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Abstract— The measurement of the dielectric properties of 
materials has been applied in non-destructive tests, humidity 
measurement, soil analysis and even cancer detection. The methods 
have been developed for over 70 years based on the interaction of 
the electromagnetic waves with the material under test. This work 
presents a general model of scattering parameters for non-resonant 
methods of transmission/reflection and single-port reflection. 
Equations for determining permittivity are obtained. New 
equations for short-circuited load and coupled load in the double 
reflection method are presented. 

  
Index Terms— Microwave measurements, permittivity, short-circuit 
transmission line method, transmission / reflection method.  

I.   INTRODUCTION 
The dielectric properties characterization is fundamental in engineering. This is employed in non-

destructive test and evaluation [1], moisture measurements [2], soil analysis and tumor tissue 

detection. The physical concepts and technological aspects are related to determining the dielectric 

properties from the interaction of the electromagnetic fields with the material. These fields must be 

generated, guided or radiated over the sample (MUT – material under test) and detected after the 

interaction. Traditionally, these tasks were performed using microwave instrumentation techniques in 

laboratory [3]. Simultaneously, measurements methods [4] and mathematical methods for 

propagation, radiation and scattering of microwaves were developed [5]. These methods can be 

divided in resonant and non-resonant. The non-resonant methods are suitable for broadband 

measurement. Among these methods the most important ones are the SCTL (short-circuit 

transmission line) [3] and the NRW (Nicholson-Ross-Weir) [6][7]. The purpose of this work is to 

generate explicit equations for the permittivity using a straightforward scattering parameters model 

for load-terminated samples. 

II.   PERMITTIVITY MEASUREMENT METHODS 

A.   Historical Development 
      In 1946, Roberts and Von Hippel [8] presented a method for the measurement of permittivity 

using an air-filled rectangular waveguide with a sample of MUT in the end of the waveguide. By 
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comparing the standing wave pattern of the partially sample-filled waveguide and that of a short-

terminated air-filled waveguide it is possible to determine the permittivity. Such method is known as 

SCTL reflection method. It obtains the line impedance from the peaks and valleys of the voltage 

standing wave pattern. This method was still widely used in 1961, when [9] reports uncertainties of 

2% for the permittivity and 5% for the loss tangent. The use of charts for hyperbolic functions was 

avoided by having sample lengths of ¼ e ½ of the wavelength inside the material. In 1974, a computer 

program was developed aiming to increase the precision of the Roberts-von Hippel method [10]. 

  In 1970, Nicolson and Ross [6], using a sampling oscilloscope, a sub nanosecond pulse 

generator and the Fourier transform, obtained the scattering parameters of a sample. With S11 and S21, 

expressed as functions of the reflection coefficient in the material-air interface and the transmission 

coefficient between two faces of the sample, and measured by the aforementioned setup, they 

obtained the permittivity and permeability of the material. In 1974, Weir [7] obtained the scattering 

parameters directly from the frequency domain by using an automatic network analyzer, solving the 

phase ambiguity generated by larger than half wavelength sample length and measuring the group 

delays in different frequencies, assuming that the permittivity does not change significantly for small 

variations in frequency. In [11], the problems of the method in dispersive materials are discussed. 

Regardless of these problems, the method is widely accepted and known as Nicholson-Ross-Weir 

(NRW) algorithm. 

 An explicit equation for the permittivity as a function of the transmission and reflection 

parameters is presented in [12]. The authors show that it is possible to obtain the uncertainty of the 

permittivity as a function of the sample length, with the lowest uncertainty being obtained when the 

sample length is a quarter of the wavelength inside the material. The method becomes unstable when 

the sample length is a multiple of half wavelength.  

 The resonant methods are inadequate for characterization in the frequency domain. The 

reflection methods, also known as single-port methods, which measure the reflection coefficient of a 

guided wave or a wave in free-space [13], can be used for spectroscopy. In [14] such methods are 

reviewed and possible configurations for the measurements are presented. Among these, the method 

with two arbitrary terminations can be highlighted. In the reflection methods, the explicit equations 

for the permittivity are obtained through two or more measurements in two different configurations, 

as it is shown in [15]. 

B.   Transmission-Reflection methods state-of-the-art 
The work in simultaneous measurement of transmission and reflection coefficients of a sample to 

obtain permittivity is consolidated in [16], in which explicit equations independent of reference plane 

or sample length are shown. The half wavelength uncertainty is discussed and the measurement 

uncertainties are determined. Works aiming to solve the half wavelength problem are also referenced. 

In [17] a new method to solve problems related to dispersive materials is presented. A complete 
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review regarding the transmission-reflection methods is also done in [17]. 

C.   Single-port reflection methods 
Reflection methods which employ the measurement of two reflection coefficients were already 

presented in [3]. These use which uses a short-terminated transmission line (as the SCTL method) and 

an open-circuit terminated transmission line. Although the equation for the permittivity is simple [14], 

the method only works at specific frequencies since, to create an open circuit, it is necessary to create 

a short-circuit at a quarter-wavelength distance. In [15] an explicit equation with the S11 parameter 

(measured with a coupled load or free-space and a short-circuit) is shown. Other approach is 

described in [18], using only the amplitude of the reflection coefficient. Two distant frequencies (in 

non-dispersive media) or three near frequencies (in dispersive media) can be used. The simplicity of 

the required instrumentation makes the method very attractive. 

III.   DIELECTRIC SLAB SCATTERING PARAMETERS MODEL 

A.   Reflection coefficient Γ and propagation factor T 
Consider an uniform dielectric slab, with complex permittivity “e2” and thickness “d” immersed in 

a dielectric with permittivity e1 to the left and e3 to the right, splitting the space into regions 1 and 3, as 

shown in Fig. 1.  

Fig. 1. Sample electromagnetic wave interaction 

Let us assume an electromagnetic wave, which is perpendicularly incident at the interface (z=-d). 

The incident electric and magnetic waves at the interface are E1
+ and H1

+
, respectively. Both are 

parallel to the interface and are partially reflected to the medium 1 and partially transmitted to the 

interior of the slab. E1
- and H1

- are the reflected waves, which travel in the medium 1 in the negative z 

direction. From z=-d, the transmitted waves E2
+ and H2

+ travel in the positive z direction. On the 

interface between the slab and the medium 3 (z=0) there are the fields E20
+ and H20

+. These fields are 

partially transmitted to medium 3, indicated as waves E3
+ and H3

+ and partially reflected back to 

medium 2, the waves E20
- and H20

-. The propagation constants of the materials are g1, g2 e g3. The 

electric and magnetic fields are related in each medium by the intrinsic impedance of these media: η1, 
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η2 e η3.  If the medium 3 is infinite, there will be no propagation in the negative z direction in this 

medium (no reflection) and E3
-=0. If medium 1 is vacuum and medium 3 has the same permittivity of 

medium 2, the value of Γ, the reflection coefficient at the interface, is given by: 

 

   

Γ = E1
−

E1
+ =

µr
εr

− 1

µr
εr

+ 1

                   (1) 

where µr and εr are the relative permeability and permittivity of medium 2, respectively. 

If the media have the magnetic permeability of vacuum (µr = 1), the coefficient is simplified to: 

  
Γ =

1− ε r

1+ ε r

     (2) 

The propagation constant γ in a dielectric with negligible conductivity and with magnetic 

permeability equal to the vacuum can be approximated to: 

 
γ ≅ jω

c
ε r      (3) 

where c is the velocity of light in the vacuum. Therefore, the propagation of a TEM (transversal 

electromagnetic) wave through the distance d in a material with the propagation constant γ can be 

expressed by the propagation factor T [7]. Using (3) is possible to define: 

   T ! e−γ d = e
− jω

c
εr  d

     (4) 

Some authors call T the “transmission coefficient” [4].  To avoid confusion with the transmission 

coefficient through a slab, the original term “propagation factor” will be kept.  

B.   MUT (Material Under Test) scattering parameters. 
The intrinsic impedance variation between the two different media will result in that part of the 

incident wave to be transmitted and part of it to be reflected. In a dielectric slab, as shown in Fig. 2, 

there are two interfaces and then multiple reflections will happen inside the slab. Using harmonic 

analysis, this is simplified in the case of a high loss sample, because the multiple reflections add up to 

an attenuated standing wave pattern.  

 

 

 

 

 

 

Fig. 2. MUT scattering parameters 

The total fields can be obtained through the complete solution of the wave equation inside the slab 
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when the dielectric characteristics of the material and the sample dimensions are known. The total 

field, for 0 > z > -d, is: 

   E2
t z( ) = E20

+ e−γ 2z + E20
− eγ 2z      (5) 

The reflection coefficient at the interface between the two media, when the sample is infinite, 

allows for the substitution of E20- through Γ since:  

  
Γ =

E1
−

E1
+ = −

E20
−

E20
+             (6) 

   
E2

t z( ) = E20
+ e−γ 2z − Γeγ 2z )(      (7) 

The same procedure is applicable to the magnetic field. The total magnetic field can be written as: 

   
H2

t z( ) = H20
+ e−γ 2z + H20

− eγ 2z
                 (8) 

Since the magnetic fields are related to the electric fields through the intrinsic impedance of the 

medium, (8) can be rewritten as: 

   
H2

t z( ) = E20
+

η2

e−γ 2z −
E20

−

η2

eγ 2z               (9) 

Applying (6) in (9): 

   
H2

t z( ) = E20
+

η2

e−γ 2z + Γeγ 2z( )             (10) 

Since the electrical and magnetic fields are tangential to the interface, it is possible to write, for   

z=-d: 

   E2
t = E1

+ + E1
−       (11) 

   
H2

t = H1
+ + H1

− =
E1

+

η1

−
E1

−

η1

       (12) 

Considering the propagation factor T along the slab, the total fields at z = -d, obtained from (7) and 

(10), are: 

   
E2

t z = −d( ) = E20
+ T −1 − ΓT )(                 (13) 

   
H2

t z = −d( ) = E20
+

η2

T −1 + ΓT( )     (14) 

From (11) (13) and (12) (14), the boundary conditions allow to write: 

   
E1

+ + E1
− = E20

+ T −1 − ΓT )(         (15) 

   
E1

+ − E1
− =

η1

η2

E20
+ T −1 + ΓT( )                  (16) 

Assume that the incident electric field in the slab at z=-d is E1
+. The reflected electric field is E1

-. 
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Since the media 1 and 3 have the same intrinsic impedance, a scattering parameters model can be 

applied.  

Therefore, the reflection coefficient of the slab, as seen by the incident wave (input), will be the S11 

parameter itself, or: 

   
S11 =

E1
−

E1
+             (17) 

By expressing E1
- as S11E1

+ and dividing (16) by (15): 

  

1− S11( )
1+ S11( ) =

η1

η2

T −1 + ΓT( )
T −1 − ΓT )(     (18) 

If η1= η3= η0 and the medium 2 is non-magnetic, the ratio η1 / η2 is equal to the square root of the 

relative dielectric permittivity of the medium 2. From (2), is possible to isolate this square root as a 

function of Γ and then obtain the reflection coefficient at the input of the slab: 

  
S11 =

Γ 1−T 2( )
1− Γ2T 2( )      (19) 

The relation between the incident electromagnetic wave at the interface at z=-d and the emerging 

wave at the interface at z=0, when the medium 3 is equal to the medium 1 is the parameter S21 itself: 

   
S21 =

E3
+

E1
+       (20) 

At the interface z = 0, the total tangential fields must be equal in both sides. For the electric fields, 

assuming that there are no fields traveling in the negative z direction in the medium 3: 

!!E3
+ = E20

+ +E20
−      (21) 

Γ relates the fields E20
+ e E20

-, therefore: 

!!E3
+ = E20

+ 1−Γ( )      (22) 

Substituting E20
+, from (22), and E3

+ by S21E1
+ in (20), into (15) and (16) and replacing the ratio 

between the characteristic impedances by the reflection coefficient Γ: 

   
E1

+ + E1
− =

S21E1
+

1− Γ( ) T −1 − ΓT )(     (23) 

   
E1

+ − E1
− =

1− Γ( )
1+ Γ( )

S21E1
+

1− Γ( ) T −1 + ΓT( )     (24) 

Adding (23) and (24), eliminating E1
- e E1

+ it is possible to isolate the transmission coefficient 

through the slab: 

  
S21 =

T 1− Γ2( )
1− Γ2T 2      (25) 
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Given that the dielectric slab is symmetrical and the material is isotropic and homogeneous, the 

scattering parameters matrix is completely specified by making S22 =S11 and S12 = S21. 

IV.   SIMPLE MODEL FOR NON-RESONANT METHODS 

A.   NRW algorithm 
Consider a sample, as shown in Fig. 3, inside a coaxial cable with a termination impedance 

connected immediately after the sample (dL=0) or the medium 3 with an intrinsic impedance different 

of that of the medium 1 in free-space. In both cases, it is possible to model the system as a slab 

represented by its scattering parameters and loaded by impedance ZL or an infinite medium of 

intrinsic impedance ηL. 

 

 

 

 

 

 

 
Fig. 3. MUT in transmission line and free space with load. 

The reflection coefficient at the input can be obtained from the scattering parameters and the 

reflection coefficient at the load from [19] [20]: 

  
Γ in =

S11 − ∆s ΓL

1− S22ΓL

     (26) 

Where ΔS = S11S22 – S12S21. Considering the sample reciprocity: 

  
Γ in =

S11 − S11
2 − S21

2( )Γ L

1− S11Γ L

    (27) 

If the load impedance is made equal to the characteristic impedance of the line loaded with the 

sample, the reflection coefficient at the input will be that of an infinite sample. This is due to the fact 

that, without reflection at the second interface, the wave will only exist in the positive direction from 

the input of the sample. Any load or infinite slab with the same impedance as the medium being 

measured will present the same reflection coefficient Γ when considered in relation to the input 

medium. From these considerations, it follows that if the substitution Γin = ΓL = Γ is done in (27), it is 

possible to obtain the reflection coefficient at the interface as a function of the slab scattering 

parameters: 

  
Γ 1− S11Γ( ) = S11 − S11

2 − S21
2( )Γ  ∴  Γ2 −

S11
2 − S21

2 +1( )
S11

Γ +1= 0  

!
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Γ =

S11
2 − S21

2 +1  ± S11
2 − S21

2 +1( )2
− 4S11

2  

2S11

   (28) 

The sign in (28) must be chosen in a way that |Γ|≤1.  Defining: 

   
K ! 

S11
2 − S21

2 +1
2S11

     (29) 

Equation (28) can then be written as: 

  Γ = K   ± K 2 −1      (30) 

Equations (29) and (30) are presented in [6] and [7] as a fundamental part of the NRW algorithm. 

The scattering matrix relates the electric fields in the sample, as shown in Fig. 1, in the form: 

!!

E1
− = S11E1

+ + S12E3
−

E3
+ = S21E1

+ + S22E3
−

 

The incident field in the load is E3
+ and the reflected is E3

-. The reflection coefficient at the load, ΓL 

is given by: 

  
Γ L =

E3
−

E3
+       (31) 

Since the system is symmetrical S22 = S11 and the material is isotropic and homogeneous, then S12 = 

S21. From (31), E3
-=ΓL E3

+, the above equation system can be written as: 

 

!!

E1
− = S11E1

+ + S21ΓLE3
+

E3
+ = S21E1

+ + S11ΓLE3
+

  

We can add these two equations and obtain an equivalent system with the same solution. The sum 

result is that: 

!!E3
+ +E1

− = S11 + S21( )E1+ + S21 + S11( )ΓLE3
+    (32) 

Since in the proposed situation, there is not a reflected wave inside the sample and Γin = ΓL = Γ, it 

follows: 

  
Γ =

E1
−

E1
+      (33) 

Similarly, the propagation factor is given by: 

  
T =

E3
+

E1
+        (34) 

 

From these equations we can evaluate expressions for E3
+ e E1

-, which are substituted in (32), with 

ΓL = Γ: 

!!TE1
+ +ΓE1

+ = S11 + S21( )E1+ + S21 + S11( )ΓTE1+  
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then: 

  
T =

S11 + S21 + Γ
1− S11 + S21( )Γ      (35) 

Equation (35) shows the propagation factor as a function of the scattering parameters and the 

reflection coefficient at the interface presented in [5] and [6]. The NRW algorithm to determine the 

permittivity from the MUT scattering parameters is fulfilled when (2) is considered and then: 

  
ε r =

1− Γ
1+  Γ

⎛
⎝⎜

⎞
⎠⎟

2

      (36) 

And from (4): 

  
ε r = j c

ωd
ln T( )⎛

⎝⎜
⎞
⎠⎟

2

     (37) 

The equations (36) and (37), isolated or combined, can be used for permittivity determination [21]. 

The use of (36), as described in [12] will result in a permittivity explicit expression, independent of 

the sample size. However this leads to indeterminations when the sample length is a multiple of half 

wavelength in low loss materials. The authors conducted an uncertainty analysis as a function of the 

permittivity of the measured material and of the sample size.  Equation (37) does not show these 

problems, but it depends on the sample length, which leads to phase ambiguity problems since T is 

complex and its logarithm may have infinite solutions [22]. 

B.   Reflection only methods 
If in fig. 3, since dL = 0 and the load is a short-circuit, we have the method known as SCTL (short-

circuit transmission line). This method is also applied to the free-space [4] where the short-circuit is 

made through a metal back (metal-back method). Other load types are possible. The model in fig. 3 

can be used with any load. The sample scattering parameters, as functions of the propagation factor T 

and of the reflection coefficient at the interface Γ, are given in (19) and (25). In a distinct approach 

from the deduction of the NRW algorithm, which is intended to write Γ as a function of scattering 

parameters only, we now want an expression for the input reflection coefficient Γin, given by (27), as a 

function of the factor T and of the coefficient at the interface Γ. When substituting (19) and (25) in 

(27) (obtained from (26)), then: 

  
Γ in =

Γ 1−T 2( )− ΓL Γ2 −T 2( )
1− Γ2T2 − ΓLΓ 1−T 2( )     (38) 

 

C.   Double reflection methods – same size samples and different loads. 
It is possible to obtain an explicit equation for the permittivity from (38) through the double 

reflection method [11][15] (also known as double impedance method [14]) or when considering the 
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same sample with two different loads. These measurements result in the input reflection coefficients 

Γ1 e Γ2 from the respective loads ΓL1 e ΓL2. For each one of the loads the propagation factor T can be 

isolated in (38) with Γ given by (2): 

  

T 2 =
Γ L ε r −1( ) + ε r +1⎡
⎣⎢

⎤
⎦⎥ Γ in ε r +1( ) + ε r −1⎡
⎣⎢

⎤
⎦⎥

Γ L ε r +1( ) + ε r −1⎡
⎣⎢

⎤
⎦⎥ Γ in ε r −1( ) + ε r +1⎡
⎣⎢

⎤
⎦⎥

        (39) 

Thus, if ΓL=ΓL1=-1 (short circuit) in the first measurement and ΓL=ΓL2=1 (open circuit) in other 

measurement, are applied to equation (39) and compared, the permittivity as a function of two 

reflection coefficients Γ1 and Γ2 is: 

 
  
ε r =

Γ1 −1( ) Γ2 −1( )
Γ1 +1( ) Γ2 +1( )      (40) 

The normalized input admittance of a transmission line is given by [19]: 

 
  
y = Y

Y0

= − Γ −1
Γ +1

     (41) 

Therefore, the permittivity of a sample, when obtained from two measurements, one terminated in a 

short-circuit and the other terminated in an open-circuit, is given by: 

 ε r = ya yc           (42)  

The permittivity as a product of a short-terminated line admittance (yc) by an open-circuit 

terminated line admittance (ya) has already been shown in [14]. 

D.   New double reflection explicit equations 
When measuring the reflection coefficient of a short terminated sample and, then, of an impedance 

matched terminated sample (ΓL1=-1 e ΓL2=0), it is possible to obtain another explicit equation from 

(39): 

  
ε r =

Γ2Γ1 − 3Γ2 + Γ1 +1
Γ2Γ1 + Γ2 + Γ1 +1

    (43) 

Applying the same procedure, but with an open-circuited load in place of the short-circuited one 

and, then, of an impedance matched terminated sample (ΓL1=1 e ΓL2=0), the permittivity is now given 

by: 

  
ε r =

Γ2Γ1 − Γ2 +1− Γ1

Γ2Γ1 + 3Γ2 +1− Γ1

          (44) 

This equation has been derived earlier [15], but its derivation uses a different procedure. 

The equations (43) and (44) are particular cases of a general equation. Given any two loads ΓL1 and 

ΓL2 (with two measurements Γ1 and Γ2 being done with these two loads), the general explicit equation 

for permittivity is: 
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ε r =

Γ L1Γ L2Γ1 − Γ L1Γ L2Γ2 − Γ L1Γ2Γ1 + Γ L2Γ2Γ1 + 2Γ L1Γ2 − 2Γ L2Γ1 − Γ L1 + Γ L2 − Γ2 + Γ1

Γ L1Γ L2Γ1 − Γ L1Γ L2Γ2 − Γ L1Γ2Γ1 + Γ L2Γ2Γ1 − 2Γ L1Γ2 + 2Γ L2Γ1 − Γ L1 + Γ L2 − Γ2 + Γ1

 (45) 

E.   Double reflection methods – same loads and different size samples 
Using two samples with different lengths, arranged on a short-circuited line, as shown in Figure 4, 

it is possible to obtain the permittivity and the permeability. This procedure appears in [11] and [23]. 

 

 

 

 

 
 

Fig. 4. Short-circuited lines with different sizes samples. 

An explicit equation for the permittivity can be obtained considering  ΓL=-1 in (39): 

  

T 2 = −
Γ1 ε r +1( ) + ε r −1⎡
⎣⎢

⎤
⎦⎥

Γ1 ε r −1( ) + ε r +1⎡
⎣⎢

⎤
⎦⎥

    (46) 

By measuring with sample widths d2 = α d1 the squared propagation factor is given by: 

  

T 2 = −
Γ2 ε r +1( ) + ε r −1⎡
⎣⎢

⎤
⎦⎥

Γ2 ε r −1( ) + ε r +1⎡
⎣⎢

⎤
⎦⎥

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

1
α

   (47) 

where α is a scaling fator. 

Knowing the relationship between the widths and measuring the reflection coefficients, it is 

possible, for certain α values, to obtain explicit expressions for the permittivity considering the 

equation: 

  

−
Γ1 ε r +1( ) + ε r −1⎡
⎣⎢

⎤
⎦⎥

Γ1 ε r −1( ) + ε r +1⎡
⎣⎢

⎤
⎦⎥

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

α

= −
Γ2 ε r +1( ) + ε r −1⎡
⎣⎢

⎤
⎦⎥

Γ2 ε r −1( ) + ε r +1⎡
⎣⎢

⎤
⎦⎥

  (48) 

In [11], the widths are set as d2 = 2 d1 (or α = 2). Equation (48) can then be solved explicitly, 

obtaining the permittivity: 

  

ε r =
Γ1 −1( ) Γ1Γ2 − 3Γ1 + 3Γ2 −1( )

Γ1 +1( )2
Γ2 +1( )

    (49) 

Employing the same procedure, starting from equation 39 but forcing the samples to end with a 

matched load or an absorbing material in free space, another  explicit equation for the permittivity can 

be obtained: 

d1 
ΓL=-1 
 

Γ1 

d2 
ΓL=-1 
 

Γ2 
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ε r =

Γ1 −1( ) Γ1Γ2 − 2Γ1 + Γ2( )
Γ1 +1( ) Γ1Γ2 + 2Γ1 − Γ2( )     (50) 

V.   ACCURACY 
To estimate the uncertainty of the new equations, the Monte Carlo method is applied. The error 

sources considered are the finite accuracies of the measured reflection coefficient (within 3% of the 

nominal value for amplitude and phase) and of the load impedance (taken to be within 1% of nominal 

value). The combined effect of these error sources is computed for a population of 5000 samples in a 

rectangular distribution. A low-loss material with ε= 4 – 0,2j and 25 mm width was used. 

The standard deviation in permittivity generated by these error sources when applied to equations 

(36) (obtained from (28), NRW method), (40) and (43) are shown in Fig. 5 and Fig. 6, for the real and 

imaginary parts of the permittivity, respectively. When the same errors sources are applied to (49) and 

(50), the results are shown in Fig. 7 and Fig. 8, for the real and the imaginary parts of the permittivity, 

respectively. 

 
Fig. 5. Same size – different loads. Standard deviation of the real part of the permittivity.  

Fig. 6. Same size – different loads. Standard deviation of the imaginary part of the permittivity.  

In the Fig. 5 and Fig. 6 it can be observed that the new explicit equation, (43), has smaller 

uncertainty in the frequencies which are multiple of half-wavelengths (3, 6 and 9 GHz) in comparison 



Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 16, No. 1, March 2017  
DOI: http://dx.doi.org/10.1590/2179-10742017v16i1890 

Brazilian  Microwave  and  Optoelectronics  Society-­SBMO   received  30  Oct  2016;;  for  review  03  Nov  2016;;  accepted  28  Dec  2016  
Brazilian  Society  of  Electromagnetism-­SBMag   ©  2017  SBMO/SBMag   ISSN  2179-­1074  
 

309 

to the traditional method of (40). Minimal uncertainty in frequencies 1.5, 4.5 and 7.5 GHz is found for 

(43), whereas (40) has an instability. It also can be noted that (43) has, in the entire band, a lower 

uncertainty for the imaginary part (when compared to the NRW method). The uncertainty for the real 

part of permittivity in quarter-wavelength frequencies (1.5, 4.5 and 7.5 GHz) is slightly higher for 

(43) than for the NRW method, but for half-wavelength frequencies the precision of (43) is higher 

than the NRW. 

 
Fig. 7. Same load – different sizes. Standard deviation of the real part of the permittivity. 

 

 
Fig. 8. Same load – different sizes. Standard deviation of the imaginary part of the permittivity. 

In Fig. 7 and Fig. 8, it can be observed, that the different-size-samples method, which uses matched 

loads, shows a lower error along most part of the band. 

For both equations the uncertainties get smaller (and closer to one another) as the frequency 

increases. This can be due to the larger number of wavelengths inside the material sample width (a 

virtual thickening), resulting in larger attenuation and less signal being reflected at the termination. 

VI.   CONCLUSION 
A new general model for the non-resonant permittivity measurement method was presented. From 
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this model the equations for classical NRW algorithm and SCTL method can be derived. Explicit 

equations to determine the permittivity were obtained from the new model. In addition to this, two 

new equations for the double reflection method were evaluated. One of them uses a short circuit load 

and a matched load and the other uses an open-circuit load and a matched load. A new equation is 

also obtained for the method with different sizes terminated in the same load, in this case, a matched 

one. The uncertainty of the new equations is calculated using the Monte Carlo method and, in both 

cases, it is lower than the classical methods. These methods were used for TEM waves in the free-

space and in transmission lines. However, they could be easily extended for waves and samples in 

rectangular waveguides. 
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