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ABSTRACT 

This work presents functional composition (FC) as a new paradigm for 
combinational logic synthesis. FC is a bottom-up approach to synthesize Boolean 
functions, being able to evaluate the cost of intermediate sub-functions, exploring a 
larger number of different candidate combinations. These are interesting advantages 
when compared to the top-down behavior of functional decomposition. FC presents 
great flexibility to implement algorithms with optimal or suboptimal results for different 
applications. The proposed strategy presents good results for the synthesis of Boolean 
functions targeting different technologies. FC is based on the following principles: (1) 
the representation of logic functions is done by a bonded pair of functional and 
structural representations; (2) the algorithm starts from a set of initial functions; (3) 
simpler functions are associated to create more complex ones; (4) there is a partial 
order, enabling dynamic programming; (5) a set of allowed functions can be used in 
order to reduce execution time/memory consumption. This work presents functional 
composition algorithms for Boolean factoring, including optimal factoring, Boolean 
factoring considering the exclusive-OR operator, minimum decision chain computation 
and synthesis of functions considering only majority and inverter logic gates.  
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Composição Funcional e Aplicações 

RESUMO 

Este trabalho apresenta a composição funcional (CF) como um novo paradigma para 
realização da síntese lógica de blocos combinacionais. CF usa uma abordagem 
ascendente para sintetizar funções Booleanas, sendo capaz de avaliar os custos das 
funções intermediárias e explorando dessa forma um grande número de combinações 
diferentes de funções candidatas. Há vantagens interessantes quando comparado à 
abordagem descendente da decomposição funcional. CF apresenta grande flexibilidade 
para criar algoritmos com resultados ótimos ou subótimos para diferentes aplicações. A 
estratégia proposta apresenta bons resultados para síntese de funções Booleanas visando 
diferentes tecnologias. CF é baseado nos seguintes princípios: (1) representação de 
funções lógicas como um par ligado com representações funcional e estrutural; (2) o 
algoritmo começa de um conjunto de funções iniciais; (3) funções mais simples são 
associadas para criar funções mais complexas; (4) existe uma ordem parcial que permite 
o uso da programação dinâmica; (5) um conjunto de funções permitidas pode ser 
mantido para reduzir o tempo de execução/consumo de memória. Este trabalho 
apresenta algoritmos de composição funcional para fatoração Booleana, incluindo 
fatoração ótima, fatoração considerando o operador OU-exclusivo, computação de 
cadeias mínimas de decisão e síntese de funções considerando somente portas lógicas 
majoritárias e inversores.  

 

 

 

 

 

 

 

 

 

 

 

 

Palavras-Chave: Função Booleana, síntese lógica, composição funcional, cadeia 
mínima de decisão, fatoração Booleana, OU-exclusivo, porta majoritária.  



 



1 INTRODUCTION 

The increasing availability of digital technologies is adding new possibilities for 
investigative research and the way researchers work. Advances in many (if not most) 
areas of study depend now on the generation and manipulation of digital data, often in 
huge quantities. 

Since Jack Kilby's invention of the first integrated circuit (IC), in 1958 (KILBY, 
1959), unprecedented technological advances occurred, mainly in the electronic 
industry. In 1965, Intel Corp. co-founder, Gordon E. Moore, predicted a major 
miniaturization trend for the semiconductor industry, known as Moore's Law (MOORE, 
1965). Moore’s Law predicts that the number of available transistors being packed into 
a single IC would grow exponentially, doubling approximately every two years. This 
trend has been observed for more than four decades, and perhaps will continue for 
another decade or even longer, mainly for digital systems. 

A digital system can often be divided into two portions: datapath and control logic. 
The datapath logic concerns with data computation and storage, and often comprises of 
structures such arithmetic logic units, buses, registers, regular memories (WAGNER; 
REIS; RIBAS, 2006). Datapath circuits are often composed of regular structures. 
Control logic is concerned with the control of these data processing units. Datapath and 
control logic can be very different in nature and the design of datapath and control logic 
uses different algorithms. It is common to have synthesis algorithms dedicated either to 
control logic or to datapath. Algorithms can also vary according to target 
implementation. The goal of this work is to provide an algorithm for logic synthesis that 
has enough flexibility to be adapted to control logic or datapath logic designed for 
different target implementations. The proposed approach is focused mainly on logic 
synthesis step, which will be described in the following. 

1.1 Logic Synthesis 

Logic synthesis is the process of transforming an abstract form of desired circuit 
behavior into a design implementation regarding logic components. The circuit behavior 
is usually expressed using a Register Transfer Level (RTL) description, where the 
design implementation regarding logic components is a logic gate netlist. Logic 
synthesis can be viewed as an essential step bridging high-level synthesis (which 
outputs an RTL description) and physical design (which takes as input a logic gate 
netlist). Logic synthesis involves the abstraction, representation, manipulation, 
transformation, analysis, and optimization of logic circuits. All these operations take 
place in the transformation from the RTL description to the gate level description. Logic 
synthesis performs automatic generation of logic gates netlists, such that timing 



constraints imposed by the designer are respected, and the final logic gate netlist has 
minimum area and minimum power. 

The main mathematical foundation of logic synthesis is the intersection of logic and 
algebra. The “algebra of logic” created by George Boole, in 1847, also known as 
Boolean algebra, is the core of logic synthesis. One of the most significant contributions 
connecting Boolean algebra and circuit design is Claude E. Shannon's M.Sc. thesis, “A 
Symbolic Analysis of Relay and Switching Circuits”, completed at the Massachusetts 
Institute of Technology (MIT), in 1937 (SHANNON, 1938). Shannon showed that the 
design and analysis of switching circuits could be formalized using Boolean algebra and 
switching circuits can be used to solve Boolean algebra problems. 

The synthesis of digital circuits involves different views and levels of abstractions. 
Views can be associated with domains, as it is for the Y-chart proposed by Gajsky 
(GAJSKI; KHUN, 1983). Gajski divides circuit views into three types or domains: 
behavioral, structural and physical. Behavioral views express the expected behavior of a 
given circuit. Structural views express circuits as a list of interconnected sub-
components. Physical views express how structural views are implemented physically. 
Generally speaking, the goal of any synthesis process is to add detail to existing design 
views. Synthesis is made to translate designs from the behavioral domain (views) to the 
structural domain, or from structural domain to physical domain. High-level synthesis 
does a translation from behavioral to the structural domain, where functional algorithms 
are mapped to structural representations composed of blocks such as arithmetic logics 
units, processors and read-only memories (ROMs). Logic synthesis starts from an 
abstract behavioral description, possibly at the register-transfer level (RTL), which is 
transformed into a structural netlist of logic gate networks. Logic synthesis is known to 
perform well to minimize and simplify control logic, which is irregular by nature. 
Consequently, logic synthesis is particularly useful for control-dominating applications 
like protocol processing. However, for more regular logic, like arithmetic-intensive 
applications, signal processing special techniques are used (SONG; PERKOSWI, 1998; 
SASAO, 2005; SASAO ET AL, 1995). 

Logic synthesis is composed of technology independent and technology dependent 
steps, as shown in Figure 1.1. The initial RTL description is parsed into a technology-
independent description. The initial parsing can include a control/data flow analysis that 
treats arithmetic/datapath independently of control flow. The arithmetic part can be 
synthesized by choice of possible pre-defined structures. The control flow logic is then 
treated with technology independent logic optimization algorithms. The initial gate-
level implementation of the control flow portion is composed of generic logic gates (e.g. 
AND, OR and NOT gates), with no relationship to any specific technology. As a result, 
the structure at this point is a technology independent netlist (i.e., a list of gates 
connected by nets), and can be implemented in any technology using technology 
mapping. However, before the technology mapping process, a number of technology 
independent optimizations can be done to the technology independent netlist by logic 
restructuring techniques (MISHCHENKO, 2006). Once the technology mapping has 
been performed, it is followed by technology dependent optimizations and the insertion 
of logic to support design for testability (DFT). The physical synthesis begins after 
these steps (MICHELLI, 1994). A logic synthesis flow is illustrated in Figure 1.1. 



 

Figure 1.1: Logic synthesis flow. 

1.2 Motivation and Challenges 

Observing the logic synthesis field of study, it is easy to see many difficulties and 
problems with no definitive solution from a research point-of-view. There are many 
discussions on: “library based (LIU, 2011) versus library free (MARQUES ET AL, 
2007)” approaches in mapping; which data structure to use for a given problem 
(SWORDS; HUNT, 2010; MISHCHENKO; CHATTERJEE; BRAYTON, 2006); and 
when to use complex gates (KONG; HUSSAIN; OVERHAUSER, 1997) or simple 
gates (MARKOV; SYLVESTER; BLAAUW, 2008). There are many objectives 
comprising minimum area, minimum power, maximum performance or any 
combination of these. Most logic synthesis algorithms are computationally hard 
problems, and solutions demonstrate approaches based on theoretical studies but also 
empirical solutions.  

There are many subareas in logic synthesis. Some examples are factoring 
algorithms, majority based circuit synthesis and functional decomposition. Many of 
logic synthesis methods (if not all) may rely on the exploitation of Boolean functions 
properties. As a consequence, fast methods to compute Boolean function properties are 
needed to allow the use of these properties in the logic synthesis flow. One of these 
properties is the minimum decision chain (MDC) (MARTINS ET AL, 2011a), 
(MARTINS ET AL, 2011b). The MDC of a function f is related to the minimum worst 
case number of series switches required to implement a switch network for the function 
f in a single stage. The top-down algorithm for MDC computation (SCHNEIDER ET 
AL, 2005) is slow in some cases of interest (up to 5 transistors in series), so limiting the 
MDC use in practice. 

Factoring is another important procedure for logic synthesis tools. It consists in the 
conversion of a logic function into a logically equivalent parenthesized expression or 



factored form (BRAYTON, 1987). This factored form in general presents a reduced 
implementation cost. There are other costs associated with a factored form, but the 
state-of-art algorithms only concern to obtain a minimal factored form, not exploring 
other costs. Besides that, the state-of-art algorithms do not synthesize expressions with 
the exclusive-OR operator, which is interesting for arithmetic and testing circuits. 

On the other hand, the research in majority logic synthesis dates back to 1960s, 
when majority logic circuits were called threshold circuits (MUROGA, 1971). A 
threshold circuit uses majority gates with weighted inputs, having applications mainly 
in analog circuits. With the CMOS technology achieving the scaling limits, there are 
many candidate technologies to replace the CMOS, such as tunneling phase logic 
(TPL), single electron tunneling (SET) and quantum cellular automata (QCA). All these 
mentioned technologies use majority or minority gates as primitive elements in the 
circuit (ZHANG; GUPTA; JHA, 2005). Unfortunately, there are no algorithms capable 
of generating optimal synthesis (considering the number of majority gates as costs) for 
functions with more than 3 inputs. 

Functional decomposition (FD) is a method for combinational logic synthesis in 
which a Boolean function is decomposed into a set of smaller functions that implement 
the Boolean function. FD has been introduced by the pioneering works of 
(ASHENHURST, 1959) and (CURTIS, 1962). The results of functional decomposition 
are in the functional domain, meaning that it can produce non-trivial logic rewritings 
that are very suitable to overcome the structural bias. A logic synthesis algorithm with 
structural bias has the results strongly dependent on the algorithm input data, and this is 
not a desired characteristic. FD has been extensively used for FPGA mapping, as it is 
simple to control the number of inputs of each sub-function. However, FD has two 
critical drawbacks in this context. Firstly, it is a top-down approach, which breaks the 
original function to be decomposed into smaller ones, so the implementation cost of 
these functions is not necessarily known. Secondly, FD involves costly operations for 
one possible decomposition, relying on complex operations as counting the number of 
distinct subfunctions, test inversions, and so on. 

All these drawbacks discussed in FD, factorization, MDC computation, and majority 
gate circuit synthesis can be overcome if a bottom-up approach is used since the costs of 
initial functions are known, the logic operations are simple, the subfunctions have sub-
optimal and optimal implementations, and a control cost can be easily set. 

1.3 Objectives 

This thesis proposes a novel technique based on functional composition (FC) to 
overcome the drawbacks of functional decomposition applied to local function 
rewriting. It is a novel synthesis paradigm that performs a bottom-up association of 
Boolean functions as opposed to the top-down functional decomposition strategy. By 
performing a bottom-up process, FC has a better control of the implementation cost of 
the final function. 

Functional composition is based on the following principles: (1) representation of 
logic functions as a bonded pair of functional/structural representations; (2) it starts 
from a set of initial functions; (3) simpler functions are associated to create more 
complex functions; (4) a partial order that enables dynamic programming is respected; 
(5) a set of allowed functions is maintained to reduce execution time/memory 
consumption.  



The functional composition approach is flexible; i.e., it can be configured to provide 
new alternatives to already known logic synthesis algorithms. FC can provide reduced 
costs due to the use of a bottom-up approach, where the implementation costs of all 
subfunctions generated during the synthesis process are known. In this thesis, three 
different FC algorithms are exemplified. All three algorithms are obtained by 
configuring FC for various purposes. 

The first application is an approach to efficiently compute MDC, especially from the 
cases of interest. The second application is a Boolean factoring algorithm that is capable 
of factorizing expressions considering one or more costs besides the expression size. A 
second Boolean factoring algorithm has the capability to factorize expressions using the 
exclusive-OR operator. The third application is a majority gate circuit synthesis 
algorithm superior to the existing ones.  

1.4 Thesis Organization 

This thesis is organized as follows. Chapter 2 provides some basic concepts useful 
for a better understanding of the reader. Chapter 3 explains the paradigm of FC, 
describing the general principles, which are used in all the applications proposed herein. 
Chapter 4 explains the MDC computation using FC. Chapter 5 and Chapter 6 propose 
two novel FC-based Boolean factoring algorithms which provide important 
improvements over previously available factoring procedures. Chapter 7 explores the 
characteristics of FC to synthesize circuits containing majority gates and inverters. The 
last chapter presents the conclusion of the thesis, summarizes the contributions of this 
work, summarizes the major contributions, and outlines some possible future works. 



 



2 BOOLEAN LOGIC CONCEPTS 

In this chapter, important concepts of logic synthesis that are necessary for the 
complete understanding of this thesis are reviewed. The concepts described are Boolean 
algebra; Boolean equations representation forms; representation of Boolean functions in 
a data structure format; the computing properties of Boolean functions and the logic 
design using only AND-eXclusive-OR (AND-XOR) expressions. Readers with 
knowledge in this field can skip this chapter without compromising the understanding 
of the contents discussed in the next chapters.  

2.1 Boolean Functions 

Let }1,0{B . A Boolean logic function f with n input variables ],,[ 1 nxx  and one 

output variable is a function: 

BBf n :  

where n
n Bxxx  ],,[ 1  is the input of f. This is a representation of a completely 

specified Boolean function (CSF) taking values from B, i.e., all the values of the input 
map into 0 or 1 for all components of f. 

For each function f , it can be defined as follows: the on-set )( nON BX   is the set of 

input values x such that 1)( xf , and the off-set )( nOFF BX   is the set of input values 

x such that 0)( xf . 

2.2 Canonical Representations of Boolean Functions 

A canonical representation of a Boolean function means that for each possible 
function f, there is only a unique representation, considering a given representation type. 
In this section, two canonical representations are presented: truth tables and binary 
decision diagrams (BDD). 

2.2.1 Truth Table 

A truth table is one possible representation of a logic function. In this form, the 
value of the function is specified for each possible combination of inputs. For instance, 
let Byyxf |:  , where the values of ],,[ 321 xxxx   is indicated in Table 2.1.  



Table 2.1: Truth table for a logic function with 3 variables 

1x 2x 3x y

0 0 0 1 

0 0 1 1 

0 1 0 0 

0 1 1 0 

1 0 0 1 

1 0 1 1 

1 1 0 1 

1 1 1 0 

 

For this function, [1,1,0]} [1,0,1], [1,0,0], [0,0,1], {[0,0,0],{ONX  and 

[1,1,1]}. [0,1,1], {[0,1,0],OFFX  

The assignment of a Boolean function can be exhaustively enumerated with a truth 
table, where every truth assignment has a corresponding y value. 

Truth tables are canonical representations of Boolean functions. That is, two 
Boolean functions are equivalent if and only if they have the same truth table. The 
canonicity of Boolean data structures is an important property because is simple to 
check the equality between two Boolean functions. 

Because of exhaustive enumeration, it is not feasible to represent a Boolean function 
through a truth table containing many input variables, e.g. a number of inputs greater 
than 20. The truth table has space complexity of )2( nO  since this is the number of 
lines in a truth table. Hence, it is not memory feasible to represent many functions with 

202 bits per function, for instance. 

By storing the truth table data as a computer word or an array of words, basic 
Boolean operations can be done in constant time by parallel operation over their truth 
tables. For example, the y output of the truth table shown in Table 2.1 can be 
represented as 011100112 (in binary format) or 7316 (in hexadecimal format), where 
the most significant bit is the leftmost digit.  

 

Figure 2.1: Karnaugh map representation of the function shown in Table 2.1. 

The Karnaugh map is another way of representing the information of a function 
(KARNAUGH, 1953). In a Karnaugh map, the Boolean variables are ordered according 
to the principles of Gray code in which only one variable changes in between adjacent 



neighboring values (GRAY, 1947). It is designed to present the information in a bi-
dimensional way that allows easy grouping of neighboring terms. A Karnaugh map 
representation for the function seen in Table 2.1 is shown in Figure 2.1. 

2.2.2 Binary Decision Diagrams 

A Boolean function can be represented as a rooted, directed, acyclic graph which 
consists of decision nodes and two terminal nodes called 0-terminal and 1-terminal, also 
known as BDDs. BDDs were first proposed by (LEE,1959), and further developed by 
Akers (AKERS, 1978). To reduce the number of decision nodes in the representation, 
(BRYANT, 1986) proposed several reduction rules, leading to the well-known Reduced 
Ordered BDDs (ROBDDs).  

The BDD from Akers is a directed graph G(V, E). All vertices Vv , except for the 
root and the leaf vertices, have one edge ingoing to them and two outgoing edges from 
them, where an edge Ee  . The two outgoing edges from a vertex point to the children 
vertices are called low and high vertices, and are denoted by )(v and )(v , 
respectively. Moreover, each vertex has an attribute called variable and is denoted by 

)(v . When 0)( v , the vertex )(v  is chosen and when 1)( v  the vertex )(v  is 
chosen. The root vertex does not have an edge incident to it. The leaf vertices do not 
have any edges leaving from them. The vertex is shown in Figure 2.2. A BDD example 
is illustrated in Figure 2.3, where the dashed line is the )(v  and the full line is )(v . 

 

Figure 2.2: Vertex representation for a BDD node.  

 

Figure 2.3: BDD representation from the function in Table 2.1. 

An Ordered BDD (OBDD) is a BDD with the nodes on every path from the root 
node to a terminal node of the BDD follow the same variable ordering. An OBDD can 
be reduced to an ROBDD. The derived ROBDD has the smallest number of nodes 
under a given variable ordering. 

ROBDDs are structurally (and also functionally) isomorphic, this means that two 
functional equivalent ROBDDs have the same graph structure, considering the same 



variable ordering for two ROBDDs. Every function has only one ROBDD for a given 
variable ordering, being a canonical representation of its respective Boolean function. 
The ROBDD obtained from OBDD of Figure 2.3 is shown in Figure 2.4. 

 

Figure 2.4: ROBDD from the OBDD in Figure 2.3. 

The size of the ROBDD is determined both by the function being represented and 
the chosen ordering of the variables. There exist Boolean functions that depend on the 
ordering of the variables, these functions would end up being represented by a graph 
whose number of nodes would be linear on the number of Boolean variables in the best 
case and exponential at the worst case. The variable ordering chosen in the BDD of 
Figure 2.3 was [x1,x2,x3]. Choosing the variable ordering [x2,x1,x3] results in the 
ROBDD shown in Figure 2.5. This ROBDD has one node less than the ROBDD from 
Figure 2.4, hence decreasing the memory consumption. 

 

Figure 2.5: ROBDD with the same function from Table 2.1, but with different variable 
ordering. 

The advantage of ROBDD is the possibility to perform Boolean operations directly 
on the compressed representation, i.e., without decompressing an ROBDD to an OBDD 
to do the operation.  



2.3 Boolean Operations 

Four basic Boolean operations are discussed in this section. These operations are 
illustrated in Figure 2.6, and the truth tables are representing the operations are shown 
in Table 2.2. 

The complement or negation (NOT, ) of a logic function f is the logic function f , 

where offon ff   and onoff ff  . 

The intersection or product (AND,  ) of two logic functions f and g, fgh   is 

defined to be the logic function h, where ononon gfh  .  

The union or sum (OR, +) of two logic functions f and g, fgi   is defined to be 

the logic function i, where ononon gfi  .  

The symmetric difference or exclusive product (XOR,  ) of two logic functions f 
and g, fgj   is defined to be the logic function j, where 

)()( ononononon gfgfj  .  

 

Figure 2.6: Boolean operations: the blue area represents the result of each operation. 

Table 2.2: Truth tables for the following operations: negation, product, sum, and 
exclusive product operations, respectively. 

NOT(f) AND(f,g) OR(f,g) XOR(f,g) 

f  f  

0 1 

1 0 
 

f g h

0 0 0

0 1 0

1 0 0

1 1 1

f g i 

0 0 0

0 1 1

1 0 1

1 1 1

f g j 

0 0 0 

0 1 1 

1 0 1 

1 1 0 
 



2.4 Properties of Boolean Functions 

There are some important Boolean properties, described in the following 
subsections. 

2.4.1 Shannon Expansion and Cofactors 

The Shannon expansion (or Shannon decomposition) is defined as (SHANNON, 
1949): 

),0,,(),1,,(),,,( 111 ninini xxfxxxfxxxxf    (2.1) 

The cofactor is a sub-element of a Shannon expansion. The Shannon expansion is a 
way to express a Boolean function by the sum of two subfunctions of the original. 
Considering a function f with the input variables { ni xxx  ,,,1 }, the cofactor 

ixf  is 

defined as: 

} ,|),,,({ 1 Bkkxxxxff inixi
   (2.2) 

The positive cofactor is defined when 1k  and the negative cofactor is defined 
when 0k . For simplicity, let 1ixf and 0ixf represent positive and negative cofactors, 

respectively, in the variable ix of the function f. A cube cofactor is obtained by setting 

more than one input variable to specific values that can be zero or one (e.g. 10 2,1  xxf ). 

The cube cofactors are commutative operations. 

There is also a Shannon expansion representation using the exclusive-OR operator: 

),0,,(),1,,( 11 nini xxfxxxfx    (2.3) 

This expansion is used to generate expressions using only AND-XOR operators. 

2.4.2 Unateness 

Let f be a Boolean function. The variable kx  in the function f is “don’t care” if 

10  
kk xx ff . The variable kx  in the function f is positive unate if 110  

kkk xxx fff . 

The function f is negative unate in the variable kx if 010  
kkk xxx fff . Otherwise, the 

variable kx  in the function f is binate.  

Let ),( kxfU  denote the unateness detection function of a variable kx  in the 

function f, and auxiliary function 01  
kk xx ffi , we have: 
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For instance, consider the function f as: 

)()( 41321 xxxxxf   



The cofactor 311
xfx   and )( 43201

xxxfx  . Generating the auxiliary function 

)( 423 xxxi  , it is possible to see that the variable .x1 is binate in f. Repeating the 

process for the other variables in f, 43 , xx  are positive unate and 2x  is negative unate.  

2.4.3 Order 

Two Boolean functions can be compared and classified according to their relative 
ordering, which can be equal, larger, smaller, not-comparable or disjoint. Let 

),( gfO denote the order of f against g, and h be the auxiliary function gfh  , we 
have: 

 

Figure 2.7: Order visualized in the Karnaugh map. 
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The order of two functions can be easily observed in a Karnaugh map, shown in 
Figure 2.7. The hachured area represents the auxiliary function h for each function g.  

2.4.4 Symmetry 

Two or more variables are symmetric when they can be interchanged without 
modifying the logic function. Two or more variables are antisymmetric if they can be 
inverted and exchanged to each other without changing the logic function.   

For a function ),( 1 nxxf   with 2n , symmetry and antisymmetry of two variables 

ix and jx  can be detected comparing the cube cofactors of ix  and jx . Let ),,( ji xxfS  

denote the symmetry check of variables xi and xj in the function f, g and h auxiliary 
functions, we have: 



1,0
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The antisymmetric property is similar, changing only the cube cofactors to be 
checked. Let ),,( ji xxfAS  denote the antisymmetry check of variables xi and xj in the 

function f, and k and m auxiliary functions, we have: 
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Example: Consider the function f as: 

323121 xxxxxxf   

321 ,, xxx  are symmetric. 

Example 2: Consider the function g as: 

2121 xxxxg   

21, xx  are symmetric and antisymmetric. 

 

2.4.5 Davio Expansion 

There are other ways to expand a Boolean expression with the exclusive-OR 
operator. The Reed-Muller or Davio expansion is one of the most used expansions with 
this objective (THAYSE, 1973). Consider the Boolean derivation of f as follows: 

01  



ii xx
i

ff
x

f
 

(2.3) 

The positive Davio expansion is: 

i
ix x

f
xff

i 


 0  
(2.4) 

The negative Davio expansion is: 

i
ix x

f
xff

i 


 1  
(2.5) 

For instance, consider the function 321 xxxf  . Applying the positive Davio 

expansion in the variable 1x , the result is indicated in Equation 2.6.  



313213

33213 )(

xxxxxx

xxxxxf




 
(2.6) 

 

2.4.6 Self-Dual Functions 

The dual of a function ),,,( 21 nxxxf  is the function ),,,( 21 n
d xxxff  . Notice 

that the function df  is obtained first by replacing each ix  with ix  and then 

complementing the function f . A self-dual function is a function such that dff  . 

For instance, in Table 2.3 is presented a self-dual function, called f. 

Table 2.3: Truth table of self-dual function f. 

Line
1x 2x 3x f

0 0 0 0 0 

1 0 0 1 0 

2 0 1 0 0 

3 0 1 1 1 

4 1 0 0 0 

5 1 0 1 1 

6 1 1 0 1 

7 1 1 1 1 

The values in the line 0, 1, 2 and 3 have complemented values of the lines 7, 6, 5 
and 4; respectively it characterizes a self-dual function. 

2.5 Boolean Equations 

An algebraic representation of f is a Boolean expression that evaluates to 1 for all 
inputs in ONX , and evaluates to 0 for all inputs in OFFX . An algebraic representation of 

f can be built by inspection from the truth table of f. For instance, the algebraic 
representation of f can be constructed as follows. Consider every row of the truth table 
that has a 1 in the output value. Create a Boolean product (logical “and”, represented by 
the operator  ) of the n input variables ],,,,[ 1 nj xxx  , the variable jx  appears 

complemented if the corresponding value of the input variable in the row of the truth 
table is 0 and uncomplemented if it is 1. This product evaluates to 1 for the input 
combinations corresponding to the row of the truth table and 0 for all other input 
combinations. Joining all products using a Boolean sum (OR) of all the product terms 
created, an algebraic representation of f is found. Using the example given in Table 2.3, 
and applying the rules above, the Equation 2.7 is obtained. 

321321321321 xxxxxxxxxxxxf   (2.7) 



2.5.1 Literals 

A literal is either a variable or the negation of a variable within a Boolean logic 
expression. For example, the expression represented by function 

)()( 41321 xxxxxf   has 5 literals and the variable set is ],,,[ 4321 xxxx , being x1 a 

positive literal and 2x  a negative literal. 

2.5.2 Two level expressions 

There are two ways to represent two level expressions. An expression called sum-of-
products (SOP) is an expression that uses product terms joined by a sum. Another way 
is using expressions composed of sum terms joined by product, being called product- 
of-sum (POS).  

2.5.2.1Minterms and Maxterms 

For a Boolean function of n variables, a product term in which each of the n 
variables appears once (in its complemented or uncomplemented form) is called a 
minterm. Thus, a minterm is a logical expression of n variables that employs only the 
complement operator and the Boolean sum operator.  

There are up to n2  minterms for n variables since a variable in the minterm 
expression can be either in its complemented form or uncomplemented form. 

Maxterms are similar to minterms. For a Boolean function of n variables, a sum term 
in which each of the n variables appears once (in its complemented or uncomplemented 
form) is called a maxterm.  

For example, consider a function with 3 variables with input assignment [x1,x2,x3]. 
The indexes are the decimal representation of the binary value. Index 6 is the minterm 

321 xxx   (maxterm 321 xxx  ), the input assignment is [1,1,0], and the minterm is 

denoted as 6m  (maxterm as 6M ). Similarly, 5m  is 321 xxx   ( 5M  is 321 xxx  ) with 

input assignment [1,0,1], and 7m  is 321 xxx   ( 7M  is 321 xxx   ) with input 

assignment [1,1,1]. 

2.5.2.2Implicants, Prime Implicants and Essential Prime Implicants 

In Boolean logic, an implicant is a covering (sum terms or product terms) of one or 
more terms in a SOP (or maxterms in a POS) of a Boolean function. Implicants are also 
known as cubes. Considering a SOP, a product term p is an implicant of the Boolean 
function f if p implies f. The product term p implies f (and thus is an implicant of f) if f 
is equal one whenever p is equal one at the output. This concept can be extended to a 
POS.  

A prime implicant pi of a function f is an implicant that cannot be covered by a more 
reduced (meaning with fewer literals) implicant. A prime implicant of f  is a minimal 
implicant. The removal of any literal from pi results in a non-implicant for f. Essential 
prime implicants are prime implicants that cover an output of the function that no 
combination of other prime implicants can cover. 

The process of removing literals from a term is called expanding the term. 
Expanding by one literal doubles the number of input combinations for which the term 



is true (in Boolean algebra). The sum of all prime implicants of a Boolean function is 
called the complete sum of that function. 

For instance, in the function 323131 xxxxxxf  , the Karnaugh map is shown 

in Figure 2.8, and the covering table of f is shown in Figure 2.9. 

 

Figure 2.8: Karnaugh map of function f. 

 

 

Figure 2.9: Covering table of function f. 

The columns in Figure 2.9 represent the minterms, and the lines represent the 
implicants. The following symbols represent each prime implicant: ‘0’ – the respective 
variable is complemented; ‘1’ – the respective variable is uncomplemented, and ‘–’ 
(dash) – the respective variable is absent (does not care). A don’t care variable can 
assume the value 0 or 1. For example, the prime implicant [0-0] represents the 
implicants [000] and [010]. 

The two gray spheres represent implicants that are only covered by one prime 
implicant, and the black spheres represent the minterms covered by the respective cube. 
The [0-0] and [1-1] are essential prime implicants. The [-00] and the [10-] are prime 
implicants, but not essential prime implicants, since the minterm 4 is covered by both. 
An irredundant sum-of-products (ISOP) is a SOP where no product can be deleted 
without changing the function. The irredundant product-of-sums (IPOS) is a POS 
where no sum can be deleted without changing the function. 

2.5.3 Factored Expressions 

Factoring is the process of deriving a parenthesized algebraic equation, multilevel 
expressions, or factored form, representing a given logic function (BRAYTON, 1987).  

An argument for factored forms is that they are a natural multilevel representation. 
A factored form is isomorphic to a tree structure, where each internal node is an AND 



or OR operator, each leaf is a literal, and the root node is the function output. This leads 
to a simple and relatively efficient multilevel implementation of the function of the 
output node. For instance, a function f can be expressed in a two level expression, 
represented by Equation 2.8. The Equation 2.8 can be factored in a more compact, 
parenthesized representation represented by Equation 2.9. 

cafedacbfedbf   (2.8) 

))(()( fedcbaf   (2.9) 

The logic tree of the two level expressions and the factored expressions are shown in 
Figure 2.10 and Figure 2.11, respectively. Note that the logic tree of the factored 
expression has three levels of Boolean operations. The number of literals is also 
reduced, from 12 literals in the SOP expression to 6 literals in the factored expression.  

 

Figure 2.10: Logic tree of the two level expression representation of the expression 
cafedacbfedb  . 

 

Figure 2.11: Logic tree of the factored expression representation of the expression 
))(()( fedcba  . 

2.5.3.1Read-Once Functions 

A function f is called read-once if it can be represented by an expression where each 
variable appears no more than once. For instance, the factored expression 

))(()( fedcba   is read-once.  



2.6 Comparison Between Boolean Functions Representations 

This chapter presented three ways of describing Boolean functions. Table 2.4 
summarizes the essential characteristics of each kind of representation. 

Table 2.4: Characteristics of the representations forms of Boolean functions. 

 Truth Table BDD (ROBDD) Expression 

Size Exponential Linear to 
Exponential 

Linear 

Boolean Operation Linear Linear to 
Exponential 

Constant 

Equality Linear Constant Exponential 

Canonicity Yes Yes No 

2.7 Two Level AND-XOR Expressions 

Most of the logic design methods are based on AND-OR-NOT expressions. 
However, the use of XOR has particular interest in arithmetic and telecommunication 
circuits, reducing the complexity of switching networks. There are many forms of 
expression representation, generated by using Davio expansion, as discussed below. 

 Positive Polarity Reed-Muller Expression (PPRM)  

PPRM is obtained by expanding an expression recursively using the positive Davio 

expansion. Negative polarity variables can be represented as 1 xx . The resulting 
expression is canonical. 

Example: The Equation 2.10 is a representation of 21 xx   as a PPRM. 

1)1()1( 21212121  xxxxxxxx  (2.10)

 

 Fixed Polarity Reed-Muller Expression (FPRM) 

FPRM representation is a generalization of PPRM. Each variable can be expanded 
using the positive or negative Davio expansion, but not both at the same time. 

Example: Representation of 321321 xxxxxx   as an FPRM, using a negative 

Davio expansion in 1x  and a positive Davio expansion in 2x and 3x .  

Using the property yxyxyx  0 : 

321321321321 xxxxxxxxxxxx   

2322131

321321321321 )1()1()1(

xxxxxxx

xxxxxxxxxxxx




 

 Kronecker Expression (KRO) 

KRO representation is a generalization of FPRM. Each function can be expanded 
using the positive or negative Davio expansion or the Shannon expansion for all 
variables.  



Example: Representation of 321321 xxxxxx   as a KRO, using a Shannon 

expansion in 1x , 2x and 3x : 

321321

2132121321

31213121

321321321321

)()(

)()(

)()(

xxxxxx

xxxxxxxxxx

xxxxxxxx

xxxxxxxxxxxx







 

 Pseudo Reed-Muller Expression (PSDRM) 

PSDRM representation is another generalization of an FPRM. For each expansion 
using positive or negative Davio expansion in an expression, there are two resulting 
subfunctions. For each of the two subfunctions, they can be expanded using positive or 
negative Davio expansions, using different expansions for each subfunction. 

Example: Representation of 321321 xxxxxx   as a PSDRM, using a positive 

Davio expansion in 1x . 

)( 3232132321321 xxxxxxxxxxxxx   

The subexpression 32 xx   is a PSDRM since all variables are expanded with the 

negative Davio expansion. Expanding 3232 xxxx  : 

23

33233232 )(

xx

xxxxxxxx




 

The final expression is:  

213132

23132321321 )(

xxxxxx

xxxxxxxxxxx




 

 Pseudo Kronecker Expression (PSDKRO) 

PSDKRO representation is the generalization of KRO representation. For each 
expansion using positive or negative Davio expansion or the Shannon expansion in an 
expression, there are new subfunctions. For each of the new subfunctions, they can be 
expanded using positive or negative Davio expansions or the Shannon expansion, using 
different expansions for each subfunction. 

Example: Representation of 321 xxx   as a PSDKRO, using a Shannon expansion 

in 1x , 3211 xxxx   is obtained: 

Decomposing 32 xx  using the negative Davio expansion in 2x , is obtained 

323 xxx  .  

Decomposing 323 xxx   using the positive Davio expansion in 3x ,  is obtained 

323 xxx  . 



Applying all the expansions: 

321311

32311

3211321

)(

xxxxxx

xxxxx

xxxxxxx





 

 Generalized Reed-Muller Expression (GRM) 

GRM representation is the generalization of a PPRM expression. Each literal at each 
product can have arbitrary polarity. 

Example: The expression of 2121 xxxx   is a GRM but not a PSDKRO since 
this expression cannot be achieved using positive/negative Davio or Shannon 
expression. 

 Exclusive-OR Sum-of-Products Expression (ESOP) 

ESOP representation is a generalization of any AND-EXOR expression. An ESOP is 
a logic expression that combines arbitrary product terms using XORs. 

Example: The expression of 212121 xxxxxx   is an ESOP. This 
representation cannot be achieved by a PSDKRO or GRM. 

Figure 2.12 summarizes all classes of AND-EXOR expressions in sets, and the 
characteristics of all classes are compiled in Table 2.5. 

Table 2.5: Characteristics of the AND-XOR expressions. 

 
Positive 
Davio 

expansion 

Negative 
Davio 

expansion 

Shannon 
expansion 

Different 
expansions  

Arbitrary 
polarity 

Arbitrary 
products 

PPRM       
FPRM       

KRO       

PSDRM       

PSDKRO       

GRM       

ESOP       

 

 

Figure 2.12: Relationship between various classes of AND-EXOR expressions. 



 



3 GENERAL PRINCIPLES OF FUNCTIONAL 
COMPOSITION 

This thesis proposes the functional composition aiming at overcoming the 
drawbacks of functional decomposition applied to local function rewriting. FC is a 
novel synthesis paradigm that performs bottom-up association of Boolean functions as 
opposed to the top-down functional decomposition approach. By performing a bottom-
up approach, the costs of initial functions are necessarily known, the logic operations 
are simple, the subfunctions have sub-optimal and optimal implementations, and a 
control cost can be easily set. 

In this chapter, the functional composition (FC) paradigm is described, and the 
novelty of FC is introduced by comparing with functional decomposition (FD). The 
principles of functional composition are discussed.  

3.1 Functional Decomposition 

Functional decomposition (FD) is a method for combinational logic synthesis in 
which a Boolean function is decomposed into a set of subfunctions. FD has been 
introduced by the pioneering works of (ASHENHURST, 1959) and (CURTIS, 1962). 
The results of FD are in the functional domain, meaning that it can produce non-trivial 
logic rewritings that are very suitable to overcome the structural bias (CHATTERJEE 
ET AL, 2005). FD has been extensively used in FPGA mapping since it is easy to 
control the number of inputs at each subfunction (STANION; SECHEN, 1995). There 
are many related works on functional decomposition, such as disjoint support 
decomposition (DSD) (BERTACCO; DAMIANI, 1997) and bidecomposition (YANG; 
CIESIELSKI, 2002). 

The disjoint support decomposition of a Boolean function ),,( 1 nxxF  consists in 

representing f  using simpler component functions J and K, such that the inputs of J and 
K do not share any input variable, and )),,(,,,( 11 njj xxJxxKF   . This DSD is 

shown in Figure 3.1. 

In general, a function has several disjoint support decompositions, which can be 
superimposed to obtain decompositions with finer granularity. Moreover, it is possible 
to recursively search for DSDs for functions J and K to produce even smaller 
components. At the limit, f can be represented as a tree of functions, with the inputs xi 
being the leaves of the tree. 



 

Figure 3.1: A disjoint support decomposition for F. Source: (PLAZA; BERTACCO, 
2005.) 

The bidecomposition is based on a binary decision diagram decomposition 
technique which supports decomposition structures of AND, OR, XOR, and complex 
MUX, both algebraic and Boolean, using the concept of 0-dominators and 1-dominators 
(KARPLUS, 1988), x-dominators and MUX decomposition. Karplus introduced the 
idea of a 1-dominator and 0-dominator and showed their relationship to algebraic 
AND/OR decomposition, illustrated in Figure 3.2. In a BDD without the complement 
edges, a 1-dominator (0-dominator) is a node which belongs to every path from the root 
to terminal node 1 (0). The x-dominator is a dominator that helps to identify algebraic 
XOR decomposition (YANG; CIESIELSKI, 2002). 

 

Figure 3.2: Algebraic decompositions of Karplus: (a) conjunction decomposition, 
F=(a+b)(c+d), based on 1-dominator and (b) disjunctive decomposition, F=ab+cd, 

based on 0-dominator. Source: (YANG; CIESIELSKI, 2002). 

The bidecomposition method is efficient in synthesizing both AND/OR and XOR-
intensive functions. The algorithm makes a horizontal cut in a BDD and then the two 



resulting BDDs will have disjoint support. There are conjunctive and disjunctive 
decompositions. In Figure 3.3, there is an example of conjunctive decomposition. 

 

Figure 3.3: Conjunctive BDD decomposition: (a) original function F, (b) generalized 
dominator and Boolean divisor D, and (c) computing quotient Q from F. Source: 

YANG; CIESIELSKI, 2002. 

In the last decade, logic synthesis has made a move forward relying on the 
representation of Boolean functions as integers, especially considering the rewriting of 
small portions of and-inverter graphs (AIGs) (MISHCHENKO, 2006). In this context, 
the task of rewriting a small Boolean function, without structural bias, has significantly 
greater value. FD can play a major role in this regard. However, the FD has two critical 
drawbacks in this context. First of all, it is a top-down approach, which decomposes the 
original function into smaller ones. Thus, the implementation cost of these functions is 
not necessarily known. Secondly, the FD depends on costly operations for one possible 
decomposition, relying on complex operations as count subfunctions extracted, test 
inversions, and so on. 

3.2 General Principles of Functional Composition 

The FC paradigm is based on some general principles (MARTINS; RIBAS; REIS, 
2012a) (MARTINS; RIBAS; REIS, 2012b). These principles include the use of bonded-
pair representation, the use of initial functions set, the association between simple 
functions to create more complex functions, the control of costs achieved by using a 
partial order that enables dynamic programming, and the restriction of allowed 
functions to reduce execution time/memory consumption. These general principles are 
discussed in the following subsections. 

3.2.1 Bonded-Pair Representation 

FC uses bonded-pairs to represent logic functions. The bonded-pair is a data 
structure that contains one functional and one structural representation of the same 
Boolean function. The functional representation is used to avoid the structural bias 
dependence, making FC a Boolean method. Usually the functional representation needs 
to be a canonical representation, as a truth table or an ROBDD structure. The structural 
representation used in bonded-pairs is related to the final implementation of the target 
function, controlling costs in such final solution. In principle, it is not a canonical 
implementation, as costs may vary. In Figure 3.4 is illustrated an example of a bonded-
pair representation with structural part implemented as an expression and the functional 



part as a truth table represented as an integer, considering the most significant bit the 
leftmost. 

 

Figure 3.4: Bonded-Pair representation example. 

3.2.2 Initial Functions 

The FC paradigm computes new functions by associating known functions. As a 
consequence, a set of initial functions is necessary before starting the algorithm. The set 
of initial functions needs to have two characteristics: (1) the bonded-pairs for the initial 
functions are the initial input of any algorithm based on FC; (2) the initial functions 
must have known costs (preferable minimum costs) for each function, allowing the 
computation of the cost for derived functions. For instance, in Figure 3.5 is illustrated a 
possible set of initial functions with two variables, using the BP representation shown in 
Figure 3.4.  

 

Figure 3.5: Example of initial bonded-pairs. 

3.2.3 Bonded-Pair Association 

When a logic operation (e.g. logic OR) is applied to bonded-pairs, the operation is 
applied independently to the functional and the structural parts. By applying the same 
operation in functional and structural representations, the correspondence between the 
representations is still valid after such operation. The conversion of functional 
representation into a structural representation, and vice-versa may be difficult and 
inefficient. The main advantage of the bonded-pair association is the operations 
occurring in the functional and structural domain in parallel, avoiding conversions. To 
maintain the control over the structural representation, avoiding the inefficient 
structures and a lack of control of converting one type into another, it is used the 
bonded-pair representation. Figure 3.6 presents the association of bonded-pairs. The 
bonded-pair <F3,S3> is obtained from bonded-pairs <F1,S1> and <F2,S2>. The 
computation of the functional part (F3=F1+F2) is independent of the computation of the 
structural part (S3=S1+S2).  

 



 

Figure 3.6: Bonded-pair association example. 

3.2.4 Partial Order and Dynamic Programming 

The key concept of dynamic programming (DP) is solving a problem in which its 
optimal solution is obtained by combining optimal sub-solutions. This concept can be 
applied to problems that have optimal sub-structure. It starts by solving sub-problems 
and then combining the sub-problem solutions to obtain a complete solution. In 
functional composition, DP is used associated with the concept of partial ordering. The 
partial ordering classifies elements according to some cost. This is done to ensure that 
implementations (the structural elements in the BPs) with minimum costs are used for 
the sub-problems. Different costs can be used depending on the target(s) to be 
minimized. Using the concept of partial order, intermediate solutions of subproblems 
are classified into ‘buckets’ that sort them in an increasing order of costs of the 
structural element of the BP representation. This concept is illustrated in Figure 3.7.  

 

Figure 3.7: When combining the elements of a bucket, a new element is generated and 
stored in a new bucket. 

3.2.5 Allowed Functions 

The large number of subfunctions, created by exhaustive combination, can 
jeopardize the FC approach. However, many optimizations can be done to make FC 
approach feasible and more efficient. One of these optimizations is the use of the 
allowed functions. For performance optimization, a hash table of allowed functions can 
be pre-computed before starting the algorithm. Functions that are not present in the 
allowed functions table are discarded during the processing. The use of the allowed 
functions hash table helps to control the execution time and memory use of the 
algorithms. FC may (in some cases) achieve a better result by having more allowed 
functions than with a reduced set of these. For other cases, solutions can be guaranteed 
optimal even with a very limited set of allowed functions. For instance, this is the case 



of read-once factoring. The read-once factoring algorithm will be discussed in Chapter 
5. 

Several effort levels can be implemented for the trade-off memory/execution time 
versus quality. These effort levels can vary from a limited set of functions to an 
exhaustive effort including all possible functions. An example of allowed functions is 
shown in Figure 3.8, based on the example shown in Figure 3.7. A heuristic algorithm 
discarded the function ba  , reducing the amount of functions inserted in the bucket. 

 

Figure 3.8: Some elements of Figure 3.7 can be removed to reduce the number of 
elements in a bucket, improving memory and execution time. 

3.3 General Flow 

In Figure 3.9, the general flow for algorithms following the FC principles is shown. 
The first step consists in parsing the target function. Then, the initial bonded-pairs are 
generated and compared with the target function. If the target function is not found, the 
allowed functions are computed and inserted in a separated set. The initial bonded-pairs 
are inserted in the buckets. Such bonded-pairs are then associated to compose new 
elements that are inserted in the next bucket, according to the corresponding cost, but 
only if they are allowed functions. These new bonded-pairs are used into the sequence 
of the associations. The process continues until the target function is found. 

 

Figure 3.9: General Flow for FC.  

3.4 Related Work 

The use of a bottom-up approach for logic synthesis was already used by some 
authors, including (JOSWIAK; BIEGANSKI, 2008) and (HLAVICKA; FISER, 2001).  

The FC is different from the work of (JOSWIAK; BIEGANSKI, 2008), because 
Joswiak does bottom-up synthesis by using information theory (JOSWIAK, 1999), An 
information-driven circuit synthesis approach relies on the analysis of the information 



flow structure and relationships in the function to be implemented, as well as, in the 
circuit under construction, and usage of the results of this analysis to control the circuit 
construction. Based on information theory, the algorithm classifies subfunctions which 
will better contribute to cover a given function. 

This process is directly performed into the primitives of a given implementation 
technology (e.g. gates of a given technology library), while FC performs it by an 
extensive combination of bonded pairs, manipulating the functional and structural parts. 
Notice that using information theory implies computing the information with a method 
that has to visit every minterm of a function individually. So, information theory 
computation is more expensive than the bitwise operations with integers representing 
truth tables, which can be used in FC. The key enabler of FC presented herein is the 
concept of bonded pairs which was explained in this chapter, as bonded pair association 
guarantees that a fast computation of functions from subfunctions, which enables to 
exploit more implementations.  

The FC also differs from the work of (HLAVICKA; FISER, 2001), because 
Hlavicka relies on the bottom-up approach to compute only an incomplete set of prime 
implicants, performing two-level minimization.  

The algorithm starts from a functional description and has three phases. The three 
phases are: coverage-directed search (generation of implicants); implicant expansion 
(generation of prime implicants) and solution of the covering problem.  

The coverage-directed search consists of a directed search for the most suitable 
literals that should be added to some previously constructed term to convert it into an 
implicant of the given function. Thus instead of increasing the dimension of an 
implicant starting from a 1-minterm (or any other 1-term given in the function 
definition), we reduce the n-dimensional cube by adding literals to its term, until it 
becomes an implicant of the given function. These implicants generated during this 
phase are not necessarily prime implicants.  

In the implicant expansion, the cubes are expanded, which means by removing 
literals (variables) from their terms. When no literal can be removed from the term 
anymore, a prime implicant is generated. 

Having found a sufficient set of prime implicants, the covering problem is solved. 
The heuristics are explained in detail in (RUDELL, 1989; COUDERT, 1994) 

The algorithm is capable of dealing with functions with several hundreds of input 
variables, competing with ESPRESSO. In FC approach, the complete synthesis process 
is based on dynamic programming by the association of bonded pairs. The FC is a 
general method that can be applied to several applications instead of only prime 
implicants computation.  

3.5 Conclusions 

In this Chapter, a novel paradigm for performing logic synthesis, called functional 
composition (FC) was presented. It is based on a bottom-up approach using composition 
of Boolean functions to have an efficient cost control. FC has five general principles: 
bonded-pair representation, initial functions, bonded-pair association, partial order and 
dynamic programming and allowed functions. 



 



4 MINIMUM DECISION CHAIN COMPUTATION 

This chapter discusses the computation of minimum decision chains (MDC). The 
MDC of a logic function is related to the maximum number of switches in series in 
switch networks that implement the given logic function. (SCHNEIDER ET AL, 2005) 
have presented a method to compute MDCs, slightly based on the Quine-McCluskey 
algorithm (MCCLUSKEY, 1958). This algorithm is referred in this thesis as QMC-
MDC (SCHNEIDER ET AL, 2005). (MARQUES ET AL, 2007) used QMC-MDC 
algorithm as a criterion to evaluate the feasibility of complex gates in a library-free 
technology mapping approach (REIS; ROBERT; REIS, 1998). However, the execution 
time of a QMC-MDC algorithm for some kind of functions has been the main 
drawback. Thus, the computation using FC named here as FC-MDC is proposed to 
speed-up the MDC computation. 

Initially, the MDC concept is discussed. In the following sections, the algorithms 
QMC-MDC and FC-MDC are presented. QMC-MDC is a top-bottom approach while 
FC-MDC is a bottom-up approach. Both algorithms are compared in runtime in the 
section of experimental results. 

4.1 Introduction 

Logic synthesis methods may rely on the exploitation of Boolean functions 
properties like positive and negative unateness, binateness and symmetry between 
variables (WANG; CHANG; CHENG, 2009). One example is the unate recursive 
paradigm used in the ESPRESSO tool (BRAYTON ET AL, 1984) to decompose 
functions recursively, leading to easy-to-solve operations on unate sub-functions. Other 
examples are methods to compute read-once formulas efficiently (GOLUMBIC; 
MINTZ; ROTICS, 2001; GOLUMBIC; MINTZ; ROTICS, 2008; LEE; WANG, 2007). 
Indeed, logic synthesis methods use Boolean function properties to guide the 
algorithms. As a consequence, fast methods to compute Boolean function properties are 
needed to allow the use of these properties in logic synthesis flows. 

There are sum of products minimizers like ESPRESSO-SIGNATURE (MCGEER, 
1993) that use the concepts of non-redundant minimal implicants (introduced by 
(NGUYEN; PERKOWSKI; GOLDSTEIN, 1987)) to avoid the explicit computation of 
all prime implicants. According to (MCGEER, 1993), “the work of Perkowski et al. did 
not receive due attention, possibly because the only algorithm given was that of 
enumerating all minterms, generating the primes for each, forming the cube of their 
intersection, and casting out the cubes that are singly contained in any one other”. This 
is a clear case where an important Boolean function property had its use avoided in 
practice due to the lack of an efficient algorithm to compute it.  



4.2 Minimum Decision Chains 

As discussed in Section 2.5.2.2, an ISOP is a SOP where no literal (or group of 
literals) can be deleted without changing the function represented. The products in an 
ISOP are prime implicants. To set the output value of the function to logic ‘1’, it is 
sufficient to assign the values of the variables present in any of the prime implicants, 
i.e., that at least one of the prime implicants evaluate to logic ‘1’.  

Definition 1: A set of prime implicants that covers a function f can be viewed as a 
set of variable assignments that decide this function.  

Definition 2: The largest number of variables in a single prime implicant among a 
set of prime implicants that decide (cover) a function f is the decision chain (DC) of the 
set.  

Lemma 1: Different sets of prime assignments that decide a function f are possible, 
and each set of prime assignments has its own DC.  

Definition 3: The minimum decision chain (MDC) of a function f is the smallest DC 
among all possible DCs of a function. The MDC of a Boolean function expresses the 
largest (worst case) number of variable assignments (i.e. literals in a prime implicant) 
necessary to cover a minterm of the function.  

For example, consider the function of five input variables given by Equation 4.1, 
which represents a set of five distinct prime variable assignments (prime implicants) 
that decides (cover) the function. The DC of this set of assignments is four, since the 
term edcb   is the prime implicant with more literals, containing four literals.  

edcbdcaedacbadbaedcbaf ),,,,(  (4.1) 

 

Figure 4.1: K-map for the Eq. 4.1. 

The Equation 4.1 can be obtained from the Quine-McCluskey method, and is 
illustrated as a Karnaugh map in Figure 4.1. The hachured minterms represents the 
assignment edcb  . Four variables (b=1, c=1, d=0 and e=1) are assigned to cover both 
minterm 13 ([a,b,c,d,e]=[0,1,1,0,1]) and minterm 29 ([1,1,1,0,1]). However, minterm 13 
can be covered by assigning just three variables (a=0, d=0 and e=1) since the minterms 



1 ( [0,0,0,0,1]), 5 ([0,0,1,0,1]) and 9 (i.e., [0,1,0,0,1]) also belong to the on-set of f. In 
the same way, to cover minterm 29 is necessary to assign only three variables (a=1, b=1 
and c=1). As a consequence, Equation 4.1 can be rewritten as Equation 4.2. It is shown 
as a Karnaugh map in Figure 4.2: 

cbaedadcaedacbadbaf   (4.2) 

In Figure 4.2, the minterms with horizontal hachure represent the term eda  , and 
the minterms with vertical hachure represent the term cba  . All selected prime 
implicants have exactly three literals each. Therefore, the DC of the set of assignments 
represented by Equation 4.2 is three. Since the largest number of variable assignments 
(worst case) necessary to cover a minterm of the function f is three. Thus, as it cannot be 
reduced even more for this function, its MDC is three. 

The Equation 4.1 was generated using the Quine-McCluskey algorithm. Thus the 
number of cubes is reduced, compared with the Equation 4.2. The Equation 4.1 has 5 
cubes and 16 literals and the Equation 4.2 has 18 literals.  

 

Figure 4.2: Karnaugh map for Equation 4.2. 

The MDC of a function f is related to the minimum worst case number of series 
switches required to create a switch network that implements the function f. If the MDC 
is K, then the function requires at least K switches in series to be implemented as a 
single stage switch network. Also, the existence of a solution with at most K series 
switches is guaranteed. Notice that there is an MDC value for the on-set and another 
value for the off-set. The MDC value for the on-set is named here as 1-MDC; while the 
MDC value for the off-set is named here as 0-MDC. 

It is important to consider if an expression respects the MDC, there is a chance of 
the amount of literals to increase, even in the factored form. In the Equation 4.1, there 
are 16 literals, while in Equation 4.2 there are 18 literals. Considering the expressions 
being represented as switch networks, the switch network represented by Equation 4.2 
is potentially faster than Equation 4.1, since the delay is closely related to the largest 
number of switches series in the stack (WESTE; HARRIS, 2010). Although, the 
Equation 4.2 has more literals than the Equation 4.1 and this may impact the area. 



4.3 QMC-MDC Procedure 

The well-known Quine-McCluskey procedure (MCCLUSKEY, 1958) can be 
adapted to compute the MDC of a function, called in this thesis QMC-MDC 
(SCHNEIDER ET AL, 2005). It is important to notice that the QMC-MDC method will 
not return any expression. Indeed, this approach returns a number, which is the MDC of 
the target function. 

The QMC-MDC algorithm makes a modification of the procedure for computing the 
prime implicants used in the original Quine-McCluskey algorithm. At every step, 
minterms or cubes are associated to produce larger cubes (larger cubes cover more 
minterms, therefore have fewer literals). In the original QMC algorithm, the cube 
generation is done until no prime implicants are found, and no association is possible; in 
the QMC-MDC algorithm, the prime generation is done until the set of the largest cubes 
cover the function. In the QMC-MDC procedure starts with a table with only the 
minterms and the MDC value set to the number of variables of the function. To 
determine the MDC value, the QMC-MDC considers the cubes produced at every step 
on the minterms that they cover. At every step, a set of larger cubes is produced. The 
QMC-MDC verifies if the produced cubes can cover all the minterms of the function by 
themselves. If this is possible, the MDC value is reduced by one, and the procedure 
continues. If this is not possible, the execution stops and the number of literals present 
in the last implicant tested represent the MDC value of this Boolean function. If the 
function is unate, all cubes are essential prime implicants. Thus the essential prime 
implicant cube with most literals represents the MDC value of the function. 

Using Equation 4.2 as an example, we can see the covering table in Figure 4.3. The 
lines represent the possible prime implicants, and the columns represent the minterm 
index. Equation 4.2 can be covered by the cubes containing a rectangle selection, and all 
cubes have only 3 literals. The algorithm stops the grouping when the target function is 
covered. The cube with more literals indicates the MDC value. 

 

Figure 4.3: Covering table related Equation 4.2. 



The QMC-MDC algorithm for a function f is efficient when the MDC value is close 
to the number of variables. However, the QMC-MDC computation can become quite 
slow for functions with a large number of variables in which the MDC value is much 
smaller than the number of variables. This behavior is related to many cube expansion 
for these functions. An alternative approach is proposed based on FC, described further 
in the next sections. 

4.4 FC-MDC Procedure 

The functional composition can be used to calculate the MDC of a Boolean function. 
The algorithm for computing MDC will be referred as FC-MDC. FC-MDC computes 
the MDC of a Boolean function using a bottom-up approach. Instead of increasing the 
number of minterms in the implicants by omitting literals from their terms as done in 
QMC-MDC, the number of minterms in the implicants is gradually decreased by adding 
new literals in FC-MDC.  

The FC-MDC has two initial structures. The first is the accumulator, which is 
initially the constant zero function. The purpose of the accumulator is to store all 
smaller functions (in reference to the target function) until the accumulator function is 
equivalent to the target function. The OR bitwise function is applied to accumulate 
against the accumulator and the smaller function. The buckets are the second structure, 
where the larger and not comparable functions are stored.  

4.4.1 Functional Composition Setup for MDC Computation 

Considering the principles of FC described in Section 3.2, this subsection presents 
the FC setup (i.e. the choices related to each principle) to compute the MDC of a 
Boolean function.  

1. Bonded-Pair Representation: {Boolean function, MDC value} 

2. Initial Functions: Variables complemented and uncomplemented 

3. Bonded-Pair Association: Simple association {AND} 

4. Partial Order: Number of literals 

5. Allowed Functions: Let f be a target function, containing n variables. The 
allowed functions are all Boolean space of functions with up to (n-1) variables. 

4.4.2 FC- MDC Computation 

The FC-MDC algorithm starts by checking the relative order of all 1-literal 
functions (variables complemented and uncomplemented) before inserting them in the 
1-literal bucket. If a function is smaller (or equal, in the case the target function has only 
one variable), this function is accumulated. The remaining functions are combined using 
the AND bitwise operation, generating 2-literal functions. All smaller functions 
generated by this combination are accumulated. The generation of 3-literal functions is 
performed combining 2-literal functions with 1-literal functions. The combination 
process can be generalized, with the association (using only bitwise AND operation) of 
(n-1)-literal functions with 1-literal functions, generating n-literal functions, where n is 
an arbitrary number and smaller than the number of variables This process provides the 
product terms that compose the function in a SOP form. The upper limit for n is the 
number of variables minus one, since if the algorithm did not stop in the (n-1)-bucket, 



then the algorithm will certainly stop in the n-bucket. Hence, the generation of the n-
literal bucket can be expressed by Equation 4.3:  

  2|11   nBBB nn  (4.3) 

4.5 FC-MDC Application Example 

In Figure 4.4, there is an execution example of the algorithm considering the 
function f of Equation 4.4: 

dbacbcaf   (4.4) 

The first step is to check if the target function is constant. In this case, the algorithm 
returns zero as the result. The 1-literal bucket is filled with the variables and only the 
literals with the right polarity are created, reducing the computation time. No 
accumulation is done at this step because there are no smaller functions. In the 2-literal 
bucket (with its contents separated using the order criterion), two smaller functions 
( ca  , cb  ) are found and stored appropriately in the accumulator. In the next iteration, 

two new smaller functions ( dca  , dba  ) are found and also stored in the 
accumulator. These 4 functions cover all on-set of the function f is, and the on-set MDC 
of this function is three, as the accumulated function became equal to the target function 
in the 3-literal bucket. Indeed, the (on-set) MDC of a function f is the number of literals 
of the current bucket being processed.  

 

Figure 4.4: MDC computation example. 



As an additional feature, the algorithm can be modified to end when the MDC value 
of the function being computed exceeds a certain threshold limit established by the user. 
In this case, the exact value of the MDC does not matter, as it exceeded the limit 
established. The algorithm can stop before finishing all the process if the MDC of the 
function exceeds the largest value considered feasible by the user, avoiding unnecessary 
computation of an MDC value not desired. Although if the MDC of the function is 
greater than the threshold limit, the algorithm returns “MDC not found”. Notice that the 
use of this upper threshold value is only possible due to the way implicants are 
computed in FC-MDC, i.e. instead of increasing the dimensionality of implicants by 
omitting literals from their terms, the dimension of a term is gradually decreased by 
adding new literals. The QMC-MDC algorithm is capable of a lower threshold value, in 
opposite way of the FC-MDC algorithm, stopping if the MDC of a function is lower 
than the threshold limit. 

4.6 Sum of Products Synthesis Using FC-MDC 

The SOP synthesis can be done using the structural part of a bonded-pair as an 
expression. Storing each bonded-pair in a table can result in products that respect the 
MDC. To make an ISOP that respects the MDC, each bonded-pair must be stored, and a 
redundancy check must be done to eliminate redundant products that do not contribute 
to the final solution. The redundancy check informs if a function is already covered by 
others. In the SOP found after the FC-MDC execution in Figure 4.4, using a covering 
table to check redundant primes, dca   can be removed, since it is already covered by 
the terms ca  and cb  . 

4.7 Experimental Results 

Experiments have been carried out to evaluate the efficiency of the proposed FC-
MDC method to compute MDCs in comparison to the QMC-MDC approach. The 
algorithms have been tested in a Core2Duo 2.4 GHz with 4 GB RAM computer. 

First of all, there were different sets of functions. The NPN (i.e., input Negation – 
input Permutation – output Negation) class of representative functions of 4-input and 5-
input variables, which contain 222 and 616,125 distinct classes, respectively 
(CORREIA; REIS, 2001). A third benchmark used in the analysis is the library 44-
6.genlib library distributed in the SIS package (SENTOVICH, 1992), which contains 
3,503 functions with maximum four series/parallel transistors and with maximum six 
levels of logic depth in the conventional static CMOS design style. All functions in the 
44-6.genlib are read-once. 

The QMC-MDC and FC-MDC algorithms were executed in these three set of 
functions to obtain the on-set MDC values. The execution time is shown in Table 4.1 
for both addressed methods and the average on-set MDC value obtained with these sets 
of functions. The main reason why the FC-MDC algorithm exceeds the QMC-MDC 
algorithm in performance is associated with the fact that it does not need to fill many 
buckets when the MDC value is small. Notice that the cases where the MDC is small 
represent the functions of the more interest in digital design, as they correspond to 
feasible switch networks (and faster logic gates) with a small number of stacked 
switches (WESTE; HARRIS, 2010). The QMC-MDC was observed to be slow for 
computing the MDC of functions in the 44-6.genlib set since this set contains functions 



with up to 16 variables, in which it is quite expensive to compute all the prime implicant 
terms.  

Table 4.1: Total execution time of on-set MDC computation. 

Function Set #Functions QMC-MDC FC-MDC 
Average on-

set MDC 

4-NPN 222 34 ms 9 ms 3.46 

5-NPN 616,125 92 s 104.3 s 4.67 

44-6.genlib 3,503 > 4h 5.9 s 3.87 

 

It is very interesting to exploit the property of limitation provided by the FC-MDC, 
stopping the computation after reaching a certain maximum MDC threshold determined 
by the user. The execution time improvement due to this feature is illustrated in Table 
4.2, which shows the number of functions with an MDC value smaller or equal to a 
user-defined threshold and the execution time necessary to compute it. FC-MDC 
considers the pre-defined MDC threshold to stop computation if the MDC of the 
function is larger than the limit established by the user. 

Table 4.2: MDC computation of 5-NPN through FC-MDC method, using a limit value 
pre-defined by the user. 

MDC limit (pre-defined) 
Number of functions 
having MDC = MDC 

limit 

Time to process all 

5-NPN 

1 1 8.7 s 

2 9 21.3 s 

3 3,444 44.7 s 

4 318,327 90.2 s 

5 294,344 104.3 s 

 

In the second phase of experiments, the behavior of QMC-MDC and FC-MDC were 
evaluated for specific functions, with particular attention to the worst cases obtained 
with the FC-MDC method that are the best cases of the QMC-MDC method. These 
cases happen when the functions have minterms that cannot be associated to produce 
larger cubes. The AND and XOR functions are some related examples. The AND 
functions have a single minterm, while the XOR functions have no minterm that can be 
associated into larger cubes. The Karnaugh maps of AND4 and XOR4 are shown in 
Figure 4.5 and Figure 4.6, respectively. 

Experiments were performed to investigate the corner cases of FC-MDC method 
against QMC-MDC, computing the MDC of AND and XOR functions, from two to 
eight inputs, considering two situations: (1) full computation, and (2) using the pre-
defined threshold limit of MDC equal to four, an industry practical rule of thumb for the 
maximum transistor stack in digital CMOS integrated circuits (WESTE, HARRIS, 
2010).  



 

Figure 4.5: Karnaugh map of AND4 function. 

 

Figure 4.6: Karnaugh map of XOR4 function. 

Figure 4.7 and Figure 4.8 provide useful information about the two methods, shown 
in log scale for better visualization. In Figure 4.7, for the AND function evaluation, the 
QMC method presents almost constant results, because all functions always have one 
prime implicant. The FC method, in turn, presents an exponential time increase. In the 
AND8 case, there is a runtime reduction of circa of 50% when exploiting the pre-
defined limit parameter (4). In this case, the method is aborted, and a limit overflow 
result is returned.  

The execution time is presented in Figure 4.8 for the XOR function analysis. The 
QMC-MDC based method presents an exponential runtime increasing since the number 
of minterms is doubled for each additional variable in the XOR function, by augmenting 
the number of input variables. On the other hand, the FC-MDC based method presents a 
more severe increasing than in the AND experiments. However, the pre-defined limit 
parameter is demonstrated to be very effective, with more than one order of magnitude 
reduction of total execution time, making the execution time competitive with the 
QMC-MDC method.  

 



 

Figure 4.7: MDC computation of AND with 2 to 8 inputs. 

 

 

Figure 4.8: MDC computation of XOR, with 2 to 8 inputs. 

4.8 Conclusions 

This chapter proposed an efficient method to compute minimum decision chains 
(MDC) of logic functions. The method is referred as FC-MDC. The FC-MDC method is 
compared to the QMC-MDC method (SCHNEIDER ET AL, 2005), which is a modified 
version of the Quine-McCluskey algorithm (MCCLUSKEY, 1958). The QMC-MDC 
method presents some limitations related to the number of prime implicants of the 
functions, as it has to compute nearly all prime implicants, making it quite computing 
expensive in some cases. The FC-MDC method is faster in most cases, especially in the 
cases of CMOS design interest, i.e., logic functions with MDC smaller than 5. 

An interesting approach is a use of FC-MDC and QMC-MDC in parallel. When one 
algorithm finds the MDC value, the other algorithm is aborted. This method will reduce 
the execution time even more. 



5 BOOLEAN FACTORING 

The factoring is an important procedure in logic synthesis tools. It consists in 
converting a logic function into a logically equivalent parenthesized expression or 
factored form with the goal of reducing the literal count. The factoring algorithms are 
usually divided into two-level synthesis, used mainly in Programmable Logic Array 
(PLA) and multilevel synthesis. In the two-level synthesis, there are tools as 
ESPRESSO (BRAYTON ET AL, 1984) that can find a minimum or near-minimum sum 
of products form for a logic function. Multilevel synthesis is still in research, being the 
main implementation strategy used in the industry today. 

5.1 Basic Concepts about Factorization 

Factoring algorithms can be divided into two groups: those who use algebraic 
techniques and those who use Boolean techniques. 

The algebraic factoring has its basis in the polynomial division. The basic concept is 
that given the functions f and p, find functions q and r such that rqpf  , if such q 
and r exist. This operation is called the division by p generating quotient q and the 
remainder r. The function p is known as a divisor of f if r is not null, and a factor if r is 
null.  

For a given division operation, the resulting q and r may depend upon the particular 
representation of f and p. Moreover, for any logic function, there are many Boolean 
factors and divisors. This fact poses a problem in choosing a good factor and divisor. If 
the domain is restricted to a particular subset of expressions, then the division operation 
is unique and much easier to carry out. A restricted version of such division is called 
algebraic division. For instance, the Equation 5.1 is an algebraic product.  

)()( 54321 xxxxxf   (5.1) 

Unlike algebraic factoring, Boolean factoring exploits Boolean identities and 
Boolean properties to perform factoring (e.g. the annihilation property: a+1=1), 
allowing products with variables in common. For instance, Equation 5.2 is an example 
of the Boolean product.  

)()( 521321 xxxxxxg   (5.2) 

Note that Equation 5.1 and Equation 5.2 are different and Equation 5.2 allows 
products that are not observed in algebraic factoring. If Equation 5.2 is expanded, the 
Equation 5.3 is found:  

523135221121 xxxxxxxxxxxxg   (5.3) 



The first product can be eliminated by the complementation law ( 0 xx ) and the 
second product can be simplified by idempotence law ( xxx  ). The Equation 5.4 is 
the Equation 5.3, considering the discussed simplifications. 

52313521 xxxxxxxxg   (5.4) 

Algebraic factoring is very fast, but the quality of results is far from optimal. The 
Boolean factoring usually achieves better results, but they can be very time and memory 
consuming. Algebraic algorithms treat the Boolean expression as a polynomial, which 
reduces the execution time but the final result is strongly tied to the starting expression 
(i.e. the initial expression that the algorithm uses as a basis to factorize). Usually, the 
starting expression is an ISOP. Boolean factoring algorithms can start from a functional 
description or an ISOP. An algorithm that depends on a functional description does not 
suffer from structural bias. 

5.2 Related Work 

Since obtaining an optimal (minimal number of literals) factorization for an arbitrary 
Boolean function is an NP-hard problem, all practical algorithms for factoring are 
heuristic and provide a correct, logically equivalent formula, but not necessarily a 
minimal solution. Heuristic techniques have been proposed for algebraic factoring that 
achieved high commercial success. These include the QuickFactor (QF) and 
GoodFactor (GF) algorithms available in SIS tool (SENTOVICH et al, 1992).  

According to (HACHTEL; SOMENZI, 2006) the only known optimality result for 
factoring is the one presented by (LAWLER, 1964). Lawler's algorithm starts from a 
functional description, uses a procedure to compute multilevel prime implicants, but it 
is too slow, not being able to compute all functions of four variables.  

(CARUSO, 1994) proposed an algorithm for Boolean factoring. Its general strategy 
is similar to the one used by an algebraic factoring algorithm carrying out factoring 
process by recursively applying the three basic operations called expansion, selection, 
and reduction but using Boolean identities in the elements. As this algorithm is based on 
an algebraic method, the results are non-optimal. For example, the Equation 5.5 is taken 
from (CARUSO, 1994), with 13 literals. The Equation 5.5 can be factored into 10 
literals, as presented in Equation 5.6. Equation 5.6 is a literal count improvement over 
Equation 5.5 of 23%.  

)()( cbfedcfecaeda   (5.5) 

)())(( cbcefadeda   (5.6) 

Recently, factoring methods that produce exact results for read-once factored forms 
have been proposed by (GOLUMBIC; MINTZ; ROTICS, 2001). As seen in subsection 
2.5.3.1, a function f is called read-once if it can be represented by an expression where 
each variable appears no more than once. They presented an algorithm that uses graph 
partitioning rather than division. The algorithm is called IROF and is based on 
algorithms for cograph recognition and on checking normality. The IROF algorithm 
was extended for any function, called XFactor (MINTZ; GOLUMBIC, 2005). The 
XFactor algorithm is recursive and operates on the function and on its dual, to obtain 
the better factored form. The IROF algorithm only works for functions that can be 
represented by read-once formulas. The Xfactor algorithm is exact for read-once forms 



and produces good heuristic solutions for functions that are not included into the read-
once class of functions. 

A method for exact factoring based on quantified Boolean satisfiability (QBF) was 
proposed by (YOSHIDA; IKEDA; ASADA, 2006). The Exact_Factor algorithm 
constructs a special data structure called eXchange Binary (XB) tree, which encodes all 
equations with a given number N of literals. The XB-tree contains three different 
classes of configurable nodes: internal (or operator), exchanger and leaf (or literal). All 
classes of nodes can be configured through configuration variables. The Exact_Factor 
algorithm derives a QBF formula representing the XB-tree and then compares it to the 
function to be factored by using a miter structure. If the QBF formula for the miter is 
satisfiable, the assignment of the configuration variables is computed, and a factored 
form with N literals is derived. The optimality of the algorithm derives from the fact 
that it searches for a read-once formula and then the number of literals is increased by 
one until a satisfiable QBF formula is obtained. This algorithm was extended to 
incompletely specified logic functions in (YOSHIDA; FUJITA, 2011). The 
Exact_Factor successfully finds the exact minimum solution for expressions with up 12 
literals in 10 minutes, but the algorithm has exponential time in relation to the number 
of literals to compute the optimal solution (in number of literals).  

More aspects may be considered in factoring, besides reducing the number of 
literals. For instance, logic depth and structural characteristics associated with derived 
switch networks. Consequently, it is necessary algorithms that can deal with multi-
objective design goals, considering topological properties (like the number of series and 
parallel switches in derived networks) while reducing the number of literals. In this 
sense, it becomes interesting that factoring algorithms should include: 

1. Minimize factored forms taking into account multi-objective goals. 

2. Generate more than one alternative solution. 

3. Start from a functional description, overcoming the structural bias. 

Table 5.1: Comparison between factoring algorithms. 

Method Exactness Functions 
treated 

Start point Read-Once 
optimized 

More than 
one solution 

Multi-
objective 

Lawler Exact Up-to 4 
variables 

Functional 
Description 

No No No 

Caruso Heuristic All ISOP No No No 

Exact_Factor Exact Up-to 12 
literals 

Functional 
Description 

No No No 

QF/GF Heuristic All ISOP No No No 

IROF Exact Read-once 
only 

ISOP Yes No No 

XFactor Heuristic All ISOP Yes No No 

FC-HEURISTIC Heuristic All Functional 
Description 

Yes Yes Yes 

FC-EXACT Exact All Functional 
Description 

Yes Yes Yes 

 



These three important characteristics cited above are present in the factoring 
algorithms using FC. Table 5.1 shows a comparison of the previous work and the 
proposed factoring algorithms named herein as FC-HEURISTIC (MARTINS ET AL, 
2010) and FC-EXACT (MARTINS ET AL, 2012). 

 

5.3 FC Factoring Baseline Algorithm 

The FC factoring baseline algorithm computes new functions from simpler 
expressions (i.e., with fewer literals) computed in prior steps, to find the target function 
with fewer literals as possible. The starting point is the set of known sub-functions 
represented by single literals. The computation of new functions can be as follows. Let 
L, M, and N be positive integer numbers with the following relations: L ≤ M and N = L 
+ M. The procedure combines a L-literal function with a M-literal function, creating a 
N-literal function by using logic operations. A N-literal bucket is a set of N-literal 
functions. The operations among buckets combine all functions in an L-literal bucket 
against all functions in an M-literal bucket, generating an N-literal bucket (N > 1). The 
initial functions with 1-literal are inserted in the bucket with N = 1. Thus, the generation 
of the N-literal bucket can be expressed in the Equation 5.7. 
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(5.7) 

In Equation 5.7, Bk represents the bucket and with index k. For example, in the 
Figure 5.1, the bucket 5 is formed by bonded-pair associations of elements in bucket 1 
and bucket 4, and also by the association of elements in bucket 2 and bucket 3. 

 

Figure 5.1: Generation of functions contained in the 5-literal bucket 

An important structure is the “already looked set”. The “already looked set” stores 
the functions already introduced. These functions have been produced with fewer or 
equal number of literals and do not need to be introduced twice. This process speeds-up 
the execution time, decreasing the memory use. 

The factorization process is iterative and stops when the target function is found. 
This function generation technique makes the algorithm find the optimal result in 
number of literals by construction. 

Theorem: Combination of the buckets using Equation 5.7 will result in a minimum 
literal expression, considering FC principles.  



Proof: The 1-literal bucket contains all variables in both polarities, i.e., the positive 
and negative literals. Functions expressed as 1-literal forms are minimal since it is not 
possible to represent these functions with less than one literal. The 2-literal bucket 
contains all functions generated by combining functions of the 1-literal bucket. The 
functions in the 2-literal bucket have exactly 2 literals. Since constant functions and 
functions already present in buckets with smaller indexes are not added (i.e. allocated in 
the memory), the newly added functions are known to be in the optimal form (in 
number of literals). By induction, the n-bucket is formed by functions with optimal 
form, generated using Equation 5.5. When the target function is found for the first time 
in the n-bucket, the minimum literal form is guaranteed to have n literals. 

From a dynamic programming point-of-view, the algorithm has optimal 
substructure, as an optimal factored form is always a product or a sum of optimal 
factored forms. This process is iterative, stopping when the target function is found. 
However, the number of functions grows exponentially, as there are 

n22 Boolean 
expressions of n inputs. If the functions in each bucket are not pruned, the algorithm 
becomes unfeasible in memory and computational time. Using the baseline algorithm, 
both heuristic and exact approaches can be utilized. This chapter will present the 
heuristic factoring and heuristics to optimize the exact factoring, without losing 
optimality. 

5.4 Functional Composition Setup for Boolean Factoring 

Considering the principles of FC described in Section 3.2, this section presents the 
FC setup for factoring of Boolean functions.  

1. Bonded-Pair Representation: {Boolean Function, Expression} 

2. Initial Functions: Variables 

3. Bonded-Pair Association: Simple association {AND/OR} 

4. Partial Order: Number of literals 

5. Allowed Functions:  

o Read-Once: Cofactors and cube cofactors. 

o Heuristic: Cofactors, cube cofactors, and combinations of cofactors 
and cube cofactors. 

o Exact: All functions are accepted 

5.5 Boolean Operations Considering Order 

To reduce the amount of functions in the buckets, it is necessary to analyze the order 
of the functions generated compared to the target function. The order is important to 
define which functions are important in the generation of the target function. The 
functions classified by their order against the target function are shown in Figure 5.2. 



 

Figure 5.2: Bucket divided in smaller, larger and not comparable sets. 

Considering the generated functions separated by their respective order and applying 
the AND and OR operations between them, 20 unique operations can be done, as seen 
in Table 5.2. Notice that the number of all possible combinations is 32, 2 by 2. 
However, since Boolean operations are commutative, the position of the functions with 
respect to the operator does not matter, resulting in 20 unique operations. In Table 5.3 
the results of the operations of Table 5.2 are described. 

Table 5.2: AND/OR operations considering function order. 

# AND # OR 

(1) SMSM   (11) SMSM   

(2) LGSM   (12) LGSM   

(3) NCSM   (13) NCSM   

(4) DJSM   (14) DJSM   

(5) LGLG   (15) LGLG   

(6) NCLG   (16) NCLG   

(7) DJLG   (17) DJLG   

(8) NCNC   (18) NCNC   

(9) DJNC   (19) DJNC   

(10) DJDJ   (20) DJDJ   

Table 5.3: Description of Table 5.2 operations results. 

Operation Number  Operation Result Description 

(1),(3) A smaller function with fewer minterms than the composing functions 
or the constant zero function. 

(2) The smaller composing function. 

(4) The constant zero function 

(5) A larger function with fewer minterms than the composing functions 



or the compared function. 

(6) A smaller function or a not comparable function. 

(7),(9),(10) The constant zero function or a disjoint function. 

(8) A smaller function or a not comparable function or a disjoint function 
or the constant zero function. 

(11) An SM function with more minterms than the composing functions or 
the compared function. 

(12) The composing LG function. 

(13),(18) A larger function or a not comparable function. 

(14) Generates a not comparable function. 

(15),(16) A larger function with more minterms than the composing functions. 

(17) The larger composing function or larger function with more minterms 
than the composing functions. 

(19) A not comparable function with more terms in the off-set of the target 
function or the composing a not comparable function. 

(20) A disjoint function with more terms in the off-set of the compared 
function. 

5.6 Read-Once Factoring 

The read-once factoring algorithm is one of the derived versions of the baseline 
algorithm. It relies on the symmetry of the variables. It groups variables that are 
symmetric or anti-symmetric testing using bitwise AND/OR operations and inserting in 
the respective bucket.  

The allowed functions are only the cofactors and cube cofactors. There are at most v 
buckets, where v is the number of variables of the target function. If the target function 
is not found in the last bucket, then the target function is not a read-once function. 

Theorem: If a function f can be represented by a read-once formula, all the partial 
sub-equations in the formula correspond to functions that are cube cofactors of f. 

Proof: As each variable appears as a single literal, they can all be independently set 
to non-controlling values, which makes only one literal disappear at a time. Any sub-
equation (or sub-set) of f can be obtained by assigning non-controlling values to the 
variables to be eliminated. These variable assignment forms are cube cofactors by 
definition. 

5.7 Exact Approach 

The exact approach gives minimum literal count factored forms. In this approach, all 
functions need to be allowed. The number of functions grows exponentially in each 
bucket and optimizations are needed to safely eliminate functions that do not contribute 
to the minimal solution.  



5.7.1 Allowed Combinations 

For the FC-EXACT algorithm, analyzing the 20 possible AND/OR operations are 
shown in Table 5.3, the two ways to reach the target function are (5) and (11) 
operations. This is expected, since in (5), the AND operation reduces the minterms from 
two larger functions and, in (11), the OR operation increases the minterms from two 
smaller functions. 

Disjoint functions do not help in combination process since they do not have shared 
terms with the solution function. In this sense, the operations that lead to disjoint 
functions (4, 7, 9, 10, 14, 17, 19, 20) can be avoided and safely discarded. 

The combinations (1, 2, 3) can also be discarded, since there is a minterm reduction, 
tending to the constant zero function and deviating from the solution. Similarly, (12, 15, 
16) combinations generate larger functions with minterm gain, tending to the constant 
one function and deviating from the final solution. From all 20 operations, only (5, 6, 8, 
11, 13, 18) are necessary for the combination process to reach the solution.  

5.8 Heuristic Approach 

The FC-EXACT approach sometimes is not time feasible, so the heuristic approach 
was developed to overcome this issue. The heuristic approach allows a limited set of 
functions because the functions that are not present in the allowed functions set are 
discarded, decreasing memory use and execution time, but in some cases losing the 
optimality.  

5.8.1 Allowed Functions 

In the FC-HEURISTIC algorithm, only the smaller, larger and not comparable 
functions are considered, as the disjoint functions are discarded, because they do not 
contribute to the solution, as discussed in Section 5.7.1. 

The allowed functions in FC-HEURISTIC are a set of functions derived from the 
cofactors1 of the target function. The initial step is extracting all cofactors of the target 
function to associate them in the next step. The association of cofactors is illustrated in 
Figure 5.3. Not comparable cofactors are associated using AND/OR bitwise operations 
to generate new not comparable/smaller/larger functions that are stored in allowed 
functions set. The second association is among not comparable and smaller cofactors 
using OR bitwise operation, only storing resulting larger functions. Similarly, there is 
the association among not comparable and larger cofactors using AND bitwise 
operation, only storing resulting smaller functions. All these functions (original 
cofactors and functions generated) are inserted in the “allowed functions set”. 

The set comprising all cofactors and its associations of the target function is a very 
good set of functions to compose the allowed functions set. The idea behind this 
concept is that it is possible to obtain good sub-expressions of the formula, by setting 
variables to zero and one in an optimized factored form. 

                                                 
1 For simplification sake the term cofactor represents the cofactors and cube cofactors of 
a function in this section, unless otherwise noted. 



 

Figure 5.3: Allowed Functions generation. 

5.9 Other Optimizations 

There are other important optimizations. In the factoring execution, only the initial 
functions have the implementation cost known. Depending on the factoring objective, as 
the structural parts of the functions are discovered, some functions in the search space 
may not attend the constraints desired. In this case, they cannot be inserted in the 
buckets. An “already abandoned” set can store these functions.  

For instance, an abandon criteria can be the MDC, presented in Chapter 4. Functions 
that do not respect the MDC are discarded, reducing the number of combinations and 
reducing the execution time. 

5.10  General Flow 

Figure 5.4 shows the flow chart for the FC-HEURISTIC algorithm. The first step is 
to check if the target function is constant. In this case, the algorithm returns the 
constant. The polarity of variables is calculated by checking the unateness. If there are 
no binate variables, the read-once algorithm is called. If the function is read-once, the 
optimal result is obtained. If the function is not read-once, the algorithm starts to 
associate functions and checking if the resulting function is allowed, allowing it to 
insert this function in a next bucket. 



 

Figure 5.4: Heuristic approach flow. 

In the “cofactor association” step, all cofactors and cube cofactors are generated and 
separated in sets by its relative order against the target function  (not comparable, 
smaller and larger). The “cofactor combination” generates all allowed functions for the 
FC-HEURISTIC algorithm. In FC-EXACT, this step and “cofactor combination” are 
ignored, since all functions are allowed. 

After the initialization of the allowed functions, the algorithm proceeds with the 
initial functions allocation. It starts by creating the 1-literal functions. For the 1-literals 
functions, only the literals with the right polarity are created, reducing the computation 
time. If the target function is not found in the 1-literal bucket, subsequent buckets 
following the bucket generation schema are generated, until the target function is found. 
A solution is always an OR (AND) operation between smaller (larger) subfunctions in 
previous buckets and the functions in the current smaller (larger) bucket. The algorithm 
does not need to stop in the first solution; multiple solutions with different costs can be 
found. 

5.11 Examples 

Two examples are given in this section. The first demonstrates the read-once 
algorithm and the second demonstrates the FC-HEURISTIC algorithm. 

5.11.1 Read-Once Algorithm 

A function r is given as an example to illustrate the read-once algorithm. This 
function is a simple example in SOP form, seen in Equation 5.8. 

dcbcar   (5.8) 



After preprocessing (parse, constant checking), the variable polarities and symmetry 
information are computed. All variables are positive unate, and there is a symmetry 
group {a,b}. This information is used to reduce the number of cofactors and cube 
cofactors. The computation of the cube cofactors results in different functions listed in 
Table 5.4. Some cofactors and cube cofactors are excluded by the symmetry group 
information. For instance, dcbra 0  is excluded because have only the variable 

‘b’.  

Table 5.4: Cofactors and cube cofactors of r, simplified by symmetry information. 

Cofactors Cube Cofactors 

dcra 1  cr da  0,1  

dbarc 1  bar dc  0,1  

drc 0  ‐‐‐‐ 

cbard  )(0  ‐‐‐‐ 

 

The  ‘c’ and ‘d’ functions are inserted in the 1-literal bucket, and ba   function is 
inserted in the 2-literal bucket. 

The combination step is illustrated in Figure 5.6. The 1-literal functions are 
combined producing the 2-literal combinations. Only subfunctions that are in the 
allowed subfunctions hash are accepted as intermediate subfunctions. The combination 
continues until the 4-literal bucket, where a solution is found. The cba  )(  function 
located in the 3-literal bucket is associated using OR operation with d  function, in the 
1-literal bucket, finding the target function. 

 

Figure 5.5: Combination step of factorization with simplified bucket content. 

5.11.2 FC-HEURISTIC Algorithm 

A function f in (5.9) is given as an example to illustrate the FC-HEURISTIC. This 
function is a simple but illustrative example in SOP form, seen in Equation 5.9. 



dbacbcaf   (5.9) 

After preprocessing (parse, constant checking), the function is checked if it is read-
once. This step fails because the function has a binate variable (‘a’). The algorithm 
computes the initial functions. This step computes the unateness and symmetry 
information for all variables. Variable ‘a’ is binate and variables ‘b’, ‘c’ and ‘d’ are 
positive unate in respect to the function f. No variable is symmetric, so symmetry 
information is not used to reduce the computation of cube cofactors. All 1-literal 
functions are inserted in the 1-literal bucket. The computation of the cube cofactors 
results in different functions listed in Table 5.5. 

Table 5.5: Cofactors and cube cofactors of f. 

Cofactors Cube Cofactors 

cfa 1  dcf ba  1,0  

)(0 dcbfa   bf ca  1,0  

dacfb 1  dbf ca  0,0  

cafb 0  cbf da  0,0  

bafc 1  daf cb  0,1  

dbafc 0  af cb  1,0  

)()(1 acbafd   baf dc  1,0  

)(0 bacfd   df cba  0,1,0  

‐‐‐‐ af dcb  1,1,1  

‐‐‐‐ acf db  1,1  

 

It is important to make two observations: the total number of cube cofactors is 
greatly reduced since some cube cofactors represent the same logic function, and also 
some of them are constant functions. The second observation is all cofactors and cube 
cofactors contain the literals in the same polarities of the function f. 

The combination step is illustrated in Figure 5.6, which is a simplified version of the 
process for better legibility (each bucket has much more functions allocated). The 1-
literal functions are combined producing the 2-literal combinations. Only subfunctions 
that are in the allowed subfunctions hash are accepted as intermediate subfunctions. The 
combination continues until the 5-literal bucket, where a solution is found. The ba   

function located in the 2-literal bucket is associated using AND operation with dac   
function, in the 3-literal bucket, finding the target function. 



 

Figure 5.6: Combination step of factorization with simplified bucket content. 

The implementation can also have associated some data about number of literals, 
number of transistors, series/parallel properties, etc. These data are necessary to 
factorize a target function considering multi-objective goals (i.e. minimize the number 
of transistors involved while respecting the MDC function). 

5.12  Experimental Results 

The experiments are divided into three parts. The first experiment focuses in the 
multi-objective factorization. The second experiment shows the factorization quality 
over a set of all 4-input functions grouped in 3,984 P-class functions. The last 
experiment shows the factorization quality in some functions of ISCAS’85 benchmarks. 
The experiments have been carried at a computer with a Core2Duo 2.4 GHz processor 
and 4 GB RAM. 

The multi-objective factorization allows controlling the costs. Table 5.6 presents an 
example of a function of 6 input variables that was factored using the multi-objective 
factorization. The ‘L’, ‘S’ and ‘P’ are literals, series switches and parallel switches, 
respectively. Equation 5.10 is the minimum literal count logic function obtained when 
only literals are minimized. Equation 5.11 is obtained when the algorithm is required to 
minimize literals and respect the on-set MDC (which is 3). Equation 5.12 is obtained 
when the algorithm is required to minimize literals and respect the off-set MDC (which 
is 4). In this case, the number of literals is increased by two, from 20 to 22 literals. 

Notice that, as the data of subfunctions is always known during the execution of the 
algorithm, the algorithm proposed can be modified to accept only subfunctions with 
certain characteristics. The approach can consider any secondary criteria that can be 
computed in a monotonically increasing way so that the solutions are generated in the 
right order. Additionally, the new costs must be easily obtainable for a combination of 
the subfunctions. In the case of literals, this can be done by simple addition. These 
requirements allow not only controlling the number of series and parallel switches, but 
also logic depth (per input variable) and function support size. 



Table 5.6: Results of multi-objective goal factorization. 

Eq. Logic Function L S P Time

(5.10)             abcdabcdefabcdabcdef  20 4 7 1.15s

(5.11)               abcdabcdefcdababcdef  20 3 9 1.34s

(5.12)              dcbafeefdcafebadcfefe  22 8 4 1.22s

 

The second experiment was performed on the set of all 4-input functions (grouped in 
3,984 P-class functions (CORREIA; REIS, 2001), by equivalence through input 
permutation). The number of literals after mapping with a commercial library was 
investigated. In a second experiment, area optimization was investigated (REIS, 1999; 
CORREIA; REIS, 2004; TOGNI ET AL, 2002). They are demonstrated in Table 5.7.  

Table 5.7: Results regarding number of literals and area after mapping. 

Method Literals 
Literal 

Difference over 
FC-EXACT 

Area 
Difference over 

FC-EXACT 
Execution time 

FC-EXACT 36028 - - 16h 

FC-HEURISTIC 36738 +1.97% +3.77% 114s 

QF 
(SENTOVICH 
ET AL, 1992) 

38341 +6.42% +6.61% 
47s 

GF 
(SENTOVICH 
ET AL, 1992) 

37893 +5.18% +4.67% 
47s 

ABC 
(BERKELEY, 

2012) 
38246 +6.16% +7.4% 

2s 

XF (MINTZ; 
GOLUMBIC, 

2005) 
37652 +4.51% +1.1% 

24s 

Five different methods from the literature are compared to the two methods 
proposed in this thesis. The five methods are referred as QF (QuickFactor) 
(SENTOVICH ET AL, 1992), GF (GoodFactor) (SENTOVICH et al., 1992), ABC 
(BERKELEY, 2012), XF (X-Factor) (MINTZ; GOLUMBIC, 2005). The QF and GF are 
from the SIS package. The results from QF, GF and ABC, were generated using the 
“print_factor” command. The results from the row X-Factor in Table 5.7 are obtained 
by an in-house implementation of the algorithm presented in (MINTZ; GOLUMBIC, 
2005). Since these methods are heuristic, they present some overhead regarding number 
of literals when compared to FC-EXACT. This overhead increases the final area. 
However, there are other criteria in technology mapping to consider besides literals, as 
the variable order and the expression balancing (HASSOUN; SASAO, 2002; 
MISHCHENKO ET AL, 2011) 



In the last experiment, a comparison with some MCNC (YANG, 1991), an analysis 
with benchmark functions is performed. Table 5.8 shows the number of literals for some 
benchmark functions where our algorithm produces better or equal literal count than 
QuickFactor, GoodFactor, ABC, and X-Factor. The column SOP represents a Quine-
McCluskey minimization (no factorization) and the column FC represents the FC-
EXACT and FC-HEURISTIC results. 

Table 5.8: Number of literals after factorization in some benchmarks. 

Logic 
Function 

SOP QF GF ABC XF FC 

b9_a1 56 12 12 12 12 12 

rd53_0 20 14 14 14 12 12 

rd53_1 80 28 28 28 46 28 

cm162a_o 29 16 16 16 13 12 

cm162a_p 36 18 18 16 14 14 

cm162a_q 43 20 20 18 16 16 

cm163a_r 31 13 13 13 13 12 

5.13  Conclusions 

This chapter proposed two Boolean factoring algorithms. One of the algorithms is 
the first multi-objective factoring algorithm. The algorithm can take secondary criteria 
(like series and parallel number of switches, or support size) into account, while 
generating several alternative solutions. This characteristic makes it a useful piece for 
approaches based on restructuring small portions of logic, like (WERBER; 
RAUTENBACH; SZEGEDY, 2006) and (MISHCHENCKO; BRAYTON; 
CHATTERJEE, 2008). The unique characteristics of the algorithm make it very useful 
in the context of local optimizations. From an execution time point of view, the 
algorithm is slower compared to other approaches, but still feasible. From a quality 
point of view, the proposed algorithm always delivered superior (or equal) results 
compared to other approaches.  

The second algorithm is an exact algorithm for factoring Boolean functions, 
delivering optimal results in number of literals. This algorithm is slower than the other 
algorithms presented in the literature. A possible and practical application is the 
generation of a look-up table to optimize 4-input subcircuits. This algorithm also can be 
multi-objective, allowing optimal minimization in multiple criteria. 





6 BOOLEAN FACTORING USING XOR 

Traditional logic optimization methodology based on (BRAYTON ET AL, 1984; 
SENTOVICH ET AL, 1992) has emerged as a dominant method for logic synthesis. 
This optimization methodology generates good results for AND/OR functions of control 
and random logic. However, results are not satisfactory for arithmetic and logic 
functions that could benefit from the inclusion of exclusive-OR operation.  

Boolean functions using XOR operator received less attention in the logic synthesis 
research. The “technology independent optimization” step in logic synthesis aims to 
reduce the number of literals in logical expressions. The number of literals is a good 
metric related to the number of logic gates used in the technology mapping process. 

Technology mapping transforms a technology independent logic network into a 
netlist of technology dependent logic gates (HASSOUN; SASAO, 2002).  Technology 
mapping process relies on static pre-characterized libraries. Each cell of the library is 
fully characterized through exhaustive simulations, resulting in accurate information 
about timing, power consumption, and physical area. Hence, such technology mapping 
algorithms are restricted to use these cells available in the target library.  

As the quality of the mapping will depend significantly on the expression 
representing the circuit, the best algorithm executed over a poorly factored expression 
may produce a worse result than an average quality mapping over a minimal factored 
expression. This problem is known as structural biasing (CHATTERJEE ET AL, 2005). 
In this sense, the benefit of factorization taking into account XOR operator is to 
generate more reduced number of literals that will generate smaller circuits (even 
considering a higher physical implementation cost of the XOR gate) 

6.1 Related Work  

Perkoswi (SONG; PERKOSWI, 1998) proposed an algorithm that factorizes an 
expression using AND/OR/NOT/NOR/NAND/XOR/XNOR operators. This algorithm 
has an exclusive-SOP (ESOP) as input. However, there is no efficient way to find a 
minimal ESOP (SASAO, 1999). Moreover, Perkoswi considers the XOR operation has 
the same cost of implementation of an AND/OR operation, probably representing an 
area impact in standard cell designs.  

Sasao (SASAO, 2005) implemented an algorithm that generates a 3-level expression 
result (two SOPs joined by a XOR). The AND-OR-XOR three-level network is suitable 
for implementing arithmetic functions, being one of the simplest gate arrangements 
since it contains only a single two-input XOR gate. For instance, the use of two-input 
XOR gates at the outputs of PLA efficiently realize adders (WEINBERGER, 1979). 



An algorithm to generate multilevel expressions containing AND/OR/NOT/XOR 
was proposed by Sasao (SASAO ET AL, 1995). It takes advantage from pseudo-
Kronecker decision diagram (PKDD) reduced structure to represent a logic function. 
The PKDD is a modified BDD that allows Shannon, positive and negative expansions 
for each variable. In Figure 6.1, an example of a pseudo-Kronecker tree, where the first 
variable uses the Shannon expansion. The second variable uses both the positive and 
negative Davio expansions, and the last variable uses all the three expansions, where ‘S’ 
represents the Shannon expansion, ‘pD’ the positive Davio expansion and ‘nD’ the 
negative Davio expansion.  

 

Figure 6.1: PKDD representation for a Boolean function. 

Turton (TURTON, 1996) and Tinder (TINDER, 1995) proposed XOR based 
synthesis methods focused on educational applications on top of Karnaugh maps. 
Turton proposed a new representation for minterms, extending the Quine-McCluskey 
algorithm to generate expressions using XOR operation. Tinder proposed patterns for 
XOR recognition in a Karnaugh Map. Both applications are focused for educational use, 
and they do not worry about the quality of results and execution time. 

The proposed method to factorize expressions using XOR operator (named herein 
FC-EXACTXOR) is an extension of the FC-EXACT algorithm. FC-EXACTXOR 
inherits all FC-EXACT features, like multi-objective goals, more than one solution and 
functional description as the start point. The multi-objective characteristic allows FC-
EXACTXOR to provide costs to operators. Since XOR operator has a higher physical 
implementation cost, FC-EXACTXOR can avoid or reduce the use of XOR operator, 
increasing its importance in digital designs. Table 6.1 shows a comparison between the 
previous works and the proposed factoring algorithm using XOR. 

6.2 Functional Composition Setup for Boolean Factoring considering 
XOR 

Considering the principles of FC, described in Section 3.2, this section presents the 
FC setup for factoring of Boolean functions including the XOR operator, being similar 
to the FC setup for FC-EXACT: 

1. Bonded-Pair Representation: {Boolean Function, Expression} 

2. Initial Functions: Variables 

3. Bonded-Pair Association: Simple association {AND/OR/XOR} 

4. Partial Order: Number of literals 

5. Allowed Functions: All functions are accepted 



Table 6.1: Comparison between factorization using XOR algorithms. 

Method Exactness Start point Levels Has XOR 
different 
weight? 

Multi 
Objective 

More 
than 1 

solution 

(SONG; 
PERKOSWI, 

1998) 

Heuristic ESOP Multi-
level 

No No No 

(SASAO, 
2005) 

Heuristic Functional 
Description 

3 No No No 

(SASAO ET 
AL, 1995). 

Heuristic PKDD Multi-
level 

Yes No No 

(TURTON, 
1996) 

Heuristic Functional 
Description 

2 No No No 

(TINDLER, 
1995) 

Heuristic Functional 
Description 

2 No No No 

FC-EXACT-
XOR 

Exact Functional 
Description 

Multi-
level 

Yes Yes Yes 

6.3 Exact Factoring with XOR 

The exact factoring with XOR is based on the FC-EXACT algorithm, appending the 
XOR operation between functions. Thus, the generation of the N-literal bucket can be 
now expressed as following: 
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(6.1) 

At first sight, this can be seen as an increase in execution time, since there is one 
more operation to be done against each pair of functions However the XOR operator 
reduces the number of intermediate subfunctions. For instance, the importance 
factorization considering XOR operation is demonstrated considering the XOR4 
function as example. The minimal factored form (in number of literals) is represented as 
follows: 

                     cacadbdbcacadbdbu   (6.2) 

Using the FC-EXACTXOR algorithm, with the XOR operation the minimal factored 
form is represented in Equation 6.3. 

dcbav   (6.3) 

6.3.1 Boolean Operations Considering Order 

Table 5.2 can be extended to the XOR bitwise operation. There are now 10 new 
unique operations that can be done, as seen in Table 6.2. These operations are described 
in Table 6.3 

Table 6.2: XOR operation considering function order. 

# XOR 

(21) SMSM   



(22) LGSM   

(23) NCSM   

(24) DJSM   

(25) LGLG   

(26) NCLG   

(27) DJLG   

(28) NCNC   

(29) DJNC   

(30) DJDJ   

Table 6.3: Result of the operations in Table 6.2. 

# Operation Operation Result 

(23) An LG function or a not comparable function. 

(22),(24) (26) Generates a not comparable function. 

(21) If there are minterms in common in the two composing functions, the 
result function is an SM function with fewer minterms. Otherwise,  the 
operation gives the same result of (11)*. 

(25), (30) A disjoint function. 

(27) If there are common minterms in the off-set of the target function, it 
can generate the target function or an LG function. Otherwise, 
operation gives the same result of (17)*. 

(28) Any function, including the target function. 

(29) If there are common minterms, the combination can generate an SM 
function or a not comparable function. Otherwise, the operations give 
the same result of (19)*. 

*- these references are located in Table 5.3. 

6.3.2 Allowed Combinations 

As the FC-EXACTXOR algorithm uses AND/OR operations, all the operations 
described for FC-EXACT needs to be considered. Analyzing the 10 XOR combinations 
in Table 6.3, we can observe that only (27) and (28) can find the target function, besides 
the combinations used for FC-EXACT. In this case, all functions that generate disjoint 
results in FC-EXACT needs to be considered and added. The combinations (21), (22) 
and (23) deviate from the target function or generates the same results of the equivalent 
OR operation (11), (12) and (13), so the combinations with XOR can be discarded. 
From all 10 operations of Table 6.2, the combinations (24), (25), (26), (27), (28), (29) 
and (30) are needed in the combination process to find the solution for the FC-
EXACTXOR algorithm.  



6.3.3 Condition to enable XOR factorization 

It is verified empirically that the XOR operation is only useful when there are at 
least 2 binate variables. In this case, the FC-EXACTXOR can be efficiently exploited if 
there are at least 2 binate variables, the FC-EXACTXOR can be used. Otherwise, by 
using the XOR operator, only functions that not contribute to the solution are generated. 
This is explained by the fact that the XOR operator is binate since it carries both 
polarities of its input variables (i.e.: ba  ba ba ).  

6.3.4 Technology Mapping Based Optimizations 

The XOR operator is not always useful in technology mapping. For instance, the 
Equation 6.4 implements a function with 6 literals using the XOR operator. Equation 
6.4 can be synthesized as the Equation 6.5, using only AND/OR operations: 

)))db()cb((b(a f  (6.4) 

)))c+b(d(+)cb((a g  (6.5) 

Equation 6.5 is the Boolean equivalent of the Equation 6.4 and also has 6 literals, 
using only AND/OR operations. Equation 6.4 contains 2 AND and 3 XOR operators, 
while in the Equation 6.5 have 3 AND and 2 OR operators. Since the XOR operator has 
a physical implementation cost higher than the AND/OR operators, the Equation 6.5 is 
preferred. The algorithm is capable of using costs and choosing the best implementation 
option. For instance, if the AND/OR operation is assigned an area cost of 2 and the 
XOR operation is assigned an area cost of 3, Equation 6.4 have a total cost equal 13 and 
Equation 6.5 have a total cost equal 10. 

6.4 Example 

An example to illustrate the algorithm execution is the function represented in 
following: 

dcdbadbaf   (6.4) 

After preprocessing (parse, constant allocation), the function is checked if is a read-
once candidate, but this step fails (since the function is not read-once) and the algorithm 
computes the initial functions. This step computes the unateness information for 
variables. The variables ‘a’ and ‘b’ are binate and variables ‘c’ and ‘d’ are positive 
unate. There are two binate variables, and this allows the use of FC-EXACTXOR, 
instead of FC-EXACT. They are inserted in the 1-literal bucket.  

The combination step is illustrated in Figure 6.2, which is a simplified version for a 
better figure legibility (each bucket has much more functions allocated). The 1-lit 
functions are combined producing the 2-literal functions. The combination process 
continues until the 4-literal bucket, where a solution is found.  



Figure 6.2: Combination step to find solutions for f using FC-EXACTXOR. 

6.5 Experimental Results 

Two experiments were executed to analyze the efficacy of the XOR factorization. 
The first experiment evaluates the impact of the XOR operator in a technology mapping 
and compares the results with the FC-EXACT. The second experiment analyzes the 
worst case execution time of FC-EXACT and compares with the execution time of FC-
EXACTXOR. The experiments have been carried out at a computer with a Core2Duo 
2.4 GHz processor and 4 GB RAM 

The first experiment is a repetition of the experiment performed in Chapter 5, 
considering this time the FC-EXACTXOR factorization. The results are compiled in 
Table 6.4.  

The use of the XOR operator by the FC-EXACTXOR produces exact factored forms 
with the set of operators {AND, OR, NOT, XOR}. This allows reducing the number of 
literals in 29% in comparison to the FC-EXACT, with 25405 literals. However, 
comparing literals with the XOR operation is not fair since the other expressions are 
factored with AND/OR. A fair analysis of the impact of XOR operator is made in 
technology mapping.  

When performing technology mapping, the advantage of using the XOR operator in 
an expression, comparing the literal difference and the area difference is not 
proportional, because XOR physical implementation has a higher cost than AND/OR 
operators in commercial libraries. Even with a higher cost, the use of XOR operator 
provides an area reduction of 8%. 

Table 6.4: Results comparing FC-EXACTXOR with other methods. 

Method Literals 
Literal 

Difference over 
FC-EXACT 

Area 
Difference over 

FC-EXACT 
Execution time 

FC-EXACT 36028 - - 16h 

FC-HEURISTIC 36738 +1.97% +3.77% 114s 

QF 38341 +6.42% +6.61% 47s 

GF 37893 +5.18% +4.67% 47s 

ABC 38246 +6.16% +7.4% 2s 

XF 37652 +4.51% +1.1% 24s 

FC-EXACTXOR 25405* -29.49%* -8.01% 40 min 



*- These number cannot be fairly compared with the above numbers. 

The computation time of factoring all 4-input functions (grouped in 3982 P-class 
functions) with FC-EXACTXOR was about 40 minutes, which is a great improvement 
of the FC-EXACT. To the best of the author knowledge, this is the first exact factoring 
algorithm that can minimize number of literals in factored forms considering the set of 
operators {AND, OR, NOT, XOR}.  

The second experiment is an analysis of the number of functions allocated to 
factorize the XOR4 function in the FC-EXACT and FC-EXACTXOR. The number of 
functions computed in the FC-EXACT grows in an accelerated way. In this sense, it is 
needed to discard functions that do not aid in the search for the target function. The 
heuristics presented in Section 5.7.1 are not sufficient for this case. In Figure 6.3, it is 
illustrated this grow behavior (black line) using FC-EXACT for a function with 4 binate 
inputs (the XOR of 4 inputs). This function is represented by Equation 6.2. Almost all 
Boolean space for 4 inputs (

422 = 65536 functions) needs to be allocated to achieve the 
target function. In this way, it is important to reduce the number of intermediate 
functions (i.e. functions that are used to compose the target function). The dotted line 
represents the total number of functions using the FC-EXACTXOR algorithm, 
represented by the Equation 6.3. It is necessary only 4 buckets to find the solution, 
avoiding the generation of many more functions and speeding up the algorithm in 
almost 2 orders of magnitude. This means that the algorithm generates less than 2200 
functions to achieve the solution. The execution time of the XOR4 function with FC-
EXACT is 10 minutes and with FC-EXACTXOR is 2 seconds. 

 

Figure 6.3: XOR4 function distribution between buckets.  

6.6 Conclusions 

This chapter introduced an exact algorithm for factoring Boolean functions 
considering the set of operators {AND, OR, NOT, XOR}. We have demonstrated that 
exact minimization using XOR operator can produce a very significant reduction in the 
number of literals. We have also demonstrated that the gain obtained regarding number 
of literals produces area reduction after technology mapping, even if the XOR gate is 



more expensive in commercial cell libraries when compared to AND/OR gates. To the 
best of the author knowledge, this is the first optimal factoring algorithm that is able to 
minimize number of literals in factored forms considering the set of operators {AND, 
OR, NOT, XOR},  

In the context of technology mapping, almost all commercial libraries have at least a 
XOR2 cell. In this way, a possible and practical application generates a look-up table to 
optimize 4-input subcircuits, reducing even more the area, compared to FC-EXACT. 
This algorithm also can be multi-objective, allowing optimal minimization in multiple 
criteria, e.g. assigning costs to different operators; respecting MDC.  



7 MAJORITY-BASED CIRCUIT SYNTHESIS 

The advances in the field of IC digital design make possible the aggregation of an 
increasing number of devices on the same die. This high integration scale imposes new 
challenges to the synthesis process (ITRS). In an attempt to mitigate the increasing 
complexity of design of digital equipment’s, a look is being taken at alternatives 
approaches to the problem. The analog and hybrid techniques do not provide the 
versatility of pure digital approach.  

Threshold logic and its realization in the form of threshold gates offer a possible 
alternative to the Boolean approach. The threshold logic may allow a considerable 
economy in number of gates and interconnections necessary per circuit. Threshold gates 
are similar to normal Boolean gates in that their inputs and outputs are binary signals. 
The threshold gate is thus seen to be a logic function that can “weight” its various 
inputs, sum the resultant weighted products, and the output evaluates ‘1’ or ‘0’ if this 
weighted sum is above or below certain preset threshold values, respectively. In Figure 
7.1 is shown a generic threshold logic gate. 

 

Figure 7.1: A n-input threshold logic gate. 

A majority gate is a simplified version of a threshold gate, where the input weights 
have the same value and the output evaluate to ‘1’ when more than half of inputs have 
logic ‘1’, and the output evaluates to ‘0’, otherwise. A minority gate is the 
complemented version of a majority gate. 

7.1 Related Work 

Threshold logic synthesis’ research dates back to 1960s. Akers (AKERS, 1962), 
Miller and Winder (MILLER; WINDER, 1962), and Muroga (MUROGA, 1971) 
employed logic synthesis methods based on the reduced-unitized table, Karnaugh map, 
and Shannon’s decomposition principles, respectively. Traditional logic reduction 
methods, such as ESPRESSO (BRAYTON ET AL, 1984), always produce simplified 
expressions in the two standard forms: SOP or POS. However, difficulties are found in 



converting SOP/POS forms into majority circuits due to the complexity of multilevel 
majority gates.  

Since the synthesis analyzed in this chapter is based on a majority gate primitive, it 
is critical that an efficient technique is established for designing with the majority gate 
primitive. However, these methods have a common drawback that they are only suitable 
for synthesizing small networks manually. Recently, some majority logic reduction 
methods targeting quantum cellular automata (QCA) (LENT ET AL, 1993; LENT; 
TOUGAW, 1997), tunneling phase logic (TPL) (FALUNY; KIEHL, 1999) and single 
electron tunneling (SET) (AVERIN; LIKHAREV, 1986) circuits have been proposed. 
All these technologies use majority or minority gates as primitive elements. 

Rumi Zhang in (ZHANG ET AL, 2004) pointed out a set of 13 functions of 3 
variables implemented using only majority gates and inverters. This set is also the set of 
functions called 3-NPN. An NPN set is a class of functions equivalent to each other, 
considering the Permutation of its inputs, complementation (Negation) of its inputs, 
and/or inversion (Negation) of its output. This set aims to reduce the hardware 
requirements for a QCA design, working as a cell library, but these 13 functions are not 
in minimal form, i.e., a minimal number of majority gates. 

Rui Zhang in (ZHANG; GUPTA; JHA, 2005) proposed a different flow using 
factoring algorithms to synthesize functions, instead of using a cell library and this 
algorithm allows majority and minority circuit synthesis. However, the algorithm most 
of the time convert the AND/OR logic gates from a factored expression to majority 
gates, which can negatively impact in the total number of majority gates in a circuit.  

Momenzadeh in (MOMENZADEH ET AL, 2005) optimized two functions of 
(ZHANG ET AL, 2004) that were not implemented in a minimal number of majority 
gates and proposed an And-Or-Inverter (AOI) structure composed of 2 majority gates 
connected in series to reduce even more the number of majority gates present n a 
circuit.  

Kong (KONG; YUN; LU, 2010) improved (ZHANG; GUPTA; JHA, 2005), 
ensuring and proving optimality for three variable functions. The library proposed was 
expanded to 40 functions, reducing the area considerably. 

However, these methods only support three variable Boolean functions. To 
synthesize arbitrary multi-variable Boolean functions, a QCA majority synthesis 
methodology was introduced in (ZHANG; GUPTA; JHA, 2005), decomposing a circuit 
to subcircuits with 3 or fewer inputs. In majority logic synthesis, there still exist some 
important aspects that are not solved or considered by the existing methods. (AKERS, 
1962; MILLER; WINDER, 1962;MUROGA, 1971; ZHANG ET AL, 2004; ZHANG; 
GUPTA; JHA, 2005; MOMENZADEH ET AL, 2005; KONG; YUN; LU, 2010). These 
methods are not capable of generating optimal structures with majority gates with more 
than 3 variables. The 4-NPN function class has 222 functions, and the 4-P function class 
has 3984 functions, making the generation of these libraries unfeasible without 
computational aid. For this reason, it is important an automated method who can 
synthesize more than 3 inputs. 

As seen in the Chapter 5 and Chapter 6, the FC-EXACT and FC-EXACTXOR can 
generate expressions with a minimal number of literals. The flexibility of FC allows 
taking advantage of bonded-pairs complex association to generate structures with only 
majority gates and inverters and exploring optimality of two criterions: logic depth and 



a number of majority gates. Table 7.1 compares the previous works and the majority-
based circuit synthesis algorithm using FC, named herein as FC-MAJ (MARTINS ET 
AL, 2012). The column “majority generation” is how the algorithm performs the circuit, 
or by real-time synthesis or using a library to perform technology mapping. 

Table 7.1: Comparison between majority-based synthesis algorithms 

Method Exactness Max 
inputs 

Templates 
allowed 

Majority 
Generation 

(ZHANG ET AL, 2004) Heuristic 3-input MAJ Library 

(MOMENZADEH ET AL, 2005) Exact 3-input MAJ,AOI Library 

(ZHANG; GUPTA; JHA, 2005) Heuristic 3-input MAJ,MIN Synthesis  

(KONG; SHANG; LU, 2010) Exact 3-input MAJ, MIN Synthesis 

FC-MAJ(MARTINS ET AL, 
2012)  

Exact 4-input Any Library 

 

In this chapter, majority function will represent a 3-input majority gate output 
function. The optimal factored form of a majority function (MF) is expressed in 
Equation 7.1. 

cbcbacbamaj  )(),,(  (7.1) 

A method to compose an MF using Boolean functions needs four logic operations, 
the same number of operators in the Equation 7.1. Since all variables of MF are positive 
unate, there is the necessity of inverters to represent negative unate and binate functions. 
The MF is symmetric, thus changing the order of inputs does not change the logic 
function. 

Another interesting property of an MF is to be a self-dual function. This property 
allows easy conversion from majority-based circuits to minority-based circuits. If a 
majority gate has the output negated, the majority gate acts as a minority gate. If the 
minority gate has the inputs complemented, the minority gate act as majority gate as 
seen in Figure 7.2.  

 

Figure 7.2: Self-dual property in majority gates. 

Considering all MF properties, the bonded-pair association needs to be performed 
using three bonded-pairs. The circuit structure stores the majority gates and its 
connections. This information is important, since it allows a traverse backward in the 
structure, counting all majority gates forming the circuit that implements the function.  

7.2 Functional Composition Setup for Majority Gate Circuit Synthesis 

In this section, the FC setup for the synthesis of majority gates is presented. All 
choices are explained in the further sections. 

1. Bonded-Pair Representation: {function, majority gate based circuit} 

2. Initial Functions: Variables, constant 0 and constant 1 



3. Bonded-Pair Association: Complex association (3 functions to generate a new 
one) 

4. Partial Order: Logic Depth/Majority gate count 

5. Allowed Functions: All functions of up to n variables 

7.3 Partial Order Criterion 

There are criteria for partial order when synthesizing majority gates based circuits 
using FC. One is using the logic depth. Logic depth is the maximum number of gates a 
signal needs to travel from the input to output. The logic depth is related to the delay of 
a logic gate. Another criterion is using the number of majority gates representing each 
function. Reducing the number of majority gates impacts directly in the final area of the 
circuit. 

7.3.1 Number of Majority Gates Approach 

This approach uses a number of majority gates as a primary criterion and logic depth 
as a secondary criterion. Each bucket is classified by the minimal amount of majority 
gates needed to represent a Boolean function. If two functions are implemented with the 
same number of majority gates, the function with minimal logic depth is chosen. 

For the initial functions, only variables in both polarities (complemented and 
uncomplemented) and constants are included. This initial set will be called 0-maj, since 
majority gates are not necessary to represent variables in positive or negative form. 

To compose an n-maj bucket, three functions are needed (and their respective 
implementations) from previous buckets that respect the Equation 7.2. 

1321  MMMn  (7.2) 

In Equation 7.2 M1, M2, M3 are the number of majority gates in the circuits 
representing the functions that were used to compose the new function. These circuits 
are connected to compose a new majority gate circuit. 

Example 1: To compose a 5-maj bucket, it needs the combination of the previous 
buckets indicated in Table 7.2. I1, I2 and I3 represent the inputs of a majority gate. A 5-
maj function can be composed of a function which is represented by a circuit with 4 
majority gates and two functions that do not needs majority gates (variables and 
constants). The other lines in the table represent the other possible combinations. The 
symmetry in the majority function reduces the cases (e.g. the case 4-0-0 is equal to case 
0-4-0, so the latter one is discarded.)  

Example 2: The combinations to compose the 3-maj bucket are shown in Table 7.2 
and the approach is depicted in Figure 7.3. 

Table 7.2: Possible combinations to create 5-maj bucket. 

I1 I2 I3 

4-maj 0-maj 0-maj

3-maj 1-maj 0-maj

2-maj 2-maj 0-maj



2-maj 1-maj 1-maj

 

Table 7.3: Possible combinations to create a 3-maj bucket. 

I1 I2 I3 

2-maj 0-maj 0-maj

1-maj 1-maj 0-maj

 

Figure 7.3: Number of majority gate approach example. 

7.3.2 Logic Depth Approach 

This approach considers the logic depth minimization. If two functions are 
implemented with the same logic depth, the function with fewer majority gates is 
preferred.  Note that the maximum number of majority gates (M) in a k-depth is given 
by the Equation 7.3: 

2

13 1 


k

M  
(7.3) 

The Equation 7.3 is derived from a geometric series with common ratio equal three. 
This ratio represents the number of inputs of a majority gate. 

For the initial functions, only variables in both polarities and constants are included. 
This initial set will be called 0-depth, since majority gates are not necessary to represent 
variables in positive or negative form, as well constants. 

The 1-depth contains all functions that can be synthesized with 1 majority gate and 
they are in the optimal form. The 1-depth elements are formed by the combination, 3 by 
3, of the elements contained in the 0-bucket. 

Lemma 7.1: In order compose a n-depth bucket, at least one majority gate composed 
in (n-1)-depth connected in a input is necessary. The other inputs can be from the any i-
depth, ni 0 . 

Consider a function f that is implemented as a majority gate circuit with the minimal 
logic depth n. Consider a set G0  containing all functions that are implemented as 
majority gate circuits with minimal logic depth, up to n-2. Consider a set G1 containing 
all functions that are implemented as majority gate circuits with minimal logic depth, 
equal n-1. By Lemma 7.1, the implementation of f is one of three cases, illustrated in 
Figure 7.4 and listed below: 

1. The inputs of the n-depth majority gate are one structure from G1 set and the 
other two from G0 set. 



2. The inputs of the n-depth majority gate are two structures from the G1 set 
and the other one from the G0 set. 

3. The inputs of the n-depth majority gate are the three structures from the G1 
set.  

 

Figure 7.4: Generating a n-depth bucket. 

Example: To compose a 3-depth bucket, the combination of the previous buckets 
indicated in Table 7.4 is necessary. A 3-depth function can be composed of a function 
which is represented by a circuit with at least logic depth equals two. Figure 7.5 shows 
the logic depth approach. 

Table 7.4: Possible combinations to create a 3-depth bucket. 

I1 I2 I3 

2-depth 0-depth 0-depth 

2-depth 1-depth 0-depth 

2-depth 1-depth 1-depth 

2- depth 2- depth 0- depth

2- depth 2- depth 1- depth

2- depth 2- depth 2- depth

 

Figure 7.5: Logic depth approach. 

7.4 Inverter Cost 

The number of inverters present in each circuit is very important, especially in 
technologies as QCA In the QCA technology, the inverter has almost the double area 



than the majority gate, according to (MOMENZADEH ET AL, 2005). In this sense, 
there is a necessity of a post-optimization in the number of inverters.  

It is possible to exploit the self-dual property of majority gates, to reduce the number 
of inverters in the circuit. As seen in Figure 7.6, the circled cases have the minimal 
inverter count in a majority gate, except for the third case, which has the same number 
of inverters in its equivalent representation. 

 

 

Figure 7.6: Exploring the self-dual property to reduce the number of inverters. 

7.5 Synthesizing a Library 

A library is a finite set of primitive logic gates, including combinational, sequential 
(e.g. flip-flops) and interface (e.g. drivers) elements. The interest in this chapter is only 
the combinational part, where each element implements a Boolean function. It is 
interesting to have the maximum number of functions, allowing flexibility in the 
technology mapping. The majority gate based library is composed of cells with majority 
gates and inverters as a primitive structure to represent the functions.  

Using FC principles, the partial order used in this chapter is the logic depth. Each 
depth is generated in order to have each function represented by the optimal structure 
(the minimum number of majority gates and inverters). The process combines initially 
functions with a smaller cost (i.e., fewer majority gates) to guarantee the optimal results. 
If a function is generated and already exists (i.e. was generated with fewer depth and 
gates), this function is discarded. The inverters are optimized, using the technique 
shown in Section 7.4. 

Example: In Figure 7.7, the generation of a library with 2 inputs is shown. In the 0-
depth are allocated all variables in the positive and negative polarity and the constants. 
In the 1-depth, there are all functions that can be synthesized with 1 majority gate.  In 

the 2-depth, the light gray majority gates from the 1-depth ( ba  , ba  ) are connected 

with the 0 constant in a majority gate to compose the ba  function. In the same way, 

the dark gray majority gates from the 1-depth ( ba  , ba  ) are connected with the 0 
constant in a majority gate to compose the ba  function. All 2-variable functions are 
covered in the three buckets. Considering all 16 possible functions of 2 inputs, 6 
functions are in the 0-depth bucket, 8 functions are in the 1-depth bucket, and 2 
functions are in the 2-depth bucket. 



 

Figure 7.7: Generation of all functions up to 2 variables. 

7.6 Experimental Results 

Two experiments were performed. The first experiment generated all 3-input 
functions. These functions were grouped into two subsets, one subset with 80 P-class 
functions and the other subset of 13 NPN-class functions). These sets are mapped using 
the FC-MAJ (MARTINS ET AL, 2012), applying inverter post-optimization and are 
compared with (KONG; SHANG; LU, 2010) in Table 7.5 . 

Table 7.5: Results (in number of majority gates) of FC-MAJ for 3-input functions. 

Method 
MAJ 

(3NPN) 
INV 

(3NPN) 
MAJ 
(3P) 

INV 
(3P) 

FC-MAJ (MARTINS ET AL, 
2012) 

35 24 218 152 

(KONG; SHANG; LU, 2010) 35 24 - - 

 

The algorithm described in (KONG; SHANG; LU, 2010) guarantees minimal 
majority gate count results for 3 variables and the FC-MAJ algorithm achieved the same 
results. Another result is the synthesis of the 3-P class functions. EDA tools uses P-
matching algorithms (DEBNATH; SASAO, 1999; MARTINELLO ET AL, 2010) in the 
technology mapping, thus the importance of a library containing functions representing 
unique P-classes. 

The second experiment generated all 4-input functions. These functions were 
grouped into two subsets, one subset with 3984 P-class functions and the other subset 
with 222 NPN-class functions, as shown in Table 7.6. 

Table 7.6: Results (in number of majority gates) of FC-MAJ for 4-input functions. 

Method MAJ (4NPN) INV (4NPN) MAJ (4P) INV (4P) 

FC-MAJ 1739 233 32010 5076 



 

This is the first algorithm to synthesize functions with 4-inputs minimally in logic 
depth.  The results are not guaranteed minimal for majority gate count. The “number of 
majority gates” partial order approach will be implemented in a future work to compare 
an optimal logic depth library and an optimal majority gate count library. 

The distribution of the majority gates in the 4-P and 4-NPN function classes is 
shown in Figure 7.8. The distribution of logic depth in the 4-P and 4-NPN is shown in 
Figure 7.9. The histograms are shown in log scale for better visualization. It is worth to 
mention two important details. One is that only two functions are implemented with 4-
depth, the XOR4 and XNOR4. Surprisingly, these functions are not the most complex 
in number of majority gates, needing only 9 majority gates. Second detail is the absence 
of 4-input functions needing 10 majority gates. Indeed, the upper bound majority gate 
count for 3-depth is 13, by Equation 7.3. All the functions (except XOR4 and XNOR4) 
can be synthesized with 4-depth or less. Almost all functions up to 4 inputs can be 
implemented with majority gate count equal 9 or less. 

 

Figure 7.8: Histogram for the 4-input library, considering the number of majority gates 
to implement the functions. 

 

Figure 7.9: Histogram for 4-input library, considering the logic depth of the functions. 



7.7 Conclusions 

In this chapter, an algorithm was introduced for synthesizing circuits using only 
majority gates and inverters, suitable for use in new technologies, as QCA, SET and 
TPL. FC-MAJ generates the optimal structure of majority gates, given a function and 
can generate libraries in an automated way, using the FC paradigm. All techniques in 
the literature, to the best knowledge of the authors, can only handle 3-input functions 
and the FC-MAJ can handle 4-inputs, which can reduce the area of the circuit 
considerably. 



8 CONCLUSIONS AND FUTURE WORK 

The main contribution of this work is the introduction of a novel paradigm for 
performing logic synthesis, called as functional composition. It is based on a bottom-up 
approach exploiting composition of Boolean functions to have an efficient cost control. 
Four applications methods have been presented with promising results, demonstrating 
the potential and allowing space for implementation of new algorithms using the 
functional composition paradigm. 

The first application is the FC-MDC, which is an efficient method to compute 
minimum decision chains (MDC) of logic functions. The FC-MDC method is compared 
to the QMC-MDC method, which is a modified version of the Quine-McCluskey 
algorithm for MDC computation. The QMC-MDC method presents some limitations 
related to the number of prime implicants of the functions, as it has to compute nearly 
all prime implicants, making it quite computing expensive in some cases. The FC-MDC 
method is a complementary method of QMC-MDC and is faster especially in the cases 
of CMOS design interest, i.e., logic functions with MDC smaller than 5.  

The second application presents a Boolean factoring algorithm, divided into two 
approaches. The heuristic approach (FC-HEURISTIC) is the first multi-objective 
factoring algorithm. From a quality point of view, the proposed algorithm always 
delivered superior (or equal) results compared to other approaches. The algorithm can 
take a secondary criterion (like series and parallel number of switches, or logic depth) 
into account while generating several alternative solutions. This characteristic makes the 
FC-HEURISTIC a useful piece for approaches based on restructuring small portions of 
logic, like (WERBER; RAUTENBACH; SZEGEDY, 2006) and (MISHCHENCKO; 
BRAYTON; CHATTERJEE, 2008). The unique characteristics of the algorithm make it 
very useful in the context of local optimizations. The other approach is an exact 
algorithm (FC-EXACT) for factoring Boolean functions. This approach provides 
minimal results in number of literals. One interesting application is factoring a set of 
functions and storing them in a look-up table, for use in a synthesis flow. 

The third application is the FC-EXACTXOR, an exact algorithm for factoring 
Boolean functions using all operators in the set {AND, OR, NOT, XOR}, providing a 
minimal form with all these operators. The FC-EXACTXOR is capable of considering 
different costs to AND/OR/XOR operators. The gain obtained regarding number of 
literals produce area reduction after technology mapping, even if the XOR cell is more 
expensive in commercial cell libraries compared to AND/OR/NAND/NOR cells.  

The fourth application is an algorithm for synthesizing circuits using only majority 
gates and inverters, suitable for quantum cellular automata (QCA) design, tunneling 
phase logic (TPL), single electron tunneling (SET) and other technologies that use 
majority and minority gates as primitive structures. The application, called FC-MAJ, 



generates the optimal structure of majority gates, for a given a function and it can 
generate libraries in an automated way, using the functional composition paradigm. All 
techniques in the literature, to the best of author knowledge, can only handle 3-input 
functions, while the FC-MAJ in this thesis achieved optimal results in logic depth for 4-
input functions. 

There is still much work that needs to be carried out. Other applications can exploit 
the FC principles and generate better results than known algorithms. The heuristic 
factoring algorithms can be optimized, taking advantage from other methods to generate 
better initial bonded-pairs, providing better and faster results, as the disjoint support 
decomposition (BERTACCO; DAMIANI, 1997). The implementation of the FC-MAJ 
using number of majority gates as partial order needs to be implemented.  
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