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ABSTRACT 
 

 
The design of new facilities - buildings, shopping centers, public transport stations, 

airports, or intersections of urban roads - should consider delays resulting from intense 
pedestrians’ flows in order to make its' operation more efficient. The general objective of this 
doctoral thesis is to propose a simulation model to represent pedestrians’ behavior in urban 
environments. Simulation models should allow planning these environments in order to 
provide greater levels of comfort and safety for the pedestrian. Agent-based abstraction has 
been widely used for pedestrian modeling, mainly due to its capacity to represent complex 
entities. Agent-based models represent agents’ decision-making ability based on their profile 
and perception over the environment. One of the most important pedestrians’ activities is the 
route choice. This document describes the development of a route choice model based on 
friction forces. The route cost calculation considers a balance between distance and the 
impedance generated by other pedestrians. Simulations runs shown that pedestrians choosing 
longer routes can have similar or better travel times. The ability of choosing not only the 
shorter route brings more realistic behaviors for the pedestrians’ representation, especially 
with small differences in route lengths and higher congestion. On the proposed model agents 
were modeled with partial knowledge of the network conditions. The knowledge was limited 
considering the pedestrian estimated field of view. In the real world it is not possible to know 
the network state before turning the corner. The model was validated and calibrated with real 
data. Calibrating a pedestrian route choice model is a complex task mainly for two reasons: (i) 
Many factors interfere on pedestrians’ route choice; (ii) data collection is difficult. To 
overcome these difficulties real pedestrians were studied in a controlled environment. An 
experiment was set up inside the university campus. After the calibration process the model 
was able to simulate a real scenario. Proposed model was applied to simulate a shopping mall 
environment. Simulate the pedestrians shopping behavior is particularly complex once route 
choice in shopping malls may be defined by a number of causal factors. Shoppers may follow 
a pre-defined schedule; they may be influenced by other people walking, or may want to get a 
glimpse of a familiar shopping. Analysis from simulations indicates that the agents’ behavior 
provides a promising approach for real case applications. 

Keywords: Pedestrians Simulation, Pedestrians Behavior, Route Choice 
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1. INTRODUCTION 

Walking is probably the most natural mode of transportation. However, from 

the point of view of transportation engineering, walking is considered the most 

complex mode to be modeled since pedestrians are not associated with any vehicle. In 

addition, the walking infrastructure is extremely heterogeneous, involving sidewalks, 

intersections, buildings, shops, squares, etc. 

One of the most common uses of pedestrian models is the building 

evacuation planning in case of emergency. Another important application is the 

simulation of congestion caused by the intense conflicting flow of pedestrians. 

The design of new facilities - buildings, shopping centers, public transport 

stations, airports, or intersections of urban roads - should consider delays resulting 

from intense pedestrians’ flows in order to make its' operation more efficient. 

Pedestrians are the most vulnerable users of road transport networks, and their 

increased vulnerability may be attributed by the lack of speed, mass and protection, 

compared to other road users. And also their particular characteristics like flexibility, 

ample space requirements and diversity of attention. 

Therefore, focus on individual’s pedestrian behavior is important to identify 

variables of interest to pedestrian modeling. Many knowledge areas have different 

interests in pedestrians modeling. Marketing and Advertising researchers are 

interested in evaluating the overall exposure of ads and the route used by consumers 

in large shopping centers. Filmmakers and computer games are interested in 

representing character behavior realistically through computer graphics processes. 

1.1 Theme and importance 

Agent-based abstraction has been widely used for pedestrian modeling, 

mainly due to its capacity to represent complex entities. Agent-based models 

represent agents’ decision-making ability based on their profile and perception over 

the environment.  

An agent is anything capable to perceive the environment through sensors 

and also capable of acting on this environment through actuators. Usually, the 

11



coordination of behaviors in a community of agents is decentralized. This 

coordination occurs from the integration of knowledge, ability, objectives and plans 

of the different agents. Agents act autonomously in their decisions over their own 

actions. Generally, there is no global planning guiding the modeled entities. 

Multi-agent systems allow modeling the behavior of a set of entities 

organized according to laws of the social type. These entities, or agents, have 

autonomy and are immersed in an environment with which they need to interact. In 

this way, agents must have a partial representation of this environment and means of 

perception and communication with it.  

Pedestrians' agent behavior is not simply determined by preferences, 

intentions, desires but by the environment which reflects the spatial or geometric 

structure in which the agents are inserted. The variability between agents, in terms of 

their intrinsic differences and the uncertainty that they have to deal with is the most 

important characteristics of multi-agent systems. 

The modeling of pedestrian’s agent behavior begins with the understanding 

of its decision-making process. In Papadimitriou et al. (2009) [1], pedestrian activities 

are classified into three levels: Strategic, Tactical and Operational, according to 

Figure 1. In this structure, the strategic level corresponds to travel starting time choice 

and activity planning. At the tactical level, the route choice and activities scheduling. 

The operational level corresponds to crossing behavior, sense end avoidance of 

obstacles and the interaction with other pedestrians. 

	

Figure 1- Pedestrian decision levels - Source: Papadimitriou et al. (2009) [1] 

The modeling of pedestrian agents should not necessarily comprise all 

decision levels. The complexity of the agent must be suitable to the complexity of the 
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simulated phenomenon. Crowd simulation and evacuation often do not require too 

much complexity of the agent because simplifications are possible, such as grouping 

pedestrians with identical goals and objectives, making it not necessary to model the 

strategic decision level of the agent. Model simplifications save computational 

resources and consequently allow the simulation of larger scenarios and populations. 

1.2 Objectives 

The general objective of this doctoral thesis is to propose a simulation model 

to represent pedestrians’ behavior in urban environments. The model should allow 

planning these environments in order to provide greater levels of comfort and safety 

for the pedestrian. Specific objectives are: 

A) Develop a route choice model for pedestrians considering pedestrians, 

their profiles and their interaction with the environment and other pedestrians. 

B) Understand how pedestrians with different levels of knowledge about the 

network state affect simulation results. 

C) Observe real pedestrians and collect data to reproduce observed behaviors 

in simulation. 

D) Propose a mathematical model of route smoothing allowing pedestrians to 

follow a route with flexibility, similarly to real pedestrians. 

E) Apply the proposed model to simulate a real urban environment. In this 

model pedestrians should interact with the environment in order to define their own 

activities, considering their individual profiles. 

1.3 Delimitations 

In general, the limitations of the model developed in this document are 

directly related to the level of sophistication required to represent Pedestrians activity. 

The model of pedestrian simulation proposed in this Doctoral Thesis was conceived 

for the representation of urban spaces. In these environments the complexity of the 

profile of each pedestrian is relevant and impacts simulation results, such as: Public 

transportation stations, shopping malls, indoor environments, etc. Agent complexity 
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restricts, for reasons of computational performance, simulations of a large number of 

pedestrians, such as simulation of stadium evacuations or large structures. Moreover, 

the complexity of the human behavior poses many challenges to the modeling 

process, limiting the ability to reproduce behaviors and decisions of real pedestrians. 

1.4 Background 

Computational and technological developments allow the modeling of 

increasingly complex agents and to simulate environments more realistically, 

considering microscopic aspects, as individual preferences. Figure 2 shows the 

evolution of the representation of a pedestrian as a particle to a complex agent, and 

the relationship with relevant studies presented in the literature. In Figure 2, from 

bottom to top, agent modeling gains complexity as the agent's decision-making 

process incorporates skills and functions. 

 

Figure 2 – Complex Pedestrian Agents Modeling 

The first step to be modeled in the pedestrians’ decision-making process is 

the sense and avoidance behavior. An agent should be able to perceive obstacles and 
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other pedestrians in the environment and avoid them to follow its goal. The 

approaches to this problem fall, for the most part, into two major groups: Cellular 

Automata, as in Djikstra and Timmermans (2000) [2] and Newtonian Models, as in 

Helbing and Molnar (1995) [3]. 

Cellular automata based models consists of a regular grid of cells, where 

each cell has a finite number of states. The grid can be of any finite number of 

dimensions. The passage of time occurs discretely, and the state of a cell at time t is a 

function of the state of a finite number of cells called neighborhood at time t-1. 

Cellular automata is a widely used approach to demonstrate particle, pedestrian, and 

even automobile movement. Through simple rules, realistic macroscopic behaviors 

emerge. Several pedestrian simulation models described in the literature are based on 

Cellular Automata [4][5][6][7][8]. 

Newtonian forces based models are models where pedestrians are subjected 

to forces based on physical concepts described by Newton [9]. A classic 

implementation of this approach is the Social Forces Model (Helbing and Molnar, 

1995) [3]. This implementation assumes that pedestrian movements can be described 

through vector forces derived from the pedestrians' internal motivations to perform 

certain actions. Through the concept of social forces, it is possible to represent many 

typical pedestrian behaviors, such as lane formation and oscillation of conflicting 

flows in bottlenecks. 

According to Figure 2 the implementation of the strategic decision level of 

the pedestrian agent starts with the route choice. Given the initial position of an agent 

and its final destination, it must be able to identify a possible route to his goal. The 

route choice can consider several aspects. Traditionally, the route length is the most 

usual variable. The algorithm of Djikstra (1959) [10] guarantees to find the lower cost 

route between two nodes of a graph. The A* [11] algorithm adds to the Djikstra’s 

algorithm the idea of heuristics, reducing its computational cost. Kielar et.al. (2016) 

[12] developed a model based on several route choice methods to identify all possible 

routes to be chosen by real pedestrians. 

Besides choosing a route, pedestrians are able to constantly reevaluate and 

recalculate their routes based on observations of the environment. Kretz et. Al. (2011) 
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[6] proposes an evacuation model where pedestrians are able to identify the fastest 

route to their goal. The fastest route is dynamic, since it changes over time. In this 

model a navigation floor field covers the scenario and guides the pedestrians to the 

exits. The fastest route is found because pedestrians in the simulation environment 

cause disturbances in the floor field so that congested paths become less attractive. In 

a complementation of this approach Hartmann et al. (2012) [8] use more than one 

floor field in the same scenario. Pedestrians with equal destinations are grouped 

together and use the same floor field. Pedestrians of other groups cause a greater 

disturbance in the floor field, in this way, it is possible to represent the tendency of a 

pedestrian to avoid a conflicting flow of pedestrians. 

The paper presented in Chapter 1 of this Doctoral Thesis describes a route 

choice model for pedestrians considering distances and interaction with other 

pedestrians. In the proposed model route choice process is internal to agent. The agent 

uses its perception of the environment and its beliefs to calculate the best route for 

himself. The agent desired direction of motion is not received information, like in 

floor field approaches. In this way, the individual profile of each agent impacts on the 

final result of the simulation. Pedestrians’ grouping into groups with common goals, 

as in Hartmann et al. (2012) [8], is not a natural approach to simulate urban 

environments since pedestrians have distinct objectives, unlike evacuations. Model 

proposed in Chapter 1 represents the pedestrians’ behavior to avoid conflicting flows. 

Furthermore, the model keeps typical pedestrians self-organization phenomenon, such 

as lane formation. 

Many models of pedestrian simulation use floor field strategy to guide the 

agents [5][6][7][8]. In these models the scenario floor is discretized and each cell 

indicates the direction to be followed for a certain objective. The floor fields are 

constantly recalculated according to environmental variations. Chapter 4 of this 

Doctoral Thesis describes a mathematical method capable of providing an agent-

orientation vector anywhere in the plane, resembling the implementation of a floor 

field. However, unlike a floor field, the vector field is continuous and does not belong 

to the scenario, but to the agent. The method proposed in Chapter 4 guides the 

pedestrian over a smoothed route by calculating orientation vectors. 
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Some simulation models limit the initial knowledge of the pedestrian about 

the geometric characteristics of the scenarios. The agent must combine learning 

activities and memorizing information. Andresen et al. (2016) [13] describe agents 

with capacity to assemble cognitive maps of the places where they were present, even 

without prior knowledge of the scenario. In Chapter 2 of this doctoral thesis it is 

presented a simulation model of pedestrians where the agents have limited knowledge 

about the state of the scenario, that is, the agents know the geometry of the spaces, 

however do not have complete information on the conditions of occupation. This 

limitation of agent knowledge has eliminated problems of over-organization of 

conflicting pedestrian flows, an emergent behavior of simulation not observed in real 

pedestrians. 

Recent models give pedestrians strategic decision-making capabilities 

(Figure 2). At strategic level the pedestrian decides his departure time and his 

activities, that is, his place or places of destination. Kwak et al. (2017) [14] simulate 

the effect of congestion generated by pedestrians who decide to stop at an attractor in 

the environment during their travel. In the model the decision to stop at an attractor is 

influenced by other agents. Wang et al. (2014) [15] propose a model of attractiveness 

based on the visual field of the agent. This model is employed in simulation of 

shopping centers. 

Chapter 5 of this document present a simulation model where agents can 

define partial destinations according to their profile. A pedestrian may decide to stop 

at places of their interest even without prior knowledge. The model allows the 

definition of complex agent profiles as well as complex profiles of stop locations. The 

greater the similarities between the profile of a pedestrian with the settings of a 

stopping place greater are the chances of a pedestrian deciding to stop at this location. 

1.5 Document Structure 

This document is organized in 7 chapters. The present chapter presents the 

contextualization of the work, the objectives and delimitations. Chapters 2 to 6 

present a compilation of 5 articles, respecting the suggested model proposed by the 

post graduation program. Chapter 8 presents the conclusion and future developments. 
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Chapter 2 presents the paper “Pedestrian route choice model based on friction 

forces” [16]. (Werberich, B. R., Pretto, C. O., & Cybis, H. B. B. (2014). Pedestrian route choice 

model based on friction forces. Simulation, 0037549714547295.) 

This paper describes the development of a route choice model based on friction 

forces. In Helbing and Johansson (2009) [17] the authors made the assumption that 

pedestrians avoid passing closer to other pedestrians with high relative velocity, 

minimizing the friction forces. The route cost calculation considers a balance between 

distance and the impedance generated by other pedestrians. Social Forces Model [3] 

describes the pedestrians walking behavior in the proposed model. SFM considers 

that pedestrians’ motion can be described as a superposition of several forces. 

Regarding: Desired direction of motion (e), forces exerted by the environment and by 

other pedestrians. The calculation of the impedance generated by other pedestrians’ 

considers the difference of a pedestrian e vector and other pedestrians’ velocities. 

Thus, a pedestrian avoid congestion and, mainly, a conflicting flow of pedestrians. 

Simulations results shown that pedestrians choosing longer routes can have 

similar or better travel times. The ability of choosing not only the shorter route brings 

more realistic behaviors for the pedestrians’ representation, especially with small 

differences in route lengths and higher congestion. Agents’ profiles play an important 

role in the simulations. Pedestrians with higher desired speeds are more likely to 

choose longer routes to avoid congestion; higher speeds tend to generate higher 

impedances. This emergent behavior shown that pedestrians prepared to walk faster 

are also more willing to walk more to avoid congestion. Other emergent behavior 

shown lane formation into distinct routes, i.e., pedestrian with similar desired 

direction of motion grouped together in different routes in order to minimize friction 

forces between pedestrians. 

Chapter 3 presents the paper “Pedestrians’ route choice based on friction forces 

assuming partial and full environment knowledge” [18]. (Werberich, B. R., Pretto, C. O., & 

Cybis, H. (2014). Pedestrians’ Route Choice Based On Friction Forces Assuming Partial And Full 

Environment Knowledge. Transportation Research Board 93rd Annual Meeting (No. 14-3067)). 

This paper describes additional developments of the model presented on 

Chapter 2. As previously mentioned, the proposed model was capable to represent 

emergent behavior among interaction between agents. However, the lane formation 
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into distinct routes sometimes converges to a super organization, not observed in the 

real world. Agents were capable to organize themselves in a way to completely avoid 

pedestrians traveling in the opposite direction. This organization is only possible 

when pedestrians have full knowledge of the network conditions, i.e., they know the 

velocity and position of all other pedestrians in the simulation. 

In this paper, agents were modeled with partial knowledge of the network 

conditions. The knowledge was limited considering the pedestrian estimated field of 

view. In the real world it is not possible to know the network state before turning the 

corner.  

Pedestrians with partial knowledge also presented unrealistic behavior. Some 

pedestrians got locked coming and going the same link multiple times. This strange 

behavior happened when pedestrians faced congestion on both sides of a link. The 

problem was that they don’t remember the network condition of the links they had 

already traversed. For this reason, the second addition to the model was to provide 

agents with the ability to store previous information for traveled links. Pedestrians 

with partial knowledge of the network state and memory of the network state for the 

previously traversed links presented the more reasonable behavior under congested 

conditions. 

Chapter 4 presents the paper “Calibration of a pedestrian route choice model 

with a basis in friction forces” [19]. (Werberich, B. R., Pretto, C. O., & Cybis, H. B. B. (2015). 

Calibration of a Pedestrian Route Choice Model with a Basis in Friction Forces. Transportation 

Research Record: Journal of the Transportation Research Board, (2519), 137-145.) 

Simulation models have to be calibrated before being applied to real case 

studies. This paper shows the calibration process for the proposed route choice model. 

Calibrating a pedestrian route choice model is a complex task mainly for two reasons: 

(i) Many factors interfere on pedestrians’ route choice; (ii) data collection is difficult. 

To overcome these difficulties real pedestrians were studied in a controlled 

environment. An experiment was set up inside the university campus. A scenario was 

built with 2-meter-high walls and two opposite entrances. A camera with top view 

recorded the interactions between pedestrians, inside the scenario. 
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Volunteers ware asked to walk inside the scenario. Some of them were 

instructed to walk in a predefined route, generating congestion. Other pedestrians, the 

objects of study, were instructed to freely walk. Data collection was a semi-automatic 

process for video analyses. Data were collected independently for each pedestrian in 

the experiment. Collected data made possible to validate and calibrate the model to 

represent the pedestrian tendency to avoid congestion. Simulation results indicate this 

model provides a promising approach for real case applications. Balance between 

impedance and distance could be easily  calibrated with a single parameter. 

Chapter 5 presents the paper: “Following a route: a force field generated from a 

sequence of points on the plane”. 

This paper presents a methodology to guide pedestrians in order to follow their 

determined routes. The model described in Chapter 2 defines the route of a pedestrian 

as a sequence of nodes in a graph. In a simplified way, the route is a sequence of 

points (x and y coordinates) in a plane. In a classical strategy the pedestrian has its 

desired direction of motion vector pointing to the first point of its route, when the 

pedestrian gets close to this point, his vector of desired direction of motion points to 

the next point, and so on. 

The classic strategy used by a pedestrian to follow a sequence of points in a 

plane can generate unrealistic behavior, especially if exposed to interactions that may 

disturb the pedestrian path. The methodology presented in this paper defines a vector 

field from the sequence of points of a route. In this way, changes to the vector of 

desired direction of motion happen smoothly. The vector field provides the pedestrian 

orientation vector at any location in the simulation scenario. The strategy adopted 

gave the pedestrians smoother movements without sudden changes of direction and 

more natural movements returning to the route in case of deviations due to 

disturbances. 

Chapter 6 presents the paper “Pedestrians’ route choice model for shopping 

behavior” [20]. (Werberich, B. R., Pretto, C. O., & Cybis, H. B. B. (2016). 

Pedestrians’ Route Choice Model for Shopping Behavior. 9th International Workshop 

on Agents in Traffic and Transportation. (CEUR Vol-1678)). 
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After the calibration process, presented on Chapter 4, the model was able to 

simulate a real scenario. In this paper (Chapter 6) the model was applied to simulate a 

shopping mall environment. Simulate the pedestrians shopping behavior is 

particularly complex once route choice in shopping malls may be defined by a 

number of causal factors. Shoppers may follow a pre-defined schedule; they may be 

influenced by other people walking, or may want to get a glimpse of a familiar 

shopping. Proposed pedestrian model allows the representation of agents capable to 

perform both planned and unplanned behavior, depending on their profiles. 

Simulation results were compared to real data collected by video recording in a 

shopping mall. 

The route cost calculation presented on Chapter 2 considers two factors: route 

length and the impedance generated by other pedestrians. For shopping behavior, a 

new factor is being considered in route cost calculation: attraction for areas of interest 

on the environment. A pedestrian may choose a longer and congested route to pass 

closer to an area of interest, even if not previously scheduled. The interest of an agent 

by a specific area on the scenario is highly related to their profile. The model allows 

the definition of properties representing the many different kinds and segments of 

stores. In a related way, pedestrians’ profiles describe the probability of a pedestrian 

being attracted by each property. 

Pedestrians not only pass closer to interest areas, they may stop in front a store 

for a while. Proposed model introduces the concept of hotspots. Hotspots are defined 

by a location in the environment and also for properties related to its characteristics. 

Once again, pedestrians’ profile describes the probability of a pedestrian stop in a 

hotspot. Analysis from simulations indicates that the agents’ behavior provides a 

promising approach for real case applications. 
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Pedestrian route choice model
based on friction forces

Bruno Rocha Werberich, Carlos Oliva Pretto
and Helena Beatriz Bettella Cybis

Abstract
This paper presents a pedestrian route choice model devised to represent the influence of the impedance generated by
other pedestrians on the route choice process. This model is inspired by friction force equations, and considers that
pedestrians avoid passing near other pedestrians with high relative velocity. The route choice process is based on a
weighting of the impedance generated by pedestrians and the path length. A social force model was used to model
pedestrian walking behavior. The model is able to reproduce emergent behavior among agents, allowing the assumption
that the friction equations may provide a suitable approach to route choice behavior and can also be used as an indirect
measure of pedestrian delay.

Keywords
Route choice, pedestrian simulation, modeling of pedestrians, pedestrian behavior

1. Introduction

The simulation of pedestrians in urban environments is a
complex problem. In order to represent the motion of
pedestrians more realistically, models are required to simu-
late several processes, including sense and avoidance of
obstacles, interaction with other pedestrians, and route
choice.

The simulation of a pedestrian’s sense and avoidance of
obstacles in most models reported in the literature can be
regarded as using force-based approaches. In force-based
models, agents evaluate forces exerted by the infrastruc-
ture and by other agents. Helbing and Molnár presented a
relevant work on force-based models in which they use
Newtonian mechanics and a continuous space representa-
tion to model a long-range interaction.1 The social force
model has been successful in reproducing various observed
phenomena. The concept behind this approach suggests
that the motion of a pedestrian can be described by the
combination of several forces (including the repulsive
forces from other pedestrians and walls) that result in the
walking direction, at a certain desired speed.

Extending the traditional application of social force
models, Helbing and Johansson proposed a social force
model for simulating crowds.2 In this model, the authors
aggregate friction-inspired equations, based on pedes-
trians’ relative speed, to the standard social force approach.
The interactions with walls and other obstacles are treated

analogously to pedestrians’ interactions. The concept of
friction between pedestrians adds an important component
for the reasoning of pedestrian dynamics.

Collective behaviors frequently emerge from interac-
tions among individuals. Under certain conditions, pedes-
trian flows form collective patterns of motion, such as
shock waves in dense crowds, lanes of uniform walking
directions in pedestrian counter flows, circulating flows at
intersections, or oscillating flows at bottlenecks.3 This is a
crucial concept in the simulation of pedestrians.4,5 This
phenomenon, also called self-organization, is an emergent
behavior that arises from the interactions between agents.
Studies of self-organization in pedestrian crowds include
pedestrian streams in corridors or alleys,6–8 in addition to
the movement of pedestrians through a waiting crowd.7,9

More complex studies consider the escape of disoriented
people from a room.10

Teknomo and Teknomo et al. described an approach
based on route choice self-organization to model the
dynamics of mobile agents,11,12 such as pedestrians and
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cars, on a simple network graph. This modeling approach
is based on the route choice self-organization of multiple
agents. The agents decide, when reaching a vertex, which
edge to enter next. This decision is based on a set of rules
that considers the agent’s observation of the local environ-
ment. The model simulates only one-directional move-
ment from the origin to the destination vertex.

In order to represent complex networks, such as urban
scenarios, models need to include route choice capabilities.
Pedestrians can use a wide range of algorithms to find the
best route to reach a destination. The analysis of pedestrian
route choice in urban areas may help understand the way
pedestrians interact with each other. The route choice pro-
cess can also include an element of collective behavior.
Although the decision about what route a pedestrian will
take during a trip is an individual decision, it is influenced
by a wide range of factors, including the conditions of the
environment and the presence of other pedestrians.

Compared to other modes of transport, modeling the
pedestrian route choice process is complex because a
pedestrian chooses a route from an infinite set of alterna-
tives, weighing his comfort and safety needs with the
delay cost.

Most walking processes, such as route selection strate-
gies, are based on subconscious decisions. The perception
of distance and directness are the most common reasons
for choosing a particular route.13 Pedestrians frequently
choose the shortest route, although they are not aware of
this utility maximization process.14 Other factors that play
an important role in route choice behavior are peoples’
habits, number of crossings, pollution and noise levels,
safety and shelter from poor weather conditions, and sti-
mulations of the environment.15 An understanding pedes-
trian behavior and how routes are chosen is essential for
planning and designing public and private infrastructures.

Pedestrian models frequently assume a static route
choice process. They are built on the assumption that
pedestrians walk along the shortest path, defined before
the trip starts, and that they try to walk through this path
while avoiding collisions and other pedestrians. However,
pedestrians frequently revise and alter their routes based
on their instant evaluation of the general environment.
Dynamic route choice models are, therefore, frequently
required to represent real life conditions. They differ from
their static counterparts in the sense that they represent
route changes over time. They aim to provide a sounder
representation of the route choice process, emulating the
behavior of individual pedestrians while considering varia-
tions in the condition of the environment.

One interesting approach for pedestrian route choice is
provided by Wagoum et al.16 The model presents an event-
driven way finding algorithm for evacuation scenarios.
The algorithm operates on a graph-based structure. The
modeled strategy consists of a combination of the shortest
and quickest path. In contrast to the shortest path, the

quickest path is dynamic and changes over time throughout
the simulation timeframe. Pedestrians’ decisions consider
the observed environment, and the dynamic route choice is
based on a cost-benefit analysis. The key element of
Wagoum’s approach is the estimation of travel times
between the graph’s nodes based on the observed velocity
of other agents in the network.

Most relevant route choice models are concerned with
pedestrians’ evacuation. In the model proposed by Kretz et
al.,17 pedestrians adopt paths that present the minimal
remaining travel time to the destination. Patil et al. presented
an interactive algorithm to direct and control crowd simula-
tions.18 Their approach adopts user-specified guidance fields
to direct the agents in a simulation performing a goal-
directed navigation. The model developed by Treuille et al.
unifies path planning and local collision avoidance by using
a set of dynamic potential and velocity.19 Banerjee et al.
used layer intelligence from computer games to represent
congestion avoidance.20 The authors consider congestion of
agents as a dynamic obstacle. Groups of unmoving pedes-
trians are considered as obstacles and agents tend to avoid
them in their route choice.

Many models presented in the literature are concerned
only with the quickest or shortest path.21–23 The majority
of these models assume that all pedestrians will choose
routes by only considering such variables as distance and
density of pedestrians. Sound route choice processes
should also consider different pedestrian profiles, regard-
ing characteristics such as their desired speed and direc-
tion. This paper presents a dynamic route choice model
based on a combination of distance and impedance gener-
ated by other pedestrians. This model was devised to rep-
resent pedestrian route choice behavior in networks that
resemble urban topology, with pedestrians having multiple
origins and destinations.

The calculation of impedance is derived from the friction
concept proposed by Helbing and Johansson.2 The impe-
dance generated by the friction equations involves variables
related to the pedestrian’s profile, such as the desired speed
and other pedestrian velocities. The impedance can be used
as an indirect measure of pedestrian delays.

2. The model

The aggregation of different levels of abstraction on a
simulation model is a complex task. In most cases, each
level of abstraction can be separately modeled on a multi-
layer simulation approach.24–26 The framework adopted to
describe pedestrian motion in this model was divided in a
three-layer structure responsible for: (i) representing the
demand for travel; (ii) representing the simulation environ-
ment; and (iii) representing the movement of pedestrians
and the process of the sense and avoidance of obstacles
(Figure 1).
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2.1. Demand configuration

The demand for pedestrian trips is defined by a set of ori-
gin and destination pairs. Each origin–destination pair is
associated to a number of total trips and a pedestrian gen-
eration rate. Origins and destinations are associated with
the nearest nodes from the graph on the environment layer.

2.2. Environment configuration

The environment is described as a continuous space and is
composed of geometric entities, such as rooms, doors, and
other obstacles. The environment entities are linked by a
graph-based structure. The graph provides a path to all
entities. The graph generation process should guarantee
that no edge of the graph intersects any walls or obstacles.

This layer also contains route recalculation areas where
a pedestrian can choose between alternatives paths. The
role of recalculation areas will be discussed later.

2.3. Pedestrian movement

The social force model describes pedestrian walking beha-
vior in terms of the agents’ low-level motion, collision
avoidance, and velocity adaptation.1 The social force
model considers that pedestrian motion can be described
as a superposition of several forces. Helbing and Molnár
assume that these forces are a combination of psychologi-
cal and physical forces.1 Pedestrians freely walk on the

modeling environment, seeking the next graph node of the
designated route. Pedestrian movements are ruled by the
sense and avoidance model and are not restricted to a strict
set of links.

A pedestrian a who wants to reach his destination~r 0a takes
the shortest possible path. The pedestrian’s trip will usually
have some intermediate destinations,~r1a . . .~r ka . Assuming that
~r ka is the next partial destination, the desired direction of
motion~ea(t), according Helbing and Molnár,1 will be:

~ea(t)=
~r ka !~ra(t)

jj~r ka !~ra(t)jj
ð1Þ

where~ra(t) denotes the pedestrian’s a position at time t.
Any pedestrian a presents a desired speed v0a and a

desired direction ~ea. The desired velocity is, therefore,
~v0a tð Þ= v0a~ea(t).

In case of deviations from the desired velocity, the
pedestrian assume a current velocity~va tð Þ: The pedestrian
a tends to restore~va(t) within a certain relaxation time ta.
Helbing and Molnár describe this adaptation by the accel-
eration term ~F

0

a:
1

~F
0

a(~va, v0a~ea)=
1

ta
(v0a~ea !~va) ð2Þ

Pedestrians feel uncomfortable close to other pedestrians
and walls; therefore, the presence of pedestrian b will result

Figure 1. Multi-layer model.
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in a repulsive force affecting the motion of pedestrian a.
Helbing and Molnár represent this effect by~fab:

1

~fab(~r
ab)= !r~rab

Vab½b(~rab)# ð3Þ

where Vab is the repulsive potential, represented by a
monotonic decreasing function with equipotential elliptical
lines. The elliptical shape reproduces the pedestrian’s need
for more space in the direction of motion; b is the semi-
minor axis of the pedestrian ellipse defined by ~rab

(~rab =~ra !~rb). The resultant force exerted over a pedes-
trian is a superposition of three forces: the force to adapt
the current velocity to the desired velocity (~F

0

a), the forces
exerted by other pedestrians (f

!
ab), and the forces exerted

by walls and other obstacles.

3. Route choice process modeling

Route choice is a complex process to model because most
route selection strategies are based on subconscious deci-
sions. The perception of distance and directness are the
most common reasons for choosing a particular route,
however, other factors may also play an important role in
this decision, such as safety, pavement conditions, density
of people, and people walking in the opposite direction.
This model assumes that the cost of a route is a function of
two factors: the route length and the impedance generated
by other pedestrians. The impedance generated by the fric-
tion between pedestrians is generated even before physical
contact, representing the psychological tendency to avoid
passing close to individuals with high relative velocity.2

Pedestrians seek the route that minimizes a function of dis-
tance and the friction with other pedestrians.

The dynamic route choice process is represented by the
flowchart in Figure 2. The pedestrian starts the route
choice process as soon as he starts the trip. To choose the
route, the pedestrian takes into account the distance
between nodes and also the impedance generated by other
pedestrians. Once a route is defined, the pedestrian travels
on the route until he reaches a route recalculation area or
the final destination.

The model requires a path finding algorithm to produce
a traversable path between graph’s nodes. The algorithm
adopted to generate valid paths for any origin and destina-
tion in this implementation was the Dijkistra algorithm.27

The calculation procedure starts at the destination node,
covering all the possible paths to the origin node, assigning
a cost for each link between the nodes. At the end of the
process, the pedestrian chooses the path defined by nodes
with the minimum accumulated cost. In most applications,
cost is defined by the distance between nodes. In this for-
mulation, cost is a combination of distance and a term that
represents the impedance exerted by other pedestrians in
the simulation. The impedance is calculated by the proce-
dure described below.

Figure 3 describes a pedestrian a who wants to find a
route linking node O to node D. The algorithm traverses the
graph assigning costs for each link between the nodes.
Figure 3 shows, in the zoomed view, how the cost between
nodes u and n is calculated for the pedestrian a. The impe-
dance calculation process adopts a fictitious pedestrian a

0
,

positioned on node u, that has the same desired speed of
pedestrian a (~v0a0 = v0a) and a desired direction,~ea0 , oriented
to node n.

To estimate the impedance exerted over the pedestrian
a0, it is necessary to know the pedestrian desired velocity,
~v0a0 when he is trying to walk from~ru to~rn:

~v0a0 =
~rn !~ru

jj~rn !~rujj
:v0a ð4Þ

The calculation of the impedance exerted by other pedes-
trians over a0 requires the definition of neighborhood
areas. A radius Rn, around the graph nodes, limits these
areas. The impedance is evaluated by the difference
between ~v0a0 and the current velocity of other pedestrians
b(~vb), walking in the neighborhood area. Only pedestrians
within the neighborhood area of node n are considered in
the impedance estimation.

The impedance perceived by the fictitious pedestrian a0

to walk from node u to n(Ia) is:

Ia0 =
X

b

jj~vb !~v0a0 jj ð5Þ

The value of Ia0 is normalized over a settable parameter
Imax. The cost perceived by the pedestrian a to walk from

Figure 2. Dynamic route choice.
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node u to n, Wu, n
a , is a balance between distance and the

impedance exerted by other pedestrians:

Wu, n
a = jj~rn !~rujj " (1+ Ia0=Imax) ð6Þ

The described procedure is repeated until all possible
paths costs are defined. Pedestrian a chooses the route
with the lowest cost. The algorithm adopted to calculate
the motion cost for pedestrian a0 from node u to n is pre-
sented below (Algorithm 1).

One important aspect of the model configuration is the
radius of the neighborhood areas (Rn) and the granularity

of the nodes on the graph. The radius should ideally cover
the maximum distance between nodes without overlap-
ping, to reduce the probability of over counting or missing
pedestrians. Regarding the granularity of the graph nodes,
some issues should be considered when defining the mod-
eling environment. Each node provides an impedance
measure in its neighborhood area. If the distance between
nodes is too large, and consequently the neighborhood
area is too big, the estimation of the impedance could not
capture the real pedestrians’ organization. On the other
hand, if a graph is too dense, the performance of the model
can be jeopardized due to computation costs.

Figure 3. The route choice model.

Algorithm 1.
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Imax in equation (6) is a key parameter in the calculation
of the cost perceived by pedestrians (W). This parameter
acts as weighting factor between travel distance and the
perceived impedance. The higher the value of Imax, the
lower the willingness of pedestrians to choose an alterna-
tive longer route. The Imax is a calibration parameter that
should be adjusted to reflect the willingness of pedestrians
to trade for longer routes, depending on the pedestrian den-
sity on the shortest route. The Imax is also an individual
pedestrian parameter that allows representation of multiple
profiles.

4. Simulations

This section presents the results of simulations derived
from the implementation of the model. The main goals of
these simulations were to provide a realistic representation
to evaluate the emergent behavior of pedestrians, their
overall behavior, and to perform a conceptual validation
of the model.

The experiment developed to accomplish the simulation
objectives involved the combination of two controllable
parameters, the scenario layout and the pedestrian genera-
tion rate:

! Scenario layout (S) – four levels:
S1 = Scenario 1; S2 = Scenario 2; S3 = Scenario
3; S4 = Scenario 4

! Pedestrian generation rate (F) – three levels (pedes-
trians/s):
F1 = 2.4; F2 = 4.0; F3 = 5.6

Figure 4 illustrates the four different scenarios, composed
of two alternative routes, indicating the shortest route, R1,
and the length of the alternative route, R2, for each sce-
nario. The number of pedestrians who depart from left to
right is equal to the number of pedestrians who travel in
the opposite direction. The conflicting flows generate con-
gestion in the network. The hatched zones are the route
recalculation areas. The pedestrian route choice is always
re-evaluated when reaching these areas.

The social force model parameters were configured as
in Helbing and Molnár.1 The Imax value was 3.9. The aver-
age desired velocity of pedestrians was 1.1 m/s with a
standard deviation of 0.2 m/s.

The simulation results led to a qualitative and a quanti-
tative analysis. The qualitative analysis is concerned with
the pedestrian behavior that emerges from the route choice
model. The quantitative analysis regards the numerical

Figure 4. The four different scenarios.
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results of the simulations, for the combination of network
layouts and pedestrian densities.

4.1. Qualitative analysis

A detailed qualitative analysis from the simulation images
demonstrated that the model provides sound representa-
tions for pedestrian behavior.

Figure 5(a) shows an instant of the simulation. Full cir-
cles symbolize pedestrians traveling from left to right and
empty circles symbolize pedestrians traveling in the oppo-
site direction. The diameter of the circle is a measure of
the pedestrian’s current speed. It is clear that route R1 is
more congested than R2 and has lower speeds.

During the simulation, the lane formation of pedestrians
moving in the same direction may occur in distinct routes.
Lane formation happens because one pedestrian perceives
the concordant flow of pedestrians with lower impedance

than the opposing flow. Figure 5(b) shows one instant in
the simulation when route R1 is predominantly occupied
by empty circles and route R2 predominantly occupied by
full circles.

The pedestrians’ reasoning about the choice of route
can be verified in Figure 6, which illustrates the impe-
dance perceived by pedestrians. The impedance value was
associated with a color scale. The color scale varies from
light gray (for lower impedance) to dark gray (for higher
impedance). Figure 6(a) shows the perceived impedance
of the pedestrian indicated by the arrow at the route choice
instant; the indicated path line is the chosen route. The
gray circles are neighborhood node areas. In Figure 6(b),
the pedestrian indicated by the arrow perceives the lane
formation as a facilitator of the trip, choosing his route fol-
lowing the lane. Figure 6(c) shows the moment when the
pedestrian chooses the longer route, when the shorter route
becomes too congested.

Figure 5. Simulation views.

Figure 6. Impedance map.
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4.2. Quantitative analysis

This analysis was developed to assess the ability of the
model to represent expected pedestrian behavior.

Figure 7 presents 12 histogram charts of simulated
travel times. Each histogram shows the pedestrians’ travel
time distribution for the combination of the controllable
parameters described above: Scenarios (S1, S2, S3, S4)
and pedestrians generation rates (F1, F2, F3). Each histo-
gram chart is the result of 10 simulation runs totaling 3500
pedestrians.

For the model conceptual validation some expected
results should be observed:

(i) Higher pedestrian generation rates produce con-
gestion, increasing the overall travel times and
the proportion of pedestrians opting for the lon-
ger route in order to avoid congestion.

(ii) The relationship between the lengths of the
shorter and the longer route affects the percent-
age of pedestrians choosing the longer route. The
longer the route, the less attractive it is.

(iii) Pedestrians who choose longer routes to avoid
congestions are not expected to experience sig-
nificant travel time penalties.

Regarding the expected result (i), it is noticeable in
Figure 7 that higher generation rates of pedestrians lead
to higher numbers of pedestrians in the alternative route.
Pedestrians only prefer to travel on a longer route if they
estimate that the impedance imposed by other pedes-
trians will affect their travel times.

The travel time distributions of pedestrians on both
routes (Figure 7) indicate that the pedestrians’ willingness
to change to a longer route decreases as the length of the
alternative route increases. Pedestrians were discouraged
from choosing extremely longer routes. The willingness of
a pedestrian to choose a longer route can be set trough the
Imax parameter. However, the behaviors related to the
expected results (i) and (ii) remain valid. Figure 8 shows
the percentage for the total population of pedestrians in
each simulation that chose the longer route, R2.

Combining scenarios with longer alternative routes and
higher pedestrian generation rates produces a big conges-
tion. In these situations, the distributions show pedestrians
with extremely long travel times. This effect is probably
due to factors related to the social force model itself. In
some situations the pedestrians’ density reached the bound-
aries of practical use of the model, and imposes a different
approach regarding social force model implementation.
Helbing and Johansson propose an adaptation of the social

Figure 7. Travel time histogram.
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force model to better represent situations of high density of
people.2

Table 1 shows the average travel time and travel time
standard deviation for each route and simulation. The stan-
dard deviation increases as congestion and travel times
increase. The expected results (i) and (ii) could again be
observed. Increasing the frequency of pedestrian

generation in the simulation also increases the average
travel time. Similarly, the higher the length of R2, the
higher is the average travel time. The proportion of pedes-
trians on R2 decreases when the length of R2 increases,
leading to longer travel times in R1.

The average travel time of pedestrians on route R2 is, in
most cases, lower than the time of pedestrians who chose

Figure 8. Proportion of pedestrians on R2

Table 1. Average travel time (s).

Table 2. Travel time gain (R2).
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the shorter route R1 (Table 1). However, a more detailed
analysis was performed to further explain the expected
behavior (iii).

As congestion conditions varies along the simulated
period, it is important to evaluate the travel times differ-
ence experienced by pedestrians that chose alternative
routes R1 and R2 at similar conditions. To eliminate unde-
sirable discrepancies in the analysis, the simulation time
was divided into 10 s intervals, grouping pedestrians who
started their travel within the same time interval.
Pedestrian groups in which all members chose the same
route were not considered in this analysis. Table 2 shows
the average gain in travel time of pedestrians who chose
R2 in comparison to those who chose R1 for each interval.

The increasing volume of pedestrians has a direct relation-
ship with the time saved by pedestrians who choose R2. The
more congested the simulation environment, the higher the
travel time gain of pedestrians who chose the longest route.

To explore the applicability of the model formulation,
one of the main objectives of the simulations performed
was to understand the underlying relationships that
emerged from the model. Was there any relationship
between pedestrians profiles, i.e. pedestrians’ desired
speed and their choice of route? For this analysis, a simu-
lation with 800 pedestrians was performed for scenario S2
and generation frequency F2. The desired speeds of pedes-
trians on both routes can be analyzed in Figure 9.

Pedestrians with higher desired speed are more likely
to choose the longer route, R2, than a slower pedestrian.
This effect is observed because for the calculation of
friction with other pedestrians, higher speeds tend to
generate higher impedance. Thus, pedestrians prepared
to walk faster are also more willing to walk farther, thus
diverting from the congested area.

5. Conclusions

The modeling approach presented in this paper provides a
sound representation of pedestrian route choice dynamics.
Route choice is based on a combination of distance and
the impedance generated by other pedestrians. The model
adopts a pedestrian friction concept to calculate impe-
dance. The analysis from simulations indicates that the
emerging behavior of this model provides a promising
approach for real case applications.

Interesting pedestrian route choice behaviors emerged
from the model. Pedestrians on longer routes presented
travel times similar to those of pedestrians traveling shorter
routes. Pedestrians who choose the longest route tended to
have a higher desired speed. Pedestrian dynamics pre-
sented a sound lane formation behavior. The lane forma-
tion of concurrent flows occurred at the same route or was
segregated into distinct routes.

Figure 9. Desired speed histogram at R1 and R2.
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The emergent behavior from the model allows the assump-
tion that the friction equations adopted in this modeling may
provide a suitable approach to route choice behavior and can
also be used as an indirect measure of pedestrian delay.

A video showing the simulation scenario S1 with pedes-
trian generation rate F3 is available on YouTube under
http://youtu.be/m380wXUVp2Q.
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ABSTRACT 1 

This paper presents a pedestrian route choice model. The model explicitly represents the 2 
interaction between pedestrians as an impedance force that influences pedestrians route choice. 3 
This model approach is inspired by friction forces equations, considering that pedestrians avoid 4 
passing near other pedestrians with high relative velocity. The route choice process is a function of 5 
the impedance force and path length. The social force model was used to model pedestrians 6 
walking behavior. A key element in this paper is the level of knowledge that pedestrians have 7 
about the network condition. The model reproduces three different levels of pedestrians’ 8 
knowledge: (i) pedestrians with full knowledge about the network, (ii) pedestrians with partial 9 
knowledge and (iii) pedestrians with partial knowledge and a memory of past experiences. This 10 
article presents the resulting routes and travel times and discusses the differences and advantages 11 
of each level of pedestrians’ knowledge implementation. 12 

1. INTRODUCTION 13 

Realistic representations of pedestrians’ motion require the simulation of several processes, 14 
including path planning, sense and avoidance of obstacles, interaction with other pedestrians and 15 
route choice.  16 

Most microscopic models that simulate pedestrians' sense and avoidance of obstacles reported in 17 
the literature can be classified as force-based approaches. In force-based models, agents evaluate 18 
forces exerted by the infrastructure and by other agents. Helbing and Molnár (1) present a relevant 19 
work about force-based model, in which the authors use Newtonian mechanics in a continuous 20 
space representation to model a long-range interaction. The social force model has been successful 21 
in reproducing various observed phenomena. This model approach considers that the motion of a 22 
pedestrian can be described by the combination of several forces (including repulsive forces from 23 
other pedestrians, walls etc.) that results in the pedestrian's direction at a certain desired speed.  24 

Extending the traditional application of Social Force models, Helbing and Johansson (2) propose a 25 
Social Force Model for simulating crowds. In this model, the authors aggregate friction-inspired 26 
equations, based on pedestrians' relative speed, to the standard Social Force approach. The concept 27 
of friction between pedestrians adds an important component for the reasoning of pedestrians’ 28 
dynamics. 29 

The idea that collective behavior emerges from interactions among individuals is a crucial concept 30 
to study simulation of pedestrians (3)(4). Examples of such collective behaviors are the lane 31 
formation, and the oscillation of the passing direction at bottlenecks (5)(1). 32 

The route choice process can also include an element of collective behavior. Although pedestrians’ 33 
route choice is usually an individual decision, it is influenced by a wide range of factors, including 34 
the conditions of the environment and the presence of other pedestrians. Compared to other trip 35 
modes, modeling the pedestrian route choice is a complex process, since a pedestrian chooses a 36 
route from an infinite set of alternatives, weighing his comfort, safety needs and delay costs. 37 

The majority of pedestrians’ models can be classified into two categories: (i) models where 38 
pedestrians/agents don't have imbedded route choice algorithms (the route choice process can or 39 
cannot emerges from the simulation) and; (ii) models where agents have imbedded route choice 40 
algorithms (6). 41 
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The selection of alternative routes in the first category happens as self-organization phenomena. 1 
This phenomenon is an emergent behavior that arises from the interaction between agents. These 2 
models are not suitable for wide-open spaces and complex urban networks. 3 

Models from the second category present explicit route choice capabilities. Pedestrians adopt some 4 
sort of function to find routes to the destination. These models can present static or dynamic route 5 
choice process. Static route choice models are built on the assumption that pedestrians walk along 6 
the shortest path, defined before the trip starts, and try to walk through this path while avoiding 7 
collisions. Dynamic route choice models differ from their static counterparts on the sense they 8 
represent route changes over time. They aim to provide a sounder representation of the route 9 
choice process, emulating the behavior of individual pedestrians while considering variations in the 10 
environment. 11 

Several walking processes, such as route selection strategies, are based on subconscious decisions. 12 
The perception of distance and directness are the most common reasons for choosing a particular 13 
route (7). Pedestrians frequently choose the shortest route, although they are not aware of this 14 
utility maximization process (8). Most models presented in the literature are concerned only with 15 
the quickest or shortest path, like Kirik et. al. (9), Dressler et. al. (10) and Lämmel et. al. (11). 16 
However, other factors play an important role in route choice behavior, such as, peoples’ habits, 17 
number of crossings, pollution and noise levels, safety and shelter from poor weather conditions, 18 
and stimulations of the environment (12). Understanding pedestrians´ behavior and how routes are 19 
chosen is essential for planning and designing public and private infrastructures.  20 

Most relevant route choice models are concerned with pedestrians' evacuation. In Kretz et. al. (13), 21 
for example, pedestrians paths are chosen based on the minimal remaining travel time to the 22 
destination. Patil et. al. (14) propose an interactive algorithm to direct and control crowd 23 
simulations. Their approach adopts user-specified guidance fields to direct the agents in a 24 
simulation, performing a goal-directed navigation. The model by Treuille et. al. (15) unifies path 25 
planning and local collision avoidance by using a set of dynamic potential and velocity.  26 

One interesting approach for pedestrian route choice is provided by Wagoum et. al. (16). The 27 
model presents an event-driven way finding algorithm for evacuation scenarios. The algorithm 28 
operates on a graph-based structure. The modeled strategy consists on a combination of shortest 29 
and quickest path. In contrast to the shortest path, the quickest path is dynamic and changes over 30 
time throughout the simulation timeframe. Pedestrians´ decisions consider the observed 31 
environment, and the dynamic route choice is based on a cost-benefit analysis. The key element of 32 
Wagoum’s approach is the estimation of travel times between the graph´s nodes based on the 33 
observed velocity of other agents in the network. 34 

Generally, pedestrians choose routes in order to reach their goals with less effort, in a safe and 35 
comfortable trip. In most cases, pedestrians have a good knowledge about their route options and 36 
are also able to estimate the number of pedestrians on each route. In both modeling strategies 37 
(dynamic and static), they assume that the pedestrian has full knowledge of the route conditions at 38 
the decision time. Sometimes, this assumption can lead to unrealistic simulations results. 39 

This paper presents a dynamic route choice model based on a combination of distance and the 40 
impedance generated by other pedestrians. The calculation of the impedance is derived from the 41 
friction concept proposed by Helbing and Johansson (2). The impedance generated by the friction 42 
equations involves variables related to the pedestrian’s profile, like the desired speed and other 43 
pedestrians’ velocity. The route choice model presented in this paper considers three different 44 
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levels of pedestrians' knowledge about the environment: pedestrians with full knowledge about the 1 
network state; pedestrians with partial knowledge; and pedestrians with partial knowledge and a 2 
memory about past experiences. The simulations’ analysis allowed understanding the advantages 3 
and differences between the three implementations. 4 

2. THE MODEL 5 

The aggregation of different levels of abstraction on a simulation model is a complex task. In 6 
most cases, each level of abstraction can be separately modeled on a multi-level simulation 7 
approach (17). 8 

2.1. Model Framework 9 

The framework adopted to describe pedestrian motion in this model was divided in a three-layer 10 
structure responsible for:  (i) representing the demand for travel, (ii) representing the simulation 11 
environment, and (iii) modeling the movement of pedestrians and the process of the sense and 12 
avoidance of obstacles, considering pedestrians with three different level of traffic conditions 13 
knowledge: full knowledge, partial knowledge and partial knowledge with memory. 14 

• Configuration of the modeling demand: The demand for pedestrian trips is defined by 15 
a set of origin and destination pairs. Each origin-destination pair is associated to a 16 
number of pedestrian trips and a pedestrian generation rate. Origins and destinations 17 
are nodes from the graph layer. 18 

• Configuration of the modeling environment: The environment is composed by 19 
geometric entities such as rooms, doors, and others, and is described as a continuous 20 
space. The environment and its entities are linked by a graph-based structure. The 21 
graph generation process should provide a valid path to all entities and guarantee that 22 
no edge of the graph intersects any wall or other obstacles in the environment. 23 

• Pedestrian motion: sense and avoidance modeling: The Social Force model (1) 24 
describes the pedestrian walking behavior, regarding the agents’ low level motion - 25 
collision avoidance and velocity adaptation. The social force model considers that 26 
pedestrians’ motion can be described as a superposition of several forces. Helbing and 27 
Molnár (1) assume that these forces are a combination of psychological and physical 28 
forces. 29 

2.2. Pedestrians level of knowledge about the environment 30 

The level of pedestrian’s knowledge about the state of the environment in an important element in 31 
the route choice process. Pedestrian knowledge concerns his awareness about the number, position 32 
and velocity of other pedestrians in the network. This paper will compare three implementations 33 
representing different pedestrians’ knowledge: 34 

• (i) Pedestrians with full knowledge of the network conditions: In this model 35 
pedestrians choose their routes knowing the state of the whole network at all times. 36 
This implementation allows the pedestrian to avoid future conflicts, optimizing the 37 
route. This model does not reflect the actual decision-making process of pedestrians 38 
in real life. Usually a pedestrian has limited knowledge of the network, due to either 39 
distance or obstacles. 40 
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• (ii) Pedestrians with partial knowledge of the network conditions: This 1 
implementation represents the pedestrians’ knowledge limitations about the state of 2 
the network. A pedestrian only knows the quantity, position and speed of pedestrians 3 
who are in his link of the network. Despite the limited knowledge about the network 4 
state, the pedestrian completely knows the network geometry and possible paths to 5 
his destination. (Figure 1 (ii)). 6 

• (iii) Pedestrians with partial knowledge of the network conditions and memory of past 7 
experiences: In spite of having partial knowledge of the network conditions, 8 
pedestrians store in their memories the past network conditions of the links already 9 
traveled. This implementation limits the knowledge of the pedestrian in the same way 10 
as the previous implementation, however, provides to the pedestrian the ability to 11 
store past information. (Figure 1 (iii)). 12 

Figure 1 maps the partial knowledge’s of the two kinds of pedestrian with partial knowledge, 13 
with and without memory. The pedestrians, represented by black circles, had already traveled the 14 
path indicated by the dashed arrow. 15 

 16 

FIGURE 1: Knowledge map over the network. 17 

3. ROUTE CHOICE PROCESS 18 

In this model, the cost of each route is calculated as a function of two factors: route length and the 19 
impedance generated by other pedestrians. It is assumed that the impedance generated by the 20 
friction between pedestrians exists even before physical contact, due to the psychological tendency 21 
to avoid passing close to individuals with high relative velocity (2). Pedestrians seek the route that 22 
minimizes length and friction with other pedestrians. 23 

The pedestrian starts the route choice process as soon as he starts the trip. In order to choose the 24 
route, the pedestrian takes into account the distance between nodes and also the impedance 25 
generated by other pedestrians. Once a route is defined, the pedestrian walks trough this route until 26 
he reaches an area of route recalculation or the final destination. An area of route recalculation is 27 
any location where pedestrians can choose between two or more alternatives paths. 28 

Dijkistra algorithm (18) is adopted to generate valid paths for any origin/destination pair in the 29 
graph. In this formulation, cost is a combination of distance and a term that represents the 30 
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impedance exerted by other pedestrians in the simulation. The impedance is calculated by the 1 
procedure described bellow. 2 

Figure 2 describes a pedestrian α who wants to find a route between nodes O and D on the graph. 3 
The algorithm traverses the graph assigning the cost for each link between the nodes. Figure 2 4 
shows the parameters involved in the calculation of impedance cost between nodes u and ! for 5 
pedestrian α. The impedance calculation process generates a fictitious pedestrian α! that is 6 
positioned on node u and has the desired direction motion,!e!!, oriented to the direction of node !. 7 
The fictitious pedestrian has the same attributes of pedestrian α (v!!!  = v!!). 8 

 9 

FIGURE 2: The route choice model. 10 

To estimate the impedance exerted over the pedestrian α′ it is necessary to know the pedestrian 11 
desired velocity, v!!! ,when he is trying to walk from r!!to!r!: 12 

 v!!! = r! − r!
r! − r!

. v!! 
[1] 

In order to calculate the impedance exerted by other pedestrians over α′, it is defined a 13 
neighborhood area around the graph nodes, with a radius Rn. The impedance is evaluated by the 14 
difference between v!!!  and the current velocity of other pedestrians β, v!, walking in 15 
neighborhood area. Only pedestrians within the neighborhood area of the node n are considered in 16 
the impedance estimation. 17 
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Considering each pedestrian β currently in the neighborhood area of the node n, the absolute 1 
impedance perceived by the pedestrian α′ to walk from u to n, I!! is: 2 

 I!! = v! − v!!!
!

 [2] 

The value of I!! is normalized over a settable parameter I!"#. The cost perceived by the pedestrian 3 
α to walk from node u to n, W!

!,!, is a function of distance and impedance exerted by other 4 
pedestrians: 5 

 W!
!,! = ! r! − r! . (1 + I!! /I!"#) [3] 

The described procedure is repeated until all the possible paths costs are defined. The pedestrian α 6 
chooses the route with the lowest cost.  7 

Important aspects about the configuration of the model are the granularity of the graph’s nodes and 8 
the radius of the neighborhood areas, Rn. If the distance between nodes is too large, the estimation 9 
of the impedance generated by the pedestrians’ interaction may be poor. On the other hand, if a 10 
graph is too dense, the performance of the model can be jeopardized. The radius of the 11 
neighborhood area should ideally cover the maximum distance between nodes without 12 
overlapping, in order to reduce the probability of over counting or missing pedestrians. 13 

Pedestrians with partial knowledge about network can’t estimate the impedance generated by 14 
other pedestrians in unknown links of the network. Graph nodes in unknown areas of the 15 
network have zero impedance. Pedestrians that have memory can remember the network 16 
condition of previously visited links. They store the impedance values previously calculated for 17 
each node of the graph. The past network conditions information is accessed only if the current 18 
condition is not at an accessible link. 19 

4. SIMULATIONS 20 

The following session presents the results of simulations derived from the implementation of the 21 
model described above. The main goal of these simulations was to understand how different 22 
levels of awareness of the environment impact on pedestrians’ choices and travel times. 23 

The simulation network comprises three blocks (Figure 3). Each corner of the network was 24 
numbered from 1 to 8. The length of the horizontal links is 150 m and the length of vertical links 25 
is 25 m. Pedestrians present variable desired speed with average value of 1.2 m/s and standard 26 
deviation of 0.1 m/s. 27 

 28 

FIGURE 3: Simulation network. 29 
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The simulations included two classes of pedestrians: pedestrians with fixed routes that are added to 1 
the simulation only to generate some disturb (Disturbing Pedestrians); free will pedestrians that are 2 
able to choose routes according to their best ability and knowledge (Study Pedestrians. 3 

Disturbing Pedestrians: these pedestrians do not make a route choice, they are randomly set with 4 
one of two possible routes, which are defined by corners: [1, 2, 3, 4, 8] or [1, 2, 6, 7, 8]. They are 5 
represented in the simulation by empty circles. 6 

Study Pedestrians: have origin at corner 8 and destination at corner 1. They can follow four 7 
possible minimal routes, defined by corners: [8, 4, 3, 2, 1]; [8, 7, 3, 2, 1]; [8, 7, 6, 2, 1]; [8, 7, 6, 5, 8 
1], and several other possibilities, once a pedestrian can opt for a longer route attempting to avoid 9 
conflicts with other pedestrians. Study pedestrians are represented in the simulations by black 10 
circles. 11 

5. RESULT ANALYSIS 12 

The simulations allowed assessing the performance of the three different pedestrians’ knowledge 13 
implementations (full knowledge, partial knowledge and partial knowledge with memory). The 14 
standard simulation for each implementation involved 70 Study Pedestrians. It was repeated 30 15 
times, totalizing 2100 Study Pedestrians. 16 

The first analysis’ stage presents a qualitative analysis of the pedestrians’ behavior. The second 17 
stage presents a quantitative analysis of travel times and network links traversed on the 18 
pedestrians’ trip. 19 

5.1. Qualitative Analysis 20 

This analysis aims to assess the overall performance of the three implementations, observing the 21 
interaction between pedestrians and the resultant behaviors patterns. 22 

Figure 4 shows two simulations views. Figure 4 (A) shows Study Pedestrians with full 23 
knowledge about the network condition. The simulations showed that this assumption may leads 24 
to unrealistic behaviors. In this implementation, pedestrians choose routes in order to avoid 25 
conflicts that in real situations would be impossible to predict. All the pedestrians chose the same 26 
route, avoiding the network link between corners 1 and 2, the most loaded by the Disturbing 27 
Pedestrians. Figure 4 (B) shows pedestrians with partial knowledge of the network. This 28 
simulation provides grater interaction between pedestrians, seeming more natural, befitting real 29 
situations. 30 

 31 

(A) 

(B) 
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FIGURE 4: Simulation views. 1 

The implementation of pedestrians with partial knowledge and no memory also leads to unrealistic 2 
behaviors. Sometimes pedestrians find themselves in a deadlock situation, trying to find a less 3 
congested link. Figure 5 illustrates a typical deadlock situation experienced by a Study Pedestrian 4 
that wants to reach destination avoiding unnecessary conflicts with others. At the state “A”, the 5 
pedestrian decides to follow the dashed arrow to reach the destination. Reaching the corner, at the 6 
state “B”, he faces another conflicting group, deciding to return on the same link, on the opposite 7 
direction, reaching the same position on the state “A”. 8 

 9 

FIGURE 5: Pedestrian deadlock. 10 

The deadlock situation, presented in the Figure 5, was purged with the pedestrians’ memory 11 
implementation. In this implementation, for example, the pedestrian at the state “B” would 12 
remember that the top link was also congested and could decide to face the pedestrians at the 13 
bottom link, once he is already there. 14 

5.2. Quantitative Analysis 15 

The quantitative analysis aims to evaluate the impact of the three different implementations on 16 
route length and travel times. 17 

Figure 6 shows the number of network links the pedestrians traverse during the entire trip. The 18 
minimal number of links that pedestrians should travel to reach their destination is 4. All 19 
pedestrians with full knowledge choose only minimal length routes, since they don't make any 20 
misjudgment trying to find a less congested branch. Pedestrians with partial knowledge about 21 
traffic conditions, and with no memory, sometimes oscillate into the deadlock situation previously 22 
described, traversing a large number of unnecessary links. The simulation results show that, 23 
although some pedestrians with memory use non-minimal length routes, they do not present 24 
deadlock oscillation. 25 
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 1 

FIGURE 6: Traversed links. 2 

The travel time distribution shows that there are expressive differences between the three 3 
pedestrians implementations. Pedestrians with full knowledge of the network present the lowest 4 
travel times and standard deviation (average travel time of 361 seconds and standard deviation of 5 
27 s). Pedestrians with partial knowledge, and no memory, had the highest travel times and 6 
standard deviation. The average value was 416 seconds and standard deviation 60 seconds. The 7 
simulation results of pedestrians with partial knowledge and memory, present intermediate travel 8 
times values between the two previous implementations. The average travel time was 379 seconds 9 
and the standard deviation was 37 seconds. The Figure 7 illustrates the travel times values obtained 10 
in the three implementations. 11 

 12 

FIGURE 7: Travel time distribution. 13 

6. CONCLUSIONS 14 

The modeling approach presented in this paper provides a sound representation of pedestrian route 15 
choice dynamics. Route choice is based on a combination of distance and the impedance generated 16 
by other pedestrians, adopting a pedestrian friction concept to calculate impedance. This concept 17 
proved to be capable to support additional heuristics, allowing its application in different route 18 
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choice contexts.  This paper presents three different levels of the pedestrian’s knowledge about the 1 
state of the network (full knowledge, partial knowledge and partial knowledge with memory). 2 
Performed simulations revealed that the level of pedestrians’ knowledge about the state of the 3 
network has an important role on the results. 4 

Route choices made by pedestrians with complete knowledge about the network state present the 5 
shortest distance and travel times. According to this approach pedestrians adopted the best possible 6 
route choice, regarding the combination of length and conflict avoidance for the whole trip. Most 7 
models in the literature assume this hypothesis. However, the decisions made by these pedestrians 8 
seemed unrealistic. In real life, pedestrians can’t predict conflicts in advance as observed in the 9 
simulations, especially in large networks. This approach underestimates the pedestrians’ travel 10 
times. 11 

Most real pedestrians have partial knowledge about the network state, therefore, this paper presents 12 
an implementation that represents this limitation. However, the limited knowledge of the 13 
pedestrians also led into unrealistic behaviors, as the deadlock oscillation, let to unnecessary longer 14 
routes resulting in overestimated pedestrians’ travel times. 15 

The third implementation attempted to get even closer to the actual pedestrians decision-making 16 
process by the memory implementation. The pedestrians with limited knowledge about the 17 
network and a memory of past experiences presented the more reasonable behaviors under 18 
congested conditions. This implementation solved the problems observed on the previous ones, 19 
resulting in intermediate travel time’s values. The route choice of pedestrian with partial 20 
knowledge and memory is more similar to the real life decision process, where pedestrians have 21 
partial knowledge of the environment and keep in memory the state of the places previously 22 
visited. The similarity of the real life process led to the sounder results between the three proposed 23 
implementations. 24 

The pedestrians’ implementation with partial knowledge and memory of past experiences can be 25 
extended to a wide range of situations. The model is suitable to represent urban environments and 26 
any other places where the people density can influence the pedestrians’ route choice. 27 
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ABSTRACT 1 

This paper presents a pedestrian route choice model and its calibration with real data. The model 2 
explicitly represents interaction between pedestrians as an impedance force influences pedestrians 3 
route choice. This model approach is inspired by friction forces equations, considering pedestrians 4 
avoid passing near other pedestrians with high relative velocity. Route choice process is a function 5 
of impedance force and route length. Social force model was used to model pedestrians walking 6 
behavior. Calibration was based on data acquired from a real experiment developed in a simplified 7 
network. Data collection was based on video analysis. The paper presents and discusses results 8 
from calibration processes. This model differs from others pedestrians’ route choice model because 9 
it seamlessly incorporate pedestrians social force model into route choice decision process. 10 

Keywords: route choice, model calibration, social force, pedestrian simulation, pedestrian 11 
behavior. 12 

1. INTRODUCTION 13 

Simulation of pedestrians is a complex task. In order to represent motion of pedestrians more 14 
realistically, models are required to simulate several processes, including sense and avoidance of 15 
obstacles, interaction with other pedestrians and route choice. Social force model has been 16 
successful in reproducing various observed phenomena on pedestrian simulation. Collective 17 
behaviors frequently emerge from interactions among individuals, such as shock waves in dense 18 
crowds, lanes of uniform walking directions in pedestrian counter flows, circulating flows at 19 
intersections or oscillating flows at bottlenecks [1][2][3]. This phenomenon, also called self-20 
organization, is an emergent behavior arises from interactions between agents. Studies of self-21 
organization in pedestrian crowds include pedestrian streams in corridors or alleys [4][5][6] and 22 
movement of pedestrians through a waiting crowd [5][7]. More complex studies consider escape of 23 
disoriented people from a room [8]. Understanding pedestrians´ behavior and how routes are 24 
chosen is essential for planning and designing public and private infrastructures. 25 

Majority of pedestrians’ models can be classified into two categories: (i) models where 26 
pedestrians/agents don't have imbedded route choice algorithms (route choice process can or 27 
cannot emerges from simulation) and; (ii) models where agents have imbedded route choice 28 
algorithms [9]. 29 

Selection of alternative routes in the first category happens as self-organization phenomena. This 30 
phenomenon is an emergent behavior arises from interaction between agents. These models are not 31 
suitable for wide-open spaces and complex urban networks. 32 

Models from the second category present explicit route choice capabilities. Pedestrians adopt some 33 
sort of function to find routes to destination. These models can present static or dynamic route 34 
choice process. Static route choice models are built on the assumption pedestrians walk along 35 
shortest route, defined before the trip starts, and try to walk through this route while avoiding 36 
collisions. Dynamic route choice models differ from their static counterparts on the sense they 37 
represent route changes over time. They aim to provide a sounder representation of route choice 38 
process, emulating behavior of individual pedestrians while considering variations in the 39 
environment. 40 

Several walking processes, such as route selection strategies, are based on subconscious decisions. 41 
Perception of distance and directness are the most common reasons for choosing a particular route 42 
[10]. Pedestrians frequently choose the shortest route, although they are not aware of this utility 43 
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maximization process [11]. Most models presented in the literature are concerned only with the 1 
quickest or shortest route, like Kirik et. al. [12], Dressler et. al. [13] and Lämmel et. al. [14]. 2 
However, other factors play an important role in route choice behavior, such as: peoples’ habits, 3 
number of crossings, pollution, noise levels, safety, shelter from poor weather conditions and 4 
stimulations of the environment [15].  5 

Most relevant route choice models are concerned with pedestrians' evacuation. In Kretz et. al. [16], 6 
for example, pedestrians routes are chosen based on the minimal remaining travel time to the 7 
destination. Patil et. al. [17] propose an interactive algorithm to direct and control crowd 8 
simulations. Model presented by Treuille et. al. [18] unifies route planning and local collision 9 
avoidance by using a set of dynamic potential and velocity.  10 

Teknomo [9] and Teknomo et al. [19] described an approach based on route choice self-11 
organization to model the dynamics of mobile agents, such as pedestrians and cars on a simple 12 
network graph. This modeling approach is based on the route choice self-organization of multi 13 
agents. The agents decide, when reaching a vertex, which edge to enter next. This decision is based 14 
on a set of rules regarding the agent’s observation of the local environment. The model simulates 15 
only one-directional movement from the origin to the destination vertex. In order to represent 16 
complex networks, such as urban scenarios, models need to include route choice capabilities.  17 

Calibrating a pedestrian route choice model is a complex task mainly for two reasons: (i) Many 18 
factors interfere on pedestrians route choice, (ii) data collection is difficult. In real environments, 19 
pedestrians may change routes for many reasons not subject of this study, as pavement conditions, 20 
safety, the presence of stores, and others. [15]. Tracking pedestrians along real outdoor and indoor 21 
environments is difficult due to limited view of the modeled environment. 22 

There are many different technologies regarding data collection of pedestrians. However, the 23 
manual data collection and the computer vision are the most common in the literature [20]. Some 24 
authors use video images of pedestrians recorded on a controlled environment [21][22][23]. This 25 
approach enables the study of a particular variable of interest without disturbs of other 26 
uncontrollable environment variables. In a controllable environment, the automatic detection and 27 
tracking of a pedestrian is easier due to facilities of positioning video cameras with a good view 28 
and the possibility to use colored markers for pedestrians’ identification. 29 

A pedestrian model calibration comprises several aspects. There are measurable variables as 30 
speeds, observable elements as avoidance of obstacles and other pedestrians and also behavioral 31 
aspects related to route choice preferences. The overall behavior and patterns of moving can be 32 
extracted by some measures as travel times, counting pedestrians and average speeds [24]. 33 
Schönauer at al. [25] represent the speed of pedestrians, bicycles and vehicles over a real 34 
environment using a color scale forming a heat map. The generated map characterizes the 35 
environment and allows comparisons between the collect data and simulation analysis. 36 

This paper presents a dynamic route choice model based on a combination of distance and 37 
impedance generated by other pedestrians [26]. The calculation of the impedance is derived from 38 
friction concept proposed by Helbing and Johansson [1]. The impedance generated by friction 39 
equations involve variables related to pedestrian’s profile like the desired speed and other 40 
pedestrians’ velocity. We develop a real data collection experiment to calibrate the proposed 41 
model. The results show model soundly represents the pedestrians’ route choice process. 42 

51



Werberich, Pretto and Cybis                                                                                                                            4 

 

2. THE MODEL 1 

An agent-based model is proposed to address the pedestrian route choice problem. Agent-based 2 
models represent agents’ decision-making ability based on agents’ characteristics profile and 3 
perception over the environment. In the proposed model, pedestrians are agents able to choose and 4 
recalculate routes. Pedestrians are not assigned to predetermined routes.  5 

In this model, a route is a set of coordinates followed by a pedestrian form origin to destination. 6 
The route choice process comprises distance and the interaction with other pedestrians. Route 7 
choice looks upon pedestrians' ability to avoid crowded areas and conflicting flows. The proposed 8 
approach allows the definition of several origins-destination pairs, reproducing real urban 9 
environments, like transportation stations, buildings, parks and others. 10 

The aggregation of different levels of abstraction on a simulation model is a complex task. In most 11 
cases, each level of abstraction can be separately modeled on a multi-layer simulation approach 12 
[27][28][29]. The framework adopted to describe pedestrian behavior in this model (Figure 1) 13 
presents a three-layer structure, each layer representing:  14 

(i) demand for travel: set of origin and destination; 15 

(ii) structure of simulation environment: set of nodes composing the simulation graph; 16 

(iii) pedestrians movement, sense and avoidance of obstacles: set of equations and agents 17 
behavior rules. 18 

 19 

Figure 1 – Multi-layer model 20 

 21 

2.1. Demand configuration 22 

Each origin-destination pair is associated to a number of trips and a pedestrian generation rate. 23 
Origins and destinations are associated with the nearest nodes from the graph on the environment 24 
layer. A graph is a set of objects where some pairs of objects are connected by links. The 25 
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interconnected objects are represented by mathematical abstractions called nodes. Nodes are 1 
defined as a pair of coordinates (x,y) in the simulation environment.  2 

2.2. Environment configuration 3 

The environment is described as a continuous space and is composed by geometric entities, such as 4 
rooms, doors, and other obstacles. The environment entities are linked by a graph-based structure. 5 
The graph provides a route to all entities. The graph generation process should guarantee no edge 6 
of the graph intersects any walls or obstacles. 7 

This layer also contains route recalculation areas where a pedestrian can choose between 8 
alternative routes. The role of recalculation areas will be discussed later. 9 

2.3. Pedestrian movement 10 

The social force model [1] describes pedestrian walking behavior regarding the agents’ low-level 11 
motion, collision avoidance and velocity adaptation. The social force model considers pedestrians’ 12 
motion can be described as a superposition of several forces. Helbing and Molnár [6] assume  these 13 
forces are a combination of psychological and physical forces. Pedestrians freely walk on the 14 
modeling environment seeking the next graph node of the designated route. Pedestrians’ 15 
movements are ruled by the sense and avoidance model and are not restricted to a strict set of links.  16 

A pedestrian α who wants to reach his destination r!! takes the shortest possible route. The 17 
pedestrian’s trip will usually have some intermediate destinations, r!! … !r!!. Assuming r!!  is the 18 
next partial destination, the desired direction of motion  e!(t), according Helbing and Molnár [1], 19 
will be: 20 

 e!(t) =
r!! − r!(t)
r!! − r!(t)

 (1) 

Where r!(t) denotes the pedestrian’s α position at time!t.  21 

Any pedestrian α presents a desired speed v!! and a desired direction e!. The desired velocity is, 22 
therefore, v!! t = v!!e!(t).  23 

In case of deviations from the desired velocity, the pedestrian assume a current velocity v! t .  24 
The pedestrian α tends to restore v!(t) within a certain relaxation time τ!. Helbing and Molnár 25 
[1] describe this adaptation by the acceleration term!F!!: 26 

 F!!(v!, v!!e!) =
1
τ!
(v!!e! − v!) (2) 

Pedestrians feel uncomfortable close to other pedestrians and walls; therefore, the presence of 27 
pedestrian β will result in a repulsive force affecting the motion of pedestrian α. Helbing and 28 
Molnár [1] represent this effect by f!": 29 

 f!"(r!") = −∇!!"V!"[b(r!")] (3) 

Where V!" is the repulsive potential, represented by a monotonic decreasing function with 30 
equipotential elliptical lines. The elliptical shape reproduces the pedestrian’s need for more space 31 
in the direction of motion. b is the semi-minor axis of the pedestrian ellipse defined by r!" 32 
(r!" = r! − r!). The resultant force exerted over a pedestrian is a superposition of three forces: 33 
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the force to adapt the current velocity to the desired velocity (F!!), the forces exerted by other 1 
pedestrians (f!"), and the forces exerted by walls and other obstacles. 2 

3. ROUTE CHOICE PROCESS  3 

In this model, the cost of each route is calculated as a function of two factors: route length and the 4 
impedance generated by other pedestrians. The impedance generated by the friction between 5 
pedestrians is assumed to exist even before physical contact, due to the psychological tendency to 6 
avoid passing close to individuals with high relative velocity [1]. Pedestrians seek minimal route 7 
length and minimal friction with other pedestrians. 8 

The pedestrian starts the route choice process as soon as he starts the trip. In order to choose the 9 
route, the pedestrian takes into account the distance between nodes and also the impedance 10 
generated by other pedestrians. Once a route is defined, the pedestrian walks trough this route until 11 
he reaches an area of route recalculation or the final destination. An area of route recalculation is 12 
any location where pedestrians can choose between two or more alternatives routes. 13 

Dijkistra algorithm [30] is adopted to generate valid routes for any origin/destination pair in the 14 
graph. In this formulation, cost is a combination of distance and impedance exerted by other 15 
pedestrians in the simulation. The impedance is calculated by the procedure described bellow. 16 

Figure 2 describes a pedestrian α who wants to find a route between nodes O and D on the graph. 17 
The algorithm traverses the graph assigning the cost for each link between the nodes. Figure 2 18 
shows the parameters involved in the calculation of impedance cost between nodes u and ! for 19 
pedestrian α. The impedance calculation process generates a fictitious pedestrian α! positioned on 20 
node u and has the desired direction motion,!e!!, oriented to the direction of node !. The fictitious 21 
pedestrian has the same attributes of pedestrian α (v!!!  = v!!). 22 
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 1 

Figure 2 - The route choice model 2 

 3 

To estimate the impedance exerted over the pedestrian α′ it is necessary to know the pedestrian 4 
desired velocity, v!!! ,when he is trying to walk from r!!to!r! 5 

 

 
v!!! = r! − r!

r! − r!
. v!! 

                                       (4) 

In order to calculate the impedance exerted by other pedestrians over α′, it is defined a 6 
neighborhood area around the graph nodes, with a radius Rn. The impedance is evaluated by the 7 
difference between v!!!  and the current velocity of other pedestrians β, v!, walking in 8 
neighborhood area. Only pedestrians within the neighborhood area of the node n are considered in 9 
the impedance estimation. 10 

Considering each pedestrian β currently in the neighborhood area of the node n, the absolute 11 
impedance perceived by the pedestrian α′ to walk from u to n, I!! is: 12 

 I!! = v! − v!!!
!

 (5) 
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The value of I!! is normalized over a settable parameter I!"#. The cost perceived by the pedestrian 1 
α to walk from node u to n, W!

!,!, is a balance between distance and the impedance exerted by 2 
other pedestrians: 3 

 W!
!,! = ! r! − r! . (1 + I!! /I!"#) (6) 

The described procedure is repeated until all possible routes costs are defined. Pedestrian α 4 
chooses the route with the lowest cost. The algorithm adopted to calculate the motion cost for 5 
pedestrian α′ from node u to n is presented below: 6 
Double Cost_from_node_u_to_n(Node u, Node n, Pedestrian A) 7 
{ 8 
 Double Absolute_Impedance = 0; 9 
 Vector vA = Normalize(n.position – u.position) * A.DesiredVelocity; 10 
 Q = List with all Pedestrians in the simulation; 11 
 12 
 foreach Pedestrian B in Q 13 
 if(DistanceBetween(B, n) < n.NeighborhoodRadius) 14 
  Absolute_Impedance += Module(B.currentVelocity - vA); 15 
 end if; 16 
 endforeach; 17 
 18 
 return Module(n.position – u.position) * (1 + Absolute_Impedance/ Max_Impedance); 19 
} 20 
 21 
One important aspect of model configuration is the distance between the graph nodes. The radius 22 
of neighborhood areas (Rn) is defined as half distance between nodes. Impedance measures 23 
associated to nodes neighborhood areas emulate pedestrians’ sensors. Distance between nodes 24 
must be defined in order to reduce missing pedestrians. If distance between nodes is too large the 25 
impedance estimation could not capture real pedestrians’ organization. On the other hand, if a 26 
graph is too dense, models performance can be jeopardized due to computation costs. 27 

I!"# (Equation 6) is a key parameter in the calculation of the cost perceived by pedestrians (W). 28 
This parameter acts as weighting factor between travel distance and the perceived impedance. The 29 
higher the value of Imax, the lower the willingness of pedestrians to choose an alternative longer 30 
route. The I!"# is a calibration parameter adjusted to reflect the willingness of pedestrians to trade 31 
for longer routes, depending on pedestrian's density on the shortest route. More details about the 32 
calibration process are presented in Section 6. 33 

3.1 Pedestrians level of knowledge about the environment 34 

The pedestrian’s level of knowledge about the state of the environment in an important element in 35 
the route choice process. Pedestrian knowledge concerns his awareness about the number, position 36 
and velocity of other pedestrians in the network. In this study, was considered pedestrians have 37 
partial knowledge of the network conditions and memory of past experiences. During a simulation 38 
period, pedestrians keep in memory the past conditions of the links already traveled. The memory 39 
is available for one simulation only. When another simulation is started, the pedestrians have their 40 
memory reset. Werberich et al. [31] describe the memory process in more details.  41 

4. EXPERIMENT 42 

In order to obtain data to calibrate the model a route choice experiment on a simplified network 43 
was developed. The experiment was set up inside the university campus. The network built for the 44 
experiment had 2-meter-high walls and two opposite entrances. Figure 3 shown the scenario layout 45 
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presenting detailed measurements and corners numbers from 1 to 8. The main goal of this 1 
experiment is to collect data related to the pedestrians’ route choice behavior in a congested 2 
network. For this analysis, volunteer students walked inside the scenario as if they were in a real 3 
environment.  4 

 5 

Figure 3 –Experiment layout 6 

Forty pedestrians were split into two groups of twenty pedestrians to perform the data collection. 7 
The first group walked from the entrance in corner 1 to the exit at corner 8. The other group 8 
walked into the opposite direction (corner 8 to 1). The first group was instructed to follow a fixed 9 
route. The fixed route was defined by corners {1 – 3 – 4 – 6 – 8}. The other group had no specific 10 
orientation about routes. They were free to choose any route from entrance to exit. We call these 11 
two groups by the fixed route group and the free route group, respectively. Figure 4 shows images 12 
of the experiment. White hats identify the fixed route group and black hats the free route group.  13 

Data was collected by video recording. The camera was set at approximately 15m high with a top 14 
view to capture the video images.  15 
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 1 

Figure 4 – Running the Experiment 2 

 3 

The average entrance rate for the fixed route pedestrians is 2 seconds, for free route pedestrians 5 4 
seconds. The large interval time for the free route pedestrians’ entrance ensures they make their 5 
decisions observing the environment, not simply following the previous pedestrian. 6 

The video analysis was made with the aid of software called Tracker [32]. Its main features include 7 
object tracking with position, velocity and acceleration, special effect filters, multiple reference 8 
frames and calibration points. The data collection was a semi-automatic process for video analyses. 9 
The data were collected independently for each pedestrian in the experiment. The software 10 
collected a position (x, y) for a pedestrian at each video frame; the video was recorded with 30 fps. 11 
Figure 5 shows the route for all pedestrian in the free route group. The black dashed line represents 12 
the fixed route. In the density colored map of pedestrians (figure 5) the blue color represent areas 13 
with no pedestrians and red colors represent areas with higher presence of pedestrians. The same 14 
color map was used in the calibration process for a visual feedback. 15 
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 1 

Figure 5 – Collected Data 2 

 3 

The average travel time for the free route group in the experiment was 12.8 seconds with a 4 
standard deviation of 3.6 seconds. The average distance traveled was 10.6 meters with standard 5 
deviation of 0.89 meters. 6 

5. SIMULATIONS 7 

The following session presents the results of simulations derived from the implementation of the 8 
model described above.  9 

The experiment layout and graph granularity adopted in the simulation network is presented in 10 
Figure 6. The distance between nodes is 1.0m and the Rn value is 0.5m. 11 

 12 

Figure 6 – Simulation Graph 13 

 14 

Pedestrians were generated with variable desired speed with average value of 1.0 m/s and standard 15 
deviation of 0.1 m/s. Similarly to the experiment, the simulations included two classes of 16 
pedestrians: pedestrians with fixed route and free route pedestrians. Pedestrians generation rate of 17 
the fixed route group was 1 pedestrian at each 2 seconds. The generation rate of the free route 18 
group was 1 pedestrian at each 5 seconds. 19 
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5.1. Calibration 1 

The first step of the calibration process was the adjustment of the social force model parameters. 2 
The calibration of the social force model allows the correct representation of the repulsive forces 3 
from obstacles and pedestrians. The parameters of the social force model used in this experiment 4 
were similar to those presented in Helbing and Molnár [1]. 5 

The key parameter for the calibration of the route choice process is I!"# (Equation 6). This 6 
parameter is a weighting factor between travel distance and the perceived impedance. The higher 7 
the value of I!"#, the lower the willingness of pedestrians to choose an alternative longer route. 8 
For the goals of this paper, the main calibration method was similar to Johansson et al. [33] where 9 
a microscopic simulation model was applied and calibrated by using pedestrian route data. Figure 7 10 
shows the results of five simulations with different I!"#values {0.3, 0.6, 0.9, 1.2, 1.5}. The 11 
increment of 0.3 in I!"# value was chosen as the minimal value showed a significant influence in 12 
the simulation outcomes. Density color map, average travel time and average distance traveled 13 
were adopted as calibration references to identify the best fit for the experiment data. Figure 6 14 
shows the density color map, average distance traveled and average travel time for each I!"# 15 
value, for free route pedestrians. 16 

 17 

Figure 7 – Calibration Process 18 

 19 
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5.2. Results 1 

In this case study, I!"# = 0.9 was defined as the best fit to calibrate the model. The average travel 2 
time of free route pedestrians in the experiment was 12.8 seconds with a standard deviation of 3.6 3 
seconds. The average distance traveled of the pedestrians at the experiment was 10.6 meters with 4 
standard deviation of 0.89 meters. The difference between the real average travel time and the 5 
simulation was 3.1% and for the average distance traveled was 1.8%.  6 

I!"# value variability has influence on the route distances and travel time. As I!"# increases the 7 
route distance tends to decrease. However, for higher values of I!"# the travel time tends to be 8 
extremely higher due to excessive congestion on shorter routes. Figure 8 shown the variability of 9 
travel times and distance for different values of I!"#. 10 

 11 

Figure 8 – Traveled distances 12 

 13 

The network in this experiment has four minimal routes {8-7-5-3-1}, {8-6-5-3-1}, {8-6-4-3-1}, {8-14 
6-4-2-1}. A minimal route choice model would assign pedestrians to any of these routes. However, 15 
in real circumstances pedestrians do not chose routes based only on distances. Pedestrians tend to 16 
avoid congested routes. This behavior was evident in experiment, as showed in color map (Figure 17 
5). Through adjustment of I!"#, calibrated model was able to realistically represent pedestrians’ 18 
decisions to avoid links congested by fixed route pedestrians. These results show impedance 19 
equations ability to model route choice under congested conditions. 20 

 21 

6.0. Validation 22 

Model validation is needed to assess model representativeness in different situations. Validation 23 
data were collected on the same network previously presented. The configuration of fixed route 24 
pedestrians and free route pedestrians remains, but now the number of pedestrians on fixed group 25 
was reduced to a half, remaining only 10 pedestrians. Reducing the number of pedestrians on fixed 26 
route reduce the flow generating gaps between pedestrians. Free route pedestrians are now 27 
expected to be more spread out on network comparing to previous experiment. 28 

Figure 9 shows two datasets collected from video analysis (Experiment run 1 and 2). For each run, 29 
volunteer's group performing free route pedestrians was completely changed. The heat maps were 30 
generated considering the traversed route for 20 free route pedestrians. 31 
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 1 

Figure 9 – Validation data 2 

 3 

As expected, free route pedestrians are now far most overspread in network compared with 4 
previous experiment. The simulation result (Figure 9) was run for this new scenery with previously 5 
calibrated value of Imax. (Imax = 0.9). Simulation heat map is quite similar to data collected. The 6 
effect of weaker flow of fixed route pedestrians can be observed on both collected and simulated 7 
heat maps. Free route pedestrians are still avoiding the fixed route pedestrians, but now, in a more 8 
subtly way. In the previous experiment, almost all free route pedestrians diverted from the fixed 9 
route immediately upon entering the scenario, choosing the link between the corners {8 - 7}. This 10 
avoiding behavior is now split into other links. Higher congested links are now between corners {5 11 
- 3 - 1}. These similarities between collected and simulated data show the model could be used to 12 
represent real pedestrians’ behavior. 13 

6. CONCLUSIONS 14 

Route choice is a complex process to model since most route selection strategies are based on 15 
subconscious decisions. Perception of distance and directness are most common reasons for 16 
choosing a particular route, however, other factors may also play an important role in this decision, 17 
such as density of people and people walking in the opposite direction. This model assumes cost of 18 
a route as a function of route length and impedance generated by other pedestrians. The impedance 19 
generated by friction between pedestrians is generated even before physical contact, representing 20 
the psychological tendency to avoid passing close to individuals with high relative velocity. This 21 
modeling approach provides a sound representation of pedestrian route choice dynamics. 22 
Simulations results were calibrated with real data and indicate this model provides a promising 23 
approach for real case applications. Balance between impedance and distance could be easily 24 
calibrated with a single parameter. The model approach seamlessly incorporates pedestrians social 25 
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force model into route choice decision process, and emerges as a promising approach for 1 
pedestrian route choice simulation. 2 
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Following	a	route:	a	force	field	generated	from	a	sequence	of	points	on	the	plane	
	
ABSTRACT	
	

Route choice is one of the most important activities performed by pedestrians. Graph 
based algorithms consider that a route is defined as a sequence of nodes. To follow a 
route a pedestrian must move to each of the nodes on the route sequence. This paper 
proposes a method to smooth pedestrians’ routes and guide pedestrians by generating 
a vector field. 

	
1.	Introduction	
	

Route choice is one of the most import pedestrian activities. Many 

simulation models are concerned with the pedestrian rout choice [1][2][3][4][5]. 

Among the criteria for a route choice, simulation models frequently address distance 

and jams [2][3][5]. Even with a defined route pedestrians may find obstacles that 

require some deviations from the original route. Simulated pedestrians should have 

flexibility to follow a route. Minor deviations from the original route don’t require 

route recalculation, which can be computationally expansive. 

Route choice algorithms based on graphs, as Djikstra [6] and A* [7], find the 

lowest cost route between two graph nodes. In this way, a route is defined as a 

sequence of nodes geographically placed on the environment. To follow a route a 

pedestrian must move for each of the nodes on the route sequence. Reaching one of 

the nodes, the pedestrian change its direction to the next node. The point-to-point 

displacement results in non-realistic movements, with sudden changes in the direction 

of motion, mostly with pedestrians facing many obstacles. 

The Social Forces Model [8] describes the pedestrian displacement as a sum 

of many forces exerted on the pedestrian. One of these forces is defined as the desired 

direction of motion (e). Following a route, a pedestrian directs its vector e to the next 

point on the route sequence. This paper presents a method to smoothly adjust the 

vector e  for a simulated pedestrian to ensure smooth and realistic movements. 

Proposed method generates a vector field to give the pedestrian a vector e anywhere 

on a plane, even with deviations from the original route. 

2.	Route	Calculation	
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As previously mentioned, a route is generated from a graph. Figure 1 shows 

six steps (A to F) regarding route definition and smoothing. On Step ‘A’ is presented 

the graph. Green node represent the origin, red node represent the destination. Step 

‘B’ shows the chosen route in orange. Collinear nodes must be removed from the 

route (Step ‘C’), only nodes presenting changing direction are kept. 

	
Figure	1	–	Route	definition	and	Smoothing	

	

The route smoothing process is performed from step ‘D’ onwards. The route 

trace will be represented as a set of quadratic Bézier curves [9]. Three control points 

define a quadratic Bézier curve. All the orange nodes kept on the route, after 

removing the collinear nodes (Figure 1 - Step ‘C’) will represent a central control 

point of a Bézier curve. The other two needed control points are added for each curve, 

represented by grey ‘X’. 

The distance between the control points, S, is a settable parameter. The 

distance S configuration must consider the scenario layout. Increasing S makes the 

pedestrian trajectory smoother. Scenarios with narrow aisles have limitations 

regarding smoothing, comparing with large spaces. 

A	 B	 C	

D	 E	 F	

S	
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Step ‘E’ (Figure 1) shows the Bézier curves definitions. Step ‘F’ shows the 

final route trace, on which the pedestrian will be guided. 

3.	Following	The	Route	
	

To guide a pedestrian walking over the defined route trace it is necessary to 

provide an orientation vector to the pedestrian (e). It is possible to calculate a vector e 

anywhere in a plane, generating an vector field. The desired direction of motion of a 

pedestrian, represented by the vector e, can be calculated as a sum of two vectors: 

vector O, orthogonal to the Bézier curve and vector T, tangent to the curve. 

Figure 2 shows variables involved on the vector e calculation. On Figure 2 

the green circle (point M) represent a pedestrian. The pedestrian aims to follow the 

route defined by the Bézier curve B(t). The vector O keeps the pedestrian closer to the 

route trace and the vector T directs the pedestrian along the route. Vector e is the 

result of the sum of vectors O and T. 

 

Figure	2	–	Vector	!	definition	
	

The calculation of vectors ! and ! is a complex problem considering higher 

order Bézier curves. However, for quadratic Bézier curves it is possible to calculate 

the vectors analytically. 
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Equation 1 defines a quadratic Bézier curve [9]: 

! ! = (1− !)!!! + 2! 1− ! !! + !!!!, ! ! [0,1]	

Where: B!, B! and B! are the control points of the curve, t is the independent 

variable, varying in the range [0, 1]. 

The vector O is the shortest possible vector starting on point M and ending 

over the curve B(t). Vector O is orthogonal to the curve B(t). To calculate the tangent 

line at a certain point over a curve it is necessary to calculate the derived function. 

The derivative function of a quadratic Bézier curve is defined at Equation 2: 

!′ ! =  −2 1− ! !! + 2 1− 2! !! + 2!!!	

In a simplified way: 

!′ ! =  2(! + !")	

Where: ! = !! − !!  !"# ! = (!! − !! − !) 

With Equations 1 and 2 it is possible to calculate the value of t where the 

distance between B(t) and M is shortest possible. This value of t is defined as t’. 

Vector ! is orthogonal to B(t’). To find t’ it is possible to define vector ! as ! = 

MB(t’). Knowing that the dot product between two orthogonal vectors is equal to 

zero: MB(t’) . B’(t’) = 0. 

The dot product MB(t’) . B’(t’) is shown on Equation 3: 

! − 1− ! !!! + 2! 1− ! !! +  !!!!  . ! + !" =  0	

In a simplified way: 

!!! + !!! + !" + ! = 0	
	
Where:	! =  !!,	! = 3!",	! = 2!! +!′!,	! =  !′!,	(!′ =  !! −!)	
	

The value of t’ can be found solving the simplified Equation 3. It is possible 

to solve a cubic polynomial equation analytically using the Cardano’s method. 
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In this model a route is defined as a set of quadratic Bézier curves. In this 

way, to evaluate vector e for a pedestrian in some point on plane it is necessary to 

choose only one Bézier curve on the set. To find the closest curve to the pedestrian 

the vector O must be calculated for all the Bézier curves on the set. The curve with the 

smaller module value for vector O is the closest one to the pedestrian. 

e is the resultant vector of the sum of O and T. Vector O exerts grater 

influence on points that are distant from the route. For distant points, vector O has 

large module values. In this way, when a pedestrian is distant from the route, there 

will be a strong tendency to bring the pedestrian back to walk closer to the route. 

Vector T has the same direction of vector B’(t’), however,  vector T has constant 

module value. The vector T module is a settable parameter. Higher values for the 

module of T make pedestrians less prone to walk closer to the route and more 

concerned following the route direction. Vector e is the sum of the vectors O and T, 

however, after the sum, vector e is normalized and used as a unit vector. Its function 

is to provide only direction, regardless of its modulus. 

	
4.	Results	
	

Figure 3 shows the vectors ! (green) and ! (blue) for a given route (red 

lines). The route in red is defined by four points on plane, resulting in three lines 

segments with sudden changes in direction. Vectors ! and ! were calculated for 

many points on the plane according to presented equations. It is possible to observe 

that vectors ! are orthogonal to smoothed route, connecting each point on the plane 

with the route. Vectors ! are parallel to the route and have constant module. 
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Figure	3	–	Vectors	!	e	!	

	

Figure 4 shows the final result for the proposed method, the vector field to 

provide the desired direction of motion (e) to the pedestrian. It is possible to observe 

that for closer points the vector e presents minor changes in its direction, guiding the 

pedestrian smoothly. 

	
Figure	4	–	Vector	field	–	Desired	direction	of	motion	

	

For points on the route, vector e guides the pedestrian to walk in a tangent 

direction to the route. Vectors away from the route are not shown. When a pedestrian 

is too far away from the original route he must recalculate the route. 

Figure 5 shows the effect of the distance S (Figure 1) between the Bézier 

control points on the generated vector field. On the first image of Figure 5 S has a 

small value. In this configuration a pedestrian is guided closer to the original straight 

lines, which generate the route. On the second image (Figure 5) S has a higher value. 
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In this configuration a pedestrian is guided more smoothly but distant to the original 

straight lines. 

	

	
Figure	5	–	The	effect	of	the	distance	between	the	Bézier	control	points	

	

Figure 6 shows the effect of the vector T module value on the vector field. 

The first image of Figure 6 was obtained with a small value for the T module. In this 

configuration, pedestrians’ priority is to walk closer to the smoothed route. On the 

second image (Figure 6) it was set a higher value for vector T module. In this case, 

pedestrians walk towards the destination, even if away of the original route. 

	
Figure	6	–	The	effect	of	the	vector	!	module	value	

	
5.	Conclusions	
	

Presented method allows the generation of a vector field based on tradition 

methods for route choice based on graphs. Generated vector field provide the desired 

direction of motion for a pedestrian in any position on a plane. Proposed model has 
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settable parameters that allow the adaptations on the vector field to particularities of 

the environment and the representation of different pedestrian profiles. 

Traditional pedestrians simulation models can easily adopt the proposed 

method. This method is an interface between two classical layers on pedestrians’ 

simulation: The route choice (Djikstra, A*) [6][7] and the sense and avoidance layer 

(Social Forces Model)[8]. 
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Abstract 
This paper presents an agent-based model to address the 
pedestrian route choice problem in shopping malls. 
Route choice in shopping malls may be defined by a 
number of causal factors. Shoppers may follow a pre-
defined schedule, they may be influenced by other 
people  walking, or  may want to get a glimpse of a 
familiar shopping. The route choice process assumes 
that the cost of each route can be calculated as a function 
of three factors: route length, impedance generated by 
other pedestrians and attraction for areas of interest on 
the environment. The impedance generated by the 
friction between pedestrians is assumed to exist even 
before physical contact, due to the psychological 
tendency to avoid passing close to individuals with high 
relative velocity. Pedestrians seek minimal route length 
and minimal friction with other pedestrians. In order to 
represent shopping areas environments, a new factor is 
being considered in the calculation of the route cost: the 
attraction for areas of interest on the environment. 
Simulation results were compared to real data collected 
by video recording in a shopping mall. 

1 Introduction 
Modelling of pedestrian’s behavior is a complex task and 
has been studied by different research areas. In order to 
represent motion of pedestrians more realistically, models 
are required to simulate several processes, including sense 
and avoidance of obstacles, interaction with other 
pedestrians and route choice. Agent-based abstraction has 
been widely used for pedestrian modeling, mainly due to its 
capacity to provide insights about  system´s reactions from 
changes on entities proprieties, capturing information over 
space and time at a  detailed level [Klügl and Bazzan 2012; 
Macal et al. 2006; Rossetti R. et. al. 2002]. Agent-based 
models represent agents’ decision-making ability based on 
their profile and perception over the environment. 
 
Agent-based pedestrians models require the aggregation of 
different levels of abstraction, that are modeled on different 
layers. The majority of pedestrian models present a multi-
layer simulation approach [Gaud et al. 2008; Hoogendoorn 

et al. 2002] composed by, at least, two layers: a tactical and 
an operational layer.  
 
The tactical layer chooses a path regarding an origin-
destination pair and a route choice criteria such as minimum 
distance and/or travel times. The tactical model determines 
the desired pedestrian directions, which are used in the 
operational model [Pretto et al. 2011].  
 
The operational model determines the low level microscopic 
movements of pedestrians. It is ruled by principles of 
pedestrians’sense and avoidance of obstacles. Most models 
reported in literature can be regarded as using force-based 
approaches [Helbing et al. 1991; Helbing et al. 1995]. In 
force-based models, agents evaluate forces exerted by 
infrastructure and by other agents. Helbing and Molnar 
(1995) presented a relevant work on force-based models in 
which they use Newtonian mechanics and a continuous 
space representation to model a long-range interaction. The 
concept behind this approach suggests that the motion of a 
pedestrian can be described by combination of several 
forces (including the repulsive forces from walls and other 
pedestrians). The social force model reproduces various 
emergent phenomena observed on pedestrian´dynamics. 
 
The tactical model is responsible for route choice. Realistic  
route choice is a complex process because most route 
selection strategies are based on subconscious decisions. 
Most models presented in the literature are concerned only 
with the quickest or shortest route, like Kirik et. al. (2009), 
Dressler et. al. (2010) and Lämmel et. al. (2014). However, 
other factors play an important role in route choice 
behavior, such as: peoples’ habits, number of crossings, 
pollution and noise levels, safety, shelter from poor weather 
conditions and other environment stimulations 
[Papadimitriou E., 2012]. Most relevant route choice models 
are concerned with pedestrians' evacuation. In Kretz et. al. 
(2011), for instance, pedestrians routes are chosen based on 
the minimal remaining travel time to destination. Kretz et. 
al. (2014) introduce a generic method for dynamic 
assignment used with microsimulation of pedestrian 
dynamics. In the paper, the routes mark the most relevant 
routing alternatives in any given walking geometry, 
reducing the infinitely many trajectories by which a 
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pedestrian can move from origin to destination to a small set 
of routes. Crociani and Lämmel (2016) present a work with 
two major topics. In the first topic, a novel cellular 
automaton (CA) model is proposed, which describes the 
pedestrian movement by a set of simple rules, and the 
second topic describes how the CA can be integrated into an 
iterative learning cycle where the individual pedestrian can 
adapt travel plans based on experiences from previous 
iterations. Patil et. al. (2010) propose an interactive 
algorithm to direct and control crowd simulation. The model 
presented by Treuille et. al., (2006) unifies route planning 
and local collision avoidance by using a set of dynamic 
potential and velocity. Teknomo (2008) and Teknomo et al., 
(2008) described a self-organization route choice approach 
to model the dynamics of agents, such as pedestrians and 
cars on a simple network graph. The agents decide, when 
reaching a vertex, which edge to enter next. This decision is 
based on a set of rules regarding the agent’s observation of 
the local environment. In order to represent complex 
networks, such as shopping areas and urban scenarios, 
agents need to represent more complex caracteristics and 
capabilities.  
 
The literature presents several agent-based applications to 
simulate different pedestrians’ behaviors and environments. 
The pedestrians’ simulation in a commercial environment, 
such as shopping malls, is particularly complex since 
pedestrians are exposed to different stimulus and attractions 
[Wang, W. et. al. 2014]. Agent-based simulation is 
particularly valuable for these cases because environment 
stimulus exert distinct influences depending on the person 
profile. Dijkstra et al., (2013) provide a model for pedestrian 
activity simulations in shopping environments. This 
framework provides an activity agenda for pedestrian 
agents, guiding their shopping behavior in terms of 
destination and time spent in shopping areas. Pedestrian 
agents need to successively visit a set of stores and move 
over the network. The authors assumed that pedestrian 
agents’ behavior is driven by a series of decision heuristics. 
Agents need to decide which stores to choose, in what order 
and which route to take, subject to time and environment 
constraints.  
 
Route choice in shopping malls may be defined by a number 
of causal factors. Shoppers may follow a pre-defined 
schedule, they may be influenced by other people  walking, 
or  may want to get a glimpse of a familiar shopping. 

  
Shopping agents, as described in the literature [Borgers, A., 
and Timmermans, H., 1986; Ali, W. and Moulin, B., 2006] 
usually decide (i) in which stores to stop, (ii) in what order 
and (iii) which route to take. In practice, however, shopping 
mall users´ behaviour is a combination of planned and 
unplanned decisions. Planned decisions can defined by a set 
of origin-destination pairs. Unplanned decisions may be 
resultant from eventual impulses or the attraction exerted by 
shopping windows. 
 

This paper presents an agent-based route choice model to 
represents pedestrians’ in a shopping mall environment. The 
pedestrian model allows the representation of shopping 
users capable to perform either planned and unplanned 
behaviour, depending on the agent´s profile. Simulation 
results were compared to real data collected by video 
recording in a shopping mall. 

2 The Model 
 An agent-based model is proposed to address pedestrian 
route choice problem. Agent-based models represent agents’ 
decision-making ability based on agents’ characteristics 
profile and perception over the environment. In the 
proposed model, pedestrians are agents able to choose and 
recalculate routes. Pedestrians are not assigned to 
predetermined routes. 
 
In this model, a route is a set of coordinates followed by a 
pedestrian from origin to destination. Route choice process 
comprises three factors for calculation: (i) distance, (ii) 
interaction with other pedestrians (avoiding jams) and (iii) 
attraction for areas of interest on the environment (in this 
specific case: shop windows).  
 
The framework adopted to describe pedestrian behavior in 
this model (Figure 1) presents a three-layer structure, each 
layer representing: 

(i) Demand for travel - set of origin and destination. 
Each origin-destination pair is associated to a 
number of trips and a pedestrian generation rate. 
Origins and destinations are associated with nodes 
on the environment layer.  

(ii)  Simulation environment structure -.The 
environment is described as a continuous space and 
is composed by geometric entities, such as rooms, 
doors, and other obstacles. The environment 
entities are linked by a graph-based structure 
providing a route to all entities. In this model, 
nodes are defined by a set of coordinates (x, y). 
Nodes also contain properties defining local 
features of the environment. 

(iii) Pedestrians movement, sense and avoidance of 
obstacles: set of equations and agents behavior 
rules. The social force model (1) describes 
pedestrian walking behavior regarding agents’ low-
level motion, collision avoidance and velocity 
adaptation. Pedestrians freely walk on the 
modeling environment seeking the next graph node 
of the designated route. Pedestrians’ movements 
are ruled by the sense and avoidance model and are 
not restricted to a strict set of links. 
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Figure 1 - Layers 

2.1 The Route Choice Process  
The presented route choice process is derivate from model 
established by Werberich et. al. (2014). Werberich et. al. 
propose that the cost of each route can be calculated as a 
function of two factors: route length and the impedance 
generated by other pedestrians. The impedance generated by 
the friction between pedestrians is assumed to exist even 
before physical contact, due to the psychological tendency 
to avoid passing close to individuals with high relative 
velocity [Helbing D. et al., 2000]. Pedestrians seek minimal 
route length and minimal friction with other pedestrians. In 
this model, a new factor is being considered in route cost 
calculation: attraction for areas of interest on the 
environment. 
 
The total route cost is the sum of all link costs. Dijkistra 
algorithm [Dijkstra E., 1959] is adopted to generate valid 
routes for any origin/destination pair. Figure 2 describes the 
cost calculation for a link. 

 

Figure 2 – Pedestrian’s profile and node attraction 
 

Figure 2 presents the elements involved in the route choice 
process. The cost estimation for a Pedestrian α to walk from 
node u to n involves three factors: (i) the distance between 
nodes ( r! − r! ), (ii) the impedance perceived by the 
pedestrian α exerted by other pedestrians (I!) and (iii) the 
environment attraction perceived by pedestrian α for the 
node n (A!! ). 
 
Impedance exerted by the pedestrians in the simulation is 
calculated by simple vectors operations. Subtracting the 
desired velocity of pedestrian α from the velocity of 
pedestrians closer to node n ( pedestrians !) it is possible to 
estimate I! (equation 1). 
 

I! =  !! − !!!!!
!!!!!

∗ !!! !           (1) 
where: 
v! = Pedestrian’s β current velocity; 
r!  = Node’s n vector position; 
r!  = Node’s u vector position ; 
!!!= Pedestrian’s α desired speed. 
 
The calculation of I! considers a neighborhood area around 
the node n, defined by the radius R!. All  pedestrians inside 
the neighborhood area, at the instant of the route choice, are 
nominated pedestrians β. I! is the sum of the friction forces 
exerted by each pedestrian β over the desired velocity of the 
pedestrian α. 
 
As mentioned above, the graph nodes contain properties that 
classify local features of the environment. Node properties 
define the environment characteristics. For example, 
properties can  be defined as female clothes store, male 
clothes store, electronics store, shoe store, etc. Nodes are 
defined by a set of values for all simulated properties. 
Higher properties values mean the node is closer of the 
related feature. Properties can assume values in the range [0 
– 1].  
 
The attraction exerted by these nodes properties on 
pedestrians vary dependeing on pedestrians profiles.  
Pedestrians' profiles also present a set of values for all 
simulated environment properties, that represent their 
attraction for these features. For example, male pedestrians 
probably have higher values for a property relating to a male 
clothes store. These properties also assume values  in the 
range [0 – 1]. 
 
The attraction of node n, perceived by pedestrian α (A!! ), is 
calculated as a weighted average (Equation 2): 
 

!!! =  !!!
!
!!! ∗!!!

!!!
!
!!!

                      (2) 

 
where: 
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p = total number of properties; 
P!! = pedestrian α property i value; 
N!! = node n property i value. 
 
The total estimated cost for pedestrian α to walk from node 
u to n (W!

!,!), is a balance between distance, impedance and 
attractiveness, as described in Equation 3: 
 

W!
!,! =  r! − r! . (1 + I! /I!"# + (1 - A!! ))       (3) 

 
where: 
I!"# = settable parameter that adjusts the balance between 
distance and impedance. Further  description of this 
parameter can be obtained in Werberich et al. (2014). 
 
Elected routes minimize the total cost W!. Equation 3 
ensures pedestrians are attracted to areas of interest 
considering their profile. Pedestrians also avoid congested 
areas and passing close to other pedestrians with high 
relative velocity. 

2.2 Pedestrian Stopping Behavior 
It is expected that pedestrians walking on shopping 
environment, when attracted by an environmental stimulus, 
may stop for a while. For example, pedestrians attracted by 
a shop window frequently stop walking when they get 
closer to this interest point. This model simulates 
pedestrians route choice process subjected to attraction by 
interest areas, tipical of shopping environments.  
 
To simulate pedestrians’ stopping behavior the model 
introduces the concept of hotspots. Hotspots are defined by 
a location on the environment (! and ! coordinates) and a 
neighborhood area (radius !). Hotspots have the same 
environment properties as graph nodes. When a pedestrian 
reaches the neighborhood area of a hotspot, he decides 
whether to stop or not. This decision process considers the 
pedestrian profile and the hotspot properties. Pedestrian 
profile includes a value denoting the tendency to stop on a 
hotspot (T!). Higher values of T! means the pedestrian have 
higher tendency to stop on hotspots. T! values also respect 
the range [0–1]. Equation 4 defines the probability of a 
pedestrian α stopping on a hotspot q (S!!). 
 

!!! =  (!!!
!
!!! ∗!!

!)
!!
!!

!!!
∗  !!                 (4) 

where: 
p = total number of properties; 
P!! = pedestrian α property i value; 
H!! = hotspot q property i value; 
T! = pedestrian α tendency to stop on a hotspot. 
 
 
 
 
 
 
 
 
 
 
 
 

If a pedestrian decides to stop on a hotspot neighborhood, 
the hotspot coordinates become his new destination for the 
stopping period. The balance between the pedestrian desired 

speed vector (!!!) and the forces exerted by the hotspot 
walls, keep the pedestrian standing in the neighborhood 
area. During this period, the interaction between pedestrians 
is maintained, allowing a realistic representation of 
pedestrians behavior at window shops. When a pedestrian 
stopping time has expired, a new route is recalculated to the 
final the destination.  
 
The time a pedestrian stops at a hotspot may has variable 
assumptions. In this formulation, pedestrians stopping time 
is assumed to be fixed, equal to 20 seconds. Assumptions 
about stopping times can be discussed in more detail. An 
important work regarding time spent at store windows was 
developed by Dijkstra J. et. al. (2014). In this paper, authors 
describe the time spent in a store based on pedestrians 
profile and store segment.   
 
Figure 3 presents a flowchart of the agent’s internal process.  
 

 
Figure 3  - Agent’s internal process 

 
As presented in this flowchart, a pedestrian only performs a  
route recalculation procedure after stopping at a hotspot. A 
Social Force-based route choice process considers the 
interaction with other pedestrians, which provides a 
dynamic behavior. However, if necessary, when simulating 
complex scenarios, the model structure allows the 
introduction of route recalculation areas. When simulating  
small scenarios, where the decision at the beginning of the 
trip was based on a good assessment of the way forward for 
all simulation timeframe, route recalculation may not be 
necessary. 
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3 Collected Data 
Video data were collected in a shopping mall of Porto 
Alegre, Brazil. The camera collected images from a hall that 
connects the two main corridors of the first floor. Figure 
4  presents an image of the studied area and the collected 
pedestrian routes. 
 
The software Tracker was used to collect pedestrians’ data 
in a semi-automatic process. The collected data is composed 
by a set of coordenates (x and y) over 1 minute of video for 
each pedestrian. 
 
In order to simplify the data analysis, the enviroment was 
segmented in cells. A color map representing the cumulative 
occupation of each cell is shown at figure 5, segmented by 
gender.  

 
Figure 4 – The Mall 

 
Figure 5 –Collected data 

 

Data analysis allows the identification of three stores with 
higher pedestrian attraction . Table 1 shows the number of 
pedestrians, men (M) and women (W), that were attracted 
and stopped closer to these areas.  
 
Table 1 – Stopped pedestrians 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 Simulation 
The proposed model has the potential to represent several 
properties regarding agents’ profile and environment 
characteristics. In order to simplify the simulation, only two 
properties were considered in this experiment: Male Store 
Attraction (MSA) and Female Store Attraction (FSA). 
These two properties were applied to: 
 
i.    Scenario elements: hotspots and graph nodes (MSAs and 
FSAs); 
ii.   Agents (MSAa and FSAa).  
 
The experiment was developed to identify the influence of 
MSAa and FSAa in the number of pedestrians that are 
attracted to hotspots. The MSAa and FSAa were calibrated 
based on collected data. 
 
The model was implemented using c# programming 
language (simulation engine) and Windows Presentation 
Foundation for the graphical interface. 
 
4.1 Simulation Scenario 
Figure 6 shows the simulation scenario built to represent the 
observed environment. Green areas (h1, h2, h3) are the 
hotspots. The hotspots correspond to stores where mall 
users used to stop on the real site. Dots are the graph nodes. 
Rectangles represent mall kiosks. 
 

 
Figure 6 – Simulation scenario 

 
Table 2 shows the values for MSAs and FSAs considered for 
the hotspots and its surronding yellow graph nodes. Blue 
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graph nodes (Figure 6) exert no attraction over the agent, the 
value for both MSAs and FSAs are zero. The MSAs and 
FSAs values were assumed to be constants. The MSAs and 
FSAs  definition can be enhanced by considering effects of 
various design and management attributes. An example of  
the evaluation of consumers attraction can be found in 
Oppewal, H., and Timmermans, H. (1999). The authors 
estimated a stated preference model from responses to 
descriptions of an hypothetical shopping centers considering 
attributes such as: area for pedestrians, window displays, 
street layout, and street activities.  
 
 
 
Table 2 – Hotspots configuration 
 

 

4.2 Calibration 
The calibration process aimed to calibrate the agents’ profile 
(MSAa and FSAa) in order to reproduce the number of 
stopped pedestrians at each hotspot. For this purpose, four 
groups of simulations were run (s1, s2, s3, s4).  For each 
simulation group, 50 simulations were performed. Two 
agents classes were implemented: male agents (MA) and 
female agents (FA). By definition, male agents have FSAa = 
0 and female agents have MSAa = 0. Table 3 shows the  
configuration profiles defined for each simulation group. 
 
Table 3 – Agents profile configuration 
 

simulation	group	 MA	 FA	
s1	 MSAa	=	0.1	 FSAa	=	0.1	
s2	 MSAa	=	0.5	 FSAa	=	0.5	
s3	 MSAa	=	0.7	 FSAa	=	0.7	
s4	 MSAa	=	0.9	 FSAa	=	0.9	

 
The only variables in simulations were MSAa and FSAa. 
The scenario configuration was kept constant. Agents’ 
tendency to stop (!!) was set to 0.7. According to observed 
data, each simulation run comprised 80 agents, 40% MA 
and 60% FA. Pedestrians are generated with a fixed rate 
over time, with 40% of change to be male and 60% of 
change to be female. Figure 7 shows a simulation 
screenshot, MA are green circles and FA are red circles. A 
simulation video is availiable at: 
https://youtu.be/10OUgNMaoNA. 
 
 

 
 

Figure 7 – Simulation screenshot 
 

Figure 8 shows a color map of the results for all simulation 
groups (s1, s2, s3, s4), and the average number of agents 
stopping at each hotspot (h1, h2, h3) over 50 simulation 
runs. 
 

 
Figure 8 – Simulations results 

 
4.2 Simularion Analysis 
Simulation group s3 presented the best ajustment to the 
observed data. Higher values of MSA and FSA lead to 
higher attraction to hotspots. However, it is important to 
highlight that even though a pedestrian chooses a route to 
get closer to a shop window, he needs to reach a hotspot to 
stop. If the hotspot area is too crowded, he may not reach 
the hotspot, due to the social force effect, and do not stop. 
Thus, the attraction effect has a tendency to be balanced. 
Figure 9 show the s3 color map and the color map generated 
from real data. The s3 color map is one of 50 simulations. It 
is possible to observe differences in color patterns between 
simulation and real data. This difference is due the noise of 
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pedestrians’ tracking process and camera perspective. It is 
important to highlight stopping pattern at hotspots is similar. 
 

 
Figure 9 – Real data versus simulation data 

5 Conclusions 
The modeling approach presented in this paper provides a 
sound representation of pedestrian route choice dynamics 
considering the attraction to shop windows. Route choice is 
based on a combination of distance, impedance generated by 
other pedestrians and shop window attraction. The model 
differs from other pedestrians’ route choice approaches 
because it seamlessly incorporates pedestrians social force 
into the route choice decision process. 
 
In this model, we have created an association between the 
pedestrian’s profile and store segment. When a pedestrian 
defines a route, due to its attraction to a store, he draws his 
chance to stop at a hotspot. The formulation of stopping 
chances can be enhanced through a more complex agent 
abstraction. However, it is well known that increasing 
model complexity usually leads to an increase in the 
calibration process effort.  
 
The analysis from simulations indicates that the agents’ 
emerging behavior  provides a promising approach for real 
case applications. This model formulation is capable of 
supporting more complex agents’  profiles and aplications to  
different enviroments, such as variable shopping premisses, 
expositions sites and passengers terminals.  
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7.	CONCLUSION	
	

This work proposed a computational model for pedestrians’ simulation to 

represents urban environments. The literature review showed that the simulation of 

pedestrians with the decision-making process modeled in different layers leads to 

more realistic results. Throughout the development of this Doctoral Thesis the 

modeling of the pedestrian agent gained complexity in each of its decision-making 

layers. 

Figure 3 shows, in a simplified way, the decision-making process of the 

agent. The agent makes decision based on its profile, its internal processes and the 

information it captures from the environment. The agent profile comprises all the 

settable parameters. Changes made to these parameters allow the representation of 

particularities of a pedestrian, such as: Adults, children, elderly, panicking 

pedestrians, pedestrians in a hurry, pedestrians interested in a certain type of 

environmental attraction and so on. The agent's internal processes define how the 

pedestrian reacts by combining the information in his profile with the information 

captured from the environment. 

In the proposed model the final travel destination is assigned to each agent. 

In the same way, a map is given to the agent, in the form of a graph covering the 

scenario completely. All other information required by the agent decisions is collected 

at simulation time in its operational layer. The data collected by the agent are: the 

position and speed of other pedestrians, the presence of attractors in the environment 

and obstacles. All the information collected by the agent corresponds to data collected 

for real pedestrians. Orientations and desired direction of motion are not externally 

assigned to the agent. 

Figure 3 shows the strong interdependence between the three decision layers 

of the agent. Perceptions of the pedestrian at the operational level trigger strategic and 

tactical decisions, which in turn, reflect on different behaviors at the operational level. 
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Figure 3 – The Agent Internal Process, Profile and External Data 

Proposed model was able to reproduce pedestrian behaviors observed in 

experimental environment and in a real environment. The model shows promising 

when applied in simulation of urban environments. 

7.1 Contributions 

Complementing Figure 2 presented in Section 1, Figure 4 classifies the 

contributions of the papers presented on this Doctoral Thesis. 

 

Figure 4 – Contributions 
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The paper presented in Chapter 2 describes a route choice model that 

considers the tendency of pedestrians to avoid conflicting flows. Other works 

presented in the literature reproduce the phenomenon by grouping pedestrians with 

common destinations into distinct groups, a simplification that can lead to unrealistic 

behavior in environments with complex geometry, and does not apply to simulations 

where pedestrians have distinct destinations. To represent the tendency to avoid 

conflicting flows, the model described in Chapter 2 uses the concept of Friction 

Forces. In this model the pedestrian chooses his route in order to minimize the friction 

with other pedestrians. 

In Chapter 5 it is proposed a mathematical method to smooth routes 

generated on a regular graph. The method uses Bezier curves for stroke smoothing. In 

addition to smoothing the route, the model provides the agent orientation vector, 

similar to the Floor Field models. In Floor Field models the following direction is 

calculated for several points in the scenario, sometimes dynamically, in order to 

minimize congestion. In the proposed model the pedestrian calculates only one 

orientation vector for each simulation step, allowing each pedestrian to have a 

different route. At each point of the plane it is possible to calculate an orientation 

vector, in a non-discretized way, giving smoothness and realism to the pedestrian 

movement. In the proposed method the pedestrian does not calculate orientation 

vectors on the whole scenario, calculates only for its position, reducing computational 

costs. 

In Chapter 3 presented paper describes pedestrians with limited knowledge 

about the state of the network, his knowledge is limited to the links already traveled. 

This approach eliminates unrealistic behaviors of super-organization of conflicting 

flows of pedestrians. The memory of the pedestrian in the proposed model is episodic, 

it exists only during a pedestrian trip, knowledge is not stored. 

Chapter 4 of this document describes an experiment designed for data 

collection and observation of real pedestrians in a controlled environment. The data 

collected guided the calibration and validation of the proposed model. 

The paper presented in Chapter 6 proposes a model able to represent the 

behavior of pedestrians in a shopping mall. In the proposed implementation the agent 
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is able to make strategic decisions based on its perception of the environment at the 

operational level. The simulation results represent behaviors observed in real 

environment. The model shows promise in representing the attraction of pedestrians 

by areas of interest as well as the decision to stop at these attractors. This paper 

represents pedestrians as proposed on Chapter 5, with smooth routes. The urban 

environments representation is assessed on this paper once pedestrians have 

individual profiles, distinct destinations and can be attracted by interesting areas on 

the environment. 

7.2 Future Works 

The representation of pedestrians by computational models is a difficult task 

and can lead to the conception of models of extreme complexity. To correctly guide 

the design and evolution of simulation models it is necessary to make new 

observations of real pedestrians and to perform more accurate data collection. 

Vasconcelos et. al. (2013) [21] Describe the collection of pedestrian trajectories in 

laboratory automatically using ultra-wide band tags. 

Further studies on the limitations of pedestrian awareness on the state and 

geometry of the network are needed. A real pedestrian often does not fully know the 

scenario to which he is inserted. In these situations the pedestrian is guided by 

intuition, observation of the flow of pedestrians and also by the sigs available in the 

environment. 

The model flexibility allows the inclusion of new attributes for the pedestrian 

profile as well as the pedestrian's ability to perceive new elements present in the 

environment. Some common elements perceived by pedestrians include for example: 

altitude, quality of paving, interaction with vehicles, signs, among others. 
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