octagon and imgSeek. The aim of this
work is to develop an image organizer to organize partially annotated personal photo
collections. The target user is a common user, that is, no technical knowledge, talent, or
special skill is assumed. The system must be as simple as possible to be easy to use, but
must be able to handle the following situations:

• The user adds a set of images to the collection, adds a keyword to them and later,
search for this keyword. The system returns the images previously associated with
the keyword.

• The user wants to find a specific image, but doesn’t know where it is located or
which keywords are associated to it. The system must provide a way to find this
image using CBIR techniques.

• Some images are associated with a keyword and the user wants to find images
similar to them that should be associated to the same keyword. The system must
provide a way to specify a set of images and return the images that are the most
similar to them.

Additionally, it is desired that the user never be asked to perform parameter tuning like
adjusting weights of feature vectors. Parameter values must be inferred from relevance
feedback, if needed. From the two software cited above, neither satisfy these require-
ments. Both are still very immature software with very confusing GUI.

ImgSeek has too many options, too many menus and too many tabs, which makes
its GUI incredibly confusing, yet it lacks some elementary features. imgSeek claims to
support keyword search, but what it calls a keyword search, is actually a metadata search.
One could emulate keyword search adding words to image descriptions, but it would be
very inefficient and frustrating, as just one image’s metadata can be edited at a time and
the metadata search interface is too complex. It supports query by sketch, QPE using
an external image and one round QPE with selected images, but apparently only color
features are considered.

Octagon does not support pure keyword search, only a keyword filter with a very puz-
zling interface. It supports interactive iterative QPE with RF and also supports QPE using
an external image. The relevance feedback is expressed by assigning to the returned im-
ages, one of the values: relevant, neutral or not relevant. It is not said how the RF is used,
but it doesn’t seem to have much effect and apparently the weight of the feature vectors is

19

Figure 4.1: A screenshot of the main window.

explicitly defined by the user by moving a slider labeled “structure/color influence”. Oc-
tagon’s GUI is cleaner than that of imgSeek, but is also confusing and Octagon’s results
seem to be less accurate.

In order to satisfy the established requirements, the following query methods were
implemented:

• Search by keywords

• Search by sketch

• Interactive iterative search by examples with relevance feedback

4.1 Graphical User Interface

The GUI is as simple and intuitive as possible so that the user doesn’t need to spend
time learning how to use it. The current version of LACAIO is a prototype focused on the
search processes. It is not ready for end users. A final version, for real world use, would
have to provide an easier way of adding new images to the collection, a way to remove
missing files, etc.

Figure 4.1 shows a screenshot of the main window. The main window is composed by
the search panel (upper left), the result list (upper right), the relevant images list (lower
left) and the irrelevant images list (lower right).

Search By Keywords: The user types keywords separated by spaces in the text field
on the upper part of the search panel and presses the button on its right. The system
retrieves the images that are associated to each of the keywords in the query. Keywords
can be associated to images, by clicking on them with the right button and selecting the
proper option in the popup menu.

20

Search By Sketch: The user draws an sketch of the desired image in the area below
the text field. Below the drawing area is a filled square indicating the selected color.
Clicking on it, a dialog to change the selected color shows up. On the right of the selected
color is a slider to select the diameter of the brush. After drawing, the user presses the
Search By Sketch button, then the system retrieves the images most similar to the sketch
based only on Average Colors feature vector (Section 5.1).

Search By Similarity: This is the main query method, which can be used in com-
bination with the other two. Independently of the method used to retrieve images, the
images in the result list can be defined as being relevant or not relevant, being then copied
to the corresponding list. Images in these lists never appear as result of later queries, but
the relevance feedback is only used in Search by Similarity. When the user presses the
Search by Similarity button, the system retrieves images as close to the relevant images
and as far from the irrelevant images as possible.

4.2 Implementation

The algorithm used to implement search by similarity was based on PicSOM (JORMA LAAK-
SONEN MARKUS KOSKELA, 1999a,b, 2002; MARKUS KOSKELA JORMA LAAK-
SONEN, 2003; PAKKANEN; IIVARINEN, 2002). Like PicSOM, LACAIO uses one
TS-SOM for indexing each feature vector. The relevance feedback technique to “weight”
the feature vectors is also based on PicSOM. The main differences between them is that
PicSOM is used to query an existing online database and uses only Search by Similarity,
while LACAIO combines three search methods to manage local image collections.

LACAIO was implemented in Java and uses Java DB as its DBMS. This provides
portability and eliminates the need to install a DBMS, since Java DB can be embedded in
Java programs. Figure 4.2 is a diagram of the structure of the database. To give a notion
of the size and complexity of this implementation, it has around five thousand lines of
code and thirty classes.

4.2.1 Feature Extraction and TS-SOM Training

Before start performing queries, two steps must be completed, the images must be
analyzed and their features extracted and the SOMs must be trained. When images are
added to LACAIO, it inserts their paths in the database, creates thumbnails to speed up
the rendering and extracts their features. Feature extraction for each feature vector is
explained in detail in Chapter 5. After adding the images, the SOMs are trained. When
the training is finished, the images are then associated to their BMU in the bottommost
layer of each SOM.

One problem with standard SOM and TS-SOM is that they do not adapt very well to
large modifications in the input space. The consequence is that if a large amount of new
images is added, the maps need to be trained again. In the implemented prototype, after
the maps have been trained, new images cannot be added unless the maps are cleared and
trained again. The first layer of the maps can have 4 or 9 nodes and the next layer always
have 4 times more nodes than the previous one. The size of the first layer and the number
of layers is calculated so that the bottommost layer have approximately 1 node for each 5
images. To train all four maps with the test data described in Chapter 6 takes a little less
than three minutes.

The measure of similarity used when looking for the BMU was Euclidean distance.
The neighborhood radius was 3 for all layers and all images were used as input 100 times

21

Figure 4.2: Database structure.

22

Figure 4.3: The bottommost layer of a TS-SOM after computing the scores of each node
(left) and after applying a Gaussian filter (right). The darkest the node, the higher the
score.

for each layer of each map, but no extensive test was made in attempt to tune these values.

4.2.2 Querying

In the following text, the term query session is used to refer to a sequence of interac-
tions made by the user to achieve a goal. LACAIO is based on query sessions combining
queries of different types. A query by similarity requires at least one relevant image,
therefore the first query is never of this type.

Implementing the search by keywords is straightforward, first the words are separated
and the database is queried for their ids. If at least one of the words is not in the database,
the result is empty, otherwise a query for all images associated with these words do the
work.

In the search by sketch, first the Average Colors feature vector is extracted from the
sketch, then its BMU is found in the corresponding map. The resulting pictures are taken
from the BMU and its neighbors. The number of returned images is fixed, so the search
proceeds spirally until the desired amount is reached, and possibly passed, as all images
of each visited node are taken. These images are then sorted by Euclidean distance to the
vector extracted from the sketch and the first ones are presented to the user.

The search by similarity is the core of LACAIO. It is the only query method that
uses all feature vectors and the only that uses relevance feedback. The process starts by
finding the nodes associated to each relevant or irrelevant image in each map. Then, a
score is computed for each node of the bottommost layer of each TS-SOM. The scores
are calculated by adding one point to each BMU of a relevant image and subtracting one
point from each BMU of an irrelevant image. After computing the scores, a Gaussian
filter is used to spread these values over the neighboring nodes. Figure 4.3 represents the
bottommost layer of a TS-SOM after computing the scores of each node (left) and after
applying the Gaussian filter (right). The darkest the node, the higher the score. Finally,
the scores of the images are calculated by summing the scores of the nodes associated to
them in each map and the images with the highest scores are presented to the user.

Calculating the score of each image in a huge database would be too costly, computa-
tionally. To avoid all this processing, the nodes are first sorted by score and only the top
ranked need to be visited. For more details on this, see Listing 4.1.

Using this algorithm eliminates the need to explicitly defining weights to feature vec-
tors. Maps where the relevant images are closer, will have nodes with higher scores than
maps where relevant images are spread and mixed with irrelevant ones. The relevance
feedback is made by defining images from the result of one query as relevant or irrelevant

23

Listing 4.1: Pseudocode for search by similarity
1 integer scoreFromLast = 0
2 integer imagesToRetrieve // number of search results
3 sorted list images:= {}
4 list visitedImages:= {}
5 list nodeList:= {n | n is a node of the bottommost
6 layer of one of the TS-SOMs}
7
8 sort(nodeList) // in decreasing order of score
9 foreach (node in nodeList) {

10 foreach (image associated to node) {
11 if (image is not in visitedImages) {
12 visitedImages.add(image)
13 if (images.length() < imagesToRetrieve
14 or image.getScore() > scoreFromLast){
15 images.add(image)
16 if (images.length() > imagesToRetrieve) {
17 images.removeLast()
18 }
19 scoreFromLast:= images.getLast().getScore()
20 }
21 }
22 }
23 if (getBestPossibleScore() < scoreFromLast) break
24 }
25 return images

and performing a new query.

24

5 FEATURE VECTORS

Four feature vectors were used, two for color (one global and one local), one for
texture and one that can be classified as a texture feature or as shape feature. Scalable
Color and Edge Histogram feature vectors are based on MPEG-7 standard descriptors.

5.1 Average Colors

Average Colors is a local color feature. The image is divided in nine non-overlapping
sub-images and the average color for each sub-image is calculated. The HSV color space
was chosen because it is more close to the way human perceive colors. The vector length
is 27 (9 sub-images x 3 color channels).

5.2 Scalable Color

This feature vector is a global color feature and is based on a MPEG-7 standard de-
scriptor with the same name. It consists in a 256-bin histogram in HSV color space. The
colors are quantized to 16 values for Hue, 4 for Saturation and 4 to Value. The values
are normalized so this feature is scale invariant and, as a histogram, it is also rotation
invariant.

5.3 Texture

This is a simple local texture feature and is not based on any standard. The image is
divided in 9 sub-images and for each sub-image, 4 values are calculated. These values are
the average distances between the color of corresponding pixels (i.e., pixels labeled with
the same number in Figure 5.1). For each pixel P, these distances are computed and the
normalized averages of these values for each sub-image form this 36-dimension feature
vector.

Figure 5.1: Matrix used in Texture feature extraction.

25

5.4 Edge Histogram

The Edge Histogram feature vector is based on a MPEG-7 standard texture descriptor,
but can also be seen as a shape feature. It is also a local feature, since the image is divided
in sub-images. The standard descriptor divides the image in 16 sub-images, but in this
implementation the same 9 sub-images were used for every local feature. As the name
suggests, this feature consists in a histogram of edge types, actually one for each sub-
image. As illustrated in Figure 5.2, five edge types are considered (horizontal, vertical,
45◦, 135◦ and non-directional).

Figure 5.2: The five types of edges (horizontal (a), vertical (b), 45◦ (c), 135◦ (d) and
non-directional (e)) and their corresponding edge detection filters.

The feature extraction is made by dividing each sub-image in blocks, each block is
classified as being of one of the five edge types and then a normalized histogram is com-
puted for each sub-image. To classify a block, it is divided in four sub-blocks and the
average luminance of each of them is calculated. The luminance values of the four sub-
blocks are convolved with filter coefficients in lower row of Figure 5.2 to obtain edge
strengths. Among the five strengths, the maximum value determines the edge type. All
image subdivisions can be seen in Figure 5.3.

(a) (b) (c)

Figure 5.3: The subdivisions of an image - An image divided in 9 sub-images (a), a sub-
image divided in blocks (b) and a block divided in 4 sub-blocks (c).

26

6 EVALUATION

Evaluating a CBIR system is difficult due to its subjectiveness, but CBIR is in essence
an information retrieval problem. Therefore, some evaluation metrics were borrowed
from information retrieval. According to (DATTA et al., 2008), two of the most popular
evaluation measures for CBIR are precision and recall.

Given a query, a set of images relevant to this specific query and the set of retrieved
images as the answer to the query, we have the following definitions:

Precision is the percentage of retrieved images that belongs to the set of relevant images.

Recall is the percentage of relevant images covered by the retrieved images.

Precision and recall are inversely proportional. As the number of retrieved images
increases, recall also increases, but precision decreases. Traditionally, these measures are
presented as precision-recall curves.

In order to make the measurements, one or more classes of semantically related im-
ages must be manually defined. Having these classes defined, the precision-recall pairs
can be achieved by making sequences of queries, trying to obtain all images of a given
class.

The tests were made with 350 images of 7 non-overlapping classes with 50 images in
each class. All images used were taken from Wikimedia Commons (WIKIMEDIA, 2004)
using Mayflower (MAYFLOWER, 2006) search tool to search by the following words:
building, car, drawing, flower, marine life, plane and sunset.

First, one image is selected and defined as relevant to make the first query and get the
first set of images. Each image retrieved in this way is classified as relevant if it belongs to
the same class or irrelevant otherwise and a new query is made. These steps are repeated
until all images of the given class are retrieved. All 350 images were used as the first
image one time and the average precision and recall were computed for each class.

According to (JORMA LAAKSONEN MARKUS KOSKELA, 2002), the FVs can be
tested individually, but this kind of test have severe limitations in particular because they
do not take any relevance feedback into account. To overcome this problem, the tests
described above were repeated five times, one using all four feature vectors and one for
each combination of three of them. Comparing the results of the tests using four vectors
and the tests using only three, one can tell how the missing vector affects the results.

Figure 6.1 shows the five precision-recall curves for each of the seven classes. Note
that, as recall approaches 100%, precision falls approaching the precision of a random
search (≈ 14.3%). Figure 6.2 shows the distributions of the images of each class over
the maps. Darker areas represent regions to which more images were mapped. A map in
which the images of a given class are highly concentrated in a few regions indicates that

27

the corresponding feature is effective to cluster images of that class, but not necessarily
to distinguish them from images from the other classes. The ideal situation to identify
images of a class is when its images are clustered in one map and isolated from other
images in another, or in the same map.

Clearly, drawings and sunsets are the easiest classes and buildings and planes the hard-
est. Drawings can easily be differentiated because they have a white background, while
sunsets have smooth gradients of yellow, orange and red. Note in Figure 6.2 that images
of buildings are far more concentrated than images of flowers in all maps. Nevertheless,
flowers class reaches a higher precision. The initial precision for both classes is roughly
the same, but the relevance feedback highly improves precision for flowers while doesn’t
seem to make any good to buildings class. This happens because although buildings im-
ages are more clustered, flowers images are more isolated from the others.

Benchmarking visual information retrieval solutions is an open problem. Comparing
CBIR systems using different image collections with different sizes and different classes
is inconclusive. In (HUIJSMANS; SEBE, 2005) a normalization is suggested to enable
comparisons between precision-recall results independently of database or classes sizes.
This is made by using the a priori probability of getting the relevant images to normalize
the precision. However, no considerations are made about the content of irrelevant im-
ages. Adding images easily distinguishable from all classes to the collection would lower
the a priori probability without significantly affecting the precision-recall curves, which
would end in higher normalized results. Therefore, only using the exact same data to test
different systems, conclusive results can be achieved.

All tests were made in a AMD Turion 64 X2 Mobile 1.60 GHz processor and each
query takes about 500 milliseconds. More than 90% of this time is spent on database
queries.

28

Figure 6.1: Precision-recall curves for each of the seven classes.

29

Figure 6.2: Distributions of the image classes over the bottommost layer of the maps.

30

7 CONCLUSIONS

Content-Based Image Retrieval is relatively new as a research field and thus has many
open problems yet. Most image organizers available today make no use of CBIR tech-
niques. The few image organizers who use CBIR are still very immature and are not ready
for use by the general public.

LACAIO combines CBIR and RF techniques to ease image retrieval in a partially
annotated image collection. LACAIO’s GUI is very simple, but it enables search by
keywords, search by sketch and search by similarity with relevance feedback.

Testing and comparing CBIR systems is difficult and subjective, but the tests suggest
that the implemented system successfully achieved its objective. For all tested image
classes the results were better than random results and the two better results passed 75%
of precision at some point.

7.1 Discussion and Further Work

CBIR systems like LACAIO are composed of parts, to a certain level, independent
from each other. Some of these parts have a wide range of possible alternative implemen-
tations. Some of these implementations have a large amount of parameters that can be
tuned to improve the quality of the results. All these possibilities make necessary further
investigation and comprehensive tests to determine the best alternatives. From the design
issues discussed in Section 2.1, two deserve special attention: the features to use and the
structure to index the features.

As can be seen in Figure 6.1, the addition of a new feature vector doesn’t seem to
negatively affect the results. Thus implementing other feature vectors would probably
improve the results. However, redundant features are not likely to be useful and would
decrease performance and increase the size of the database. Therefore, it is important
to determine an ideal set of features such that the compromise between precision and
performance be the best possible.

Tree-Structured Self-Organizing maps have many parameters that need further tun-
ing to achieve its best results. However, other alternative models of Self-Organizing
Maps could be used instead of TS-SOM. Some of them, like Growing Hierarchical Self-
Organizing Map (DITTENBACH; MERKL; RAUBER, 2000) or Adaptive Hierarchical
Incremental Grid Growing (MERKL et al., 2003) are more adaptable to changes. This
adaptability can be useful to handle the addition of new images to already trained maps.

Another point that needs further work is the evaluation. More extensive and compre-
hensive tests should be made with a large set of images. With a few thousand images,
more conclusive results about precision and recall could be achieved. Performance tests
should also be conducted to see how the system handles queries in large databases.

31

REFERENCES

CHOPPIN, A. Unsupervised Classification of High Dimensional Data by Means of
Self-Organizing Neural Networks. 1998.

DATTA, R.; DHIRAJ, J.; JIA, L.; WANG, J. Z. Image Retrieval: ideas, influences, and
trends of the new age. ACM Computing Surveys, [S.l.], v.40, n.2, 2008.

DITTENBACH, M.; MERKL, D.; RAUBER, A. The Growing Hierarchical Self-
Organizing Map. In: NEURAL NETWORKS, 2000. IJCNN 2000, PROCEEDINGS
OF THE IEEE-INNS-ENNS INTERNATIONAL JOINT CONFERENCE ON, 2000.
Anais. . . [S.l.: s.n.], 2000. v.6, p.15–19 vol.6.

GIFT. GIFT - The GNU Image-Finding Tool. Available at:
<http://www.gnu.org/software/gift>.

HUIJSMANS, D.; SEBE, N. How to complete performance graphs in content-based im-
age retrieval: add generality and normalize scope. Pattern Analysis and Machine Intel-
ligence, IEEE Transactions on, [S.l.], v.27, n.2, p.245–251, 2005.

IMGSEEK. imgSeek - photo collection manager and viewer with content-based search.
Available at: <http://www.imgseek.net>.

JORMA LAAKSONEN MARKUS KOSKELA, E. O. PicSOM - A Framework for
Content-Based Image Database Retrieval using Self-Organizing Maps. In: SCANDI-
NAVIAN CONFERENCE ON IMAGE ANALYSIS (SCIA’99), KANGERLUSSUAQ,
GREENLAND, JUNE 7–11, 11., 1999. Proceedings. . . [S.l.: s.n.], 1999. p.151–156.

JORMA LAAKSONEN MARKUS KOSKELA, E. O. PicSOM: self-organizing maps for
content-based image retrieval. In: INTERNATIONAL JOINT CONFERENCE ON NEU-
RAL NETWORKS (IJCNN’99), WASHINGTON, D.C., USA, JULY 10–16, 1999. Pro-
ceedings. . . [S.l.: s.n.], 1999.

JORMA LAAKSONEN MARKUS KOSKELA, E. O. PicSOM - Self-Organizing Image
Retrieval with MPEG-7 Content Descriptors. Neural Networks, IEEE Transactions on,
[S.l.], v.13, n.4, p.841–853, 2002.

MARKUS KOSKELA JORMA LAAKSONEN, E. O. Inter-Query Relevance Learn-
ing in PicSOM for Content-Based Image Retrieval. In: SUPPLEMENTARY PROC.
OF INTERNATIONAL CONFERENCE ON ARTIFICIAL NEURAL NETWORKS
(ICANN’03), 2003, Istanbul, Turkey. Anais. . . [S.l.: s.n.], 2003. p.520–523.

32

MAYFLOWER. Mayflower search engine. Available at:
<http://toolserver.org/ tangotango/mayflower>.

MERKL, D.; HE, S. H.; DITTENBACH, M.; RAUBER, A. Adaptive Hierarchical In-
cremental Grid Growing: an architecture for high-dimensional data visualization. In:
WORKSHOP ON SELF-ORGANIZING MAPS (WSOM 2003), 4., 2003, Hibikino, Ki-
takyushu, Japan. Proceedings. . . [S.l.: s.n.], 2003.

MPEG-7. MPEG-7 Overview (version 10). Available at:
<http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-7.htm>.

OCTAGON. Octagon - content based image retrieval software. Available at:
<http://octagon.viitala.eu>.

PAKKANEN, J.; IIVARINEN, J. Evaluating SOM as an Index in Content-Based Im-
age Retrieval. In: FINNISH ARTIFICIAL INTELLIGENCE CONFERENCE, 10., 2002,
Oulu, Finland. Proceedings. . . [S.l.: s.n.], 2002. p.182–188.

SAHA, S. K.; DAS, A. K.; CHANDA, B. Image retrieval based on indexing and relevance
feedback. Pattern Recognition Letters, [S.l.], v.28, n.3, p.357–366, February 2007.

SMEULDERS, A.; WORRING, M.; SANTINI, S.; GUPTA, A.; JAIN, R. Content-Based
Image Retrieval at the End of the Early Years. Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on, [S.l.], v.22, n.12, p.1349–1380, 2000.

VESANTO, J.; HIMBERG, J.; ALHONIEMI, E.; PARHANKANGAS, J. Self-organizing
map in matlab: the SOM toolbox. In: MATLAB DSP CONFERENCE, 1999, Espoo,
Finland. Proceedings. . . [S.l.: s.n.], 1999. p.35–40.

VISUALPHOTOCOMPARE. Available at: <http://home.planet.nl/ edejong/visualphotocompare>.

WENYIN, L.; DUMAIS, S.; SUN, Y.; ZHANG, H.; CZERWINSKI, M.; FIELD, B.
Semi-automatic image annotation. 2001.

WIKIMEDIA. Wikimedia Commons. Available at:
<http://commons.wikimedia.org/wiki>.

