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RESUMO 

Detecção de linhas de alta tensão em ambientes complexos é uma das tarefas mais desafiadoras 

em inspeções que utilizam Veículos Aéreos Não Tripulados (VANTs). Este trabalho foca em 

dar uma solução para este desafio, através do desenvolvimento de um algoritmo de controle de 

voo de precisão, que guie o VANT de maneira autônoma sobre as linhas de alta tensão. O 

algoritmo proposto é baseado em quatro etapas: Captura da Imagem, Filtragem da Imagem, 

Detecção das Linhas e Controle de Voo. Inicialmente a imagem é redimensionada para um 

tamanho em que as linhas fiquem em maior evidência, depois uma sequência de filtros é 

aplicada na imagem para reduzir ruído e evidenciar ainda mais as linhas. Depois deste pré-

tratamento, um filtro de duas dimensões com formato similar ao de uma linha de alta tensão é 

usado para extrair os pixels pertencentes as bordas destas linhas. Após a aplicação do filtro de 

duas dimensões, a Transformada de Hough é aplicada na imagem resultante para detectar os 

segmentos de reta. Por fim, todos os dados obtidos no processamento da imagem são utilizados 

para guiar o VANT de maneira autônoma pelas linhas de transmissão. O algoritmo proposto 

apresenta um eficiente sistema de detecção de linhas de alta tensão, para auxiliar o controle de 

voo autônomo de um VANT, apresentando resultados convincentes.  

 

Palavras-chave: Veículo Aéreo Não Tripulado. Processamento de Imagem. Controle de 

Movimento. Inspeção Autônoma.  



 

ABSTRACT 

Power lines detection in complex environments is one of the most important and challenging 

tasks in Unmanned Aerial Vehicles (UAV)-based inspections. This work focuses on tackling 

this challenge by developing a control algorithm to support fine grain UAV control to 

autonomously guide the aerial platform over the power lines. The proposed algorithm is based 

on four stages: Image Capturing, Image Filtering, Line Detection and Flight Control. Firstly, 

the image is cropped to a size that fits all the power lines, then a sequence of filters is applied 

in the image to reduce noise and highlight these lines. After all the image's pretreatment, a 2D 

filter with similar shape of a power transmission line is used to extract pixels that belongs to 

the line's edges. Then, the Hough Transform method detects the line segments in the edges 

result image. Lastly all the obtained data is used to autonomously guide a UAV over the power 

transmission lines. The proposed algorithm presents an efficient power transmission lines 

detecting system to support the autonomous UAV guidance, which presents convincing results.  

Keywords: Unmanned Aerial Vehicle. Image Processing. Movement Control. 

Autonomous Inspection.  



 

SUMÁRIO 

 

1 RESUMO ESTENDIDO ................................................................................................ 11 
1.1 INTRODUÇÃO ................................................................................................................ 11 
1.2 ESCOPO E DEFINIÇÃO DO PROBLEMA ......................................................................... 11 

1.3 MÉTODO PROPOSTO .................................................................................................... 12 
1.3.1 MÓDULO DE PROCESSAMENTO DE IMAGEM ............................................................... 12 
1.3.1.1 CAPTURA DA IMAGEM.............................................................................................. 12 
1.3.1.2 FILTRAGEM DA IMAGEM .......................................................................................... 13 
1.3.1.3 DETECÇÃO DAS LINHAS DE ALTA TENSÃO ............................................................. 16 

1.3.2 MÓDULO DE CONTROLE DE VOO ................................................................................ 17 
1.4 EXPERIMENTOS E RESULTADOS .................................................................................. 18 
1.5 CONCLUSÕES ................................................................................................................ 19 

2 INTRODUCTION .......................................................................................................... 20 
2.1 SCOPE AND CONTRIBUTION ......................................................................................... 23 
2.2 WORK ORGANIZATION ................................................................................................ 24 

3 BACKGROUND CONCEPTS REVIEW .................................................................... 26 
3.1 DIGITAL LINE DETECTION .......................................................................................... 26 
3.2         ROBOT OPERATING SYSTEM ....................................................................................... 32 

3.2.1         ROS PACKAGES ........................................................................................................ 33 
3.2.2         ROS STACKS ............................................................................................................. 34 

3.2.3         ROS NODES............................................................................................................... 35 

3.2.4         COMMUNICATION MECHANISMS BETWEEN ROS NODES ....................................... 35 

4 RELATED WORKS ...................................................................................................... 38 
5 PROBLEM STATEMENT ............................................................................................ 44 

6 PROPOSED METHOD ................................................................................................. 48 
6.1         IMAGE CAPTURING ...................................................................................................... 49 
6.2 IMAGE FILTERING ........................................................................................................ 50 

6.2.1         IMAGE RESIZE ........................................................................................................... 50 

6.2.2         GRAY SCALE ............................................................................................................. 51 
6.2.3         LINEAR FILTER ......................................................................................................... 52 
6.3         LINE DETECTION ......................................................................................................... 54 
6.3.1         HOUGH TRANSFORM APPLICATION.......................................................................... 55 
6.3.2         DYNAMIC REGIONS OF INTEREST ............................................................................ 56 

6.3.3         YAW AND ROLL DATA ............................................................................................... 57 
6.4         FLIGHT CONTROL ........................................................................................................ 58 

6.5 IMPLEMENTATION DETAILS ........................................................................................ 60 
7 EXPERIMENTS AND RESULTS ................................................................................ 63 
8 CONCLUSIONS ............................................................................................................. 67 
 



 

LISTA DE ILUSTRAÇÕES 

 

 

Figura 1 Ângulo perperdicular ao solo. .................................................................................... 13 

Figura 2 Imagem redimensionada. ........................................................................................... 14 
Figura 3 Convolução com filtro 2D. ......................................................................................... 15 
Figura 4 Threshold binário. ...................................................................................................... 16 
Figura 5 Detecção das linhas de alta tensão. ............................................................................ 17 
Figura 6 Cenário de teste em laboratório.................................................................................. 18 

Figure 7 Cracked insulator. ...................................................................................................... 20 

Figure 8 Frayed wire. ............................................................................................................... 21 

Figure 9 Power line inspection being doing by a man. ............................................................ 22 
Figure 10 (a) A grayscale image containing four rectangles, (b) gradient map, (c) anchor 

points, (d) final edge map. ....................................................................................... 27 
Figure 11 Line support regions. ................................................................................................ 28 
Figure 12 Rectangle approximation of line support region. ..................................................... 29 

Figure 13 Aligned points. ......................................................................................................... 29 

Figure 14 The basis of the Hough transform for line detection: (A) (x, y) point image space; 

(B) (m, c) parameter space; (C) accumulator space corresponding to (B). ............. 31 
Figure 15 Topics and Services in ROS. .................................................................................... 33 

Figure 16 Structure of a ROS package. .................................................................................... 33 
Figure 17 ROS node example. .................................................................................................. 35 

Figure 18 ROS topic example. ................................................................................................. 36 

Figure 19 ROS service example. .............................................................................................. 37 

Figure 20 Flowchart of fire detection and tracking algorithms. ............................................... 38 
Figure 21 Tracking result. ........................................................................................................ 39 
Figure 22 Data flow in the object detection, classification and tracking module. ................... 40 

Figure 23 Detection Results: UAV image, grouping of SIFT key points with LS and final 

classification map respectively. ............................................................................... 41 

Figure 24 Overall flow of the detection algorithm. .................................................................. 42 
Figure 25 The flow chart of power line recognition. ................................................................ 43 
Figure 26 The problem of using GPS waypoints to setup the power lines inspection mission: 

a) how the UAV should fly over the power lines; b) a possible deviation due to the 

lack of precision the GPS. ....................................................................................... 45 
Figure 27 Example of noise background that makes harder the detection process. ................. 46 

Figure 28 Proposed solution. .................................................................................................... 48 
Figure 29 Bird’s eye view angle. .............................................................................................. 49 
Figure 30 Resized image .......................................................................................................... 50 
Figure 31 Gray scale. ................................................................................................................ 51 
Figure 32 2D filter kernel shape. .............................................................................................. 52 

Figure 33 2D filter. ................................................................................................................... 53 
Figure 34 Binary Threshold. ..................................................................................................... 54 
Figure 35 Regions of Interest. .................................................................................................. 56 
Figure 36 Roll and Yaw estimation, respectively. ................................................................... 57 
Figure 37 Multi-rotary UAV’s flight angles. ........................................................................... 58 

Figure 38 PID Controller. ......................................................................................................... 59 
Figure 39 Flight control data. ................................................................................................... 59 

Figure 40 ROS architecture. ..................................................................................................... 61 
Figure 41 Laboratory test scenario. .......................................................................................... 63 



 

Figure 42 DJI’s simulator. ........................................................................................................ 64 

Figure 43 Route deviation in time T2 and the correction of movement in time T3. ................ 66 
 

 

 

 

 



 

LISTA DE ABREVIATURAS 

 

 

2D: Two-dimensional space 

BSD: Berkeley Software Distribution 

CUDA: Computed Unified Device Architecture 

DDR: Double Data Rate 

EDLines: Edge Drawing Lines 

ELM: Extreme Learning Machine 

GPS: Global Positioning System 

HD: High Definition 

HT: Hough Transform 

IP: Internet Protocol  

IPM: Inverse Perspective Mapping  

LBP: Local Binary Pattern 

LS: Level-Sets 

LSD: Line Segment Detector 

LTS: Long Term Support 

PC: Personal Computer 

PID: Proportional Integral Derivative 

RAM: Random Access Memory 

RGB: Red, Green and Blue 

ROI: Region of Interest 

ROS: Robot Operating System 

SIFT: Scale Invariant Feature Transform 

TCP: Transmission Control Protocol 

UAV: Unmanned Aerial Vehicle 

 

 

 

 



11 

 

1 RESUMO ESTENDIDO 

Esta seção apresenta um breve resumo do trabalho descrito nas seções seguintes. 

1.1 INTRODUÇÃO 

Inspeção de redes de alta tensão é uma tarefa perigosa e cara para as empresas 

responsáveis pela distribuição de energia. O risco que estes procedimentos oferecem à vida 

humana são muito grandes, pois se trata de uma inspeção onde os técnicos envolvidos precisam 

ter bastante habilidade. Hoje em dia estas inspeções são feitas com o auxílio de helicópteros, 

que se aproximam dos fios de alta tensão, e se tornam uma espécie de plataforma para que os 

técnicos se fixem aos cabos e façam todos os procedimentos necessários. 

Com a população dos Veículos Aéreos Não Tripulados (VANTs) muitas universidades 

e empresas começaram a investir seus recursos em pesquisas onde o foco era explorar o 

potencial deste equipamento para os mais diversos fins. Sabendo do alto nível de 

periculosidade, assim como os custos envolvidos, não demorou muito para que estudos 

começassem a serem desenvolvidos objetivando a inserção dos VANTs na inspeção das redes 

de alta tensão.  

1.2 ESCOPO E DEFINIÇÃO DO PROBLEMA 

Este trabalho tem como objetivo facilitar as inspeções de redes de alta tensão, com a 

utilização de VANTs auxiliando no procedimento de inspeção. Para isto um sistema que 

identifica linhas de alta tensão e fornece dados para o controle de voo é proposto neste trabalho.  

Equipado com um computador embarcado capaz executar tarefas em tempo real e 

câmera de captura de vídeo de alta definição, o VANT  deve sobrevoar as linhas de alta tensão, 

identificá-las através do módulo de processamento de imagem, e a partir da identificação das 

mesmas, extrair informações de posição para atuar no controle do voo. 
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Este trabalho, embora tenha apresentado uma certa robustez com relação a variação da 

luminosidade durante a captura de vídeo, não trata estes problemas em específico, assim como 

fatores climáticos que possam vir a atrapalhar o voo durante a missão. Também vale ressaltar 

que o controle de voo proposto neste trabalho se utiliza de controladores proporcionais 

integrais derivativos (PID) genéricos, e não efetua nenhum estudo aprofundado no intuito de 

extrair melhores resultados dos mesmos.  

1.3 MÉTODO PROPOSTO 

Para atingir o objetivo deste trabalho, o sistema foi dividido em dois módulos: módulo 

de processamento de imagem e módulo de controle de voo. Como o próprio nome já sugere, o 

módulo de processamento de imagem é responsável por todas as etapas que envolvem a captura 

e processamento das imagens. Já o módulo de controle de voo é responsável por extrair as 

informações de posicionamento das linhas de alta tensão identificadas nas imagens capturadas, 

e transformar estas informações em estímulos para o VANT. 

1.3.1 MÓDULO DE PROCESSAMENTO DE IMAGEM 

O módulo de processamento de imagem apresenta as seguintes etapas: captura da 

imagem, filtragem da imagem e detecção das linhas de alta tensão na imagem. Estas estapas 

serão descritas nas seções a seguir. 

1.3.1.1 CAPTURA DA IMAGEM 

A forma como a imagem é capturada tem papel fundamental no sucesso da execução do 

sistema. O ângulo de captura deve ser perpendicular ao solo, pois isto facilita a identificação 

das linhas de alta tensão já que as deixa paralelas umas às outras. A altura de voo acima das 

linhas também é importante ser definida. Nos testes efetuados para este sistema, alturas entre 

6 a 8 metros acima das linhas obtiveram bons resultados.  
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A câmera usada neste trabalho foi a ZENMUSE X3 fornecida pela empresa DJI. Esta 

câmera vem acoplada a um gimbal, o qual facilita a obtenção do ângulo desejado e exclui a 

necessidade de obtê-lo computacionalmente, reduzindo, assim, custos computacionais. A 

Figura 1 mostra um exemplo de imagem capturada onde o angulo é perpendicular ao solo.  

 Figura 1 Ângulo perperdicular ao solo. 

 

1.3.1.2 FILTRAGEM DA IMAGEM 

Para que a detecção das linhas de alta tensão seja efetuada com sucesso, alguns filtros 

são aplicados na imagem para segmentar as linhas do resto das informações presentes. 

O primeiro passo é reduzir a resolução da imagem capturada. A resolução mínima de 

captura da ZENMUSE X3 é 1280x720 pixel, o que é uma resolução muito alta para 

processarmos em um computador embarcado. Porém se reduzirmos muito a resolução da 

imagem, podemos acabar perdendo informações importantes dos pixels das linhas e isto pode 

acarretar em uma maior dificuldade na detecção das mesmas. Então, através de uma série de 

experimentos, chegamos a conclusão que a resolução de 624x352 pixels seria o suficiente. A 

Figura 2 mostra a imagem redimensionada para a resolução proposta. 

 

Origem: Google 
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Figura 2 Imagem redimensionada. 

 

Após o redimensionamento da imagem, o próximo passo foi remover o máximo de 

informação que não é de interesse, possível. Para isso, a imagem redimensionada foi 

convoluída com um filtro 2D de kernel retangular, similar a um segmento de reta, que por sua 

vez é similar a um segmento de linha de alta tensão. O resultado da convolução deste filtro 

pode ser visto na Figura 3. 

 

 

 

 

 

 

 

 

Origem: I. Wieczorek 
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Figura 3 Convolução com filtro 2D. 

 

A Figura 3 mostra o resultado da aplicação do filtro. Nela podemos observar que quase 

a totalidade de informações não relacionadas com as linhas de alta tensão foi removida. Além 

disso, os pixels pertencentes as linhas de alta tensão foram realçados, facilitando, assim, os 

próximos passos do método proposto.  

Após a convolução da imagem com o kernel retangular, embora a quantidade de 

informação não relevante tenha sido reduzida, um filtro de threshold binário é aplicado. Este 

filtro segmenta os pixels das imagens de acordo com um valor dado, transformandos para 0 ou 

1. O valor utilizado para este filtro foi encontrado empiricamente, através de tentativa e erro. 

O resultado da aplicação deste filtro pode ser visto na Figura 4. 

 

 

 

  

Origem: I. Wieczorek 
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Figura 4 Threshold binário. 

 

1.3.1.3 DETECÇÃO DAS LINHAS DE ALTA TENSÃO 

A etapa de identificação das linhas de alta tensão utiliza a imagem resultante da 

filtragem e aplica a Transformada de Hough para a segmentação das linhas. Os primeiros 

frames processados são utilizados como uma espécie de calibração do processo. Nestes frames, 

após a declaração manual da quantidade de linhas que serão identificadas, o sistema efetua 

uma varredura em toda a imagem em busca das linhas. Após identificadas, o sistema calcula a 

posição das mesmas e cria regiões de interesse ao redor destas linhas. Estas regiões de interesse 

são utilizadas como máscaras para a imagem, ou seja, a Transformada de Hough passa a ser 

aplicada apenas no interior destas regiões, reduzindo assim custo computacional. Estas regiões 

de interesse são dinâmicas, ou seja, elas se adaptam conforme a variação da posição das linhas 

a cada frame processado. 

 

 

 

Origem: I. Wieczorek 
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Figura 5 Detecção das linhas de alta tensão. 

 

1.3.2 MÓDULO DE CONTROLE DE VOO 

No módulo de controle de voo as informações de posição das linhas identificadas no 

módulo de processamento de imagem são extraídas e utilizadas como entrada de dados para 

os controladores PID, que controlarão os eixos Yaw e Pitch do VANT. 

O VANT possui três eixos de voo, PITCH, ROLL e YAW. O eixo PITCH é o que define 

a velocidade do VANT e este foi definido como uma constante, neste caso 10m/s. O eixo 

ROLL é o que desloca o VANT para a esquerda e para a direita. O eixo YAW é o eixo que 

permite o VANT girar no seu próprio eixo. Como a velocidade é constante, os controladores 

atuarão apenas em dois eixos.  

Conforme o VANT se desloca a referência das linhas de alta tensão varia, e de acordo 

com esta variação os controladores geram saídas que serão transformadas em estímulos na 

navegação do VANT. Toda esta comunicação é feita através de um sistema operacional 

robótico, chamado ROS. Este sistema operacional é responsável por toda a comunicação entre 

Origem: I. Wieczorek 
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os periféricos envolvidos, como a câmera, a placa controladora de voo e os módulos de 

processamento de imagem e controle de voo. Isto tudo é possível devido a facilidade que o 

ROS nos traz, através da abstração de hardware fornecida pelo mesmo. Assim não é necessário 

perder tempo desenvolvendo drivers para os periféricos inseridos no sistema, basta apenas 

desenvolver uma arquitetura de troca de mensagens. 

1.4 EXPERIMENTOS E RESULTADOS 

A validação do sistema proposto se deu em laboratório. Os equipamentos utilizados 

foram: VANT Matrice 100 da DJI, computador embarcado Manifold com 2.3GHz de 

processamento e 2GB DDR3 de RAM também fornecido pela DJI, uma webcam para simular 

a variação de posicionamento das linhas em uma folha de papel e um computador com o 

simulador da DJI para experimentos com a utilização de VANTS. 

 

Figura 6 Cenário de teste em laboratório. 

 

O experimento consistiu em analisar os tempos de resposta do VANT de acordo com  a 

variação de posição da linha de referência. O tempo de resposta de um laço do systema 

Origem: I. Wieczorek 
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alcançou 150ms, o que foi muito satisfatório devido a complexidade do sistema. O sistema foi 

capaz de gerar estímulos nos dois eixos controlados, ROLL e YAW.  

1.5 CONCLUSÕES 

O sistema alcançou o objetivo esperado, que era identificar as linhas e gerar estímulos 

de controle de navegação. O sistema de processamento de imagem se mostrou bastante eficaz 

na identificação e segmentação de linhas em estudos de caso reais, com ambientes bastante 

ruidosos e de difícil segmentação. O fluxo sistêmico de geração se estímulos para o controle 

de voo se mostrou viável, embora o controle de voo não tenha sido explorado e estudado 

afundo. 
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2 INTRODUCTION 

High voltage transmission lines inspection is a dangerous and expensive task done 

periodically by companies in charge of power distribution. These inspections have the 

objective of search for anything that could potentially cause a problem in the power 

distribution, as cracked insulators and frayed wires, for example. Very often, the transmission 

lines crosses areas of difficult access, demanding high skilled professionals and costly 

equipment, which makes the inspection slow and expensive. Figure 7 presents an example of 

a cracked insulator as an example of a problem that is searched in these inspections. 

Figure 7 Cracked insulator. 

  

With the popularization of the UAVs (Unmanned Aerial Vehicles), many applications 

that take advantage of their facilities, such as low cost, easy access to remote areas, remote 

sensing and easy maintenance, began to emerge. Following this trend, researches aiming the 

optimization of the high voltage transmission lines inspection using UAVs started. The main 

benefit of the usage of UAVs to do this task, besides the cost reduction, is the human life risk 

reduction, since this profession is considered a profession of high risk. Besides the inherent 

risk of fly with manned helicopters close to power transmission lines, some types of problems 

may increase the risk of accidents, such as frayed wires that are about to rip what may occur 

Image Source: Google 
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during the inspection. Figure 8 presents an example of frayed wire. Figure 9 presents an 

example of a conventional way to perform transmission power line inspection with a manned 

helicopter and a human inspector close to the lines.  

Figure 8 Frayed wire. 

 

The challenges on this kind of application are basically the detection and segmentation 

of the transmission power lines and the autonomous control of the UAV. Pattern recognition 

in images has been a live research topic in computer vision, and there are still many challenges 

in real applications that applies this technique. This kind of application requires a robust and 

reliable algorithm to detect the transmission lines and towers, and at the same time avoid 

colliding with these structures, ensuring a safe flight. However, such application needs to fit 

in embedded hardware carried by the UAVs that although nowadays possess a substantial 

processing power, they are still considered as a limiting factor (HULENS, 2015). 

Pattern recognition in images has been an important research topic in computer vision, 

and there are still many challenges in real applications that applies this technique (HUANG, 

2014) of the type of application considered in this work requires a robust and reliable algorithm 

to detect the transmission lines and towers, and at the same time, avoid colliding with these 

structures, ensuring a safe flight.  

Image Source: Google 
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Figure 9 Power line inspection being doing by a man. 

 

Knowing that the aerial images captured by the UAV's camera have complex 

backgrounds, the illumination can vary according to UAV's movement and the camera's quality 

determines how good the captured image is, a solution that considers all these factors is a must. 

The work presented in (ZHANG, 2010) points out that the traditional edge detection algorithms 

cannot achieve ideal effect in the extraction of power lines, and the method of simple 

randomized Hough Transform to extract the power lines presents missed detections and wrong 

detections. The work presented in (SUN, 2010) reports a conducted a study on the Sobel and 

Canny edge detection operator for image detection of transmission lines and it shows that, 

using edge operator for images in the complex background is still insufficient due to the 

difficulty of parameterization. In (LI, 2010) it is reported the development of an image 

processing system that automates conductor localization and spacer detection in order to 

reduce the work required in visual inspection. In (KOSHELEV, 2015) it is reported the 

proposal of a method that allows detecting transmission lines and estimating their filter 

parameters without any human intervention, but their method uses a priory data as power line 

towers position and UAV's position. By the restrictions and limitations reported in these works 

found in the literature review, it is clear that a complete solution for automated UAV movement 
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control assisted by embedded image processing of power transmission lines detection is still 

an open research topic.  

2.1 SCOPE AND CONTRIBUTION 

The objective of this work is to develop a system that can identify transmission power 

lines in captured images by a UAV during its flight and, based on the power lines position, 

generate data to assist its flight while in mission. This system intends to assist the inspections 

that are done nowadays with a safer and cheaper solution.  

The first alternative that could be considered to trace a route to a UAV inspect power 

lines would be using the GPS coordinates of the poles that support the transmission power 

lines. These coordinates would guide the UAV through pole to pole, while it flies over the 

transmission power lines, until it finishes its mission. The problem is the precision of the GPS 

coordinates reference. It is known that the GPS coordinates have a margin of error that can 

reach meters away, and this lack of precision may make the UAV not fly over the transmission 

power lines at all. Thus, observing this problem, the necessity of a fine grain algorithm that 

does these flight adjustments was identified. 

The power lines detection in images acquired by UAVs is a complex problem. Due to 

the large number of variables in the considered image analysis problem, this number needs to 

be delimited to restrict the bounders of a feasible solution. The first characteristic to be 

considered is the fact that the aerial image have to show the power lines from the top, collinear 

with the motion shown in the acquired video. To begin the process of line detection, the first 

image frame has to contain the number of power lines to be detected, for example, let's consider 

segments with three parallel lines. Then, the algorithm detects these lines and follow through 

the next frames. The illumination can interfere, because this kind of image always use natural 

environmental light, so this problem need to be treated by the algorithm. 
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The focus of this work is to propose an approach for power line detection, and then, 

using the obtained data, do an autonomous flight with a rotary wing UAV over the detected 

lines. In this case, features like distances between the lines and other objects, detection of 

defects in the power transmission lines structures, like towers, transformers, and the power 

lines themselves are not treated by the method. As can be seen on the work presented in 

(SAMPEDRO, 2014), changes in the background are another common source of problems that 

the vision systems have to deal with. In cases in which these background changes occur, there 

is a big change of the image processing system parametrization, so the algorithm needs to be 

robust against environment changes. 

Another factor that interferes in the execution of the method is the image's quality. 

Considering quality of the images, there are many factors like focus, stabilization and their 

size. The last cited factor has a direct impact in the processing cost, in view of implementation 

on an embedded system, this parameter must to be seriously taken into account. The other 

parameters are treated by the hardware to stabilize the image and with the software which 

controls the camera system to maintain the focus. 

Currently on the area of automated power line detection using UAVs, there are no 

solution that fully addresses the problem, thus there is a wide area for research. In this work, 

the focus is to propose a solution to detect the power lines and to do an autonomous flight 

using an efficient and reliable algorithm considering the boundary conditions and the scope 

delimited in this section. Thus, the contribution provided by this work is a solution that 

composes the embedded image processing for the power lines detection and its integration in 

the UAV movement control to support its autonomous flight over the power transmission lines.   

2.2 WORK ORGANIZATION  

This work is organized as follows: Section 2 presents the background concepts and 

Section 3 discusses the related works. Section 4 presents the problem statement, presenting the 



25 

 

details that delimit the scope of this work, while Section 5 describes and provides details about 

the proposed method to the addressed problem. Section 6 presents the performed experiments 

and discusses the obtained results, while Section 7 concludes the work providing directions for 

future work. 
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3 BACKGROUND CONCEPTS REVIEW 

3.1 DIGITAL LINE DETECTION 

Power lines detection constitutes an important part of this work. Digital camera based 

methods consider these power lines as digital lines and edges which are desired to be detected 

using line and edge detectors. EDLines, LSD and Hough Transform are the best line detection 

methods that are known in the literature. (YETGIN, 2015). 

EDLines, or Edge Drawing Lines, is an edge detection algorithm that instead of give 

out a binary edge image as output, as Canny method does, where the detected edge pixels are 

usually independent, disjoint, discontinuous entities, it produces a set of edge segments, which 

are clean, contiguous, i.e., connected, chains of edge pixels. Thus, while the outputs of other 

edge detectors require further processing to generate potential object boundaries, which may 

not even be possible or result in inaccuracies; EDLines not only produces perfectly connected 

object boundaries by default, but it also achieves this in blazing speed compared to other edge 

detectors (AKINLAR, 2011). 

 

Given a grayscale image, ED performs edge detection in four steps: 

(a) The image is first passed through a filter, e.g., Gauss, to suppress noise and 

smooth out the image. A 5 × 5 Gaussian kernel with σ = 1 is used by default. 

(b) The next step is to compute the gradient magnitude and direction at each pixel 

of the smoothed image. Any of the known gradient operators, e.g., Prewitt, 

Sobel, Scharr, etc., can be used at this step. 

(c) In the third step, a set of pixels is computed, called the anchors, which are pixels 

with a very high probability of being edge elements. The anchors correspond to 

pixels where the gradient operator produces maximal values, i.e., the peaks of 

the gradient map. 
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(d) Finally, the anchors computed in the third step are connected by drawing edges 

between them; hence the name Edge Drawing (ED). The whole process is 

similar to children’s boundary completion puzzles, where a child is given a 

dotted boundary of an object, and s/he is asked to complete the boundary by 

connecting the dots. Starting from an anchor (dot), ED makes use of the 

neighboring pixels’ gradient magnitudes and directions, and walks to the next 

anchor by going over the gradient maximas. If you visualize the gradient map as 

a mountain in 3D, this is very much like walking over the mountain top from 

one peak to the other.  

Figure 10 presents the four steps described. 

Figure 10 (a) A grayscale image containing four rectangles, (b) gradient map, (c) anchor points, 
(d) final edge map. 

 

Given an edge segment comprised of a contiguous chain of edge pixels, the goal of this 

step is to split this chain into one or more straight line segments. The basic idea is to walk over 

the pixels in sequence, and fit lines to the pixels using the Least Squares Line Fitting Method 

until the error exceeds a certain threshold, e.g., 1-pixel error. When the error exceeds this 

Image Source: AKINLAR 
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threshold, we generate a new line segment. The algorithm then recursively processes the 

remaining pixels of the chain until all pixels are processed. 

 

  

Figure 11 Line support regions. 

 

The LSD method is aimed at detecting locally straight contours on images which are 

called line segments. Contours are zones of the image where the gray level is changing fast 

enough from dark to light or the opposite. Thus, the gradient and level-lines of the image are 

key concepts and are illustrated in Figure 11. 

 

Each line support region (a set of pixels) is a candidate for a line segment. The 

corresponding geometrical object (a rectangle in this case) must be associated with it. The 

principal inertial axis of the line support region is used as main rectangle direction; the size of 

the rectangle is chosen to cover the full region, as in Figure 12. 



29 

 

Figure 12 Rectangle approximation of line support region.  

 

Each rectangle is subject to a validation procedure. The pixels in the rectangle whose 

level-line angle corresponds to the angle of the rectangle up to a tolerance τ are called aligned 

points, see Figure 13. 

 

Figure 13 Aligned points. 

 

The total number of pixels in the rectangle, n, and its number of aligned points, k, are 

counted and used to validate or not the rectangle as a detected line segment. 

The validation step is based on the a contrario approach and the Helmholtz principle 

proposed by (DEOLNEUX, 2015). The so-called Helmholtz principle states that no perception 

(or detection) should be produced on an image of noise. Accordingly, the a contrario approach 

proposes to define a noise or a contrario model H₀ where the desired structure is not present. 

Then, an event is validated if the expected number of events as good as the observed one is 

Image Source: GROMPONE 
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small on the a contrario model. In other words, structured events are defined as being rare in 

the a contrario model.  

In the case of line segments, the number of aligned points is the main concern, so the 

event that a line segment in the a contrario model has as many or more aligned points is 

considered as in the observed line segment (GROMPONE, 2010). 

The Hough Transform (HT), was originally introduced as a method of detecting 

complex patterns of points in binary image data by determining specific values of parameters 

which characterize these patterns. Spatially extended patterns are transformed so that they 

produce spatially compact features in a space of possible parameter values. This method 

converts a complex global detection problem in image space into a more easily solved local 

peak detection problem in a parameter space. The method can be illustrated by considering 

identifying sets of collinear points in an image. A set of image points (x, y) which lie on a 

straight line can be defined by a relation, f, such that 

 

𝑓((𝑚̂, 𝑐̂), (𝑥, 𝑦)) =  𝑦 − 𝑚̂𝑥 − 𝑐̂  =  0  (1) 

 

where m and c are two parameters, the slope and intercept, which characterize the line. 

Equation (1) maps each value of the parameter combination (𝑚̂, 𝑐̂) to a set of image points. 

The hat symbol denotes quantities in the domain of the mapping. The mapping is one to many 

from the space of possible parameter values to the space of image points. The HT uses the idea 

that Eq. (1) can be viewed as a mutual constraint between image points and parameter points 

and therefore it can be interpreted as defining a one to many mapping from an image point to 

a set of possible parameter values. This corresponds to calculating the parameters of all straight 

lines which belong to the set that pass through a given image point (𝑥̂, 𝑦̂). This operation is 
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called backprojection of the image point and the defining relation which achieves this is given 

by: 

 𝒈((𝒙̂, 𝒚̂), (𝒎, 𝒄)) = 𝒚̂ − 𝒙̂𝒎 −  𝒄 =  𝟎 (2) 

       

 

Figure 14 The basis of the Hough transform for line detection: (A) (x, y) point image space; (B) (m, 
c) parameter space; (C) accumulator space corresponding to (B). 

 

In the case of a straight line each image point (𝑥̂, 𝑦̂) backprojects or defines a straight 

line in (m, c) parameter space. Figure 14a is a typical point image and Figure 14b shows the 

parameter lines produced by backprojecting image points into parameter space using Equation 

2. Points which are collinear in the image space all intersect at a common point in the parameter 

Image Source: ILLINGWORTH 
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space and the coordinates of this parameter point characterizes the straight line connecting the 

image points. The HT identifies these points of intersection in parameter space. Determination 

of the point of intersection in parameter space is a local operation and should be considerably 

easier than detecting extended point patterns in image space (ILLINGWORTH, 1988). 

3.2 ROBOT OPERATING SYSTEM  

ROS (Robot Operating System) is a BSD-licensed system for controlling robotic 

components from a PC. ROS includes libraries and tools that helps in development of 

applications in robotic area, including abstraction of hardware, drivers, specific libraries, 

viewers, message transmission, package management and many others functionalities. The 

ROS system was developed with the objective of promote collaboration between robotic 

developers, allowing, for example, that different research groups could collaborate with each 

other exchanging experiences and reusing code. 

ROS is one of the most utilized operating systems available to robots (KEER, 2012) 

with works being developed both in industrial environment (ROBOT OPERATING SYSTEM, 

2017) and academic environment like courses that teaches basic robotics concepts using ROS 

as one of the components of a virtual laboratory (CORRELL, 2013).  

This section will describe the ROS Packages, ROS Stacks, ROS Nodes and the 

communication mechanism between the ROS Nodes, as shown in Figure 15. These are the 

basic concepts of the ROS architecture and will helps the contextualization of the ROS system 

in the proposed system in this work. 

 



33 

 

Figure 15 Topics and Services in ROS.  

 

3.2.1 ROS PACKAGES 

Software in ROS is organized in packages. A package might contain ROS nodes, a ROS-

independent library, a dataset, configuration files, a third-party piece of software, or anything 

else that logically constitutes a useful module. The goal of these packages it to provide this 

useful functionality in an easy-to-consume manner so that software can be easily reused. In 

general, ROS packages follow a "Goldilocks" principle: enough functionality to be useful, but 

not too much that the package is heavyweight and difficult to use from other software (ROBOT 

OPERATING SYSTEM, 2017). The structure of a ROS package is presented in Figure 16. 

 

Figure 16 Structure of a ROS package. 

 

Image Source: I. Wieczorek 

Image Source: Robot Operating System 
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 Figure 16 describes the ROS package structure. Each package has a particular name 

that usually makes reference to its functionality. The src/ folder stores all the source codes of 

the application. The bin/ folder stores the generated executable files. The lib/ folder stores all 

the shared libraries. The build/ folder stores all the compiled files. The launch/ folder stores all 

the package initialization files. The include/ stores all the header files. The manifest.xml file 

contains basics information about the package. The CMakelist.xml file contains definitions 

about the package compilation.  

 

3.2.2 ROS STACKS 

Packages in ROS are organized into ROS stacks. Whereas the goal of packages is to 

create minimal collections of code for easy reuse, the goal of stacks is to simplify the process 

of code sharing. Stacks are the primary mechanism in ROS for distributing software. Each 

stack has an associated version and can declare dependencies on other stacks. These 

dependencies also declare a version number, which provides greater stability in development 

(ROBOT OPERATING SYSTEM, 2017). 

Stacks are the basic unit of releasing ROS code. They usually collect together 

thematically similar Packages. Ultimately Stacks are meant to bundle together code that is 

developed together and is mutually interdependent. For example, the navigation stack consists 

of several planner packages, a high-level ROS node, a localization package, and obstacle data 

structures. 

Stacks collect packages that collectively provide functionality, such as a navigation 

stack or a manipulation stack. Unlike a traditional software library that the developer can link 

against at compile time, these stacks can also provide this functionality at runtime via ROS 

topics and services. 
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3.2.3 ROS NODES 

A node is a process that performs computation. Nodes are combined together into a 

graph and communicate with one another using streaming topics, RPC services, and the 

Parameter Server. These nodes are meant to operate at a fine-grained scale; a robot control 

system will usually comprise many nodes. For example, one node controls a laser range-finder, 

one Node controls the robot's wheel motors, one node performs localization, one node 

performs path planning, one node provides a graphical view of the system, and so on (ROBOT 

OPERATING SYSTEM, 2017). 

The use of nodes in ROS provides several benefits to the overall system since is possible 

to isolate errors to individual nodes. Another benefit is the code complexity reduction when 

compared to monolithic systems. The implementation details of the nodes are also well hidden, 

since they provide an API (Application Programming Interface) simplified that allows 

alternative implementations even in other programming languages. 

Figure 17 shows an example of two nodes sending (talker) and receiving (listener) data. 

This node connection is made through a topic, which publishes messages to all subscribed 

nodes 

 Figure 17 ROS node example. 

 

3.2.4 COMMUNICATION MECHANISMS BETWEEN ROS NODES 

To provide communication between the nodes, ROS make use of three mechanisms:  

Image Source: I. Wieczorek 
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(a) Topics: Topics are named buses over which nodes exchange messages. Topics 

have anonymous publish/subscribe semantics, which decouples the production 

of information from its consumption. In general, nodes are not aware of who 

they are communicating with. Instead, nodes that are interested in 

data subscribe to the relevant topic; nodes that generate data publish to the 

relevant topic. There can be multiple publishers and subscribers to a topic 

(ROBOT OPERATING SYSTEM, 2017). 

Topics are intended for unidirectional, streaming communication. Nodes that 

need to perform remote procedure calls, i.e. receive a response to a request, 

should use services instead. Figure 18 represents a ROS topic with its publishers 

and subscribers. 

 Figure 18 ROS topic example.  

  

(b) Services: The publish/subscribe model is a very flexible communication 

paradigm, but its many-to-many one-way transport is not appropriate for RPC 

request/reply interactions, which are often required in a distributed system. 

Request/reply is done via a Service, which is defined by a pair of messages: one 

for the request and one for the reply. A providing ROS node offers a service 

under a string name, and a client calls the service by sending the request message 

and awaiting the reply. Client libraries usually present this interaction to the 

programmer as if it were a remote procedure call (ROBOT OPERATING 

SYSTEM, 2017). Figure 19 represents a ROS service. 

Image Source: I. Wieczorek 
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ROS Services also can make persistent connection to a service, allowing high 

performance at the cost of less robustness to service provider change. 

Figure 19 ROS service example. 

 

(c) Action Servers: In any large ROS bases system, there are situations in which 

someone would like to send requests to a node to perform some task and also 

receive a reply to the request. This scenario is very common and can be achieved 

via ROS Services described above. But in some cases, if the service takes a long 

time to execute, the user might want the ability to cancel the request during 

execution or get periodic feedback about how the request is progressing. The 

Action Server mechanism provides tools to create servers that execute long-

running goals that can be preempted (ROBOT OPERATING SYSTEM, 2017). 

It also provides a client interface in order to send requests to the server. 

Image Source: I. Wieczorek 
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4 RELATED WORKS 

(YUAN, 2015) have proposed a new application to UAVs for environment surveillance. 

They worked on a UAV based forest fire detection and tracking method. The basic idea of the 

proposed method is to adopt the channel “a” in Lab color model to extract fire-pixels by 

making use of chromatic features of fire. 

In order to achieve the main objective of their work, the paper conducts a preliminary 

research on developing a set of image processing algorithms that are capable of effectively 

detecting and tracking forest fire. Through laboratory experiments analyzing fire segmentation 

results of using different color spaces, they found that the “channel a” of Lab color model 

segmentation, which usually displays the reddish color, has the best results of fire 

segmentation. 

The test scenarios were basically two: real forest fire images and real-time fire images.  

The experimental results proved that the proposed algorithm can not only test with real forest 

fire images, but also perform well with the images collected by a UAV in lab environment. 

Figure 20 Flowchart of fire detection and tracking algorithms. 

 

(YANG, 2016) proposed an edge-based moving object tracking algorithm for an 

embedded platform. Their work has the objective of tracking objects in real time, processing 

images sequences of 1280 x 720 resolution. In the proposed method, an adaptive local edge 

detection method is employed to extract the feature pixels of a tracked object. To improve the 

effectiveness of the proposed method, a region-based local binary pattern feature was 

Image Source: YUAN 
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employed to describe the edge pixels of the tracked object. Then, the method was implemented 

in an embedded platform aiming real time execution for experimental testing in complex 

environments.   

The experimental results of this work demonstrated that the proposed system can handle 

various complex situations, including scene illumination changes, object deformation and 

partial occlusion reaching at least 30 frames per second for a HD resolution on an embedded 

platform. 

Figure 21 Tracking result. 

 

(LEIRA, 2015) proposed a system that makes automatic detection, classification and 

tracking of objects of interest in the ocean surface from UAVs using thermal cameras. 

Knowing that UAVs can operate autonomously in dynamic and dangerous operational 

environments, object detection, classification and tracking can often be one of the main goals. 

This paper discusses the development of a machine vision system for a low-cost fixed-wing 

UAV with an embedded computer processing the images in real-time. 

The proposed system incorporates the use of thermal imaging camera and on-board 

processing power to perform real-time object detection, classification and tracking in the ocean 

Image Source: YANG 
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surface.  The system was tested on thermal video data captured in a test flight, and was able to 

detect 99,6% of the objects of interest located in the ocean surface. Only 5% of the objects 

were false positives. Furthermore, it classified 93,3% of the object types it was trained to 

classify. Finally, the system was able to track 85% of the object types it was actively searching 

for in real-time simulation test.  

Figure 22 Data flow in the object detection, classification and tracking module. 

 

(BAZI, 2014) proposed an automatic approach for palm tree counting in images 

captured by UAVs. First a set of keypoints are extracted using the Scale Invariant Feature 

Transform (SIFT), then these key points are analyzed with a kernel-based classification 

method called Extreme Learning Machine (ELM) that is a priori trained on a set of palm and 

no-palm key points extracted by SIFT from a set of palm and no-palm training templates. To 

capture the shape of each tree, they proposed to merge these key points with an active contour 

method based on Level-Sets (LS). Due to the key points incorrectly classified by ELM as palm, 

the end of the grouping process could be effected by issues like merging very close trees or 

creation of regions related to other green vegetation. Focusing on this problem, they introduced 

processing operations using mathematical morphology to separate large connected 

components that may contain more than one palm tree. Lastly the local spatial structure of the 

obtained regions with local binary patterns (LBPs) is described. This method is responsible to 

distinguish palm trees from other type of vegetation. 
Image Source: BAZI 

Image Source: LEIRA 
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Figure 23 Detection Results: UAV image, grouping of SIFT key points with LS and final 
classification map respectively. 

 

(ZHOU, 2016) proposed a novel method that can effectively tune the thresholds in 

detection algorithms. In this work was observed that the high level spatial information of the 

power lines is very helpful to filter out noise for edge detection. Accordingly, a parameter 

mapping method was introduced to associate the optimal detection parameters with the 

corresponding backgrounds. In each frame, a power line model is built and saved. For the 

unvisited background, the UAV uses the power line model detected in previous frames to select 

the best parameters. For the visited background, the optimal parameters are reused. By doing 

so, the accuracy of the edge detector is improved since the parameters used for the 

corresponding background is always optimal. For the second problem, the camera is tilted to 

face the power line at an angle so that a larger region of the power line can be shown in the 

frame. By doing so, each input frame provides a globalized view of where the power line goes 

and, hence, benefits power line tracking. Figure 24 shows the overall flow of the detection 

algorithm.  

 

 

 

Image Source: BAZI 
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Figure 24 Overall flow of the detection algorithm.  

 

(TIAN, 2015) implements a multiple and part line image recognition method of power 

lines, to detect the high voltage overhead transmission line rapidly and accurately. The method 

provides a simple and intuitive measurement method for power line recognition of UAVs 

inspection, especially the recognition for some complicated geographical conditions and the 

line segment artificial difficult to reach, which makes up the shortage of traditional power line 

recognition method. The algorithm shows a good application in the field of electric automatic 

detection and fault identification. Figure 25 shows the flow chart of the power recognition 

method. 

Image Source: ZHOU 
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Figure 25 The flow chart of power line recognition. 

Image Source: TIAN 
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5 PROBLEM STATEMENT 

The problem to be tackled by this work is the use of embedded image processing to 

support autonomous flight of UAVs in electrical power lines inspections. This major problem 

has two main parts: the first is the image feature extraction to detect the power lines and the 

second part is how to use the image extraction information about the power lines to drive the 

UAV movement on top of the lines.  

The first alternative that could be considered to autonomously trace the route to a UAV 

inspect power lines would be using the GPS coordinates of the poles that support the 

transmission power lines as waypoints of a preprogrammed fly mission. The major problem in 

this approach is the lack of precision of the GPS coordinates used as reference. It is known that 

the GPS coordinates have a margin of error that can reach meters away, and this lack of 

precision may make the UAV not fly over the transmission power lines at all. Figure 26a shows 

the way the UAV should fly to perform the inspection mission while Figure 26b shows the 

possible problem in using only GPS-based waypoints to setup the mission. Observing this 

problem, the necessity of a fine grain algorithm that does these flight adjustments was 

identified. 
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Figure 26 The problem of using GPS waypoints to setup the power lines inspection mission: a) 
how the UAV should fly over the power lines; b) a possible deviation due to the lack of 

precision the GPS. 

 

The power lines detection in images acquired by UAVs is a complex image processing 

problem. There are several variables that play a role in the considered image analysis problem, 

however, this number needs to be delimited to restrict the bounders of a feasible solution. The 

first characteristic to be taken into account is the fact that the aerial image has to show the 

power lines from the top, collinear with the motion shown in the acquired video, as shown in 

Figure 26a. Another important part of the problem to be considered is that to begin the process 

of line detection, the first image frame has to contain the number of power lines to be detected. 

In the example shown in Figure 26, there are three parallel lines, which have to be detected by 

the algorithm and then follow these lines through the next frames. The illumination is an 

important factor that can interfere, because this kind of image always use natural 

environmental light, so this problem need to be treated by the algorithm, for example, 

considering the incidence of sunlight in different periods of the day. 

Image Source: I. Wieczorek 
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Changes in the background (or very non-uniform background) represent another 

common source of problems that the vision systems have to deal with. An example of this 

operation scenario is presented in Figure 27. In cases in which these background changes 

occur, there is a big change of the image processing system parametrization, so the algorithm 

needs to be robust against environment changes. 

 

Figure 27 Example of noise background that makes harder the detection process.  

 

Another factor that interferes in the execution of the method is the image's quality. 

Considering the quality of the images, there are many factors like focus, stabilization and their 

size. The last cited factor has a direct impact in the processing cost, in view of implementation 

on an embedded system, this parameter must to be seriously taken into account. The other 

parameters are treated by the hardware to stabilize the image and with the software which 

controls the camera system to maintain the focus.  

Image Source: I. Wieczorek 
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Currently on the area of automated power line detection using UAVs, there are no 

solution that fully addresses the problem, thus there is a wide area for research. In this work, 

the focus is to detect the power lines and to use this detection to perform an autonomous flight 

using an efficient and reliable algorithm considering the boundary conditions and the scope 

delimited in this problem statement. 
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6 PROPOSED METHOD 

In order to minimize all the possible image noises, thus facilitating the line detection, 

the proposed method does a series of pretreatments and calibrations in the image before the 

line detection stage. Figure 28 presents a block diagram of the proposed solution. In this figure, 

blocks 1 and 2 represents the image capturing and noise filtering, then block 3 represents the 

line detection, and block 4 the control module. This section describes step by step all the stages 

in the line detection procedure and the resulting automated fine grain flight control. 

Figure 28 Proposed solution. 

 

Image Source: I. Wieczorek 
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6.1 IMAGE CAPTURING 

The way that the image is captured has a crucial importance in the efficiency of the 

method. A perspective angle of capture may insert a certain level of noise causing effects such 

as line cracking, which can difficult the detection and segmentation of line segments.  

To avoid this kind of situation and to facilitate the line extraction from the acquired 

images, the most appropriate angle is the one provided by a top view, or bird's eye view as 

shown in Figure 29. This image view can be computationally obtained, but that transformation 

has a considerable computational cost and may add some image distortion. The camera used 

in this work was the Zenmuse X3. This camera is coupled to a gimbal, which enables its 

adjustment to the desirable angle. If this feature was not available, the Inverse Perspective 

Mapping (IPM) method would be necessary, increasing the computational cost. With the bird's 

eye view angle, the power lines become parallel among them, making the process of 

delimitation the Regions of Interest (ROIs) easier. ROIs are defined areas around the power 

lines that delimits the area where the system will process data. The usage of ROIs contributes 

to the optimization of the process since it reduces the algorithm’s data load.   

Figure 29 Bird’s eye view angle. 

 

Image Source: Google 
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The bird’s eye view angle shown in Figure 29 must be adjusted in the applications’ start 

by the operator, and once set, it never changes.  

6.2 IMAGE FILTERING 

As mentioned in the introduction of this section, the image captured by the camera needs 

to receive some pretreatment to improve the efficiency of the line detection method. So, a 

couple of filters are applied on the input image to make the line detection easier. All the image 

filtering steps will be described in this section. 

6.2.1 IMAGE RESIZE 

The minimal capture resolution of the Zenmuse X3 is HD, which means 1280x720 

pixels. So firstly, the original image is resized to 624x352 pixels to reduce the processing load. 

When the image's resolution is reduced, some important data may be affected, such as line 

pixels for example. So, it is important to find a threshold between efficiency and quality. Figure 

30 shows the original image resized in the new dimensions. 

Figure 30 Resized image 

 

Image Source: I. Wieczorek 
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The image resizing has a fundamental importance to the effectiveness of the image 

processing module, since this system is intended to be executed in an embedded computer that 

in most of cases does not have a powerful processing capacity, which can make inviable its 

execution in real time.  

6.2.2 GRAY SCALE 

The second step is transforming the image from RGB to gray scale to reduce 

unnecessary information and consequently computational cost. The main reason why grayscale 

representations are often used for extracting descriptors instead of operating on color images 

directly is that grayscale simplifies the algorithm and reduces computational requirements. 

Indeed, color may be of limited benefit in many applications and introducing unnecessary 

information could increase the amount of training data required to achieve good performance 

(KANAN, 2012). Figure 31 shows the image in grayscale. 

Figure 31 Gray scale.  

 

 

Image Source: I. Wieczorek 
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6.2.3 LINEAR FILTER 

After the image has been converted to gray scale, a 2D linear filter with rectangular 

shape is convolved with the resultant image from the gray scale transformation. That filter 

helps the extraction of the pixels that are similar to the kernel’s shape, consequently to the 

transmission power lines. 

2D filtering basically does a convolution between every pixel of the input image and a 

predefined kernel. The kernel's shape was defined as a rectangle with 20 pixels of height and 

2 pixels of width. This rectangular shape matches the shape of the transmission power lines.   

 

Figure 32 2D filter kernel shape. 

 

The image resultant after the 2D filtering is shown in Figure 33. As can be seen, almost 

all the pixels belonging to the transmission power lines still remain in the image, while most 

Image Source: I. Wieczorek 



53 

 

others that no belong to them do not are shown. This filter helps to eliminate almost all data 

from the background of the image that is not of interest. 

Figure 33 2D filter. 

 

After the 2D filtering, a binary threshold is applied to improve the segmentation of the 

pixels that belongs to the power line transmission. The result is shown in Figure 34. 

 

Image Source: I. Wieczorek 
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Figure 34 Binary Threshold. 

 

6.3 LINE DETECTION 

The line detection procedure is the most important stage of the proposed technique in 

this work. All the pretreatment performed before this stage have the goal to create an 

environment which makes the detection of the power lines easier. 

In this stage, the camera must be in the birds eye view angle and the UAV must be flying 

between 8 to 10 meters above the transmission lines and focusing all the lines that will be 

identified. That is the initial position of the UAV and camera to start the application. Other 

important defined parameter is the number of lines that the system will recognize while in 

mission This number is important because it will help to discard false positive lines 

identification during the mission. 

After all these requirements have been met, the module start detecting the lines and 

analyzing data about the position of the transmission power lines in the image to feed the 

Image Source: I. Wieczorek 
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Proportional Integral Derivative (PID) controllers, which are responsible to the flight 

navigation.  

6.3.1 HOUGH TRANSFORM APPLICATION    

To identify the transmission power lines, the Hough transform (DUDA, 1972) is used. 

The Hough transform is an image processing technique that is used to detect lines (or other 

parametric shapes) in digital images. In a typical use case scenario, the image is preprocessed 

first (e.g. with an edge detector) to obtain pixels that are on the lines (or curves) in image space. 

Unfortunately, because of noise in the image, there may be missing pixels, and the extracted 

pixels often do not align well with the lines (curves) someone looks for. For this reason, it is 

often nontrivial to group the extracted pixels to an appropriate set of lines (curves). The 

purpose of the Hough transform is to assign these pixels to line (curve) instances by performing 

a voting procedure in a parameter space where the lines (curves) can be described with a small 

number of parameters (LUO, 2016). 

When the system starts the Hough Transform is applied in all the image. Then all the 

identified lines are analyzed and based on its similarity, parallelism and angle. Lines that no 

match those requirements are excluded. So, if the number of lines that will be identified were 

defined as three, for example, the three lines that met the characteristics cited above will be 

classified as transmission power lines. The application of Hough Transform in all image only 

occurs on the firsts frames to not overload the hardware capacity, due the cost of the application 

of this method in all the image. This approach is used only to initially identify the position of 

the transmission power lines that the UAV will follow, and then create regions of interest 

around them. 
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6.3.2 DYNAMIC REGIONS OF INTEREST  

After the initial frames were processed, the position of the transmission power lines that 

UAV will follow are now known. To not overload the system, regions of interest that follow 

the identified lines are created. These regions are rectangles areas that are created around the 

identified lines and are used as masks to remove all the image information outside of the 

rectangle’s area. This approach reduces the context where the Hough Transform is applied and 

consequently reduce computational cost and false positive detection.   

The position of the regions of interest are dynamic and their locations vary according to 

the position of the lines. The position of the region of interest is always a delayed iteration with 

respect to the input image. This approach takes into account that the positioning of the 

transmission power lines does not vary so sharply to the point of leaving the region of interest.  

Figure 35 shows the lines being detected. 

Figure 35 Regions of Interest. 

 

In Figure 35 the region of interest is represented by the area inside the yellow 

boundaries. In green, the lines successfully detected. In red, the position of the detected lines 

Image Source: I. Wieczorek 
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in the last iteration. This position is used to draw a line in situations when no lines were 

identified. And finally, in blue, a reference line which its position is known and fixed.    

 

6.3.3 YAW AND ROLL DATA 

During the mission, the UAV may change course due to climate effects, or the lines may 

change its course and the UAV must adjust its flight route. All these scenarios impact in route 

correction. To identify variations in the position of the transmission power line, two variables 

are always analyzed. The distance of the lines from the reference line (the blue line in Figure 

35), and the inclination variation of the identified lines.  

The distance between the reference line is the Roll data, and it is simply the distance 

between the transmission power line and the reference line. The angle variation of the lines 

defines the Yaw data. This variation is measured by the arc tangent between the first and last 

pixel of a detected line. Figure 36 illustrates how Roll and Yaw angles are estimated.  

Figure 36 Roll and Yaw estimation, respectively. 
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6.4 FLIGHT CONTROL 

The flight control module has the objective to autonomously guide the UAV over the 

transmission power lines. While the raw image is processed and the lines are being detected, 

the distance between the detected lines and the center of the captured image is measured in 

each frame. Figure 37 shows the three flight angles of a multi-rotary UAV. 

Figure 37 Multi-rotary UAV’s flight angles. 

 

All the collected data from the measure between the detected lines and the center of the 

captured image feeds a Proportional Integral Derivative (PID) controller that acts in the UAV's 

roll flight angle. Figure 38 shows the PID diagram. At the same time that roll is estimated, 

another PID controller estimates the yaw flight angle. This measure is done by comparing the 

angle variation between the detected line and a set point defined as a perpendicular line from 

the image's bottom margin. The last flight angle is the pitch. The pitch angle defines the UAV's 

forward velocity, and in this work, it is considered as a constant defined before the mission 

starts. 

Image Source: Google 
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Figure 38 PID Controller. 

 

Figure 39 shows the data output screen of the PIDs controllers estimating the flight angle 

positions. 

Figure 39 Flight control data. 

 

In Figure 39 is possible to see the roll and yaw measured, the output response of the 

PID, the defined set point and the error between the set point and the measured angle, 

respectively. For each video frame, the algorithm measures a roll and yaw estimation, so these 

Image Source: Google 

Image Source: I. Wieczorek 
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values change based on the difference between the define set point and the measured error, as 

the position of the transmission power lines varies. 

It is important to highlight that all the PIDs controllers developed to this work are 

generic ones, and they are not parametrized and neither studied in this work. However, its 

parameterization could improve significantly the time response of the route correction, 

although it still works fine as it is. The improvement of the parameterization of the controllers 

will be considered in future works. 

It is known that a completely autonomous flight system that treats every unexpected 

event would be ideal (CHEN, 2009), but to reach this goal, more sensors would be necessary 

in addition to the imagery system. 

6.5 IMPLEMENTATION DETAILS 

After a frame has been processed according to proposed method, data about navigation 

is available to be used in the attitude control of the UAV. The interface between processed data 

and the UAV's attitude control is provided by the Robot Operating System (ROS) (QUIGLEY, 

2009).  

ROS is a software framework collection for robot software development, providing 

operating system-like features. It provides standard operating system services such as hardware 

abstraction, low-level device control, and package management. 

The main idea of ROS utilization is to provide hardware abstraction to control the UAV. 

To make this possible, two main packages were concurrently executed. The first one is 

responsible for collecting the raw image captured by the camera and making this data available 

through a topic which could be subscribed by any module. This package is also responsible to 

provide all the UAV's flight functionality to any other package that need it. The second package 

has all the proposed image processing method described in this section. 
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Figure 40 ROS architecture. 

 

Figure 40 shows the proposed ROS architecture. The architecture consists of a core 

package that is responsible to handle all the serial communications between peripherals like 

the camera, the embedded computer and the UAV. This package has a library composed by 

three layers that communicates with the hardware, manipulates the collected data and provides 

all the hardware's features as services. These provided services are then used in the Flight 

Controller package, which contains all the proposed method described in last subsections.   

The data flow in the architecture starts with the UAV`s camera. This camera is attached 

in the UAV`s frame through a gimbal and all the captured images are sent by serial connections 

to the UAV's internals embedded computer and to the mission control embedded computer. 

The objective of sending the image data to the UAV's embedded computer, is to provide the 

images in capturing time to the tablet attached in the remote control. The image data provided 

to the mission control embedded computer are used to execute the proposed method in the 

ROS. As the image date is provided as a service in ROS, all the UAV`s navigation sensors and 

Image Source: I. Wieczorek 
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actuators are too. Lastly, the package containing the proposed image processing method uses 

the image service to acquire the images in flight time, and the UAV`s attitude control service 

to act in the UAV`s navigation. 



63 

 

7 EXPERIMENTS AND RESULTS 

To analyze in more detail the effectiveness of the algorithm's response time, a test 

scenario was built in laboratory. This scenario consists in the algorithm identifying a drawn 

line in a paper with a commercial web-cam. The experiment starts with the web-cam focused 

and centralized in the drawn line, then the web-cam's position is changed both in X and Z axis, 

to simulate roll's and yaw's variation. 

The scenario built in laboratory showed in Figure 41 had the objective of to validate the 

algorithm's response to the line's position variation both in roll and yaw angles, as well as to 

assess its response time. The performed tests showed a positive reaction of the UAV with an 

average response time of 150 milliseconds between capturing the raw image, processing it and 

sending the attitude control data to the simulator. 

 

Figure 41 Laboratory test scenario. 
 

 

To test the flight control module, the DJI's UAV flight simulator was used. The DJI's 

flight simulator is used to test applications under development that utilizes its UAVs, like the 

Image Source: I. Wieczorek 
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Matrice 100 that was the one used in this project. Figure 42 shows the simulator screen, in 

which it is possible to observe in the bottom left part the positioning and velocity data of the 

UAV, while in the right bottom part the values of the flight angles. The embedded computer 

utilized to process all data during the simulation was the Manifold, provide by DJI. The 

Manifold has a Nvidia Tegra K1 quad core 2.3GHz processor, 2GB DDR3L RAM memory 

and 16GB of storage memory running Ubuntu 14.04 LTS with CUDA, OpenCV (BRADSKI, 

2000) and ROS support. 

 

Figure 42 DJI’s simulator. 

 

Since the image input was not acquired in running time -a recorded video was used as 

study case-, the PIDs used to control UAV's roll and yaw did not work properly, because the 

data used to feed the controller in each processed frame came from the video, which does not 

reflect the controller acting in the UAV's navigation. However, the main objective of this 

simulation was to validate the image processing module while extracting navigation data, and 

Image Source: DJI  
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the flight control module notwithstanding its behavior was not like a real flight. The trajectory 

flew by the UAV in the case study video was 350 meters at a speed of 10 meters per second.  

During the video processing, not all frames were processed. For each three frames 

captured by the camera, only one was processed. This technique aims to reduce the 

computation cost, since the flight distance travelled is less than 30 centimeters between one 

frame and other.  

The video utilized in the system’s validation has 36 seconds of duration, totalizing 864 

frames. Figures 30 and 35 represents frame samples of the video. 

Considering this scenario, the results obtained in the previously described performed 

testes and without taking into account the algorithm's route correction, in a segment of 50 

meters, if the navigation suffers a variation of 5 degrees in its flight route, the UAV could vary 

its route around 4.5 meters away from the transmission power lines that it was following. This 

means that it would start flying completely away from the lines, which is completely 

undesirable.  

Considering the assessed algorithm's response time of 150 milliseconds, the route 

variation over the transmission power lines could reach at most 40 centimeters, which makes 

an eventual route correction entirely viable in flight time. Figure 43 illustrates this eventual 

route deviation, in which the vertical lines represent the power transmission lines. In this 

figure, part A represent the moment in which the UAV start to deviate from its correct flight 

direction, part B represent the instant in time just after a small displacement (within the 40 

centimeters that it is possible to fly in 150 milliseconds), and then part C represents the 

actuation due to the proposed fine grain guidance system bringing the UAV back to the correct 

flight direction. 

The measure of 150 milliseconds takes into account the moment that the image is 

captured by the camera until a frame has been processed and the flight control stimulus has 
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been generated. So, all the image capturing, image filtering, flight control data generation and 

UAV’s attitude control steps take around 150 milliseconds to happen. 

Figure 43 Route deviation in time T2 and the correction of movement in time T3. 

 

Evaluating a little more deeply the 150 milliseconds of the system response, almost of 

70% of this time come from the image processing module due to the robustness of the method. 

The rest of the time is generated by the image capturing node on ROS, that provides all frames 

to the application. 

Image Source: I. Wieczorek 
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8 CONCLUSIONS 

This work presented an image processing algorithm aiming at supporting a fine grain 

UAV guidance system for transmission power lines inspection applications. The frames 

computed by the algorithm firstly are filtered focusing on noise removal and shapes of interest 

highlighting. Than the Hough transform method is applied to detect all the transmission power 

lines inside of regions of interest that covers the lines. Finally, a flight control module extracts 

data from the captured images, using them to autonomously control the flight. 

The work described in this text has a huge importance in the inspection field, because it 

automates a process that nowadays is performed by two or three persons with the assistance of 

a helicopter, incurring in high risk to the involved professionals. Besides the cost reduction of 

making this kind of inspection autonomously, another aspect that highlights the importance of 

this work is the life risk reduction of who is doing the inspection, since only one person 

monitoring the UAV is necessary, which is not in direct and close contact with the electrical 

power lines.  

The utilization of UAVs to do professional tasks like the inspections detailed in this 

work is relatively new. The main motivation of this work was the exploration of the UAV's 

resources to do tasks that before were performed by people, whereas UAVs are gaining more 

space in the market. 

The proposed method has presented a good performance detecting lines with 

illumination and background texture variation, which is one of the biggest challenges in this 

field. The main technical contribution of this work is the effectiveness of the image processing 

module while removing noises from the raw image without any other dedicated subsystem. 

Other relevant aspect of this work is the navigation response time that makes viable the 

utilization of this system in real inspection applications. 

 



68 

 

Observing the acquired results in terms of computational cost of each part of the 

implemented solution, future works aiming at improving the method of line extraction without 

losing it robustness, would be beneficial for the entire solution performance. 

The next steps of this work are improvements on treatment of unexpected events during 

the flight and improvements in the robustness of image processing module. Another direction 

for future work is to incorporate other feature extraction in the algorithm, for example, to 

inspect the poles that support the lines. In the same direction of improving robustness, another 

possible future work is preparing the algorithm to identify transitions or bifurcations.  
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