UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE IN~FORMATICA A
PROGRAMA DE POS-GRADUACAO EM MICROELETRONICA

LUCAS ANTUNES TAMBARA

Analyzing the Impact of Radiation-induced Failures in All Programmable
System-on-Chip Devices

Thesis presented in partial fulfillment of the

requirements for the degree of Doctor of Philosophy
in Microelectronics

Advisor: Dr. Fernanda Lima Kastensmidt

Porto Alegre
2017

CIP — CATALOGACAO NA PUBLICACAO

Antunes Tambara, Lucas

Analyzing the Impact of Radiation-induced Failures in All
Programmable System-on-Chip Devices / Lucas Antunes Tambara. —
2017.

192 f.

Orientadora: Fernanda Lima Kastensmidt.

Tese (Doutorado) -- Universidade Federal do Rio Grande do Sul,
Instituto de Informatica, Programa de Po6s-Graduacdo em
Microeletronica. Porto Alegre, BR-RS, 2017.

1. APSoC. 2. SRAM-based FPGA. 3. Radiation effects. I. Lima
Kastensmidt, Fernanda, orient. 1. Analyzing the Impact of Radiation-
induced Failures in All Programmable System-on-Chip Devices.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Reitor: Prof. Rui Vicente Oppermann

Vice-Reitor: Prof. Jane Fraga Tutikian

Pro-Reitor de Pds-Graduacao: Prof. Celso Giannetti Loureiro Chaves
Diretor do Instituto de Informatica: Prof. Luis da Cunha Lamb
Coordenador do PGMICRO: Prof. Fernanda Lima Kastensmidt
Bibliotecaria-Chefe do Instituto de Informatica: Beatriz Regina Bastos Haro

ACKNOWLEDGMENTS

| would like to start by thanking my wife, Renata Borella Venturini, for always
supporting me unconditionally and for always walking along by my side, no matter the
country.

To my parents, Ldcia Regina Antunes Tambara and Pedro Jorge Tadiello Tambara, for
my existence, unconditional support, and everything else that involve the relation between
parents and sons.

To UFRGS, Institute of Informatics, PGMICRO, and the Brazilian research agencies
CAPES, CNPq, and FAPERGS, for the financial support and for putting their facilities at my
disposal so | could develop my research.

To my advisor, Fernanda Lima Kastensmidt, for the confidence, lessons, and patience.
Thank you for pushing me forward and encouraging me in my academic and personal
decisions.

To Matteo Sonza Reorda, from Politecnico di Torino, and Salvatore Danzeca, from
CERN, for having accepted me as a visiting researcher in their research institutes during my
Ph.D.

To Paolo Rech, Nilberto Medina, Nemitala Added, Marcilei Guazzelli, and several
other professors and researchers that contributed to this thesis.

To all my colleagues from laboratories 230/232 from UFRGS and others that are
already in other rooms, cities, or countries.

To all of you, my sincere thanks.

ABSTRACT

The recent advance of the semiconductor industry has allowed the integration of
complex components and systems’ architectures into a single silicon die. Nowadays, state-of-
the-art FPGAs include not only the programmable logic fabric but also hard-core parts, such
as hard-core general-purpose processors, dedicated processing blocks, interfaces to various
peripherals, on-chip bus structures, and analog blocks. These new devices are commonly
called of All Programmable System-on-Chip (APSoC) devices. One of the major concerns
about radiation effects on APSoCs is that radiation-induced errors may have different
probability and criticality in their heterogeneous hardware parts at both device and design
levels. For this reason, this work performs a deep investigation about the radiation effects on
APSoCs and the correlation between hardware and software resources sensitivity in the
overall system performance. Several static and dynamic experiments were performed on
different hardware parts of an APSoC to better understand the trade-offs between reliability
and performance of each part separately. Results show that there is a trade-off between design
cross section and performance to be analyzed when developing a system on an APSoC.
Therefore, today it is mandatory to take into account each design option available and all the
parameters of the system involved, such as the execution time and the workload of the
system, and not only its cross section. As an example, results show that it is possible to
increase the performance of a system up to 5,000 times by changing its architecture with a
small impact in cross section (increase up to 8 times), significantly increasing the operational
reliability of the system. This work also proposes a reliability analysis flow based on fault
injection for estimating the reliability trend of hardware-only designs, software-only designs,
and hardware and software co-designs. It aims to accelerate the search for the design scheme
with the best trade-off between performance and reliability among the possible ones. The
methodology takes into account four groups of parameters, which are the following: area
resources and performance; the number of output errors and critical bits; radiation
measurements, such as static and dynamic cross sections; and, Mean Workload Between
Failures. The obtained results show that the proposed flow is a suitable method for estimating

the reliability trend of system designs on APSoCs before radiation experiments.

Keywords: APSoC, SRAM-based FPGA, Processor, Reliability, Radiation effects, Radiation

experiment, Fault injection, SEE, SEU, Execution time, Trade-off.

Avaliacao do Impacto de Falhas Induzidas pela Radia¢éo em Dispositivos Sistemas-em-
Chip Totalmente Programaveis

RESUMO

O recente avanco da industria de semicondutores tem possibilitado a integracdo de
componentes complexos e arquiteturas de sistemas dentro de um Unico chip de silicio.
Atualmente, FPGAs do estado da arte incluem, ndo apenas a matriz de légica programavel,
mas também outros blocos de hardware, como processadores de propdsito geral, blocos de
processamento dedicado, interfaces para varios periféricos, estruturas de barramento internas
ao chip, e blocos analdgicos. Estes novos dispositivos sdo comumente chamados de Sistemas-
em-Chip Totalmente Programaveis (APSoCs). Uma das maiores preocupacdes acerca dos
efeitos da radiacdo em APSoCs € o fato de que erros induzidos pela radiagdo podem ter
diferente probabilidade e criticalidade em seus blocos de hardware heterogéneos, em ambos
os niveis de dispositivo e projeto. Por esta razdo, este trabalho realiza uma investigacdo
profunda acerca dos efeitos da radiacdo em APSoCs e da correlacdo entre a sensibilidade de
recursos de hardware e software na performance geral do sistema. Diversos experimentos
estaticos e dindmicos inéditos foram realizados nos blocos de hardware de um APSoC a fim
de melhor entender as relagcbes entre confiabilidade e performance de cada parte
separadamente. Os resultados mostram que hd um comprometimento a ser analisado entre o
desempenho e a area de choque de um projeto durante o desenvolvimento de um sistema em
um APSoC. Desse modo, é fundamental levar em consideracdo cada opcdo de projeto
disponivel e todos os parametros do sistema envolvidos, como o tempo de execucéo e a carga
de trabalho, e ndo apenas a sua se¢do de choque. Exemplificativamente, os resultados
mostram que é possivel aumentar o desempenho de um sistema em até 5.000 vezes com um
pequeno aumento na sua sec¢do de choque de até 8 vezes, aumentando assim a confiabilidade
operacional do sistema. Este trabalho também propbe um fluxo de anélise de confiabilidade
baseado em injecdes de falhas para estimar a tendéncia de confiabilidade de projetos somente
de hardware, de software, ou de hardware e software. O fluxo objetiva acelerar a procura pelo
esquema de projeto com a melhor relagdo entre performance e confiabilidade dentre as opgoes
possiveis. A metodologia leva em consideracdo quatro grupos de parametros, 0s quais Sao:
recursos e performance; erros e bits criticos; medidas de radiacao, tais como sec¢Oes de choque

estaticas e dinamicas; e, carga de trabalho média entre falhas. Os resultados obtidos mostram

que o fluxo proposto é um método apropriado para estimar tendéncias de confiabilidade de
projeto de sistemas em APSoCs antes de experimentos com radiacao.

Palavras-chave: APSoC, FPGA baseado em SRAM, Processador, Confiabilidade, Efeitos da

radiacdo, Experimentos com radiacdo, Injecdo de falhas, SEE, SEU, Tempo de execucdo,
Correlagéo.

LIST OF FIGURES

Figure 2.1 — Bock diagram of a processor with a SIMD engine embedded (a) and a simplified block

diagram of @ SIMD eNngiNe (10). ...cveiuiiiiiiie e e 22
Figure 2.2 - Processor models: (a) Symmetric, (b) Asymmetric, and (c) Heterogeneous..................... 24
Figure 2.3 — Generic architecture of an APSOC. ... 26
Figure 2.4 — Block diagram of the Zyng-7000 (XILINX, 2015d).......cccccovevieiiiireiiiiiiese e se e 28
Figure 2.5 — Block diagram of the PS part of the Zyng-7000 (XILINX, 2015d)......c..cccccvvvverervaiiennns 29
Figure 2.6 — Zyng-7000’s MemMOTY RIETAIrCHY.oiviviriiieiieieicesese e 30
Figure 2.7 — Abstraction layers of a generic SRAM-based FPGA (TARRILLO, 2014).cccveue. 34
Figure 2.8 — Basic structure of the PL part of the Zyng-7000 (CROCKETT, 2014).......cc.cceecevvevennne 34
Figure 2.9 — Example of a 3-input LUT implementing a majority VOTer.cccoovvvrviirenenenieennns 35
Figure 2.10 — Block diagram of a Xilinx 7-Series slice (XILINX, 2014)........ccccceoviriniinenenenienens 36
Figure 2.11 — Relationship between CLBs and Slices in Xilinx 7-Series FPGAs (XILINX, 2014)..... 36
Figure 2.12 — Example of a generic Xilinx FPGA floorplan and frame structure.ccccccevvevennn. 37
Figure 2.13 — AXI interconnects and interfaces connecting the PS and PL parts of the Zyng-7000. ... 39
Figure 2.14 — EMIO interface between the PS and PL parts of the Zyng-7000...........c.ccccevveveriveienns 40
Figure 2.15 — Obtained best methods for transferring different numbers of data items between PS and
PL in Zyng-7000 (SILVA, SKLYAROV, SKLIAROVA, 2015).cccoviiiiierieieieie s 41
Figure 2.15 — Example of parallel versus sequential eXeCULION.ccccceeviiiiie e 43
Figure 2.16 — Estimated overall system speed-up provided by the addition of different numbers of
NAIAWAIE GCCERIBIALOIS.veveiiiieiete ettt ettt s te et et e sreesa e teeseeseestaeseesreesaeseesneennesteaneenees 44
Figure 2.17 — Example of a control and data flow extraction during the HLS process.cccccvevee. 45
Figure 2.18 — The essential three HLS phases and their relations.............cccccoovveviiiiiciieiiece e 45
Figure 2.19 — Xilinx Vivado HLS design FlOW.ccooiiiiiiiiiiiieeees e 46
Figure 2.20 — Function pipelining DENAVION. ..o 48
Figure 2.21 — Loop unrolling BENAVIOL.ccooiiiic et 48
Figure 2.22 — LOOPp MErging DENAVIOL.cc.iiiiiiie ettt sreene e 49
Figure 2.23 — Influence of the hardware accelerator granularity on the execution time of a system
(LAFOND, LILIUS, 2008).cittittiteiieieieseesesieeiesiesseseesseseeessessessessessessessessessssessessessessessessessessesessensens 53

Figure 2.24 — Impact of the cache architecture on the average execution time (speed-up) relative to a
baseline system, which employs a single accelerator running sequentially using a 1-way (direct-

mapped) 2KB cache with a 32-byte line size (CHOI et al., 2012).........cccceviieiiiiniiniicieeeeeeeeiae 54
Figure 2.25 — Processing bandwidth comparison of different acceleration methods in Zyng-7000. Data
size sweeps from 4 KB to 2048 KB (SADRI et al., 2013).......ccoiiiiiiieeieeese e 54
Figure 3.1 — Fault, error, and failure propagation. ... 56
Figure 3.2 — The space environment and its sources of ionizing particles.cccooovviiiieiiiieinnnns 58
Figure 3.3 — Particle cascade generated from cosmic rays in the Earth’s atmosphere (STEFAN, 2001).
... 61
Figure 3.4 — General view of the CERN/LHC/ATLAS detector (ATLAS, 2016)........c.ccocervrrererennenn 63
Figure 3.5 — Electron-hole pairs track generated by an ionized particle in a CMOS transistor (SOOS,
2009) on the left and the charge collection mechanism in an inverter gate on the right.............c......... 65
Figure 3.6 — Main radiation effects on programmable circuits. Adapted from (QUINN et al., 2015a). 65
Figure 3.7 — Example of Single Event Upset (KASTENSMIDT, CARRO, REIS, 2006).c.......... 66
Figure 3.8 — MCU events as a percentage of SEUs for different families of Xilinx FPGAs
(WIRTHLIN €t al., 2014Q).oeverveerecieseesesesseseesessesesssessesess s sseanaes s sssesses s seensenssseassenssnsseneans 66
Figure 3.9 — Example of a Single Event Transient (KASTENSMIDT, CARRO, REIS, 2006). 67
Figure 3.10 — View of the surface of a Zyng-7000 device, part XC7Z020-CLG484.ccccceveveenene 68
Figure 3.11 — Possible effects of SEES in Zyng-7000 and similar APSOCS.c.ccceveviviieveieaiennns 69
Figure 3.12 — Possible effects of SEUs in SRAM-based FPGAS (TONFAT, 2015).ccccoecevvevennne 70
Figure 3.13 — Possible effects 0f SEES IN PrOCESSOIS.cviieiierieieeieseeriesieseeee e eee e seee e seeeneeseeas 72

Figure 4.1 — CERN’s CHARM particle spectra. Adapted from (ALIA, 2016)........ccccovvvvrrvrrreirrerinnnns 75

Figure 4.2 — BRAM of a Xilinx Virtex-5 FPGA scanned during a laser test campaign

(KASTENSMIDT €t al., 2014). ...eeiiiieieieieieee et ettt bbb eneas 76
Figure 4.3 — Block diagram of the fault injection platform used in this thesis in (a) and an example of
the FPGA floorplanning with the fault injector and the DUT placed in (0).......cccoooovvviiniieneicce, 79
Figure 4.4 — Flow diagram illustrating the hardware fault injection procedure in the Zyng-7000’s PL
LT 00 N 4 OSSP P PP 80
Figure 4.5 — Platform setup of the software fault INJECION.ccoiiiiiiiiccc 81

Figure 4.6 — Flow diagram illustrating the software fault injection procedure in the Zyng-7000’s PS. 82
Figure 4.7 — SEU cross section for static and dynamic tests in a memory (SCHWANK,

SHANEYFELT, DODD, 2013). ...eettitetiieieiieiinteesiee sttt ettt sttt ettt nneie e 84
Figure 4.8 — Static test flow diagram. Adapted from (IROM, 2008).cccoerveireiirinninireneeeeeee 84
Figure 4.9 — Dynamic test flow diagram. Adapted from (IROM, 2008)............ccccoervviveiieniierienieeiieinens 87
Figure 4.10 — Neutron cross section per bit for different Xilinx devices (XILINX, 2016c¢)................. 91
Figure 4.11 — SEL occurrence in the PL part of Zyng-7000 during heavy ion experiments (AMRBAR
B AL, 2015) . ittt b e R bRt E e Rt bt b bt e e neans 92
Figure 4.12 — Heavy ion SEU static cross section for the PL part of the Zyng-7000 configuration
memory and BRAMs (ALLEN, IROM, AMRBAR, 2015; AMRBAR et al., 2015).ccccovcvrruennne 92
Figure 4.13 — (a) SEU cross section and (b) SET and SEFI cross section in neutrons for different SoCs
(QUINN €t al., 2014D).....cuiieieiiiiiieiie ettt bbbt bbb e e neenenreas 93

Figure 4.14 — Measured Zyng-7000 SDC and SEFI cross sections of applications running bare to the
metal (Bare SDC and Bare SEFI) and on the top of Linux (Linux SDC and Linux SEFI) compared to

the expected standalone Linux SEFI cross section (dashed line). (SANTINI et al., 2016). 95
Figure 4.15 — Heavy ion SEFI cross sections for the MSS, GPIO, and FIC blocks of the SmartFusion2
(REZZAK €L al., 2015)....cuecieiiiiiiiiiie ettt sttt e b et e e seeseatesseetestesaeteaeneeneareas 96
Figure 5.1 — Integrated block diagram of the static tests architeCtures.c.ccoevvevviiieneicieeen 98
Figure 5.2 — Heavy ion experiment setup mounted outside and inside the vacuum chamber at the

I A L U1 USRS 101
Figure 5.3 — Microscopic section of a Zyng-7000 device, part XC7Z020-CLG484..........cccccvrveunne. 102
Figure 4.4 — Cross section results from the heavy ion irradiations in the embedded memories OCM

and BRAM 0f the ZYNQ-7000.c.oiiiieieceeie ettt st te e s resbeesaesreenae st 104
Figure 5.5 — Obtained SDC and SEFI cross sections from the heavy ion irradiations........................ 107
Figure 5.6 — Comparison between the obtained SDC cross section and MWBF values from the heavy
(L] I T = To =LA o OSSR RPR 109
Figure 6.1 — Cross section results from the heavy ion irradiations in the configuration memory of the
PL part OF ZYNQ-7000.cuoiiiiiiiiteieitesee ettt bbbttt b bbb e 113
Figure 6.2 — Cross section results from the proton irradiations in the configuration memory of the PL
PArt OF ZYNQ-7000.c.eiiiiiiiiiiitirieet ettt bbb bbbttt b et b n e et 113
Figure 6.3 — Proposed reliability analysis flow for hardware-only designs.ccccoovvineneicinnne, 115
Figure 6.4 — Architecture of the (a) processor-based design and the (b) HLS-based design. 118
Figure 6.5 — SDC, SEFI, and TOTAL dynamic cross section results obtained for the MxM designs
from both fault injections and radiation eXPEriMENTS.cceieiiiiiiirirese e 123
Figure 6.6 — SDC, SEFI, and TOTAL dynamic cross section results obtained for the AES designs both
fault injections and radiation EXPErMENTS.oiiiiiir et neas 124
Figure 6.7 — SDC, SEFI, and TOTAL dynamic cross section results obtained for the ADPCM designs
both fault injections and radiation EXPEriMENTS.coceriiiiiiiri e 125
Figure 6.8 — SDC, SEFI, and TOTAL MWBEF results obtained for the MxM designs both fault
injections and radiation EXPEITMENTS.oii et s e e sne e e 127
Figure 6.9 — SDC, SEFI, and TOTAL MWABF results obtained for the AES designs both fault
injections and radiation EXPEITMENTS.oii ettt e sre s e saesneenee e 128
Figure 6.10 — SDC, SEFI, and TOTAL MWBF results obtained for the ADPCM designs both fault
injections and radiation EXPEIIMENTS.ciiiieie it re e sre e e 129

Figure 6.11 — Comparison between SDC, SEFI, and TOTAL dynamic cross sections and their
respective performance rates for the MxM designs from fault injection and radiation experiment
LSS0 TSSOSO 130

Figure 6.12 — Comparison between SDC, SEFI, and TOTAL dynamic cross sections and their
respective performance rates for the AES designs from fault injection and radiation experiment results.
... 131
Figure 6.13 — Comparison between SDC, SEFI, and TOTAL dynamic cross sections and their
respective performance rates for the ADPCM designs from fault injection and radiation experiment

=SV TSSO P PP 132
Figure 7.1 — Block diagram of the case-study multiprocessor-based heterogeneous system.............. 137
Figure 7.2 — Matrix multiplication algorithm............ccoiiiiii e 138
Figure 7.3 — Generic representation of the case-study benchmark algorithms.ccccoeveinennn 142
Figure 7.4 — Block diagram of the architecture developed for evaluating the case-study hardware and
software co-designs IN ZYNQ-7000.couuiiiiirieri et ene e 142
Figure 7.5 - Heavy ion experiment setup mounted at the new beam line of the LAFN-USP. 145
Figure 7.6 — SDC, SEFI, and TOTAL dynamic cross section results obtained for the MxM designs
Trom radiation EXPEITMENTS.oiiiiiite ettt e ettt b b b n e e ere s 147
Figure 7.7 — SDC, SEFI, and TOTAL dynamic cross section results obtained for the AES designs from
(Lo Eo Lo gl o L= [1] TSSO 148
Figure 7.8 — SDC, SEFI, and TOTAL MWABF results obtained for the MxM designs from radiation
EXPEITIMIEIES. ...tttk b bbbt h bbbt btk b e et et e Rt e bt bt bbbt n e e neere s 149
Figure 7.9 — SDC, SEFI, and TOTAL MWBF results obtained for the AES designs from radiation
EXPEITIMIEIES. ..ttt ettt b b bttt s st b e bbbt b b e e s et e Rt e bt e bt bbb b n e ne e re s 150
Figure 7.10 — Comparison between SDC, SEFI, and TOTAL dynamic cross sections and their
respective performance rates for the MxM designs from radiation experiment results. 151
Figure 7.11 — Comparison between SDC, SEFI, and TOTAL dynamic cross sections and their
respective performance rates for the AES designs from radiation experiment results........................ 152
Figure 8.1 — Proposed reliability analysis flow for hardware and software co-designs. 155
Figure 8.1 — Block diagrams of the architectures developed with the hardware (a) and software (b)
fault INJECLOrs EMDEAUEM.ceiiiiiiiite bbb 158

Figure 8.2 — Comparison between the total SDC, SEFI, and TOTAL (SDC + SEFI) AVF values
obtained from both hardware and software fault injection campaigns with the respective dynamic cross
sections obtained from radiation experiments for the MxM benchmark............ccccoocoviiiiieiiincienne 161
Figure 8.3 — Comparison between the total SDC, SEFI, and TOTAL (SDC + SEFI) AVF values
obtained from both hardware and software fault injection campaigns with the respective dynamic cross
sections obtained from radiation experiments for the AES benchmark.c.ccccooeviiiiiiiviiincienne 162
Figure 8.4 — Comparison between the total SDC, SEFI, and TOTAL (SDC + SEFI) MWBF values
obtained from both hardware and software fault injection campaigns with the respective MWBF
values obtained from radiation experiments for the MxM benchmark.cccccovviviiiiiciiienene. 164
Figure 8.5 — Comparison between the total SDC, SEFI, and TOTAL (SDC + SEFI) MWBF values
obtained from both hardware and software fault injection campaigns with the respective MWBF
values obtained from radiation experiments for the AES benchmark............ccoccoooeiieiiniiinineee. 165
Figure 8.6 — Comparison between the total SDC, SEFI, and TOTAL (SDC + SEFI) Performance rate
values obtained from both hardware and software fault injection campaigns with the respective
MWABF values obtained from radiation experiments for the MxM benchmark.ccccovcviene. 166
Figure 8.7 — Comparison between the total SDC, SEFI, and TOTAL (SDC + SEFI) Performance rate
values obtained from both hardware and software fault injection campaigns with the respective
MWBEF values obtained from radiation experiments for the AES benchmark.cccccocovvivinnnn. 167

LIST OF TABLES

Table 2.1 — Commercially-available APSOCS CharaCteristiCs.ccovvvveiiieiiii i 26
Table 5.1 — Characteristics if the heavy ion beams used at LAFN-USP..........c.cccccocoviiiviiienicineiennne 100
Table 5.2 — Characteristics of the ROSCOSMOS heavy ion facility..........cccccvviiriiieiciciccee 101
Table 5.3 — Characteristics if the heavy ion beams used at ROSCOSMOS...........cccoovviviieneineiennnne 102
Table 5.4 — Characteristics of the Russian proton facility.cccceviiiiiiiiicii e 103
Table 5.5 — Heavy ion and proton test schemes performed in the embedded memories of the PS part of
Y 0 00 TSSOSO 103
Table 5.6 — Application information running on Zyng-7000’s ARM Cortex-A9 Core 0 with different
cache schemes (D = Disabled, E = Enabled). ..o 106
Table 5.7 — Obtained SDC and SEFI cross sections from the heavy ion irradiations.cccco..... 107
Table 5.8 — Obtained MTBF, MEBF, and MWBF from the heavy ion irradiations.ccccccvevu. 108
Table 6.1 — Heavy ion and proton test schemes performed in the configuration memory of the PL part
OF ZYNQ-T000. ettt e e st e re e b e e beese st e e et e st eseeseeseeteesesbeseessesaessereaneareas 112
Table 6.2 — Optimization strategies applied in each HLS-based design for each benchmark program.
... 119
Table 6.3 — Resource usage and performance results of each case-study design...........cccccoeevveienene 120
Table 7.1 — Resource usage and performance of each case-study architecture implemented............. 137
Table 7.2 — Experimental results from the neutron radiation tests for the four case-studied system in

Y 10 L 00 TSSOSO PTSRPRSPRON 139
Table 7.3 — Case-study hardware and software co-designs and their respective configurations, resource
usage, and PErfOrMANCE FESUILS.oiviiiieieiec it 144
Table 8.1 — Number of critical bits and AVF of the hardware part of each hardware and software co-
design obtained from the hardware fault injection CaMPAIGNS.cooirviiiiieiiiiiee e 159

Table 8.2 — AVF of the software part of each hardware and software co-design obtained from the
software fault iNJeCtion CAMPAIGNS.ccccii i e re s be e saesreereesre s 160

LIST OF ABBREVIATIONS AND ACRONYMS

ABFT Algorithm-Based Fault Tolerance

ACP Accelerator Coherency Port

ADAS Advanced Driver Assistance Systems
ADPCM Adaptive Differential Pulse-Code Modulation
AES Advanced Encryption Standard

ALICE A Large lon Collider Experiment

AMBA Advanced Microcontroller Bus Architecture
AMP Asymmetric Multi-Processing

APSoC All Programmable System-on-Chip

APU Application Processing Unit

ARM ARM Cortex-A9

ASIC Application Specific Integrated Circuit
ATLAS A Toroidal LHC Apparatus

AXI Advanced Extensible Interface

AXI-S Advanced Extensible Interface Stream

AVF Architectural Vulnerability Factor

BCE Base-Core Equivalent

BRAM Block Random Access Memory

CERN European Organization for Nuclear Research
CHARM CERN High Energy Accelerator Mixed-Field
CLB Configurable Logic Block

CMOS Complementary Metal Oxide Semiconductor
CMS Compact Muon Solenoid

COTS Commercial Off-The-Shelf

CPU Central Processing Unit

CRAM Configuration Memory

CRC Cyclic Redundancy Check

D Disabled

DD Displacement Damage

DDR Double Data Rate

DFT Discrete Fourier Transform

DMA
DRAM
DSP
DUT
DUT

ECC
EMIO
ESA
EXP
FF
FFT
FI
FIC
FIFO
FIT
FPGA
FPU
FSM
GEO
GIC
GP
GPGPU
GPIO
GPR
GPU
HDL
HEP
HLS
HP
/0
ICAP
I0B
ISA

Direct Memory Access

Dynamic Random Access Memory
Digital Signal Processing

Design Under Test

Device Under Test

Enabled

Error Correcting Code

Extended Multiplexed Input/Output
European Space Agency

Radiation Experiment

Flip-Flop

Fast Fourier Transform

Fault Injector

Fabric Interface Controller

First In, First Out

Failure in Time

Field Programmable Gate Array
Floating Point Unit

Finite State Machine
Geostationary Orbit

General Interrupt Controller
General Purpose

General Purpose Graphics Processing Unit
General Purpose 1/10
General-Purpose Register
Graphics Processing Unit
Hardware Description Language
High-Energy Physics

High-Level Synthesis

High Performance

Input/Output

Internal Configuration Access Port
Input/Output Block

Instruction Set Architecture

ITRS
JPEG
JTAG
L1
L1D
L1l

L2
LAFN
LANL
LANSCE
LEO
LET
LHC
LHCb
LLVM
LUT
MB
MBU
MCU
MEBF
MEPhI
MIO
MIPS
MMU
MSR
MSS
MTBF
MxM
MWBF
NASA
NSREC
OCM
0oS

PC

International Technology Roadmap for Semiconductors
Joint Photographics Experts Group

Joint Test Action Group

Level 1

Level 1 Data

Level 1 Instruction

Level 2

Laboratdrio Aberto de Fisica Nuclear

Los Alamos National Laboratory

Los Alamos National Science Center

Low Earth Orbit

Linear Energy Transfer

Large Hadron Collider

LHC-Beauty

Low Level Virtual Machine

Look-Up Table

Microblaze

Multiple Bit Upset

Multiple Cell Upset

Mean Execution Between Failures

Moscow Engineering Physics Institute
Multiplexed Input/Output

Microprocessor without Interlocked Pipeline Stages
Memory Management Unit

Millimeter Square Radian

Microcontroller Subsystem

Mean Time Between Failures

Matrix Multiplication

Mean Workload Between Failures

National Aeronautics and Space Administration
Nuclear and Space Radiation Effects Conference
On-Chip Memory

Operating System

Program Counter

PCR
PL
PLL
PoR
PS

PSI
RAL
RAM
RISC
ROM
ROSCOSMOS
RTL
RTOS
SAA
SCU
SDC
SECDED
SEE
SEFI
SEL
SEM
SER
SET
SEU
SIHFT
SIMD
SMP
SoC
SRAM
TID
TMR
TSMC
UART
USA

Primary Cosmic Radiation

Programmable Logic

Phase-Locked Loop

Power-on Reset

Processing System

Paul Scherrer Institut

Rutherford Appleton Laboratory

Random Access Memory

Reduced Instruction Set Computer
Read-Only Memory

Russian Federal Space Agency

Register Transfer Level

Real-Time Operating System

South Atlantic Anomaly

Snoop Control Unit

Silent Data Corruption

Single-Error Correct/Double-Error Detect
Single Event Effect

Single Event Functional Interrupt

Single Event Latchup

Soft Error Mitigation

Soft Error Rate

Single Event Transient

Single Event Upset

Software Implemented Hardware Fault Tolerance
Single Instruction Multiple Data
Symmetric Multi-Processing
System-on-Chip

Static Random Access Memory

Total lonizing Dose

Triple Modular Redundancy

Taiwan Semiconductor Manufacturing Company
Universal Asynchronous Receiver/Transmitter

United States of America

USP
WR

Universidade de S&o Paulo
Worst Result

CONTENTS

L INTRODUGCTION ..ottt sttt st s a et st ebe st e e et sbe s e abesbe s e ebesbe e ebesbe e abesbe e ebesbeearens 16
1.1 Objectives and CONTIIDULIONScc.civiiiiiie et e st sresre e nee e enes 18
I I g T o] o T L 4= L (o] o S 20
2 HETEROGENEOUS PROGRAMMABLE HARDWAREccoooiiiee et 22
2.1 All Programmable System-0n-Chip eVICEScciiiiiiiiiiirie it 25
2.1.1 XilinX ZYNQ-7000 APSOC........coueiiterieieatesiee sttt ettt sttt bbbttt 27
2.1.1.1 The Processing SYSLEM (PS) ...c.ccuiiiiiiriiieiiieieeie sttt 28
2.1.1.2 The Programmable LOGIC (PL)........oiiiriiiiiieinieeiesi ettt 33
2.1.1.3 The interfaces DEtWEEN PS @nd PLcccoiiiiiiiiiie e 38

2.2 Hardware/SOftWare CO-AESITNcoviiiie et ettt et e e te e teeteeneesnnennes 42
2.2.1 HIgh-LeVel SYNENESIS......cciieieiiie ettt st te e e s et e st e te e teetearaesnaesneesneennas 44
2.2.2 Xilinx Vivado High-Level SYNNESIS........c.cciiiiieiice et 46
2.2.3 Related WOrKS @DOUL HLS ..ottt bbbt 49
2.3 IMPIeMENTALION MELIICSoivviiee ettt e st e st e te e teeteeneesneesneenreenns 51
2.4 Related WOIKS @DOUL APSOCSc.oiiiiieiieiieiie sttt sttt e e eseeste s e eseeseeneeseesseseeaneeneaneeneees 52
2.5 SUIMIMAIY ..ot h et E bbbt e bRt e bRt bt b e et e e e e en e bbbt e e 54
3 RADIATION EFFECTS ON APSOCS ...ttt sttt sttt eente e saestesnesneaneeneenes 56
I = 10 || =T (o] =T (o I = UL 0T 56
I S Lo [T Ao g =Y @AV T o] o071 o 3 57
3.2.1 SPACE BNVIFONMENTeuiititiiietiite ettt b bbb b bbbt b e bbb b bt st b st 57
3.2.2 Terrestrial BNVIFONIMENT..........coi it bbbttt bbb bt ne e 59
3.2.3 Particle acCelerators ENVIFONMENTooiiiiiiireeiei ettt sttt b e bbb ieenee e 61
3.3 Radiation effects 0N iNtegrated CIFCUITScooiiiiiiiiiie e e 63
3.4 Radiation effECtS ON APSOCSocuiiiiieieieie ettt bbbttt be bbbt b e e et e 68
35 SUMMIBIY ..ottt b e bt bt e bt e s bt e st e h e e s b e e b e e bt ekt e m bt e R bt e hb e eb e e s be e ke e beebeenneanneenes 73
4 METHODS AND METRICS FOR EVALUATING APSOCS UNDER RADIATIONcccccocvvnnene. 74
4.1 Accelerated radiation TESTS.........cciiviiiieeieieere e se ettt et st stesneere ettt e ntenrenreene e 74
4.2 Fault infection DY @MUIATIONciiiii e 77
4.2.1 Hardware fault injection platform USEd..........cccooiiiiiiiini e 78
4.2.2 Software fault injection platform USEAcooeiiiiiiiese e 81
4.3 Test MELNOAS AN MELFICS. ...ttt bbb e ettt ne b s 82
4.3.1 Static test Method AN MELFICSoiviiiiiee bbbt 84
4.3.2 Dynamic test MethOd aNd METFICSc.eiuriieiiie ittt bbb 87

4.4 Related works about APS0CSs UNAEr radiationcccceeiiiiieiiiiiie et 90

4.5 SUIMIMABEY .ottt b bbbt a et h R AR R R e e b s e et r e R e b e bt e bt e sb e e e e s e b e eb et et enn e 96

5 ANALYSING SINGLE EVENT EFFECTS ON THE PS PART OF ZYNQ-7000........cccccoeevreriernnnn 97
LTS - LA [0 1) OO RRTRPR 97
LB O U=t o (0 Tot o [0 (SR 97
LI B] =] (] o O OO PP TOPROPN 99
B L3 TSES FESUILS. .. vttt ettt bbbttt bbb b 103
LI V] T T 4ol (T PSS 104
I =Tt o (0 Tot o [0 (S 104
5.2.2 TESES SEEUPD. ...ttt ettt e 106
5.2.3 TESES FESUIES. ..e.viteitieiieiie ettt sttt et ettt r e st et e s e e besbe et e e seen e neeenenbeebeereeneeneees 106
6 ANALYSING SINGLE EVENT EFFECTS ON THE PL PART OF ZYNQ-7000c.cccveviveerinnnns 110
LT S = L o3l 1] £SO PRS 111
6. 1.1 TESES PrOCEAUIES.eieeieetiieetiete sttt sttt etttk b ettt b bbbt b ettt b b e bbbttt b et 111
L B TS K= (] PR TP PP POPRTRINS 111
5.1.3 TESES FESUILS. ...ttt bbb b bbb bbb bbbt et et e b eb et bt eb e e e st e 112
6.2 Dynamic tests and proposed reliability analysis for hardware-only designs..........ccccccvvveviveiieennnns 113
6.2.1 Proposed reliability analysis for hardware-only deSigns.........ccccveieiieiieiee e 114
6.2.1.1 Resources and PerfOrMANCEcccuecveiieieiie s ste et te e sne e e e sreenaeenne e 115
6.2.1.2 Errors and CritiCal DITSccuoiiiiiiiie e 116
6.2.1.3 Radiation MEASUIEITIENTSoiviiviiiirieetieieieie et se st e et teste st se s e e e eestesaeseesneereeneeneees 116
6.2.1.4 Mean Workload Between FailUreSccocviviieieiiiiie e 116
6.2.1.5 XiliNX @NalYSIS T00IScviiiitiiiiiieieee et 117
6.2.1.6 Fault injection method and @NaIYSISccooereiiiiieiiree e 117
6.2.2 Case-study designs and resources and performance reSUltSccooevvvevenienieeienene e 117
6.2.3 Cross Section and MWBF FESUILS........cc.oiiieie ettt 120
Lo TSN 0] 00 F=1 Y PSP PUUROPIN 133
7 EXPLORING BOTH PS AND PL PARTS OF ZYNQ-7000 UNDER SINGLE EVENT EFFECTS
... 135
7.1 Reliability of hard- and soft-cores heterogeneous processing in the Zyng-7000............c.cccccovennee. 135
7.2 Reliability of heterogeneous processing through hardware and software co-designs in the Zyng-
40 TSSOSO 141
7.2.1 Case-study designs and resources and performance evaluationsccccoevevereinineincnenenns 141
7.2.2 Cross section, MWBF, and performance evaluation............ccccveiveiererienesnseereee e 145
7.3 SUIMIMAIY ..ttt ettt bbbt b bt h s e bt b e bR b bt e s e bR e bbbt e b e e e b b eb e bt e e e s 153

8 PROPOSED RELIABILITY ANALYSIS FOR HARDWARE AND SOFTWARE CO-DESIGNS 154

8L ANAIYSIS TIOW ..ttt bbbttt r et 154
8.2 CaSE-STUAY TBSITNS ...ttt sttt ettt ettt ettt ettt et bt bt bt bt bt e s e e ee st e ke sbe ek e eseeneebe et e besbesbeaneeneas 157
8.3 ODTAINE FESUILS ...ttt bbbt b e bt btk r ettt r e b an e abe s 158
8.4 SUMMIBIY ...ttt h bt b e bt e st e e b b e s h e e s h e e bt e bt e Rt e eR b e eb b e ek e e nbe e ke e sbessbeeheenbeeabeanbeanneans 167
9 CONCLUDING REMARKS ...ttt ettt bbbttt bbbttt 169

LI\ E- T I elo]) ¥ 1 010 1 (0] 4TS 169

9.1.1 Extensive review about APSoCs, possible radiation effects on them, and the methods and metrics

for evaluating them UNder FAAIATIONooviiiiii bbbt 169
9.1.2 Original static data about Xilinx Zyng-7000 under radiationcccccevvevvriviireineienese e 170
9.1.3 Original dynamic analysis and data about Xilinx Zyng-7000 under radiation.............cc.cccevvvevnnne. 170
9.1.4 Reliability analysis flow for hardware-only designs, software-only designs, and hardware and

SOTEWAIE CO-ABSIGNS .veuvetriteetieiesteste sttt e e et e et e st et e teeae e s e e e e be st e st e e beeReese e st e s eese e beaReeReeseenseeeseeseeaneeneaneeneeses 171

0.2 FULUIE WOTKS ...ttt ettt ettt bbb st s bkt s bt e s b et ebesbe e et e st et ebenbenenbe s 171
9.2.1 Completing the static measurements of Zyng-7000..........ccccceveiierieieriiiinse e e 171
9.2.2 Improving the reliability analysis fIOW ... 172
9.2.3 Analyzing the use of fault-tolerant techniques in APSOCScccciiriinineineeee e 172
9.2.4 EVAluation OF OthEr APSOCScciiiiieieiiiie sttt bbbttt bbb sne et es 173

LS TRCI U] o] 1o U AT] o SO PPSRSR 173
0.3.1 BOOK CRAPTELSeeeetieeiett ettt bbb bbbt b bbb 173
0.3 2 JOUINEIS ...ttt bbb bbbt R e E bbb Rt b e bbbt b et 175
9.3.3 Conferences and WOIKSNOPS.civiiiiiicieee ettt et te e te e e sreesreesneenreenneans 176

REFERENCESo e s 180

16

1 INTRODUCTION

The recent advances in silicon technology have allowed the integration of complex
components and systems’ architectures into a single silicon die. Today, state-of-the-art
complex embedded systems include Field Programmable Gate Array (FPGA) together with
hard-core parts, such as general-purpose embedded processors (hereafter shortened to only
“processors”), dedicated processing blocks, interfaces to various peripherals, on-chip bus
structures, and analog blocks. These new devices are commonly called All Programmable
Systems-on-Chip (APSoCs) or, more generically, Heterogeneous Hardware.

APS0Cs are designed to provide higher system performances and programmable
flexibility at lower costs compared to standard FPGAs and processors. According to ITRS
(2013), heterogeneous architectures such as APSoCs will dominate the next generation of
computing systems. In general, APSoCs are composed of two main parts: the Programmable
Logic (PL), which is basically an embedded FPGA, and the Processing System (PS), which is
formed around of a hard-core processor. The PL is adopted to implement high-speed logic,
arithmetic, data processing subsystems, etc. The PS supports software routines and operating
systems. The overall functionality and workload of any system design can then be
appropriately distributed between hardware and software. Some recent examples of
commercially available APSoCs are Zyng-7000 (XILINX, 2015d) from Xilinx, SmartFusion
(MICROSEMI, 2015a) and SmartFusion2 (MICROSEMI, 2015b) from Microsemi, and
Cyclone V (ALTERA, 2015) from Altera.

The mentioned characteristics of being programmable, flexible, and extremely
efficient, make APSoCs very suitable and attractive for safety-critical markets such as space,
avionics, automotive, biomedical, and high-energy physics experiments. Moreover,
Commercial Off-The-Shelf (COTS) products have been widely employed in these safety-
critical areas in recent years. The Large Hadron Collider (LHC) at the European Organization
for Nuclear Research (CERN) is a clear example. There are several areas of LHC in which
commercial programmable devices not specifically designed to be radiation-tolerant are used
(MUSA, 2008). As an example, ALICE (A Large lon Collider Experiment), which is one of
the LHC experiments, makes use of hundreds of SmartFusion2 devices in its Time Projection
Chamber (TPC). The TPC is the main particle tracking detector in the central barrel of
ALICE. The CHREC Space Processor (CSPvl) is an example of APSoC employment in
space applications (RUDOLPH et al., 2014). CSPv1 is a small computer designed to operate

17

in low-cost space missions powered by a Zyng-7000. CSPv1 relies on the use of a
combination of commercial and radiation-hardened components, in which commercial
components perform critical computations but are supervised by the radiation-hardened
components. Another example is the APEX-SoC proposed in (ITURBE et al., 2015), which is
a generic platform based on a Zyng-7000 device and intended to control science instruments
in future NASA missions. At terrestrial level, for example, APSoCs are very suitable to
implement the Advanced Driver Assistance Systems (ADAS), aimed at increasing vehicles
safety (XILINX, 2016b). In ADAS, the hardware and software combined programmability
eases the performance and efficiency optimization distributing between hardware and
software operations like sensing, environmental characterization, and feature implementation.

Unfortunately, although APSoCs offers a plethora of advantages, their high
complexity and density increase the system’s susceptibility to transient errors that are present
in the environment, such as the ones caused by radiation. Radiation effects known as Single
Event Effects (SEEs) are a well-known issue at device level in standard FPGA (DODD et al.,
2010; WIRTHLIN, 2015) and processor-based (DODD et al., 2010) devices. SEEs result from
the interaction of high-energy particles with circuit elements in integrated circuits. When a
high-energy particle passes through the silicon substrate of a device, charged particles are
created as the result of sub-atomic particle collisions. These particles are generated by an
ionization trail along the path of the incoming particle. As an example, if a charged particle
impacts at or near a transistor junction, the collected charge can temporally charge or
discharge the stroke node inducing a transient pulse, known as Single Event Transient (SET).
If the SET width of is wide enough, the pulse can propagate through the circuit and be latched
by a memory cell. If the SET occurs inside a memory cell such as a latch or a flip-flop, the
transient pulse can change the state of that memory cell. This effect is known as bit-flip or
Single Event Upset (SEU). With the dimensions of the transistors shrinking to below 28 nm,
the operating voltages and the element capacitance decreasing to very low levels, and the
clock speed increasing, the concerns about SET and SEU in FPGAs, processors, and APSoCs,
have increased in the last years.

One of the most challenging concerns about radiation effects on APSoCs is that
radiation-induced errors may have different probability and criticality in the PL and PS parts
at both device and design levels. APSoCs are programmed by configuring a large set of
SRAM memory cells and, consequently, they are very susceptible to bit-flips. SEUs in the
configuration memory bits of the PL part have a persistent effect and reconfiguration is

needed to correct them. When an application is executed on the PS, it may mask eventual

18

SEUs according to the application Architectural Vulnerability Factor (AVF) (MUKHERJEE
et al., 2003) and the sensitivity of the resources in use. Memories of the PS part such as L1
and L2 caches, embedded SRAM and Block RAM memories are also very sensitive to SEU,
and each one has a distinct sensitivity, which may contribute differently to the overall system
failure rate and performance overhead.

At design level, APSoCs enable many possibilities for implementing a system due to
their heterogeneous architectures. However, each implementation will impose a different
amount of resources usage and a different resource utilization efficiency, which may impact
the vulnerability of the system. Therefore, the correlation between hardware and software
resources sensitivity and the overall benefits brought to the system is essential to evaluate its

efficiency.

1.1 Objectives and contributions

This thesis aims at performing a deep investigation about the radiation effects on
APS0Cs and the correlation between hardware and software resources sensitivity in the
overall system reliability and performance. Therefore, the main two topics addressed in this
thesis are:

1. Which is the behavior of an APSoC device under radiation? Moreover,
considering a hardware and software co-design implementing a high-
performance system that runs on both PS and PL parts of an APSoC like Xilinx
Zyng-7000, how much is it necessary to accelerate it to compensate the
sensitivity increase and improve the Mean Workload Between Failures
(MWBF)?

2. Is it possible to estimate the reliability trend of APSoC-based systems like
Velazco, Foucard, and Peronnard (2010) did for FPGAs in the past?

As this thesis shows, state-of-the-art complex devices and technologies such as
APS0oCs and hardware and software co-designs have created many challenges for the
radiation effects field. That is because radiation-induced failures in such devices and
architectures may result in a complex chain of effects due to their heterogeneous nature.
Additionally, the components testing methodologies have not changed over the years for

taking into account such heterogeneity.

19

Another important critical point is the cross section metric. Today, the growing
computational need, whether in a spacecraft or high-energy physics experiments, for example,
has pushed the need to deploy high-performance computing in harsh environments, such as
satellites and the LHC detectors. Thus, adopting only the cross section metric for estimating
the reliability of a device, system, or design, is no longer enough. Besides the sensitivity of a
resource, it is also essential to evaluate the benefit that this resource brings to the system.
Therefore, to compare the reliability of heterogeneous and high-performance systems such as
APSO0Cs, it is essential to take into account not only the cross section but also at least the
execution time and workload of the system. Consequently, one of the main metrics adopted in
this thesis is the Mean Workload Between Failures (MWBF), previously introduced in
(RECH et al., 2014), but not in the APSoC context. The capability of a system to provide
correct data depends on several factors, as sensitive area and the time required to complete
computations. The MWBF metric identifies the workload that can be correctly computed by
the system before experiencing a failure. Moreover, the MWBF considers all these aspects
and is of particular interest in safety-critical applications as it provides the realistic impact of
a given APSoC configuration on the system reliability.

The first objective of this thesis is to try to answer the following questions: Which is
the behavior of an APSoC device under radiation? Moreover, considering a hardware and
software co-design implementing a high-performance system that runs on both PS and PL
parts of an APSoC like Zyng-7000, how much is it necessary to accelerate it to compensate
the dynamic cross section increase and improve the MWBF? One of the main issues
concerning radiation effects in an APSoC is that radiation-induced failures have different
probability and criticality in its heterogeneous parts. In addition, at design level, the
heterogeneous architecture of an APSoC enables a plethora of possibilities for implementing a
project. Each implementation imposes a different amount of resources usage and a different
resource utilization efficiency, which impact the vulnerability of the system. Therefore, the
correlation between hardware and software resources sensitivity and the overall benefits
brought to the system are essential to evaluate the system efficiency.

The second objective of this thesis is to develop a methodology to estimate the
reliability trend of APSoC-based systems like Velazco, Foucard, and Peronnard (2010) did in
the past for FPGA-based designs. Accelerated radiation tests are mandatory to obtain the
sensitivity of the target device by determining its static cross section. However, static cross
section significantly overestimates the sensitivity of the final application, as the next chapters

show, and accelerated radiation tests are scarce, making prohibitive the test of any design

20

developed. In the case of FPGAs, in (VELAZCO, FOUCARD, PERONNARD, 2010),

authors demonstrated that the dynamic cross section of a design can be predicted combining

the static cross section with the results of fault injection campaigns, in which SEUs are

emulated by a suitable approach, such as hardware/software fault injection. Base on this

context, and together with the fact that APSoC devices have been increasingly used in safety-

critical markets, a methodology aiming to estimate the APSoC-based design with the best

trade-off between performance and reliability among the ones available becomes

fundamental.

1.2 Thesis organization

This thesis is organized as follows:

Chapter 2 - Heterogeneous programmable hardware: introduces heterogeneous
programmable hardwares, Xilinx Zyng-7000 as an example of APSoC and the
case-study device of this thesis, hardware/software co-design concepts,
implementation metrics, and related works about Zyng-7000 and similar
APS0Cs;

Chapter 3 - Radiation effects on APSoCs: introduces the concepts of fault,
error, and failure; the main radiation environments; and the radiation effects on
integrated circuits and APSoCs;

Chapter 4 - Methods and metrics for evaluating APSoCs under radiation:
presents the main methods and metrics for evaluating APSoCs under radiation
and related works about APSoCs under radiation;

Chapter 5 - Analyzing single event effects on the PS part of the Zyng-7000:
presents static and dynamic tests procedures, setups, and results for the Zyng-
7000’s PS part;

Chapter 6 - Analyzing single event effects on the PL part of the Zyng-7000:
presents static and dynamic tests procedures, setups, and results for the Zyng-
7000’s PL part. This chapter also proposes a reliability analysis flow for
estimating the reliability of hardware-only designs based on fault injections;
Chapter 7 - Exploring both PS and PL parts of Zyng-7000 under single event
effects: presents an analysis of the impact of using both PS and PL parts of

Xilinx Zyng-7000 in the overall failure rate of a system;

21

Chapter 8 - Proposed reliability analysis for hardware and software co-designs:
presents the proposed reliability analysis flow for estimating the reliability
trend of hardware and software co-designs, the case-study designs, and the
obtained results;

Chapter 9 - Concluding remarks: presents the concluding remarks of this

thesis, such as its main contributions and future works.

22

2 HETEROGENEOUS PROGRAMMABLE HARDWARE

Following Moore’s law (MOORE, 1965), the processors' frequency doubled at each
every 18 to 24 months until the middle of 2000’s decade. However, due to the ever increasing
core design complexity of the high performance processors and the power consumption
caused by the high frequencies, researches started to look at other strategies to continue
increasing systems performance. According to Shen and Pétrot (2011), three possible
solutions were proposed until that year. More important, we already can see all of them being
commercialized today.

The first solution was to optimize the instruction set for certain application classes.
The generalization of the Single Instruction Multiple Data (SIMD) extensions (Fig. 2.1),
which first appeared in the general purpose high-performance processors in the early of 90’s
decade to all processors including the embedded ones (GOODACRE, SLOSS, 2005) after the
2000’s decade is an evidence of this trend. The SIMD technique allows multiple data to be
processed in one or a few CPU cycles by assuming that registers are considered as vectors of
elements of the same data type. A today’s example is the NEON engine (ARM, 2015b),
which is the SIMD implementation present in ARMv7-A processors (Cortex-A9 family). The
drawback of this solution is that these resources can accelerate only part of the application,

which make them useless for other parts of the execution.

Figure 2.1 — Bock diagram of a processor with a SIMD engine embedded (2) and a simplified block
diagram of a SIMD engine (b).

Elements =— :
> SIMD engine i —p—r—r." Source
Core g \\ = Registers
L1 Instruction L1 Data metm# %‘ LT* kT'

cache memory cache memory : : ____ Destination
_——— Register

L2 cache memory ¥

Lane

(a) (b)

The second solution, straightforward from the point of view of the hardware designer,
was to integrate several symmetric cores, based on the first solution, into the same silicon die,
as Fig. 2.2(a) shows. Due to power dissipation issues, the integrated cores should feature a

high performance per watt ratio and an overall current consumption acceptable for the

23

application. The drawback of this solution is that all cores are symmetric in both performance
and function, which limits the speed-up that can be obtained by the parallel execution of the
cores, since all applications intrinsically have sequential phases.

In the general and high-performance computing fields, there is a clear trend towards to
chips with multiprocessor architectures. In 1967, G. M. Amdahl stated that the performance
improvement (S) to be gained from using some faster mode of execution is limited by the
fraction of the time (f) the faster mode can be used (Eq. 2.1) (AMDAHL, 1967).

_r
a-+L

(Equation 2.1) SpeeduPonnanced =
Based on Amdahl’s law, during the last decade, the semiconductor industry has defined high-
performance asymmetric architectures which accelerate the sequential execution by using fast
cores and the parallel execution by a massive usage of small cores (Base-Core Equivalent —
BCE) having lower performance but better high performance per watt ratio than the fast ones.
This was the third solution and it is shown in Fig. 2.2(b). This kind of architecture can
improve the overall system performance by accelerating some critical parts of a parallel
application while still providing very good flexibility. Based on this concept, Hill and Marty
(2008) extended the Amdahl’s law for symmetric (Eq. 2.2) and asymmetric (Eq. 2.3)
multicore devices by introducing two additional parameters, n and r, to represent the total
number of resources available and those dedicated to sequential processing (BCE),
respectively. Hill and Marty used the Pollack’s Law (POLLACK, 1999) as input to their

model, which observes that the sequential processing performance from a microarchitecture

alone grows roughly with the square root of transistors used (perfseq (1) = V).

. 1
(Equation 2.2) Speedupsymmetric(f' nr) = = 7

perfseq(r)’ (%) xperfseq(r)

. 1
(Equation 2.3) Speedupasymmetric (finr) = -7 T

perfseq(r) perfseq(m+n—r

However, today the semiconductor industry already went a step further in the
asymmetric architectures solution by using heterogeneous architectures to achieve greater
energy efficiency. Thus, the present metrics are no longer totally applied to such devices.

Heterogeneous architectures (Fig. 2.2(c)) combine traditional processors with other hardware

Figure 2.2 - Processor models: (a) Symmetric, (b) Asymmetric, and (c) Heterogeneous.

Core Core
L1 Instruction L1 Data L1 Instruction L1 Data
cache memory cache memaory cache memory cache memary
L2 cache memory L2 cache memory
Core Core
L1 Instruction L1 Data L1 Instruction L1 Data
cache memory cache memory cache memory cache memory
L2 cache memory L2 cache memory

(a)

BCE BCE BCE BCE
Core
L1 Instruction L1 Data
BCE cache memory cache memory BCE

L2 cache memory

BCE BCE BCE BCE

(b)

Core
L1 Instruction L1 Data
cache memory cache memory

LZ? cache memory

Heterogeneous hardware

(c)

24

25

categories, such as custom logic, General Purpose Graphics Processing Units (GPGPUSs), or
FPGAs. Custom logic can provide the most energy-efficient form of computation (100-1000x
improvement in either efficiency or performance) through ASICs customized to a specific
task (DALLY et al., 2008). However, it is costly to develop and cannot be easily re-used for
new applications. GPGPUs have also been shown to significantly outperform conventional
microprocessors in target applications (LEE et al., 2010). GPGPUs derive their capabilities
through SIMD vectorization and through multithreading to hide long memory latencies.
GPGPUs are very suitable for homogeneous data parallel tasks. Finally, the third option of
heterogeneous architecture is the FPGAs. Unlike custom logic and GPGPUs, FPGAs enable
flexibility through programmable Look-Up Tables (LUTSs) cells that can be used to implement
arbitrary logic circuits. In exchange for this flexibility, a typical 10-100x gap in area and
power exists between custom logic and FPGAs (KUON, ROSE, 2007). Heterogeneous
FPGASs, which are the focus of this thesis, are the most suitable devices to perform pipeline
irregular data flows as well as data parallel tasks.

2.1 All Programmable System-on-Chip devices

Although traditional processors have been coupled with FPGAs before, it has never
been quite the same proportion as now. Today, heterogeneous FPGAs, called of APSoC
devices hereafter, have embedded hard-core processors capable of running full operating
systems.

In general, APSoCs are composed of two main parts (Fig. 2.3): the Programmable
Logic (PL), which is FPGA-based, and the Processing System (PS), which is formed around
of a hard-core processor. The architecture is usually completed by embedding several
peripherals and industry bus interfaces, which provide high bandwidth and low latency
between PS and PL. The PL section is ideal for implementing high-speed logic, arithmetic,
and data processing subsystems, while the PS supports software routines and/or operating
systems. Thus, the overall functionality of any designed system can be appropriately
partitioned between hardware and software. Finally, it is worth mentioning that in APSoCs,
the processor embedded into the PS part can be regarded as the central element of the
hardware system. The software system running on the processor comprises applications that
run or in bare-metal mode with a lower level of software functionality for interfacing with the

hardware system, or on the top of an Operating System (OS).

26

There are several APSoCs currently available on the market. Some recent examples
are Zyng-7000 (XILINX, 2015d) from Xilinx, SmartFusion (MICROSEMI, 2015a) and
SmartFusion2 (MICROSEMI, 2015b) from Microsemi, and Cyclone V (ALTERA, 2015)

from Altera.
Figure 2.3 — Generic architecture of an APSoC.

: Y =—p| Custom [T

Processing Memory

. e

system interfaces

2 [— Peripheral [ste—p
I E
<] Peripherals |[#=# Processor [e=—p{ [*P Accelerator [d=—r=—p
Programmable logic

Zyng-7000 and the Cyclone V devices use a dual-core ARM Cortex-A9 application

processor. SmartFusion2 devices are based around the ARM Cortex-M3 embedded processor,

primarily targeting microcontroller applications. The main characteristics of the three devices

are summarized in Table 2.1. Further information about the architecture of the devices can be

found in their respective datasheets, which were referred in the previous paragraph. This

thesis uses the Xilinx Zyng-7000 APSoC as case-study platform. Nevertheless, the

methodologies and the achieved results are capable to be extendable to other APSoCs.

Table 2.1 — Commercially-available APSoCs characteristics.

Functional unit

Xilinx Zyng-7000

Altera Cyclone V

Microsemi
SmartFusion2

Processor ARM Cortex-A9 ARM Cortex-A9 ARM Cortex-M3
Processor class s\r%?:gg::ron S%gggg;'ron Microcontroller
Single or dual core Dual Dual Single
Processor max. freg. 1.0 GHz 1.0 GHz 166 MHz

Data: 32 KB Data: 32 KB No data cache

L1 cache

Instruction: 32 KB

Instruction: 32 KB

Instruction: 8 KB

L2 cache Unified: 512 KB Unified: 512 KB Not available
Memory Management

Unit (MMU) Yes Yes Yes
Floating-Point Unit Yes Yes Not available

(FPU)

Accelerator

Coherency Port (ACP) Yes Yes Not available
Interrupt controller Generic Generic Nested, Vectored
On-Chip Memory
(SRAM) 256 KB 64 KB 64 KB
Direct Memory 8-channel 8-channel 1-channel HPFDMA
Access (DMA) 4 requests 32 requests 4 requests
External Memory
Controller EMC) | Y& Yes Yes
Memory types LPDDR2, DDR2, LPDDR2, DDR2, LPDDR, DDR2,
supported DDR3L, DDR3 DDR3L, DDR3 DDR3
Memory ECC 16 bit 16 bit, 32 bit 8 bit, 16 bit, 32 bit
External memory bus | a1y, 400 MHz 333 MHz
max. Frequency
1x quad SPI or dual | 1x quad SPI 1x 10/100/1G
quad SPI controller | controller with 4 Ethernet controller;
with 2 chip selects; | chip selects; 2x USB 2.0 0TG
1x static memory 1x NAND controller | controller;
controller (NAND- | (single-and 2x UART;
SLC, NOR, or multilevel cell - 2x 12C controller;
SSRAM); MLC or SLC); 1x CAN controller;
2x 10/100/1G 2x 10/100/1G 2x SPI;
Ethernet controller; | Ethernet controller; | 2x general-purpose
2x USB 2.0 OTG 2x USB 2.0 On-the- | timers;
controller; Go (OTG) 1x watchdog timer;
Processor peripherals | 2x SD/SDIO controller; 1x real-time clock
controller; 1x SD/MMC/SDIO | (RTC)
2x UART; controller;
2x 12C controller; 2x UART;

2x CAN controller;
2x SPI controllers
(master or slave);

2x 16 bit triple-mode
timer/counters;

1x 24 bit watchdog
timer

4x 1°C controller;
2x CAN controller;
2x SPI master, 2x
SPI slave controller;
4x 32 bit general-
purpose timers;

2x 32 bit watchdog
timers

FPGA Fabric

Artix-7, Kintex-7

Cyclone V, ArriaV

Fusion2

FPGA logic density
range

28 K to 444 K logic
elements

25 K to 462 K logic
elements

6 K to 146 K logic
elements

High-speed
transceivers

Higher-density
devices only

Available in all
devices

Higher-density
devices only

2.1.1 Xilinx Zyng-7000 APSoC

Zyng-7000 is a commercial-off-the-shelf device designed by Xilinx in a Taiwan

Semiconductor Manufacturing Company’s (TSMC) 28 nm technology node. Fig. 2.4 shown

28

shows its block diagram. In this thesis, it was used an XC72020-CLG484 part embedded in a

commercially available ZedBoard Development Board.

Figure 2.4 — Block diagram of the Zyng-7000 (XILINX, 2015d).
|

Processing System

Flash Controller Muitiport DRAM Controfier
NOR, NAND, SRAM, Quad SP1 DDR3, DDR3L, DOR2

AMBA® Interconnect

2x
. SPI '
2x
. 12C .
2x
CAN
. 2x . Cortex™™ A3 MPCore Cortex- AS MPCore
UART 32/32 KB 1/D Caches 32/32 KB 1/D Caches
' GPIO . ’ |
T | et e
. with DMA .
2x USB
. with DMA .
2x GigE

with DMA

»
=3
=
(=
=
v
“
13
o
o
L
o

¥ EMIo ,
General Purpose ACP High Performance

AXI Ports AXI Ports

2x ADC, Mu, Programmable Logic f;c;e L;aenz
LWCUIECS (System Gates, DSP, RAM) By

Multi-Standard 1/0s (3.3V & High-Speed 1.8V) Multi-Gigabit Transceivers

2.1.1.1 The Processing System (PS)

Zyng-7000 has a 32-bit 8-11 pipeline stages dual-core ARM Cortex-A9 hard-core
processor as the PS basis. However, a set of associated processing resources surrounds it
forming an Application Processing Unit (APU) (Fig. 2.5).

Each ARM core has associated several computational units, such as: a NEON Media
Processing Engine (SIMD), a Floating Point Unit (FPU), a Memory Management Unit
(MMU), and a Level 1 Cache 4-way set-associative divided in two sections for instructions
and data. The APU also contains a Level 2 Cache 8-way set-associative memory and an
SRAM On-Chip Memory (OCM). Timers and a General Interrupt Controller (GIC) are

29

further functional blocks located in the APU. Finally, a Snoop! Control Unit (SCU) forms a
bridge between the ARM cores, the Level 2 cache, and the OCM. The SCU undertakes
several tasks relating to interfacing between the processors and Level 1 and 2 cache
memories. The SCU also has the capability of interfacing with the PL through an Accelerator
Coherency Port (ACP).

Figure 2.5 — Block diagram of the PS part of the Zyng-7000 (XILINX, 2015d).

Zyng-7000 All Programmable SoC
7o Processing System
Peripherals Application Processor Unit
Geﬁtl;;}t(ion Resst SWDT i
usB FPU and NEON Engine FPU and NEON Engine
use | | 2xUSB ﬂl vMu | ABMCortex-A9 | | | ARM Cortex-A9
Gige | [2Xx GigE System- CPU CPU
GigE 2x SD Level 32 KB 32 KB 32 KB 32 KB
SD Control I-Cache D-Cache I-Cache D-Cache
SDIO IRQ Regs
SD > | GIC H Snoop Controller, AWDT, Timer }4—-
SDIO Yvy ' I
GPIO | | | <l/ DMAB 512 KB L2 Cache & Controller |
Ol UART 3 Channel
= UART | | \ \
CAN
CAN Inter?;gr:\flect SZFE:;S"\KA
12C >
12C / Memory
SPI Central Interfaces
SPI Interconnect >
DDR2/3,
T CoreSight DDRAL,
Intertaces [Components LPDDR2
\ SRAMY B Controller
NOR 5
ONFI 1.0 | DAP ‘ ‘
NAND DevC Programmable Logic to
Q-sPI T Memory Interconnect
CTRL
‘ ! ¢ ¢4
EMIO General-Purpose DMA IRQ | Config High-Performance Ports ACP
XADC
12-Bit ADC Ports Sync AES/ .
z SHA Programmable Logic
; SelectlO
Notes: Resources
1) Arrow direction shows control (master to slave)
2) Data flows in both directions: AXI 32-Bit/64-Bit, AX| 64-Bit, AX| 32-Bit, AHB 32-Bit, APB 32-Bit, Custom

In the context of this thesis, special attention must be given to the embedded memories
of the Zyng-7000 and their hierarchy (Fig. 2.6), because they play an important role in the
overall reliability and system performance. Embedded memories represent around 60% of the
chip area in current processors, and to be fast and efficient, their memory cells are built as

small as possible and with very low capacitance, especially caches (MANOOCHEHRI,

! Snooping is one of the several mechanisms for ensuring cache coherency, i.e. managing the
consistency of data across shared cache resources.

30

ANNAVARAM, DUBOIS, 2011). As consequence, such characteristics make them very
vulnerable to SEEs, as will be possible to notice later.

Typically, every processor has inside its data path a set of General-Purpose Registers
(GPRs) called of Register File (“Registers”, in Fig. 2.6). In case of Zyng-7000’s ARM
Cortex-A9 dual-core processor, each core has a register file consisted of 15 GPR plus the
Program Counter (PC) (ARM, 2012). The register file is the smallest addressable memory and
it is located at the top of the memory hierarchy. Thus, a register file must be fast: a GPR must
be able to drive its data onto an internal bus in a single clock cycle. The register file is an
important microarchitectural component used for storing operands and results of instructions.
It is visible only to programs that address registers directly, so it is part of the Instruction Set
Architecture (ISA).

Figure 2.6 — Zyng-7000’s memory hierarchy.

ncreasing distance from the processor in size and access time
Registers [« L1cache [s—»
= | L2 e
rocessor core - b
Snoop cache Main
control memo
unit Y
Registers [e=— L1cache [e—»
d—p OCM
Processor core

oo

To other peripherals

The L1 cache is the smallest and faster cache memory of the Zyng-7000. It is
implemented in the form of SRAM cells, which are built into the fabric of the ARM core and,
as such, operates at the same clock frequency. Similarly to the register file, L1 cache is not a
general memory, not being accessible via any system bus. As any cache memory, the L1
cache of Zyng-7000 is used to store data that is frequently accessed by the processor from
main memory. The basic mechanism of a cache memory is the following: when the access to
a memory address is requested, the cache verifies if the block (a set of adjacent memory
words) containing the address is present in this level. If the referred block is present within

this cache level (a cache hit occurred), the address is fulfilled. Otherwise, if the referred block

31

is not found (a cache miss occurred), the cache copies the relevant block from the next lower
memory level for then, fulfilling the request (PATTERSON, HENNESSY, 2005). Therefore,
a cache miss implies in a penalty on the access time equal to the access time of the next
memory level. In contrast, operations that make use of cached data are faster (lower access
time) than those where the data is only in lower memory levels. Cache memories also operate
on the principle of temporal and spatial locality (PATTERSON, HENNESSY, 2005).
Temporal locality states that if a data is referenced, it will tend to be referenced again soon.
Thus, after the first time a data is accessed, it worth keeping that data cached. Spatial locality
states that if an item is referenced, items whose addresses are close by will tend to be
referenced soon. Thus, when a memory address is accessed, it worth caching nearby positions
(cache block).

The L2 cache of Zyng-7000 is external to the processing cores, but is located
extremely close to them. It is larger than L1 cache, but has slower access speeds. L2 cache is
in the form of Dynamic RAM (DRAM) and is unified in a single section (unlike L1, which is
split into two sections). In the standard APU configuration, which means all cache levels
enabled, larger quantities of data are constantly read in by L2 cache from main memory
before being fed to L1.

The OCM contains 256 KB of RAM and 128 KB of ROM (where the boot of the
processor resides, the BootROM). The RAM part of the OCM can be considered a general
memory, so it is accessible via system buses. It supports two 64-bit slave interface ports, one
dedicated for processor access via the SCU and the other is shared by all other bus masters
within PS and PL. The OCM address range is not a cacheable memory region by default.
However, it is possible to turn the OCM a cacheable memory by modifying the configuration
of the MMU of the processor. Although this configuration does not provide a significant
performance improvement comparing to a standalone L2 cache configuration, once both
memories are practically in the same level of the memory hierarchy, it is an interesting
approach when the caches are enabled and the OCM is used as a shared memory between PS
and PL. The BootROM memory region is not visible to the user as it is reserved for exclusive
use by the boot process of the device.

It is worth noting that in the Zyng-7000, the L1 cache, L2 cache, and OCM, have byte-
parity support (XILINX, 2015d). Parity is commonly used as the simplest form of error
detecting code. This method counts the number of logic one states (or "ones") in a data
structure, such as a byte, and then adds a bit in the end of that data structure, stating whether if

an odd or even number of ones is present in that structure. Parity detects an error if an odd

32

number of bits are in error, but if an even number of errors occurs, the parity is still correct
(i.e. the parity is the same whether O or 2 errors occur). This is a "detect only" method of
mitigation and does not attempt to correct the error that occurs. Therefore, in case a parity
error is detected in a cached data, for example, it will only result in a cache miss. The parity
support in L2 cache and OCM is configurable. However, the parity support in the L1 cache is
always enabled by default, not being possible to disabled it through standard ways. No
information was found about the presence of parity support in the register file of the processor
cores.

Externally to the APU, the PS part features a variety of interfaces, both between the
PS and PL, and between the PS and external components, as shown in Fig. 2.5. The
communication between the PS and external interfaces is achieved primarily via the
Multiplexed Input/Output (MIO), which provides 54 pins of flexible connectivity, meaning
that the mapping between peripherals and pins can be defined as required. Connections can
also be made via the Extended MIO (EMIO), which is not a direct path from the PS to
external connections, but instead passes through and shares 1/O resources of the PL. The
complete set of 1/O peripherals is stated in Table 2.1 and more information can be found in
(XILINX, 2015d). It is important to highlight that such interfaces and peripherals are
configured through the use of registers. Hundreds of 32-bit registers are used to determine the
functionality of all the peripherals and they are also vulnerable to SEEs.

At system level, an important feature of APSoCs that have embedded a multi-core
processor or are able to implement a multi-core architecture in their PL parts, is the option to
configure the processor cores in an Asymmetric Multi-Processing (AMP) or in a Symmetric
Multi-Processing (SMP) mode.

AMP can be used on a system that utilizes multiple processor cores, which may be of
different architectures, such as hard- or soft-core. In this case, each processor core can run its
own software system (OS or bate-metal), which can either be homogeneous or completely
different. An example of this would be a system running a Linux OS on one core while a
bare-metal application runs on another one. The communication between the cores is
facilitated by a shared memory, which provides a level of software abstraction.

In SMP, each core has the same hardware architecture. They share the main memory
space and have full access to all I/O devices. Although, each core has its private resources
such as L1 cache memory, private timers, and memory management unit. The whole system
is controlled by a single OS instance, which treats all cores equally. Due to the shared

memory architecture, the OS has to provide some common interfaces for all cores to access

33

the main memory, as well as some communication mechanisms for task synchronization.
Typically, SMP solutions are employed when an embedded application simply needs more

CPU power to manage its workload.

2.1.1.2 The Programmable Logic (PL)

The PL part of the Zyng-7000 device is based on the Artix-7 and Kintex-7 families of
Xilinx FPGAs. Therefore, the PL part has the same internal architecture of the mentioned
FPGA families.

An FPGA can be viewed as a two-layer device, the Design Layer and the
Configuration Layer, as depicted in Fig. 2.7. The Design Layer of the Zyng-7000’s PL part
and some of its user application resources are depicted in Fig. 2.8. It composed of
Configurable Logic Blocks (CLBs); other specialized circuits, such as embedded memory
blocks (Block RAM — BRAM), Digital Signal Processor (DSP) blocks, the Internal
Configuration Access Port (ICAP), Phase-Locked Loop (PLL) blocks, clock trees, Power-on
Reset (PoR) circuitry, and others; and they are surrounded by programmable Input/Output
Blocks (IOBs). They are interconnected in a matrix structure by a set of programmable
interconnections, creating an array of programmable logic blocks of different types. The
Configuration Layer is composed of all SRAM memory cells responsible to configure all the
Design Layer, such as the CLBs, content of BRAMSs, DSPs, routing structures, clock trees,
PLLs, 10Bs, and others. Such programmable blocks and interconnections are configured by
the bitstream, which is a group of configuration bits that are loaded in the configuration
memory during the device power-up for defining a specific circuit previously described with a
Hardware Description Language (HDL).

The purpose of the CLBs is to implement the combinational and sequential logic of the
user’s design synthesized into the FPGA. An CLB is composed of one or more slices and
each slice is composed of one or more Look-up Tables (LUTS), Flip-Flops (FFs), and routing
structures. An LUT is the basic structure for implementing the truth table of a logic function
and it is usually implemented by a multiplexer with 2" inputs and n selectors. The inputs are
connected to SRAM cells that are part of the configuration memory. Then, with this
architecture is possible to implement any combinational circuit with n inputs. In case of Zyng-
7000’s PL, it has six inputs LUTs in its CLBs. Fig 2.9 shows an example of an LUT
implementing a 3-input majority voter. LUTs can also be configured as distributed memories
ROM, a small RAM, or shift registers.

34

Logic
Fabric

A

Input / Output
Blocks (IOBs)

ol]]]] ol ol ['l
il ol P P]] ol [l [l 'l

“_H__H__H__H_
g/ == == ==

(B |l [= [[[=~[=~]=~|=~]="]
B e e e e e P A A T -

“EHHEEEEHHEEEE

[m] |]
“EEBEBEEEEEE
.EEEEHH!EHHHH |||||||

0 Bl Fal M)] o] el Ml M Ml Ml M
]
[o

Logic Block (CLB)

Configurable
(0 slice)

switch
matrix

el il ol Pl

 B— =]
Emmiggﬂﬁﬁﬁmiﬁ
HHHEHEE:HHH=EE-

| [[O @

e e P P P e P P P Pl
El=al Enl Ed El il Bl il ol El] 2

HEHHHE#EHEBE“

]] |] P | | P Pl]
st P]] P P o P

HHmumumumumu_Hmu_HH“
e e B S e

il ol] P P Pl] P |l

0= = = = B

Figure 2.7 — Abstraction layers of a generic SRAM-based FPGA (TARRILLO, 2014).

programmable

interconnects

Tl Pl P Pl P 1] =] [

Figure 2.8 — Basic structure of the PL part of the Zyng-7000 (CROCKETT, 2014).

35

Figure 2.9 — Example of a 3-input LUT implementing a majority voter.

Combinational Truth LuT
logic function table

o
C
3

A —
B_

=]

=]

C_
A —

Out Out

SRAM cells
o]

H

N

B_
C —

e

kB P kP O O O OfF
Bk O O FL»r kB O o W
P O P O FBr O = o0

P Bk Pk O =, O O O

In Xilinx 7-Series architecture, which Zyng-7000 is part, each CLB’s slice contains
four 6-input LUTS, eight flip-flops, multiplexers to interconnect the LUTS, flip-flops, and one
carry propagation chain. Fig 2.10 shows the block diagram of a 7-Series slice. In turn, slices
are grouped into CLBs. Each CLB has two slices, as shown in Fig. 2.11.

In addition to CLBs, FPGAs have blocks of embedded memory (BRAM). These
blocks are based on SRAM cells and dedicated for the user circuit. They are more efficient
implementing large memories or FIFOs than flip-flops in CLBs. Flip-flops are mainly used
for implementing registers or pipeline barriers, for example. They support Error Correcting
Codes (ECCs).

DSP blocks are also present in the FPGA fabric. These blocks contain hard-core
multipliers and adders to implement arithmetic operations at high-speeds.

I/0 Blocks provide an interface between the FPGA resources and the physical device
pads used to connect to external circuitry. In the Zyng-7000’s PL, it is possible to configure
some features of the 10Bs, such as the voltage level, signal direction, and programmable
delay. Some devices also incorporate transceiver blocks to enable high-speed
communications, such as the bigger Zyng-7000 devices, which are based on the Kintex-7
family.

The clock distribution in the FPGA is done by dedicated global and local clocks
routing wires and buffers. These signals divide the FPGA into clock regions, and these
regions are controlled by clock buffer primitives (XILINX, 2014). Such primitives enable the
user to apply clock gating to an entire clock region, for example. There are also specialized
clock management blocks where it is possible to multiply or divide the reference clock
frequency.

Figure 2.10 — Block diagram of a Xilinx 7-Series slice (XILINX, 2014).

o SAHI
4_[]— p DA Reset Type
oMY G
cout — = oiNmD OSynciAsyne
0 —= s OFFLAT
1 —™
bxL I =y | L —yDMUX
Dz
DE:A] ABAT E ¥
L weaws {_ - o
08 T ™ 0 FFLA
o5 82§ OINIT! g ——» Do
; p OINMD
o o ce 352
_ O ShH —|CE o2
S— 4—[} ? A a < ™ s
— o
o= —CE gMITD
0K g ~
Th—F '
ox > 1 J L, T CMUX
0 B |:1D =
Ot o ARAT
p— W W JI._/ —Sc
gg 1 ™ o FRLAT
[o —ca
Dit o onm @
“ HHjes 35
s . oS
WEN MC3 — 4-D7D SRt |~ Hex ° 2
OlNIT
ey — gi amime @ —|
] ;]
L T ™
B [r 1 s BMUX
Dz
BE1 [AB:A1 B 5 >
t— wiEcw g/ B
o - ™ 0 FELAT
Ex OINT o8B0
on D oinmo
CK - ce oEaH
WEN MC31 JEp— | -~ | o DEALD
0 psAlo SR
BI [QiNTl g
|__ L —CE ammo
—ICK =g
—H_L] ! ™
AL 1 ' [AMUX
Dz) :‘/\ —
AR [ABA1 T .
L o ’:/ A
o | ™ OFRLAT
AX o —
; o omm @ A
ck ol — P
WEN MCI1 L |~ | { g oSALD
SR
: N |
SR > !
CE [D
CLK [f ; |_
CK

| wien
WE [Cﬂ.‘
UG o @ 110800

Figure 2.11 — Relationship between CLBs and Slices in Xilinx 7-Series FPGAs (XILINX, 2014).

couT couT CouT couT

:_cIE _____ 1 :_(.‘IB_ _____ 1
| slicet | || siicet | |
| K1Y | X3V 1 |
| |1 I
' || |
} Slical | } Slical |
Ll xov | xert :
| |

| CIN cn CIN cnN |
____jEouT__ _jeour_ o _ _|CouT _ _|eour
[CLB | [CLB |
| Sicel | | | Sicel | |
| X1Yo 1] X3Yo |
| I |
| [|
| Sliced } I | Sliced }
} XDYOD | } %2Y0 |
[I |

37

With regard to the Configuration Layer, it consists mainly of the configuration bits.
However, they have different functions. Some of them define the function of LUTS, others
define the configuration of embedded resources, like BRAMSs, DSPs, 10Bs, and others define
the interconnection of the CLBs. The FPGA configuration memory is composed of small
memory segments called Configuration Frames. A configuration frame is the smallest
addressable portion of the FPGA configuration memory, and the frame size varies among
FPGA families. In case of Zyng-7000’s PL, a configuration frame is composed of 101 32-bit
words (XILINX, 2014). Each frame has a unique address that is related to the physical
position in the FPGA floorplanning. The frame address is composed of five fields as follows
and shown in Fig. 2.12:

Figure 2.12 — Example of a generic Xilinx FPGA floorplan and frame structure.

Columns
h) 1 2 M
2
Frames
1
0
g Top half
- o o _ _ _ _ _ _ _— _— _— — — — — — _— _ _ .
[=]
&= Bottom half
0
. |
1
. |
2
Frame address structure
31-24 23-21 |2D | 15-15 | 14-7 65-0
T * T —r T * T * T
Unused Block Top/ Row Major Minor

type Bottom address address address
row

38

e Type — Define the type of the frame. It can be a configuration frame (type 0);
BRAM content (type 1); and there is also type 2, but this one is not well
documented in Xilinx’s literature.

e Top/Bottom — Define the half part (top or bottom) of the FPGA where the
frame is located.

e Row — Defines the frame row.

e Column — Define the frame column. A column is defined by the type of
resource (CLB, BRAM, DSP, etc.).

e Frame in column — Define the frame position inside a column.

As can be seen in Fig. 2.12, the floorplanning of a Xilinx FPGA is divided into two
main regions: top and bottom. Each region is organized in rows and columns. Each frame has
the height of a row, and the columns are arranged according to the type of resource (e.g. CLB,
BRAM, DSP, etc.). Each column contains a group of frames. The number of frames on each
column depends on the type of the resource that it configures.

The access to the configuration memory is possible through several interfaces and it
can be performed externally or internally to the device. Example of external interfaces are:
JTAG and SelectMAP. The internal interface is the Internal Configuration Access Port
(ICAP). It has the same interface as the SelectMAP, with the only difference that the ICAP

can be accessed from the programmable logic.

2.1.1.3 The interfaces between PS and PL

One of the main benefits of Zyng-7000 and other similar APSoCs is the ability to use
both PS and PL parts in tandem to form complete and integrated systems. The key enabler in
this regard is the set of highly specified interconnects and interfaces forming a bridge between
the two parts. In case of Zyng-7000, the two main interfaces are the Advanced Extensible
Interface (AXI), which is part of the ARM Advanced Microcontroller Bus Architecture
(AMBA) standard (ARM, 2015a), and the Extended Multiplexed Input/Output (EMIO).

In case of AXI, Zyng-7000 uses AXI4 standard (ARM, 2015a), which is focused on
memory-mapped links and provides the highest performance. The primary interface between
the PS and PL is implemented via a set of nine AXI interfaces. Each interface is composed of
multiple channels and make dedicated connections between the PL and the interconnects
within the PS. Here, it is useful to define that an interconnect is effectively a switch which

39

manages and directs traffic among attached AXI interfaces and an interface is a point-to-point
connection for passing data, addresses, and hand-shaking signals between master and slave
components within the system. Concerning AXI interfaces, Zyng-7000 devices have three
different types of PS-PL AXI interfaces (Fig. 2.13):

e General Purpose AXI (GP-AXI) - A 32-bit data bus suitable for low and
medium communications rate between PS and PL. The interface is direct and
does not include buffering. There are four general purpose interfaces in total:
the PS is the master of two and the PL is the master of the other two.

e Accelerator Coherency Port (ACP) - A single asynchronous connection
between the PL and the SCU within the APU with a bus width of 64 bits. This
port is used to achieve coherency between the APU caches and elements within
the PL. In this case, the PL is always the master.

e High Performance AXI (HP-AXI) Ports - There are four HP-AXI ports. They
include FIFO buffers to accommodate read and write bursts and to support
high rate communications between the PL and memory elements in the PS.
The data width is either 32 or 64 bits and the PL is the master of all four

interfaces.

Figure 2.13 — AXI interconnects and interfaces connecting the PS and PL parts of the Zyng-7000.
|

PS , PL
M 5
7} p Genera
Slave o
Processor core Interconnect M ¢ PU ,_c_-.:
) p interfaces
5 1 acp
SCU 4 > C_
5 i terface
7} p Genera
Master T
C i JUrpose
Interconnect : i
=} > [ErTaces
Memory Interconnect
3 3

5 L L5
o T T T T

High performance interfaces

Concerning EMIO, it involves signal transfer between the two domains and is
achieved through a simple set of wires connections. Interfaces routed through the EMIO can
be connected to peripheral blocks in the PL or directly to external pins of the PL. EMIO can

40

provide an additional of 64 inputs and 64 outputs with corresponding output enables. An
example of its architecture is shown in Fig. 2.14.

Other signals crossing the PS-PL boundary include watchdog timers, reset signals,
interrupts, and DMA interfacing signals.

There are many issues when addressing the PS-PL interfaces of Zyng-7000. The
performance of the communication between PS and PL is usually a bottleneck that restricts
the hardware acceleration in the PL. In this sense, Silva, Sklyarov, and Skliarova (2015),
analyzed and compared the PS-PL interfaces of Zyng-7000. They performed several
experiments for evaluating the data exchange between PS and PL through GP, HP, and ACP
ports, and using different memory hierarchies. The following scenarios of data transfer
between PS and PL were evaluated: AXI ACP, allowing access to DDR/OCM and supporting
coherency with the CPU cache using the SCU; AXI HP, allowing access to OCM; and, AXI
HP, allowing access to external DDR. The following scenarios of data transfer between the
processor and the memories were evaluated: processor and cache; processor and OCM; and,

processor and DDR.

Figure 2.14 — EMIO interface between the PS and PL parts of the Zyng-7000.

PS
to / from PS
szl
EMID
bank 2
PL

10Bs

It is worth to highlight that the SCU provides support for coherent access to memory
that is automated for AX1 ACP. If AXI HP ports are used, the cache memory is not able to
participate in data transfers between the PS and the PL. However, it participates in data
transfers between the processor and memories. Thus, enabling or disabling the cache affects
such transfers. In addition, if the cache is enabled, processor operations may occur over data
in the cache and it is necessary to provide coherency with data saved in other memories
(OCM or DDR).

41

Fig. 2.15 shows the fastest ports for different volumes of data items (from 16 B to 64
KB) and the Worst Result (WR), which is the slowest interaction method found for each case.
Results show that selecting the best port is important. For example, the GP port is always the
best option for transferring a small number of data items (from 16 to 64 bytes). This implies
that the GP port is very appropriate for supplying control signals from the PS to PL and
providing additional information (such as interrupts from the PL to the PS). AXI ACP with
the cache enabled gives the best results for a modest number of data items and if this number
is increased, data transfer through OCM with the cache disabled is the fastest. This is because
memory accesses through the AXI ACP utilize the same interconnecting paths as the
processor, potentially decreasing the processor performance.

Figure 2.15 — Obtained best methods for transferring different numbers of data items between PS and
PL in Zyng-7000 (SILVA, SKLYAROV, SKLIAROVA, 2015).
x 2 = clock cycles with frequency 666 MHz

80,000 ' The volume of data
5HP (OCM) | in bytes:
(WR = 1,353,782) m 16
70,000 +~ = 5 HP (OCM)
5 m 32 (WR = 1,353,782)
{:\L m 64
|
60,000 < —
50,000 23 e =
’ o] =512 3
o S ©)
§;.§~, m 1024 o
40,000 1 =5i8 m 2048 o
D N~
s s . —
RS ETY | . g
30,000 S8¥sSs N 8192 2
S g M T s
»G?—% §§§_§v . m 16384 Sl
20,000 " TR R8S=sE e " 32768 o
NEa Ty 2?) OF « L
PeY x0O0T 65536 ~
e 23CTaw~ S
10,000 " S3S7a o T g Qa8 <
a.
aaa 99 Tay noa 59 <@
°0®<<‘H | coo < ‘
0 . 4

Port size: 32 bits Port size: 64 bits

42

2.2 Hardware/Software co-design

The process of hardware/software co-design involves deciding which components
should be implemented in hardware, which should be implemented in software, and how they
will communicate each other. This partitioning process relies on the fact that hardware
components, such as the ones residing in the PL, are typically faster due to the parallel
processing nature of FPGA devices and have bigger design exploration space. However, it
also tends to be more expensive if it is done manually. Software components implemented on
a processor, on the contrary, are cheaper to both create and maintain, but they are also slower
due to the inherent sequential processing. In order to achieve a good trade-off between
performance and cost (and reliability, as it will be possible to notice in the next chapters),
high-performance components can be implemented in hardware in the form of hardware
accelerators, while less intensive processes can be implemented in software. Examples of
suitable applications for PL implementation include intensive math operations, digital
filtering, and image processing. These tasks are repetitive and quite static. On the contrary,
problems that are more dynamic and unpredictable, are better suited to be implemented on a
processor-based system.

In this context, the PL part of Zyng-7000 is a suitable platform for implementing
functions which can be efficiently divided into parallel and/or multiple tasks. Due to the
parallel execution nature of the programmable logic, multiple operations can be processed
concurrently to calculate the final result in a shorter time than if processed sequentially. Fig.
2.15 shows the advantage of parallel hardware executions. Whereas the software execution
requires 12 clock cycles (sequential execution) to produce the output G, the parallel
implementation only requires 2 clock cycles (parallel execution) to produce the same result.

It is also possible to speed-up a function by using multiple instances of a hardware
accelerator, creating a multi-core architecture. In this context, a system can run faster by
executing several steps of a given function simultaneously. The architecture consists basically
of several instances of one or more types of hardware accelerators that work in parallel and an
interconnection network or a system bus that connects them together and with the main
processor, which can be the PS part in case of Zyng-7000. As a practical example, it is
possible to apply Eq. 2.3 for estimating the system speed-up provided by using identical
hardware accelerators. To do so, assume a system implemented in Zyng-7000, such as a Fast
Fourier Transform (FFT) operation, with the PS as the main processor, and that there are parts

of the system that can be implemented as hardware accelerators in the PL, such as the internal

43

Discrete Fourier Transform (DFT) blocks. In addition, consider that is possible to
accommodate at most 16 (n) hardware accelerators in the PL and that there are three versions
of them, each one providing different speed-up factors (f) of 0.25, 0.50, and 0.75, compared to
the main processor. Thus, Fig. 2.16 shows the estimated overall system speed-up provided by
the addition of different numbers of hardware accelerators (r) in the PL, according to Eq. 2.3.
Results show that the availability of the main processor (higher f) makes it possible to
run the sequential part of the system faster. Results also show that there is a point for each
level of parallelism beyond which the overall system performance will decline. For example,
for the 75% parallel type of system (f = 0.75), this point is reached with 8 hardware
accelerators. The reason for this behavior relies on the fact that a higher number of hardware
accelerators may lead to some overhead in the sequential part of the system, which is not
taken into account in the present theoretical analysis, such as communication bottlenecks,

memory accesses, and synchronization of the hardware accelerators.

Figure 2.15 — Example of parallel versus sequential execution.

Operation to be
implemented

Software implementation e=zaxb Hardware implementation
(12 clock cycles) (2 clock cycles)

f=c/d
/—— g=e+f \
load a 3
load b
multiplya, b

store e
load c
load d
dividec, d
store f
load e
load f
adde, f
store g

44

Figure 2.16 — Estimated overall system speed-up provided by the addition of different numbers of

hardware accelerators.

-4

n

=)
—
n
_55
=
<4
E
=
73
= f=0.25
3
s 2
o f=05
(=1
wn 1
f=0.75

[=]

1 2 3 4 5 & Y7 8 &% 10 11 12 13 14 15 16

2.2.1 High-Level Synthesis

The increasing systems' complexity and heterogeneity of hardware designs embedded
in state-of-the-art APSoC devices and the shortening time-to-market have motivated the
development of new designing methodologies focused to address the today's need of high-
performance and energy-efficient circuits. In this context, the use of High-Level Synthesis
(HLS) tools is an example of strategy that can be addressed during the development of a
design for exploring the design space, such as performance improvement and resource
utilization. This is crucial during the design of complex systems and especially suitable for
projects targeting APSoC and FPGA devices, where many alternative implementations can be
easily generated, deployed onto the target device, and compared. HLS tools have significantly
evolved in the last years, providing very optimized results in area and performance with a
very short development time.

HLS tools start from a high-level software programmable language (e.g. C, C++,
SystemC) to automatically produce a hardware accelerator in HDL (e.g. VHDL or Verilog)
that performs the same function. Thus, CPU-intensive tasks can be offloaded to dedicate
hardware accelerators within an APSoC or a system-on-chip implemented into an FPGA.

A high-level synthesis process consists essentially of three phases: scheduling,
allocation, and binding (XILINX, 2013). Scheduling extracts the control and data flow graphs

from the high-level source code to implement the hardware design based on defaults and user-

45

applied special directives. Such directives force the high-level synthesis to focus on particular
objectives, such as performance, throughput, area, or power consumption. Fig. 2.17 illustrates
the control and data flow extraction process. The resource allocation and binding select the
necessary RTL resources to implement behavioral functionalities based on a technology
library, generated-component delays, and user directives, for example. They also determine
the mapping relation between the behavioral constructs to the allocated RTL resources (DE
MICHELI, 1994). Typically, the allocation and binding processes can be further divided into
subtasks regarding functional units as hardware-specific cores and storage elements as
memories, both based on a specific technology library (NANE et al., 2015). Fig. 2.18
illustrates the three phases and their relations.

Figure 2.17 — Example of a control and data flow extraction during the HLS process.

Code Operations Control Behavior Control and Data Flow Behavior
void fir(data_t *y, coef_tc[4], data_t x){ Finite State Machine (FSM) Control and Data Flow
staticdata_t, shift_reg[4]; /_,- states
- i 6 J
acc=0; - I+
loop: for{i=3; i>=0; i~-){ ‘- \‘ [(Rox_|[[RDe_|
if(i=0)(=N .
= — =
shift_reglo] =x; i \
elsef T — ~
shift_reg[i] =shift_reg[i-1]; - o 7_/" | - -
acc += (shift_reg[il*c[i]);) | ,_- - I
! I / L
Ty =acg; s

From any C code example ..

Operations are The control is known An unified control and data flow behavior

extracted is created

Figure 2.18 — The essential three HLS phases and their relations.

Design Source Tecrn:o logy
{C, C++, SystemC) T
h Scheduling — Allocation and Binding ﬂ

; User 4 e
(verilog, VHDL, SystemC)

Directives

There are a large variety of HLS tools. They range from commercial products such as
Vivado HLS (XILINX, 2016e) from Xilinx to open source tools developed from academic
research initiatives such as LegUp (CANIS et al., 2011) from University of Toronto. An in-
depth analysis and discussion of several commercial and academic HLS tools regarding

performance and resources usage was performed in (NANE et al., 2015). In this thesis, Xilinx

46

Vivado HLS was chosen for generating the HLS-based case-studies designs because as a
Xilinx tool, it provides a significant support for different Xilinx devices (7-Series, such as
Virtex, Artix, Kintex, and Zyng-7000), which are the main targets of this thesis.

2.2.2 Xilinx Vivado High-Level Synthesis

Vivado High-Level Synthesis is a complete HLS environment from Xilinx. It is built
using the Low Level Virtual Machine (LLVM) compiler framework (LLVM, 2016). As such,
it has access to many software optimizations (e.g., loop unroll, loop rotation, dead code
elimination, etc.). However, hardware and software programing paradigms are inherently
different, so it is not possible to expect that all of LLVM’s optimizations work seamlessly for
HLS (WINDH et al., 2015).

The typical Vivado HLS design flow (Fig. 2.19) starts with a high-level source code
compiled to a pure software implementation and a self-validating testbench to verify its
correctness. The user must specify the top function of the code that he wishes to synthesize to
hardware. The interface provides to the user a list of code regions (targeted at loops, function
bodies, and other regions) that can be optimized using synthesis directives to guide the RTL

generation.

Figure 2.19 — Xilinx Vivado HLS design flow.

Testbench ﬁ
C, C++, SystemC

| v |

Constraints /
Directives

| C Simulation ‘ C Synthesis ‘
VHDL
RTL Adapter Vivado HLS Verilog
P—— 5\"5&"““:
RTL Simulation — Packaged IP

\

Vivado

47

With regard to the optimization strategies, which is one of the main resources of any
HLS tool, Vivado HLS have four main strategies for optimizing a design: clock, throughput,
latency, and area.

The clock frequency along with the target device is the primary constraint which
drives optimization. Vivado HLS seeks to place as many operations from the target device
into each clock cycle.

Optimizing for throughput implies in pipeline the tasks to improve performance,
improve the data flow between tasks, and optimize structures to improve address issues which
may limit performance. Task pipelining allows operations to happen concurrently, which
means that the task does not have to complete all operations before it begins the next
operation. Pipelining can be applied to functions and loops. In case of a loop, for example
(Fig. 2.20), if each iteration contains three operations, one read, one computation, and one
write, the loop can be pipelined to read on every clock cycle instead of every three. Thus, a
new loop iteration begins on every clock cycle before the previous iteration is finished. It is
also possible to improve pipelining by partitioning arrays to improve the data flow between
tasks. Arrays are implemented as BRAMs, which only have a maximum of two data ports.
This can limit the throughput of a read/write (or load/store) intensive algorithm. The
bandwidth can be improved by splitting the array (a single BRAM resource) into multiple
smaller arrays (multiple BRAMs), effectively increasing the number of ports. Concerning the
structural optimizations, the main one is the loop unrolling to improve the parallelism and/or
pipelining, as shown in Fig. 2.21. By default, loops are kept rolled in Vivado HLS. That is to
say that the loops are treated as a single entity: all operations in the loop are implemented
using the same hardware resources for iteration of the loop. It is possible to unroll loops by a
factor of N so the loop operations can be performed N times faster. However, unrolling a loop
is directly related to how much resources of the FPGA are used. For example, unrolling a loop
by a factor of three (N=3) means triple the speed, but also triple the resource cost.

Optimizing for latency uses the techniques of latency constraints and the removal of
loop transitions to reduce the number of clock cycles required to complete. One option is to
merge sequential loops, as shown in Fig 2.22. Rolled loops imply and create at least one state
in the design Finite State Machine (FSM). When there are multiple sequential loops, they can
create additional unnecessary clock cycles and prevent further optimizations. Thus, merging
sequential loops allows the logic within the loops to be optimized together.

Optimizing for area focus on how the operations are implemented, such as controlling

the number of operations and how those operations are implemented in hardware. One of the

48

primaries concerns is related to data types and bit-widths of the high-level languages. For
example, if a variable only requires 12-bits but is specified as an integer type (32-bit), it will
result in larger and slower 32-bit operators being used, reducing the number of operations that
can be performed in a clock cycle and potentially increasing the initiation interval and latency.
In this context, the use of appropriate precision for the data types is mandatory. Another
option is inlining functions. Function inlining removes the function hierarchy aiming to
improve area by allowing the components within the function to be better shared or optimized
with the logic in the calling function. It is also possible to reshape arrays aiming to reduce the
number of BRAMs while still allowing the beneficial attributes of partitioning such as parallel
access to the data.

Figure 2.20 — Function pipelining behavior.

loop: for(i=1; i<3; i++){
op_Read; (R0 |
op_Compute; [ome |
op_Write;

¥

5 s e e D A

- > A—
3 clock cycles 1 clock cycle
W [ow W [ow
—_—
2 clock cycles
2 clock cycles
{a) Without function pipeline (b) with function pipeline

Figure 2.21 — Loop unrolling behavior.

loop: forli=3; i=0; i-){
a[il= b[il* c[il;
}

[readb[3] | readb[2] | readb[i] [readblo] | B[]
[(readc[2] [readc[2] | readc[l] [readc[o] | b[2]
= [= [= T *=] b[1]
TN T R T 0

(a)Rolled loop cl3]
c[2]
1]
c[0]

RN

(a) Unrolled loop

49

Figure 2.22 — Loop merging behavior.

void top(..){
L1: for(i=3; i>=@; i--){ :
[Loop body L1] void top(..){
b =
L123: for(l=16; 1»=0; 1--){
L2: for(i=3; i»=0; i--){ if(condl)
L3: for(j=3; j»=0; j--){ [Loop body L1]
[Loop body L3] [loop body L3]
} if(conda) -
} [Loop body L4]
}
L4: for(i=3; i»=@; i--){ ¥

[loop body L4]

There are also the interfaces optimizations, which affect both throughput and latency.
In high-level programming languages such as C and C++, all input and output operations are
performed in zero time, through formal function arguments. In a RTL design, these same
input and output operations must be performed through a port in the design interface and
typically operates using a specific 1/0 protocol. Vivado HLS supports two solutions for
specifying the type of 1/0 protocol used: interface synthesis, where the port interface is
created based on industry standard interfaces, such as AXI4; and, manual interface
specification where the interface behavior is explicitly described in the input source code,
which allows any arbitrary 1/0 protocol to be used. As an example, specifying input and
output arguments of a function as an AXI4 interface is a common practice when another
device, such as a CPU (Zyng-7000's PS, Microblaze soft-core, etc.), is used to configure and

control when this block starts and stops its operation.

2.2.3 Related works about HLS

In (HARA et al., 2008), authors proposed the CHStone, a suite of benchmark
programs for C-based high-level synthesis. CHStone consists of dozen of large, easy-to-use
programs written in standard C programming language, which were selected from various
application domains, such as arithmetic, microprocessor, media processing, and security. This
thesis makes use of some of the CHStone benchmark programs.

In (HUANG et al., 2013), authors studied the effect of compiler optimizations on the
hardware metrics of circuit area, execution cycles, frequency of the circuit, and wall-clock
time. They made use of the LegUp academic HLS tool (CANIS et al., 2011). Among the

50

several results achieved, they observed that the hardware quality is affected by the
optimization parameter values, as well as the order in which optimizations are applied.

Nane et al. (2015) presented the first-published methodology to evaluate different HLS
tools. They compared one commercial and three academic HLS tools on a common set of C
benchmarks in terms of performance and use of resources. Windh et al. (2015) also analyzed
several HLS tools, but more qualitatively. They analyzed the tool flow, the optimizations they
provide, and their hardware implementations of the high level code.

In (HUSEJKO, EVANS, DA SILVA, 2015), authors performed a feasibility
investigation to verify if HLS tools are capable and mature enough to be applied for building
critical data acquisition systems. Their case-study was the CERN CMS detector ECAL Data
Concentrator Card (DCC). They concluded that the Vivado HLS fills all the constraints and
can be used for building critical data acquisition systems.

In (WINTERSTEIN, BAYLISS, CONSTANTINIDES, 2013), authors performed a
comparative study between two alternative algorithms that perform the same compute-
intensive machine learning technique (clustering), but with significantly different
computational properties. They compared a data flow centric implementation to a recursive
tree traversal implementation, which incorporates complex data-dependent control flow and
makes use of pointer-linked data structures and dynamic memory allocation. As results, they
observed similar performances between the hand-written and automatically generated RTL
designs for the first test case and also degradation in latency by a factor greater than 30 times
if the source code is not altered prior to high-level synthesis.

Monson, Wirthlin, and Hutchings (2013), compared the performance of CPU and
FPGA based implementations of a complex optical-flow algorithm. For the FPGA based
implementation, the Vivado HLS was utilized. Using Vivado HLS, the designers were able to
develop an implementation of the algorithm with comparable performance to the CPU
implementation that operated at a fraction of the energy cost. The authors came to several
important conclusions regarding the use of the Vivado HLS tool: little modification is
necessary to prepare existing C language designs for conversion using the HLS tool; it is
possible quickly optimize a design for different goals, and, it is easy to compare different
versions of the algorithm in C and determine resource usage and performance.

With regard to reliability, several works have been published in recent years. Chen et
al. (2016) evaluated by fault injection the sensitivity of HLS-based designs protected with fine
grain module redundancy or gate sizing, targeting ASIC applications in satellite

communications systems. By mixing both techniques, authors reached an area and power

o1

reduction of 70% and 64%, respectively, with a reliability level over 99.97%. Fleming and
Thomas (2016) proposed an approach which distinguishes between tolerable errors in data
flow, such as arithmetic, and intolerable errors in control flow, such as branches and their
data-dependencies. The approach is demonstrated in a new HLS compiler pass called
StitchUp, which precisely identifies the control critical parts of the design, then automatically
replicates only that part. They applied StitchUp to the CHStone benchmark suite and
performed exhaustive hardware fault injection in each case, finding that all control flow errors
were detected while only requiring 1% circuit area overhead in the best case. In (CHEN,
EBRAHIMI, TAHOORI, 2016), authors propose a novel reliability-aware allocation and
binding technique to explore more effective soft error mitigation during HLS processes. They
perform a vulnerability analysis at behavior level by considering error propagation and
masking in both control and data flows. Then optimizations based on integer linear
programming, as well as heuristic algorithm, were employed to incorporate the behavioral
vulnerabilities into the register and functional unit binding phases to achieve cost-efficient
error mitigation. Their experimental results reveal that compared with previous techniques
which ignored behavioral vulnerabilities, the proposed approach can achieve up to 85% of
reliability improvement with the same amount of area budget in the RTL design. In (DOS
SANTOS et al.,, 2017), authors evaluated the use of module redundancy with different
granularities at the higher level of HLS processes, the high-level programming language. The
advantage of this approach is that it is easily applicable in any HLS tool, including the
commercial ones in which it is not possible to alter the HLS flow. Results show that by using
a coarse grain module redundancy with triplicated inputs, voters, and outputs, it is possible to
reach 95% of reliability by accumulating up to 61 bit-flips in the configuration memory bits
of an SRAM-based FPGA.

2.3 Implementation metrics

In Zyng-7000 and other APSoCs, the area of an implemented design in the PL can be
expressed in terms of the number of used resources such as LUTSs, flip-flops, BRAMSs, DSPs,
etc. It is also possible to express the area in terms of configuration bits and configuration
frames. In the PS, the resource usage of a program can be expressed mainly in terms of the

type and amount of the used memories, such as L1 cache, L2 cache, OCM, and BRAMs. In

52

terms of reliability, the resource information is important since it is used to determine how
much the design is physically exposed to radiation.

The performance of a design can be expressed in terms of the execution time,
operational frequency, and the processed workload. The execution time can be defined by the
number of clock cycles needed to perform an operation. According to the FPGA and the
design embedded in it, or in case of a processor, a maximum clock frequency is achieved.
Another important parameter is the workload processed by the design. The workload is the
amount of data computed at each design execution. In terms of reliability, performance
information is important to determine how much time the design is exposed to soft errors

during the execution of the implemented function.

2.4 Related works about APSoCs

Most of the works that use an APSoC as case-study device take into account only
performance measurements, since its main goal is to provide a high system-level performance
through a flexible platform, as already exemplified before by citing the work of Silva,
Sklyarov, and Skliarova (2015). However, other interesting works are worth to be cited.

A methodology for analyzing the impact of the hardware accelerator data transfer on
the performance of a typical embedded system is presented in (LAFOND, LILIUS, 2008).
Such work is particularly interesting because it shows that the granularity of the data transfer
between memory and accelerator, and thus, the interrupt rate to the CPU has a direct impact
on the system performance, as Fig. 2.23 shows. In this figure, all the results presented are
relative to the measurements using the values obtained for the coarse-grained system. Results
show an exponential improvement when the hardware granularity is reduced. This
improvement can be explained by a decrease in data cache misses due to a decrease in the
number of data accesses. It is worth noticing that all data were obtained using a simulation
framework based on an ARM processor running a Real-Time Operating System (RTOS).

In (ALTERA, 2009), it is shown the benefits of using heterogeneous architectures to
reduce power consumption and speed-up performance in FPGAs. The paper shows practical
comparisons for the power consumption and performance enhancement of sample
computational tasks, when they are executed by a CPU or by a hardware accelerator
(generated by an HLS tool). Results show that is possible to speed-up a task up to 435 times

with a small increase in power consumption of only 1.9 times.

53

Figure 2.23 — Influence of the hardware accelerator granularity on the execution time of a system
(LAFOND, LILIUS, 2008).

-
s

A

/ B total exe inst

-
o

/ % 2nd-tofal exe inst

/ —— ¥ total branches

& 2nd-total branches

» sim_cycle
/g < 2nd-sim_cycle

~

e
—

relative evolution in percent
ra (== £ oo e | [==] w

=

_ 7
0 # # M T 1

131072 656536 32768 16384 8102 4096 2048 1024 512

-

HW accelerator granularity

The idea of using a portion of CPU sub-system caches as buffers for accelerators is
studied in (FAJARDO et al., 2011). Such approach results in a smaller silicon area since each
accelerator does not instantiate its own buffer. The basic idea of dedicating a shared memory
space to accelerators is interesting because Zyng-7000 devices provide a dedicated On-Chip
Memory (OCM), which can be used for the same purpose.

The impact of cache architecture on the performance and area of FPGA-based
processor and parallel accelerator systems is discussed in (CHOI et al., 2012). The paper
proposes a simple hardware containing one MIPS core, multiple accelerator units (generated
by an HLS tool), a multi-port shared L1 cache and a DRAM controller. It considers different
structural parameters for the L1 cache (such as number of ports, associativity, etc.) and
defines a set of computational tasks to be done only by accelerators. It then quantifies the
impact of cache structure on the overall speed of accelerators connected to the L1 cache. Fig.
2.24 shows that larger cache sizes generally provide higher speed-ups, as authors expected.
For the parallel cases, six (6) accelerators were used. The detailed configuration of all the
configurations evaluated can be found in (CHOI et al., 2012).

In (SADRI et al., 2013), authors systematically evaluated the performance that is
achievable in practice with a Zyng-7000 device by comparing the HP-AXI port and ACP.
However, the experiments were exclusively for applications running under a Linux operating
system distribution. The main results of this work, which are shown in Fig. 2.25, can be
summarized as follows: if a CPU collaborates with an accelerator in the PL, then the speed of
the CPU ACP and the CPU OCM methods is always better than the CPU HP-AXI; and, if an

54

accelerator in the PL is entirely responsible for the problem and the CPU only uses its results,
then the ACP or the OCM are recommended if the amount of data to be processed is smaller
than the size of the cache memory or the OCM. Otherwise, it is supposed that the HP-AXI
ports give better results. As mentioned in (LAFOND, LILIUS, 2008), authors also state that
the size of the packets that are transferred and the burst length have a substantial effect on the
overall data transfer bandwidth.

Figure 2.24 — Impact of the cache architecture on the average execution time (speed-up) relative to a
baseline system, which employs a single accelerator running sequentially using a 1-way (direct-
mapped) 2KB cache with a 32-byte line size (CHOI et al., 2012).

g =fr=5eguential 1-way
| 4

gl WL

s |
|
!

N

“— ==s=Spquential 2-way

!]
I “ '-__:_ ! - =fl=Paralle|Dual-port 1-way

Ew
TS]

I e, | ===Paralle| Dual-port 2-way

* = " ====Paralle|4-port MP 1-way
....-*

‘-.-

Paralle|4-port MP 2-way

»

Speed up over baseline

t»
TR

Paralle|4-port LVT 1-way

Paralle|4-port LVT 2-way

326 | 4B |128B | 256B 326 | 64B |128B | 256B 326 | 64B |128B | 256B 326 | 64B |12BE | 2566
Paralle|7-port LVT 1-way

2KB 4KB BKB 16KB Paralle|7-port LVT 2-way
Cache line size [Cache total size

Figure 2.25 — Processing bandwidth comparison of different acceleration methods in Zyng-7000. Data
size sweeps from 4 KB to 2048 KB (SADRI et al., 2013).

1800 Y T T 17 T

1600 HPO Only .
ACP Only

1400 P 3| mmigum OCM Only

.| == CPU Cache
i sufllem CPU no Cache
i\ | ==de=cpuacp

1200k¢

1000ki 4.2 33

P YRR EYE R PET T
H

8003

LR R R R R S

6005

] 33

20044

R
4 16 64 128 256 1024 2048
Image size (KBytes) - logarithmic scale

Accelerator Prooe ssing Full Duplex Bandwidth (MBytes/s)

2.5 Summary

55

In summary, based on the information presented in this chapter, one can see that
programmable devices have evolved very rapidly in the last decade, mainly because of
performance pressure in the high-volume commercial marketplace. As consequence, several
APSoC devices were introduced in the market providing higher programmable flexibility and
overall system performance at lower costs than standalone processors and FPGAs, as the
related works show. However, as the next chapters show, the high complexity and density of
these devices increase the system’s susceptibility to noises that are present in the

environment, such as the ones caused by radiation.

56

3 RADIATION EFFECTS ON APSOCS

This chapter introduces the main definitions and background knowledge for
understanding the context of this thesis. It presents the cause-effect definitions of fault, error,
and failure; the main radiation environments;, the general effects of radiation on
programmable devices; the standard metrics and methods for evaluating programmable

devices under radiation; and, related works.

3.1 Fault, error, and failure

A system is an entity that is composed by one or more subsystems. All subsystems
interact with each other, while the system interacts with other systems in its environment
(AVIZIENIS et al., 2004). In this context, a system or a subsystem can be hardware-based,
such as a processor, or software-based, such as a running application. The service delivered
by a system is its behavior as perceived by other systems using it. According to (MUSHTAQ),
AL-ARS, BERTELS, 2011), a system fails when its behavior deviates from the expected one.
In this context, fault, error, and failure are three concepts related by a cause-effect link, as

shown in Fig. 3.1.

Figure 3.1 — Fault, error, and failure propagation.

-~
Abstraction level

FAILURE

-~

Error latency Error activation

-+ »

ERROR

-~

Fault activation

FAULT

-
Fault latency

Time

One failure may occur due to one or more faults within the system or external to it.
When a fault becomes active, it can affect the total state of one or more subsystems of the
system. The deviation of the total state of a component from the correct state is known as an

error. When an error propagates to affect the external state of the system, it is said that the

S7

error was activated. Once the error is activated, it is said that the failure of the system
occurred. In other words, a fault might lead to an error, which in turn might lead to the failure
of the system. However, it is worth noticing that not every fault generates an error and not
every error generates a failure.

A fault is defined as a logic abstraction of a physical defect. A physical defect is an
unexpected difference between the implemented hardware and the planned function of it.
Faults can be classified with respect to persistence as transient, intermittent, or permanent.
Transient fault is random and occurs for only a short period of time. Intermittent fault is a
repetitive malfunction of a device or system that occurs at intervals and a permanent fault is
continuous in time. This thesis targets transient faults caused by ionizing particles that pass
through the device, which are generally named Single Event Effects (SEES).

3.2 Radiation environments

For the purposes of this thesis, radiation is the transmission of energy through atomic
and subatomic particles with very high kinetic energy. Radiation is a natural phenomena and
is generated from the sun, cosmic sources, materials on Earth, and man-made environments,
such as particle accelerators (for high-energy physics experiments and cancer treatment) and
nuclear reactors.

With the increasing interest in using programmable systems in safety-critical markets
where radiation is a major concern, researchers have investigated the suitability of
commercially available programmable devices in such markets due to their low-cost
compared to radiation-tolerant devices. This section reviews three of these markets, space,

terrestrial, and particle accelerators, which are the ones of interest to this thesis.

3.2.1 Space environment

Programmable devices have been used in the space environment for many years
(KATZ et al., 1994). Today, the use of programmable devices such as FPGAs and APSoCs
within modern spacecraft is motivated by the growing computational needs associated with
modern sensors adopted (WIRTHLIN, 2015). Because of the huge amount of data generated
by modern sensors, it is no longer possible to send all sensor data back to Earth for
processing. Today, much of that processing must be done on the spacecraft.

58

The space environment is complex and includes a large spectrum of particles of
different mass each with a different energy range. The primary challenge for using FPGA and
APSoC devices in a spacecraft is to address the effects of radiation on the device operation.
The radiation experienced by satellite electronics in space is generated from several different
sources, as Fig. 3.2 shows. In summary, they are the following (CLAEYS, SIMOEN, 2002;
BOUDENOT, 2007):

e Protons and heavy ions from solar flares;
e Cosmic ray protons and heavy ions;
e Protons and electrons trapped in the Van Allen Belts;

e Heavy ions trapped in the Earth’s magnetosphere.

Figure 3.2 — The space environment and its sources of ionizing particles.

Outer Van Allen belt (e)

Inner Van Allen belt (p%) Earth’s magnetic field

Cosmic rays
(p*, alpha particles, heavy ions)

Solarflares

(p*, heavy ions)

.

- (6",)

Solar wind

The radiation level of these sources strongly depends on the activity of the sun. The
solar cycle is normally divided in two main activity phases, the solar minimum and the solar
maximum. On the average, the cycles last for eleven years with approximately four years of
solar minimum and seven years of solar maximum (NASA, 2011). The activity of the Sun can
alter the spatial scenario during the period of solar maximum due to the increasing number of
solar flares. In contrast, during the period of solar minimum, the flux of cosmic rays tends to

increase, once the interplanetary magnetic field is weaker during this phase.

59

Solar flares cause protons and heavy ions. These flares, which can last for several
hours to a few days, have protons with energies higher than 100 MeV that are attenuated by
the Earth’s magnetosphere.

The galactic cosmic ray particles originate outside the solar system and include a large
range of elements. The fluxes are low, but because they include high energetic particles (from
dozens of MeV up to hundreds of GeV) of heavy elements, they may produce ionization
effects by passing through the materials. The composition of particles consists of about 90%
protons, 9% alpha particles, and 1% heavy ions and other elements (GOLDHAGEN, 2003).

The Van Allen belts consist mainly of electrons up to a few MeV in energy and
protons of up to several hundred MeV trapped in the Earth’s magnetic field
(GUSSENHOVER, MULLEN, BRAUTIGAM, 1996). The inner belt is situated at low
altitudes (from hundreds of kilometers to 6,000 kilometers), while at high altitudes (up to
60,000 kilometers) the outer belt with high-energy electrons is observed. Once the charged
particles are trapped, the Lorentz force controls their motion in the Earth’s magnetic field
(CLAEYS, SIMOEN, 2002). The South Atlantic Anomaly (SAA) is an important an
important anomaly that happens on the region of the inner belt. It results of the offset and tilt
of the Earth’s magnetic field with respect to the Earth rotation axis, in which the field lines
containing significant energetic-particle fluxes approach the Earth’s surface (ESA, 1993). As
consequence, the flux of energetic protons at low altitudes in the SAA can be two orders of
magnitude higher than in other regions of the Earth’s magnetosphere. The SAA is especially
important for southern Brazilians because it concentrates mainly over the Brazilian state Rio
Grande do Sul.

The altitude of the orbit is also essential to evaluate the radiation environment that the
spacecraft will encounter during a space mission. In Low Earth Orbits (LEOS), the spacecraft
passes several times per day through the VVan Allen Belts, i.e., trapping protons and electrons.
In Geostationary Orbits (GEOs), trapped protons with energy levels below the threshold for
initiating nuclear reactions are present. In case of deep space missions, the radiation
environment is more complex and it depends on the number of times the spacecraft passes
through the Earth’s radiation belt and on how close it will be to the sun (CLAEYS, SIMOEN,

2002). In addition, the solar maximum and minimum has to be taken into account.

3.2.2 Terrestrial environment

60

Another important radiation environment for programmable systems is the Earth’s
terrestrial environment. The earth environment is usually not considered a “harsh” radiation
environment such as space. However, electronic circuits operating in terrestrial environments
are exposed to radiation that can negatively impact their operation. While upsets within
FPGAs and APSoCs due to terrestrial radiation are not so common, they do occur and are
easily detectable using conventional error detection techniques.

The Earth is constantly showered by high energetic particles that come from the sun
and the outer space, such as the galactic cosmic rays. Such particles are usually referred as
Primary Cosmic Radiation (PCR) and they are illustrated in Fig. 3.3.

When a PCR enters in the Earth’s atmosphere, it will interact with other particles, such
as nitrogen and oxygen atoms. These interactions trigger a process called of spallation, in
which the atoms are divided into a broad spectrum of different particles, both stable and
unstable. This spallation process generates a chain of reactions that produces exponentially
more particles until the Pfotzer maximum is reached at about 14-25 km. Below this point, the
particle flux starts decreasing due to energy loss, absorption, and decay process (GRIEDER,
2001). Nevertheless, some high energetic particles are still able to reach the ground. The
result of this process is a shower of secondary particles in the atmosphere, mostly high-energy
neutrons that interact with electronic systems (XILINX, 2012a).

The dose rate of cosmic radiation varies throughout the world and depends on the
magnetic field and altitude of the location. The higher the altitude of the system, the higher is
the terrestrial soft error rate (JEDEC, 2006). Researches have shown that, at altitudes below
18 km, high energy neutrons are the dominant factor in radiation-induced failures, while over
21 km, cosmic ray heavy ions begin to dominate these rates (TSAO, SILBERBERG,
LETAW, 1984). Therefore, high altitude applications of FPGAs and APSoCs (including
avionics) and high reliable systems, such as communication, power, medical, automotive, and
industrial applications, must carefully estimate the effects of radiation and provide proper
error detection and correction capabilities. Industrial standards have been created for
measuring and reporting these errors in semiconductor devices (JEDEC, 2006).

There are also terrestrial sources of radiation, which include naturally occurring
materials in the earth, such as soil, rocks, water, and the air. Most naturally occurring
terrestrial radiation is relatively low energy and has little impact on electronic systems. The
exception to this is the ionized particles that are sometimes found within the packaging
materials used to manufacture semiconductor systems (XILINX, 2012a; WIRTHLIN, 2015).

61

Figure 3.3 — Particle cascade generated from cosmic rays in the Earth’s atmosphere (STEFAN, 2001).

3.2.3 Particle accelerators environment

FPGAs and APSoCs are increasingly being used within particle accelerators, as in

their readout electronics, for performing High-Energy Physics (HEP) experiments. HEPs use

62

particle accelerators to accelerate charged particles to very high speeds (and, thus, high
energy) and in opposite directions for then to form a particle collision. This collision
generates a number of byproducts that are studied to learn more about the subatomic structure
(hadrons, quarks, leptons, muons, etc.) and fundamental laws of nature.

An important part of HEP experiments is the detectors that measure the byproducts of
high-energy particle collisions. A variety of particle detectors has been developed over the
years and can be used to measure the energy, direction, spin, charge, etc. of a variety of
particles. High-speed electronics are used within detectors to capture the particle data and
send these data to external computer systems for post-processing. FPGAs are often used in the
detectors of HEP experiments for interfacing with sensors, performing simple calculations,
measuring sub-nanosecond time differences, and streaming the data outside of the experiment
through high-speed interfaces (WIRTHLIN, 2015). Thousands of FPGAs can be used within
large HEP experiments, such as the ATLAS (A Toroidal LHC Apparatus), CMS (Compact
Muon Solenoid), ALICE (A Large lon Collider Experiment), and LHCb (LHC-beauty)
experiments that operate within the Large Hadron Collider (LHC) at the European
Organization for Nuclear Research (CERN) (GRASSI, 2014). Recently, CERN is planning
the use of APSoCs within its detectors in their next upgrade, planned to happen in 2020 (WU
et al., 2016). Fig. 3.4 shows a general view of the CERN/LHC/ATLAS detector.

An intense radiation field is generated from the high-energy particle collisions within
the experiments. The actual radiation environment depends heavily on the experiment itself
and on the location within the experiment (in general, the radiation field is higher closer to the
center of the particle detector). At some locations within the experiment, such as the inner
detector, the radiation field is so high that FPGAs and APSoCs cannot be used (GRASSI,
2014). For many locations, however, the radiation environment is modest and FPGAs and
APSO0Cs are appropriate with proper SEU mitigation methods.

The radiation environment encountered at the LHC as well as its experiments at
CERN is composed of a complex mixed field of charged and neutral hadrons, photons,
muons, and electrons, with energies ranging from GeVs down to thermal energies (MEKKI et
al., 2016).

63

Figure 3.4 — General view of the CERN/LHC/ATLAS detector (ATLAS, 2016).

2 Detector characteristics
Muon Detectors Electromagnetic Calorimeters - Width: 44m
[Diameter: 22m
« Weight: 7000t
Solenoid CERN AC - ATLAS V1997

Forward Calorimeters

End Cap Toroid

i Inner Detector J ieldi
Barrel Taroid Hadronic Calorimeters shigiding

3.3 Radiation effects on integrated circuits

Radiation has long-term damaging effects on integrated circuits. Such effects are
cumulative and its intensity is related to the energy and the exposure time of the incident
radiation on the device. The exposure to high-energy ionizing radiation generates electron-
hole pairs within the oxide of Complementary Metal Oxide Semiconductor (CMOS)
transistors, the most common technology manufacturing until today. The generated carriers
cause a buildup of charge within the oxide. This buildup of charge will change the threshold
voltage, increase the leakage current, and modify the timing (mobility effects) of the CMOS
transistor, leading to the parametric degradation and/or functional failure of the electronic
device. Furthermore, high-energy particles can damage semiconductor materials by displacing
atoms in the lattice, a process known as Displacement Damage (DD). Such displacement
damage also changes the electrical parameters of the device. Lastly, the radiation will cause
functional failures within the device. The amount of radiation dose that a device can tolerate

64

before failing to meet standard parameters specifications is called Total lonizing Dose (TID)
(QUINN, GRAHAM, 2005a).

In addition to long-term effects, the radiation from individual high-energy particles
can cause immediate effects within the device that are generally called Single Event Effects
(SEE) (DOOD, MASSENGILL, 2006) and are the major concern of this thesis. SEEs result
from the interaction of high-energy particles with circuit elements in integrated circuits. When
a high-energy particle passes through the silicon substrate of a device, charged particles are
created as the result of sub-atomic particle collisions and Coulomb interaction. These particles
are generated by an ionization trail along the path of the incoming particle (WANG,
AGRAWAL, 2008), as illustrated on the left in Fig. 3.5. The charge deposited or generated by
the energetic particle is collected in a region surrounding the drain (approximately 1 um) and
an extended region known as funnel is generated, with a depth that depends on the electrical
field configuration. In general, it is accepted that this region is of approximately 2-3 um for
logic devices. In case of an energetic particle passes through a reverse biased pn-junction, a
short low resistance path is momentarily created between the substrate and the struck drain
terminal. The amount of charge that is collected produces a transient current that lasts until
the deposited charge disappears by recombination or is conducted away via open current
paths to Vpp or ground, returning the logic node to its original value. Fig. 3.5 on the right
shows a collected charge occurring in the drain junction of the p-channel transistor. In this
example, the node held the value “0”. As the current flows through the pn-junction of the
struck transistor, from the bulk connected to Vop and the drain, the transistor in the on-state
(n-channel transistor in Fig. 3.5) conducts a current that attempts to balance the current
induced by the particle strike. If the collected charge induced by the particle strike is high
enough that the on-transistor cannot balance the current before the node capacitance is
charged, a voltage change at the node will occur. This voltage change lasts until the charge is
conducted away by the current feed through the on-transistor.

There are a variety of SEEs that must be considered before using a device in a
radiation environment. SEEs can be divided into two categories: Soft SEEs versus Hard
SEEs. Soft SEEs are those events that have no damaging effects and are cleared by normal
device operation. Hard SEEs are events that generally result in lasting damage to the circuitry.
The most relevant effects for programmable circuits are Single Event Upset (SEU), Single
Event Transient (SET), Single Event Functional Interrupt (SEFI), and Single Event Latchup
(SEL) (KASTENSMIDT, CARRO, REIS, 2006; DUZELLIER, BERGER, 2007; WANG,
AGRAWAL, 2008; WIRTHLIN, 2015). Fig 3.6 summarizes the mentioned effects.

65

Figure 3.5 — Electron-hole pairs track generated by an ionized particle in a CMOS transistor (SOOS,
2009) on the left and the charge collection mechanism in an inverter gate on the right.

Cosmic ray track -

Transient
current

Transient
\ voltage pulse
! 1
Eﬂ, on !
\ s ¥
y —_—r
" Voul x 0

I_

Substrate

Figure 3.6 — Main radiation effects on programmable circuits. Adapted from (QUINN et al., 2015a).

Radiation effects on
programmable circuits

Total lonizing Dose Displacement Single Event Effects
(TID) Damage (DD) (SEE)
Hard SEEs Soft SEEs
Single Event Latchup Single Event Upset Single Event Transient Single Event
(SEL) (SEU) (SET) Functional Interrupt

(SEFI)

An SEU is a change in the state of a memory cell (SRAM, flash, flip-flop, or latch)
caused by an ionizing particle, as Fig. 3.7 illustrates. Since an ionizing particle passes through
the device, charge can be transferred from one node to another. If the charge is greater than a
device-specific critical charge, this charge transfer can change the voltage level of transistors
within a memory cell such that the modified voltage level reflects the opposite state of the cell
(i.e., changing a logic “1” to a logic “0” or a logic “0” to a logic “1”). The feedback nature of
static latches, such as SRAM-based memory cells, will preserve this new value and the

original value will be lost. SEUs usually refer to single-bit errors. However, as Fig. 3.8 shows,

66

with the dimensions of the transistors shrinking to below 28 nm, a single ionizing particle is
capable of producing multiple-bit errors, an event called of Multiple Cell Upset (MCU), if
more than one cell is affected, or Multiple Bit Upset (MBU), if two or more bit-flips occur in
the same word. Fig. 3.8 compares the percentage of events that cause MCUs (more than one
bit upset) in different families of Xilinx FPGAs, such as Virtex (180 nm), Virtex-11 (150 nm),
Virtex-4 (90 nm), Virtex-5 (65 nm), and Kintex-7 (28 nm) (WIRTHLIN et al., 2014a), at
different energies (Linear Energy Transfer — LET).

Figure 3.7 — Example of Single Event Upset (KASTENSMIDT, CARRO, REIS, 2006).

Vdd Vdd Vdd
p1 p2 p1 p1 p2
OFF ON b_J- ON OFF b—J_
1 J_d B 1 B 0 J_C* B
A 0 A I 0 A 1
L| ON OFF ON \—{ OFF ON
n1 n2 n1 | n1 n2
Vss Vss Vss

Figure 3.8 — MCU events as a percentage of SEUs for different families of Xilinx FPGAs
(WIRTHLIN et al., 2014a).

100%:|\| T T LI B B i |

2 -

=

o

>

/M

Z 10%}

—_ E

o

o

=

(@)

:c:n) 1%k < GO Virtex-I

& E 3£ Virtex-II

E O Virtex-4
A=A Virtex-5

S <4—< Kintex-7 MCU

o / ¥ Kintex-7 MBU

D 0.1%¢E -

N -

= &

Q

9]

=

)

[a¥)

0.01% '

1 10100
Effective Linear Energy Transfer (MeV-cm”2/mg)

A charged particle can also induce a current and voltage spike in a combinatory

circuit, which is referred to as a SET and is illustrated in Fig. 3.9. As Fig. 3.9 also shows, if

67

the pulse width of the spike is wide enough, the spike can propagate through the circuit and be
latched, looking like a SEU. However, an SET in a combinatorial circuit might not be
captured in a memory circuit because it can be masked by one of the following three
phenomena:

e Logical masking - Occurs when a particle strikes a portion of the
combinational logic that is blocked from affecting the output due to a
subsequent gate whose result is completely determined by its other input
values;

e Electrical masking - Occurs when the pulse resulting from a particle strike is
attenuated by subsequent logic gates due to the electrical properties of the gates
to the point that it does not affect the result of the circuit;

e Latching-window masking - Occurs when the pulse resulting from a particle
strike reaches a latch, but not at the clock transition where the latch captures its

input value.

Figure 3.9 — Example of a Single Event Transient (KASTENSMIDT, CARRO, REIS, 2006).

E1 —
o
E2 — — D1
) \ \|i'._-x\|_h |
EAN & /.S
! !/'—] clk >
T
% TN D2
E3 o S
clk

SEUs and SETs do not cause permanent damage, but they introduce unwanted
transient behaviors into a circuit and can lead to errors.

SEFI is a broad term referring to an SEE that causes a significant change in the
functional operation of a device (beyond a simple corruption of the user data).

SEL is a potentially destructive condition in which a single charged particle induces a
parasitic p-n-p-n structure (WIRTHLIN, 2015). This structure produces a low-impedance path
between Vpp and ground, resulting in large currents flowing through the parasitic bipolar

transistors. In many cases, this current is high enough to destroy the device. Any device

68

considered for high radiation environments must be tested for latchup, since a latchup event is
a potentially catastrophic failure.

3.4 Radiation effects on APSoCs

Chapter 2 has shown that the architecture and internal organization of modern devices
such as Zyng-7000 have become more complex than standalone FPGAs and with faster clock
speeds. Consequently, the layouts of these types of components are heterogeneous and have
different radiation sensitivities (QUINN, 2014a). Fig. 3.10 shows the chip surface of Zyng-
7000, where it is possible to clearly distinguish between its PL and PS parts. Therefore, Zyng-
7000 and similar devices suffer the same problems of FPGAs and processors with respect to
radiation effects, once they have both architectures embedded into their die. Fig. 3.11
illustrates possible SEEs occurrences in Zyng-7000 to help visualizing the effects described in
the next paragraphs.

Figure 3.10 — View of the surface of a Zyng-7000 device, part XC7Z020-CLG484.

»
L]
o slo 0 wiee weieleee n fie o000 e eelicen

o oo seeenlelelns BT gllielelelelewlellee
1 - + H
alp

©90/00 00 0l o0 e f ol 0eiee e
u L]

PL

W09 0ie.0ie 9 9ee LA ZEAE 200 A0 HHORE AL)

i Famae
dlivieioeeeioe oee
@ o e oelolselioleole

pifE=o0" o

¢lololele ov’?;.o 3
oo oieoienio 9o

@000 oo wlioe

0. 9999 9 elelee

i
il ellieieeeieomwle oo e 0leievolose il eleleleio eieil eleiy
Seie 0 0o veeiolelenioienmonien o eele it oieelieineeiolee

{ 1 "‘
9990 @® 96000 00 0000 9o wlieee {® 99 0 0eie oe
99 0 0euee e e 0o eneeee e eee 9 96900 00 .0 ¢

v0 P OGO 060 ©Ceo 60e ollieee fl o *00nws @0
h 0 RO NG e e et ey e 00 ele G % O 0.0 09 0. .09

69

Figure 3.11 — Possible effects of SEEs in Zyng-7000 and similar APSoCs.

Zyng-7000

Soft-core processor

With regard to the PL part, SRAM-based FPGAs are mainly susceptible to SEUs in
their configuration memory bits and embedded memory cells. A bit-flip (SEU) can occur in a
configuration memory bit of the FPGA bitstream when the sensitive junction of a SRAM cell
transistor collects energy deposited by an ionized particle. SEUs can alter the bits that define
the combinational function of the LUTSs, altering the original implemented function, as
illustrated in Fig. 3.12. SEUs can also alter routing connections, generating open connections
and short circuits between connections. Data stored in BRAMs can also be affected by SEUSs.
It is very important to highlight that such modifications caused by bit-flips are persistent until
some action is taken to correct the configuration memory. Such fault persistence is the main
difference between the SEUs effects on ASIC-based devices, such as processors, and SRAM-
based FPGAs.

Bit-flips can also occur in the flip-flops of CLBs used to implement the user's
sequential logic, as also illustrated in Fig. 3.12. In this case, the bit-flip has a transient effect
and the next load of the affected flip-flop can correct it. Thus, the majority of the persistent
errors observed in harsh environments come from bit-flips in the configuration memory bits.
It is also worth remembering that once state-of-the-art SRAM-based FPGAs are built with
cutting-edge manufacturing processes (sub-28 nm) and they are composed of millions of
SRAM cells to store their configuration, they are very susceptible to MBUs and MCUSs.

Another important point is that for a typical design loaded into an FPGA, only a
fraction of the total number of configurable memory cells are used. Thus, depending on the
design, a different number of configuration bits are used and a different number of susceptible
bits may be responsible for provoking an error in the design output. According to Xilinx

70

Figure 3.12 — Possible effects of SEUs in SRAM-based FPGAs (TONFAT, 2015).

CONFIGURATION
MEMORY BITS

INTERCONNECTION
])
PERSISTENT
EFFECT
OUT
LUT
D I
XXX USER FFD
TRANSIENT EFFECT

(2012b), the first number is defined as the Essential Bits and the second number as the
Critical Bits of a design. Essential bits are the bits associated with the circuitry of the design,
and are a subset of the device configuration bits. However, bit-flips in essential bits might not
affect the function of the design. Only bit-flips in critical bits, which are the bits that cause a
functional failure if they change state, and are a subset of the design essential bits, may
corrupt a design implemented into an FPGA. In Xilinx devices, essential bits are calculated
using a proprietary algorithm of the Xilinx tool after the bitstream is generated. On the
contrary, generating a complete list of critical bits for a specific design is a time-consuming
process that involves validating the correct design behavior while moving an upset through all
the configuration memory bits in the design by using some fault-injection platform.

With regard to the PS part, radiation effects such as SEUs and SETs can have complex
effects on a processor and its executing software (QUINN, 2014a). Such effects affect
processors by modifying values stored in memory elements (such as registers or embedded
memories), leading the processor to incorrectly execute an application, producing a wrong

71

output, or even entering into a loop and never finishing its execution. According to Velazco
and Faure (2007), SEEs in processors may result in several types of errors, depending on the
hardware unit affected.

SEEs in the register file may instantaneously impact the program output, resulting in a
corrupted output or processor hang (the program execution flow is crashed and the processor
needs a soft reset to restart).

SEEs in arithmetic units may lead to incorrect computations.

SEEs in the central interconnect and processor bus, which embed registers to latch
data as well as address, may lead to incorrect data/address read or write.

SEEs in the instruction cache are more complex. Instruction caches are usually split in
two areas. The largest one is an SRAM array that store fetched instructions. The second one is
a tag array, whose purpose is to validate/invalidate fetched code. Upsets in the tag array have
mainly two consequences: if an upset invalidates an instruction to be executed, the direct
consequence is a delay in the program execution, since this instruction will have to be fetched
again (cache miss); if an incorrect instruction is validated, the program flow will be crashed.
Consequences of upsets in the instruction array are hard to predict. If the corrupted instruction
is not validated by the tag array, no incorrect behavior will be observed. If the code is
validated by the tag array, three situations are possible: the corrupted instruction is not
anymore in the processor instruction set, so when the control unit tries to decode it, an
exception/trap will be generated; the bit-flip changes the instruction; and, the upset changes
the operands of the instruction. The final consequence varies from corrupted outputs to
processor hangs.

Data caches are built like instruction caches, i.e. with a tag array and a data array.
SEEs in the tag array may invalidate data (cache miss) or validate out-of-date data (leading to
corrupted output). As expected, SEEs in the data array may lead either to a corrupted output
or to no observable effects if the data is out-of-date. SEESs in data cache memories are very
unlikely to cause segmentation fault. This situation can occur if the code is manipulated as
data by the processor.

Another important point is related to processor peripherals. They are configured
through the use of registers. Consequently, as other memory elements, all of these registers
are SEE sensitive, which can cause the peripherals to behave erratically. Moreover, as these
peripherals control the timers, watchdogs, data input and data output, failures in these
peripherals can be disruptive.

72

At software level, SEEs can affect the control flow and the data flow of a running

application, as Fig. 3.13 shows.

Figure 3.13 — Possible effects of SEESs in processors.

\ Control path

NextSEQ PC [T

Data path

subi $sp, $sp,12 E
sw $ra,$ 8(Ssp)

sw $a0,$ 0($sp)
sw $al,$ 4($sp)
addi $al, $a0, $zero
jal mult

lw $ra,$ 8($sp)
lw $a0,$ 0(S$sp)
lw $al 4(8Ss
add $vo, $v0, $al —|

10101010
00001011
11001100

10142 mojj-eleq

arrdr
WaN /X3

SSA.pPY

R0 8M

Control-flow error

addi $sp, $sp,12 Al A A A
jr $ra

Data flow error refers to errors caused by bit-flips in storage devices, such as registers
and memories. They affect the program output, but not its execution. When a fault affects the
data flow, the application runs normally, but the result in the end is incorrect. In this thesis,
errors in the data flow are also called of Silent Data Corruption (SDC). Data flow errors are
normally caused by:

e Wrong operation - The bit-flip modifies the instruction, and it performs another
operation, which affects a memory element, such as a register or memory cell;

e Incorrect data - The bit-flip affects directly a memory element that contains the
data used by an operation. Since the operation input is wrong, it is likely that
its output will also be wrong. The error may propagate to the program output.

A control flow error occurs when the program flow is incorrectly followed, i.e., the
error changes the program execution. When a fault affects the control flow, an erroneous
execution flow occurs. A control flow error may cause a SEFI by crashing the program and
hanging the processor. The possible outcomes caused by the fault are:

e Branch creation - A bit-flip converts a non-branch instruction into a branch,
leading this illegal branch to change the program flow to a wrong address;
e Branch deletion - A branch instruction is converted into another instruction.

Thus, a branch is not taken when it should be;

73

e Incorrect branch decision - It happens when a branch that should go in one
direction, based on a comparison, goes in the other direction, i.e., a branch is
not taken when it should be, or when it is taken when it should not be;

e Incorrect target address - The bit-flip modifies the register that contains the
target address of a branch instruction (for example, the one used to return from
a subroutine). It will change the program execution to an incorrect address;

e Bit-flip in the Program Counter (PC) register - It changes the next instruction
to be executed. It has the same effect as branch creation.

It is hard to determine the root causes of processors errors in COTS devices, such as
crashes and hangs. Since it takes a few clock cycles to observe the SEFI, it is not simple to
catch the exact transition state to determine the reason why proper execution stopped. For
example, it is possible that radiation affects portions of the hardware that caused the processor

to fault or that SEUs affect critical code causing the software to fault.

3.5 Summary

In summary, based on the information presented in this chapter, one can see that state-
of-the-art complex devices such as APSoCs have created many challenges to the radiation
effects field. That is because radiation-induced failures in such devices and architectures may
result in a complex chain of effects due to their heterogeneous nature. Consequently,
additional methodologies and metrics become necessary for estimating the reliability of such

devices, as the next chapter shows.

74

4 METHODS AND METRICS FOR EVALUATING APSOCS UNDER
RADIATION

There are several methods to qualify integrated circuits for SEEs. Testing a device in
its real application environment (space, high altitude, particle accelerator, etc.) is the most
realistic way of evaluating its sensitivity with respect to SEEs. However, this solution has
some practical disadvantages that are related to cost and time-to-market. Due to the low error
probability, weeks or months are generally required for obtaining valid measures, and even
years for gathering enough data to have reliable statistics. Another disadvantage is the

unknown relationship between failures and the energy of the particles striking the samples.

4.1 Accelerated radiation tests

The most common way to qualify integrated circuits for SEEs is by means of
accelerated radiation testing (JEDEC, 2006). In accelerated radiation tests, the devices are
exposed to a specific radiation source whose intensity is much higher than the ambient levels
of radiation that the device would normally experience. This induces the occurrence of SEUSs,
allowing useful data to be obtained in a fraction of the time, such as hours or days, instead of
weeks, months, or even years, in case of real-time tests. Accelerated tests are performed at
accelerator facilities, which accelerate specific particle species, such as neutrons, protons, and
heavy ions. Neutron facilities are generally used for testing parts destined for terrestrial and
avionic applications, where neutrons are the main result product of the interaction of cosmic
rays with the Earth’s atmosphere. In such facilities, SEEs recorded will be due primarily to
high energy neutrons (higher than 10 MeV and in the average of 14 MeV). Two of the main
neutrons facilities are the Los Alamos National Science Center (LANSCE) in the United
States and the Rutherford Appleton Laboratory (RAL/ISIS) in the United Kingdom. SEES can
also be induced by protons. Proton facilities are very useful because they easily reach very
higher energies (usually between 50 MeV and 200 MeV) than neutron facilities. Furthermore,
they are capable of generating protons with sufficient energy to simulate solar flares and
Earth’s proton belt conditions. One of the main proton facilities is located at the Paul Scherrer
Institut (PSI) in Switzerland. Heavy ions facilities are generally used for testing parts destined
for space orbit, where primary cosmic rays can cause significant damage to electronic devices.

The most important difference among heavy ion experiments and both neutron and proton

75

experiments is related to the dosimetry. The energy measurement unit of heavy ion
experiments is the Linear Energy Transfer (LET), which describes the amount of energy lost
per unit length of track. In other words, it describes the action of radiation upon matter, or
how much energy an ionizing particle transfers to the material transversed per unit distance.
Thus, the LET depends on the nature of the radiation as well as on the material traversed.
Brazil has a very useful heavy ion facility, which is located at the Universidade de S&o Paulo
(USP), the Séo Paulo 8UD Pelletron Accelerator. There is also the case in which electronic
components are exposed to a very high flux of different particle species. This is the reality of
the CERN's accelerators chain, where electronic components can be exposed to high-energy
hadrons (protons, neutrons, pions), heavy ions, and other particles, at the same time. Aiming
to simulate such complex environment, in 2015 CERN started operating a new and unique
mixed-field radiation test facility, the CERN High Energy Accelerator Mixed-field
(CHARM), located at CERN, Switzerland. At CHARM, it is possible to have particles with
energies near 10 GeV, as shown in the graph of Fig. 4.1. Particle lethargy is a dimensionless
logarithm of the ratio of the energy of source particles to the energy of particles after a
collision (GLASSTONE, EDLUND, 1952). Thus, the graph in Fig. 4.1 shows an exponential
decay of energy per unit collision showing that the greatest delta E’s of energy result from the

early collisions.

Figure 4.1 — CERN’s CHARM particle spectra. Adapted from (ALIA, 2016).

— 0
W 10 —— Protons
% -1 — Pions+-
"-@ 10 — Muons
E — Kaons
2 10” —— Neutrons
E Elec/Posi
= 107} —— HEHeq
g
< 10"
,;E:

.5 :
= mm‘” 102 10" 10® 10° 10" 10 10?

Energy [GeV]

SEE characterization using particle beams (heavy ions, protons, or neutrons) is a

global approach, since the entire device is irradiated. Such test provides a number of events

76

for a particular fluency, without any information about the detected faults location and the
time they happened. In this context, laser beams can be used as an efficient complementary
tool for accelerated tests in order to evaluate the sensitivity of complex electronic components
exposed to radiation and to distinguish different effects. Laser tests provide a high level of
accessibility to locate the circuit elements where faults are injected. The small laser spot and
precise beam localization characteristics allow sensitive device nodes to be pinpointed with
submicron accuracy. Therefore, taking into account the complexity of modern devices, laser
testing is especially useful since it can provoke charges with spatial localization and temporal
precision that is mandatory for analyzing faults that can be easily masked in particle
accelerator beam tests. Laser has the disadvantage of having its beam reflected by
metallization layers, thus complex circuits must be irradiated from the backside. Fig. 4.2
exemplifies the accuracy of laser tests by showing one of the scanned areas during a test
campaign performed in (KASTENSMIDT et al., 2014). In this figure, the rectangular block is
a BRAM of a Xilinx Virtex-5 FPGA. The National Research Nuclear University MEPhI in

Russia has several dedicated laser facilities for testing electronics components.

Figure 4.2 —- BRAM of a Xilinx Virtex-5 FPGA scanned during a laser test campaign
(KASTENSMIDT et al., 2014).

77

4.2 Fault injection by emulation

Fault injection can also be performed in the laboratory by means of emulation. It
represents the less costly fault injection alternative among all the mentioned ones, besides it
being very flexible. Moreover, fault emulation is an attractive technique to predict the
susceptibility of a system under SEUs during the early design stages and before submit the
target device to an accelerated test, for example.

Basically, the emulation of SEUs and MBUs consists in flipping bits of memory
elements of FPGAs and processors through the use of an embedded circuit, a program, or a
computer. SEUs can be emulated in random locations, sequentially (every configuration bit or
configuration control register is flipped in a sequential order), or user-defined. Then, the
output of the Design Under Test (DUT), the system, is constantly monitored for analyzing the
effect of the injected fault into it. This scheme provides a superior control over the fault
injection when compared to accelerated radiation tests, since the time, the location of flipped
bit, and the direct effect of the fault are known. A fault injection campaign can last from a few
hours to several days depending on the amount of bits that will be flipped and other factors,
such as the connection between the fault injector and its monitor, which can be a computer
connected to the fault injector through a serial interface, for example. Although this scheme is
easily applicable to both FPGAs and processors, the injection mechanism is different for each
one.

There are several fault injection platforms to inject SEUs in the PL part of APSoCs
(SRAM-based FPGASs) available in the literature as described in (ALEXANDRESCU,
STERPONE, LOPEZ-ONGIL, 2014).

In a Xilinx SRAM-based FPGA, a fault injection can be performed through the
Internal Configuration Access Port (ICAP) (XILINX, 2015a), which enables the user to
access the configuration memory and to reconfigure it frame by frame internally. The ICAP
can be controlled by several ways, such as through the Soft Error Mitigation (SEM) Core
from Xilinx, which is an IP core that performs SEU detection, correction, classification, and
emulation in the configuration memory (XILINX, 2015c); an embedded soft-core processor,
such as a Microblaze or a Picoblaze; or a user-defined control circuit (TARRILLO et al.,
2015). The ICAP interface is capable of achieving a maximum data throughput of 400 MB/s
is configured to operate at 100 MHz. One of the first ICAP-based fault injection platform
described in the literature is the one presented in (STERPONE, VIOLANTE, REZGUI,
2006).

78

In addition to the ICAP interface, Xilinx APSoCs such as Zyng-7000 have a new
feature embedded into the PS part called Processor Configuration Access Port (PCAP). It
provides to the PS part the ability to access the configuration memory of the PL part through a
high bandwidth DMA channel capable of achieving up to 400 MB/s of data throughput
(XILINX, 2016f). There were not found PCAP-based fault injector platforms in the literature
up to the closure of this thesis.

Faults can also be injected externally to the device by using the Xilinx’s SelectMAP
interface, which is a faster option compared to the ICAP interface, since it is a programmable
parallel interface capable of achieving up to 3.2 Gbps of data throughput (XILINX, 2012c).
However, Zyng-7000 devices do not have an external configuration interface such as the
SelectMAP, with the exception of the JTAG port. An example of very powerful and flexible
fault injection platform that uses the SelectMAP interface for injecting faults is the FT-
UNSHADES?2, presented by Mogollon et al. in (MOGOLLON et al., 2011).

In the PS, fault injection can be performed at different abstraction levels such as RTL
or software. However, since the RTL descriptions of COTS devices are not publicly available,
faults can only be injected in the user-accessible resources, like registers and embedded
memories. This approach is commonly called Software Implemented Fault Injection (SWIFI)
and it can be performed during compilation time or execution time (HSUEH, TSAI, IYER,
1997). At execution time, typical approaches use timers such as the FERRARI tool
(KANAWATI, KANAWATI, ABRAHAM, 1995) or interruption routines such as the
XCEPTION tool (CARREIRA, MADEIRA, SILVA, 1998).

4.2.1 Hardware fault injection platform used

Part of this thesis uses the fault injection platform first presented in (TARRILLO et al.,
2015). However, since the original Fault Injector (FI) core was built to handle frames from
Xilinx Virtex-5 devices, modifications were made for enabling the core to handle frames from
Xilinx Artix-7 (TONFAT et al., 2016) and Zyng-7000, the two main devices used in this
thesis.

The fault injection platform is mainly composed of an ICAP controller circuit and a
monitor computer, as Fig. 4.3 illustrates. The ICAP controller manages all the commands to
read and write frames from the configuration memory using the ICAP interface. Therefore,
with the information about the organization of the configuration memory (described in section

2.1.1.2) and the commands to manipulate the frames, it is possible to flip any bit of the

79

configuration memory, emulating the effect of an SEU. It is worth remembering that the
smallest segment of the configuration memory is a frame, thus the ICAP controller always
reads an entire frame of the configuration memory, store it in a memory buffer, flips its bits
one at a time, and write it back to the configuration memory at each fault injection.

In the fault injection area (DUT area), faults are only injected in the configuration bits
related to CLBs (LUTs, user FFs, and interconnections) and clock distribution
interconnections. Fault are not injected in the BRAM configuration bits, so the inputs and
outputs of the DUTs are not affected. For the versions which include DSP resources
(DSP48E), the correspondent DSP configuration bits are added to the injection area. As can
be seen in Fig. 4.3, the fault injector is placed in a different area of the FPGA to avoid fault
injections that can disrupt its functionality. It is also shown a DUT control block that is also
outside the injection area. This block analyzes the correctness of the DUT output for checking
if the fault injected provoked an error or not. This result is sent to the fault injector and then to
the monitor computer together with the fault position. Errors are classified as SDC or SEFI

errors.

Figure 4.3 — Block diagram of the fault injection platform used in this thesis in (a) and an example of
the FPGA floorplanning with the fault injector and the DUT placed in (b).

Zyng-7000/Artix-7 . Fault

PL/FPGA - Susceptible area _ JTAG I_njector -

control

Fault injector

Icap | RS-232
ICAP [+"| controller [

DUT Area

phlock multi

(a) (b)

A fault injection campaign is defined by the flow diagram illustrated in Fig. 4.4. The
first step is to setup the injection campaign, which consists of defining the injection area and

the type of fault injection. Both configurations are setup in a Python script which runs in the

80

monitor computer and communicates with the FI. In this thesis, the main objective of using
fault injection is to estimate the amount of critical bits of a design. Thereby, a campaign
consists in an exhaustive and sequential bit-by-bit fault injection in all the configuration bits
of the DUT, aimed to identify the ones that cause functional failures. The second step is to
configure the FPGA with the DUT and the FI. After that, faults start being injected one at a
time and always before the DUT execution. At this point, it is important to synchronize the FI
with the DUT, so that after a fault is injected the DUT starts executing. Once the DUT
finishes its execution, the output result is analyzed and the results (including the fault
position) are saved. Finally, the fault is removed and the DUT is taken to its initial fault-free
condition, prepared for the next fault injection. This process is repeated until all the
configuration bits of the DUT area are evaluated. Therefore, one can observe that the required
time to complete a fault injection campaign depends on the DUT area and the time to inject
and remove a fault. The time to inject a fault is constant and is in the order of a few
microseconds for Zyng-7000 and Artix-7 devices. With regard to remove a fault, two

approaches are used.

Figure 4.4 — Flow diagram illustrating the hardware fault injection procedure in the Zyng-7000’s PL
and Artix-7.

Injection setup

!

Configure FPGA with DUT + FI

[
£
Inject fault

!

Start DUT execution

!

Move to next fault Record DUT resultand
position fault position

| !

Remove fault

No

Last fault
position?

End of injection

81

The first one consists on inserting again a fault in the same bit, restoring its original value.
Then, the DUT runs again to verify if the fault was successfully removed. If the fault is not
removed, a second approach is used. The monitor computer reconfigures the entire FPGA to
ensure that all configuration bits are restored. The latter approach is the main reason why
some of the fault injection campaigns can last more than one day. This approach can be
improved by using dynamic partial reconfiguration on the DUT, for example.

4.2.2 Software fault injection platform used

Part of this thesis uses the fault injection platform first presented in (LINS et al., 2016)
and improved in (DE OLIVEIRA, TAMBARA, KASTENSMIDT, 2017). The platform was
developed to work on the ARM Cortex-A9 processor cores of the Zyng-7000’s PS. It
modifies values stored in the processor's internal registers or memories by injecting bit-flips
through the use of interruptions and aiming to be the less intrusive as possible.

The platform setup is composed by the following modules, as illustrated in Fig. 4.5:
the power control, which is an electrical device responsible for powering on and off the
board; a software running on a host computer that manages the power control and stores the
fault injection logs received through an UART interface; and, the injector module, which is
hardware IP that performs the fault injection procedure.

Figure 4.5 — Platform setup of the software fault injector.

Zyng-7000

PS PL
Processor | Injector UAR—[

core 0 module %

Power |
control

The fault injector is capable of injecting bit-flips in the following ARM registers:
general-purpose (RO to R12), SP (stack pointer), LR (link register), and PC (program
counter). The fault injection procedure is illustrated by flow diagram in Fig. 4.6. In the first
step, the injector module is configured with the injection data, which contains the injection
time and the fault target location (the register in which the fault will be injected, besides the

specific bit to be flipped). Due to the easiness of generating random numbers in the processor

82

compared to in hardware (PL), the injection configuration is generated by the processor
before the application start and then it is read by the injector module. It is worth noting that
the injection time is defined based on the execution time of the application, which means that
a fault could be inserted at any moment during the execution of the application, as in real
scenarios. Once the injector module has been configured, it starts counting clock cycles until
it reaches the injection time. Then, the injector module launches an interruption to the target
processor core. In the injection interrupt routine, the target register is read, a XOR mask with
the appropriated bit to flip is applied to its value and, then, the register is overwritten.

After the fault injection, the injector module starts a watchdog timer with twice the
value of the application execution time and it remains waiting for the end of the application. If
the application does not end before the watchdog timer is over, it is considered the occurrence
of an SEFI. In case of the application finished on time, the injector module compares the
results generated by the processor with the gold ones. If there is any mismatch, it is indicated
that an SDC occurred. Otherwise, the application ends normally, meaning that the bit-flip was

effectless.

Figure 4.6 — Flow diagram illustrating the software fault injection procedure in the Zyng-7000’s PS.

Fault injection . Waiting the
setup application to finish

|
Count clock cycles et
finished
No
Error
Watchdog
timer over

Start >

Check results

No

Injection
time

Yes
Bit-flip injection in
a random register Yes
! SEFI SDC END
Start watchdog
timer

4.3 Test methods and metrics

Based on (IROM, 2008), (QUINN, 2014a), and (QUINN et al., 2015b), it is possible
to notice that the methodology for testing FPGAs (Zyng-7000’s PL part) and processors

83

(Zyng-7000’s PS part) are similar. SEE tests are event based, where the event is the
occurrence of one of the SEEs types. It is necessary to measure the amount of radiation and
count the number of events to calculate the cross sections and related metrics. Biasing, clock
speed, temperature, and the angle of the radiation can be used to determine worst-case SEE
influence. Tests might also be designed to highlight specific issues with functional/application
conditions or mitigation methods.

This thesis is focused on the functionality conditions of the Device and/or Design
Under Test (DUT) aiming to reveal different aspects of it. In this context, there are two main
types of tests to be performed:

e Static - It consists in loading specific values into memory elements of the
DUT and continually examine the status and content of them during the time
that they are irradiated. This technique is used to measure the device static
cross section. Through the static cross section, it is possible to quantify the
sensitivity of the device technology to a specific radiation source.

e Dynamic - The DUT is initialized with a user-defined design and/or program.
Then, the device is submitted to a set of user-defined stimuli and the outputs
are constantly read and compared with the expected ones. This technique is
used to measure the device dynamic cross section and related metrics. Through
the dynamic cross section, it is possible to quantify the sensitivity of a running
design and/or program in a specific device to a specific radiation source.

As a matter of comparison, Fig. 4.7 shows the SEU response of a SRAM memory
during static and dynamic tests (SCHWANK, SHANEYFELT, DODD, 2013). As one can
notice, while there is some similarity between the two cross sections in the saturation region,
there is a significant difference around the threshold LET values. Threshold LET refers to the
minimum LET to cause an effect on the component. There can be two reasons for these
differences. One is that the dynamic operation of the component exercised a part of the
component that was sensitive to radiation that is not possible to capture in a static test. The
second explanation is that the dynamic operation could affect the noise margin that causes the
operation to subtly change. Because of issues like that, a proper device characterization must
always consider both static and dynamic characterization of the component under irradiation.

Figure 4.7 — SEU cross section for static and dynamic tests in a memory (SCHWANK,
SHANEYFELT, DODD, 2013).

10-3 v T v T T T v T v T
g s 8
NA 10"4 -
3 .
(0]
'g 105} I.
° ' O B
()
- H
2100 of
(®] o B Dynamic
] @ Static
107 e @go
0 20 40 60 80 100 120

LET (MeV-cm®/mg)

4.3.1 Static test method and metrics

Static tests have simple procedures, such as:
1. Load the memory(ies) of the device with a known pattern;
2. Irradiate the component;
3. Read the memory(ies).
A flow diagram illustrating this approach is shown in Fig. 4.8.

Figure 4.8 — Static test flow diagram. Adapted from (IROM, 2008).

Start

A

Initialize memory

Active check the content | JTAG/UART |:|
of the DUT E
Reload Yes @ No
- Log error
memory

End of irradiation

Begin irradiation

Criteria: Specific fluence, error count, etc.

Shielding

84

85

With regard to FPGASs, a static test experiment consists of configuring the FPGA
configuration memory with a known bitstream (the golden copy) containing the test-design.
Then, the FPGA configuration memory is constantly read back (the readback copy) during
the irradiation by using the Xilinx iMPACT or Xilinx Vivado tools through a JTAG interface.
In the experiment control computer, the golden bitstream is compared against the readback
bitstream. If differences are found (bit-flips), the FPGA is reconfigured with the golden
bitstream and the differences are logged in the computer, along with the elapsed time during
the irradiation when the error occurred. These procedures can also be applied for statically
testing the FPGA embedded BRAMs.

The static test experiment procedures for processors are similar to the ones for FPGAs.
In fact, static tests in processors are semi-static, because the tests typically consist of a small
program that runs on the processor. Such program initially loads specific values (the golden
values) into the processor registers and/or embedded memories (caches, OCM, etc.) and then
continually examines their status and content during the time that the DUT is irradiated. As
the embedded memories of processors like the ARM Cortex-A9 are relatively small, the time
needed for checking the memories is of about a few hundreds of milliseconds, which can
provide a nearly continuous evaluation of the memories if the program runs periodically. If an
error is detected during a program loop, it is sent to the monitor computer though a serial
interface (UART) to be logged, along with the elapsed time during the irradiation when the
error occurred. Then, the error is corrected and the active test loop continues executing until a
next error is detected or the test is stopped. It is worth noting that this test method assumes
that the processor works properly nearly all of the time during the test. However, once the test
is not completely static, errors may cause deviations from the expected behavior, which can
result in the occurrence of SEFIs. SEFIs must not be taken into account in statistic of a static
test. Another important point to highlight is that some embedded memories, such as cache
memories, have some error detection and/or correction technique enabled, like parity-bit
checking. Consequently, it is mandatory to consider if such feature is enabled or not during
the tests.

As can be seen, a static test is far from the real device application, because it will
provide the worst-case device sensitivity estimation to SEUs. In a real device application
context, part of the device (memory in question) stays unmodified during the whole system
operation, while other parts are used more dynamically. A way to determine a sensitivity
closer to one of the final application consists in evaluating the average number of used

memory bits and estimating the sensitivity as the product of this number by the per-bit

86

sensitivity (derived from the memory sensitivity issued from radiation testing divided by the
number of bits) (VELAZCO, FOUCARD, PERONNARD, 2011).

During a static test, careful must be taken with the SEE rates and time-dependent
effects, such as MBUs or SETs (IROM, 2008). Parameters such as the particle flux must be
carefully adjusted to avoid the accumulation of too many SEUs in a short period of time
because, for example, later it can be difficult to distinguish the difference between an MBU
from one particle or a "constructed” MBU from multiple particles (QUINN, 2014a).
Moreover, interactions with the device need to be minimized, otherwise it is possible that the
test design could overwrite events before being recorded, what will neglect part of the fluence
of the test. If events are overwritten, then the cross section based on the total fluence might be
unrealistically low. Thus, it is necessary to adjust the fluence to determine how much of it
corresponds to the observed events. To determine how much fluence should be used, the
amount of time spent in each operation and the amount of time lost from each operation need
to be determined. Examples of operations are the verification of a processor's memory and the
read back of an FPGA configuration memory.

The static cross section (ostatic) is the fundamental metric to evaluate the sensitivity to
radiation of a device. By definition, the static cross section is an intrinsic parameter of the
device usually expressed in terms of area (cm2/device or cm?/bit), and it represents the
minimum susceptible area of the device to a particle species (e.g. neutron, proton, heavy ion,
etc.) and particle energy (LET) (JEDEC, 2006). In general, it is also a function of the
operating conditions of the irradiated device (e.g., applied voltage, temperature, etc.). The
static cross section of a device can be experimentally obtained by dividing the number of
observed errors (Nerrors) by the total particles fluence (i.e. the number of particles hitting the

device per unit area, Eq. 4.1), as shown in Eq 4.2.

(Equation 4.1) @particies = (particle flux [p?:rfmjs]) (time [s]) [RAEcles)

2, cm?

. _ Nerrors 2
(Equation 4.2) Ostatic-device = 3~~~ [em?]
particles

In addition, the static cross section per bit is expressed as shown in Eq. 4.3, where Npit

is the number of bits of the device.

87

2
Nerrors cm

(Equation 4.3) Ostatic—bit =]

¢particles - Npi¢
4.3.2 Dynamic test method and metrics

Dynamic tests aim to analyze a system under its functional operation. The procedures
are similar to ones of static tests, but now a functional design must be programmed into the
device, as follows:

1. Load the DUT with a design and/or program;
2. Irradiate the component;
3. Check the DUT output.

A flow diagram illustrating this approach is shown in Fig. 4.9.

Figure 4.9 — Dynamic test flow diagram. Adapted from (IROM, 2008).

Start

|

Load design

and/or program
Beginirradiation

Active check the output | JTAG/UART B
of the DUT) i
Reload design
Log Yes No
and/or .
failure
program

End of irradiation
Criteria: Specific fluence, error count, etc.

Shielding

As can be seen, a dynamic test is basically done in the same way as the static one for
both FPGAs and processors. It has the same steps, but there are two main differences. The
first difference is the fact that during the radiation exposure, the DUT (FPGA and/or
processor) is running the target design instead of being idle. The second difference is that the
design output is monitored, which means that the occurrence of failures (SDCs, SEFIS) is
monitored, not errors as is done in static tests. In case of FPGAs and similar to a static test,
the configuration memory can also be read at each failure for correlating the failures with the

number of accumulated errors needed to provoke them.

88

Similar to a static test, careful must be taken with the SEE rates and time-dependent
effects, such as MBUs or SETs. Parameters such as the particle flux must be carefully
adjusted to avoid the occurrence of too many SEUs in a short period of time because, for
example, in this scenario can even be impossible to run the application correctly without
experience a failure. As previously explained, interactions with the device need to be
minimized to avoid overwriting errors.

The dynamic cross section (odynamic) IS the basic metric to evaluate the sensitivity to
radiation of a design. It is defined as the ratio between the number of errors observed at the
output of a system (a design implemented into an FPGA or a processor running a program)
divided by the fluence of hitting particles, as stated in Eq. 4.4. Thus, the dynamic cross

section quantifies the sensitivity of a system to a specific particle specie.

i N
(Equation 4.4) Caynamic = errors [om?]
particles

The rate at which soft errors occurs is called of Soft Error Rate (SER). The SER of a
design is expressed in Failure in Time (FIT), which is the number of errors in one billion (10°)
device-hours operation. It is worth noticing that the SER is proportional to both dynamic
cross section and particle flux, as shown in Eq. 4.5. Experimentally, the SER can be also
calculated dividing the number of observed errors by the time interval analyzed, as presented
in Eq. 4.6.

(Equation 4.5) SER = 0gynamic - (particle flux) [FIT]

H NETTOT‘S
(Equation 4.6) SER = ———= [FIT]

In the fault injection by emulation context and mainly at higher abstraction levels,
such as at software level, the cross section becomes impossible of being estimated, since it is
a metric expressed in terms of area. A possible solution for comparing results from radiation
experiments and fault injections by emulation is to estimate the Architectural Vulnerability
Factor (AVF) (MUKHERJEE et al., 2003) of the system. The AVF represents the probability
that a visible error will occur at the output of a system given a bit-flip in a hardware structure
such as a register or memory cell. In this thesis, the AVF is represented as the number of

89

errors detected (Neyqors) divided by the number of faults injected (Nfqq,¢5) into the design, as

shown in Eq. 4.7.

(Equation 4.7) AVF = ZNerrors

Nfaults

As can be seen, these metrics take into account only the sensitivity of a resource,
which is the most common approach found in the literature. However, at system level,
directly comparing the resources sensitivity of two systems is valid only when the other
parameters of the systems do not vary between them, such as the execution time. Otherwise,
such comparison becomes inaccurate. In this context, to compare the reliability of systems
implemented in an APSoC and with different approaches, it is essential to take into account at
least the cross section (o), execution time (t), and workload of the system (w). Rech et al.
(2014) introduced the Mean Workload Between Failures (MWBF) metric for Graphics
Processing Units (GPUs). Then, in (TAMBARA et al., 2016) authors successfully adopted it
for APSoCs. First, it is considered the Mean Time Between Failures (MTBF) of a system,
defined as the average time between two radiation-induced failures on a system continuously
executing a given task. By definition, the MTBF is evaluated with Eq 4.8, where flux is the

particle fluence per unit time.

(Equation 4.8) MTBF = —— [h]

Odynamic - flux

A higher MTBF simply attests that the system could work for a longer period of time
before experiencing a radiation-induced failure. Nevertheless, no information on the workload
computed during that period of time is given.

To evaluate how many executions has been correctly computed by a system during the
MTBF window, a metric called Mean Execution Between Failures (MEBF) is defined. The
MEBEF is the number of correct executions of an application that are completed between two
radiation-induced failures. The MEBF can be evaluated by the division between the MTBF
and the execution time, as stated in Eq. 4.9.

MTBF

(Equation 4.9) MEBF = [executions]

90

Finally, each system is characterized by a workload (w), i.e. the amount of data that
needs to be processed in one execution. The MEBF can be further generalized to take the
workload computed correctly into account, leading to the concept of Mean Workload
Between Failures (MWBF) as defined in Eqg. 4.10.

(Equation 4.10) MWBF = MEBF .w = 7 [data]

Odynamic - flux. t

A higher MWBF actually means that a higher workload was computed correctly
before experiencing a failure and that the operational reliability of a design is higher.
Therefore, the MWBF metric provides a more consistent comparison in terms of reliability
across system architectures that may be very different, since it considers that the reliability of
a system is inversely proportional not only to the device sensitivity (o), but also to the total

exposure time (t).

4.4 Related works about APSoCs under radiation

As shown in Section 2.4, several works have analyzed APSoCs, but initially most of
them had only taken into account performance measurements. Then, in the last years, the first
works concerning radiation effects in APSoCs have started to be published, including the ones
derived from this thesis, which are the first ones that analyzed topics such as the trade-offs
between performance and reliability in APSoCs.

Technology scaling is one of the main factors that increases the sensitivity of
electronic devices to radiation-induced errors. However, in the case of Zyng-7000’s PL, and
Xilinx SRAM-based FPGAs in general, the main reason for the error rate increase seems to be
the increasing device density and not the sensitivity of its SRAM memory cells (WIRTHLIN
et al., 2014). In fact, Xilinx has achieved to reduce the sensitivity of the SRAM cells in their
new generations of FPGAs. Fig. 4.10 depicts the neutron cross section per bit of configuration
memory bits and BRAM bits for different Xilinx devices (XILINX, 2016c). Xilinx also
accomplished to reduce the sensitivity of BRAM bits to the same level of configuration bits.
As it is possible to notice, in the case of Virtex-5 devices, BRAM SRAM cells are almost ten
times more sensitive than configuration SRAM cells. For the 7-Series family, the sensitivity
of both memories is practically the same. As mentioned in (XILINX, 2015b) and (CURD,

CRABILL, 2015), Xilinx uses circuit design and layout techniques to improve the tolerance

91

of SRAM cells to soft errors, such as bit interleaving memory to avoid MBUs and MCUs
(WIRTHLIN et al., 2014).

Figure 4.10 — Neutron cross section per bit for different Xilinx devices (XILINX, 2016c).

4.50E-14
—. 4.00E-14

3.50E-14
m Virtex-11{150 nm)

3.00E-14 m Virtex-4 (30 nm)

Wirtex-5 (65 nm)

Spartan-& (45 nm)

m Virtex-6 (40 nm)

B 7 Series - Zyng-7000 (28 nm)
I I m UkraScale (20 nm)

Config. mem. BRAM

2.50E-14

2.00E-14

1.50E-14

1.00E-14

Meutron cross section per biticm?

5.00E-15

0.00E+00

In (ALLEN, IROM, AMRBAR, 2015) and (AMRBAR et al., 2015), authors
performed static heavy ion experiments in the PL part of the Zyng-7000. During the heavy ion
experiments, Amrbar et al. (2015) monitored the currents of the different power management
buses of the Zyng-7000. Authors observed high current events in the PL’s VCCaux line. The
current kept increasing in the form of steps, as shown in Fig. 4.11. Authors stated that power
cycling of the DUT was needed to recover from these events and that such events were
increased at elevated temperature. They concluded that these high current events were due to
SEL.

Allen, Irom, and Amrbar (2015), and Amrbar et al. (2015) also estimated the heavy
ion static cross section of the Zyng-7000’s PL. The obtained results are shown in Fig. 4.12.
The graph shows the cross sections for the configuration memory bits (CFG) and BRAMSs
filled with one (1) and zero (0) values. Their results match with the ones obtained in this
thesis, as will be shown later.

No related works were found about the proton static cross section of the Zyng-7000's
PL, except the ones that will be presented later in this thesis.

With regard to processors, although Xilinx does not provide official cross section
measurements for the Zyng-7000’s PS, it states in (XILINX, 2015b) that from 65 nm
technology and beyond, processors exhibit significant soft error rates. At 28 nm, the upset rate

of a processor is dominated by SETs that propagate through the logic. Furthermore, Xilinx

92

also mentions that the upset rate has also steadily increased as the voltage drops and

dimensions shrink, as already mentioned in this thesis.

Figure 4.11 — SEL occurrence in the PL part of Zyng-7000 during heavy ion experiments (AMRBAR

etal., 2015).

1.2
1

<

EO.S

(1]

=

5

306

*

2

g 04

o

>

0.2
0
QUuQoWVg g g g NlgWnlgWno g wng 9N
D?mmthH&ngm?mmf\NmeD#
Leedod o NET T I N oaddNnm
oo oo e e oo oo dddddddd
oo o o o o o 0 o 0000000000000

Test Time {mm:ss)

Figure 4.12 — Heavy ion SEU static cross section for the PL part of the Zyng-7000 configuration
memory and BRAMs (ALLEN, IROM, AMRBAR, 2015; AMRBAR et al., 2015).

1.00E-07
—. 1.00E-08
=
=
~
£ a
S 1.00E-09 ¥ °
Y
s s
=
& 1.00E-10
& 1.00E-
@ = BRAMO
E > A BRAM1
“ 100611 §
: ® CFG
1.00E-12
0 10 20 30 40 60 70 80

50
LET (MeV-cm?)/mg

One of the first works that evaluated embedded processors in commercial APSoCs
devices was (QUINN et al., 2014b). In this work, which was focused on ARM-based
processors, one of the analyzed parts was the PS of the Zyng-7000. Authors tested it under
neutrons by running basic benchmark applications. Despite the preliminary results, authors
observed that its obtained cross section is similar to many other SRAM technologies, as can
be seen in Fig. 4.13. Moreover, they also observed that the Zyng-7000’s PS part is very

sensitive to functional interrupts caused by radiation-induced errors.

93

Amrbar et al. (2015) performed proton experiments in the Zyng-7000’s PS. The
measurements were done for “0” to “1” and “1” to “0” transitions for both OCM and LI
Cache. They obtained an SEU cross section for the OCM of about 7.0x10*® cm?/bit for both
logic directions. Authors did not observe SEUs in the L1 Caches, most probably due some
setup error.

In (QUINN et al., 2015a), authors evaluated the effectiveness of the Triple Modular
Redundancy (TMR) addition at software level for mitigating the radiation effects in
microprocessors, such as the one embedded in the PS part of the Xilinx Zyng-7000. Results
show that their approach is effective in masking the effects of SEUs and SETs in
microprocessors systems. They achieved a decrease in the corrupted computations by one
order of magnitude. However, authors did not take into account the drawbacks of adding a

TMR scheme to the programs, such as the code size and execution time increase.

Figure 4.13 — (a) SEU cross section and (b) SET and SEFI cross section in neutrons for different SoCs
(QUINN et al., 2014b).

le-12¢

Bit Cross Sections (cm2/bit)
—
o

[L]
L} ¢
le-14¢
®
- v
le-15 - = o % ~ =2
o, -, = g - - =
2 a 3 = = <
v v o L
= = T w
- -
o -
= <
— (<4
S

(a)

04

le-09;

B SET Cross Sections

_ 9 SEFI Cross Sections
ol . :
5 le-10} .
- I
3 [L 4
A le-11
3 |e- l;
] : ‘ i
&% I \! =]
O L L
“] *
2
- » el
2 le-12}
: ¥
le-13° - = ; 7 - >
- - 2 g > s
-+ = = = = -
A A, 3] = t N
v 2 o =
= = e w2
= o
Z -
= <
— [+4
v

(b)

In (CHIELLE et al., 2015), authors propose a new control flow software-only
technique that uses assertions to detect errors affecting the program control flow in ARM-
based processors. Results show an improvement in cross section of one magnitude order in
average with smaller penalty in code size (less than two times) and execution time (less than
one and a half times) when compared to standard techniques such as TMR, whose the
increase in code size is usually always around three times.

In (ZHAO et al., 2016) and (SANTINI et al., 2016), authors investigate the reliability
of operating systems (Linux) running in the PS part of APSoCs (Microsemi SmartFusion2
and Xilinx Zyng-7000, respectively) and under radiation-induced errors. In general, results
show that the presence of an operating system barely affects the data error rate, but it greatly
increases the functional interrupt rate (up to 3.85 times), as Fig. 4.14 shows. This is not
surprising as an application executes almost the same code when running bare to the metal or
on the top of Linux. The operating system does not interfere with the amount of resources
required for computation and, thus, does not modify the application SDC cross section. With
regard to the SEFI rate increase, results indicate that the operating system is more likely to
experience SEFIs than the applications running bare to the metal.

In (LINS et al., 2016), authors investigate the criticality of register file and compiler
optimizations on ARM-based SoCs reliability. They chose to investigate the processor’s
register file criticality because of most of the works investigate only embedded memories,

such as caches, and registers are among the most critical resources of embedded processors.

95

Figure 4.14 — Measured Zyng-7000 SDC and SEFI cross sections of applications running bare to the
metal (Bare SDC and Bare SEFI) and on the top of Linux (Linux SDC and Linux SEFI) compared to

the expected standalone Linux SEFI cross section (dashed line). (SANTINI et al., 2016).

Bare SDC Linux SDC [Bare SEFI B Linux SEFI
107 ¢

108t |

stand alone
Linux

10°

cross section [cm?]

_ - EE:R RT
T,

fft lzo mm qs

Moreover, there are not detailed works that investigate the register file reliability under soft
errors. Results show that the number of registers used by an application has a direct impact on
its sensitivity to errors, as expected. Results show that, although compiler optimizations
increase the application sensitivity to soft errors such as SDCs and SEFIs, and the dynamic
cross section of the device (Zyng-7000), they are beneficial as they reduce the codes
execution times. Consequently, while the probability for one impinging particle to generate an
observable error increases with optimizations, the execution time is reduced, reducing the
exposure time of the device. As it will be possible to notice in the next chapters, this work is
strongly influenced by this thesis.

In (REZZAK et al., 2015) and (DSILVA et al., 2015), authors presented results about
the characterization of the Microsemi SmartFusion2 APSoC under neutrons and heavy ions.
They reported the static cross section of the different memories embedded into the device.
Fig. 4.15 shows the heavy ion SEFI cross section for the Microcontroller Subsystem (MSS),
General Purpose I/0 (GPIO), and Fabric Interface Controller (FIC). From their results, it is

important to notice the significant difference between the MSS (worst) and FIC results.

96

Figure 4.15 — Heavy ion SEFI cross sections for the MSS, GPIO, and FIC blocks of the SmartFusion2
(REZZAK et al., 2015).

1.E-05
ki *
> .
a o °
& 1.E-06 A
c * A
§ LE07 x
@ . » MSS SEF|
A
o = GPIO SEFI
© + FIC SEFI
1.E-08
0 5 10 15 20 25
LET (MeV.cm2?/mg)

4.5 Summary

This thesis has shown so far that there are several options of architectures and
resources to be chosen when implementing a system in an APSoC. As consequence, the
adoption of additional metrics beyond cross section becomes necessary for estimating the
reliability of a device, system, or design. As previously shown in theory and in the next
chapters in practice, today it is mandatory to take into account each design option available
and all the parameters of the system involved, such as the amount of resources used,
execution time, workload, etc. Furthermore, it is also important to investigate the general
benefits that each option brings to the system by comparing them, for example.

With this objective, the next chapters first evaluate the susceptibility to SEEs of
specific parts of Zyng-7000, the case-study device of this thesis, aiming to investigate if its
reliability levels are as heterogeneous as its hardware. Then, based on the results presented in
such chapters, the later ones analyze the reliability and performance trade-offs at system level
in Zyng-7000. As final result, an analysis flow based on fault injection for estimating the
reliability trend of hardware-only designs, software-only designs, and hardware and software

co-designs, is proposed.

97

5 ANALYSING SINGLE EVENT EFFECTS ON THE PS PART OF
ZYNQ-7000

This chapter presents static and dynamic radiation tests performed in the PS part of
Zyng-7000 for measuring the sensitivity of its embedded memories under SEUs.

Static tests investigated the main memory storage groups of Zyng-7000 under heavy
ions and protons such as OCM; L2 Cache, and the BRAMs of the PL part, which is embedded
into the PL but is also an important memory group for the PS. It was not possible to statically
test the L1 Cache under a particle beam due to its very dynamic behavior and the absence of a
L1 Cache controller. In addition, some of the experiments also considered variations in the
nominal supply voltage and temperature according to the ranges specified in the datasheet of
the device. Such analysis is necessary because due to the technology scaling, the amount of
charge used to store information in the memory nodes is continuously decreasing. Thus, less
charge from an energetic particle is needed to change the logical state of a node. Moreover,
the analysis of the temperature influence on the cross section behavior of devices like Zyng-
7000 is important because according to (BAGATIN et al., 2011), the cross section of SRAM
memories is strongly affected by temperature. However, temperature also induces changes in
other parameters, such as charge collection efficiency and electron-holes mobility. These
parameters can also be responsible for changing the cross section of modern devices like
Zyng-7000.

Since it was not possible to statically test the L1 Cache, dynamic tests consisting of
different cache schemes (L1 and L2 caches) were performed aiming to evaluate the impacts of
the cache scheme on the sensitiveness of the PS part of the Zyng-7000 under heavy ions. The
justification for this analysis relies on the fact that cache memories are traditionally disabled
in safety-critical applications since it is believed that the sensitive area they introduce

compromises the system reliability and the performance, consequently.

5.1 Static tests

5.1.1 Tests procedures

The static tests of the OCM, L2 Cache, and BRAMS, consisted of the same steps

described in Section 4.3.1. Although the static tests procedures were practically the same for

98

all the tested memories, each one was evaluated separately to achieve more precise results.
This means that during an irradiation, only the memory under test was being used by the
processor, while the others were disabled (i.e., OCM or L2 Cache) or even not instantiated
(i.e., BRAMS). Fig. 5.1 shows an integrated block diagram illustrating the architectures of the
static tests. Concerning the size of the memories, three quarters of the OCM (192 KB), half of
the L2 Cache (256 KB), and all the available BRAMs (4.9 Mb), were evaluated. It was left
free space in OCM and L2 Cache for safety reasons, such as to not have any chance of having
a segmentation fault or for the case in which an unknown instruction could start to be
executed by the processor. All the obtained cross sections are per bit. It is also worth noting
that the parity support for all the memories was disabled during the experiments and none of
them were implementing any ECC technique. Finally, the test programs were running from
the board’s DDR memory and the known pattern adopted (reference data) for all three
memories was “AAAAAAAA’R”.

Figure 5.1 — Integrated block diagram of the static tests architectures.

(]
o
L1 9 = T
o
Cache 2l 5 o s
1 Snoop [T o = 2
Control Cache ™ ﬁ
ARM Unit PS
Cortex-A9 |[e=» —| OCM
Core 0
N N Central
APU | DMA e | Interconnect
1 DDR
4 Memory
PL BRaM | | Bram | AXI
Memory =~ | Controller [7| Interconnect

Differently from OCM and BRAMSs, in which the user can freely write and read data
and as well as L1 Cache, L2 Cache is a very dynamic memory and additional procedures are
required to get a deterministic response from it and test it statically. Aiming to achieve this
with the L2 Cache of the PS part of Zyng-7000, it was necessary to manage the L2 Cache
controller (PL-310), since it provides a feature to lock data or code into the cache. Locking of
data or code in cache is an indication to cache replacement algorithm to prevent these entries
from being evicted. Thus, the solution found to perform the static test of the L2 Cache was to

preload data into the cache, lock them, and then constantly read the memory content searching

99

for errors. The procedures to lock data into the L2 Cache are executed in the beginning of the
application. They are the following:

1. Write the exact amount of data (4444AAAA’h) to be preloaded into the L2

Cache in the DDR memory;

2. Invalidate L1 and L2 Data caches;

3. Disable both L1 Instruction as well as Data caches;

4. Preload the data from the DDR into the L2 Cache;

5. Lock all the 8 ways of L2 Cache;

6. Start analyzing the memory content as shown in Section 4.3.1.

In the computer that controlled the experiments, a script monitored the serial interface
for incoming errors sent by the running program (described in Section 4.3.1) on the processor
for monitoring the OCM and L2 Cache. Once the script received an error, the error was time-
stamped and then logged for posterior analysis. Regarding the BRAMSs, another script handled
the Xilinx iIMPACT tool to write and read the content of the BRAMS, which are included in
the PL’s bitstream. The script constantly compared the fault-free bitstream (the golden)
against the last read. If differences were found, which means errors, the script time-stamped
and logged the errors for then reconfigure the PL with the golden bitstream.

With regard to variations in the nominal supply voltage, they were performed by
directly accessing the Zedboard power supply lines after the embedded input power regulator.
With regard to the temperature variations, they were performed by heating the device with an

air heater.
5.1.2 Tests setups

Heavy ion experiments were performed at two different facilities. For lower energies,
a specially experimental setup at the Laboratério Aberto de Fisica Nuclear (LAFN) of the
Universidade de S&o Paulo (USP), Brazil (AGUIAR et al., 2014) was mounted. Aiming to
achieve very low particle fluxes in the range from 10? to 10° particles.cm?.s?, as
recommended by the European Space Agency (ESA) for SEU tests (ESA, 2005), a standard
Rutherford scattering setup using a gold foil was used. The experiment was performed in both
vacuum and air. An approximate pressure of 10 Torr was used in the chamber for the tests in
vacuum. A silicon barrier detector was mounted inside the vacuum chamber at an angle of 45°
to monitor the beam intensity. In front of this detector, it was mounted a collimator with a

diameter of 4 mm, defining a solid angle of about 0.085 msr. The ion beams were produced

100

and accelerated by the S&o Paulo 8UD Pelletron Accelerator. The SEU events were observed

irradiating 2C, 10, F, 28Sj and **Cl beams, scattered by a 184 pg/cm? gold target, with

energies that provide effective LETSs in the border of the active layer ranging from 2.6 to 17

MeV/mg/cmz?, and penetration in Si ranging from 16.6 to 47.6 um. To achieve the desired

particle flow, the DUT was positioned at a scattering angle of 15°. Table 5.1 summarizes the

experiment parameters and Fig. 5.2 shows the experiment setup mounted at the LAFN-USP.

For higher energies, experiments were performed at the Russian Federal Space Agency
(ROSCOSMOS) tests facilities, Russia. The heavy ion test facility is based on a Cyclotron U-

400M. The characteristics of the heavy ion facility are shown in Table 5.2 and the

characteristics of the ions used in the experiments are shown in Table 5.3.

Table 5.1 — Characteristics if the heavy ion beams used at LAFN-USP.

Beam \Vacuum Incident Effective LET F_’ene_tration

type energy (MeV) | (MeV/mg/cm?) | in Si (um)
2c Yes 40.9 2.60 47.6
2c No 38.0 2.70 43.8
2c No 29.4 3.13 31.0
%0 No 41.0 5.00 28.5
0 Yes 41.0 5.00 27.5
%0 Yes 34.0 5.50 22.0
150 Yes 30.9 5.70 19.0
BF Yes 48.2 6.20 26.7
BF No 43.0 6.40 25.0
283 Yes 68.4 12.55 20.9
28si No 54.6 13.02 18.8
Bl Yes 80.8 16.60 195
¢l No 62.6 17.00 16.6

Figure 5.2 — Heavy ion experiment setup mounted outside and inside the vacuum chamber at the

LAFN-USP.

| BEAMLINE ©

Ty ‘
3 e 2
| ol =P

4
708

Table 5.2 — Characteristics of the ROSCOSMOS heavy ion facility.

Source name

IS OI-A (400 M) based on U-400M

Accelerator type

Cyclotron

lon species and energy ranges

O, Ne, Ar, Fe, Kr, Xe, Bi

Effective LET

4.5 - 99 MeV/mg/cm?

Range in Si > 30 pm
Min - Max fluxes 10 — 105 particles.cm2.s?
User flux control Yes

Spot size / Uniformity

60 x 60 mm /< 10%
60 x 90 mm /< 15%
60 x 180 mm /< 30%

Beam counting and monitoring
system

5 proportional counters - active track
detectors - passive

Test chamber

Vaccum

Device positioning system

Yes

Table 5.3 — Characteristics if the heavy ion beams used at ROSCOSMOS.

Beam vaceum Incident Effective LET Eene_tration
type energy (MeV) | (MeV/mg/cm?) | in Si (um)

2ONe Yes 78 8.40 38
OAr Yes 144 18.50 37
8Kr Yes 253 21.90 42
132xe Yes 404 32.30 45

102

For the heavy ion experiments, the package of a Zyng-7000 device, part XC7Z020-
CLG484, was thinned to allow that irradiated particles penetrate the active region of the

silicon. Fig. 3.10 shows the surface of the chip without its package, where it is possible to
distinguish between the PS part on the top of the left side and the PL. Fig. 5.3 shows the

microscopic section of the chip performed for evaluating the energy loss of the heavy ions

after passing the passive layers. The passive layers consist of eleven copper metallization
layers separated by dielectric layers. The estimated total thickness of the passive layers is

12.87 um. For estimating the energy loss of the heavy ions, it was assumed a total thickness

of copper metallization layers of 7.87 um and a total thickness of dielectric layers of 5.0 um.

The energy losses estimation and the effective LET values in the border of the active layer
were obtained with the SRIM software (SRIM, 2013) together with chip structure data

(XILINX, 2015d).

Figure 5.3 — Microscopic section of a Zyng-7000 device, part XC7Z020-CLG484.

TR
SENE

i

P

103

Proton experiments were also performed. They were carried out on a compact
synchrotron built by JSC Proton and located at the medical center of Protvino, Russia. The

characteristics of the synchrotron proton used in the experiments are shown in Table 5.4.

Table 5.4 — Characteristics of the Russian proton facility.

Proton energy 60...330 MeV
Bunch duration 10...1000 ms
Proton in the bunch 107...10° pcs
Proton beam diameter 2...4 mm
Beam bending HWD 70 x 700 mm
Beam non-uniformity 5%

Table 5.5 summarizes the test schemes performed in the embedded memories of the
PS part of Zyng-7000.

Table 5.5 — Heavy ion and proton test schemes performed in the embedded memories of the PS part of

Zyng-7000.
Memory Core voltage 1 | Core voltage 2 | Core voltage 3 | Temperature
V) V) V) (°C)
Heavy ion tests
BRAM 0.95 * 1.05 52.5
OCM 0.95 * 1.05 52.5
Proton tests
L2 Cache * 1.0 * 36.0

* Configuration unable to test due to beam limitations.

5.1.3 Tests results

Fig. 5.4 shows the obtained results from heavy ion irradiations, which are shown in
terms of cross section versus LET. Considering each memory type, the biggest cross section
variation with supply voltage for each one was of 19% for OCM (1.05V/0.95V, LET = 8.4
MeV.cm?/mg) and 15% for BRAM (1.05V/0.95V, LET = 18.5 MeV.cm#mg). However, if we
consider the same supply voltage, like 1.05V, and the same LET, like 21.9 MeV.cm2/mg, the
difference between the OCM cross section and BRAM cross section can reach 46%.

Regarding proton irradiations, it was obtained a cross section per bit for the L2 Cache
of 1.0x1071® cm2/bit for an energy of 250 MeV. Based on the neutron cross sections informed

104

by Xilinx in (XILINX, 2016c), such result is in accordance with the expected ones. However,
additional data are needed for performing a more accurate analysis.

The obtained results are fundamental, once they can guide designers to choose the
most reliable memory for implementing a shared memory between PS and PL parts, for

example.

Figure 4.4 — Cross section results from the heavy ion irradiations in the embedded memories OCM
and BRAM of the Zyng-7000.

1.0E-08

-
H L —H
4

1.0E-09

AOCM, 095V
B QOCM, 1.05V

Cross section per bit [cm?/bit)

BRAM, 0.95V
BRAM, 1.05V

1.0E-10 T T T T 1

0 5 10 15 20 25
LET (MeV.cm*/mg)

5.2 Dynamic tests

5.2.1 Tests procedures

Dynamic tests were performed to investigate the impacts of the cache organization on
the sensitiveness of the PS part of Zyng-7000. Considering a processor with L1 and L2
caches, it is reasonable to assume that there is a given configuration, such as using no caches,
only L1, or both levels, that optimizes reliability (in terms of exposure time and sensitive
area). As already mentioned, in general, cache memories are traditionally disabled in safety-
critical applications since it is believed that the sensitive area they introduce compromises the
system reliability. However, the choice of the more reliable configuration is not
straightforward.

105

Tests were based on a bare-metal application running on one core of the ARM Cortex-
A9 processor (here referred just as ARM), always at its maximum frequency (667 MHz). The
application performs a sequence of multiple matrix multiplication operations in order to
increase caches’ utilization and exercise all cache levels. Matrix multiplication was chosen as
the basic application because it is a common task in critical systems, such as in control and
filter operations. The sizes were chosen empirically, resulting in a set of 140 matrices of
25x25 integers, which totalizes 350 KB of data. The choice of performing multiple
multiplications of small matrices instead of a single matrix multiplication relies on the fact
that it would be necessary very large matrices to fill L1 Data (L1D) and L2 caches and it
would not exercise the L1 Instruction (L11) Cache. Moreover, as it is considered a worst-case
scenario, the parity of the L2 Cache was disabled. However, it was not possible to disable the
parity of L1 Cache in these experiments.

The dynamic tests procedures consisted of the same steps described in Section 4.3.2.
The detection of incorrect outputs was achieved by comparing the computed results C of the
multiplication of matrices A and B with a golden copy G, which is the expected correct results
calculated at compilation time. A monitor computer monitored the processor through a serial
interface. At each execution set, if there were not differences in the results, the processor sent
a “PASSED” message to the computer. Otherwise, if differences were found, the program sent
an “NOT PASSED” message to the computer and then the processor was reset. In both cases
the messages were time-stamped for future analysis.

Since the ARM core has three cache memories (L1I, L1D, L2), eight possible cache
configurations were implemented by enabling or disabling each cache level. Table 5.6 lists
the possible configuration (Enabled — E or Disabled — D) together with the respective
program size and execution time of each one. When all the caches are disabled (D/D/D
configuration), the processor uses the OCM to store instructions and data. If needed, the
processor also can use the DDR memory of the board. From the execution time data, it is
possible to observe a significant improvement of 92% when all cache levels are enabled
(E/E/E configuration). When comparing configuration D/D/D with E/E/D and E/E/E, it is
easy to observe by configuration E/E/D that L1 Cache plays a significant role in the
performance improvement, providing an enhancement of 91% in performance.

Results are presented in terms of Silent Data Corruption (SDC) cross section, which is
related to errors detected by the application without program interruption (data flow errors),
and Single Event Interrupt (SEFI) cross section, which is related to program crashes (control

flow errors). Errors in L1D cache are more prone to provoke SDC errors, because the L1D

106

cache memory stores mainly data of the program running in the ARM core. Consequently,
errors in the program data may result in unexpected program outputs. Errors in L1I cache are
more prone to provoke SEFIs errors, because the L1l cache memory stores the instructions of
the program running in one ARM core. Consequently, errors in the program instructions may

result in program crashes.

Table 5.6 — Application information running on Zyng-7000’s ARM Cortex-A9 Core 0 with different
cache schemes (D = Disabled, E = Enabled).

Configuration Program size Execution

(L11/L1D/L2) (bytes) time (s)
D/D/D 8036 2.4966
D/D/IE 8036 0.9809
D/E/D 8036 1.9040
D/E/E 8036 0.5722
E/D/D 8036 2.2220
E/D/IE 8036 0.9610
E/E/D 8084 0.2012
E/E/E 8080 0.1988

5.2.2 Tests setup

Experiments were also conducted through heavy ion tests performed at LAFN-USP,
Brazil, where the ion beams are produced and accelerated by the Sdo Paulo 8UD Pelletron
Accelerator. The setup configuration of the experiments is quite similar to the one of the static
tests. However, in this case, the experiments were performed in air.

The SEU events were observed using a '°0O beam, scattered by a 184 pg/cm? gold
target, with an energy of 59 MeV (effective energy at the active region of 11.6 MeV), which
provides an effective LET at the active region of 7.3 MeV/mg/cm?2 and penetration in Si of 28
pum. To achieve the desired particle flow, the DUT was positioned at a scattering angle of 15°,
resulting in an average flux of 5.84x102 particles.cm?.s™. Such configuration was chosen
based on several trials and it was the most suitable in terms of particle flux and number of

errors for these experiments. Finally, the beam was focused on the PS part.

5.2.3 Tests results

107

Experimental results from the heavy ion irradiation campaigns are listed in Table 5.7
and shown in Fig. 5.5. Errors in which their sources are unknown are considered in the error
bars. Data show that the SDC cross section increases with the addition of caches to the
memory hierarchy, since radiation can affect cache array and circuitry. Experimental results
also show that the addition of L2 Cache to the memory hierarchy is critical, making it even
impossible to estimate the SDC cross section due to the prevalence of SEFI over SDC errors.
In fact, the addition of any cache memory to the memory hierarchy affects significantly the

cross section of the ARM processor.

Table 5.7 — Obtained SDC and SEFI cross sections from the heavy ion irradiations.

Configuration | SDC cross section | SEFI cross section

(L11/L1D/L2) (cm?) (cm?)
D/D/D 2.85x10° 8.56x10°
D/D/E - 1.33x10°
D/E/D 1.23x10° 8.56x10°
D/E/E - 1.52x107°
E/D/D 1.61x107 1.05x10°
E/D/E - 1.62x10°
E/E/D 1.90x10° 1.33x10°
E/E/E 1.99x10° 1.71x10°

Figure 5.5 — Obtained SDC and SEFI cross sections from the heavy ion irradiations.

2.30E-05 2.0DE-05
2.10E-05 + 3 180605
&~ 1.90E-05 i 1 160E-05 @
£ [| ¥ a
S 1.70E-05 L i - 140E05 o
=] * n ' g
§ L50E-05 T + - 120605 9
£ 1.30E-05 T -
9 N - 1.00E-05 @
“ 1.10E-05 a
8 9.00E-06 - §BOOEDE g
o 7.00E-06 [oooEDs
O 5.00E-06 #SDC cross section (cm?) |~ 4.00E06 Tu
3.00e-06 T W SEFI cross section (cm?) [2-00E-08
1.00E-06 ' ' 0.0DE+00
p/o/0 D/D/E D/E/D DJE/E E/D/D E/D/E E/E/D E/E/E
Configuration

The SEFI data in Table 5.7 and Fig. 5.5, which are related to control flow errors, show

that the SEFI cross section also increases with the addition of caches to the memory

108

hierarchy, but mainly with the addition of L2 cache. However, it is possible noticing an
increase in cross section when caches L1l and/or L2 are enabled. This is particularly
interesting because it confirms that control flow errors are the main source of SEFIs in
processors and they are more related to the program instructions than the program data. The
adoption of Software Implemented Hardware Fault Tolerance (SIHFT) or Algorithm-based
Fault Tolerance (ABFT) techniques are possible solutions to improve the SEFI results, for
example.

Table 5.8 shows the MWBF values for all the tested caches configurations. In this
case, the workload w of the application, i.e. the amount of data processed by the application at
each execution, is 2.80x10° bits. Table 5.7 shows that the most reliable configuration under
heavy ions is the one with all caches disabled. Regardless the smaller cross section imposed
by disabling all caches, its execution time is so high not to be compensated by the benefit in
terms of performance. For the other configurations, despite the increase in the complexity and
sensitive area, the smaller the execution time, the bigger the MWBF. In this case, although the
small improvement in the MWBF values when comparing to the execution time values of the
corresponding configurations, it is worth maintaining at least L1l and L1D caches enabled to
not compromise the system performance. It is worth mentioning that all the data obtained are

strongly dependent of the application and the cache policy.

Table 5.8 — Obtained MTBF, MEBF, and MWBF from the heavy ion irradiations.

Configuration MTBF MEBF MWBF

(L21/L1D/L2) (hours) (executions) (data)
D/D/D 6.00x10? 8.66x10° | 2.42x10%
D/D/IE - - -
D/E/D 1.39x10° 2.63x10° | 7.37x10%
D/E/E - - -
E/D/ID 1.06x10? 1.72x10° | 4.82x10!
E/D/E - - -
E/E/D 9.01x10! 1.61x10° | 4.52x10'?
E/E/E 8.60x10! 1.56x10° | 4.36x10'?

Fig. 5.6 compares the experimentally measured SDC cross section from heavy ion
experiments and the evaluated MWBF. The graph shows that whenever the speed-up is higher
than the increase in cross section, the faster configuration computes a large workload before
experiencing a failure. Thus, enabling caches not only improves performance but also

increases reliability to radiation-induced errors.

109

In processors-based systems running on Zyng-7000, it is possible to achieve an even
higher speed-up than just the one provided by enabling cache memories. In this case, co-
processors in the PL are used as hardware accelerators, such as dedicated IPs or soft-core
processors. Using the PL, tasks are offloaded from the PS to the PL part, which accelerates
the tasks and reclaims processor bandwidth for additional tasks. Therefore, the next chapter
investigates the Zyng-7000’s PL part and the overall trade-offs between performance and

reliability that different designs running on the PL provide to a system.

Figure 5.6 — Comparison between the obtained SDC cross section and MWBF values from the heavy

ion irradiations.

A.60E+12 | | 2.35E-05
4.10E+12 | - 2.10E-05 5
¢ b A
= 3.60E+12 - 1.85E-05 o
_13 3.10E+12 » - 1.60E-05 g
T 2.60E+12 - 135605 @
& * a
= 2.10E+12 1.10E-05 2
= 1.60E+12 MWBF - 8.50E-06 3
(=]
1.10E+12 #50C cross section | 0-00E-06 3...
6.00E+11 ¢ | | | 3.50E-06 —

1.00E+11 ' 1.00E-06

o/o/oD D/OJE DJ/E/D DJE/fE E/D/D E/DJE EfE/D E/E/E

Configuration

110

6 ANALYSING SINGLE EVENT EFFECTS ON THE PL PART OF
ZYNQ-7000

This chapter presents static and dynamic radiation tests performed in the PL part of
Zyng-7000 for measuring the sensitivity of its configuration memory and the trade-offs
between performance and reliability of hardware designs implemented in it.

Static tests investigated the Configuration Memory (CRAM) of the PL part of Zyng-
7000 under heavy ions and protons. Similarly to the experiments performed in the Zyng-
7000’s PS part, some of the experiments also considered variations in the nominal supply
voltage and temperature according to the ranges specified in the device’s datasheet. Such
analysis is necessary because due to the technology scaling, the amount of charge used to
store information in the memory nodes is continuously decreasing, and less charge from an
energetic particle is needed to change the logical state of a node. Moreover, the analysis of the
temperature influence on the cross section behavior of devices like Zyng-7000 is important
because according to (BAGATIN et al., 2011), the cross section of SRAM memories is
strongly affected by temperature. However, temperature also induces changes in other
parameters, such as charge collection efficiency and electron-holes mobility. These
parameters can also be responsible for changing the cross section of modern devices like
Zyng-7000.

Dynamic tests investigated the trade-offs of different designs implemented into an
Artix-7 FPGA (equivalent to the Zyng-7000’s PL) in terms of not only resource utilization
and performance, but also reliability, by analyzing their behaviors under SEUs and comparing
them to a standard processor-based implementation. The designs were implemented by HLS,
since HLS tools provide a design methodology able to generate optimized digital designs for
different application needs, as already shown in Section 2.2. Moreover, HLS tools have
significantly evolved in the last years, providing very optimized results in area and
performance with a very short development time. Such analysis is also important because
HLS-based designs have been employed in several safety-critical applications that require
high performance and high reliability level, such as the ADAS (XILINX, 2016d), medical
systems (XILINX, 2016b), satellites (ITURBE et al., 2015), and particle accelerators
(HUSEJKO, EVANS, DA SILVA, 2015). The experiments considered different HLS
optimization strategies such as default, pipeline and loop unroll in different places, array

partition with different configurations, and inline functions. The case-study designs consisted

111

of several design architectures based on three benchmark algorithms: Matrix Multiplication
(MxM), Advanced Encryption Standard (AES), and Adaptive Differential Pulse-Code
Modulation (ADPCM). The designs were evaluated by several radiation experiments with
heavy ions and FPGA-based Fault Injection (FI) campaigns. As a result, this chapter proposes
a reliability analysis for HLS-based designs and even traditional hardware designs that want
to investigate the trade-offs between reliability and performance.

6.1 Static tests

6.1.1 Tests procedures

As well as the static tests of the PS part of Zyng-7000, the tests of the PL part
consisted of the same steps described in Section 4.3.1. First, the configuration memory is
configured with a fault-free bitstream (the golden) containing most of its bits in “0”. Then, a
script running on a control computer was constantly reading back the PL’s configuration
memory with the Xilinx iMPACT tool through a JTAG interface and comparing the bitstream
read against the golden one. If differences were found, which means errors, the script time-
stamped and logged the errors for then reconfigure the PL with the golden bitstream. The
entire PL’s configuration memory (32.3 Mb) was evaluated and all the obtained cross sections
are per bit.

Concerning variations in the nominal supply voltage, they were performed by directly
accessing the Zedboard power supply lines after the embedded input power regulator. With
regard to the temperature variations, they were performed by heating the device with an air

heater.

6.1.2 Tests setups

The characteristics of the heavy ion and proton experiments are the same of the static
tests performed on the PS part, which were already described in Section 5.1.2. Table 6.1
summarizes the test schemes performed in the configuration memory of the PL part of Zyng-
7000.

112

Table 6.1 — Heavy ion and proton test schemes performed in the configuration memory of the PL part

of Zyng-7000.

Memory Core Voltage 1 | Core Voltage 2 | Core Voltage 3 | Temperature
V) V) V) (°C)
Heavy ion tests
CRAM 0.95 * 1.05 51.0
Proton tests
CRAM 0.95** 1.0 1.05 36.0

* Configuration unable to test due to beam limitations.

** Configuration also tested at 92 °C.

6.1.3 Tests results

Fig. 6.1 shows the obtained results from heavy ion irradiations. Experiments
performed at lower LETs were performed at the LAFN-USP facility, while the ones
performed at higher LETs were performed at the ROSCOSMOS facility. The obtained results
are in accordance to what was expected. Regarding supply voltage variation, the biggest cross
section difference was only 4% (1.05V/0.95V, LET = 8.4 MeV.cm#mg), what is smaller than
the error bars. It is important to highlight that for LETs higher than 6.5 MeV/mg/cm?, it was
possible to observe precisely the occurrence of MCUs, when an SEU affects multiple bits, and
MBUSs, when an SEU affects multiple bits in the same word. From the total number of events
observed, 33% were SEUs, 16% were MBUs together with MCUs and 51% were MCUs. No
isolated MBUs were observed. Such behavior is quite critical, since MBUs and MCUs reduce
the efficacy of ECCs, such as Single-Error Correct/Double-Error Detect (SECDED) codes.

Fig. 6.2 shows the obtained results from proton irradiations. From the results, one can
observe that there are not significant differences in cross section according to the supply
voltage applied to the PL part (CRAM). Moreover, uncertainties are such that the behavior is
approximately constant. It is interesting to note that the biggest cross section variation was of
about 20% (0.95V,92°C/0.95V,36°C, 250 MeV), and it was achieved when the device was

heated and not with the supply voltage variation.

113

Figure 6.1 — Cross section results from the heavy ion irradiations in the configuration memory of the
PL part of Zyng-7000.

1.0E-08

ey

-1

= [i

£ 1.0E-09 é =

s

: ;

- 3 i

g &

=

2

b

o

= 1.0E-10

g i # CRAM, 0.95V
5
i A CRAM, 1.00V

B CRAM, 1.05V
1.0E-11 . . : : : ; |
o 5 10 15 20 25 30 35
LET (MeV.cm?/mg)

Figure 6.2 — Cross section results from the proton irradiations in the configuration memory of the PL
part of Zyng-7000.

1.00E-15

9.00E-16

8.00E-16

7.00E-16

6.00E-16

&
-y

——H
& m
+
—
.
-

5.00E-16

4.00E-16

Cross section per bit (cm%bit)

3.00E-16 }

B CRAM, 1.0V, 362C
+ CRAM, 0.95V, 36°C

2.00E-16
4 CRAM, 1.05V, 36°C
® CRAM, 0.95V, 92°C
1.00E-16
0 50 100 150 200 250 300
Energy (MeV)

6.2 Dynamic tests and proposed reliability analysis for hardware-only designs

114

The dynamic tests performed focused on investigating the trade-offs of different
hardware designs in terms of not only resource utilization and performance but also
reliability. Thus, an analysis of their behavior under soft errors was performed and compared
to a standard processor-based implementation running on a soft-core processor embedded in
an SRAM-based FPGA. Although such investigation is not new, the novelty of it is that the
hardware designs were generated by HLS targeting future applications in APSoCs, as
addressed in the next chapter in Zyng-7000.

Different HLS optimization strategies were considered, such as default, pipeline and
loop unroll in different places, array partition with different configurations, and inline
functions. The goal was to observe that depending on the coding style of the high-level
software programming language and optimization directives applied in the HLS tool, different
amounts of FPGA resources and configuration bits, and distinct execution times are achieved
by the generated hardware. Consequently, the cross section and MWBF may present
significantly different results. However, it is not only the amount of FPGA resources and
configuration bits that determine the sensitivity of a hardware. The error masking effect of the
application algorithm implemented using HLS plays an important role, directly affecting the
reliability of a design implemented in an FPGA, as shown in this section.

The designs were evaluated by several radiation experiments with heavy ions and
FPGA-based Fault Injection (FI) campaigns, from which the dynamic cross section and
MWABF are estimated for each design version. As a result, a reliability analysis for HLS-based
designs is proposed. Results show that, in general, the estimation of the dynamic cross section
and MWBF values of HLS-based designs through the proposed flow based on fault injection
is a suitable method for predicting their trend before radiation experiments. Results also
reveal that there are important trade-offs between the use of resources, optimization strategies,

and execution time in order to achieve higher MWBF values.

6.2.1 Proposed reliability analysis for hardware-only designs

The reliability analysis of a design implemented in an FPGA depends on the
characteristics of the design and susceptibility of the underlying FPGA platform. This section
presents the proposed methodology flow to estimate the reliability of HLS-based designs
based on fault injection campaigns. Nevertheless, the proposed methodology is capable to be
generic and extendable to any type of design if slight adjustments are performed. It aims to

accelerate the search for the design with the best trade-off between performance and

115

reliability, i.e. the design that provides a performance enhancement higher than the cross
section increase. The methodology takes into account four parameter groups: A) Resources
and performance in terms of execution time; B) Errors and critical bits; C) Radiation
measurements such as static and dynamic cross sections; and D) Mean Workload Between

Failures. Fig. 6.3 summarizes the proposed reliability analysis in a flow diagram.

Figure 6.3 — Proposed reliability analysis flow for hardware-only designs.

RTL code

Resources info: LUTs, flip-flops, BRAM
blocks, DSP blocks, frames,
configuration bits, essential bits
3

A

Mapped code Performance info: latency, operating
frequency, execution time

w

MWBF =

O dynamic * flux * Lexec Fault injection
[(developed tool)

. ¥
#DItScpiticar ‘ SDC and SEFI

#bffsin}scrsd critical bits

= Ostatic *

6.2.1.1 Resources and performance

The area of an implemented design can be expressed in terms of the number of used
resources, such as LUTs, flip-flops, BRAM blocks, DSP blocks, etc. It is also possible to
express the area in terms of configuration frames and configuration bits. A configuration
frame is a group of configuration bits. It is the smallest addressable memory segment of the
configuration memory (bitstream) of an SRAM-based FPGA. Since each frame is related to a
specific resource and position in the floorplanning of the FPGA, the number of configuration
frames (and configuration bits) used by a design can be calculated. In case of Xilinx 7-Series
devices, a configuration frame is composed of 101 32-bit words (XILINX, 2014). In terms of

116

reliability, the resource information is important since it is used to determine how much the
design is physically exposed to radiation.

The performance of a design can be expressed in terms of execution time, operational
frequency, and processed workload. The execution time can be defined by the number of
clock cycles needed to perform an operation. According to the FPGA and embedded design
architecture, a maximum clock frequency is achieved. Another important parameter is the
workload processed by the design, which is the amount of data computed at each design
execution. In terms of reliability, performance information is important to determine how
much time the design is exposed to soft errors during the execution of the implemented

function.

6.2.1.2 Errors and critical bits

An error is defined as any deviation from the expected behavior of a design. As
already mentioned, an error can be classified as SDC error (erroneous data in the design
output) or SEFI error (absence of data in the design output after a given time). With regard to
critical bits, Xilinx defines critical bits in (XILINX, 2012b) as the amount of configuration
bits that once flipped, they cause an error in the expected design behavior (SDC or SEFI).
Critical bits are obtained by means of fault injection in the DUT. In this thesis, the critical bits
of each design version are obtained by an exhaustive and sequential fault injection campaign,
in which all the configuration bits of the injection area are flipped one at a time. A bit is
considered critical if it causes a deviation from the expected design output (SDC or SEFI).
Thus, the process of generating a complete list of critical bits for a specific design is a time-
consuming task that involves validating the correct design behavior while moving a single

upset through all the configuration memory bits in the design region.

6.2.1.3 Radiation measurements

The methodology takes into account the cross section parameters already introduced in
Section 4.3.2.

6.2.1.4 Mean Workload Between Failures

117

The methodology also takes into account the MWBF metric, which was also already
introduced in Section 4.3.2.

6.2.1.5 Xilinx analysis tools

Xilinx Vivado design tool provides the area of an implemented design in terms of
resource utilization after the design is placed and routed, and Xilinx Vivado HLS tool
provides the performance of the design in terms of clock cycles. The execution time of an
HLS-based design is obtained by multiplying the number of clock cycles by the clock period.
The execution time of the processor-based design is obtained at execution time.

6.2.1.6 Fault injection method and analysis

The fault injector platform used in this thesis and the method for obtaining the critical
bits were already presented in Section 4.2.1.

With regard to the analysis of the fault injection results, the method proposed by
Velazco, Foucard, and Peronnard (2010) was used to estimate the dynamic cross section and
MWBF, consequently, of hardware designs before radiation test campaigns. The method
supposes that an approach allowing injecting bit-flips can be implemented for the considered
DUT, which in this case is the fault injection platform already presented. In addition, the
method requires a cross section derived from a static test for providing the average number of
particles of a given type which is necessary to provoke a bit-flip of one of the memory cells
included in the DUT. The static cross section for a specific particle and for a specific device
can be obtained from previous experiments or reports, such as (XILINX, 2016c). The
masking upset probability can be considered by using the information about the critical bits,
which are first evaluated by means of fault injection. The dynamic cross section is then
calculated by multiplying the static cross section by the masking upset probability of the

design, as shown in Eq. 6.1.

#DitScritical)

: [em?]
#DitSinjected

(Equation 6-1) Udynamic—estimated = Ostatic - (

6.2.2 Case-study designs and resources and performance results

118

Three C language-based benchmark algorithms were evaluated: i) 32x32 floating-
point matrix multiplication (MxM) (XILINX, 2016a), ii) 128-bit Advanced Encryption
Standard (AES) (HARA et al., 2008), and iii) Adaptive Differential Pulse-Code Modulation
(ADPCM) (HARA et al., 2008). These algorithms were chosen because they cover a variety
of domains, such as arithmetic (MxM), security (AES), and media processing (ADPCM).
Moreover, they range from a data flow oriented algorithm (MM) to a control flow oriented
algorithm (ADPCM). The processor-based design has a Microblaze (MB) soft-core processor,
which is a 32-bit 5-state pipeline Reduced Instruction Set Computer (RISC) soft processor.
The architecture of both HLS-based designs and processor-based design are shown in Fig.
6.4.

Figure 6.4 — Architecture of the (a) processor-based design and the (b) HLS-based design.

Local
memory

4

-
[} + £
[]] o © I
< @ = DMA |«
< 5 = € A
>< W
<0 = 3
2 ; ; 3]
Z les Microblaze (main > Local £ | .| Microblaze (main | | Local
¢ processor) memory ¢_ <2 processor) = | memory
rig?;ify Shared > AX| Stream
memo €
ry Interconnect |
(a) (b)

Three HLS-based designs for each benchmark application were generated in Xilinx
Vivado HLS, each one with different optimization strategies. The optimizations applied are
summarized in Table 6.2. The optimizations were chosen focusing on speeding up the critical
path of the algorithms. In the MxM benchmark, the main optimization effect was the increase
in pipeline depth, which resulted in a 21-stage pipeline in HLS1, 220-stage pipeline in HLS2,
and a 3235-stage pipeline in HLS3. It is worth noting that in MxM-HLS3, the array partition
directive was applied aiming to increase the throughput of the input data, which significantly
increased its pipeline depth and performance. In the AES and ADPCM benchmarks, the main
optimizations applied were also related to the data parallelism (unroll loop and pipeline),
although at different levels of granularity. This was done since they present a lot of data
dependencies among their several internal functions and to not modify the original benchmark
programs. The inputs and outputs of the three benchmarks use the resource directive to force
the variables to be synthesized as Advanced eXtensible Interface Stream (AXI-S) channels in

order that all the HLS-based designs have the same interface architecture, as shown in Fig.

119

6.4(b). Moreover, the input data of the three benchmarks were fixed so that they were known.
All the input and output elements were implemented with BRAM memories protected with
ECC for the designs tested under radiation. All designs were synthesized into a Xilinx Artix-7
FPGA, part XC7A100TCSG324-1, embedded into a Digilent Nexys 4 board, and with an
input clock of 100 MHz.

Table 6.2 — Optimization strategies applied in each HLS-based design for each benchmark program.

Optimization strate
Benchmark b 9y
HLS1 HLS?2 HLS3
e . - Pipeline in the middle loop

MxM -None |, Pipeline in the middle - Array partition in the inputs

loop S

- Function inline
- Unroll the loops of the | - Unroll the loops of the main
main - Pipeline the encryption
i - Pipeline the encryption | function

AES None function - Pipeline the decryption

- Pipeline the decryption | function

function - Pipeline the key function

ADPCM |- None | - Pipeline fine grain - Pipeline coarse grain

Resource usage, performance results in terms of clock cycles, and number of critical
bits obtained by fault injection for each case-study design are presented in Table 6.3. The
workload considered for each benchmark was 32768 bits (1024 values of 32-bit each) for the
MxM, 1024 bits (32 values of 32-bit each) for the AES, and 3200 bits (100 values of 32-bit
each) for the ADPCM. Results show that as the optimization level of the HLS-based designs
is increased, the number of resources used (15.6 times for the MxM in the worst case) and the
number of critical bits increases as well (4.19 times for the AES in the worst case). However,
the highest increase is related to the performance (73.5 times for the MxM in the worst
resource increase). This means that increasing the hardware parallelism using more resources,
greatly increases the workload capability of the system. Moreover, the use of the array
partition directive also plays an important role by decreasing memory bottlenecks. By
comparing the use of a processor-based approach versus an HLS-based design, one can see
that, in general, HLS-based designs use more area. However, the performance improvement
they provide is even higher (31.0 times when comparing ADPCM-MB versus ADPCM-HLS1

in the worst case).

120

Table 6.3 — Resource usage and performance results of each case-study design.

Design Resources and performance _ _
Version # # # # # # Critical bits texec (Clock
LUT FF DSP | BRAM | Config. bits | (% of config. bits) cycles)
MxM
MB 1159 | 1452 0 0 524342 70089 (13.37) | 41611263
HLS1 755 944 5 3 435879 35199 (8.08) 366354
HLS2 2397 | 3374 10 3 1000132 47164 (4.72) 19613
HLS3 | 11787 | 13924 | 160 33 4606244 94692 (2.06) 4982
AES
MB 1159 | 1452 0 0 524342 70089 (13.37) 104905
HLS1 5780 | 2380 0 17 896694 79205 (8.83) 3188
HLS2 | 25243 | 6511 0 19 2023681 198661 (9.82) 2269
HLS3 | 34725 | 12343 0 15 3823592 331971 (8.68) 1317
ADPCM
MB 1159 | 1452 0 0 524342 70089 (13.37) 1091250
HLS1 5435| 6385| 103 8 1898542 230420 (12.14) 35144
HLS2 4911 | 6157 | 103 14 1806674 232686 (12.88) 17316
HLS3 | 14959 | 18681 | 240 14 6023727 817025 (13.56) 8462

The number of critical bits that cause SDC or SEFI errors for each case-study design is
also shown in Table 6.3. Comparing the obtained results from fault injection with the number
of configuration bits in the DUT area, one can observe that a small fraction of the
configuration bits (from 2% to 13%) is, in fact, critical. Moreover, a slight variation in the
percentage of critical bits over the total number of configuration bits among the different
HLS-based designs of each benchmark circuit can also be observed. In some cases (all MxM-
HLS designs and AES-HLS1 vs. AES-HLS3), the percentage of critical bits decreased even
with the increase in the resource utilization. This behavior is similar to one observed in
(HILL, LIPASTI, 2010), in which authors stated that deeper pipelines are in many cases more
resilient that their shallower counterparts if proper metrics are taken into account for

considering effects such as timing window masking, such as MWBF.
6.2.3 Cross section and MWBF results
Radiation experiments were also carried out with heavy ions at LAFN-USP, Brazil

(AGUIAR et al., 2014), where the ion beams were produced and accelerated by the Sao Paulo

8UD Pelletron Accelerator. The setup configuration of the experiments is quite similar to the

121

one of the previous experiments. However, this time the experiments were performed in
vacuum and the SEU events were observed using a 1°0 beam scattered by a 184 pg/cm? gold
target, with an energy of 56 MeV, which provided an effective LET on the active region of 5
MeV/mg/cm? and penetration in Si of 28.5 um. To achieve the desired particle flux, the DUT
was positioned at a scattering angle of 90°, which resulted in an average flux between 2.0x10?
and 2.5x10? particles-cm™-s™. This configuration was chosen based on several trials and was
the most suitable in terms of particle flux and number of errors. Each experiment run was set
by the total number of errors observed (60) in the DUT output. Errors in the soft-core
processor that sends data to the DUT are not considered in the count. All other uncertain
errors observed are considered in the errors bars. For the heavy ion experiments, the package
of an XC7A100TCSG324-1 device was thinned to allow irradiated particles to penetrate the
active region of the silicon.

A small FSM (one-hot encoding) implemented with TMR performed the detection of
incorrect outputs by comparing the computed results of the DUTs with their expected
reference values stored in embedded BRAMSs protected with ECC. A host computer
monitored the FSM through a serial interface. If there were no differences in the results, the
FSM sent an alive signal to the host computer at each execution set. Otherwise, if differences
were found, the FSM sent the number of mismatches to the host computer and then the FPGA
was reset. Timeouts in the DUT were monitored through a watchdog circuit in the FSM. The
host computer also had a watchdog circuit to monitor timeout occurrences in the FSM. In case
of timeout, the FPGA was reset.

The obtained SDC, SEFI, and TOTAL (sum of SDCs and SEFIs) dynamic cross
section results from both fault injections and radiation experiments are presented in Fig. 6.5,
6.6, and 6.7. With regard to the fault injection results, a reference static cross section of
1.11x10° cm? (effective LET = 5.25 MeV/mv/cm? and flux = 1.32x10? particles-cm?s™!) was
adopted, which was obtained from previous heavy ion experiments with the same device.
Notably, one can observe that there are differences in the obtained values from fault injections
and radiation experiments (3.18 times in average and 13.07 times for the worst case -
ADPCM-HLS3-TOTAL). In general, data from fault injection are more pessimistic than the
ones from the radiation experiments. Such behavior was already expected, since the fault
injection methodology is more deterministic and gives a very fine fault granularity, enabling
to estimate the worst-case cross section of a design without considering side-effects, such as
beam variations and fault masking by the design. Therefore, it is possible to determine

precisely the exact number of bits that are critical and consider them in the estimated dynamic

122

cross section. It is also worth noting that radiation experiments cover the whole architecture,
while the fault injection campaigns cover only the DUT (shown in Fig. 6.4). However, for a
same benchmark application, the HLS-based design (DUT) is the only part of the system that
changes among the different versions. This somehow normalizes the sensitivity of the
processor among the designs, since the soft-core processor and peripherals never change
among the designs. It is also important to reinforce that the proposed reliability analysis is
capable of estimating the dynamic cross section trend for different HLS-based designs of a
same benchmark application, even with the mentioned differences.

By analyzing the obtained dynamic cross section trends from both radiation
experiments and fault injections for all HLS-based designs, one can notice interesting
behaviors. The higher the optimization level, the more resources a design uses. However, in
general, this does not necessarily imply in higher values of critical bits and SDC and SEFI
cross sections. Data flow oriented algorithms are characterized by a significant amount of
latches (high number of FFs compared to LUTS) and arithmetic operations with few control
dependencies, while control flow oriented algorithms contain many combinational logic (high
number of LUTs compared to FFs) and relational operations. Thus, in the most data flow
oriented algorithm, the MxM, one can generalize that their cross sections followed the trend
of the amount of configuration bits, most probably due to the increase in the pipeline depth
and consequent latch count, which could have masked SEUs. On the contrary, in the most
control flow-oriented algorithms, the AES and ADPCM, one can generalize that their cross
sections followed the trend of the amount of critical bits as expected, most probably due to the
lower probability of masking effects in their combinational logic. With regard to the
comparison between SDC and SEFI cross section results, the most evident one is that, in
general, HSL-based designs presented a higher SDC cross section than the processor, which
presented higher a SEFI cross section than the HLS-based designs. This happened most likely
because the processor is more prone to experience SEFIs due to its control flow logic, which
is more complex than in HLS-based designs. On the contrary, in HLS-based designs
predominate data structures, making them more prone to experience SDCs. One can also note
that is important to consider both SDC and SEFI cross section separately, since the TOTAL
cross section may mask important data about the designs, such as the SEFI cross section

decrease of the AES HLS-based designs with the optimization level increase.

123

Figure 6.5 — SDC, SEFI, and TOTAL dynamic cross section results obtained for the MxM designs
from both fault injections and radiation experiments.

MxM 64 amic SDC

1.21E-04
M o dynamic SDC EXP
1.01E-04 |
_ o dynamic SDC FI
“E 8.10E-05
2
6.10E-05 —
B
£ 4.106-05 i [
2.10E-05 :- -
1.00E-06 -
MB HIS1 HLS2 HLS3
Designversion (a)
MxM Udynamic SEFI
4.60E-05 Eod ic SEFI EXP
] O dynamic
4. 10E-05 o dynamic SEFI FI
3.60F-05
% 3.106-05 I B
S 2.60E-05 B
E 2.10E-05 B
£ 1.60E-05 - [
1.10E-05 - B
6.00E-06 - [
1.00E-06 - —
MB HLS1 HLS2 HLS3
Design version (b)
MxM odvnamic TOTAL
1.61F-04 :
W o dynamic TOTAL EXP
141804 d ic TOTALFI |
_ 121E-04 O dynamic
5 1.01E-04 B
= 8.10E-05 B
: |
£ 6.10E-05
4.10E-05 - B
2.10E-05 - B
1.00E-06 -

MB HLS1 HLS2 HLS3
Designversion (©)

124

Figure 6.6 — SDC, SEFI, and TOTAL dynamic cross section results obtained for the AES designs both

fault injections and radiation experiments.

AES Gy amic SDC

4.01E-04
3.51E-04 -
ag dynamic SDC FI

3.01E-04 —
E 2.51E-04 —
.EE.OIE—[M —
g |
0%.1.51E-04

1.01E-04 —

o

1.00E-06 i

MB HLS1 HLS2 HLS3
Designversion (a)

W o dynamic SDC EXP

‘)

(c

AES G4,y omic SEFI

4.60E-05
4.10E-05
3.60E-05

M o dynamic SEFI EXP
g dynamic SEFI FI

—
L]

E 3.10E-05 -
< 2 60E-05 -
a

£2.10E-05 -

& 1.60E-05 - —
1.10E-05 —
= 0= e
1.00E-06 -

MB HLS1 HLS2 HLS3

Design version (b)

AES Gy, TOTAL

4.01E-04 :
M o dynamic TOTAL EXP
3.51E-04 —

a dynamic TOTAL FI
3.01E-04 —
E 2.51E-04 —
= 2.01E-04 —
g |
& 1.51E-04
1.01E-04 —

ol owl BB
1.00E-06 -
MB HLS1 HLS2 HLS3

Design version
& (c)

g

(c

125

Figure 6.7 — SDC, SEFI, and TOTAL dynamic cross section results obtained for the ADPCM designs
both fault injections and radiation experiments.

ADPCM Gy, ;e SDC

9.01E-04 _
M o dynamic SDC EXP
8.01F-04 _ -
o dynamic SDC FI
7.01E-04 —
6.01E-04 —
“-;5.01E-D4 —
§4.01E-04 -
£
© 3.01E-04 —
2.01E-04 —

1.01E-04 —
1.00E-06 - = - - [|

MB HLS1 HLS2 HLS3 (a)

m?)

ADPCM Gy, SEFI
8.10E-05

W o dynamic SEFI EXP
7.10E-05 —
o dynamic SEFI FI
6.10E-05 —
ES.IDE—OS —
£4.10E-05 —
g
& 3.10E-05 - —
2.10E-05 -~ —
1.10E-05 i —
L O0E-06 | s

MB HLS1 HL52 HLS3 (b)

ADPCM o, ... TOTAL

1.00E-03 -
W o dynamic TOTALEXP
9.01E-04 - —
o dynamic TOTALFI
8.01E-04 —
— 7.01E-04 |
E 601600 —
25 01E-04 -
bE-4.01E-04 -
3.01E-04 —
2.01E-04 —
1.01E-04 —

10006 N] = .

MB HLS1 HLS2 HLS3 (c)

126

The obtained MWBEF results from both fault injections and radiation experiments are
depicted in Fig. 6.8, 6.9, and 6.10. A comparison between the fault injections and radiation
experiments results shows that there are slight differences in the obtained values (2.13 times
in average and 7.21 times for the worst case - ADPCM-HLS3-SDC). In addition, they show
that the proposed reliability analysis is capable of estimating the MWBF trend of different
HLS-based designs for the same benchmark application with a higher precision than for the
cross section. This reinforces the importance of taking into account additional parameters,
such as the execution time, and not only the sensitivity of the device. By analyzing the
obtained MWBF values from both fault injections and radiation experiments, it is possible to
observe that the use of different optimization strategies has a direct impact in the final MWBF
values of the different HLS-based. Such behavior is mainly guided by the execution time
improvement achieved with the different optimization strategies chosen and cannot be
observed if only the dynamic cross section measurements are taken into account. The only
performance decrease observed after applying some optimization strategy is related to the
AES benchmark. This is related to how the benchmark is encoded. Moreover, we chose not to
modify the algorithm. In this case, the main AES function has the following structure: for
loop, encrypt function call, for loop, decrypt function call, for loop. In addition, inside the
encrypt and decrypt functions, there are calls to a key function, which calculates the key of the
algorithm. With such organization, whatever the optimization strategy applied in the for loops
or the internal functions, there will always be a data bottleneck among such blocks. This
behavior cannot be observed in the MxM benchmark because the algorithm is quite simple
and very data flow oriented, which facilitates data parallelization. Concerning the ADPCM
benchmark, even though the algorithm is control flow oriented, it is more modularized than
the AES and with less data exchange among them. The lower MWBF values for the

processor-based design were already expected due to their higher execution times.

127

Figure 6.8 — SDC, SEFI, and TOTAL MWABF results obtained for the MxM designs both fault

injections and radiation experiments.

MxM MWBF 5DC

1.00E+11
B MWBF SDC EXP

1.00E+10 —
E‘ MWEBF SDC HI
i 1.00E+09 —
L
o
= 1.00E+08 —
=

1.00E+07 —:. —

1.00E+06 -

MB HLS1 HLS2 HLS3
Design version (a)
MxM MWBF SEFI
1.00E+12

B MWBF SEFI EXP

1.00E+11 -
MWBE SEFI FI
1.00E+10 |
1.00E+09 —
1.00E+08 —
1.00E+07 :. —
1.00E+06 -
MB

HLS1 HLS2 HLS3

Design version (b)

MWBF (bits)

MxM MWBF TOTAL

1.00F+11
® MWBF TOTAL EXP

1.00F+10 -
- MWBF TOTAL FI
5 1.00E+09 -
=
o
= 1.00E+08 _-—
=

1.00E+07 -

1.00E+06 J

MB HLS1 HLS2 HLS3

Design version (0)

Figure 6.9 — SDC, SEFI, and TOTAL MWABF results obtained for the AES designs both fault
injections and radiation experiments.

AES MWBF SDC

1.00E+10
B MWBEF 5DC EXP

MWBE SDC FI
1.00E+09 -
1.00E+08] -
1.00E+07 -
MB

HLS1 HLS2 HLS3
Designversion (a)

MWBF (bits)

AES MWBF SEFI

1.00E+11
B MWBF SEFI EXP

MWABF SEFI FI
1.00E+10 —
1.00E+09 —
1.00E+08 -] —
MB

1.00E+07 -
HLS1 HLS2 HLS3

Design version (b)

MWBF {bits)

AES MWBF TOTAL

. +
LOOBHI0 T IWBF TOTAL EXP
MWBF TOTAL FI
¥ 1.00E+09 -
g
LL
=
S 1.00E+08 —
1.00E+07 J
MB HLS1 HLS2 HLS3

Design version (c)

128

129

Figure 6.10 — SDC, SEFI, and TOTAL MWBF results obtained for the ADPCM designs both fault

injections and radiation experiments.

ADPCM MWBF SDC

1.00E+10

B MWBF SDC EXP

MWBF SDCHI

MWBF (bits)

1.00E+09
1.00E+08 I —
1.00E+07 -J

MB HLS1 HLS2

HLS3 (a)
ADPCM MWABF SEFI
1.00E+11
B MWBF SEFI EXP
MWBF SEFI FI
1.00E+10 —
Ty
ot
:-§.
w 1.00E+09 —
[=1]
=
=
1.00E+08 —
1.00E+07 —j
MB HLS1 HLS2 HLS3 (b)
ADPCM MWBF TOTAL
1.00E+10
B MWBF TOTAL EXP
MWBF TOTAL FI
= 1.00E+09
gt
:—§,
[T
o
=
2 1.00E+08 —
1.00E+07 j
MB HLS1 HLS2 HLS3 (c)

130

A comparison between the obtained dynamic cross sections by fault injection and
radiation experiments and the performance rate improvement for each HLS-based design
compared to its corresponding processor-based version is presented in Fig. 6.11, 6.12, and

6.13. The performance rate is calculated as shown in Eq. 6.2.

tprocessor - Odynamic—processor

(Equation 6.2) Performance rate =

tHLS - Odynamic—HLS

The performance rate relation states that, whenever the speed-up is higher than the increase in

cross section

t dynamic . .
(=== 7 DTITCHLS) the faster configuration computes a larger
tHLS o dynamicprocessor

workload before experiencing a failure and, thus, the operational reliability of the system is
higher. Thus, one can be concluded that, in this case, the designs with the best trade-off
between reliability and performance for each benchmark application are MxM-HLS3, AES-
HLS2, and ADPCM-HLS2. These result reveals that designs with very different architectures
may present similar results due to a smaller cross section or execution time, such as in the
AES HLS-based designs.

Figure 6.11 — Comparison between SDC, SEFI, and TOTAL dynamic cross sections and their
respective performance rates for the MxM designs from fault injection and radiation experiment

results.

MxM 6. SDC vs. Performance rate

1.00E-03 5000
MB HLS1 HLS2 HR3 | 4500
- 4000
2
— 1.00E-04 x| P0OE
E * - 3000 E
- & A L ©
t M Y 4 2500 :
& - 2000 £
® 1.00E-05 | 1500 &
* o dynamic SDCFI
. - 1000
A o dynamic SDC EXP
M Performance rate FI| [500
1.00E-06 m L 0

(a)

MxM o,...i. SEFI vs. Performance rate

1.000E-03
MB HLS1 HLS2 HLS3
- L
— 1.000E-04
£
z
: S
E A ¢
5 [|
® 1.000E-05 : 3
o dynamic SEFI FI
4 o dynamic SEFI EXP| |-
A B Performance rate
1.000E-06 - =
MxM o ..mic TOTAL vs. Performance rate
1.000E-03
MB HLS1 HLS2 H?S
— 1.000E-04 + 4
E i
= A ¢
E
4 8 -
Gl 1.000E-05
+ o dynamic TOTALFI
A odynamic TOTALEXP| L
- B Performance rate
1.000E-06]

Figure 6.12 — Comparison between SDC, SEFI, and TOTAL dynamic cross sections and their

12000

10000

8000

6000

Performance rate

4000

2000

(b)

7000
6000
5000
4000

3000

Performance rate

2000

1000

(<)

131

respective performance rates for the AES designs from fault injection and radiation experiment results.

1.00E-03

1.00E-04

advramlc: [l:l'l'lzl

1.00E-05

1.00E-06

AES G, mic SDC vs. Performance rate

100

MB HLS1 HLS2 HLS3
*
L
L A A
* A "
A |

[
(=]
Performance rate

+ o dynamic SDCFI
A o dynamic SDC EXP
B Performance rate

(a)

adl,lramlc: [l:l'l'lzl

ad-.lramlc ll:l'l'lzl

Figure 6.13 — Comparison between SDC, SEFI, and TOTAL dynamic cross sections and their

1.00E-03

1.00E-04

1.00E-05

1.00E-06

1.00E-03

1.00E-04

1.00E-05

1.00E-06

AES 0, . mic SEFI vs. Performance rate

1000
MB HL51 HLS2 HLS3
- &
100 £
[u 8
c
t ©
. ¢ £
z g
A 10 @
A o
+ ¢ dynamic SEFI FI
A o dynamic SEFI EXP
M Performance rate
B 1
(b)
AES 0,,,amic TOTAL vs. Performance rate
100
MB HLS1 HLS2 HLS3
*
] *
|
* * a A 2
A A ;
- 10 2
"
£
=]
5
+ odynamic TOTALFI o
A odynamic TOTAL EXP
B Performance rate
B 1
(c)

132

respective performance rates for the ADPCM designs from fault injection and radiation experiment

advramlc: [l:l'l'lzl

1.00E-02

1.00E-03

1.00E-04

results.

ADPCM 0, mic SDC vs. Performance rate

1.00E-05

1.00E-06

MB HLS1 Hi%2 HLS3 |
+ L
* * [-
| |
A A
1 A I
* g dynamic SDCFl |
- A o dynamic SDCEXP ||
M Performance rate

[y
=

Performance rate

L T S T Y N = I« <R Yo]

(a)

ud'.ll"ﬂ mic [cmzl

ud\lmmic [crnZ]

6.3 Summary

1.00E-02

1.00E-03

1.00E-04

1.00E-05

1.00E-06

1.00E-02

1.00E-03

1.00E-04

1.00E-05

1.00E-06

ADPCM o, SEFI vs. Performance rate

MB HLS1 Hh32 HLS3
+ o dynamic SEFI FI I
4 o dynamic SEFI EXP
B Performance rate -
L 4 i
4 i
& L
¢ .
- i
u

ADPCM o, i TOTAL vs. Performance rate

2

MB HLS1 HLS3 L
' -
’ -

| |

n A
‘ A L
+ o dynamic TOTALFI |}
A o dynamic TOTALEXP ||

n B Performance rate

450

- 400

350
300
250
200
150
100
50

20
18
16
14
12

=T T - = (I«]

Performance rate

(b)

Performance rate

(<)

133

Results show that, in general, the estimation of the dynamic cross section and MWBF

of an HLS-based design through the proposed flow is a suitable method for predicting their

trend before radiation experiments. Results also show that it is mandatory to take into account

each design option available and all the parameters of the system involved in a dynamic test,

such as the cross section, execution time, and workload of the application. Moreover, the

proposed methodology is capable to be generic and extendable to any type of design if slight

adjustments are performed.

With regard to the effects of optimization strategies in the final HLS-based designs,

results reveal that HLS tools have evolved in the last decade by providing very structured and

134

optimized RTL codes. The influence of HLS optimizations in the dynamic cross section of the
designs is lower (increase up to 2.85, 1.49, and 0.86 times for the MxM, AES, and ADPCM
benchmarks, respectively) when compared to their performance enhancement (increase up to
73.54, 2.42, and 4.15 times for the MxM, AES, and ADPCM benchmarks, respectively),
which contributes significantly to increase the MWBF and the performance rate of them.

135

7 EXPLORING BOTH PS AND PL PARTS OF ZYNQ-7000 UNDER
SINGLE EVENT EFFECTS

This chapter presents an analysis of the impact of using both PS and PL parts of Xilinx
Zyng-7000 APSoC in the overall system failure rate. Different memory organizations,
communication schemes, and computing modes, were considered. Such investigation is
fundamental since there are various possibilities to implement a system in an APSoC and each
one imposes a different amount of resources and a different resource utilization efficiency,
which impacts the reliability of the system. Moreover, defining the correlation between
hardware and software resource sensitivity and the benefits brought to the system efficiency is
essential to evaluate the system sensitivity, besides the balance between hardware and

software in terms of reliability has not yet been investigated.

7.1 Reliability of hard- and soft-cores heterogeneous processing in the Zyng-7000

This section presents a reliability analysis of a multiprocessor-based heterogeneous
system aiming to evaluate the sensitivity of different system architectures implemented in an
APSoC to radiation-induced errors. Different configurations were implemented, each one
using the PS and PL parts of the Zyng-7000 in distinctly, as described below. The processors
were configured in an asymmetric multi-processing scheme (please refer to Secion 2.1.1.1).

The case-study architecture is a heterogeneous computing system consisting of one
ARM Cortex-A9 (ARM) core of the PS part and one Microblaze soft-core processor (MB)
embedded in the PL part, as shown in Figure 7.1. Both processors are 32-bits and have their
caches enabled. The design uses the OCM memory as data memory and to exchange data
among the processors. Four different architectures were implemented. The first two
configurations were developed to investigate the reliability of sharing memory among the
ARM and Microblaze processors while in the latter two configurations were developed to
investigate the co-processing behavior by using both ARM and Microblaze processors in
tandem. The resources usage of each configuration is shown in Table 7.1 and each
configuration is described as follows:

e Case A: parallel executions of ARM and Microblaze processors without shared
data. ARM uses OCM memory space from address FFFC0020’h to

136

FFFCEA60’h and Microblaze uses OCM memory space from address
FFFCEAEO’h to FFFDD540’h.

e Case B: parallel executions of ARM and Microblaze processors with shared
data. ARM uses OCM memory space from address FFFC9CAO’h to
FFFCEACO’h and Microblaze uses OCM memory space from address
FFFD8760°h to FFFDD580°h. The operands are shared and they are stored in
a shared memory space that ranges from address FFFC0020’h to
FFFCY9C60°h. When the system runs for the first time, ARM processor
generates the operands. In any other case, like when one of the processors
crashes, the operational processor refreshes the operands generating new
values.

e Case C: heterogeneous co-processing with ARM processor acting as main
processor and Microblaze processor as a support processor. In this case,
Microblaze processor performs only the matrix multiplication operation and
ARM processor performs all other operations. Both processors share the same
memory space, which ranges from address FFFC0020°h to FFFCEAS0 h.

e Case D: heterogeneous co-processing with Microblaze processor acting as
main processor and ARM processor as a support processor. In this case, ARM
processor performs only the matrix multiplication operation and Microblaze
processor performs all other operations. As in Case C, both processors share
the same memory space.

Both processors, in all configurations, execute the benchmark application in bare-
metal, which is a 25x25 integer matrix multiplication operation implemented in standard C
programming language. The detection of incorrect answers is achieved by calculating and
comparing the Cyclic Redundancy Check (CRC) of the results. The code executed by both

processors is represented in Figure 7.2.

137

Figure 7.1 — Block diagram of the case-study multiprocessor-based heterogeneous system.

UART O

Zyng-7000

PS5

PL

Microblaze and

UART 1

peripherals
= Case A Case B Case C Case D
=
: - -
=]
o b
L]
3]
Z | ma mB mC_MB
g mB_MB
£ | mC_mB
=

Table 7.1 — Resource usage and performance of each case-study architecture implemented.

Case A Case B Case C Case D
ARM MB ARM MB ARM MB
1640 1640 1+ (1640 1+ (1640
Area of the 1 LUTs, 6 1 LUTs, 6 LUTs, 6 LUTs, 6
processors BRAMs, BRAMs, BRAMs, 3 BRAMs, 3
3 DSPs 3 DSPs DSPs) DSPs)
20 Kb in
. 60 Kb shared
60 Kbin | 20Kb %C}ga:fd 685&3?_&‘{2‘:]&“ in OCM, L1
60Kb OCMand | in OCM instructio L2 ca{ches of and L2 caches
Address inOCM 8 KB of and L1 N and ARM and 8 KB of ARM and 8
and L1 instructio | and L2) . KB of
space data of instruction | . .
and L2 nanddata | caches . instruction and
. caches in | and data caches -
caches cachesin . data caches in
BRAMS in BRAMs for
BRAMs - BRAMs for
40 Kb shared in MB MB
OCM
Peripheral 2 AXI interconnect buses, 1 AXI bus split, 1 AXI timer, 1 clock generator, 1
resources reset system, 2 high performance ports, 1 general purpose port
Area of the
peripherals 3337 LUTs
resources
Exfi‘;]‘;tem” 306ms 18.2ms | 3.06ms 182 ms 155 ms 5.09 ms

138

Figure 7.2 — Matrix multiplication algorithm.

setup_system()

loop
A = generate_random_matrix()
B = generate_random_matrix()

Cgolden =A*B

CRCgoiden = calculate_crc(Cgoiden)
run=0

loop

C = A* B // main operation
CRC = calculate_crc(C)
if CRC = CRCgoIden then
if run <500 then
run=run+1
else
run=20
print(success)
end if
else
print(fail)
end if
end loop
end loop

Experiments were carried out at Los Alamos National Laboratory’s (LANL) Los
Alamos Neutron Science Center (LANSCE) Irradiation of Chips and Electronics House I,
Los Alamos, USA. As mentioned in (VIOLANTE et al., 2011), LANSCE provides a white
neutron source that emulates the energy spectrum of the atmospheric neutron flux. The
neutron flux was approximately 1x108 n.cm2.s?) for energies above 10 MeV. The beam was
focused on a spot with a diameter of 2 inches plus 1 inch of penumbra, which provided
uniform irradiation of the APSoC chip without directly affecting nearby board power control
circuitry. Irradiation was performed at room temperature with normal incidence and nominal
voltages. Each approach was executed for more than 6 hours under the beam, each receiving a
fluence of at least 3x108 n.cm™.

A test monitor application running on a monitor computer was responsible for
collecting and time-stamping incoming logs from the DUT through UART connections. In
case of error in the ARM processor, the processor is reset. In case of error in the MB
processor, first a readback of the configuration memory is performed and then the processor is
reset. The test monitor application also served as a watchdog for irrecoverable situations, such

as SEFIs, detecting when the DUT exceeded a timeout larger than the application execution

139

time without sending executions logs. In such cases, the timeout was time-stamped and
logged, and the board was rebooted.

Table 7.2 summarizes the obtained experimental results during the neutrons radiation
test campaign. One can notice that the presented cross section values refer to SDC and SEFI
errors, and not to permanent errors in the PL. As already mentioned and shown, results show
that for APSoCs systems, the cross section measurement itself is also not enough to
characterize the reliability of the system. It is also fundamental to take into account also the
system execution time and data workload to have a better picture of the sensitivity of the

system under upsets.

Table 7.2 — Experimental results from the neutron radiation tests for the four case-studied system in

Zyng-7000.
Case A Case B Case C Case D
ARM MB ARM MB | ARM+MB | MB+ARM
Cross 1.01x10° 4.60x10° | 9.00x10% 1.50x10° | 3.43x10° | 4.23x10°
section (cm?)
('mj?; 7.62x107 1.67x10°| 8.55x107 5.13x107 | 2.24x10° | 1.82x10°
MEBF |1 76x101 6.50x108 | 2.00x10% 2.02x10%° | 1.04x10% | 2.22x10°
(executions)
'\(" d\{a\’tg)': 111x10% 4.12x10% | 1.25x10% 1.26x10% | 6.50x10% | 1.39x10%2

As a first analysis it is investigated the impact of sharing memory between the ARM
and MB processors, looking at implementations in Case A and in Case B. Notice that the
measured cross section of ARM in Case A is 1.01x10° cm?2 compared to 9.00x107° cm? of
Case B. ARM has shown a small improvement in cross section when the memory space of the
systems is reduced (which means that the sensitive area and, thus, its cross section, is also
reduced). However, comparing the metrics of MEBF and MWBF, both implementation cases
A and B of ARM present very similar results, probably due to the same execution times of the
applications.

With regards to the Microblaze implementations in cases A and B, one can notice that
the measured cross section of Microblaze in Case A is 4.60x10® cm2 compared to 1.50x10°
cm? of Case B. Microblaze also presented an improvement in cross section when the memory
space of the systems is reduced (i.e. sensitive area). Now comparing the metric MEBF and
MWABF, Case B also present a significant improvement in two orders of magnitude due to its

implementation. Such improvement probably happened because the first part of the matrix

140

multiplication algorithm, the generation of the matrices, is not performed on the Microblaze,
but on the ARM processor. Thus, beyond the reduction of the sensitive area by sharing part of
the memory, sharing part of the memory also reduced the exposure time of the algorithm
running in the Microblaze.

When comparing soft- and hard-core processors, ARM processor shows a smaller
cross section compared to Microblaze in both cases A and B. This result was already
expected, since hard-core processors are known to be less sensitive to radiation than soft-core
processors embedded in FPGAs (KASTENSMIDT, CARRO, REIS, 2006). Interesting results
were obtained by analyzing the MEBF and MWBF values of the processors of Case B. For
sake of comparison, in Case A, the difference between processors in terms of MWBF was of
about three orders of magnitude. However, in Case B, this difference was reduced to one
order of magnitude even with both cases having the same execution time. This result was also
achieved by reducing the exposure time of the algorithm running in the Microblaze processor,
which resulted in less failures and more workload correctly processed, consequently.

Comparing single-core to multi-core, one can observe that Case C, where Microblaze
processor performs only the matrix multiplication operation and ARM processor performs all
other operations, has a lower cross section to Case A-ARM and a similar one to Case B-ARM,
where the hard-core ARM processor performs all the matrix multiplication operation, even
Case C presenting very different implementation areas than cases A-ARM and B-ARM.
Concerning MWBF, all implementations have similar values, even with their very distinct
execution times. It is also interesting to notice that there were practically no changes in the
MEBF values in all three cases. These results show the advantages of using heterogeneous
systems where the ARM processor is the main processor and a hardware embedded in the
FPGA as a secondary processor, because even with a significant overhead in area and time,
the obtained results are similar or even better than using a single-core processor. Additionally,
having a longer execution time in Case C may bring benefits to the system, because it enables
the master processor to perform other tasks while waiting for the slave processor.

When comparing Case D with cases A-MB and B-MB, where ARM processor
performs only the matrix multiplication operation and Microblaze processor performs all
other operations, Case D presented intermediate values for both cross section, MEBF, and
MWABF. These results are similar to what were obtained for the ARM processor cases.

Now, comparing both heterogeneous cases C and D, it is evident that ARM plays a
major role in terms of reliability, because even with an execution time three times worse than

Case D, Case C presented better results in all metrics. This result is of extreme importance,

141

because if the soft-core processor is changed by a dedicated hardware in the FPGA with a
better execution time than the ARM processor, the results should be even better.

7.2 Reliability of heterogeneous processing through hardware and software co-designs in
the Zynqg-7000

This section aims at complementing the previous one by performing a reliability and
performance analysis of heterogeneous processing through hardware and software co-designs
with different workload distributions between hardware and software. The novelty of this
section is that now the PL part has embedded dedicated hardware cores instead of a soft-core

processor, which implies in smaller execution times compared to the PS part.

7.2.1 Case-study designs and resources and performance evaluations

Based on Section 6.2, two benchmark algorithms were selected for this study: a data
flow oriented 32x32 floating-point Matrix Multiplication (MxM) (XILINX, 2016a) and a
control flow oriented 128-bit Advanced Encryption Standard (AES) (HARA et al., 2008). The
selected output size (workload) is 32,768 bits (1024 values of 32-bit each) for the MxM and
1024 bits (32 values of 32-bit each) for the AES.

Aiming at generating different hardware and software co-designs, both algorithms
were partitioned having portions running on the PS, i.e., one ARM Cortex-A9 core (hereafter
shortened to only “processor”) and portions implemented in the PL, used in the form of a
hardware accelerator. MxM algorithm was partitioned in two sets (setl and set2) of matrix
multiplication operations, while AES algorithm was partitioned with respect to its encode
(enc) and decode (dec) functions. The AES algorithm is particularly interesting because the
enc function takes 10 times more time than the dec function. Fig. 7.3 shows a generic
representation of the case-study benchmark algorithms.

Figure 7.4 shows the architecture developed for evaluating the case-study designs. The
data transfer between the processor (PS) and the hardware design implemented in the PL part
is performed through the processor’s Accelerator Coherency Port (ACP) and a BRAM
protected with ECC. Besides the processor, the hardware design, the shared memory, and the

peripherals needed to connect them, the architecture also has embedded a hardware block

142

(Control DUT) protected with TMR that monitors the system during the radiation experiments
and sends diagnostic data to a computer.

Figure 7.3 — Generic representation of the case-study benchmark algorithms.

// SOFTWARE-ONLY VERSION
setup_system()
generate_golden_values_set1()
generate_golden_values_set2()
loop
wait_start_from_control_dut()
run_setl1()
run_set2()
send_done_to_control_dut()
end loop

/ HARDWARE-ONLY VERSION
setup_system()
generate_golden_values_set1()
generate_golden_values_set2()
loop
wait_start_from_control_dut()
send_input_a_to_hardware()
send input_b_to_hardware()
run_hardware()
wait until hardware_is_busy()

send_done_to_control_dut()
end loop

Figure 7.4 — Block diagram of the architecture developed for evaluating the case-study hardware and

software co-designs in Zyng-7000.

Zynq-7000
PS PL ACP B
| interconnect
| stream
» DMA
§ -~
= Stream
Y 0 Y
ARM Cortex-A9 | | | AXI © | Hardware
core < interconnect design
Shared memory
Control DUT
(BRAM) | |

 UART

The use of the processor’s L1 cache is also considered. L2 cache was left disabled
since its addition to the memory hierarchy severely affects the cross section of the processor,
as observed in Section 5.2. The hardware designs in the PL were generated by High-Level
Synthesis (HLS) directly from the original C language code with the Xilinx Vivado HLS tool.

143

Two different versions were generated for each set, one without any performance
optimization and other highly optimized for performance, as investigated in Section 6.2.

All the case-study designs are presented in Table 7.3. They are classified into
workload distribution (how much of the algorithm is implemented in software and hardware),
design configuration of the PS (L1 cache disabled or not), and the HLS-based hardware
design (with or without optimization). The resources are given in terms of number of
processors, LUTs, flip-flops, DSPs, BRAMs, and essential bits (PL configurations bits
associated with the circuitry of the design). The performance is presented as number clock
cycles. All hardware and software co-designs operate in the PS part at 667 MHz and in the PL
part at 100 MHz.

Data resources show that the more performance-optimized a hardware accelerator is,
the more resources it uses (2.31 times for the MxM and 3.15 times for the AES in the best
cases). However, the number of clock cycles are significantly reduced (83.18 times for MxM
and 94.69 times for AES). This means that offloading the entire algorithm for the PL aiming
to increase its parallelism at hardware level greatly increases the workload capability of the
system. The best hardware and software co-designs in terms of acceleration for the MxM and
AES are 10 and 14, when considering using cache L1, otherwise are versions 09 and 13,
respectively. However, comparing the designs with distributed workload with the ones that
run entirely in the PL, one can observe that the inherent sequential processing of the processor
severely affects the execution time, mostly in the MxM algorithm, which is very data flow
oriented. In addition, comparing the essential bits data with the obtained execution times, one
can also observe that it is worth offloading the entire algorithm to the PL instead of distribute
it between PS and PL.

144

Table 7.3 — Case-study hardware and software co-designs and their respective configurations, resource

usage, and performance results.

£56°L Y12'€92'y 1z 0 GZT'TC €T0'8T ©8YyoeoT1+7T 1do XelN U017 8p ous vT
€67'9/2 Y12'€92'y k4 0 G217 €10'8T T 1do Xen WO T 23p ous €T
268'8 ¥0E'7SS°T k4 0 VIT'€T T6V'OT 8Yoed T1+7T 1dooN U0 TT 23p ous A
vr8°LL ¥0E'785'T 4 0 vIT'ET T6V'0T T 1dooN WO TT 8p ous T
1/8'TT LY9'YST'E k4 0 8T/'6T €18'9T ©8YoOTI+T 1do XelN U017 oua 28p 0T
6€6'2ET LY9'VST'S k4 0 8TL'6T €18'9T T 1do xeN Jo T ous 23p 60
187'2T £T1'885'C 4 0 L60'€T ¥9E'0T 8YoRO T+ T 1dooN U0 TT ous 23p 80
0SY'¥ET €T.'885'C 1z 0 160'ST ¥9€'0T T 1dooN WO TT ous 28p L0
162'C 9£/'SG.'y G'0¢g 0 09%'€C T6L'6T 8YoROTI+T 1doXelN U0 T | 98p+oud - 90
£99'C 9£/'S6.'Y G°0¢g 0 09%'€Z T6L'6T T qdoXey MO | 08p+ous - S0
18Ty LEV'SYL'T gTE 0 YST'YT 8.T'TT 8Yoed T1+7T JdoON U0 T | 98p+oud - 0
955y LEV'SPL'T g'1g 0 YST'YT 8LT'TT T 1doON HOTT | 08p+oud - €0
Zr9'oT 6/Y'S0S'T 0z 0 2.8 0T0'9 8Yoed TT+T - uo 17 - 98p+Us 20
£6£'9TZ 6/1'G0G'T 02 0 2.8, 070'9 1 - 4o 11 - 08p+0Us 10
(o8p ‘ous) SV
9£/'68T'T GlZ'1T0°E 95 96 6¢8'€T 89F'0T BYOROTT+T 1doxelN U017 2188 T1es 0T
££9'G96'C 6/Z'170'€ 95 96 6¢8'€T 89%'0T 1 1do e HO T FAES T1es 60
788'81'T 6L1'120'C 9z € vE0'ZT T¢S'6 9YoRd T+ T 1dooN U0 T zZ1es T1es 80
£59'522'S 6L1'120'C Y4 € ve0'TT 1256 T 1dooN WO TT zZ1es PAEY] L0
08202 GTS'ESP'E 4 8 9eZ'ST 0Z6'0T ®YoRO T +T 7doXelN UOTT | ZIes+TIes - 90
002'T. GTG'eSY'E 4 8 9g2'sT 026'0T 1 1do Xey HOTT | ZI8S+T18s - S0
8€T'STO 612'7L9'C k4 9 L6ECT 189'6 8OO T +T 1dooN uoTT | ZIes+Ties - 0
059'9T9 612'2L9'C k4 9 L6E'TT 189'6 T 1doON HOTT | Z19S+TI8S - €0
Z10'TY'e GS/'067'T (114 0 1€5°2 LT0'9 8YORO T +T - uo 17 - 2195+T19S 20
602'9%8'S G5/'06Y'T (14 0 1€5°2 L10'9 1 - 4017 - 2195+T19S 10
(219s ‘T195) INXIN
S910A0 20D # | SHGenusssI# NVHE# dSA# 44# 1N1# 10SS800id # 1d Sd 1d Sd
aouewlIoad $921N0S9Y uoneinbiyuod ubissq uonNQqUISIP PeOIOMN uoislan ubisag

145

7.2.2 Cross section, MWBF, and performance evaluation

Radiation experiments were also carried out with heavy ions at Laboratorio Aberto de
Fisica Nuclear at Universidade de Sdo Paulo (LAFN-USP), Brazil. The ion beams were
produced and accelerated by the Sdo Paulo 8UD Pelletron Accelerator, but now in a new
beamline (AGUIAR et al., 2017). This new beamline is used to transport very low-flux, high
uniformity, and large area heavy ion beams up to ?6Si by defocusing and multiple scattering
techniques using two gold foils and from **Cl to %“Ag by a defocusing technique. These
characteristics are required by the European standards (CARLIN et al., 2005) for radiation
testing of electronic devices and to test the radiation hardness of devices to SEEs. The SEU
events were observed using a 0 beam, with a primary energy of 39 MeV, which provides an
effective LET on the active region of about 5.5 MeV/mg/cm? and penetration in Si of about
24 um. The average beam flux was maintained between 1.0x10? and 1.0x10° particles.cm™.s™
in a 4.0 cm? beam area with an uniformity of about 93%.

Figure 7.5 - Heavy ion experiment setup mounted at the new beam line of the LAFN-USP.

INTERFACE ¢

; BEAM LINE

CONTROL COMPUTER

A host computer monitored the experiments through a serial interface. If there were no
differences in the results, the Control DUT sent an alive signal to the computer at each
execution set. Otherwise, if differences are found, it sent the number of mismatches to the
computer and then the Zyng-7000 is reset. Timeouts in the system were monitored through a

watchdog circuit in the Control DUT. The host computer also acts as a watchdog to monitor

146

timeout occurrences in the Control DUT. In case of timeout, the Zyng-7000 is reset. Each
experiment run was set by the total number of errors observed (50) at the system output. All
other uncertain errors observed are considered in the errors bars. For the experiments, the
package of an XC7Z020-CLG484 device was thinned to allow irradiated particles to penetrate
the active region of the silicon. Results are presented in terms of total errors, which consider
SDC errors (data errors detected by the application without system interruption) and SEFI
errors (system crashes).

The obtained SDC, SEFI, and TOTAL (sum of SDCs and SEFIs) dynamic cross
sections for the MxM and AES algorithms are presented in Fig. 7.6 and 7.7. With regard to
the PS-only designs (design versions 01 and 02), one can observe that enabling the L1 cache
barely affects the cross section (difference of 28% and 2% for the MxM and AES,
respectively). The nature of the algorithm (data or control flow oriented) and its execution
time seems to directly affect the cross section of the system. With regard to the designs in
which the entire algorithm is offloaded to the PL (design versions 03, 04, 05, and 06), one can
observe that, for both algorithms, the cross section of the system is directly proportional to the
PL’s resources usage. When there is hardware and software co-designs, one can observe that
the lowest cross sections were achieved by enabling the L1 cache in the PS and using a
hardware design without optimization in the PL (design version 08). This configuration is
particularly interesting because it helps reducing the exposure time by enabling the L1 cache
and the sensitive area by using a hardware design that occupies a smaller area. Moreover, one
can observe that in the AES, the best cross section results were achieved by offloading the
most time-consuming set (enc) to the PL (design versions 07, 08, 09, and 10). Note that for
hardware and software co-designs, the interface and the amount of data exchange between PS
and PL (and vice versa) play an important hole in the susceptibility too, explaining the
average increase in cross section.

The obtained MWBFs for the MxM and AES algorithms are presented in Fig. 7.8 and
7.9. For both algorithms, the MWBF increase follows the execution time improvement, which
in turn is obtained by offloading the workload to the PL and enabling the processor’s L1

cache.

147

Figure 7.6 — SDC, SEFI, and TOTAL dynamic cross section results obtained for the MxM designs

from radiation experiments.

MXM Oy namic 2DC

9.10E-05
8.10E-05
7.10E-05
= 6.10E-05

- 5.10E-05
£4.10E-05
& 3.10E-05
2.10E-05 I
1.10E-05 ' ' ' '
1.00E-06
1 2 3 4 5 & 7

g 9 10

Design version
8 (a)

MxM o, SEFI

2.10E-05
1.90E-05
1.70E-05
< 1.50E-05

5 1.30E-05

"2 1.10E-05

£ 9.00E-06

S 7.00E-06
5.00E-06 I

3.00E-06

1.00E-06

1 2 3 4 s & 7 8 9 10

Design version

(b)

MxM 0y, ... TOTAL

9.10E-05
8.10E-05
7.10E-05
= 6.10E-05

- 5.10E-05

£ 4.10€-05

& 3.10E-05

2.10E-05

1.10E-05

1.00E-06
1 2 3 4 5 6 7 8 9 10

Design version
& (c)

148

Figure 7.7 — SDC, SEFI, and TOTAL dynamic cross section results obtained for the AES designs from

radiation experiments.
AES Oy, i SDC
6.10E-05

5.10E-05

4.10E-05
3.10E-05
2.10E-05
1.10E-05 I I I
1o0e0s W M
1 2 3

10 11 12 13 14

Design version
8 (a)

Udynamlc{cmzh

AES Oy mic SEF
2.60E-05

2.10E-05

E 1.60E-05

| 1.10E-05
6.00E-06 I I I
1.00E-06

10 11 12 13 14

(b)

Udynamlc

Design version

AES 0 o i total
8.10E-05
7.10E-05
6.10E-05

'Ts:s.mms
24.106-05
£3.10E-05
® 2.106-05
1.10E-05 ' '
1.00E-06
3 4 5 6 7

10 11 12 13 14

Design version
8 (c)

149

Figure 7.8 — SDC, SEFI, and TOTAL MWABF results obtained for the MxM designs from radiation
experiments.

MxM MWBF SDC

1.00E+11
@ 1.00E+10
=
L
=
£ 1.00E+09 I I I I
1.00E+08 - ' I
1 2 3 4 5 6 7 8 9 10
Design version
(a)
MxM MWBF SEFI
1.00E+11
¥ 1.00E+10
=
L
=
o I I I I I I I
1.00E+08
1 2 3 4 5 5] 7 8 9 10
Design version
(b)
MxM MWBF TOTAL
1.00E+11
© 1.00E+10
=
LL
=
< 1.00E+09 I I I I
1.00E+08 o ' . I
1 2 3 4 5 5] 7 8 9 10

Design version
(c)

150

Figure 7.9 — SDC, SEFI, and TOTAL MWABF results obtained for the AES designs from radiation
experiments.

AES MWBF SDC

1.00E+08

1.00E+11
_.g 1.00E+10
2
L
2
< 1.00E+09 I I I I I
1.00E+08
1 2 3 9 10 11 12 13 14
Deslgnverslon
(a)
AES MWBF SEFI
1.00E+11
9 1.00E+10
=
(I
=
= 1.00E+09 I I I I I I
1 2

9 10 11 12 13 14

Design version
(b)

AES MWBF TOTAL

1.00E+11

1.00E+10
1 2 3

MWBF (bits)

1.00E+08
9 10 11 12 13 14

Design version
(c)

A more direct comparison between the obtained dynamic cross sections and the

performance of the designs can be performed through Eq. 6.2. As stated, the performance rate

151

relation states that whenever the speed-up is higher than the increase in cross section, the
faster configuration computes a larger workload before experiencing a failure and, thus, the
operational reliability of the system is higher.

Fig. 7.10 and 7.11 compare the obtained dynamic cross section and performance rate
for the MxM and AES, respectively. With regard to the MxM algorithm, one can observe that
the designs with the best performance rates are versions 05 and 06 due to their significant
improvement in execution time. With regard to the AES algorithm, one can observe that the
designs with the best performance rates are versions 02, 03, 04, 05, and 08. Such result
reveals that designs with very different architectures may present similar results due to a
smaller cross section (design version 08) or execution time (design version 05).

Figure 7.10 — Comparison between SDC, SEFI, and TOTAL dynamic cross sections and their

respective performance rates for the MxM designs from radiation experiment results.

WxM Ogynamic VS- Performance rate - SDC

9.10E-05 160.00
8.10E-05 . 140.00
. 7.10E-05 {] — 120.00 %
"t 6.10E-05 a =
E 5 10E-05 § E B Improvement rate SDC 100.00 b5
Eaaael 80.00 &
E 4.10E-05 P £
£ 3.10E-05 . 60.00 5

2.10E-05 8 5 e 2000 o
1.10E-05 . s * o 2000
1.00E05 ® = u L 0.00
1 2 3 4 5 6 7 & 9 10
Design version (a)
MxM G, i VS- Performance rate - SEFI
2.10E-05 60.00
@ o SEFI EXP
B Improvement rate SEF| u { 50.00
_ 1.60E-05 = ¢ g
" 40.00 =
& i gt 3
2 1.10E-05 30.00 §
E ¢ ¢ £
5 . 20.00 8
® 6.00E-06 L @
s | m 10.00 ™
10006 ® ™ m B = B g5

Design version (b)

9.10E-05
8.10E-05
7.10E-05

% 6.10E-05
=% 5.10E-05
£ 4.10E-05
DE 3.10E-05
2.10E-05
1.10E-05

1.00E-06

Figure 7.11 — Comparison between SDC, SEFI, and TOTAL dynamic cross sections and their

respective performance rates for the AES designs from radiation experiment results.

6.10E-05

5.10E-05
% 4.10E-05
J

£ 3.10E-05

U|:I\rnz|

2.10E-05
1.10E-05
1.00E-06

2.60E-05
2.10E-05
1.60E-05

1.10E-05

Udvnamlc {sz}

6.00E-06

1.00E-06

MxM Oy, o mic VS- Performance rate - TOTAL

t

4

[|
u ® o TOTAL EXP
E B Improvement rate TOTAL
¢
i L]
e @
[| ™ [|
5 6 7 8 9 10

Design version

AES Gy amic VS- Performance rate - SDC

L
L
u
. ¥
L
2 3 4

5

. L)
e
= * .
& 7 & 9

Design version

® o 5DC EXP
W |mprovement rate SDC

ff{f

| |
10 11 12 13 14

AES Oy, mic V5. Performance rate - SEFI

L
:
¢ 5 @
o
2 3 4

¢

5

. t
§ L]
® o SEFI EXP
|. Improvement rate SEFI|
L]
L] L] L L]
6 7 8 9 10 11 12 13 14

Design version

140.00
120.00

[EY
[
=
]
o
d

80.00
60.00
40.00

Performance rate

20.00
0.00

(c)

25.00
20.00
15.00

10.00

Performance rate

5.00

0.00

(a)

80.00
70.00
60.00
50.00
40.00
30.00
20.00
10.00
0.00

Performance rate

(b)

152

8.10E-05
7.10E-05
__ B.10E-05
"g 5.10E-05
2 4.10E-05
£3.10E-05
© 2.10E-05
1.10E-05
1.00E-06

7.3 Summary

AES Oy, p5mic V5. Performance rate EXP
o TOTAL EXP

H

-

6

HIM

7

8

9

Design version

B Improvement rate TOTAL

10

T
1

11

-

- 1

¢ 1

u |
o

12 13 14

35.00
30.00
25.00
20.00
15.00

aormance rate

[y
o
]
=]

f

Per

5.00
0.00

(c)

153

The reliability of systems based on hardware and software co-design seems to be

inversely proportional not only to the device sensitivity, but also to the total exposure time.

Thus, the next chapter aims confirming such statement and the obtained results through

several fault injection campaigns in both PS and PL parts of Zyng-7000. As final a result of

this thesis, the next chapter also expands the proposed flow in Section 6.2.1 for trying to

estimate the reliability trend prior to radiation experiments of not only hardware-only designs,

but also software-only designs and hardware and software co-designs.

154

8 PROPOSED RELIABILITY ANALYSIS FOR HARDWARE AND
SOFTWARE CO-DESIGNS

The reliability prediction of system designs through fault injection by emulation is a
complex task due to several factors. In FPGAs (PL parts), in general, data from fault injection
are more pessimistic than the ones from the radiation experiments, as presented in Section
6.2.3. Such behavior is mainly guided by the fact that fault injection methodologies are more
deterministic and give a very fine fault granularity, enabling to estimate the worst-case cross
section of a design without considering side-effects, such as particle beam variations and fault
masking by the design. Therefore, it is possible to determine precisely the exact number of
bits that are critical and consider them in the estimated dynamic cross section. It is also worth
noting that, in radiation experiments, the particle flux covers the whole architecture, while
fault injection campaigns may be constrained to only the DUT. However, in COTS processors
(PS parts), the fault injection behavior is generally the opposite in comparison with radiation
experiments. This happens mainly because the end-users have no access to all resources of a
COTS processor, which limits fault injection platforms to only a subset of available resources,
such as the general-purpose registers and embedded memories, while ionizing particles are
capable of hit on any resource of the device. Another issue is related to the fact that, in COTS
processors, faults are injected more at software level than at hardware level, which makes
unfeasible the estimation of the dynamic cross section of a software, since the cross section
metric is expressed in are units (cm?2).

In this context, since is very complex to precisely estimate in numbers the behavior of
a system running on a COTS device under radiation, this chapter aims to expand the analysis
flow proposed in Section 6.2.1 for estimating also the reliability trend prior to radiation
experiments of not only hardware-only designs, but also hardware and software co-designs

and software-only designs.

8.1 Analysis flow

Fig. 8.1 summarizes the proposed reliability analysis in a flow diagram. The hardware
flow concepts are similar to the ones presented in Section 6.2.1. However, a parallel software

flow was added to the main one for also considering software-only designs and hardware and

155

software co-designs. Moreover, additional metrics were adopted to make possible the merge
between the hardware and software fault injection results.

Figure 8.1 — Proposed reliability analysis flow for hardware and software co-designs.

Pragmas

Good No optimizations

Yes

enough?

C/C++ code

RTL code

Software fault Hardware fault
injection injection

t * AVF,
L Perform.rate = ~totalo ~ Z7 " total0 SDC and SEFI
Lrotar1 * AVF torar1 errors

Nerrors #bitscﬂ'timi
AVF oy = AVFps+ AVFpy e 11/ = oo — = Optauie * (o —oitieet
Nfauits injected ol rs‘.r?}t?n’:!’t'.‘d

Resources info: Num. of
processors, cache onfoff

Performance info: Mapped code
latency, operating

frequency, execution time

Resources info: LUTs, flip-flops,
BRAM blocks, DSP blocks, frames,
configuration bits, essential bits

Performance info: latency,
operating frequency, execution
time

SDC and SEFI

critical bits

L MwBF= e + L J
AVFPL *flux* Texgc AVFp_g"‘fl'LLX* fg-,_-_:

The input of the flow must be an algorithm written in C or C++ programming
languages so that they can be synthesized by the synthesis tools adopted. The first step is the
division of the algorithm source code for distributing the processing and the workload
between PS and PL parts.

The second step is the setup of the hardware and software parts. The portion of the
code that will run on the PL has to be configured with pragmas optimizations to guide the
HLS tool (Xilinx Vivado HLS) during the generation of the RTL code. The remaining portion
of the code, the one that will run on the PS part, must be adapted so that the software can
interface with the hardware design in the PL.

The third step is the synthesis of each portion by the synthesis tools. Xilinx Vivado
Design Suite and Xilinx SDK are used for generating the hardware and the software,
respectively. Information about the usage of resources and performance are collected at this
stage.

The fourth step consists in carrying out the fault injection campaigns in both hardware

and software (or only in one of them, in case of standalone hardware or software designs).

156

The fault injection platforms adopted are the ones previously described in the sections 4.2.1
and 4.2.2. It is worth mentioning that the platforms are not integrated, thus fault injection
campaigns in hardware and software must be performed independently, which can affect the
final result. In addition, the software fault injection injects faults only in the processor’s
register file. However, this limitation is minimized by the fact that every data must be loaded
in registers to be processed. Concerning the size of a fault injection campaign, the hardware
fault injection is limited by the number of configuration bits inside the DUT area, while the
software fault injection is limited by the number of faults to be injected, which is defined by
the user. This means that the higher the number of faults to be injected in software, the higher
the confidence of the results. The results of this step are the numbers of SDC and SEFI errors
in each part of the design.

The fifth step consists in calculating the chosen reliability metrics. With regard to the
hardware flow, the estimation of the dynamic cross section is still possible, since the
methodology of analysis is the same of Section 6.2.1. However, this method is not applicable
for software designs for two main reasons. First, it is practically impossible for an end-user
obtaining the static cross section of a COTS processor, since it does not have access to the
entire low-level processor hardware. Moreover, COTS processor tests are done with specific
softwares, which means that they are not static and thus the resulting cross sections differ
according to the software in use. Second, since the static cross section of the processor is not
available and the faults are injected in a software context in the software designs (PS part), it
is more meaningful to evaluate the probability that a fault in the system will result in an error
in its final output than in terms of sensitive area. Therefore, AVF was chosen as the main
resulting metric from the fault injection campaigns of the proposed reliability analysis.

The total AVF (AVF;,:4;) Of a hardware and software co-design is obtained by adding
the hardware AVF (AVFp;) and the software AVF (AVFyg) resulting from the hardware and
software fault injection campaigns, respectively. However, as well as previously observed for
the cross section, the AVF also does not give information about the performance efficiency
and operational reliability of the system. Therefore, MWBF was chosen as the main resulting
metric of the proposed reliability analysis.

The total MWBF (MW BF,,,;) Of a hardware and software co-design is obtained by
adding the hardware MWBF (MW BFp;) and the software MWBF (MW BFpg). It is worth
mentioning that, since the AVF was chosen as the main resulting metric from the fault
injections in the proposed reliability analysis, it replaced the cross section in the MWBF
equation (Eg. 4.10), as shown in Fig. 8.1. As consequence, the MWBF values from fault

157

injections and radiation experiments will present differences of magnitudes when compared.
However, the proposed reliability analysis flow aims to estimate the reliability trend of
systems designs prior to radiation experiments and not the exact values to be obtained from
them.

The proposed reliability analysis flow also considers the performance rate metric
previously introduced in Section 6.2.3 for comparing directly two designs in terms of
execution time and reliability (AVF). As in the MWBF, the cross section was replaced by the
AVF in the performance rate equation (Eg. 6.2), as shown in Fig. 8.1. The performance rate

relation states that, whenever the speed-up is higher than the increase in cross section

ttotal o

AVF ; i ienci
> —_totall) the faster configuration computes a larger workload before experiencing
teotal 1 AVFtotal o

a failure and, thus, the operational reliability of the system is higher.

8.2 Case-study designs

The case-study designs chosen for evaluating the proposed reliability analysis flow are
the same of Section 7.2.1. The benchmark algorithms chosen are a data flow oriented 32x32
floating-point Matrix Multiplication (MxM) (XILINX, 2016a) and a control flow oriented
128-bit Advanced Encryption Standard (AES) (HARA et al., 2008). The selected output size
(workload) is 32,768 bits (1024 values of 32-bit each) for the MxM and 1024 bits (32 values
of 32-bit each) for the AES.

Aiming at generating different hardware and software co-designs, both algorithms
were partitioned having portions running on the PS, i.e., one ARM Cortex-A9 core (hereafter
shortened to only “processor”) and portions implemented in the PL, used in the form of a
hardware accelerator. MxM algorithm was partitioned in two sets (setl and set2) of matrix
multiplication operations, resulting in ten different design versions. AES algorithm was
partitioned with respect to its encode (enc) and decode (dec) functions, resulting in fourteen
different design versions. As in the other chapters, the target device is the Xilinx Zyng-7000
APSoC.

With regard to the fault injection campaigns, the respective fault injection hardware
blocks were added for injecting faults in the PS and PL parts, as illustrated in Fig. 8.2.
However, they are not considered in any measurement, such as resource usage and

performance.

158

Figure 8.1 — Block diagrams of the architectures developed with the hardware (a) and software (b)
fault injectors embedded.

Zyng-7000 Zyng-7000
Ps PL Hardware fault Ps PL
injector
AEF AXI Stream A AXI Stream
interconnect ‘—I_. interconnect ‘—I_.
DMA DMA
° °
= I Stream = I Stream
[} [}
ARM Cortex-A9 |_| AXI .°,| Hardware ARM Cortex-A9 | | AXI |.©| Hardware
core T interconnect design core T interconnect design
I t t
Interrupt '
Shared memory s Control DUT Shared memory
(BRAM) (BRAM) injector
\
(a) luarT (b) | UART

8.3 Obtained results

Table 8.1 presents the number of critical bits and AVF of the hardware part of each
case-study design obtained from the hardware fault injection campaigns. Each hardware fault
injection campaign was divided into two steps. The first step consisted of injecting faults only
in the DUT area. The second step consisted of injecting faults in the peripheral hardware
blocks, such as the AXI interconnects and DMA. It is worth noting that all the designs have
the same peripheral blocks, which in somehow normalizes them. Moreover, since the design
versions 01 and 02 do not have a hardware accelerator, the critical bits and AVF values
presented in Table 8.1 are related to the peripheral blocks. These values are already included
in the results of the other designs, which have a hardware accelerator beyond the peripheral
blocks.

Comparing the obtained results from fault injection with the number of configuration
bits used in the PL, one can observe that a small fraction of the configuration bits (from
0.98% to 3.32%) is, in fact, critical. The number of critical bits and, consequently, the AVF
(obtained from Eq. 4.7), followed the resource usage increase, as already observed in Section
6.2.2.

Table 8.2 presents the AVF result of the software part of each case-study design
obtained from the software fault injection campaigns in the processor’s register file. Aiming
to modify as little as possible the algorithms, the software fault injection campaigns focused

on injecting faults within their main loop (Fig. 7.3), since it is the most executed part of them

159

and, thus, the most exposed in a harsh environment. Each fault injection campaign injected
25,000 bit-flips randomly on time and space.

Table 8.1 — Number of critical bits and AVF of the hardware part of each hardware and software co-
design obtained from the hardware fault injection campaigns.

Design version Critical bits - AVF
#SDC #SEFI # TOTAL (% of config. bits) SDC SEFI TOTAL
MxM
01 17820 6096 23916 (0.98) | 0.01195 0.00409 0.01604
02 17820 6096 23916 (0.98) | 0.01195 0.00409 0.01604
03 27615 60395 88010 (2.11) | 0.06348 0.18834 0.03560
04 27615 60395 88010 (2.11) | 0.00655 0.00995 0.03560
05 52332 74308 126640 (2.28) | 0.01117 0.02443 0.03667
06 52332 74308 126640 (2.28) | 0.06348 0.18834 0.03667
07 20586 50700 71286 (1.76) | 0.00655 0.00995 0.02936
08 20586 50700 71286 (1.76) | 0.01117 0.02443 0.02936
09 48451 50359 98810 (1.98) | 0.03169 0.04375 0.03275
10 48451 50359 98810 (1.98) | 0.00655 0.00995 0.03275
AES

01 17820 6096 23916 (0.98) | 0.01184 0.00405 0.01589
02 17820 6096 23916 (0.98) | 0.01184 0.00405 0.01589
03 66726 39343 106069 (2.22) | 0.02430 0.01433 0.03863
04 66726 39343 106069 (2.22) | 0.02430 0.01433 0.03863
05 193045 73876 266921 (3.32) | 0.04059 0.01553 0.05613
06 193045 73876 266921 (3.32) | 0.04059 0.01553 0.05613
07 46293 32746 79039 (1.84) | 0.01809 0.01280 0.03089
08 46293 32746 79039 (1.84) | 0.01809 0.01280 0.03089
09 78210 40830 119040 (2.27) | 0.02479 0.01294 0.03773
10 78210 40830 119040 (2.27) | 0.02479 0.01294 0.03773
11 45810 32591 78401 (1.82) | 0.01793 0.01276 0.03069
12 45810 32591 78401 (1.82) | 0.01793 0.01276 0.03069
13 157720 63710 221430 (3.07) | 0.03700 0.01494 0.05194
14 157720 63710 221430 (3.07) | 0.03700 0.01494 0.05194

Software-only designs (design versions 01 and 02) presented the higher AVF SDC
values on both algorithms tested. This behavior is mainly guided by the fact that the entire
algorithm is processed on the processor, which increases the susceptibility of its data to SDCs.
On the contrary, the software-only versions presented the lower AVF SEFI values on both
algorithms tested, probably because the code (Fig. 7.3) for interfacing with the hardware part
(hardware accelerator and DMA interface codes), which is quite substantial, is more
susceptible to crashes than the original algorithm.

With regard to the designs in which the entire algorithm is offloaded to the hardware
part (design versions 03, 04, 05, and 06), results show that the SDC AVF values decreased 11
times in average when compared with the software-only designs. This happens mainly
because all the data processing is performed in hardware, which decreases the software

susceptibility to SDCs. On the contrary, the AVF SEFI values of the designs increased 7.5

160

Table 8.2 — AVF of the software part of each hardware and software co-design obtained from the
software fault injection campaigns.

Design version AVF
SDC SEFI TOTAL
MxM
01 0.16316 0.04506 0.20822
02 0.17160 0.04503 0.21663
03 0.01140 0.55511 0.56651
04 0.01156 0.55646 0.56802
05 0.01044 0.55586 0.56630
06 0.01036 0.55646 0.56682
07 0.01480 0.61166 0.62646
08 0.01380 0.61174 0.62554
09 0.01420 0.61166 0.62586
10 0.01400 0.61110 0.62510
AES

01 0.13957 0.07697 0.21654
02 0.13915 0.08093 0.22008
03 0.01740 0.22214 0.23954
04 0.01773 0.23307 0.25081
05 0.01788 0.22250 0.24038
06 0.01656 0.20454 0.22110
07 0.02512 0.24482 0.26995
08 0.02368 0.23366 0.25735
09 0.02400 0.24458 0.26859
10 0.02407 0.26683 0.29090
11 0.02796 0.24746 0.27543
12 0.02727 0.24605 0.27333
13 0.02648 0.24718 0.27367
14 0.02604 0.24722 0.27327

times in average when compared with the software-only designs. This result reinforces the
last statement of the previous paragraph, which mentions that the code for interfacing with the
hardware part is more susceptible to crashes than the original algorithms.

With regard to the designs with distributed workload between software and hardware
(design versions from 07 to 14), the obtained AVF SDC values are in accordance with the
ones from the other design versions, since half of the algorithms are executed on the
processor. Thus, it is understandable that they are lower than the ones of the software-only
designs, but higher than the ones of the designs with the entire algorithm offloaded to the
hardware. Concerning the AVF SEFI values, one can notice that they are slight higher than
the ones of the designs with the entire algorithm offloaded to the hardware. This happens
because the softwares of these versions are the most complex of all, since they consist of part
of the original algorithm plus the code for interfacing with the hardware part embedded, while
the other ones have one part or another. It is worth mentioning that the interface code with a

hardware part is the same for any design that has a hardware accelerator in the PL,

161

independently if it implements one set of the algorithm or both. The interface consists always
of one input stream and one output stream.

Fig. 8.2 and 8.3 compare the total SDC, SEFI, and TOTAL (SDC + SEFI) AVF values
of the MxM and AES benchmark designs obtained from both hardware and software fault
injection campaigns with the respective dynamic cross sections obtained from radiation
experiments. By comparing the obtained AVF and dynamic cross section trends, one can
clearly observe that there are differences in the obtained values from fault injections and
radiation experiments, as also observed in Section 6.2.3 for hardware-only designs. The
reasons can be quite diverse, such as: in the PL part, faults are injected only in configuration
bits related to CLBs (LUTs, user FFs, and interconnections) and clock distribution
interconnections, and not in the BRAMS; in the PS part, faults are only injected into the
processor's register file, and not in the other functional blocks and memories of the processor;
and, in case of the radiation experiments, the particle beam and flux may present variations
and the probability of a particle hits the PS or PL parts is different, since the PS occupies
almost only one quarter of the Zyng-7000's die. However, in most of the cases, mainly in the
SDC and SEFI ones, it is still possible to observe the reliability trend of the designs. Results
also reveals that it is mandatory to consider both SDC and SEFI values separately, since the
TOTAL values may mask important data about the designs, such as the behavior of the SEFI

AVF and dynamic cross section in the MxM benchmark.

Figure 8.2 — Comparison between the total SDC, SEFI, and TOTAL (SDC + SEFI) AVF values
obtained from both hardware and software fault injection campaigns with the respective dynamic cross

sections obtained from radiation experiments for the MxM benchmark.

MM Oy, 2 EXP vS. AVF FI - SDC

9.10E-05 0.25
8.10E-05 o 5DC EXP
’ I AVF SDCFI
7.10E05 1 ® 0.20
e 610E05 L 1 -
< 510605 ¥ - 015,
£ 4.10E-05 z
24 s 0.10
& 3.10E-05 — 8
2.10E-05 0.05
1.10E-05
1.00E-06 0.00

1 2 3 4 5 6 7 8 9 10

Design version (a)

2.10E-05

— 1.60E-05
£

%)

—

= 1.10E-05

2
E
™
c
=
-
o

1.00E-06

9.10E-05
8.10E-05
7.10E-05

= 6.10E-05
- 5.10E-05
£4.10E-05
& 3.10E-05
2.10E-05
1.10E-05

1.00E-06

MXM Gy, ic EXP VS. AVF FI - SEFI

T T
11
¢ @

HHTH
HH T

5 6

Design version

i

7

MXM O g,,2mic EXP VS. AVF FI - TOTAL

¢

T T
1 1
L
5 B

Design version

7

T I &
¢
® o SEFI EXP
AVF SEFIFI
8 9 10
T T T
i i 1
[]
o 9

® 0 TOTAL EXP
AVFTOTAL FI
8 9 10

162

0.80
0.70
0.60
0.50

w
0.40 g
0.30
0.20
0.10
0.00

(b)

0.80
0.70
0.60
0.50
0.40 =
=T
0.30
0.20
0.10
0.00

(c)

Figure 8.3 — Comparison between the total SDC, SEFI, and TOTAL (SDC + SEFI) AVF values
obtained from both hardware and software fault injection campaigns with the respective dynamic cross

sections obtained from radiation experiments for the AES benchmark.

6.10E-05

5.10E-05

% 4.10E-05
s

£3.106-05

£2.10E-05
]

1.10E-05

1.00E-06

AES Gy i EXP V5. AVF FI - SDC

T
1
[]
-
B "
'
2 3 4 5

6 7 8 9

Design version

§§§§

+ L

@ o 3DC EXP
AVESDCFI

10 11 12 13 14

0.18
0.16
0.14
0.12
0.10 &
0.08 =
0.06
0.04
0.02
0.00

(a)

163

AES Gy amic EXP vs. AVF FI - SEFI

2.60E-05 0.35
I
T 0.30
2.10E-05 = I 1 &1 £ T 1T T
RE I 1 I T Y 1 i + ‘I‘ 4 1 0.25
5 1.60E-05 . T I * - 0.20 o
u & - A =
E T - &
Z110E05 _ I = $ 015%
o il = 0.10
6.00E-06 - =
o SEFI EXP 0.05
AVF SEFI FI
1.00E-06 0.00
1 2 3 4 5 6 7 8 9 10 11 12 13 14
Design version (b)

AES Oy amic EXP vs. AVF FI - TOTAL

8.10E-05 0.40
7.10E-05 ol .1 s
— 6.10E-05 T I 5 I RS S R R S
E510£05s 1 7 L o+ T + _ = ? o2
— 1L P & - w
£ 4.10E-05 ¢ * ¥ 0202
£3.10E-05 —— 5 0.15
© 2.10E-05 —— 0.10
1.10E-05 oTOTAL BXF 1 0,05
AVFTOTALFI
1.00E-06 0.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Design version (c)

Fig. 8.4 and 8.5 compare the total SDC, SEFI, and TOTAL (SDC + SEFI) MWBF
values of the MxM and AES benchmark designs obtained from both hardware and software
fault injection campaigns with the respective MWBF values obtained from radiation
experiments. The MWBF values obtained from fault injections considered the same particle
flux experienced by the designs during the radiation experiments of Section 7.2. In those
experiments, the particle flux varied between 1.0x10? and 1.0x10° particles.cm?.s™. The
execution time of each design was already specified in Table 7.3.

The comparison between the fault injections and radiation experiments results shows
clearly that there are differences in the obtained values, as expected and mentioned in Section
8.1. However, results also show that the proposed reliability analysis is capable of estimating
the MWBF trend of different hardware and software co-designs for the same benchmark
application with a considerably precision. This verifies the effectiveness of the proposed

analysis, since the MWBF metric was chosen as the main resulting metric of it.

164

Figure 8.4 — Comparison between the total SDC, SEFI, and TOTAL (SDC + SEFI) MWBF values
obtained from both hardware and software fault injection campaigns with the respective MWBF
values obtained from radiation experiments for the MxM benchmark.

MxM MWBF EXP vs. FI- SDC

1.00E+11
® MWEF SDC EXP|
1.00E+10 e | @ MWEF 5DC FI
— @
2 1.00E+09 @ e o *
5 o ° ¢
v 1.00E+08
a
g 1.00E+07
1.00E+06
1.00E+05
1 2 3 4 5 = 7 8 9 10
Design version (a)
MxM MWRBF EXP vs. FI - SEFI
1.00E+11
® ® ® MWBF SEFI EXP
1.00E+10 [MWEF SEFI FI
* ®
2100E+09 @ e ® o °®
0
w 1.00E+08
3]
g 1.00E+07
1.00E+06
1.00E+05
1 2 3 4) 6 7 8 9 10
Design version (b)
MxM MWBF EXP vs. FI - TOTAL
1.00E+11
® MWEBF TOTAL EXP]
1.00E+10 Y [] MWEBF TOTAL FI
— ®
£ 1.00E+09 L P ®
=} b ° @
- 1.00£:08 @
a
g 1.00E+07
1.00E+06
1.00E+05

1 2 3 4 5 b 7 8 9 10

Design version {c)

165

Figure 8.5 — Comparison between the total SDC, SEFI, and TOTAL (SDC + SEFI) MWBF values
obtained from both hardware and software fault injection campaigns with the respective MWBF
values obtained from radiation experiments for the AES benchmark.

AES MWBF EXP vs. FI - SDC

1.00E+11
1.00E+10 ¢ ¢ o o o
— @ ® ® ®
£1.00E+09 ®
2 ® o L] ®
uw 1.00E+08
[uid]
Z 1.00E+07
o
MWEF 5DCFI
1.00E+05
1 2 3 4 5 [7 8 9 10 11 12 13 14
Design version (a)
AES MWBF EXP vs. FI - SEFI
1.00E+11
e o *
®
1.00E+10 L ® ® @
— ®
T100E+09 o o °
2 ® @
w 1.00E+08
=
= 1.00E+07
1.00E+06 » MWBF SEFI EXP|
MWBF SEFI FI
1.00E+05
1 2 3 4 5 6 7 8 9 0 11 12 13 14
Design version (b)
AES MWBF EXP vs. FI - TOTAL
1.00E+11
1.00E+10 o @ ® o @
— L ®
Z1o0E+08 ® @
e]
=]]
. 1.00E+08 ® ° ®
gl.DDEH}?
.
MWBF TOTAL FI
1.00E+05

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Design version (c)

Fig. 8.6 and 8.7 compare the total SDC, SEFI, and TOTAL (SDC + SEFI)
Performance rate values of the MxM and AES benchmark designs obtained from both
hardware and software fault injection campaigns with the respective Performance rate values

obtained from radiation experiments. In general, results from fault injections and radiation

166

experiments show a good agreement, reinforcing the effectiveness of the proposed reliability
analysis.

Figure 8.6 — Comparison between the total SDC, SEFI, and TOTAL (SDC + SEFI) Performance rate
values obtained from both hardware and software fault injection campaigns with the respective

MWABF values obtained from radiation experiments for the MxM benchmark.

MxM Performance rate Flvs. EXP - SDC

1000 1000
[] n
e
o A L
A 3z
2 100 | 100 &
; A | | g
g 10 A m A m A 4
£ 4 . E
o | L
t1 S 1 5
[H]
o B Perform. rate SDC F o
A Perform. rate SDC EXP
0 0
1 2 3 4 5 6 7 8 9 10
Design version (a)
MxM Performance rate Flvs. EXP - SEFI
10 100
l l M Perfarm. rate SEFIFI
ic A Perform. rate SEFIEXP %
z - w
m a
s A A 10 3
L¥]
é 1 | A - = Y A é
m
8 A A A - 1 e
5 [| o
a =
u [| rgj
0 0
1 2 3 4 5 6 7 8 9 10
Design version (b)
MxM Performance rate Fl vs. EXP - TOTAL
100 1000
B Perform . rate TOTAL FI
e u B | & Perform. rate TOTALEXP o
@ A A 100 W
T 10 Q
m
[+H] i
[&]
c - l ‘ A A 0 9
E A m 4o ©® @
s 1 ® 4 = £
T A . 15
o @
o
0 0

1 2 3 4 5 6 7 8 9 10

Design version

—
(2]
S

167

Figure 8.7 — Comparison between the total SDC, SEFI, and TOTAL (SDC + SEFI) Performance rate
values obtained from both hardware and software fault injection campaigns with the respective

MWBF values obtained from radiation experiments for the AES benchmark.

AES Performance rate Fl vs. EXP - SDC

1000 100
T m = = &
u 100 l 'y Ll
© A La . - - " 10
m
@ =
£ 10 e A o A A v
g | [| n g
5 A 1 E
T 1 = 8
a ® Perform. rate SDC Fl A A A C
A Perform. rate SDC EXP o
] 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14
Design version (a)
AES Performance rate Flvs. EXP - SEFI
100 100
A A
e 4 [- A %
‘ =
2 A ® = A '
© 10 - = 108
g o “ o
: s
51 & A A ¢ = 1 £
3 b ¥ 5
o W perform. rate SEFIFI =
A Perform. rate SEFIEXP o
0 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14
Design version (b)
AES Performance rate FI - TOTAL
100 100
o | |
|
= i 14, A . &
3 5 ™ i u w
o 10 A A 10 2
@ A o
=1 u | 1 m
< . = A A A £
o W Perform. rate TOTALFI E
A Perform. rate TOTALEXP o
o 0
1 2 3 4 5 [7 8 5 10 11 12 13 14
Design version (c)

8.4 Summary

Results show that, in general, the estimation of the reliability trend of hardware and

software co-designs, hardware-only designs, and software-only designs, through the proposed

168

flow is a suitable method for estimating their behavior before radiation experiments.
Moreover, fault injection results also reinforce the need of taking into account each design
option available and all the parameters of the system involved, such as the cross section/AVF,
execution time, and workload.

Several improvements can be performed aiming to increase the confidence of the fault
injection platforms and the accuracy of the flow. In the PL (hardware) side, faults can also be
injected in the BRAMSs. In the PS (software) side, the software fault injector can be updated to
consider injecting faults in the processor’s configuration registers and embedded memories. In
addition, the integration of both fault injectors would certainly improve the precision of the

results.

169

9 CONCLUDING REMARKS

As observed, modern commercial APSoCs offer a plethora of advantages and are very
attractive for safety-critical markets. However, their high complexity and density increase the
susceptibility of systems implemented in them to noises that are present in the environment,
such as the ones caused by the radiation. In this thesis, a deep investigation of the radiation
effects on APSoCs was performed together with an investigation about the correlation
between hardware and software resources sensitivity in the overall system performance. As a
final result, a reliability analysis flow was proposed aiming to estimate the reliability trend of
hardware and software co-designs, hardware-only designs, and software-only designs
implemented in APSoCs.

The next sections summarize the main contributions of this thesis, present future

works, and list the publications of the author during his Ph.D.

9.1 Main contributions

9.1.1 Extensive review about APSoCs, possible radiation effects on them, and the methods

and metrics for evaluating them under radiation

This thesis presented that programmable devices have evolved very rapidly in the last
decade, mainly because of performance pressure in the high-volume commercial marketplace.
As a consequence, several APSoC devices were introduced in the market providing higher
programmable flexibility and overall system performance at lower costs than standalone
processors and FPGAs. However, the high complexity and density of these devices increase
the system’s susceptibility to noises that are present in the environment, such as the ones
caused by radiation.

With regards to radiation effects, this thesis made it clear that state-of-the-art complex
devices such as APSoCs have created many challenges for the radiation effects field. That is
because radiation-induced failures in such devices and architectures may result in a complex
chain of effects due to their heterogeneous nature. Consequently, additional methodologies
and metrics become necessary for estimating the reliability of such devices, such as the
MWBF. The MWBF metric identifies the workload that can be correctly computed by the

system before experiencing a failure. Thus, this thesis supports that the MWBF must always

170

be considered in the analysis of APSoC-based systems, since it considers that the capability of
a system to provide correct data depends on several factors, such as the execution time and
workload of the system, and not only of the sensitive area (cross section). It is also worth
highlighting that, as far as it is known, this is the first time that the possible radiation effects

on APSoCs are listed together in one single document.

9.1.2 Original static data about Xilinx Zyng-7000 under radiation

This thesis presented original static data about several hardware parts of Xilinx Zynq-
7000 under heavy ion and proton irradiations. The CRAM, BRAM, OCM, and L2 cache were
tested. Some of them were also tested under different conditions. Although results revealed
that there are not significant differences among their cross sections, the obtained results are
important for guiding designers during the implementation of a shared memory between the
PS and PL parts of Zyng-7000, for example).

9.1.3 Original dynamic analysis and data about Xilinx Zyng-7000 under radiation

Dynamic experiments showed that there are several choices of architectures and
resources to be chosen when implementing a system on an APSoC. Moreover, results also
showed that there are logic resources that can increase or decrease the vulnerability of an
entire system to failures.

In the PS part, dynamic tests consisted of different cache schemes (L1 and L2 caches)
aiming to evaluate the impacts of the cache scheme on the sensitiveness of the processor
under heavy ions. Cross section results showed that the addition of any cache memory to the
memory hierarchy affects the sensitivity of the processor significantly. However, regardless
the smaller cross section imposed by disabling all caches, its execution time is so high not to
be compensated by the benefit in terms of performance. Thus, for the other configurations,
despite the increase in the complexity and sensitive area, the smaller the execution time, the
bigger the MWBF.

In the PL part, for the first time, dynamic tests investigated the trade-offs of different
HLS-based designs implemented into an Artix-7 FPGA (equivalent to the Zyng-7000’s PL) in
terms of not only resource utilization and performance, but also reliability, by analyzing their
behaviors under SEUs and comparing them to a standard processor-based implementation.

Results showed that the influence of HLS optimizations in the dynamic cross section of the

171

designs is low when compared to their performance enhancement, which contributed
significantly to increase the MWBF and the performance rate of them.

This thesis also investigated for the first time the impact of using both PS and PL parts
of Xilinx Zyng-7000 APSoC in the overall system failure rate. Different memory
organizations, communication schemes, and computing modes were considered for building
hardware and software co-designs. Results showed that the reliability of systems based on
hardware and software co-design seems to be inversely proportional not only to the device

sensitivity but also to the system execution time.

9.1.4 Reliability analysis flow for hardware-only designs, software-only designs, and

hardware and software co-designs

The final result of this thesis was a methodology flow to estimate the reliability trend
of software-only, hardware-only, and hardware and software co-designs based on fault
injection campaigns. The main objective was to accelerate the search for the design with the
best trade-off between performance and reliability, i.e. the design that provides a performance
enhancement higher than the sensitivity increase. Results showed that, in general, the
estimation of the reliability trend of software-only, hardware-only, and hardware and software
co-designs through the proposed flow is a suitable method for estimating their behavior

before radiation experiments.

9.2 Future works

9.2.1 Completing the static measurements of Zyng-7000

Additional heavy ion and proton experiments can be performed to complete the static
data results of the PS part and for help refining the proposed reliability analysis flow.
However, obtaining the static cross section of hardware blocks of a processor, such as the
processor’s register file and L1 cache, is a complex task, since the entire device is irradiated
and the static test of these blocks are, in fact, semi-static, which certainly affects the final
results. An interesting approach to work around this problem is to perform laser test
campaigns for evaluating the static cross section of each memory block separately, since laser
tests provide a high level of accessibility to locate the circuit elements where faults are

172

injected. The small laser spot and precise beam localization characteristics allow sensitive
device nodes to be pinpointed with submicron accuracy without affecting the entire device.

9.2.2 Improving the reliability analysis flow

Several improvements can be performed aiming to increase the confidence of the fault
injection platforms and the accuracy of the flow. In the PL side, faults can also be injected in
the BRAMs. In the PS side, the software fault injector can be updated to consider injecting
faults in the processor’s configuration registers and embedded memories. In addition, the

integration of both fault injectors would certainly improve the precision of the results.

9.2.3 Analyzing the use of fault-tolerant techniques in APSoCs

The use of fault-tolerant techniques can also be evaluated. In fact, this thesis motivated
the beginning of three ongoing works, which are the following:

e The exploration of the use of dual-core lockstep as a fault tolerance solution to
increase the dependability in hard-core processors embedded in COTS
APS0Cs. As a case study, it was designed and implemented an approach based
on lockstep to protect the dual-core ARM Cortex-A9 processor embedded into
the Xilinx Zyng-7000. Experimental results show the effectiveness of the
proposed approach in mitigating around 91% of the bit-flips injected in the
processor’s registers. It was also observed that the performance overhead
depends on the application size, the number of checkpoints performed, and the
checkpoint and rollback routines.

e The use of TMR at processor’s instruction level. The VAR3Ra is a software-
only technique capable of recovering from errors, specially designed for the
ARM-v7 architecture (ARM Cortex-A9). The technique is based on the
detection technique VAR3 (CHIELLE et al., 2016). Each operation, data, or
register has two replicas, which are independent of the original, providing both
spatial and temporal redundancy/protection. Due to the lack of enough
available registers to apply software triplication in the ARM-v7 architecture,
part of an embedded memory is used as the third register (second replica).

e The use of TMR in hardware accelerators designs described in C

programming language and synthesized by HLS. A setup composed of a soft-

173

core processor and a matrix multiplication design protected by TMR and
embedded into an SRAM-based FPGA was analyzed under accumulated bit-
flips in its configuration memory bits. Different configurations using single
and multiple inputs and output workload data streams were tested. Results
show that by using a coarse grain TMR with triplicated inputs, voters, and
outputs, it is possible to reach 95% of reliability by accumulating up to 61 bit-
flips and 99% of reliability by accumulating up to 17 bit-flips in the
configuration memory bits. These numbers imply in an MTBF of the coarse
grain TMR at ground level from 50% to 70% higher than the MTBF of the
unhardened version for the same reliability confidence.

Another fault-tolerant technique that could be interesting to evaluate in an APSoC
context is the use of scrubbing in the configuration memory of the PL and configuration
registers of the PS. Scrubbing would avoid the accumulation of bit-flips and could reduce the
occurrence of SDCs and SEFIs drastically.

9.2.4 Evaluation of other APSoCs

Similar APSoCs to Xilinx Zyng-7000, such as Microsemi SmartFusion and
SmartFusion2 and Altera Cyclone V can be easily evaluated by using the evaluation
methodology adopted in this thesis. In fact, Microsemi SmartFusion2 has already started
being evaluated and a work presenting the first results was already approved for publication.

Finally, it is also worth mentioning that the proposed reliability analysis flow is
capable of being generic and extendable to other APSoCs if slight adjustments are performed.

9.3 Publications

9.3.1 Book chapters

First author:
1. Neutron-Induced Single Event Effect in Mixed-Signal Flash-Based FPGA.
L. A. Tambara, M. S. Lubaszewski, T. R. Balen, P. Rech, F. L. Kastensmidt,
C. Frost. FPGAs and Parallel Architectures for Aerospace Applications. led.:

174

Springer International Publishing, 2016, pp. 201-216. DOI: 10.1007/978-3-
319-14352-1_14.

2. Fault-Tolerant Manager Core for Dynamic Partial Reconfiguration in
FPGAs. L. A. Tambara, J. Tarrillo, F. L. Kastensmidt, L. Sterpone. FPGAs
and Parallel Architectures for Aerospace Applications. led.: Springer
International Publishing, 2016, pp. 121-133. DOI: 10.1007/978-3-319-14352-
10.

3. Measuring Failure Probability of Coarse and Fine Grain TMR Schemes in
SRAM-based FPGAs Under Neutron-Induced Effects. L. A. Tambara, F.
Almeida, P. Rech, F. L. Kastensmidt, G. Bruni, C. Frost. Lecture Notes in
Computer Science. led.: Springer International Publishing, 2015, v. 9040, pp.
331-338. DOI: 10.1007/978-3-319-16214-0_28.

Co-author:

1. Applying TMR in Hardware Accelerators Generated by High-Level
Synthesis Design Flow for Mitigating Multiple Bit Upsets in SRAM-Based
FPGAs. A. F. dos Santos, L. A. Tambara, F. Benevenuti, J. Tonfat, F. L.
Kastensmidt. Lecture Notes in Computer Science. led.: Springer International
Publishing, 2017, v. 10216, pp. 202-213. DOI: 10.1007/978-3-319-56258-
2_18.

2. Exploring Performance Overhead Versus Soft Error Detection in
Lockstep Dual-Core ARM Cortex-A9 Processor Embedded into Xilinx
Zyng APSoC. A. B. de Oliveira, L. A. Tambara, F. L. Kastensmidt. Lecture
Notes in Computer Science. led.: Springer International Publishing, 2017, v.
10216, pp. 189-201. DOI: 10.1007/978-3-319-56258-2_17.

3. Method to Analyze the Susceptibility of HLS Designs in SRAM-Based
FPGAs Under Soft Errors. J. Tonfat, L. A. Tambara, A. F. dos Santos, F. L.
Kastensmidt. Lecture Notes in Computer Science. led.: Springer International
Publishing, 2016, v. 9625, pp. 132-143. DOI: 10.1007/978-3-319-30481-6_11.

4. Multiple Fault Injection Platform for SRAM-Based FPGA Based on
Ground-Level Radiation Experiments. J. Tonfat, J. Tarrillo, L. A. Tambara,
F. L. Kastensmidt, R. Reis. FPGAs and Parallel Architectures for Aerospace
Applications. led.: Springer International Publishing, 2016, pp. 135-151. DOI:
10.1007/978-3-319-14352-1_10.

175

9.3.2 Journals

First author:

1. Analyzing the Impact of Radiation-induced Failures in Flash-based
APSoC with and without Fault Tolerance Techniques at CERN
Environment. L. A. Tambara, E. Chielle, F. L. Kastensmidt, G. Tsiligiannis,
S. Danzeca, M. Brugger, A. Masi. Microelectronics Reliability, 2017.
(approved for publication)

2. Analyzing Reliability and Performance Trade-offs of HLS-based Designs
in SRAM-based FPGAs under Soft Errors. L. A. Tambara, J. Tonfat, A.
Santos, F. L. Kastensmidt, N. H. Medina, N. Added, V. A. P. Aguiar, F.
Aguirre, M. A. G. Silveira. IEEE Transactions on Nuclear Science, v. 64, n. 2,
pp. 874-881, Feb. 2017. DOI: 10.1109/TNS.2017.2648978.

3. Analyzing the Impact of Radiation-Induced Failures in Programmable
SoCs. L. A. Tambara, P. Rech, E. Chielle, J. Tonfat, F. L. Kastensmidt. IEEE
Transactions on Nuclear Science, v. 63, n. 4, pp. 2217-2224, Aug. 2016. DOI:
10.1109/TNS.2016.2522508.

Co-author:

1. Register File Criticality and Compiler Optimization Effects on Embedded
Microprocessors Reliability. F. M. Lins, L. A. Tambara, F. L. Kastensmidt,
P. Rech. IEEE Transactions on Nuclear Science, 2016. (pending publication)

2. Soft Error Susceptibility Analysis Methodology of HLS Designs in SRAM-
based FPGAs. J. Tonfat, L. A. Tambara, A. F. dos Santos, F. L. Kastensmidt.
Microprocessors and Microsystems, v. 51, pp. 209-2019, Jun. 2017. DOI:
10.1016/J.MICPR0.2017.04.016.

3. Reliability on ARM Processors Against Soft Errors Through SIHFT
Techniques. E. Chielle, F. Rosa, G. S. Rodrigues, L. A. Tambara, J. Tonfat, E.
Macchione, F. Aguirre, N. Added, N. Medina, V. Aguiar, M. A. G. Silveira, L.
Ost, R. Reis, S. Cuenca-Asensi, F. L. Kastensmidt. IEEE Transactions on
Nuclear Science, v. 63, n. 4, pp. 2208-2216, Aug. 2016. DOL:
10.1109/TNS.2016.2525735.

176

4. S-SETA: Selective Software-Only Error-Detection Technique Using
Assertions. E. Chielle, G. S. Rodrigues, L. A. Tambara, P. Rech, F. L.
Kastensmidt, S. Cuenca-Asensi, H. Quinn. IEEE Transactions on Nuclear
Science, v. 62, n. 6, pp. 3088-3095 Dec. 2015. DOI:
10.1109/TNS.2015.2484842.

5. Exploring Design Diversity Redundancy to Improve Resilience in Mixed-
Signal Systems. C. P. Chenet, L. A. Tambara, G. M. de Borges, F. L.
Kastensmidt, M. S. Lubaszewski, T. R. Balen. Microelectronics and
Reliability, v. 55, n. 12, pp. 2833-2844, Dec. 2015. DOI:
10.1016/J.MICROREL.2015.08.011.

6. Laser Testing Methodology for Diagnosing Diverse Soft Errors in a
Nanoscale SRAM-Based FPGA. F. L. Kastensmidt, L. A. Tambara, D. V.
Bobrovsky, A. A. Pechenkin, A. Y. Nikiforov. IEEE Transactions on Nuclear
Science, v. 61, n. 6, pp. 3130-3137, Dec. 2014. DOI:
10.1109/TNS.2014.2369008.

9.3.3 Conferences and workshops

First author:

1. Reliability-Performance Analysis of Hardware and Software Co-Designs
in SRAM-based APSoCs. L. A. Tambara, F. Lins, P. Rech, F. L. Kastensmidt,
N. H. Medina, N. Added, V. A. P. Aguiar, M. A. G. Silveira. European
Conference on Radiation and Its Effects on Components and Systems
(RADECS), 2017, Geneva, Switzerland. (submitted)

2. Evaluating the Use of APSoCs for CERN Applications. L. A. Tambara, E.
Chielle, F. L. Kastensmidt, G. Tsiligiannis, S. Danzeca, M. Brugger, A. Masi.
European Conference on Radiation and Its Effects on Components and
Systems (RADECS), 2016, Bremen, Germany. (pending publication)

3. Analyzing Reliability and Performance Trade-offs of HLS-based Designs
in SRAM-based FPGAs under Soft Errors. L. A. Tambara, J. Tonfat, A.
Santos, F. L. Kastensmidt, N. H. Medina, N. Added, V. A. P. Aguiar, F.
Aguirre, M. A. G. Silveira. IEEE Nuclear and Space Radiation Effects
Conference (NSREC), 2016, Portland, USA.

10.

177

On the Reliability of Coarse and Fine Grain TMR Schemes in SRAM-
based FPGAs under Single Event Upsets. L. A. Tambara, P. Rech, F. L.
Kastensmidt. South Symposium on Microelectronics (SIM), 2015, Santa
Maria, Brazil.

Heavy lons Induced Single Event Upsets Testing of the 28 nm Xilinx
Zyng-7000 All Programmable SoC. L. A. Tambara, F. L. Kastensmidt, N. H.
Medina, N. Added, V. A. P. Aguiar, F. Aguirre, E. Macchione, M. A. G.
Silveira. IEEE Radiation Effects Data Workshop (REDW), 2015, Boston,
USA. DOI: 10.1109/REDW.2015.7336716.

Analyzing the Failure Impact of Using Hard- and Soft-Cores in All
Programmable SoC under Neutron-Induced Upsets. L. A. Tambara, P.
Rech, E. Chielle, F. L. Kastensmidt. Conference on Radiation and Its Effects
on Components and Systems (RADECS), 2015, Moscow, Russia. DOI:
10.1109/RADECS.2015.7365586.

On the Characterization of Embedded Memories of Zyng-7000 All
Programmable SoC under Single Event Upsets Induced by Heavy lons
and Protons. L. A. Tambara, A. Akhmetov, D. V. Bobrovsky, F. L.
Kastensmidt. European Conference on Radiation and Its Effects on
Components and Systems (RADECS), 2015, Moscow, Russia. DOI:
10.1109/RADECS.2015.7365643.

Soft Error Rate in SRAM-based FPGAs Under Neutron-induced and TID
Effects. L. A. Tambara, J. Tonfat, R. Reis, F. L. Kastensmidt, E. C. F. Pereira,
R. G. Vaz, O. L. Goncalez. IEEE Latin American Test Workshop (LATW),
2014, Fortaleza, Brazil. DOI: 10.1109/LATW.2014.6841920.

Evaluating the Robustness of TMR Schemes with Different Levels of
Granularity in SRAM-based FPGAs under Neutron-induced Effects. L. A.
Tambara, P. Rech, F. L. Kastensmidt, G. Bruni, C. Frost, H. Quinn. IEEE
Nuclear and Space Radiation Effects Conference (NSREC), 2014, Paris,
France.

Decreasing FIT with Diverse Triple Modular Redundancy in SRAM-
based FPGAs. L. A. Tambara, F. L. Kastensmidt, P. Rech, C. Frost. IEEE
International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFT), 2014, Amsterdam, The Netherlands. DOI:
10.1109/DFT.2014.6962070.

178

11. Neutron-induced Single Event Effects Analysis in a SAR-ADC
Architecture Embedded in a Mixed-signal SoC. L. A. Tambara, F. L.
Kastensmidt, P. Rech, T. R. Balen, M. S. Lubaszewski. IEEE Computer
Society Annual Symposium on VLSI (ISVLSI), 2013, Natal, Brazil. DOI:
10.1109/1ISVLSI.2013.6654657.

12. Evaluating the Effectiveness of a Diversity TMR Scheme Under Neutrons.
L. A. Tambara, F. L. Kastensmidt, J. R. Azambuja, E. Chielle, F. Almeida, G.
Nazar, P. Rech, C. Frost, M. S. Lubaszewski. European Conference on
Radiation and Its Effects on Components and Systems (RADECS), 2013,
Oxford, United Kingdom. DOI: 10.1109/RADECS.2013.6937382.

13. Neutron-induced Single Event Effects in a SRAM-based FPGA by Using
241Am-Be Source at IEAv. L. A. Tambara, J. Tonfat, F. L. Kastensmidt, E.
C. F. P. Junior, R. G. Vaz, O. L. Goncalez. Workshop Sobre os Efeitos das
RadiagOes lonizantes em Componentes Eletronicos e Fotonicos de Uso
Aeroespacial (WERICE), 2013, Sao José dos Campos, Brazil.

Co-author:

1. Evaluation of Feed-Forward Artificial Neural Networks Reliability in
FPGAs. F. Libano, P. Rech, L. A. Tambara, J. L. Tonfat, N. H. Medina, N.
Added, V. A. P. Aguiar, F. Aguirre, M. A. G. Silveira, F. L. Kastensmidt.
IEEE Nuclear and Space Radiation Effects Conference (NSREC), 2017, New
Orleans, USA. (approved for publication)

2. Evaluating the Efficiency of using TMR in the High-Level Synthesis
Design Flow of SRAM-based FPGA. A. F. dos Santos, L. A. Tambara, F. L.
Kastensmidt. IEEE Latin American Symposium on Circuits and Systems
(LASCAS), 2017, Bariloche, Agentina. (pending publication)

3. Applying Lockstep in Dual-Core ARM Cortex-A9 to Mitigate Radiation-
induced Soft Errors. A. B. de Oliveira, L. A. Tambara, F. L. Kastensmidt.
IEEE Latin American Symposium on Circuits and Systems (LASCAS), 2017,
Bariloche, Agentina. (pending publication)

4. Register File Criticality on Embedded Microprocessor Reliability. F. M.
Lins, L. A. Tambara, F. L. Kastensmidt, P. Rech. European Conference on
Radiation and Its Effects on Components and Systems (RADECS), 2016,

Bremen, Germany. (pending publication)

10.

11.

12.

179

Applying Lockstep in Dual-Core ARM Cortex-A9 to Mitigate Radiation-
induced Soft Errors. A. B. de Oliveira, L. A. Tambara, F. L. Kastensmidt.
South Symposium on Microelectronics (SIM), 2017, Rio Grande, Brazil.
Reliability Analysis of Feed-Forward Artificial Neural Networks in
System on Chips. F. Libano, P. Rech, L. A. Tambara, J. L. Tonfat, N. H.
Medina, N. Added, V. A. P. Aguiar, F. Aguirre, M. A. G. Silveira, F. L.
Kastensmidt. Workshop on Silicon Errors in Logic - System Effects (SELSE),
2017, Boston, USA.

Using Programmable System-on-Chip for Aerospace Applications. F. L.
Kastensmidt, L. A. Tambara, E. Chielle, J. Tonfat, A. Santos. Single Event
Effects Symposium and Military and Aerospace Programmable Logic Devices
Workshop (SEE/MAPLD), 2016, San Diego, USA.

Multiple Fault Injection Platform for SRAM-based FPGA Based on
Ground-level Radiation Experiments. J. Tarrillo, J. Tonfat, L. A. Tambara,
F. L. Kastensmidt, R. Reis. IEEE Latin American Test Symposium (LATS),
2015, Puerto Vallarta, Mexico. DOI: 10.1109/LATW.2015.7102494.
Selective Software Techniques to Detect Neutron-induced Soft Errors in
Processors with Minimum Overhead. E. Chielle, G. S. Rodrigues, F. L.
Kastensmidt, S. Cuenca-Asensi, L. A. Tambara, P. Rech, H. Quinn. IEEE
Nuclear and Space Radiation Effects Conference (NSREC), 2015, Boston,
USA.

Reliability on ARM Processors Against Soft Errors by a Purely Software
Approach. E. Chielle, F. Rosa, G. S. Rodrigues, L. A. Tambara, F. L.
Kastensmidt, R. Reis, S. Cuenca-Asensi. European Conference on Radiation
and Its Effects on Components and Systems (RADECS), 2015, Moscow,
Russia. DOI: 10.1109/RADECS.2015.7365660.

Laser Testing for Diagnosing SEU and SET in Virtex-5. F. L. Kastensmidt,
L. A. Tambara, D. Bobrovsky, A. Pechenkin, A. Nikiforov. IEEE Nuclear and
Space Radiation Effects Conference (NSREC), 2014, Paris, France.

Power Dissipation Effects on 28nm FPGA-based System-on-Chip Neutron
Sensitivity. G. Bruni, P. Rech, L. A. Tambara, G. L. Nazar, F. L. Kastensmidt,
R. Reis, A. Paccagnella. International Conference on Very Large Scale
Integration (VLSI-SoC), 2014, Playa del Carmen, Mexico. DOI:
10.1109/VLSI-S0C.2014.7004195.

180

REFERENCES

AGUIAR, V. A. P.; ADDED, N.; MEDINA, N. H.; MACCHIONE, E. L. A.; TABACNIKS,
M. H.; AGUIRRE, F. R.; SILVEIRA, M. A. G; SANTOS, R. B. B.; SEIXAS, L. E.
Experimental Setup for Single Event Effects at the S&o Paulo 8UD Pelletron Accelerator.
Nuclear Instruments & Methods in Physics Research, vol. 332, 2014, pp. 397-400.

AGUIAR, V.AP.; MEDINA, N. H.; ADDED, N.; MACCHIONE, E. L. A.; AGUIRRE, F.
R.; RIBAS, R. V.; NASCIMENTO, S. G.; ESCUDEIRO, R.; ALLEGRO, P. R. P.; PEREGO,
C. C.; FAGUNDES, L. M.; DUARTE, J. G.; SCARDUELLI, V. B.; MORAIS, O. B;
ALMEIDA, E. A,; JOAQUIM, P. M.; SOUZA, M. S.; CECOTTE, A. F. M.; MARTINS, R.;
BRAGE, J. A. P.; LEISTENSCHNEIDER, E.; OLIVEIRA, R. A. N.; ASSIS, R. F.; LEITE,
A. R.; TERASSI, J. C.; ABREU, J. C.; SIMOES, R. F.; JOAQUIM, A. S.; SERVELO, W. A;;
SILVA, S. C.; MINAS, J. H. P.; SILVA, M. T.; SILVA, V. E. S.; KSHINSKIY, D. A;
RODRIGUES, C. L. Safiira Facility At LAFN-USP: Beam Characteristics and Scientific
Program. XL Workshop on Nuclear Physics, 2017. (to be published)

ALEXANDRESCU, D.; STERPONE, L.; LOPEZ-ONGIL, C. Fault Injection and Fault
Tolerance Methodologies for Assessing Device Robustness and Mitigating Against lonizing
Radiation. IEEE European Test Symposium, 2014, pp. 1-6.

ALIA, R. G. Facilities for Radiation Testing and Technologies for Radiation Monitoring.
CERN/SSC Technology Transfer Day, Jun. 2016.

ALLEN, G.; IROM, F.; AMRBAR, M. Zyng SoC Radiation Test Results and Plans for the
Altera MAX10. NEPP Electronics Technology Workshop, Jun. 2015.

ALTERA. Adding Hardware Accelerators to Reduce Power in Embedded Systems, WP-
01112-1.0, 2009.

ALTERA. Cyclone \/ FPGAS & SoCs, 2015. Available at:
<https://www.altera.com/products/fpga/cyclone-series/cyclone-v/overview.html>. Accessed
on: August 2015.

AMDAHL, G. M. Validity of the Single Processor Approach to Achieving Large Scale
Computing Capabilities. AFIPS 1967, 1967, pp. 483-485.

AMRBAR, M.; IROM, F.; GUERTIN, S. M.; ALLEN, G. Heavy lon Single Event Effects
Measurements of Xilinx Zyng-7000 FPGA. IEEE Radiation Effects Data Workshop, 2015,

pp. 1-4.

ARM. Cortex-A9 — Technical Reference Manual. Revision r4pl, 2012.

ARM. AMBA Specifications, 2015. Available at: <http://www.arm.com/products/system-
ip/amba-specifications.php>. Accessed on: April 2016.

ARM. NEON, 2015. Available at: < http://www.arm.com/products/processors/technologies/
neon.php>. Accessed on: April 2016.

181

ATLAS. ATLAS, 2016. Available at: <http://home.cern/about/experiments/atlas>. Accessed
on: May 2016.

AVIZIENIS, A.; LAPRIE, J. C.; RANDELL, B.; LANDWEHR, C. Basic Concepts and
Taxonomy of Dependable and Secure Computing. IEEE Transactions on Dependable and
Secure Computing, vol. 1, n. 1, Mar. 2004, pp. 11-33.

BAGATIN, M.; GERARDIN, S.; PACCAGNELLA, A.; ANDREANI, C.; GORINI, G,;
FROST, C.D. Temperature Dependence of Neutron-induced Soft Errors in SRAMs.
Microelectronics Reliability, vol. 52, n. 1, Jan. 2011, pp. 289-293

BOUDENOT, J. C. Radiation Space Environment. In. VELAZCO, R.; FOUILLAT, P.; REIS,
R. (Ed.). Radiation Effects on Embedded Systems. Dordrecht: Springer, 2007. p. 1-9.

CANIS, A.; CHOI, J.; ALDHAM, M.; ZHANG, V.; KAMMOONA, A.; ANDERSON, J. H,;
BROWN, S.; CZAJKOWSKI, T. LegUp: High-Level Synthesis for FPGA-based
Processor/Accelerator Systems. ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, Feb. 2011, pp. 33-36.

CARLIN, N.; DE SOUZA, J. C.; SZANTO, E. M.; ACQUADRO, J. C.; OKUNO, E;
TAKAHASHI, J.; UMISEDO, N. K.; DE OLIVEIRA FILHO, F.J.; VASCONCELOS, J. A.
C. Irradiation Facility for Radiobiology and Molecular Biophysics Studies at the University
of Sdo Paulo Pelletron Accelerator Laboratory. Nuclear Instruments and Methods in
Physics, vol. 540, n. 2-3, Mar. 2005, pp. 215-221.

CARREIRA, J.; MADEIRA, H.; SILVA, J. G. Xception: A Technique for the Experimental
Evaluation of Dependability in Modern Computers. IEEE Transactions on Software
Engineering, vol. 24, n. 2, Feb. 1998, pp. 125-136.

CHEN, L.; EBRAHIMI, M.; TAHOORI, M. B. Reliability-Aware Resource Allocation and
Binding in High-Level Synthesis. ACM Transactions on Design Automation of Electronic
Systems, vol. 21, n. 2, Jan. 2016, pp. 1-27.

CHEN, X.; YANG, W.; ZHAO, M.; WANG, J. HLS-based Sensitivity-Inductive Soft Error
Mitigation for Satellite Communications Systems. IEEE International Symposium on On-
Line Testing and Robust System Design, Jul. 2016, pp. 143-148.

CHIELLE, E.; RODRIGUES, G. S.; KASTENSMIDT, F. L.; CUENCA-ASENSI, S,
TAMBARA, L. A.; RECH, P.; QUINN, H. S-SETA: Selective Software-Only Error-
Detection Technique Using Assertions. IEEE Transactions on Nuclear Science, vol. 62, n.
6, Dec. 2015, pp. 3088-3095.

CHIELLE, E.; ROSA, F.; RODRIGUES, G. S.; TAMBARA, L. A.; TONFAT, J;
MACCHIONE, E.; AGUIRRE, F.; ADDED, N.; MEDINA, N.; AGUIAR, V.; SILVEIRA,
M. A. G.; OST, L.; REIS, R.; CUENCA-ASENSI, S.; KASTENSMIDT, F. L. IEEE
Transactions on Nuclear Science, v. 63, n. 4, Aug. 2016, pp. 2208-2216.

CHOI, J.; NAM, K.; CANIS, A.; ANDERSON, J.; BROWN, S.; CZAJKOWSKI, T. Impact
of Cache Architecture and Interface on Performance and Area of FPGA-Based

182

Processor/Parallel-Accelerator Systems. IEEE Annual International Symposium on Field-
Programmable Custom Computing Machines, 2012, pp. 17-24.

CLAEYS, C.; SIMOEN, E. Radiation Effects in Advanced Semiconductor Materials and
Devices. Berlin: Springer, 2002.

CROCKETT, L. H.; ELLIOT, R. A.; ENDERWITZ, M. A.; STEWART, R. W. The Zynq
Book. 1st ed. Glasgow: University of Strathclyde, 2014.

CURD, D.; CRABILL, E. UltraScale Devices Maximize Design Integrity with Industry-
Leading SEU Resilience and Mitigation, 2015. Available at:
<http://www.xilinx.com/support/documentation/white_papers/wp462-ultrascale-SEU.pdf>.
Accessed on: July 2016.

DALLY, W. J.; BALFOUR, J.; BLACK-SHAFFER, D.; CHEN, J.; HARTING, R. C;
PARIKH, V.; PARK, J.; SHEFFIELD, D. Efficient Embedded Computing. Computer, vol.
41, n. 7, Jul. 2008, pp. 27-32.

DE MICHELI, G. Synthesis and Optimization of Digital Circuits. 1. ed. McGraw-Hill
Higher Education, 1994.

DE OLIVEIRA, A. B.,; TAMBARA, L. A.; KASTENSMIDT, F. L. Exploring Performance
Overhead Versus Soft Error Detection in Lockstep Dual-Core ARM Cortex-A9 Processor
Embedded into Xilinx Zyng APSoC. Lecture Notes in Computer Science, vol. 10216, Mar.
2017, pp. 189-201.

DOOD, P. E.; MASSENGILL, L.W. Basic Mechanisms and Modeling of Single Event Upset
in digital Microelectronics. IEEE Transactions on Nuclear Science, vol. 53, n. 6, Dec.
2006, pp. 1747-1763.

DODD, P. E.; SHANEYFELT, M. R.; SCHWANK, J. R.; FELIX, J. A. Current and Future
Challenges in Radiation Effects on CMOS Electronics. IEEE Transactions on Nuclear
Science, vol. 57, n. 4, Aug. 2010, pp. 1747-1763.

DOS SANTOS, A. F.; TAMBARA, L. A.; BENEVENUTI, F.; TONFAT, J;
KASTENSMIDT, F. L. Applying TMR in Hardware Accelerators Generated by High-Level
Synthesis Design Flow for Mitigating Multiple Bit Upsets in SRAM-Based FPGAs. Lecture
Notes in Computer Science, vol. 10216, Mar. 2017, pp. 202-213.

DSILVA, D.; WANG, J-J.; REZZAK, N.; JAT, N. Neutron SEE Testing of the 65nm
SmartFusion2 Flash-Based FPGA. IEEE Radiation Effects Data Workshop, Jul. 2015, pp.
1-5.

DUZELLIER, S.; BERGER, G. Test Facilities for SEE and Dose Testing. In: VELAZCO,
R.; FOUILLAT, P.; REIS, R. (Eds.). Radiation Effects on Embedded Systems. 1. ed.
Berlin: Springer-Verlag Berlin Heidelberg, 2007. pp. 201-232.

ESA. The Radiation Design Handbook. ESA, Noordwijk, Netherlands, 1993.

183

ESA. ESA/SCC Basic Specification No. 25100: Single Event Effects Test Methods and
Guidelines. ESA, Noordwijk, Netherlands, 2005.

FAJARDO, C. F.; FANG, Z.; IYER, R.; GARCIA, G. F.; LEE, S. E.; ZHAO, L. Buffer-
Integrated-Cache: A Cost-Effective SRAM Architecture for Handheld and Embedded
Platforms. ACM/EDAC/IEEE Design Automation Conference, 2011, pp. 966-971.

FLEMING, S. T.; THOMAS, D. B. StitchUp: Automatic Control Flow Protection for High
Level Synthesis Circuits. ACM/EDAC/IEEE Design Automation Conference, Jun. 2016,

pp. 1-6.

GLASSTONE, S.; EDLUND, M. C. The Elements of Nuclear Reactor Theory. Van
Nostrand, 1952, pp. 146.

GOLDHAGEN, P. Cosmic-ray Neutrons on the Ground and in the Atmosphere. MRS
Bulletin, vol. 28, n. 2, 2003, pp. 131-135.

GOODACRE, J.; SLOSS, A. N. Parallelism and the ARM Instruction Set Architecture.
Computer, vol. 38, n. 7, Jul. 2005, pp. 42-50.

GRASSI, T. FPGA Use Within the Detector Volume. ECFA High Luminosity LHC
Experiments Workshop, 2014.

GRIEDER, P. Cosmic Rays at Earth: Researcher’s Reference Manual and Data Book.
Elsevier Science Limited, 2001.

GUSSENHOVER, M. S.; MULLEN, E. G.; BRAUTIGAM, D. H. Improved Understanding
of the Earth’s Radiation Belts from the CRRES Satellite. IEEE Transactions on Nuclear
Science, vol. 43, n. 2, Aug. 1996, pp. 353-368.

HARA, Y.; TOMIYAMA, H.; HONDA, S.; TAKADA, H.; ISHII, K. CHStone: A
Benchmark Program Suite for Practical C-based High-Level Synthesis. IEEE International
Symposium on Circuits and Systems, May 2008, pp. 1192-1195.

HILL, E. L.; LIPASTI, M. H. The Effect of Pipeline Depth on Logic Soft Errors. Workshop
on Silicon Errors in Logic — System Effects, Mar. 2010, pp. 1-6.

HILL, M. D.; MARTY, M. R. Amdahl's Law in the Multicore Era. Computer, vol. 41, n. 7,
Jul. 2008, pp. 33-38.

HSUEH, M. C.; TSAI, T. K,; IYER, R. K. Fault Injection Techniques and Tools. IEEE
Computer, vol. 30, n. 4, Apr. 1997, pp. 75-82

HUANG, Q.; LIAN, R.; CANIS, A.; CHOI, J.; XI, R.; BROWN, S.; ANDERSON J. The
Effect of Compiler Optimizations on High-Level Synthesis for FPGAs. IEEE Annual
International Symposium on Field-Programmable Custom Computing Machines, Apr.
2013, pp. 89-96.

HUSEJKO, M.; EVANS, J.; DA SILVA, J. C. R. Investigation of High-Level Synthesis
Tools' Applicability to Data Acquisition Systems Design Based on the CMS ECAL Data

184

Concentrator Card Example. Journal of Physics: Conference Series, 664 (2015) 082019, pp.
1-8.

IROM, F. Guideline for Ground Radiation Testing of Microprocessors in the Space Radiation
Environment. NASA Electronic Parts and Packaging (NEPP) Program, JPL Publication
08-13 4/08, 2008.

ITRS. International Technology Roadmap for Semiconductors: 2013 Edition, Chapter
Emerging Research Devices (ERD), 2013, pp. 1-5.

ITURBE, X.; KEYMEULEN, D.; YIU, P.; BERISFORD, D.; HAND, K.; CARLSON, R,;
OZER, E. Towards a Generic and Adaptive System-on-Chip Controller for Space Exploration
Instrumentation. NASA/ESA Conference on Adaptive Hardware and Systems (AHS),
2015, pp. 1-8.

JEDEC. Measurement and Reporting of Alpha Particle and Terrestrial Cosmic Ray-Induced
Soft Errors in Semiconductor Devices, JESD89A (Revision of JESD89, Aug. 2001), Oct.
2006.

KANAWATI, G.; KANAWATI, N. A.; ABRAHAM, J. A. FERRARI: A Flexible Software-
Based Fault and Error Injection System. IEEE Transactions on Computers, vol. 44, n. 2,
Feb. 1995, pp. 248-260.

KASTENSMIDT, F. L.; CARRO, L.; REIS. R. Fault-Tolerant Techiniques for SRAM-
based FPGAs. 1. ed. Berlin: Springer-Verlag Berlin Heidelberg, 2006.

KASTENSMIDT, F. L.; TAMBARA, L.; BOBROVSKY, D. V.; PECHENKIN, A. A,
NIKIFORQV, A. Y. Laser Testing Methodology for Diagnosing Diverse Soft Errors in a
Nanoscale SRAM-Based FPGA. IEEE Transactions on Nuclear Science, vol. 61, n. 6, Dec.
2014, pp. 3130-3137.

KATZ, R.; BARTO, R.; MCKERRACHER, P.; CARKHUFF, B.; KOGA, R. SEU Hardening
of Field Programmable Gate Arrays (FPGAs) for Space Applications and Device
Characterization. IEEE Transactions on Nuclear Science, vol. 41, n. 6, Aug. 1994, pp.
2197-2186.

KUON, I.; ROSE, J. Measuring the Gap Between FPGAs and ASICs. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 26, n. 2, Jan. 2007, pp.
203-215.

LAFOND, S.; LILIUS, J. Interrupt Costs in Embedded System with Short Latency Hardware
Accelerators. IEEE International Conference and Workshop on the Engineering of
Computer Based Systems, 2008, pp. 317-325.

LEE, V. W.; KIM, C.; CHUGANI, J.; DEISHER, M.; KIM, D.; NGUYEN, A. D.; SATISH,
N.; SMELYANSKIY, M.; CHENNUPATY, S.; HAMMARLUND, P.; SINGHAL, R
DUBEY, P. Debunking the 100X GPU vs. CPU Myth: An Evaluation of Throughput
Computing on CPU and GPU. International Symposium on Computer Architecture, 2010,
pp. 451-460.

185

LINS, F. M.; TAMBARA, L. A.; KASTENSMIDT, F. L.; RECH, P. Register File Criticality
on Embedded Microprocessor Reliability. European Conference on Radiation and Its
Effects on Components and Systems, 2016. (to be published)

LLVM. The LLVM Compiler Infrastructure, 2016. Available at: <http://llvm.org/>. Accessed
on: July 2016.

MANOOCHEHRI, M.; ANNAVARAM, M.; DUBOIS, M. CPPC: Correctable Parity
Protected Cache. International Symposium On Computer Architecture, 2011, pp. 223-
234.

MEKKI, J.; BRUGGER, M.; ALIA, R. G.; THORNTON, A.; DOS SANTOS MOTA, N. C,;
DANZECA, S. CHARM: A Mixed Field Facility at CERN for Radiation Tests in Ground,
Atmospheric, Space and Accelerator Representative Environments. IEEE Transactions on
Nuclear Science, v. 63, n. 4, Aug. 2016, p. 2106-2114.

MICROSEMI. SmartFusion SoC FPGAs, 2015. Available at:
<http://www.microsemi.com/products/fpga-soc/soc-fpga/smartfusion>. Accessed on: August
2015.

MICROSEMI. SmartFusion2 SoC FPGAs, 2015. Available at:
<http://www.microsemi.com/products/fpga-soc/soc-fpga/smartfusion2>. Accessed on: August
2015.

MOGOLLON, J. M.; GUZMAN-MIRANDA, H.; NAPOLES, J.; BARRIENTOS, J;
AGUIRRE, M. A. FTUNSHADES2: A Novel Platform for Early Evaluation of Robustness
Against SEE. European Conference on Radiation and Its Effects on Components and
Systems, pp. 169-174, 2011.

MONSON, J.; WIRTHLIN, M.; HUTCHINGS, B. L. Implementing high-performance, low-
power FPGA-based optical flow accelerators in C. IEEE International Conference on
Application-Specific Systems, Architectures and Processors, Jun. 2013, pp. 363-369.

MOORE, G. E. Cramming More Components Onto Integrated Circuits. Electronics, vol. 38,
n. 8, Apr. 1965, pp. 114-117.

MUKHERIJEE, S. S.; WEAVER, C. T.; EMER, J.; REINHARDT, S. K.; AUSTIN, T.
Measuring Architectural Vulnerability Factors. IEEE Micro, vol. 23, n. 6, Nov. 2003, pp. 70-
75.

MUSA, L. FPGAs in High Energy Physics Experiments at CERN. International Conference
on Field Programmable Logic and Applications (FPL), pp. 2, 2008.

MUSHTAQ, H.; AL-ARS, Z.; BERTELS, K. Survey of Fault Tolerance Techniques for
Shared Memory Multicore/Multiprocessor Systems. IEEE International Design and Test
Workshop, pp. 12-17, 2011.

NANE, R.; SIMA, V.-M.; PILATO, C.; CHOI, J.; FORT, B.; CANIS, A.; CHEN, Y. T
HSIAO, H.; BROWN, S.; FERRANDI, F.; ANDERSON, J.; BERTELS, K. A Survey and

186

Evaluation of FPGA High-Level Synthesis Tools. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. PP, n. 99, Dec. 2015, pp. 1.

NASA. Solar Cycle Primer, 2011. Available at:
<https://www.nasa.gov/mission_pages/sunearth/news/solarcycle-primer.html>. Accessed on:
September 2016.

PATTERSON, D. A.; HENNESSY, J. L. Computer Organization and Design — The
Hardware/Software Interface. 3. Ed. San Francisco: Elsevier, 2005.

POLLACK, F. J. New Microarchitecture Challenges in the Coming Generations of CMOS
Process Technologies. ACM/IEEE International Symposium on Microarchitecture, 1999,

pp. 2.

QUINN, H.; GRAHAM, P. Terrestrial-based Radiation Upsets: A Cautionary Tale. IEEE
Symposium on Field-Programmable Custom Computing Machines, 2005, pp. 193-202.

QUINN, H. Challenges in Testing Complex Systems. IEEE Transactions on Nuclear
Science, vol. 61, n. 2, Apr. 2014, pp. 766-786.

QUINN, H.; FAIRBANKS, T.; TRIPP, J. L.; DURAN, G.; LOPEZ, B. Single-Event Effects
in Low-Cost, Low-Power Microprocessors. IEEE Radiation Effects Data Workshop, Jul.
2014, pp. 1-9.

QUINN, H.; BAKER, Z.; FAIRBANKS, T.; TRIPP, J. L.; DURAN, G. Software Resilience
and the Effectiveness of Software Mitigation in Microcontrollers. IEEE Transactions on
Nuclear Science, vol. 62, n. 6, Dec. 2015, pp. 2532-2538.

QUINN, H.; ROBINSON, W. H. RECH, R.; AGUIRRE, M.; BARNARD, A.; DESOGUS,
M.; ENTRENA, L.; GARCIA-VALDERAS, M.; GUERTIN, S. M.; KAELI, D
KASTENSMIDT, F. L.; KIDDIE, B. T.; SANCHEZ-CLEMENTE, A.; REORDA, M. S;;
STERPONE, L.; WIRTHLIN, M. Using Benchmarks for Radiation Testing of
Microprocessors and FPGAs. IEEE Transactions on Nuclear Science, vol. 62, n. 6, Dec.
2015, pp. 2547-2554.

RECH, P.; PILLA, L. L.; NAVAUX, P. O. A.; CARRO, L. Impact of GPUs Parallelism
Management on Safety-Critical and HPC Applications Reliability. IEEE/IFIP International
Conference on Dependable Systems and Networks, Jun. 2014, pp. 455-466.

REZZAK, N.; DSILVA, D.; WANG, J-J.; JAT, N. SET and SEFI Characterization of the 65
nm SmartFusion2 Flash-Based FPGA under Heavy lon Irradiation. IEEE Radiation Effects
Data Workshop, Jul. 2015, pp. 1-4.

RUDOLPH, D.; WILSON, C.; STEWART, J.; GAUVIN, P; GEORGE, A.; LAM, H; CRUM,
G; WIRTHLIN, M; WILSON, A.; STODDARD, A. CSP: A Multifaceted Hybrid
Architecture for Space Computing. AIAA/USU Conference on Small Satellites, SSC14-111-
3, 2014, pp. 1-7.

SADRI, M.; WEIS, C.; WEHN, N.; BENINI, L. Energy and Performance Exploration of
Accelerator Coherency Port Using Xilinx ZYNQ. FPGAworld Conference, 2013, pp. 1-8.

187

SANTINI, T.; CARRO, L.; WAGNER, F. R.; RECH, P. Reliability Analysis of Operating
Systems and Software Stack for Embedded Systems. IEEE Transactions on Nuclear
Science, vol. PP, n. 99, Mar. 2016, pp. 1-8.

SCHWANK, J. R.; SHANEYFELT, M. R.; DODD, P. E. Radiation Hardness Assurance
Testing of Microelectronic Devices and Integrated Circuits: Radiation Environments, Physical
Mechanisms, and Foundations for Hardness Assurance. IEEE Transactions on Nuclear
Science, vol. 60, n. 3, Jun. 2013, pp. 2074-2100.

SHEN, H.; PETROT, F. Using Amdahl’s Law for Performance Analysis of Many-Core SoC
Architectures Based on Functionally Asymmetric Processors. In: BEREKOVIC, M,
FORNACIARI, W.; BRINKSCHULTE, U.; SILVANO, C. (Eds.). Architecture of
Computing Systems — ARCS 2011. 1. ed. Berlin: Springer-Verlag Berlin Heidelberg, 2011.
pp. 38-49.

SILVA, J.; SKLYAROV, V.; SKLIAROVA, I. Comparison of On-chip Communications in
Zyng-7000 All Programmable Systems-on-Chip. IEEE Embedded Systems Letters, vol. 7,
n. 1, Feb. 2015, pp. 31-34.

SOOS, C. SEU Effects in FPGAs. CERN R2E Radiation School, 2009.

SRIM. Particle Interactions with Matter, 2013. Available at: <http://www.srim.org/>.
Accessed on: March 2015.

STEFAN. Institut Jozef Stefan. Understanding the Muon Lifetime Experiment, 2001.
Available at: <http://www-f9.ijs.si/~rok/sola/praktikum4/mioni/muonexp.html>. Accessed on:
May, 2016.

STERPONE, L.; VIOLANTE, M.; REZGUI, S. An Analysis Based on Fault Injection of
Hardening Techniques for SRAM-Based FPGAs. IEEE Transactions on Nuclear Science,
vol. 53, n. 4, Aug. 2006, pp. 2054-2059.

TAMBARA, L. A.; RECH, P.; CHIELLE, E.; TONFAT, J.; KASTENSMIDT, F. L.
Analyzing the Impact of Radiation-induced Failures in Programmable SoCs. IEEE
Transactions on Nuclear Science, vol. 63, n. 4, Aug. 2016, pp. 1-8.

TARRILLO, J. F. Exploring the Use of Multiple Modular Redundancies for Masking
Accumulated Faults in SRAM-based FPGAs. 112 p. Thesis (PhD) — UFRGS, 2014.

TARRILLO, J.; TONFAT, J.; TAMBARA, L.; KASTENSMIDT, F. L.; REIS, R. Multiple
Fault Injection Platform for SRAM-based FPGA Based on Ground-level Radiation
Experiments. IEEE Latin-American Test Symposium, Mar. 2015, pp. 1-4.

TONFAT, J. L. Frame-Level Redundancy Scrubbing Technique for SRAM-based FPGAs.
111 p. Thesis (PhD) - UFRGS, 2015.

TONFAT, J. L.; TAMBARA, L. A,; SANTOS, A.; KASTENSMIDT, F. L. Method to
Analyze the Susceptibility of HLS Designs in SRAM-Based FPGAs Under Soft Errors.
Lecture Notes in Computer Science, vol. 9625, Mar. 2016, pp. 132-143.

188

TSAO, C. H.; SILBERBERG, R.; LETAW, J. R. Cosmic-ray Heavy lons at and Above
40,000 Feet. IEEE Transactions on Nuclear Science, vol. 31, n. 6, Dec. 1984, pp. 1066-
1068.

VELAZCO, R.; FAURE, F. Error Rate Prediction of Digital Architectures: Test Methodology
and Tools. In: VELAZCO, R.; FOUILLAT, P.; REIS, R. (Eds.). Radiation Effects on
Embedded Systems. 1. ed. Berlin: Springer-Verlag Berlin Heidelberg, 2007. pp. 233-258.

VELAZCO, R.; FOUCARD, G.; PERONNARD, P. Combining Results of Accelerated
Radiation Tests and Fault Injections to Predict the Error Rate of an Application Implemented
in SRAM-Based FPGAs. IEEE Transactions on Nuclear Science, vol. 57, n. 6, Dec. 2010,
pp. 3500-3505.

VELAZCO, R.; FOUCARD, G.; PERONNARD, P. Integrated Circuit Qualification for Space
and Ground-Level Applications: Accelerated Tests and Error-Rate Predictions. In:
NICOLAIDIS, M. (Ed;). Soft Errors in Modern Electronic Systems. 1. ed. Berlin:
Springer-Verlag Berlin Heidelberg, 2011. pp. 167-201.

VIOLANTE, M.; STERPONE, L.; MANUZZATO, A.; GERARDIN, S.; RECH, P,
BAGATIN, M.; PACCAGNELLA, A.; ANDREANI, C.; GORINI, G.; PIETROPAOLO, A,
CARDARILLI, G.; PONTARELLI, C.; FROST, C. A New Hardware/Software Platform and
a New 1/E Neutron Source for Soft Error Studies: Testing FPGAs at the ISIS Facility. IEEE
Transactions on Nuclear Science, vol. 54, n. 4, Aug. 2007, pp. 1184-1189.

VIPIN, K.; FAHMY, S. A. ZyCAP: Efficient Partial Reconfiguration Management on the
Xilinx Zyng. IEEE Embedded Systems Letters, vol. 6, n. 3, Sept. 2014, pp. 41-44.

XILINX. Considerations Surrounding Single Event Effects in FPGAs, ASICs, and Processors.
WP402 (v.1.0.1) Mar. 7, 2012.

XILINX. Soft Error Mitigation Using Prioritized Essential Bits. XAPP (v1.0) April 4, 2012.
XILINX. Virtex-5 FPGA Configuration User Guide. UG191 (v3.11) October 19, 2012.
XILINX. Introduction to High-Level Synthesis with Vivado HLS. 2013.

XILINX. 7 Series FPGAs Configurable Logic Block — User Guide. UG474 (v.17) November
17, 2014.

XILINX. 7 Series FPGAs Configuration — User Guide. UG470 (v1.10) June 24, 2015.
XILINX. Mitigating Single-Event Upsets. WP395 (v1.1) May 19, 2015.

XILINX. Soft Error Mitigation Controller v4.1. PG036 September 30, 2015.

XILINX. Zyng-7000 All Programmable SoC, 2015. Available at:

<http://www.xilinx.com/products/silicon-devices/soc/zyng-7000.html>. Accessed on: August
2015.

189

XILINX. A Zyng Accelerator for Floating Point Matrix Multiplication Designed with Vivado
HLS. XAPP1170 (v2.0), 2016.

XILINX. Applications, 2016. Available at: <http://www.xilinx.com/>. Accessed on: February
2016.

XILINX. Device Reliability Report — Second Half 2015. UG116 (v10.4) April 1, 2016.

XILINX. Multi-Camera Driver Assistance Platform, 2016. Available at:
<http://www.xilinx.com/applications/automotive/multi-camera-adas.html>. Accessed on:
February 2016.

XILINX. Vivado Design User Guide — High-Level Synthesis. UG902 (v2016.1), Apr. 6,
2016.

XILINX. Zyng-7000 All Programmable SoC — Technical Reference Manual. UG585 (v1.11),
Sept. 27, 2016.

WANG, F.; AGRAWAL, V. D. Single Event Upset: An Embedded Tutorial. International
Conference on VLSI Design, Jan. 2008, pp. 429-434.

WINDH, S.; XIAOYIN, M.; HALSTEAD, R. J.; BUDHKAR, P.; LUNA, Z.; HUSSAINI O.;
NAJJAR, W. A. High-Level Language Tools for Reconfigurable Computing. Proceedings of
IEEE, vol. 103, n. 3, Mar. 2015, pp. 390-408.

WINTERSTEIN, F.; BAYLISS, S.; CONSTANTINIDES, G. A. High-level Synthesis of
Dynamic Data Structures: A Case Study Using Vivado HLS. International Conference on
Field-Programmable Technology, Dec. 2013, pp. 362-365.

WIRTHLIN, M.; LEE, D.; SWIFT, G.; QUINN, H. A Method and Case Study on Identifying
Physically Adjacent Multiple-Cell Upsets Using 28-nm, Interleaved and SECDED-Protected
Arrays. IEEE Transactions on Nuclear Science, vol. 61, n. 6, Dec. 2014, pp. 3080-3087.

WIRTHLIN, M. High-Reliability FPGA-Based Systems: Space, High-Energy Physics, and
Beyond. Proceedings of the IEEE, vol. 103, n. 3, Apr. 2015, pp. 379-389.

WU, W.; BEGEL, M.; CHEN, H.; CHEN, K.; LANNI, F.; TAKAI, H. The Development of
the Global Feature Extractor for the LHC Run-3 Upgrade of the L1 Calorimeter Trigger
System. IEEE Nuclear and Plasma Sciences Society Real Time Conference, Jun. 2016, pp.
1-3.

ZHAO, C.; ALME, J.; ALT, T.; APPELSHAUSER, H.; BRATRUD, L.; CASTRO, A;;
COSTA, F.; DAVID, E.; GUNJI, T.; KIRSCH, S.; KISS, T.; LANGOY, R.; LIEN, J.;
SEKIGUCHI, Y.; STUART, M.; ULLALAND, K.; VELURE, A.; YANG, S.; OSTERMA, L.
First Performance Results of the ALICE TPC Readout Control Unit 2, Journal of
Instrumentation, vol. 11, Jan. 2016, pp. 1-12.

