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ABSTRACT 

 

The recent advance of the semiconductor industry has allowed the integration of 

complex components and systems’ architectures into a single silicon die. Nowadays, state-of-

the-art FPGAs include not only the programmable logic fabric but also hard-core parts, such 

as hard-core general-purpose processors, dedicated processing blocks, interfaces to various 

peripherals, on-chip bus structures, and analog blocks. These new devices are commonly 

called of All Programmable System-on-Chip (APSoC) devices. One of the major concerns 

about radiation effects on APSoCs is that radiation-induced errors may have different 

probability and criticality in their heterogeneous hardware parts at both device and design 

levels. For this reason, this work performs a deep investigation about the radiation effects on 

APSoCs and the correlation between hardware and software resources sensitivity in the 

overall system performance. Several static and dynamic experiments were performed on 

different hardware parts of an APSoC to better understand the trade-offs between reliability 

and performance of each part separately. Results show that there is a trade-off between design 

cross section and performance to be analyzed when developing a system on an APSoC. 

Therefore, today it is mandatory to take into account each design option available and all the 

parameters of the system involved, such as the execution time and the workload of the 

system, and not only its cross section. As an example, results show that it is possible to 

increase the performance of a system up to 5,000 times by changing its architecture with a 

small impact in cross section (increase up to 8 times), significantly increasing the operational 

reliability of the system. This work also proposes a reliability analysis flow based on fault 

injection for estimating the reliability trend of hardware-only designs, software-only designs, 

and hardware and software co-designs. It aims to accelerate the search for the design scheme 

with the best trade-off between performance and reliability among the possible ones. The 

methodology takes into account four groups of parameters, which are the following: area 

resources and performance; the number of output errors and critical bits; radiation 

measurements, such as static and dynamic cross sections; and, Mean Workload Between 

Failures. The obtained results show that the proposed flow is a suitable method for estimating 

the reliability trend of system designs on APSoCs before radiation experiments. 

 

Keywords: APSoC, SRAM-based FPGA, Processor, Reliability, Radiation effects, Radiation 

experiment, Fault injection, SEE, SEU, Execution time, Trade-off.  



 

 

 

Avaliação do Impacto de Falhas Induzidas pela Radiação em Dispositivos Sistemas-em-

Chip Totalmente Programáveis 

 

RESUMO 

 

O recente avanço da indústria de semicondutores tem possibilitado a integração de 

componentes complexos e arquiteturas de sistemas dentro de um único chip de silício. 

Atualmente, FPGAs do estado da arte incluem, não apenas a matriz de lógica programável, 

mas também outros blocos de hardware, como processadores de propósito geral, blocos de 

processamento dedicado, interfaces para vários periféricos, estruturas de barramento internas 

ao chip, e blocos analógicos. Estes novos dispositivos são comumente chamados de Sistemas-

em-Chip Totalmente Programáveis (APSoCs). Uma das maiores preocupações acerca dos 

efeitos da radiação em APSoCs é o fato de que erros induzidos pela radiação podem ter 

diferente probabilidade e criticalidade em seus blocos de hardware heterogêneos, em ambos 

os níveis de dispositivo e projeto. Por esta razão, este trabalho realiza uma investigação 

profunda acerca dos efeitos da radiação em APSoCs e da correlação entre a sensibilidade de 

recursos de hardware e software na performance geral do sistema. Diversos experimentos 

estáticos e dinâmicos inéditos foram realizados nos blocos de hardware de um APSoC a fim 

de melhor entender as relações entre confiabilidade e performance de cada parte 

separadamente. Os resultados mostram que há um comprometimento a ser analisado entre o 

desempenho e a área de choque de um projeto durante o desenvolvimento de um sistema em 

um APSoC. Desse modo, é fundamental levar em consideração cada opção de projeto 

disponível e todos os parâmetros do sistema envolvidos, como o tempo de execução e a carga 

de trabalho, e não apenas a sua seção de choque. Exemplificativamente, os resultados 

mostram que é possível aumentar o desempenho de um sistema em até 5.000 vezes com um 

pequeno aumento na sua seção de choque de até 8 vezes, aumentando assim a confiabilidade 

operacional do sistema. Este trabalho também propõe um fluxo de análise de confiabilidade 

baseado em injeções de falhas para estimar a tendência de confiabilidade de projetos somente 

de hardware, de software, ou de hardware e software. O fluxo objetiva acelerar a procura pelo 

esquema de projeto com a melhor relação entre performance e confiabilidade dentre as opções 

possíveis. A metodologia leva em consideração quatro grupos de parâmetros, os quais são: 

recursos e performance; erros e bits críticos; medidas de radiação, tais como seções de choque 

estáticas e dinâmicas; e, carga de trabalho média entre falhas. Os resultados obtidos mostram 



 

 

 

que o fluxo proposto é um método apropriado para estimar tendências de confiabilidade de 

projeto de sistemas em APSoCs antes de experimentos com radiação. 

 

Palavras-chave: APSoC, FPGA baseado em SRAM, Processador, Confiabilidade, Efeitos da 

radiação, Experimentos com radiação, Injeção de falhas, SEE, SEU, Tempo de execução, 

Correlação. 
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1 INTRODUCTION 

 

The recent advances in silicon technology have allowed the integration of complex 

components and systems’ architectures into a single silicon die. Today, state-of-the-art 

complex embedded systems include Field Programmable Gate Array (FPGA) together with 

hard-core parts, such as general-purpose embedded processors (hereafter shortened to only 

“processors”), dedicated processing blocks, interfaces to various peripherals, on-chip bus 

structures, and analog blocks. These new devices are commonly called All Programmable 

Systems-on-Chip (APSoCs) or, more generically, Heterogeneous Hardware. 

APSoCs are designed to provide higher system performances and programmable 

flexibility at lower costs compared to standard FPGAs and processors. According to ITRS 

(2013), heterogeneous architectures such as APSoCs will dominate the next generation of 

computing systems. In general, APSoCs are composed of two main parts: the Programmable 

Logic (PL), which is basically an embedded FPGA, and the Processing System (PS), which is 

formed around of a hard-core processor. The PL is adopted to implement high-speed logic, 

arithmetic, data processing subsystems, etc. The PS supports software routines and operating 

systems. The overall functionality and workload of any system design can then be 

appropriately distributed between hardware and software. Some recent examples of 

commercially available APSoCs are Zynq-7000 (XILINX, 2015d) from Xilinx, SmartFusion 

(MICROSEMI, 2015a) and SmartFusion2 (MICROSEMI, 2015b) from Microsemi, and 

Cyclone V (ALTERA, 2015) from Altera.  

The mentioned characteristics of being programmable, flexible, and extremely 

efficient, make APSoCs very suitable and attractive for safety-critical markets such as space, 

avionics, automotive, biomedical, and high-energy physics experiments. Moreover, 

Commercial Off-The-Shelf (COTS) products have been widely employed in these safety-

critical areas in recent years. The Large Hadron Collider (LHC) at the European Organization 

for Nuclear Research (CERN) is a clear example. There are several areas of LHC in which 

commercial programmable devices not specifically designed to be radiation-tolerant are used 

(MUSA, 2008). As an example, ALICE (A Large Ion Collider Experiment), which is one of 

the LHC experiments, makes use of hundreds of SmartFusion2 devices in its Time Projection 

Chamber (TPC). The TPC is the main particle tracking detector in the central barrel of 

ALICE. The CHREC Space Processor (CSPv1) is an example of APSoC employment in 

space applications (RUDOLPH et al., 2014). CSPv1 is a small computer designed to operate 
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in low-cost space missions powered by a Zynq-7000. CSPv1 relies on the use of a 

combination of commercial and radiation-hardened components, in which commercial 

components perform critical computations but are supervised by the radiation-hardened 

components. Another example is the APEX-SoC proposed in (ITURBE et al., 2015), which is 

a generic platform based on a Zynq-7000 device and intended to control science instruments 

in future NASA missions. At terrestrial level, for example, APSoCs are very suitable to 

implement the Advanced Driver Assistance Systems (ADAS), aimed at increasing vehicles 

safety (XILINX, 2016b). In ADAS, the hardware and software combined programmability 

eases the performance and efficiency optimization distributing between hardware and 

software operations like sensing, environmental characterization, and feature implementation. 

Unfortunately, although APSoCs offers a plethora of advantages, their high 

complexity and density increase the system’s susceptibility to transient errors that are present 

in the environment, such as the ones caused by radiation. Radiation effects known as Single 

Event Effects (SEEs) are a well-known issue at device level in standard FPGA (DODD et al., 

2010; WIRTHLIN, 2015) and processor-based (DODD et al., 2010) devices. SEEs result from 

the interaction of high-energy particles with circuit elements in integrated circuits. When a 

high-energy particle passes through the silicon substrate of a device, charged particles are 

created as the result of sub-atomic particle collisions. These particles are generated by an 

ionization trail along the path of the incoming particle. As an example, if a charged particle 

impacts at or near a transistor junction, the collected charge can temporally charge or 

discharge the stroke node inducing a transient pulse, known as Single Event Transient (SET). 

If the SET width of is wide enough, the pulse can propagate through the circuit and be latched 

by a memory cell. If the SET occurs inside a memory cell such as a latch or a flip-flop, the 

transient pulse can change the state of that memory cell. This effect is known as bit-flip or 

Single Event Upset (SEU). With the dimensions of the transistors shrinking to below 28 nm, 

the operating voltages and the element capacitance decreasing to very low levels, and the 

clock speed increasing, the concerns about SET and SEU in FPGAs, processors, and APSoCs, 

have increased in the last years. 

One of the most challenging concerns about radiation effects on APSoCs is that 

radiation-induced errors may have different probability and criticality in the PL and PS parts 

at both device and design levels. APSoCs are programmed by configuring a large set of 

SRAM memory cells and, consequently, they are very susceptible to bit-flips. SEUs in the 

configuration memory bits of the PL part have a persistent effect and reconfiguration is 

needed to correct them. When an application is executed on the PS, it may mask eventual 
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SEUs according to the application Architectural Vulnerability Factor (AVF) (MUKHERJEE 

et al., 2003) and the sensitivity of the resources in use. Memories of the PS part such as L1 

and L2 caches, embedded SRAM and Block RAM memories are also very sensitive to SEU, 

and each one has a distinct sensitivity, which may contribute differently to the overall system 

failure rate and performance overhead.  

At design level, APSoCs enable many possibilities for implementing a system due to 

their heterogeneous architectures. However, each implementation will impose a different 

amount of resources usage and a different resource utilization efficiency, which may impact 

the vulnerability of the system. Therefore, the correlation between hardware and software 

resources sensitivity and the overall benefits brought to the system is essential to evaluate its 

efficiency. 

 

1.1 Objectives and contributions 

 

This thesis aims at performing a deep investigation about the radiation effects on 

APSoCs and the correlation between hardware and software resources sensitivity in the 

overall system reliability and performance. Therefore, the main two topics addressed in this 

thesis are: 

1. Which is the behavior of an APSoC device under radiation? Moreover, 

considering a hardware and software co-design implementing a high-

performance system that runs on both PS and PL parts of an APSoC like Xilinx 

Zynq-7000, how much is it necessary to accelerate it to compensate the 

sensitivity increase and improve the Mean Workload Between Failures 

(MWBF)? 

2. Is it possible to estimate the reliability trend of APSoC-based systems like 

Velazco, Foucard, and Peronnard (2010) did for FPGAs in the past? 

 As this thesis shows, state-of-the-art complex devices and technologies such as 

APSoCs and hardware and software co-designs have created many challenges for the 

radiation effects field. That is because radiation-induced failures in such devices and 

architectures may result in a complex chain of effects due to their heterogeneous nature. 

Additionally, the components testing methodologies have not changed over the years for 

taking into account such heterogeneity. 



 

 

19 

 

Another important critical point is the cross section metric. Today, the growing 

computational need, whether in a spacecraft or high-energy physics experiments, for example, 

has pushed the need to deploy high-performance computing in harsh environments, such as 

satellites and the LHC detectors. Thus, adopting only the cross section metric for estimating 

the reliability of a device, system, or design, is no longer enough. Besides the sensitivity of a 

resource, it is also essential to evaluate the benefit that this resource brings to the system. 

Therefore, to compare the reliability of heterogeneous and high-performance systems such as 

APSoCs, it is essential to take into account not only the cross section but also at least the 

execution time and workload of the system. Consequently, one of the main metrics adopted in 

this thesis is the Mean Workload Between Failures (MWBF), previously introduced in 

(RECH et al., 2014), but not in the APSoC context. The capability of a system to provide 

correct data depends on several factors, as sensitive area and the time required to complete 

computations. The MWBF metric identifies the workload that can be correctly computed by 

the system before experiencing a failure. Moreover, the MWBF considers all these aspects 

and is of particular interest in safety-critical applications as it provides the realistic impact of 

a given APSoC configuration on the system reliability. 

The first objective of this thesis is to try to answer the following questions: Which is 

the behavior of an APSoC device under radiation? Moreover, considering a hardware and 

software co-design implementing a high-performance system that runs on both PS and PL 

parts of an APSoC like Zynq-7000, how much is it necessary to accelerate it to compensate 

the dynamic cross section increase and improve the MWBF? One of the main issues 

concerning radiation effects in an APSoC is that radiation-induced failures have different 

probability and criticality in its heterogeneous parts. In addition, at design level, the 

heterogeneous architecture of an APSoC enables a plethora of possibilities for implementing a 

project. Each implementation imposes a different amount of resources usage and a different 

resource utilization efficiency, which impact the vulnerability of the system. Therefore, the 

correlation between hardware and software resources sensitivity and the overall benefits 

brought to the system are essential to evaluate the system efficiency.  

The second objective of this thesis is to develop a methodology to estimate the 

reliability trend of APSoC-based systems like Velazco, Foucard, and Peronnard (2010) did in 

the past for FPGA-based designs. Accelerated radiation tests are mandatory to obtain the 

sensitivity of the target device by determining its static cross section. However, static cross 

section significantly overestimates the sensitivity of the final application, as the next chapters 

show, and accelerated radiation tests are scarce, making prohibitive the test of any design 
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developed. In the case of FPGAs, in (VELAZCO, FOUCARD, PERONNARD, 2010), 

authors demonstrated that the dynamic cross section of a design can be predicted combining 

the static cross section with the results of fault injection campaigns, in which SEUs are 

emulated by a suitable approach, such as hardware/software fault injection. Base on this 

context, and together with the fact that APSoC devices have been increasingly used in safety-

critical markets, a methodology aiming to estimate the APSoC-based design with the best 

trade-off between performance and reliability among the ones available becomes 

fundamental. 

 

1.2 Thesis organization 

 

This thesis is organized as follows: 

 Chapter 2 - Heterogeneous programmable hardware: introduces heterogeneous 

programmable hardwares, Xilinx Zynq-7000 as an example of APSoC and the 

case-study device of this thesis, hardware/software co-design concepts, 

implementation metrics, and related works about Zynq-7000 and similar 

APSoCs; 

 Chapter 3 - Radiation effects on APSoCs: introduces the concepts of fault, 

error, and failure; the main radiation environments; and the radiation effects on 

integrated circuits and APSoCs; 

 Chapter 4 - Methods and metrics for evaluating APSoCs under radiation: 

presents the main methods and metrics for evaluating APSoCs under radiation 

and related works about APSoCs under radiation; 

 Chapter 5 - Analyzing single event effects on the PS part of the Zynq-7000: 

presents static and dynamic tests procedures, setups, and results for the Zynq-

7000’s PS part; 

 Chapter 6 - Analyzing single event effects on the PL part of the Zynq-7000: 

presents static and dynamic tests procedures, setups, and results for the Zynq-

7000’s PL part. This chapter also proposes a reliability analysis flow for 

estimating the reliability of hardware-only designs based on fault injections; 

 Chapter 7 - Exploring both PS and PL parts of Zynq-7000 under single event 

effects: presents an analysis of the impact of using both PS and PL parts of 

Xilinx Zynq-7000 in the overall failure rate of a system; 
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 Chapter 8 - Proposed reliability analysis for hardware and software co-designs: 

presents the proposed reliability analysis flow for estimating the reliability 

trend of hardware and software co-designs, the case-study designs, and the 

obtained results; 

 Chapter 9 - Concluding remarks: presents the concluding remarks of this 

thesis, such as its main contributions and future works. 
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2 HETEROGENEOUS PROGRAMMABLE HARDWARE 

 

Following Moore’s law (MOORE, 1965), the processors' frequency doubled at each 

every 18 to 24 months until the middle of 2000’s decade. However, due to the ever increasing 

core design complexity of the high performance processors and the power consumption 

caused by the high frequencies, researches started to look at other strategies to continue 

increasing systems performance. According to Shen and Pétrot (2011), three possible 

solutions were proposed until that year. More important, we already can see all of them being 

commercialized today. 

The first solution was to optimize the instruction set for certain application classes. 

The generalization of the Single Instruction Multiple Data (SIMD) extensions (Fig. 2.1), 

which first appeared in the general purpose high-performance processors in the early of 90’s 

decade to all processors including the embedded ones (GOODACRE, SLOSS, 2005) after the 

2000’s decade is an evidence of this trend. The SIMD technique allows multiple data to be 

processed in one or a few CPU cycles by assuming that registers are considered as vectors of 

elements of the same data type. A today’s example is the NEON engine (ARM, 2015b), 

which is the SIMD implementation present in ARMv7-A processors (Cortex-A9 family). The 

drawback of this solution is that these resources can accelerate only part of the application, 

which make them useless for other parts of the execution. 

 

Figure 2.1 – Bock diagram of a processor with a SIMD engine embedded (a) and a simplified block 

diagram of a SIMD engine (b).  

 

 

The second solution, straightforward from the point of view of the hardware designer, 

was to integrate several symmetric cores, based on the first solution, into the same silicon die, 

as Fig. 2.2(a) shows. Due to power dissipation issues, the integrated cores should feature a 

high performance per watt ratio and an overall current consumption acceptable for the 
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application. The drawback of this solution is that all cores are symmetric in both performance 

and function, which limits the speed-up that can be obtained by the parallel execution of the 

cores, since all applications intrinsically have sequential phases.  

In the general and high-performance computing fields, there is a clear trend towards to 

chips with multiprocessor architectures. In 1967, G. M. Amdahl stated that the performance 

improvement (S) to be gained from using some faster mode of execution is limited by the 

fraction of the time (f) the faster mode can be used (Eq. 2.1) (AMDAHL, 1967).  

 

(Equation 2.1)                            𝑆𝑝𝑒𝑒𝑑𝑢𝑝𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑 =  
1

(1−𝑓)+
𝑓

𝑆

 

 

Based on Amdahl’s law, during the last decade, the semiconductor industry has defined high-

performance asymmetric architectures which accelerate the sequential execution by using fast 

cores and the parallel execution by a massive usage of small cores (Base-Core Equivalent – 

BCE) having lower performance but better high performance per watt ratio than the fast ones. 

This was the third solution and it is shown in Fig. 2.2(b). This kind of architecture can 

improve the overall system performance by accelerating some critical parts of a parallel 

application while still providing very good flexibility. Based on this concept, Hill and Marty 

(2008) extended the Amdahl’s law for symmetric (Eq. 2.2) and asymmetric (Eq. 2.3) 

multicore devices by introducing two additional parameters, n and r, to represent the total 

number of resources available and those dedicated to sequential processing (BCE), 

respectively. Hill and Marty used the Pollack’s Law (POLLACK, 1999) as input to their 

model, which observes that the sequential processing performance from a microarchitecture 

alone grows roughly with the square root of transistors used (𝑝𝑒𝑟𝑓𝑠𝑒𝑞(𝑟) = √𝑟). 

 

(Equation 2.2)                𝑆𝑝𝑒𝑒𝑑𝑢𝑝𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐(𝑓, 𝑛, 𝑟) =
1

1−𝑓

𝑝𝑒𝑟𝑓𝑠𝑒𝑞(𝑟)
+

𝑓

(
𝑛
𝑟

) 𝑥 𝑝𝑒𝑟𝑓𝑠𝑒𝑞(𝑟)

 

(Equation 2.3)               𝑆𝑝𝑒𝑒𝑑𝑢𝑝𝑎𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐(𝑓, 𝑛, 𝑟) =  
1

1−𝑓

𝑝𝑒𝑟𝑓𝑠𝑒𝑞(𝑟)
+

𝑓

𝑝𝑒𝑟𝑓𝑠𝑒𝑞(𝑟)+𝑛−𝑟

 

 

However, today the semiconductor industry already went a step further in the 

asymmetric architectures solution by using heterogeneous architectures to achieve greater 

energy efficiency. Thus, the present metrics are no longer totally applied to such devices. 

Heterogeneous architectures (Fig. 2.2(c)) combine traditional processors with other hardware  
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Figure 2.2 - Processor models: (a) Symmetric, (b) Asymmetric, and (c) Heterogeneous. 
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categories, such as custom logic, General Purpose Graphics Processing Units (GPGPUs), or 

FPGAs. Custom logic can provide the most energy-efficient form of computation (100-1000x 

improvement in either efficiency or performance) through ASICs customized to a specific 

task (DALLY et al., 2008). However, it is costly to develop and cannot be easily re-used for 

new applications. GPGPUs have also been shown to significantly outperform conventional 

microprocessors in target applications (LEE et al., 2010). GPGPUs derive their capabilities 

through SIMD vectorization and through multithreading to hide long memory latencies. 

GPGPUs are very suitable for homogeneous data parallel tasks. Finally, the third option of 

heterogeneous architecture is the FPGAs. Unlike custom logic and GPGPUs, FPGAs enable 

flexibility through programmable Look-Up Tables (LUTs) cells that can be used to implement 

arbitrary logic circuits. In exchange for this flexibility, a typical 10-100x gap in area and 

power exists between custom logic and FPGAs (KUON, ROSE, 2007). Heterogeneous 

FPGAs, which are the focus of this thesis, are the most suitable devices to perform pipeline 

irregular data flows as well as data parallel tasks. 

 

2.1 All Programmable System-on-Chip devices 

 

Although traditional processors have been coupled with FPGAs before, it has never 

been quite the same proportion as now. Today, heterogeneous FPGAs, called of APSoC 

devices hereafter, have embedded hard-core processors capable of running full operating 

systems.  

In general, APSoCs are composed of two main parts (Fig. 2.3): the Programmable 

Logic (PL), which is FPGA-based, and the Processing System (PS), which is formed around 

of a hard-core processor. The architecture is usually completed by embedding several 

peripherals and industry bus interfaces, which provide high bandwidth and low latency 

between PS and PL. The PL section is ideal for implementing high-speed logic, arithmetic, 

and data processing subsystems, while the PS supports software routines and/or operating 

systems. Thus, the overall functionality of any designed system can be appropriately 

partitioned between hardware and software. Finally, it is worth mentioning that in APSoCs, 

the processor embedded into the PS part can be regarded as the central element of the 

hardware system. The software system running on the processor comprises applications that 

run or in bare-metal mode with a lower level of software functionality for interfacing with the 

hardware system, or on the top of an Operating System (OS).  
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There are several APSoCs currently available on the market. Some recent examples 

are Zynq-7000 (XILINX, 2015d) from Xilinx, SmartFusion (MICROSEMI, 2015a) and 

SmartFusion2 (MICROSEMI, 2015b) from Microsemi, and Cyclone V (ALTERA, 2015) 

from Altera. 

 

Figure 2.3 – Generic architecture of an APSoC. 

 

 

Zynq-7000 and the Cyclone V devices use a dual-core ARM Cortex-A9 application 

processor. SmartFusion2 devices are based around the ARM Cortex-M3 embedded processor, 

primarily targeting microcontroller applications. The main characteristics of the three devices 

are summarized in Table 2.1. Further information about the architecture of the devices can be 

found in their respective datasheets, which were referred in the previous paragraph. This 

thesis uses the Xilinx Zynq-7000 APSoC as case-study platform. Nevertheless, the 

methodologies and the achieved results are capable to be extendable to other APSoCs. 

 

Table 2.1 – Commercially-available APSoCs characteristics. 

Functional unit Xilinx Zynq-7000 Altera Cyclone V 
Microsemi 

SmartFusion2 

Processor ARM Cortex-A9 ARM Cortex-A9 ARM Cortex-M3 

Processor class 
Application 

processor 

Application 

processor 
Microcontroller 

Single or dual core Dual Dual Single 

Processor max. freq. 1.0 GHz 1.0 GHz 166 MHz 

L1 cache 
Data: 32 KB 

Instruction: 32 KB 

Data: 32 KB 

Instruction: 32 KB 

No data cache 

Instruction: 8 KB 

L2 cache Unified: 512 KB Unified: 512 KB Not available 

Memory Management 

Unit (MMU) 
Yes Yes Yes 

Floating-Point Unit 

(FPU) 
Yes Yes Not available 
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Accelerator 

Coherency Port (ACP) 
Yes Yes Not available 

Interrupt controller Generic Generic Nested, Vectored 

On-Chip Memory 

(SRAM) 
256 KB 64 KB 64 KB 

Direct Memory 

Access (DMA) 

8-channel 

4 requests 

8-channel 

32 requests 

1-channel HPDMA 

4 requests 

External Memory 

Controller (EMC) 
Yes Yes Yes 

Memory types 

supported 

LPDDR2, DDR2, 

DDR3L, DDR3 

LPDDR2, DDR2, 

DDR3L, DDR3 

LPDDR, DDR2, 

DDR3 

Memory ECC 16 bit 16 bit, 32 bit 8 bit, 16 bit, 32 bit 

External memory bus 

max. Frequency 
533 MHz 400 MHz 333 MHz 

Processor peripherals 

1x quad SPI or dual 

quad SPI controller 

with 2 chip selects; 

1x static memory 

controller (NAND-

SLC, NOR, or 

SSRAM); 

2x 10/100/1G 

Ethernet controller; 

2x USB 2.0 OTG 

controller; 

2x SD/SDIO 

controller; 

2x UART; 

2x I2C controller; 

2x CAN controller; 

2x SPI controllers 

(master or slave); 

2x 16 bit triple-mode 

timer/counters; 

1x 24 bit watchdog 

timer 

1x quad SPI 

controller with 4 

chip selects; 

1x NAND controller 

(single-and 

multilevel cell - 

MLC or SLC); 

2x 10/100/1G 

Ethernet controller; 

2x USB 2.0 On-the-

Go (OTG) 

controller; 

1x SD/MMC/SDIO 

controller; 

2x UART; 

4x I2C controller; 

2x CAN controller; 

2x SPI master, 2x 

SPI slave controller; 

4x 32 bit general-

purpose timers; 

2x 32 bit watchdog 

timers 

1x 10/100/1G 

Ethernet controller; 

2x USB 2.0 OTG 

controller; 

2x UART; 

2x I2C controller; 

1x CAN controller; 

2x SPI; 

2x general-purpose 

timers; 

1x watchdog timer; 

1x real-time clock 

(RTC) 

FPGA Fabric Artix-7, Kintex-7 Cyclone V, Arria V Fusion2 

FPGA logic density 

range 

28 K to 444 K logic 

elements 

25 K to 462 K logic 

elements 

6 K to 146 K logic 

elements 

High-speed 

transceivers 

Higher-density 

devices only 

Available in all 

devices 

Higher-density 

devices only 

 

2.1.1 Xilinx Zynq-7000 APSoC 

 

Zynq-7000 is a commercial-off-the-shelf device designed by Xilinx in a Taiwan 

Semiconductor Manufacturing Company’s (TSMC) 28 nm technology node. Fig. 2.4 shown 
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shows its block diagram. In this thesis, it was used an XC7Z020-CLG484 part embedded in a 

commercially available ZedBoard Development Board. 

 

Figure 2.4 – Block diagram of the Zynq-7000 (XILINX, 2015d). 

 

 

2.1.1.1 The Processing System (PS) 

 

Zynq-7000 has a 32-bit 8-11 pipeline stages dual-core ARM Cortex-A9 hard-core 

processor as the PS basis. However, a set of associated processing resources surrounds it 

forming an Application Processing Unit (APU) (Fig. 2.5). 

Each ARM core has associated several computational units, such as: a NEON Media 

Processing Engine (SIMD), a Floating Point Unit (FPU), a Memory Management Unit 

(MMU), and a Level 1 Cache 4-way set-associative divided in two sections for instructions 

and data. The APU also contains a Level 2 Cache 8-way set-associative memory and an 

SRAM On-Chip Memory (OCM). Timers and a General Interrupt Controller (GIC) are 



 

 

29 

 

further functional blocks located in the APU. Finally, a Snoop1 Control Unit (SCU) forms a 

bridge between the ARM cores, the Level 2 cache, and the OCM. The SCU undertakes 

several tasks relating to interfacing between the processors and Level 1 and 2 cache 

memories. The SCU also has the capability of interfacing with the PL through an Accelerator 

Coherency Port (ACP). 

 

Figure 2.5 – Block diagram of the PS part of the Zynq-7000 (XILINX, 2015d). 

 

 

In the context of this thesis, special attention must be given to the embedded memories 

of the Zynq-7000 and their hierarchy (Fig. 2.6), because they play an important role in the 

overall reliability and system performance. Embedded memories represent around 60% of the 

chip area in current processors, and to be fast and efficient, their memory cells are built as 

small as possible and with very low capacitance, especially caches (MANOOCHEHRI, 

                                                 
1 Snooping is one of the several mechanisms for ensuring cache coherency, i.e. managing the 

consistency of data across shared cache resources. 
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ANNAVARAM, DUBOIS, 2011). As consequence, such characteristics make them very 

vulnerable to SEEs, as will be possible to notice later. 

Typically, every processor has inside its data path a set of General-Purpose Registers 

(GPRs) called of Register File (“Registers”, in Fig. 2.6). In case of Zynq-7000’s ARM 

Cortex-A9 dual-core processor, each core has a register file consisted of 15 GPR plus the 

Program Counter (PC) (ARM, 2012). The register file is the smallest addressable memory and 

it is located at the top of the memory hierarchy. Thus, a register file must be fast: a GPR must 

be able to drive its data onto an internal bus in a single clock cycle. The register file is an 

important microarchitectural component used for storing operands and results of instructions. 

It is visible only to programs that address registers directly, so it is part of the Instruction Set 

Architecture (ISA). 

 

Figure 2.6 – Zynq-7000’s memory hierarchy. 

 

 

The L1 cache is the smallest and faster cache memory of the Zynq-7000. It is 

implemented in the form of SRAM cells, which are built into the fabric of the ARM core and, 

as such, operates at the same clock frequency. Similarly to the register file, L1 cache is not a 

general memory, not being accessible via any system bus. As any cache memory, the L1 

cache of Zynq-7000 is used to store data that is frequently accessed by the processor from 

main memory. The basic mechanism of a cache memory is the following: when the access to 

a memory address is requested, the cache verifies if the block (a set of adjacent memory 

words) containing the address is present in this level. If the referred block is present within 

this cache level (a cache hit occurred), the address is fulfilled. Otherwise, if the referred block 
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is not found (a cache miss occurred), the cache copies the relevant block from the next lower 

memory level for then, fulfilling the request (PATTERSON, HENNESSY, 2005). Therefore, 

a cache miss implies in a penalty on the access time equal to the access time of the next 

memory level. In contrast, operations that make use of cached data are faster (lower access 

time) than those where the data is only in lower memory levels. Cache memories also operate 

on the principle of temporal and spatial locality (PATTERSON, HENNESSY, 2005). 

Temporal locality states that if a data is referenced, it will tend to be referenced again soon. 

Thus, after the first time a data is accessed, it worth keeping that data cached. Spatial locality 

states that if an item is referenced, items whose addresses are close by will tend to be 

referenced soon. Thus, when a memory address is accessed, it worth caching nearby positions 

(cache block). 

The L2 cache of Zynq-7000 is external to the processing cores, but is located 

extremely close to them. It is larger than L1 cache, but has slower access speeds. L2 cache is 

in the form of Dynamic RAM (DRAM) and is unified in a single section (unlike L1, which is 

split into two sections). In the standard APU configuration, which means all cache levels 

enabled, larger quantities of data are constantly read in by L2 cache from main memory 

before being fed to L1. 

The OCM contains 256 KB of RAM and 128 KB of ROM (where the boot of the 

processor resides, the BootROM). The RAM part of the OCM can be considered a general 

memory, so it is accessible via system buses. It supports two 64-bit slave interface ports, one 

dedicated for processor access via the SCU and the other is shared by all other bus masters 

within PS and PL. The OCM address range is not a cacheable memory region by default. 

However, it is possible to turn the OCM a cacheable memory by modifying the configuration 

of the MMU of the processor. Although this configuration does not provide a significant 

performance improvement comparing to a standalone L2 cache configuration, once both 

memories are practically in the same level of the memory hierarchy, it is an interesting 

approach when the caches are enabled and the OCM is used as a shared memory between PS 

and PL. The BootROM memory region is not visible to the user as it is reserved for exclusive 

use by the boot process of the device. 

It is worth noting that in the Zynq-7000, the L1 cache, L2 cache, and OCM, have byte-

parity support (XILINX, 2015d). Parity is commonly used as the simplest form of error 

detecting code. This method counts the number of logic one states (or "ones") in a data 

structure, such as a byte, and then adds a bit in the end of that data structure, stating whether if 

an odd or even number of ones is present in that structure. Parity detects an error if an odd 
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number of bits are in error, but if an even number of errors occurs, the parity is still correct 

(i.e. the parity is the same whether 0 or 2 errors occur). This is a "detect only" method of 

mitigation and does not attempt to correct the error that occurs. Therefore, in case a parity 

error is detected in a cached data, for example, it will only result in a cache miss. The parity 

support in L2 cache and OCM is configurable. However, the parity support in the L1 cache is 

always enabled by default, not being possible to disabled it through standard ways. No 

information was found about the presence of parity support in the register file of the processor 

cores. 

Externally to the APU, the PS part features a variety of interfaces, both between the 

PS and PL, and between the PS and external components, as shown in Fig. 2.5. The 

communication between the PS and external interfaces is achieved primarily via the 

Multiplexed Input/Output (MIO), which provides 54 pins of flexible connectivity, meaning 

that the mapping between peripherals and pins can be defined as required. Connections can 

also be made via the Extended MIO (EMIO), which is not a direct path from the PS to 

external connections, but instead passes through and shares I/O resources of the PL. The 

complete set of I/O peripherals is stated in Table 2.1 and more information can be found in 

(XILINX, 2015d). It is important to highlight that such interfaces and peripherals are 

configured through the use of registers. Hundreds of 32-bit registers are used to determine the 

functionality of all the peripherals and they are also vulnerable to SEEs.  

At system level, an important feature of APSoCs that have embedded a multi-core 

processor or are able to implement a multi-core architecture in their PL parts, is the option to 

configure the processor cores in an Asymmetric Multi-Processing (AMP) or in a Symmetric 

Multi-Processing (SMP) mode.  

AMP can be used on a system that utilizes multiple processor cores, which may be of 

different architectures, such as hard- or soft-core. In this case, each processor core can run its 

own software system (OS or bate-metal), which can either be homogeneous or completely 

different. An example of this would be a system running a Linux OS on one core while a 

bare-metal application runs on another one. The communication between the cores is 

facilitated by a shared memory, which provides a level of software abstraction. 

In SMP, each core has the same hardware architecture. They share the main memory 

space and have full access to all I/O devices. Although, each core has its private resources 

such as L1 cache memory, private timers, and memory management unit. The whole system 

is controlled by a single OS instance, which treats all cores equally. Due to the shared 

memory architecture, the OS has to provide some common interfaces for all cores to access 
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the main memory, as well as some communication mechanisms for task synchronization. 

Typically, SMP solutions are employed when an embedded application simply needs more 

CPU power to manage its workload. 

 

2.1.1.2 The Programmable Logic (PL) 

 

The PL part of the Zynq-7000 device is based on the Artix-7 and Kintex-7 families of 

Xilinx FPGAs. Therefore, the PL part has the same internal architecture of the mentioned 

FPGA families.  

An FPGA can be viewed as a two-layer device, the Design Layer and the 

Configuration Layer, as depicted in Fig. 2.7. The Design Layer of the Zynq-7000’s PL part 

and some of its user application resources are depicted in Fig. 2.8. It composed of 

Configurable Logic Blocks (CLBs); other specialized circuits, such as embedded memory 

blocks (Block RAM – BRAM), Digital Signal Processor (DSP) blocks, the Internal 

Configuration Access Port (ICAP), Phase-Locked Loop (PLL) blocks, clock trees, Power-on 

Reset (PoR) circuitry, and others; and they are surrounded by programmable Input/Output 

Blocks (IOBs). They are interconnected in a matrix structure by a set of programmable 

interconnections, creating an array of programmable logic blocks of different types. The 

Configuration Layer is composed of all SRAM memory cells responsible to configure all the 

Design Layer, such as the CLBs, content of BRAMs, DSPs, routing structures, clock trees, 

PLLs, IOBs, and others. Such programmable blocks and interconnections are configured by 

the bitstream, which is a group of configuration bits that are loaded in the configuration 

memory during the device power-up for defining a specific circuit previously described with a 

Hardware Description Language (HDL). 

The purpose of the CLBs is to implement the combinational and sequential logic of the 

user’s design synthesized into the FPGA. An CLB is composed of one or more slices and 

each slice is composed of one or more Look-up Tables (LUTs), Flip-Flops (FFs), and routing 

structures. An LUT is the basic structure for implementing the truth table of a logic function 

and it is usually implemented by a multiplexer with 2n inputs and n selectors. The inputs are 

connected to SRAM cells that are part of the configuration memory. Then, with this 

architecture is possible to implement any combinational circuit with n inputs. In case of Zynq-

7000’s PL, it has six inputs LUTs in its CLBs. Fig 2.9 shows an example of an LUT 

implementing a 3-input majority voter. LUTs can also be configured as distributed memories 

ROM, a small RAM, or shift registers. 



 

 

34 

 

Figure 2.7 – Abstraction layers of a generic SRAM-based FPGA (TARRILLO, 2014). 

 

 

 

 

Figure 2.8 – Basic structure of the PL part of the Zynq-7000 (CROCKETT, 2014). 
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Figure 2.9 – Example of a 3-input LUT implementing a majority voter. 

 

 

In Xilinx 7-Series architecture, which Zynq-7000 is part, each CLB’s slice contains 

four 6-input LUTs, eight flip-flops, multiplexers to interconnect the LUTs, flip-flops, and one 

carry propagation chain. Fig 2.10 shows the block diagram of a 7-Series slice. In turn, slices 

are grouped into CLBs. Each CLB has two slices, as shown in Fig. 2.11. 

In addition to CLBs, FPGAs have blocks of embedded memory (BRAM). These 

blocks are based on SRAM cells and dedicated for the user circuit. They are more efficient 

implementing large memories or FIFOs than flip-flops in CLBs. Flip-flops are mainly used 

for implementing registers or pipeline barriers, for example. They support Error Correcting 

Codes (ECCs). 

DSP blocks are also present in the FPGA fabric. These blocks contain hard-core 

multipliers and adders to implement arithmetic operations at high-speeds.  

 I/O Blocks provide an interface between the FPGA resources and the physical device 

pads used to connect to external circuitry. In the Zynq-7000’s PL, it is possible to configure 

some features of the IOBs, such as the voltage level, signal direction, and programmable 

delay. Some devices also incorporate transceiver blocks to enable high-speed 

communications, such as the bigger Zynq-7000 devices, which are based on the Kintex-7 

family. 

The clock distribution in the FPGA is done by dedicated global and local clocks 

routing wires and buffers. These signals divide the FPGA into clock regions, and these 

regions are controlled by clock buffer primitives (XILINX, 2014). Such primitives enable the 

user to apply clock gating to an entire clock region, for example. There are also specialized 

clock management blocks where it is possible to multiply or divide the reference clock 

frequency. 
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Figure 2.10 – Block diagram of a Xilinx 7-Series slice (XILINX, 2014). 

 

 

Figure 2.11 – Relationship between CLBs and Slices in Xilinx 7-Series FPGAs (XILINX, 2014). 
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With regard to the Configuration Layer, it consists mainly of the configuration bits. 

However, they have different functions. Some of them define the function of LUTs, others 

define the configuration of embedded resources, like BRAMs, DSPs, IOBs, and others define 

the interconnection of the CLBs. The FPGA configuration memory is composed of small 

memory segments called Configuration Frames. A configuration frame is the smallest 

addressable portion of the FPGA configuration memory, and the frame size varies among 

FPGA families. In case of Zynq-7000’s PL, a configuration frame is composed of 101 32-bit 

words (XILINX, 2014). Each frame has a unique address that is related to the physical 

position in the FPGA floorplanning. The frame address is composed of five fields as follows 

and shown in Fig. 2.12: 

 

Figure 2.12 – Example of a generic Xilinx FPGA floorplan and frame structure. 
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 Type – Define the type of the frame. It can be a configuration frame (type 0); 

BRAM content (type 1); and there is also type 2, but this one is not well 

documented in Xilinx’s literature. 

 Top/Bottom – Define the half part (top or bottom) of the FPGA where the 

frame is located. 

 Row – Defines the frame row. 

 Column – Define the frame column. A column is defined by the type of 

resource (CLB, BRAM, DSP, etc.). 

 Frame in column – Define the frame position inside a column. 

As can be seen in Fig. 2.12, the floorplanning of a Xilinx FPGA is divided into two 

main regions: top and bottom. Each region is organized in rows and columns. Each frame has 

the height of a row, and the columns are arranged according to the type of resource (e.g. CLB, 

BRAM, DSP, etc.). Each column contains a group of frames. The number of frames on each 

column depends on the type of the resource that it configures. 

The access to the configuration memory is possible through several interfaces and it 

can be performed externally or internally to the device. Example of external interfaces are: 

JTAG and SelectMAP. The internal interface is the Internal Configuration Access Port 

(ICAP).  It has the same interface as the SelectMAP, with the only difference that the ICAP 

can be accessed from the programmable logic. 

 

2.1.1.3 The interfaces between PS and PL 

 

One of the main benefits of Zynq-7000 and other similar APSoCs is the ability to use 

both PS and PL parts in tandem to form complete and integrated systems. The key enabler in 

this regard is the set of highly specified interconnects and interfaces forming a bridge between 

the two parts. In case of Zynq-7000, the two main interfaces are the Advanced Extensible 

Interface (AXI), which is part of the ARM Advanced Microcontroller Bus Architecture 

(AMBA) standard (ARM, 2015a), and the Extended Multiplexed Input/Output (EMIO). 

In case of AXI, Zynq-7000 uses AXI4 standard (ARM, 2015a), which is focused on 

memory-mapped links and provides the highest performance. The primary interface between 

the PS and PL is implemented via a set of nine AXI interfaces. Each interface is composed of 

multiple channels and make dedicated connections between the PL and the interconnects 

within the PS. Here, it is useful to define that an interconnect is effectively a switch which 



 

 

39 

 

manages and directs traffic among attached AXI interfaces and an interface is a point-to-point 

connection for passing data, addresses, and hand-shaking signals between master and slave 

components within the system. Concerning AXI interfaces, Zynq-7000 devices have three 

different types of PS-PL AXI interfaces (Fig. 2.13):  

 General Purpose AXI (GP-AXI) - A 32-bit data bus suitable for low and 

medium communications rate between PS and PL. The interface is direct and 

does not include buffering. There are four general purpose interfaces in total: 

the PS is the master of two and the PL is the master of the other two. 

 Accelerator Coherency Port (ACP) - A single asynchronous connection 

between the PL and the SCU within the APU with a bus width of 64 bits. This 

port is used to achieve coherency between the APU caches and elements within 

the PL. In this case, the PL is always the master. 

 High Performance AXI (HP-AXI) Ports - There are four HP-AXI ports. They 

include FIFO buffers to accommodate read and write bursts and to support 

high rate communications between the PL and memory elements in the PS. 

The data width is either 32 or 64 bits and the PL is the master of all four 

interfaces. 

 

Figure 2.13 – AXI interconnects and interfaces connecting the PS and PL parts of the Zynq-7000. 

 

 

Concerning EMIO, it involves signal transfer between the two domains and is 

achieved through a simple set of wires connections. Interfaces routed through the EMIO can 

be connected to peripheral blocks in the PL or directly to external pins of the PL. EMIO can 
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provide an additional of 64 inputs and 64 outputs with corresponding output enables. An 

example of its architecture is shown in Fig. 2.14. 

Other signals crossing the PS-PL boundary include watchdog timers, reset signals, 

interrupts, and DMA interfacing signals. 

There are many issues when addressing the PS-PL interfaces of Zynq-7000. The 

performance of the communication between PS and PL is usually a bottleneck that restricts 

the hardware acceleration in the PL. In this sense, Silva, Sklyarov, and Skliarova (2015), 

analyzed and compared the PS-PL interfaces of Zynq-7000. They performed several 

experiments for evaluating the data exchange between PS and PL through GP, HP, and ACP 

ports, and using different memory hierarchies. The following scenarios of data transfer 

between PS and PL were evaluated: AXI ACP, allowing access to DDR/OCM and supporting 

coherency with the CPU cache using the SCU; AXI HP, allowing access to OCM; and, AXI 

HP, allowing access to external DDR. The following scenarios of data transfer between the 

processor and the memories were evaluated: processor and cache; processor and OCM; and, 

processor and DDR. 

 

Figure 2.14 – EMIO interface between the PS and PL parts of the Zynq-7000. 

 

 

It is worth to highlight that the SCU provides support for coherent access to memory 

that is automated for AXI ACP. If AXI HP ports are used, the cache memory is not able to 

participate in data transfers between the PS and the PL. However, it participates in data 

transfers between the processor and memories. Thus, enabling or disabling the cache affects 

such transfers. In addition, if the cache is enabled, processor operations may occur over data 

in the cache and it is necessary to provide coherency with data saved in other memories 

(OCM or DDR). 
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Fig. 2.15 shows the fastest ports for different volumes of data items (from 16 B to 64 

KB) and the Worst Result (WR), which is the slowest interaction method found for each case. 

Results show that selecting the best port is important. For example, the GP port is always the 

best option for transferring a small number of data items (from 16 to 64 bytes). This implies 

that the GP port is very appropriate for supplying control signals from the PS to PL and 

providing additional information (such as interrupts from the PL to the PS). AXI ACP with 

the cache enabled gives the best results for a modest number of data items and if this number 

is increased, data transfer through OCM with the cache disabled is the fastest. This is because 

memory accesses through the AXI ACP utilize the same interconnecting paths as the 

processor, potentially decreasing the processor performance. 

 

Figure 2.15 – Obtained best methods for transferring different numbers of data items between PS and 

PL in Zynq-7000 (SILVA, SKLYAROV, SKLIAROVA, 2015). 

 



 

 

42 

 

2.2 Hardware/Software co-design 

 

 The process of hardware/software co-design involves deciding which components 

should be implemented in hardware, which should be implemented in software, and how they 

will communicate each other. This partitioning process relies on the fact that hardware 

components, such as the ones residing in the PL, are typically faster due to the parallel 

processing nature of FPGA devices and have bigger design exploration space. However, it 

also tends to be more expensive if it is done manually. Software components implemented on 

a processor, on the contrary, are cheaper to both create and maintain, but they are also slower 

due to the inherent sequential processing. In order to achieve a good trade-off between 

performance and cost (and reliability, as it will be possible to notice in the next chapters), 

high-performance components can be implemented in hardware in the form of hardware 

accelerators, while less intensive processes can be implemented in software. Examples of 

suitable applications for PL implementation include intensive math operations, digital 

filtering, and image processing. These tasks are repetitive and quite static. On the contrary, 

problems that are more dynamic and unpredictable, are better suited to be implemented on a 

processor-based system.  

 In this context, the PL part of Zynq-7000 is a suitable platform for implementing 

functions which can be efficiently divided into parallel and/or multiple tasks. Due to the 

parallel execution nature of the programmable logic, multiple operations can be processed 

concurrently to calculate the final result in a shorter time than if processed sequentially. Fig. 

2.15 shows the advantage of parallel hardware executions. Whereas the software execution 

requires 12 clock cycles (sequential execution) to produce the output G, the parallel 

implementation only requires 2 clock cycles (parallel execution) to produce the same result. 

It is also possible to speed-up a function by using multiple instances of a hardware 

accelerator, creating a multi-core architecture. In this context, a system can run faster by 

executing several steps of a given function simultaneously. The architecture consists basically 

of several instances of one or more types of hardware accelerators that work in parallel and an 

interconnection network or a system bus that connects them together and with the main 

processor, which can be the PS part in case of Zynq-7000. As a practical example, it is 

possible to apply Eq. 2.3 for estimating the system speed-up provided by using identical 

hardware accelerators. To do so, assume a system implemented in Zynq-7000, such as a Fast 

Fourier Transform (FFT) operation, with the PS as the main processor, and that there are parts 

of the system that can be implemented as hardware accelerators in the PL, such as the internal 
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Discrete Fourier Transform (DFT) blocks. In addition, consider that is possible to 

accommodate at most 16 (n) hardware accelerators in the PL and that there are three versions 

of them, each one providing different speed-up factors (f) of 0.25, 0.50, and 0.75, compared to 

the main processor. Thus, Fig. 2.16 shows the estimated overall system speed-up provided by 

the addition of different numbers of hardware accelerators (r) in the PL, according to Eq. 2.3. 

Results show that the availability of the main processor (higher f) makes it possible to 

run the sequential part of the system faster. Results also show that there is a point for each 

level of parallelism beyond which the overall system performance will decline. For example, 

for the 75% parallel type of system (f = 0.75), this point is reached with 8 hardware 

accelerators. The reason for this behavior relies on the fact that a higher number of hardware 

accelerators may lead to some overhead in the sequential part of the system, which is not 

taken into account in the present theoretical analysis, such as communication bottlenecks, 

memory accesses, and synchronization of the hardware accelerators. 

 

Figure 2.15 – Example of parallel versus sequential execution. 
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Figure 2.16 – Estimated overall system speed-up provided by the addition of different numbers of 

hardware accelerators. 

 

 

2.2.1 High-Level Synthesis 

 

The increasing systems' complexity and heterogeneity of hardware designs embedded 

in state-of-the-art APSoC devices and the shortening time-to-market have motivated the 

development of new designing methodologies focused to address the today's need of high-

performance and energy-efficient circuits. In this context, the use of High-Level Synthesis 

(HLS) tools is an example of strategy that can be addressed during the development of a 

design for exploring the design space, such as performance improvement and resource 

utilization. This is crucial during the design of complex systems and especially suitable for 

projects targeting APSoC and FPGA devices, where many alternative implementations can be 

easily generated, deployed onto the target device, and compared. HLS tools have significantly 

evolved in the last years, providing very optimized results in area and performance with a 

very short development time. 

HLS tools start from a high-level software programmable language (e.g. C, C++, 

SystemC) to automatically produce a hardware accelerator in HDL (e.g. VHDL or Verilog) 

that performs the same function. Thus, CPU-intensive tasks can be offloaded to dedicate 

hardware accelerators within an APSoC or a system-on-chip implemented into an FPGA.  

A high-level synthesis process consists essentially of three phases: scheduling, 

allocation, and binding (XILINX, 2013). Scheduling extracts the control and data flow graphs 

from the high-level source code to implement the hardware design based on defaults and user-
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applied special directives. Such directives force the high-level synthesis to focus on particular 

objectives, such as performance, throughput, area, or power consumption. Fig. 2.17 illustrates 

the control and data flow extraction process. The resource allocation and binding select the 

necessary RTL resources to implement behavioral functionalities based on a technology 

library, generated-component delays, and user directives, for example. They also determine 

the mapping relation between the behavioral constructs to the allocated RTL resources (DE 

MICHELI, 1994). Typically, the allocation and binding processes can be further divided into 

subtasks regarding functional units as hardware-specific cores and storage elements as 

memories, both based on a specific technology library (NANE et al., 2015). Fig. 2.18 

illustrates the three phases and their relations. 

 

Figure 2.17 – Example of a control and data flow extraction during the HLS process. 

 

 

Figure 2.18 – The essential three HLS phases and their relations. 

 

 

There are a large variety of HLS tools. They range from commercial products such as 

Vivado HLS (XILINX, 2016e) from Xilinx to open source tools developed from academic 

research initiatives such as LegUp (CANIS et al., 2011) from University of Toronto. An in-

depth analysis and discussion of several commercial and academic HLS tools regarding 

performance and resources usage was performed in (NANE et al., 2015). In this thesis, Xilinx 
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Vivado HLS was chosen for generating the HLS-based case-studies designs because as a 

Xilinx tool, it provides a significant support for different Xilinx devices (7-Series, such as 

Virtex, Artix, Kintex, and Zynq-7000), which are the main targets of this thesis. 

 

2.2.2 Xilinx Vivado High-Level Synthesis 

 

Vivado High-Level Synthesis is a complete HLS environment from Xilinx. It is built 

using the Low Level Virtual Machine (LLVM) compiler framework (LLVM, 2016). As such, 

it has access to many software optimizations (e.g., loop unroll, loop rotation, dead code 

elimination, etc.). However, hardware and software programing paradigms are inherently 

different, so it is not possible to expect that all of LLVM’s optimizations work seamlessly for 

HLS (WINDH et al., 2015). 

The typical Vivado HLS design flow (Fig. 2.19) starts with a high-level source code 

compiled to a pure software implementation and a self-validating testbench to verify its 

correctness. The user must specify the top function of the code that he wishes to synthesize to 

hardware. The interface provides to the user a list of code regions (targeted at loops, function 

bodies, and other regions) that can be optimized using synthesis directives to guide the RTL 

generation. 

 

Figure 2.19 – Xilinx Vivado HLS design flow. 
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With regard to the optimization strategies, which is one of the main resources of any 

HLS tool, Vivado HLS have four main strategies for optimizing a design: clock, throughput, 

latency, and area. 

The clock frequency along with the target device is the primary constraint which 

drives optimization. Vivado HLS seeks to place as many operations from the target device 

into each clock cycle. 

Optimizing for throughput implies in pipeline the tasks to improve performance, 

improve the data flow between tasks, and optimize structures to improve address issues which 

may limit performance. Task pipelining allows operations to happen concurrently, which 

means that the task does not have to complete all operations before it begins the next 

operation. Pipelining can be applied to functions and loops. In case of a loop, for example 

(Fig. 2.20), if each iteration contains three operations, one read, one computation, and one 

write, the loop can be pipelined to read on every clock cycle instead of every three. Thus, a 

new loop iteration begins on every clock cycle before the previous iteration is finished. It is 

also possible to improve pipelining by partitioning arrays to improve the data flow between 

tasks. Arrays are implemented as BRAMs, which only have a maximum of two data ports. 

This can limit the throughput of a read/write (or load/store) intensive algorithm. The 

bandwidth can be improved by splitting the array (a single BRAM resource) into multiple 

smaller arrays (multiple BRAMs), effectively increasing the number of ports. Concerning the 

structural optimizations, the main one is the loop unrolling to improve the parallelism and/or 

pipelining, as shown in Fig. 2.21. By default, loops are kept rolled in Vivado HLS. That is to 

say that the loops are treated as a single entity: all operations in the loop are implemented 

using the same hardware resources for iteration of the loop. It is possible to unroll loops by a 

factor of N so the loop operations can be performed N times faster. However, unrolling a loop 

is directly related to how much resources of the FPGA are used. For example, unrolling a loop 

by a factor of three (N=3) means triple the speed, but also triple the resource cost. 

 Optimizing for latency uses the techniques of latency constraints and the removal of 

loop transitions to reduce the number of clock cycles required to complete. One option is to 

merge sequential loops, as shown in Fig 2.22. Rolled loops imply and create at least one state 

in the design Finite State Machine (FSM). When there are multiple sequential loops, they can 

create additional unnecessary clock cycles and prevent further optimizations. Thus, merging 

sequential loops allows the logic within the loops to be optimized together. 

 Optimizing for area focus on how the operations are implemented, such as controlling 

the number of operations and how those operations are implemented in hardware. One of the 
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primaries concerns is related to data types and bit-widths of the high-level languages. For 

example, if a variable only requires 12-bits but is specified as an integer type (32-bit), it will 

result in larger and slower 32-bit operators being used, reducing the number of operations that 

can be performed in a clock cycle and potentially increasing the initiation interval and latency. 

In this context, the use of appropriate precision for the data types is mandatory. Another 

option is inlining functions. Function inlining removes the function hierarchy aiming to 

improve area by allowing the components within the function to be better shared or optimized 

with the logic in the calling function. It is also possible to reshape arrays aiming to reduce the 

number of BRAMs while still allowing the beneficial attributes of partitioning such as parallel 

access to the data.  

 

Figure 2.20 – Function pipelining behavior. 

 

 

Figure 2.21 – Loop unrolling behavior. 
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Figure 2.22 – Loop merging behavior. 

 

 

There are also the interfaces optimizations, which affect both throughput and latency. 

In high-level programming languages such as C and C++, all input and output operations are 

performed in zero time, through formal function arguments. In a RTL design, these same 

input and output operations must be performed through a port in the design interface and 

typically operates using a specific I/O protocol. Vivado HLS supports two solutions for 

specifying the type of I/O protocol used: interface synthesis, where the port interface is 

created based on industry standard interfaces, such as AXI4; and, manual interface 

specification where the interface behavior is explicitly described in the input source code, 

which allows any arbitrary I/O protocol to be used. As an example, specifying input and 

output arguments of a function as an AXI4 interface is a common practice when another 

device, such as a CPU (Zynq-7000's PS, Microblaze soft-core, etc.), is used to configure and 

control when this block starts and stops its operation. 

 

2.2.3 Related works about HLS 

 

In (HARA et al., 2008), authors proposed the CHStone, a suite of benchmark 

programs for C-based high-level synthesis. CHStone consists of dozen of large, easy-to-use 

programs written in standard C programming language, which were selected from various 

application domains, such as arithmetic, microprocessor, media processing, and security. This 

thesis makes use of some of the CHStone benchmark programs. 

In (HUANG et al., 2013), authors studied the effect of compiler optimizations on the 

hardware metrics of circuit area, execution cycles, frequency of the circuit, and wall-clock 

time. They made use of the LegUp academic HLS tool (CANIS et al., 2011). Among the 
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several results achieved, they observed that the hardware quality is affected by the 

optimization parameter values, as well as the order in which optimizations are applied. 

Nane et al. (2015) presented the first-published methodology to evaluate different HLS 

tools. They compared one commercial and three academic HLS tools on a common set of C 

benchmarks in terms of performance and use of resources. Windh et al. (2015) also analyzed 

several HLS tools, but more qualitatively. They analyzed the tool flow, the optimizations they 

provide, and their hardware implementations of the high level code.  

In (HUSEJKO, EVANS, DA SILVA, 2015), authors performed a feasibility 

investigation to verify if HLS tools are capable and mature enough to be applied for building 

critical data acquisition systems. Their case-study was the CERN CMS detector ECAL Data 

Concentrator Card (DCC). They concluded that the Vivado HLS fills all the constraints and 

can be used for building critical data acquisition systems.  

In (WINTERSTEIN, BAYLISS, CONSTANTINIDES, 2013), authors performed a 

comparative study between two alternative algorithms that perform the same compute-

intensive machine learning technique (clustering), but with significantly different 

computational properties. They compared a data flow centric implementation to a recursive 

tree traversal implementation, which incorporates complex data-dependent control flow and 

makes use of pointer-linked data structures and dynamic memory allocation. As results, they 

observed similar performances between the hand-written and automatically generated RTL 

designs for the first test case and also degradation in latency by a factor greater than 30 times 

if the source code is not altered prior to high-level synthesis. 

Monson, Wirthlin, and Hutchings (2013), compared the performance of CPU and 

FPGA based implementations of a complex optical-flow algorithm. For the FPGA based 

implementation, the Vivado HLS was utilized. Using Vivado HLS, the designers were able to 

develop an implementation of the algorithm with comparable performance to the CPU 

implementation that operated at a fraction of the energy cost. The authors came to several 

important conclusions regarding the use of the Vivado HLS tool: little modification is 

necessary to prepare existing C language designs for conversion using the HLS tool; it is 

possible quickly optimize a design for different goals, and, it is easy to compare different 

versions of the algorithm in C and determine resource usage and performance. 

With regard to reliability, several works have been published in recent years. Chen et 

al. (2016) evaluated by fault injection the sensitivity of HLS-based designs protected with fine 

grain module redundancy or gate sizing, targeting ASIC applications in satellite 

communications systems. By mixing both techniques, authors reached an area and power 
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reduction of 70% and 64%, respectively, with a reliability level over 99.97%. Fleming and 

Thomas (2016) proposed an approach which distinguishes between tolerable errors in data 

flow, such as arithmetic, and intolerable errors in control flow, such as branches and their 

data-dependencies. The approach is demonstrated in a new HLS compiler pass called 

StitchUp, which precisely identifies the control critical parts of the design, then automatically 

replicates only that part. They applied StitchUp to the CHStone benchmark suite and 

performed exhaustive hardware fault injection in each case, finding that all control flow errors 

were detected while only requiring 1% circuit area overhead in the best case. In (CHEN, 

EBRAHIMI, TAHOORI, 2016), authors propose a novel reliability-aware allocation and 

binding technique to explore more effective soft error mitigation during HLS processes. They 

perform a vulnerability analysis at behavior level by considering error propagation and 

masking in both control and data flows. Then optimizations based on integer linear 

programming, as well as heuristic algorithm, were employed to incorporate the behavioral 

vulnerabilities into the register and functional unit binding phases to achieve cost-efficient 

error mitigation. Their experimental results reveal that compared with previous techniques 

which ignored behavioral vulnerabilities, the proposed approach can achieve up to 85% of 

reliability improvement with the same amount of area budget in the RTL design. In (DOS 

SANTOS et al., 2017), authors evaluated the use of module redundancy with different 

granularities at the higher level of HLS processes, the high-level programming language. The 

advantage of this approach is that it is easily applicable in any HLS tool, including the 

commercial ones in which it is not possible to alter the HLS flow. Results show that by using 

a coarse grain module redundancy with triplicated inputs, voters, and outputs, it is possible to 

reach 95% of reliability by accumulating up to 61 bit-flips in the configuration memory bits 

of an SRAM-based FPGA. 

 

2.3 Implementation metrics 

 

In Zynq-7000 and other APSoCs, the area of an implemented design in the PL can be 

expressed in terms of the number of used resources such as LUTs, flip-flops, BRAMs, DSPs, 

etc. It is also possible to express the area in terms of configuration bits and configuration 

frames. In the PS, the resource usage of a program can be expressed mainly in terms of the 

type and amount of the used memories, such as L1 cache, L2 cache, OCM, and BRAMs. In 
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terms of reliability, the resource information is important since it is used to determine how 

much the design is physically exposed to radiation. 

The performance of a design can be expressed in terms of the execution time, 

operational frequency, and the processed workload. The execution time can be defined by the 

number of clock cycles needed to perform an operation. According to the FPGA and the 

design embedded in it, or in case of a processor, a maximum clock frequency is achieved. 

Another important parameter is the workload processed by the design. The workload is the 

amount of data computed at each design execution. In terms of reliability, performance 

information is important to determine how much time the design is exposed to soft errors 

during the execution of the implemented function. 

 

2.4 Related works about APSoCs 

 

 Most of the works that use an APSoC as case-study device take into account only 

performance measurements, since its main goal is to provide a high system-level performance 

through a flexible platform, as already exemplified before by citing the work of Silva, 

Sklyarov, and Skliarova (2015). However, other interesting works are worth to be cited. 

A methodology for analyzing the impact of the hardware accelerator data transfer on 

the performance of a typical embedded system is presented in (LAFOND, LILIUS, 2008). 

Such work is particularly interesting because it shows that the granularity of the data transfer 

between memory and accelerator, and thus, the interrupt rate to the CPU has a direct impact 

on the system performance, as Fig. 2.23 shows. In this figure, all the results presented are 

relative to the measurements using the values obtained for the coarse-grained system. Results 

show an exponential improvement when the hardware granularity is reduced. This 

improvement can be explained by a decrease in data cache misses due to a decrease in the 

number of data accesses. It is worth noticing that all data were obtained using a simulation 

framework based on an ARM processor running a Real-Time Operating System (RTOS). 

In (ALTERA, 2009), it is shown the benefits of using heterogeneous architectures to 

reduce power consumption and speed-up performance in FPGAs. The paper shows practical 

comparisons for the power consumption and performance enhancement of sample 

computational tasks, when they are executed by a CPU or by a hardware accelerator 

(generated by an HLS tool). Results show that is possible to speed-up a task up to 435 times 

with a small increase in power consumption of only 1.9 times. 
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Figure 2.23 – Influence of the hardware accelerator granularity on the execution time of a system 

(LAFOND, LILIUS, 2008). 

 

 

The idea of using a portion of CPU sub-system caches as buffers for accelerators is 

studied in (FAJARDO et al., 2011). Such approach results in a smaller silicon area since each 

accelerator does not instantiate its own buffer. The basic idea of dedicating a shared memory 

space to accelerators is interesting because Zynq-7000 devices provide a dedicated On-Chip 

Memory (OCM), which can be used for the same purpose. 

The impact of cache architecture on the performance and area of FPGA-based 

processor and parallel accelerator systems is discussed in (CHOI et al., 2012). The paper 

proposes a simple hardware containing one MIPS core, multiple accelerator units (generated 

by an HLS tool), a multi-port shared L1 cache and a DRAM controller. It considers different 

structural parameters for the L1 cache (such as number of ports, associativity, etc.) and 

defines a set of computational tasks to be done only by accelerators. It then quantifies the 

impact of cache structure on the overall speed of accelerators connected to the L1 cache. Fig. 

2.24 shows that larger cache sizes generally provide higher speed-ups, as authors expected. 

For the parallel cases, six (6) accelerators were used. The detailed configuration of all the 

configurations evaluated can be found in (CHOI et al., 2012). 

In (SADRI et al., 2013), authors systematically evaluated the performance that is 

achievable in practice with a Zynq-7000 device by comparing the HP-AXI port and ACP. 

However, the experiments were exclusively for applications running under a Linux operating 

system distribution. The main results of this work, which are shown in Fig. 2.25, can be 

summarized as follows: if a CPU collaborates with an accelerator in the PL, then the speed of 

the CPU ACP and the CPU OCM methods is always better than the CPU HP-AXI; and, if an 



 

 

54 

 

accelerator in the PL is entirely responsible for the problem and the CPU only uses its results, 

then the ACP or the OCM are recommended if the amount of data to be processed is smaller 

than the size of the cache memory or the OCM. Otherwise, it is supposed that the HP-AXI 

ports give better results. As mentioned in (LAFOND, LILIUS, 2008), authors also state that 

the size of the packets that are transferred and the burst length have a substantial effect on the 

overall data transfer bandwidth. 

 

Figure 2.24 – Impact of the cache architecture on the average execution time (speed-up) relative to a 

baseline system, which employs a single accelerator running sequentially using a 1-way (direct- 

mapped) 2KB cache with a 32-byte line size (CHOI et al., 2012). 

 

 

Figure 2.25 – Processing bandwidth comparison of different acceleration methods in Zynq-7000. Data 

size sweeps from 4 KB to 2048 KB (SADRI et al., 2013). 

 

 

2.5 Summary 
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In summary, based on the information presented in this chapter, one can see that 

programmable devices have evolved very rapidly in the last decade, mainly because of 

performance pressure in the high-volume commercial marketplace. As consequence, several 

APSoC devices were introduced in the market providing higher programmable flexibility and 

overall system performance at lower costs than standalone processors and FPGAs, as the 

related works show. However, as the next chapters show, the high complexity and density of 

these devices increase the system’s susceptibility to noises that are present in the 

environment, such as the ones caused by radiation. 
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3 RADIATION EFFECTS ON APSOCS 

 

This chapter introduces the main definitions and background knowledge for 

understanding the context of this thesis. It presents the cause-effect definitions of fault, error, 

and failure; the main radiation environments; the general effects of radiation on 

programmable devices; the standard metrics and methods for evaluating programmable 

devices under radiation; and, related works. 

 

3.1 Fault, error, and failure 

 

A system is an entity that is composed by one or more subsystems. All subsystems 

interact with each other, while the system interacts with other systems in its environment 

(AVIZIENIS et al., 2004). In this context, a system or a subsystem can be hardware-based, 

such as a processor, or software-based, such as a running application. The service delivered 

by a system is its behavior as perceived by other systems using it. According to (MUSHTAQ, 

AL-ARS, BERTELS, 2011), a system fails when its behavior deviates from the expected one. 

In this context, fault, error, and failure are three concepts related by a cause-effect link, as 

shown in Fig. 3.1. 

 

Figure 3.1 – Fault, error, and failure propagation. 

 

 

One failure may occur due to one or more faults within the system or external to it. 

When a fault becomes active, it can affect the total state of one or more subsystems of the 

system. The deviation of the total state of a component from the correct state is known as an 

error. When an error propagates to affect the external state of the system, it is said that the 
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error was activated. Once the error is activated, it is said that the failure of the system 

occurred. In other words, a fault might lead to an error, which in turn might lead to the failure 

of the system. However, it is worth noticing that not every fault generates an error and not 

every error generates a failure. 

A fault is defined as a logic abstraction of a physical defect. A physical defect is an 

unexpected difference between the implemented hardware and the planned function of it. 

Faults can be classified with respect to persistence as transient, intermittent, or permanent. 

Transient fault is random and occurs for only a short period of time. Intermittent fault is a 

repetitive malfunction of a device or system that occurs at intervals and a permanent fault is 

continuous in time. This thesis targets transient faults caused by ionizing particles that pass 

through the device, which are generally named Single Event Effects (SEEs). 

 

3.2 Radiation environments 

 

For the purposes of this thesis, radiation is the transmission of energy through atomic 

and subatomic particles with very high kinetic energy. Radiation is a natural phenomena and 

is generated from the sun, cosmic sources, materials on Earth, and man-made environments, 

such as particle accelerators (for high-energy physics experiments and cancer treatment) and 

nuclear reactors. 

With the increasing interest in using programmable systems in safety-critical markets 

where radiation is a major concern, researchers have investigated the suitability of 

commercially available programmable devices in such markets due to their low-cost 

compared to radiation-tolerant devices. This section reviews three of these markets, space, 

terrestrial, and particle accelerators, which are the ones of interest to this thesis. 

 

3.2.1 Space environment 

 

Programmable devices have been used in the space environment for many years 

(KATZ et al., 1994). Today, the use of programmable devices such as FPGAs and APSoCs 

within modern spacecraft is motivated by the growing computational needs associated with 

modern sensors adopted (WIRTHLIN, 2015). Because of the huge amount of data generated 

by modern sensors, it is no longer possible to send all sensor data back to Earth for 

processing. Today, much of that processing must be done on the spacecraft. 
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The space environment is complex and includes a large spectrum of particles of 

different mass each with a different energy range. The primary challenge for using FPGA and 

APSoC devices in a spacecraft is to address the effects of radiation on the device operation. 

The radiation experienced by satellite electronics in space is generated from several different 

sources, as Fig. 3.2 shows. In summary, they are the following (CLAEYS, SIMOEN, 2002; 

BOUDENOT, 2007):  

 Protons and heavy ions from solar flares; 

 Cosmic ray protons and heavy ions; 

 Protons and electrons trapped in the Van Allen Belts; 

 Heavy ions trapped in the Earth’s magnetosphere. 

 

Figure 3.2 – The space environment and its sources of ionizing particles. 

 

 

The radiation level of these sources strongly depends on the activity of the sun. The 

solar cycle is normally divided in two main activity phases, the solar minimum and the solar 

maximum. On the average, the cycles last for eleven years with approximately four years of 

solar minimum and seven years of solar maximum (NASA, 2011). The activity of the Sun can 

alter the spatial scenario during the period of solar maximum due to the increasing number of 

solar flares. In contrast, during the period of solar minimum, the flux of cosmic rays tends to 

increase, once the interplanetary magnetic field is weaker during this phase. 
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Solar flares cause protons and heavy ions. These flares, which can last for several 

hours to a few days, have protons with energies higher than 100 MeV that are attenuated by 

the Earth’s magnetosphere. 

The galactic cosmic ray particles originate outside the solar system and include a large 

range of elements. The fluxes are low, but because they include high energetic particles (from 

dozens of MeV up to hundreds of GeV) of heavy elements, they may produce ionization 

effects by passing through the materials. The composition of particles consists of about 90% 

protons, 9% alpha particles, and 1% heavy ions and other elements (GOLDHAGEN, 2003). 

The Van Allen belts consist mainly of electrons up to a few MeV in energy and 

protons of up to several hundred MeV trapped in the Earth’s magnetic field 

(GUSSENHOVER, MULLEN, BRAUTIGAM, 1996). The inner belt is situated at low 

altitudes (from hundreds of kilometers to 6,000 kilometers), while at high altitudes (up to 

60,000 kilometers) the outer belt with high-energy electrons is observed. Once the charged 

particles are trapped, the Lorentz force controls their motion in the Earth’s magnetic field 

(CLAEYS, SIMOEN, 2002). The South Atlantic Anomaly (SAA) is an important an 

important anomaly that happens on the region of the inner belt. It results of the offset and tilt 

of the Earth’s magnetic field with respect to the Earth rotation axis, in which the field lines 

containing significant energetic-particle fluxes approach the Earth’s surface (ESA, 1993). As 

consequence, the flux of energetic protons at low altitudes in the SAA can be two orders of 

magnitude higher than in other regions of the Earth’s magnetosphere. The SAA is especially 

important for southern Brazilians because it concentrates mainly over the Brazilian state Rio 

Grande do Sul. 

The altitude of the orbit is also essential to evaluate the radiation environment that the 

spacecraft will encounter during a space mission. In Low Earth Orbits (LEOs), the spacecraft 

passes several times per day through the Van Allen Belts, i.e., trapping protons and electrons. 

In Geostationary Orbits (GEOs), trapped protons with energy levels below the threshold for 

initiating nuclear reactions are present. In case of deep space missions, the radiation 

environment is more complex and it depends on the number of times the spacecraft passes 

through the Earth’s radiation belt and on how close it will be to the sun (CLAEYS, SIMOEN, 

2002). In addition, the solar maximum and minimum has to be taken into account. 

 

3.2.2 Terrestrial environment 
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Another important radiation environment for programmable systems is the Earth’s 

terrestrial environment. The earth environment is usually not considered a “harsh” radiation 

environment such as space. However, electronic circuits operating in terrestrial environments 

are exposed to radiation that can negatively impact their operation. While upsets within 

FPGAs and APSoCs due to terrestrial radiation are not so common, they do occur and are 

easily detectable using conventional error detection techniques. 

The Earth is constantly showered by high energetic particles that come from the sun 

and the outer space, such as the galactic cosmic rays. Such particles are usually referred as 

Primary Cosmic Radiation (PCR) and they are illustrated in Fig. 3.3. 

When a PCR enters in the Earth’s atmosphere, it will interact with other particles, such 

as nitrogen and oxygen atoms. These interactions trigger a process called of spallation, in 

which the atoms are divided into a broad spectrum of different particles, both stable and 

unstable. This spallation process generates a chain of reactions that produces exponentially 

more particles until the Pfotzer maximum is reached at about 14-25 km. Below this point, the 

particle flux starts decreasing due to energy loss, absorption, and decay process (GRIEDER, 

2001). Nevertheless, some high energetic particles are still able to reach the ground. The 

result of this process is a shower of secondary particles in the atmosphere, mostly high-energy 

neutrons that interact with electronic systems (XILINX, 2012a).  

The dose rate of cosmic radiation varies throughout the world and depends on the 

magnetic field and altitude of the location. The higher the altitude of the system, the higher is 

the terrestrial soft error rate (JEDEC, 2006). Researches have shown that, at altitudes below 

18 km, high energy neutrons are the dominant factor in radiation-induced failures, while over 

21 km, cosmic ray heavy ions begin to dominate these rates (TSAO, SILBERBERG, 

LETAW, 1984). Therefore, high altitude applications of FPGAs and APSoCs (including 

avionics) and high reliable systems, such as communication, power, medical, automotive, and 

industrial applications, must carefully estimate the effects of radiation and provide proper 

error detection and correction capabilities. Industrial standards have been created for 

measuring and reporting these errors in semiconductor devices (JEDEC, 2006). 

There are also terrestrial sources of radiation, which include naturally occurring 

materials in the earth, such as soil, rocks, water, and the air. Most naturally occurring 

terrestrial radiation is relatively low energy and has little impact on electronic systems. The 

exception to this is the ionized particles that are sometimes found within the packaging 

materials used to manufacture semiconductor systems (XILINX, 2012a; WIRTHLIN, 2015). 
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Figure 3.3 – Particle cascade generated from cosmic rays in the Earth’s atmosphere (STEFAN, 2001). 

 

 

3.2.3 Particle accelerators environment 

 

FPGAs and APSoCs are increasingly being used within particle accelerators, as in 

their readout electronics, for performing High-Energy Physics (HEP) experiments. HEPs use 
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particle accelerators to accelerate charged particles to very high speeds (and, thus, high 

energy) and in opposite directions for then to form a particle collision.  This collision 

generates a number of byproducts that are studied to learn more about the subatomic structure 

(hadrons, quarks, leptons, muons, etc.) and fundamental laws of nature.  

An important part of HEP experiments is the detectors that measure the byproducts of 

high-energy particle collisions. A variety of particle detectors has been developed over the 

years and can be used to measure the energy, direction, spin, charge, etc. of a variety of 

particles. High-speed electronics are used within detectors to capture the particle data and 

send these data to external computer systems for post-processing. FPGAs are often used in the 

detectors of HEP experiments for interfacing with sensors, performing simple calculations, 

measuring sub-nanosecond time differences, and streaming the data outside of the experiment 

through high-speed interfaces (WIRTHLIN, 2015). Thousands of FPGAs can be used within 

large HEP experiments, such as the ATLAS (A Toroidal LHC Apparatus), CMS (Compact 

Muon Solenoid), ALICE (A Large Ion Collider Experiment), and LHCb (LHC-beauty) 

experiments that operate within the Large Hadron Collider (LHC) at the European 

Organization for Nuclear Research (CERN) (GRASSI, 2014). Recently, CERN is planning 

the use of APSoCs within its detectors in their next upgrade, planned to happen in 2020 (WU 

et al., 2016). Fig. 3.4 shows a general view of the CERN/LHC/ATLAS detector. 

An intense radiation field is generated from the high-energy particle collisions within 

the experiments. The actual radiation environment depends heavily on the experiment itself 

and on the location within the experiment (in general, the radiation field is higher closer to the 

center of the particle detector). At some locations within the experiment, such as the inner 

detector, the radiation field is so high that FPGAs and APSoCs cannot be used (GRASSI, 

2014). For many locations, however, the radiation environment is modest and FPGAs and 

APSoCs are appropriate with proper SEU mitigation methods. 

The radiation environment encountered at the LHC as well as its experiments at 

CERN is composed of a complex mixed field of charged and neutral hadrons, photons, 

muons, and electrons, with energies ranging from GeVs down to thermal energies (MEKKI et 

al., 2016). 
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Figure 3.4 – General view of the CERN/LHC/ATLAS detector (ATLAS, 2016). 

 

 

3.3 Radiation effects on integrated circuits 

 

Radiation has long-term damaging effects on integrated circuits. Such effects are 

cumulative and its intensity is related to the energy and the exposure time of the incident 

radiation on the device. The exposure to high-energy ionizing radiation generates electron-

hole pairs within the oxide of Complementary Metal Oxide Semiconductor (CMOS) 

transistors, the most common technology manufacturing until today. The generated carriers 

cause a buildup of charge within the oxide. This buildup of charge will change the threshold 

voltage, increase the leakage current, and modify the timing (mobility effects) of the CMOS 

transistor, leading to the parametric degradation and/or functional failure of the electronic 

device. Furthermore, high-energy particles can damage semiconductor materials by displacing 

atoms in the lattice, a process known as Displacement Damage (DD). Such displacement 

damage also changes the electrical parameters of the device. Lastly, the radiation will cause 

functional failures within the device. The amount of radiation dose that a device can tolerate 
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before failing to meet standard parameters specifications is called Total Ionizing Dose (TID) 

(QUINN, GRAHAM, 2005a). 

In addition to long-term effects, the radiation from individual high-energy particles 

can cause immediate effects within the device that are generally called Single Event Effects 

(SEE) (DOOD, MASSENGILL, 2006) and are the major concern of this thesis. SEEs result 

from the interaction of high-energy particles with circuit elements in integrated circuits. When 

a high-energy particle passes through the silicon substrate of a device, charged particles are 

created as the result of sub-atomic particle collisions and Coulomb interaction. These particles 

are generated by an ionization trail along the path of the incoming particle (WANG, 

AGRAWAL, 2008), as illustrated on the left in Fig. 3.5. The charge deposited or generated by 

the energetic particle is collected in a region surrounding the drain (approximately 1 µm) and 

an extended region known as funnel is generated, with a depth that depends on the electrical 

field configuration. In general, it is accepted that this region is of approximately 2-3 µm for 

logic devices. In case of an energetic particle passes through a reverse biased pn-junction, a 

short low resistance path is momentarily created between the substrate and the struck drain 

terminal. The amount of charge that is collected produces a transient current that lasts until 

the deposited charge disappears by recombination or is conducted away via open current 

paths to VDD or ground, returning the logic node to its original value. Fig. 3.5 on the right 

shows a collected charge occurring in the drain junction of the p-channel transistor. In this 

example, the node held the value “0”. As the current flows through the pn-junction of the 

struck transistor, from the bulk connected to VDD and the drain, the transistor in the on-state 

(n-channel transistor in Fig. 3.5) conducts a current that attempts to balance the current 

induced by the particle strike. If the collected charge induced by the particle strike is high 

enough that the on-transistor cannot balance the current before the node capacitance is 

charged, a voltage change at the node will occur. This voltage change lasts until the charge is 

conducted away by the current feed through the on-transistor. 

There are a variety of SEEs that must be considered before using a device in a 

radiation environment. SEEs can be divided into two categories: Soft SEEs versus Hard 

SEEs. Soft SEEs are those events that have no damaging effects and are cleared by normal 

device operation. Hard SEEs are events that generally result in lasting damage to the circuitry. 

The most relevant effects for programmable circuits are Single Event Upset (SEU), Single 

Event Transient (SET), Single Event Functional Interrupt (SEFI), and Single Event Latchup 

(SEL) (KASTENSMIDT, CARRO, REIS, 2006; DUZELLIER, BERGER, 2007; WANG, 

AGRAWAL, 2008; WIRTHLIN, 2015). Fig 3.6 summarizes the mentioned effects. 
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Figure 3.5 – Electron-hole pairs track generated by an ionized particle in a CMOS transistor (SOOS, 

2009) on the left and the charge collection mechanism in an inverter gate on the right. 

 

 

Figure 3.6 – Main radiation effects on programmable circuits. Adapted from (QUINN et al., 2015a). 

 

 

An SEU is a change in the state of a memory cell (SRAM, flash, flip-flop, or latch) 

caused by an ionizing particle, as Fig. 3.7 illustrates. Since an ionizing particle passes through 

the device, charge can be transferred from one node to another. If the charge is greater than a 

device-specific critical charge, this charge transfer can change the voltage level of transistors 

within a memory cell such that the modified voltage level reflects the opposite state of the cell 

(i.e., changing a logic “1” to a logic “0” or a logic “0” to a logic “1”). The feedback nature of 

static latches, such as SRAM-based memory cells, will preserve this new value and the 

original value will be lost. SEUs usually refer to single-bit errors. However, as Fig. 3.8 shows, 
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with the dimensions of the transistors shrinking to below 28 nm, a single ionizing particle is 

capable of producing multiple-bit errors, an event called of Multiple Cell Upset (MCU), if 

more than one cell is affected, or Multiple Bit Upset (MBU), if two or more bit-flips occur in 

the same word. Fig. 3.8 compares the percentage of events that cause MCUs (more than one 

bit upset) in different families of Xilinx FPGAs, such as Virtex (180 nm), Virtex-II (150 nm), 

Virtex-4 (90 nm), Virtex-5 (65 nm), and Kintex-7 (28 nm) (WIRTHLIN et al., 2014a), at 

different energies (Linear Energy Transfer – LET). 

 

Figure 3.7 – Example of Single Event Upset (KASTENSMIDT, CARRO, REIS, 2006). 

 

 

Figure 3.8 – MCU events as a percentage of SEUs for different families of Xilinx FPGAs 

(WIRTHLIN et al., 2014a). 

 

 

A charged particle can also induce a current and voltage spike in a combinatory 

circuit, which is referred to as a SET and is illustrated in Fig. 3.9. As Fig. 3.9 also shows, if 
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the pulse width of the spike is wide enough, the spike can propagate through the circuit and be 

latched, looking like a SEU. However, an SET in a combinatorial circuit might not be 

captured in a memory circuit because it can be masked by one of the following three 

phenomena: 

 Logical masking - Occurs when a particle strikes a portion of the 

combinational logic that is blocked from affecting the output due to a 

subsequent gate whose result is completely determined by its other input 

values; 

 Electrical masking - Occurs when the pulse resulting from a particle strike is 

attenuated by subsequent logic gates due to the electrical properties of the gates 

to the point that it does not affect the result of the circuit; 

 Latching-window masking - Occurs when the pulse resulting from a particle 

strike reaches a latch, but not at the clock transition where the latch captures its 

input value. 

 

Figure 3.9 – Example of a Single Event Transient (KASTENSMIDT, CARRO, REIS, 2006). 

 

 

SEUs and SETs do not cause permanent damage, but they introduce unwanted 

transient behaviors into a circuit and can lead to errors.  

SEFI is a broad term referring to an SEE that causes a significant change in the 

functional operation of a device (beyond a simple corruption of the user data).   

SEL is a potentially destructive condition in which a single charged particle induces a 

parasitic p-n-p-n structure (WIRTHLIN, 2015). This structure produces a low-impedance path 

between VDD and ground, resulting in large currents flowing through the parasitic bipolar 

transistors. In many cases, this current is high enough to destroy the device. Any device 
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considered for high radiation environments must be tested for latchup, since a latchup event is 

a potentially catastrophic failure. 

 

3.4 Radiation effects on APSoCs 

 

Chapter 2 has shown that the architecture and internal organization of modern devices 

such as Zynq-7000 have become more complex than standalone FPGAs and with faster clock 

speeds. Consequently, the layouts of these types of components are heterogeneous and have 

different radiation sensitivities (QUINN, 2014a). Fig. 3.10 shows the chip surface of Zynq-

7000, where it is possible to clearly distinguish between its PL and PS parts. Therefore, Zynq-

7000 and similar devices suffer the same problems of FPGAs and processors with respect to 

radiation effects, once they have both architectures embedded into their die. Fig. 3.11 

illustrates possible SEEs occurrences in Zynq-7000 to help visualizing the effects described in 

the next paragraphs. 

 

Figure 3.10 – View of the surface of a Zynq-7000 device, part XC7Z020-CLG484. 
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Figure 3.11 – Possible effects of SEEs in Zynq-7000 and similar APSoCs. 

 

 

With regard to the PL part, SRAM-based FPGAs are mainly susceptible to SEUs in 

their configuration memory bits and embedded memory cells. A bit-flip (SEU) can occur in a 

configuration memory bit of the FPGA bitstream when the sensitive junction of a SRAM cell 

transistor collects energy deposited by an ionized particle. SEUs can alter the bits that define 

the combinational function of the LUTs, altering the original implemented function, as 

illustrated in Fig. 3.12. SEUs can also alter routing connections, generating open connections 

and short circuits between connections. Data stored in BRAMs can also be affected by SEUs. 

It is very important to highlight that such modifications caused by bit-flips are persistent until 

some action is taken to correct the configuration memory. Such fault persistence is the main 

difference between the SEUs effects on ASIC-based devices, such as processors, and SRAM-

based FPGAs. 

Bit-flips can also occur in the flip-flops of CLBs used to implement the user's 

sequential logic, as also illustrated in Fig. 3.12. In this case, the bit-flip has a transient effect 

and the next load of the affected flip-flop can correct it. Thus, the majority of the persistent 

errors observed in harsh environments come from bit-flips in the configuration memory bits. 

It is also worth remembering that once state-of-the-art SRAM-based FPGAs are built with 

cutting-edge manufacturing processes (sub-28 nm) and they are composed of millions of 

SRAM cells to store their configuration, they are very susceptible to MBUs and MCUs. 

Another important point is that for a typical design loaded into an FPGA, only a 

fraction of the total number of configurable memory cells are used. Thus, depending on the 

design, a different number of configuration bits are used and a different number of susceptible 

bits may be responsible for provoking an error in the design output. According to Xilinx  
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Figure 3.12 – Possible effects of SEUs in SRAM-based FPGAs (TONFAT, 2015). 

 

 

(2012b), the first number is defined as the Essential Bits and the second number as the 

Critical Bits of a design. Essential bits are the bits associated with the circuitry of the design, 

and are a subset of the device configuration bits. However, bit-flips in essential bits might not 

affect the function of the design. Only bit-flips in critical bits, which are the bits that cause a 

functional failure if they change state, and are a subset of the design essential bits, may 

corrupt a design implemented into an FPGA. In Xilinx devices, essential bits are calculated 

using a proprietary algorithm of the Xilinx tool after the bitstream is generated. On the 

contrary, generating a complete list of critical bits for a specific design is a time-consuming 

process that involves validating the correct design behavior while moving an upset through all 

the configuration memory bits in the design by using some fault-injection platform. 

With regard to the PS part, radiation effects such as SEUs and SETs can have complex 

effects on a processor and its executing software (QUINN, 2014a). Such effects affect 

processors by modifying values stored in memory elements (such as registers or embedded 

memories), leading the processor to incorrectly execute an application, producing a wrong 
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output, or even entering into a loop and never finishing its execution. According to Velazco 

and Faure (2007), SEEs in processors may result in several types of errors, depending on the 

hardware unit affected. 

SEEs in the register file may instantaneously impact the program output, resulting in a 

corrupted output or processor hang (the program execution flow is crashed and the processor 

needs a soft reset to restart). 

SEEs in arithmetic units may lead to incorrect computations.  

SEEs in the central interconnect and processor bus, which embed registers to latch 

data as well as address, may lead to incorrect data/address read or write.  

SEEs in the instruction cache are more complex. Instruction caches are usually split in 

two areas. The largest one is an SRAM array that store fetched instructions. The second one is 

a tag array, whose purpose is to validate/invalidate fetched code. Upsets in the tag array have 

mainly two consequences: if an upset invalidates an instruction to be executed, the direct 

consequence is a delay in the program execution, since this instruction will have to be fetched 

again (cache miss); if an incorrect instruction is validated, the program flow will be crashed. 

Consequences of upsets in the instruction array are hard to predict. If the corrupted instruction 

is not validated by the tag array, no incorrect behavior will be observed. If the code is 

validated by the tag array, three situations are possible: the corrupted instruction is not 

anymore in the processor instruction set, so when the control unit tries to decode it, an 

exception/trap will be generated; the bit-flip changes the instruction; and, the upset changes 

the operands of the instruction. The final consequence varies from corrupted outputs to 

processor hangs. 

Data caches are built like instruction caches, i.e. with a tag array and a data array. 

SEEs in the tag array may invalidate data (cache miss) or validate out-of-date data (leading to 

corrupted output). As expected, SEEs in the data array may lead either to a corrupted output 

or to no observable effects if the data is out-of-date. SEEs in data cache memories are very 

unlikely to cause segmentation fault. This situation can occur if the code is manipulated as 

data by the processor. 

Another important point is related to processor peripherals. They are configured 

through the use of registers. Consequently, as other memory elements, all of these registers 

are SEE sensitive, which can cause the peripherals to behave erratically. Moreover, as these 

peripherals control the timers, watchdogs, data input and data output, failures in these 

peripherals can be disruptive. 
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At software level, SEEs can affect the control flow and the data flow of a running 

application, as Fig. 3.13 shows. 

 

Figure 3.13 – Possible effects of SEEs in processors. 

 

 

Data flow error refers to errors caused by bit-flips in storage devices, such as registers 

and memories. They affect the program output, but not its execution. When a fault affects the 

data flow, the application runs normally, but the result in the end is incorrect. In this thesis, 

errors in the data flow are also called of Silent Data Corruption (SDC). Data flow errors are 

normally caused by: 

 Wrong operation - The bit-flip modifies the instruction, and it performs another 

operation, which affects a memory element, such as a register or memory cell; 

 Incorrect data - The bit-flip affects directly a memory element that contains the 

data used by an operation. Since the operation input is wrong, it is likely that 

its output will also be wrong. The error may propagate to the program output. 

A control flow error occurs when the program flow is incorrectly followed, i.e., the 

error changes the program execution. When a fault affects the control flow, an erroneous 

execution flow occurs. A control flow error may cause a SEFI by crashing the program and 

hanging the processor. The possible outcomes caused by the fault are: 

 Branch creation - A bit-flip converts a non-branch instruction into a branch, 

leading this illegal branch to change the program flow to a wrong address; 

 Branch deletion - A branch instruction is converted into another instruction. 

Thus, a branch is not taken when it should be; 
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 Incorrect branch decision - It happens when a branch that should go in one 

direction, based on a comparison, goes in the other direction, i.e., a branch is 

not taken when it should be, or when it is taken when it should not be; 

 Incorrect target address - The bit-flip modifies the register that contains the 

target address of a branch instruction (for example, the one used to return from 

a subroutine). It will change the program execution to an incorrect address; 

 Bit-flip in the Program Counter (PC) register - It changes the next instruction 

to be executed. It has the same effect as branch creation. 

It is hard to determine the root causes of processors errors in COTS devices, such as 

crashes and hangs. Since it takes a few clock cycles to observe the SEFI, it is not simple to 

catch the exact transition state to determine the reason why proper execution stopped. For 

example, it is possible that radiation affects portions of the hardware that caused the processor 

to fault or that SEUs affect critical code causing the software to fault. 

 

3.5 Summary 

 

In summary, based on the information presented in this chapter, one can see that state-

of-the-art complex devices such as APSoCs have created many challenges to the radiation 

effects field. That is because radiation-induced failures in such devices and architectures may 

result in a complex chain of effects due to their heterogeneous nature. Consequently, 

additional methodologies and metrics become necessary for estimating the reliability of such 

devices, as the next chapter shows. 

  



 

 

74 

 

4 METHODS AND METRICS FOR EVALUATING APSOCS UNDER 

RADIATION 

 

There are several methods to qualify integrated circuits for SEEs. Testing a device in 

its real application environment (space, high altitude, particle accelerator, etc.) is the most 

realistic way of evaluating its sensitivity with respect to SEEs. However, this solution has 

some practical disadvantages that are related to cost and time-to-market. Due to the low error 

probability, weeks or months are generally required for obtaining valid measures, and even 

years for gathering enough data to have reliable statistics. Another disadvantage is the 

unknown relationship between failures and the energy of the particles striking the samples. 

 

4.1 Accelerated radiation tests 

 

The most common way to qualify integrated circuits for SEEs is by means of 

accelerated radiation testing (JEDEC, 2006). In accelerated radiation tests, the devices are 

exposed to a specific radiation source whose intensity is much higher than the ambient levels 

of radiation that the device would normally experience. This induces the occurrence of SEUs, 

allowing useful data to be obtained in a fraction of the time, such as hours or days, instead of 

weeks, months, or even years, in case of real-time tests. Accelerated tests are performed at 

accelerator facilities, which accelerate specific particle species, such as neutrons, protons, and 

heavy ions. Neutron facilities are generally used for testing parts destined for terrestrial and 

avionic applications, where neutrons are the main result product of the interaction of cosmic 

rays with the Earth’s atmosphere. In such facilities, SEEs recorded will be due primarily to 

high energy neutrons (higher than 10 MeV and in the average of 14 MeV). Two of the main 

neutrons facilities are the Los Alamos National Science Center (LANSCE) in the United 

States and the Rutherford Appleton Laboratory (RAL/ISIS) in the United Kingdom. SEEs can 

also be induced by protons. Proton facilities are very useful because they easily reach very 

higher energies (usually between 50 MeV and 200 MeV) than neutron facilities. Furthermore, 

they are capable of generating protons with sufficient energy to simulate solar flares and 

Earth’s proton belt conditions. One of the main proton facilities is located at the Paul Scherrer 

Institut (PSI) in Switzerland. Heavy ions facilities are generally used for testing parts destined 

for space orbit, where primary cosmic rays can cause significant damage to electronic devices. 

The most important difference among heavy ion experiments and both neutron and proton 
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experiments is related to the dosimetry. The energy measurement unit of heavy ion 

experiments is the Linear Energy Transfer (LET), which describes the amount of energy lost 

per unit length of track. In other words, it describes the action of radiation upon matter, or 

how much energy an ionizing particle transfers to the material transversed per unit distance. 

Thus, the LET depends on the nature of the radiation as well as on the material traversed. 

Brazil has a very useful heavy ion facility, which is located at the Universidade de São Paulo 

(USP), the São Paulo 8UD Pelletron Accelerator. There is also the case in which electronic 

components are exposed to a very high flux of different particle species. This is the reality of 

the CERN's accelerators chain, where electronic components can be exposed to high-energy 

hadrons (protons, neutrons, pions), heavy ions, and other particles, at the same time. Aiming 

to simulate such complex environment, in 2015 CERN started operating a new and unique 

mixed-field radiation test facility, the CERN High Energy Accelerator Mixed-field 

(CHARM), located at CERN, Switzerland. At CHARM, it is possible to have particles with 

energies near 10 GeV, as shown in the graph of Fig. 4.1. Particle lethargy is a dimensionless 

logarithm of the ratio of the energy of source particles to the energy of particles after a 

collision (GLASSTONE, EDLUND, 1952). Thus, the graph in Fig. 4.1 shows an exponential 

decay of energy per unit collision showing that the greatest delta E’s of energy result from the 

early collisions. 

 

Figure 4.1 – CERN’s CHARM particle spectra. Adapted from (ALÍA, 2016). 

 

 

SEE characterization using particle beams (heavy ions, protons, or neutrons) is a 

global approach, since the entire device is irradiated. Such test provides a number of events 
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for a particular fluency, without any information about the detected faults location and the 

time they happened. In this context, laser beams can be used as an efficient complementary 

tool for accelerated tests in order to evaluate the sensitivity of complex electronic components 

exposed to radiation and to distinguish different effects. Laser tests provide a high level of 

accessibility to locate the circuit elements where faults are injected. The small laser spot and 

precise beam localization characteristics allow sensitive device nodes to be pinpointed with 

submicron accuracy. Therefore, taking into account the complexity of modern devices, laser 

testing is especially useful since it can provoke charges with spatial localization and temporal 

precision that is mandatory for analyzing faults that can be easily masked in particle 

accelerator beam tests. Laser has the disadvantage of having its beam reflected by 

metallization layers, thus complex circuits must be irradiated from the backside. Fig. 4.2 

exemplifies the accuracy of laser tests by showing one of the scanned areas during a test 

campaign performed in (KASTENSMIDT et al., 2014). In this figure, the rectangular block is 

a BRAM of a Xilinx Virtex-5 FPGA. The National Research Nuclear University MEPhI in 

Russia has several dedicated laser facilities for testing electronics components. 

 

Figure 4.2 – BRAM of a Xilinx Virtex-5 FPGA scanned during a laser test campaign 

(KASTENSMIDT et al., 2014). 
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4.2 Fault injection by emulation 

 

Fault injection can also be performed in the laboratory by means of emulation. It 

represents the less costly fault injection alternative among all the mentioned ones, besides it 

being very flexible. Moreover, fault emulation is an attractive technique to predict the 

susceptibility of a system under SEUs during the early design stages and before submit the 

target device to an accelerated test, for example.  

Basically, the emulation of SEUs and MBUs consists in flipping bits of memory 

elements of FPGAs and processors through the use of an embedded circuit, a program, or a 

computer. SEUs can be emulated in random locations, sequentially (every configuration bit or 

configuration control register is flipped in a sequential order), or user-defined. Then, the 

output of the Design Under Test (DUT), the system, is constantly monitored for analyzing the 

effect of the injected fault into it. This scheme provides a superior control over the fault 

injection when compared to accelerated radiation tests, since the time, the location of flipped 

bit, and the direct effect of the fault are known. A fault injection campaign can last from a few 

hours to several days depending on the amount of bits that will be flipped and other factors, 

such as the connection between the fault injector and its monitor, which can be a computer 

connected to the fault injector through a serial interface, for example. Although this scheme is 

easily applicable to both FPGAs and processors, the injection mechanism is different for each 

one. 

There are several fault injection platforms to inject SEUs in the PL part of APSoCs 

(SRAM-based FPGAs) available in the literature as described in (ALEXANDRESCU, 

STERPONE, LOPEZ-ONGIL, 2014). 

In a Xilinx SRAM-based FPGA, a fault injection can be performed through the 

Internal Configuration Access Port (ICAP) (XILINX, 2015a), which enables the user to 

access the configuration memory and to reconfigure it frame by frame internally. The ICAP 

can be controlled by several ways, such as through the Soft Error Mitigation (SEM) Core 

from Xilinx, which is an IP core that performs SEU detection, correction, classification, and 

emulation in the configuration memory (XILINX, 2015c); an embedded soft-core processor, 

such as a Microblaze or a Picoblaze; or a user-defined control circuit (TARRILLO et al., 

2015). The ICAP interface is capable of achieving a maximum data throughput of 400 MB/s 

is configured to operate at 100 MHz. One of the first ICAP-based fault injection platform 

described in the literature is the one presented in (STERPONE, VIOLANTE, REZGUI, 

2006). 
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In addition to the ICAP interface, Xilinx APSoCs such as Zynq-7000 have a new 

feature embedded into the PS part called Processor Configuration Access Port (PCAP). It 

provides to the PS part the ability to access the configuration memory of the PL part through a 

high bandwidth DMA channel capable of achieving up to 400 MB/s of data throughput 

(XILINX, 2016f). There were not found PCAP-based fault injector platforms in the literature 

up to the closure of this thesis. 

Faults can also be injected externally to the device by using the Xilinx’s SelectMAP 

interface, which is a faster option compared to the ICAP interface, since it is a programmable 

parallel interface capable of achieving up to 3.2 Gbps of data throughput (XILINX, 2012c). 

However, Zynq-7000 devices do not have an external configuration interface such as the 

SelectMAP, with the exception of the JTAG port. An example of very powerful and flexible 

fault injection platform that uses the SelectMAP interface for injecting faults is the FT-

UNSHADES2, presented by Mogollon et al. in (MOGOLLON et al., 2011). 

In the PS, fault injection can be performed at different abstraction levels such as RTL 

or software. However, since the RTL descriptions of COTS devices are not publicly available, 

faults can only be injected in the user-accessible resources, like registers and embedded 

memories. This approach is commonly called Software Implemented Fault Injection (SWIFI) 

and it can be performed during compilation time or execution time (HSUEH, TSAI, IYER, 

1997). At execution time, typical approaches use timers such as the FERRARI tool 

(KANAWATI, KANAWATI, ABRAHAM, 1995) or interruption routines such as the 

XCEPTION tool (CARREIRA, MADEIRA, SILVA, 1998).  

 

4.2.1 Hardware fault injection platform used 

 

Part of this thesis uses the fault injection platform first presented in (TARRILLO et al., 

2015). However, since the original Fault Injector (FI) core was built to handle frames from 

Xilinx Virtex-5 devices, modifications were made for enabling the core to handle frames from 

Xilinx Artix-7 (TONFAT et al., 2016) and Zynq-7000, the two main devices used in this 

thesis. 

The fault injection platform is mainly composed of an ICAP controller circuit and a 

monitor computer, as Fig. 4.3 illustrates. The ICAP controller manages all the commands to 

read and write frames from the configuration memory using the ICAP interface. Therefore, 

with the information about the organization of the configuration memory (described in section 

2.1.1.2) and the commands to manipulate the frames, it is possible to flip any bit of the 
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configuration memory, emulating the effect of an SEU. It is worth remembering that the 

smallest segment of the configuration memory is a frame, thus the ICAP controller always 

reads an entire frame of the configuration memory, store it in a memory buffer, flips its bits 

one at a time, and write it back to the configuration memory at each fault injection. 

In the fault injection area (DUT area), faults are only injected in the configuration bits 

related to CLBs (LUTs, user FFs, and interconnections) and clock distribution 

interconnections. Fault are not injected in the BRAM configuration bits, so the inputs and 

outputs of the DUTs are not affected. For the versions which include DSP resources 

(DSP48E), the correspondent DSP configuration bits are added to the injection area. As can 

be seen in Fig. 4.3, the fault injector is placed in a different area of the FPGA to avoid fault 

injections that can disrupt its functionality. It is also shown a DUT control block that is also 

outside the injection area. This block analyzes the correctness of the DUT output for checking 

if the fault injected provoked an error or not. This result is sent to the fault injector and then to 

the monitor computer together with the fault position. Errors are classified as SDC or SEFI 

errors. 

  

Figure 4.3 – Block diagram of the fault injection platform used in this thesis in (a) and an example of 

the FPGA floorplanning with the fault injector and the DUT placed in (b). 

 

 

A fault injection campaign is defined by the flow diagram illustrated in Fig. 4.4. The 

first step is to setup the injection campaign, which consists of defining the injection area and 

the type of fault injection. Both configurations are setup in a Python script which runs in the 
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monitor computer and communicates with the FI. In this thesis, the main objective of using 

fault injection is to estimate the amount of critical bits of a design. Thereby, a campaign 

consists in an exhaustive and sequential bit-by-bit fault injection in all the configuration bits 

of the DUT, aimed to identify the ones that cause functional failures. The second step is to 

configure the FPGA with the DUT and the FI. After that, faults start being injected one at a 

time and always before the DUT execution. At this point, it is important to synchronize the FI 

with the DUT, so that after a fault is injected the DUT starts executing. Once the DUT 

finishes its execution, the output result is analyzed and the results (including the fault 

position) are saved. Finally, the fault is removed and the DUT is taken to its initial fault-free 

condition, prepared for the next fault injection. This process is repeated until all the 

configuration bits of the DUT area are evaluated. Therefore, one can observe that the required 

time to complete a fault injection campaign depends on the DUT area and the time to inject 

and remove a fault. The time to inject a fault is constant and is in the order of a few 

microseconds for Zynq-7000 and Artix-7 devices. With regard to remove a fault, two 

approaches are used.  

 

Figure 4.4 – Flow diagram illustrating the hardware fault injection procedure in the Zynq-7000’s PL 

and Artix-7. 
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The first one consists on inserting again a fault in the same bit, restoring its original value. 

Then, the DUT runs again to verify if the fault was successfully removed. If the fault is not 

removed, a second approach is used. The monitor computer reconfigures the entire FPGA to 

ensure that all configuration bits are restored. The latter approach is the main reason why 

some of the fault injection campaigns can last more than one day. This approach can be 

improved by using dynamic partial reconfiguration on the DUT, for example. 

 

4.2.2 Software fault injection platform used 

 

Part of this thesis uses the fault injection platform first presented in (LINS et al., 2016) 

and improved in (DE OLIVEIRA, TAMBARA, KASTENSMIDT, 2017).  The platform was 

developed to work on the ARM Cortex-A9 processor cores of the Zynq-7000’s PS. It 

modifies values stored in the processor's internal registers or memories by injecting bit-flips 

through the use of interruptions and aiming to be the less intrusive as possible.  

The platform setup is composed by the following modules, as illustrated in Fig. 4.5: 

the power control, which is an electrical device responsible for powering on and off the 

board; a software running on a host computer that manages the power control and stores the 

fault injection logs received through an UART interface; and, the injector module, which is 

hardware IP that performs the fault injection procedure. 

 

Figure 4.5 – Platform setup of the software fault injector. 

 

 

The fault injector is capable of injecting bit-flips in the following ARM registers: 

general-purpose (R0 to R12), SP (stack pointer), LR (link register), and PC (program 

counter). The fault injection procedure is illustrated by flow diagram in Fig. 4.6. In the first 

step, the injector module is configured with the injection data, which contains the injection 

time and the fault target location (the register in which the fault will be injected, besides the 

specific bit to be flipped). Due to the easiness of generating random numbers in the processor 
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compared to in hardware (PL), the injection configuration is generated by the processor 

before the application start and then it is read by the injector module. It is worth noting that 

the injection time is defined based on the execution time of the application, which means that 

a fault could be inserted at any moment during the execution of the application, as in real 

scenarios. Once the injector module has been configured, it starts counting clock cycles until 

it reaches the injection time. Then, the injector module launches an interruption to the target 

processor core. In the injection interrupt routine, the target register is read, a XOR mask with 

the appropriated bit to flip is applied to its value and, then, the register is overwritten. 

After the fault injection, the injector module starts a watchdog timer with twice the 

value of the application execution time and it remains waiting for the end of the application. If 

the application does not end before the watchdog timer is over, it is considered the occurrence 

of an SEFI. In case of the application finished on time, the injector module compares the 

results generated by the processor with the gold ones. If there is any mismatch, it is indicated 

that an SDC occurred. Otherwise, the application ends normally, meaning that the bit-flip was 

effectless. 

 

Figure 4.6 – Flow diagram illustrating the software fault injection procedure in the Zynq-7000’s PS. 

 

 

4.3 Test methods and metrics 

 

Based on (IROM, 2008), (QUINN, 2014a), and (QUINN et al., 2015b), it is possible 

to notice that the methodology for testing FPGAs (Zynq-7000’s PL part) and processors 
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(Zynq-7000’s PS part) are similar. SEE tests are event based, where the event is the 

occurrence of one of the SEEs types. It is necessary to measure the amount of radiation and 

count the number of events to calculate the cross sections and related metrics. Biasing, clock 

speed, temperature, and the angle of the radiation can be used to determine worst-case SEE 

influence. Tests might also be designed to highlight specific issues with functional/application 

conditions or mitigation methods. 

This thesis is focused on the functionality conditions of the Device and/or Design 

Under Test (DUT) aiming to reveal different aspects of it. In this context, there are two main 

types of tests to be performed: 

 Static -  It consists in loading specific values into memory elements of the 

DUT and continually examine the status and content of them during the time 

that they are irradiated. This technique is used to measure the device static 

cross section. Through the static cross section, it is possible to quantify the 

sensitivity of the device technology to a specific radiation source. 

 Dynamic - The DUT is initialized with a user-defined design and/or program. 

Then, the device is submitted to a set of user-defined stimuli and the outputs 

are constantly read and compared with the expected ones. This technique is 

used to measure the device dynamic cross section and related metrics. Through 

the dynamic cross section, it is possible to quantify the sensitivity of a running 

design and/or program in a specific device to a specific radiation source. 

As a matter of comparison, Fig. 4.7 shows the SEU response of a SRAM memory 

during static and dynamic tests (SCHWANK, SHANEYFELT, DODD, 2013). As one can 

notice, while there is some similarity between the two cross sections in the saturation region, 

there is a significant difference around the threshold LET values. Threshold LET refers to the 

minimum LET to cause an effect on the component. There can be two reasons for these 

differences. One is that the dynamic operation of the component exercised a part of the 

component that was sensitive to radiation that is not possible to capture in a static test. The 

second explanation is that the dynamic operation could affect the noise margin that causes the 

operation to subtly change. Because of issues like that, a proper device characterization must 

always consider both static and dynamic characterization of the component under irradiation.  
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Figure 4.7 – SEU cross section for static and dynamic tests in a memory (SCHWANK, 

SHANEYFELT, DODD, 2013). 

 

 

4.3.1 Static test method and metrics 

 

Static tests have simple procedures, such as: 

1. Load the memory(ies) of the device with a known pattern; 

2. Irradiate the component; 

3. Read the memory(ies). 

A flow diagram illustrating this approach is shown in Fig. 4.8. 

 

Figure 4.8 – Static test flow diagram. Adapted from (IROM, 2008). 
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With regard to FPGAs, a static test experiment consists of configuring the FPGA 

configuration memory with a known bitstream (the golden copy) containing the test-design. 

Then, the FPGA configuration memory is constantly read back (the readback copy) during 

the irradiation by using the Xilinx iMPACT or Xilinx Vivado tools through a JTAG interface. 

In the experiment control computer, the golden bitstream is compared against the readback 

bitstream. If differences are found (bit-flips), the FPGA is reconfigured with the golden 

bitstream and the differences are logged in the computer, along with the elapsed time during 

the irradiation when the error occurred. These procedures can also be applied for statically 

testing the FPGA embedded BRAMs. 

 The static test experiment procedures for processors are similar to the ones for FPGAs. 

In fact, static tests in processors are semi-static, because the tests typically consist of a small 

program that runs on the processor. Such program initially loads specific values (the golden 

values) into the processor registers and/or embedded memories (caches, OCM, etc.) and then 

continually examines their status and content during the time that the DUT is irradiated. As 

the embedded memories of processors like the ARM Cortex-A9 are relatively small, the time 

needed for checking the memories is of about a few hundreds of milliseconds, which can 

provide a nearly continuous evaluation of the memories if the program runs periodically. If an 

error is detected during a program loop, it is sent to the monitor computer though a serial 

interface (UART) to be logged, along with the elapsed time during the irradiation when the 

error occurred. Then, the error is corrected and the active test loop continues executing until a 

next error is detected or the test is stopped. It is worth noting that this test method assumes 

that the processor works properly nearly all of the time during the test. However, once the test 

is not completely static, errors may cause deviations from the expected behavior, which can 

result in the occurrence of SEFIs. SEFIs must not be taken into account in statistic of a static 

test. Another important point to highlight is that some embedded memories, such as cache 

memories, have some error detection and/or correction technique enabled, like parity-bit 

checking. Consequently, it is mandatory to consider if such feature is enabled or not during 

the tests. 

As can be seen, a static test is far from the real device application, because it will 

provide the worst-case device sensitivity estimation to SEUs. In a real device application 

context, part of the device (memory in question) stays unmodified during the whole system 

operation, while other parts are used more dynamically. A way to determine a sensitivity 

closer to one of the final application consists in evaluating the average number of used 

memory bits and estimating the sensitivity as the product of this number by the per-bit 
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sensitivity (derived from the memory sensitivity issued from radiation testing divided by the 

number of bits) (VELAZCO, FOUCARD, PERONNARD, 2011). 

During a static test, careful must be taken with the SEE rates and time-dependent 

effects, such as MBUs or SETs (IROM, 2008). Parameters such as the particle flux must be 

carefully adjusted to avoid the accumulation of too many SEUs in a short period of time 

because, for example, later it can be difficult to distinguish the difference between an MBU 

from one particle or a "constructed” MBU from multiple particles (QUINN, 2014a). 

Moreover, interactions with the device need to be minimized, otherwise it is possible that the 

test design could overwrite events before being recorded, what will neglect part of the fluence 

of the test. If events are overwritten, then the cross section based on the total fluence might be 

unrealistically low. Thus, it is necessary to adjust the fluence to determine how much of it 

corresponds to the observed events. To determine how much fluence should be used, the 

amount of time spent in each operation and the amount of time lost from each operation need 

to be determined. Examples of operations are the verification of a processor's memory and the 

read back of an FPGA configuration memory. 

The static cross section (σstatic) is the fundamental metric to evaluate the sensitivity to 

radiation of a device. By definition, the static cross section is an intrinsic parameter of the 

device usually expressed in terms of area (cm²/device or cm²/bit), and it represents the 

minimum susceptible area of the device to a particle species (e.g. neutron, proton, heavy ion, 

etc.) and particle energy (LET) (JEDEC, 2006). In general, it is also a function of the 

operating conditions of the irradiated device (e.g., applied voltage, temperature, etc.). The 

static cross section of a device can be experimentally obtained by dividing the number of 

observed errors (Nerrors) by the total particles fluence (i.e. the number of particles hitting the 

device per unit area, Eq. 4.1), as shown in Eq 4.2.  

 

(Equation 4.1)       𝜙𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 = (𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑓𝑙𝑢𝑥 [
𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠

𝑐𝑚2.  𝑠
]) . (𝑡𝑖𝑚𝑒 [𝑠])    [

𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠

𝑐𝑚2 ]  

 

(Equation 4.2)                               𝜎𝑠𝑡𝑎𝑡𝑖𝑐−𝑑𝑒𝑣𝑖𝑐𝑒 =  
𝑁𝑒𝑟𝑟𝑜𝑟𝑠

𝜙𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠
    [𝑐𝑚2] 

 

In addition, the static cross section per bit is expressed as shown in Eq. 4.3, where Nbit 

is the number of bits of the device. 
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(Equation 4.3)                               𝜎𝑠𝑡𝑎𝑡𝑖𝑐−𝑏𝑖𝑡 =  
𝑁𝑒𝑟𝑟𝑜𝑟𝑠

𝜙𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 .  𝑁𝑏𝑖𝑡
    [

𝑐𝑚2

𝑏𝑖𝑡
]  

 

4.3.2 Dynamic test method and metrics 

 

Dynamic tests aim to analyze a system under its functional operation. The procedures 

are similar to ones of static tests, but now a functional design must be programmed into the 

device, as follows: 

1. Load the DUT with a design and/or program; 

2. Irradiate the component; 

3. Check the DUT output. 

A flow diagram illustrating this approach is shown in Fig. 4.9.  

 

Figure 4.9 – Dynamic test flow diagram. Adapted from (IROM, 2008). 

 

 

As can be seen, a dynamic test is basically done in the same way as the static one for 

both FPGAs and processors. It has the same steps, but there are two main differences. The 

first difference is the fact that during the radiation exposure, the DUT (FPGA and/or 

processor) is running the target design instead of being idle. The second difference is that the 

design output is monitored, which means that the occurrence of failures (SDCs, SEFIs) is 

monitored, not errors as is done in static tests. In case of FPGAs and similar to a static test, 

the configuration memory can also be read at each failure for correlating the failures with the 

number of accumulated errors needed to provoke them. 
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Similar to a static test, careful must be taken with the SEE rates and time-dependent 

effects, such as MBUs or SETs. Parameters such as the particle flux must be carefully 

adjusted to avoid the occurrence of too many SEUs in a short period of time because, for 

example, in this scenario can even be impossible to run the application correctly without 

experience a failure. As previously explained, interactions with the device need to be 

minimized to avoid overwriting errors. 

The dynamic cross section (σdynamic) is the basic metric to evaluate the sensitivity to 

radiation of a design. It is defined as the ratio between the number of errors observed at the 

output of a system (a design implemented into an FPGA or a processor running a program) 

divided by the fluence of hitting particles, as stated in Eq. 4.4. Thus, the dynamic cross 

section quantifies the sensitivity of a system to a specific particle specie.  

 

(Equation 4.4)                               𝜎𝑑𝑦𝑛𝑎𝑚𝑖𝑐 =  
𝑁𝑒𝑟𝑟𝑜𝑟𝑠

𝜙𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠
    [𝑐𝑚2] 

 

The rate at which soft errors occurs is called of Soft Error Rate (SER). The SER of a 

design is expressed in Failure in Time (FIT), which is the number of errors in one billion (109) 

device-hours operation. It is worth noticing that the SER is proportional to both dynamic 

cross section and particle flux, as shown in Eq. 4.5. Experimentally, the SER can be also 

calculated dividing the number of observed errors by the time interval analyzed, as presented 

in Eq. 4.6. 

 

(Equation 4.5)                   𝑆𝐸𝑅 = 𝜎𝑑𝑦𝑛𝑎𝑚𝑖𝑐 .  (𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑓𝑙𝑢𝑥)    [𝐹𝐼𝑇]   

 

(Equation 4.6)                                  𝑆𝐸𝑅 =  
𝑁𝑒𝑟𝑟𝑜𝑟𝑠

𝑡𝑖𝑚𝑒
    [𝐹𝐼𝑇] 

 

In the fault injection by emulation context and mainly at higher abstraction levels, 

such as at software level, the cross section becomes impossible of being estimated, since it is 

a metric expressed in terms of area. A possible solution for comparing results from radiation 

experiments and fault injections by emulation is to estimate the Architectural Vulnerability 

Factor (AVF) (MUKHERJEE et al., 2003) of the system. The AVF represents the probability 

that a visible error will occur at the output of a system given a bit-flip in a hardware structure 

such as a register or memory cell. In this thesis, the AVF is represented as the number of 



 

 

89 

 

errors detected (𝑁𝑒𝑟𝑟𝑜𝑟𝑠) divided by the number of faults injected (𝑁𝑓𝑎𝑢𝑙𝑡𝑠) into the design, as 

shown in Eq. 4.7. 

 

(Equation 4.7)                                      𝐴𝑉𝐹 =  
𝑁𝑒𝑟𝑟𝑜𝑟𝑠

𝑁𝑓𝑎𝑢𝑙𝑡𝑠
 

 

As can be seen, these metrics take into account only the sensitivity of a resource, 

which is the most common approach found in the literature. However, at system level, 

directly comparing the resources sensitivity of two systems is valid only when the other 

parameters of the systems do not vary between them, such as the execution time. Otherwise, 

such comparison becomes inaccurate. In this context, to compare the reliability of systems 

implemented in an APSoC and with different approaches, it is essential to take into account at 

least the cross section (σ), execution time (t), and workload of the system (w). Rech et al. 

(2014) introduced the Mean Workload Between Failures (MWBF) metric for Graphics 

Processing Units (GPUs). Then, in (TAMBARA et al., 2016) authors successfully adopted it 

for APSoCs. First, it is considered the Mean Time Between Failures (MTBF) of a system, 

defined as the average time between two radiation-induced failures on a system continuously 

executing a given task. By definition, the MTBF is evaluated with Eq 4.8, where flux is the 

particle fluence per unit time. 

 

(Equation 4.8)                          𝑀𝑇𝐵𝐹 =  
1

𝜎𝑑𝑦𝑛𝑎𝑚𝑖𝑐 .  𝑓𝑙𝑢𝑥
    [ℎ] 

 

A higher MTBF simply attests that the system could work for a longer period of time 

before experiencing a radiation-induced failure. Nevertheless, no information on the workload 

computed during that period of time is given. 

To evaluate how many executions has been correctly computed by a system during the 

MTBF window, a metric called Mean Execution Between Failures (MEBF) is defined. The 

MEBF is the number of correct executions of an application that are completed between two 

radiation-induced failures. The MEBF can be evaluated by the division between the MTBF 

and the execution time, as stated in Eq. 4.9. 

 

(Equation 4.9)                             𝑀𝐸𝐵𝐹 =  
𝑀𝑇𝐵𝐹

𝑡
    [𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑠] 

 



 

 

90 

 

Finally, each system is characterized by a workload (w), i.e. the amount of data that 

needs to be processed in one execution. The MEBF can be further generalized to take the 

workload computed correctly into account, leading to the concept of Mean Workload 

Between Failures (MWBF) as defined in Eq. 4.10. 

 

(Equation 4.10)                 𝑀𝑊𝐵𝐹 =  𝑀𝐸𝐵𝐹 . 𝑤 =  
𝑤

𝜎𝑑𝑦𝑛𝑎𝑚𝑖𝑐  .  𝑓𝑙𝑢𝑥 .  𝑡
    [𝑑𝑎𝑡𝑎] 

 

A higher MWBF actually means that a higher workload was computed correctly 

before experiencing a failure and that the operational reliability of a design is higher. 

Therefore, the MWBF metric provides a more consistent comparison in terms of reliability 

across system architectures that may be very different, since it considers that the reliability of 

a system is inversely proportional not only to the device sensitivity (σ), but also to the total 

exposure time (t). 

 

4.4 Related works about APSoCs under radiation 

 

As shown in Section 2.4, several works have analyzed APSoCs, but initially most of 

them had only taken into account performance measurements. Then, in the last years, the first 

works concerning radiation effects in APSoCs have started to be published, including the ones 

derived from this thesis, which are the first ones that analyzed topics such as the trade-offs 

between performance and reliability in APSoCs. 

Technology scaling is one of the main factors that increases the sensitivity of 

electronic devices to radiation-induced errors. However, in the case of Zynq-7000’s PL, and 

Xilinx SRAM-based FPGAs in general, the main reason for the error rate increase seems to be 

the increasing device density and not the sensitivity of its SRAM memory cells (WIRTHLIN 

et al., 2014). In fact, Xilinx has achieved to reduce the sensitivity of the SRAM cells in their 

new generations of FPGAs. Fig. 4.10 depicts the neutron cross section per bit of configuration 

memory bits and BRAM bits for different Xilinx devices (XILINX, 2016c). Xilinx also 

accomplished to reduce the sensitivity of BRAM bits to the same level of configuration bits. 

As it is possible to notice, in the case of Virtex-5 devices, BRAM SRAM cells are almost ten 

times more sensitive than configuration SRAM cells. For the 7-Series family, the sensitivity 

of both memories is practically the same. As mentioned in (XILINX, 2015b) and (CURD, 

CRABILL, 2015), Xilinx uses circuit design and layout techniques to improve the tolerance 
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of SRAM cells to soft errors, such as bit interleaving memory to avoid MBUs and MCUs 

(WIRTHLIN et al., 2014). 

 

Figure 4.10 – Neutron cross section per bit for different Xilinx devices (XILINX, 2016c).  

 

 

In (ALLEN, IROM, AMRBAR, 2015) and (AMRBAR et al., 2015), authors 

performed static heavy ion experiments in the PL part of the Zynq-7000. During the heavy ion 

experiments, Amrbar et al. (2015) monitored the currents of the different power management 

buses of the Zynq-7000. Authors observed high current events in the PL’s VCCaux line. The 

current kept increasing in the form of steps, as shown in Fig. 4.11. Authors stated that power 

cycling of the DUT was needed to recover from these events and that such events were 

increased at elevated temperature. They concluded that these high current events were due to 

SEL. 

Allen, Irom, and Amrbar (2015), and Amrbar et al. (2015) also estimated the heavy 

ion static cross section of the Zynq-7000’s PL. The obtained results are shown in Fig. 4.12. 

The graph shows the cross sections for the configuration memory bits (CFG) and BRAMs 

filled with one (1) and zero (0) values. Their results match with the ones obtained in this 

thesis, as will be shown later. 

No related works were found about the proton static cross section of the Zynq-7000's 

PL, except the ones that will be presented later in this thesis. 

With regard to processors, although Xilinx does not provide official cross section 

measurements for the Zynq-7000’s PS, it states in (XILINX, 2015b) that from 65 nm 

technology and beyond, processors exhibit significant soft error rates. At 28 nm, the upset rate 

of a processor is dominated by SETs that propagate through the logic. Furthermore, Xilinx 
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also mentions that the upset rate has also steadily increased as the voltage drops and 

dimensions shrink, as already mentioned in this thesis. 

 

Figure 4.11 – SEL occurrence in the PL part of Zynq-7000 during heavy ion experiments (AMRBAR 

et al., 2015). 

 

 

Figure 4.12 – Heavy ion SEU static cross section for the PL part of the Zynq-7000 configuration 

memory and BRAMs (ALLEN, IROM, AMRBAR, 2015; AMRBAR et al., 2015). 

 

 

One of the first works that evaluated embedded processors in commercial APSoCs 

devices was (QUINN et al., 2014b). In this work, which was focused on ARM-based 

processors, one of the analyzed parts was the PS of the Zynq-7000. Authors tested it under 

neutrons by running basic benchmark applications. Despite the preliminary results, authors 

observed that its obtained cross section is similar to many other SRAM technologies, as can 

be seen in Fig. 4.13.  Moreover, they also observed that the Zynq-7000’s PS part is very 

sensitive to functional interrupts caused by radiation-induced errors. 
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Amrbar et al. (2015) performed proton experiments in the Zynq-7000’s PS. The 

measurements were done for “0” to “1” and “1” to “0” transitions for both OCM and L1 

Cache. They obtained an SEU cross section for the OCM of about 7.0x10-15 cm2/bit for both 

logic directions. Authors did not observe SEUs in the L1 Caches, most probably due some 

setup error. 

In (QUINN et al., 2015a), authors evaluated the effectiveness of the Triple Modular 

Redundancy (TMR) addition at software level for mitigating the radiation effects in 

microprocessors, such as the one embedded in the PS part of the Xilinx Zynq-7000. Results 

show that their approach is effective in masking the effects of SEUs and SETs in 

microprocessors systems. They achieved a decrease in the corrupted computations by one 

order of magnitude. However, authors did not take into account the drawbacks of adding a 

TMR scheme to the programs, such as the code size and execution time increase. 

 

Figure 4.13 – (a) SEU cross section and (b) SET and SEFI cross section in neutrons for different SoCs 

(QUINN et al., 2014b). 
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In (CHIELLE et al., 2015), authors propose a new control flow software-only 

technique that uses assertions to detect errors affecting the program control flow in ARM-

based processors. Results show an improvement in cross section of one magnitude order in 

average with smaller penalty in code size (less than two times) and execution time (less than 

one and a half times) when compared to standard techniques such as TMR, whose the 

increase in code size is usually always around three times. 

In (ZHAO et al., 2016) and (SANTINI et al., 2016), authors investigate the reliability 

of operating systems (Linux) running in the PS part of APSoCs (Microsemi SmartFusion2 

and Xilinx Zynq-7000, respectively) and under radiation-induced errors. In general, results 

show that the presence of an operating system barely affects the data error rate, but it greatly 

increases the functional interrupt rate (up to 3.85 times), as Fig. 4.14 shows. This is not 

surprising as an application executes almost the same code when running bare to the metal or 

on the top of Linux. The operating system does not interfere with the amount of resources 

required for computation and, thus, does not modify the application SDC cross section. With 

regard to the SEFI rate increase, results indicate that the operating system is more likely to 

experience SEFIs than the applications running bare to the metal.  

In (LINS et al., 2016), authors investigate the criticality of register file and compiler 

optimizations on ARM-based SoCs reliability. They chose to investigate the processor’s 

register file criticality because of most of the works investigate only embedded memories, 

such as caches, and registers are among the most critical resources of embedded processors. 
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Figure 4.14 – Measured Zynq-7000 SDC and SEFI cross sections of applications running bare to the 

metal (Bare SDC and Bare SEFI) and on the top of Linux (Linux SDC and Linux SEFI) compared to 

the expected standalone Linux SEFI cross section (dashed line). (SANTINI et al., 2016). 

 

 

Moreover, there are not detailed works that investigate the register file reliability under soft 

errors. Results show that the number of registers used by an application has a direct impact on 

its sensitivity to errors, as expected. Results show that, although compiler optimizations 

increase the application sensitivity to soft errors such as SDCs and SEFIs, and the dynamic 

cross section of the device (Zynq-7000), they are beneficial as they reduce the codes 

execution times. Consequently, while the probability for one impinging particle to generate an 

observable error increases with optimizations, the execution time is reduced, reducing the 

exposure time of the device. As it will be possible to notice in the next chapters, this work is 

strongly influenced by this thesis. 

In (REZZAK et al., 2015) and (DSILVA et al., 2015), authors presented results about 

the characterization of the Microsemi SmartFusion2 APSoC under neutrons and heavy ions. 

They reported the static cross section of the different memories embedded into the device. 

Fig. 4.15 shows the heavy ion SEFI cross section for the Microcontroller Subsystem (MSS), 

General Purpose I/O (GPIO), and Fabric Interface Controller (FIC). From their results, it is 

important to notice the significant difference between the MSS (worst) and FIC results. 
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Figure 4.15 – Heavy ion SEFI cross sections for the MSS, GPIO, and FIC blocks of the SmartFusion2 

(REZZAK et al., 2015). 

 

 

4.5 Summary 

 

This thesis has shown so far that there are several options of architectures and 

resources to be chosen when implementing a system in an APSoC. As consequence, the 

adoption of additional metrics beyond cross section becomes necessary for estimating the 

reliability of a device, system, or design. As previously shown in theory and in the next 

chapters in practice, today it is mandatory to take into account each design option available 

and all the parameters of the system involved, such as the amount of resources used, 

execution time, workload, etc. Furthermore, it is also important to investigate the general 

benefits that each option brings to the system by comparing them, for example. 

With this objective, the next chapters first evaluate the susceptibility to SEEs of 

specific parts of Zynq-7000, the case-study device of this thesis, aiming to investigate if its 

reliability levels are as heterogeneous as its hardware. Then, based on the results presented in 

such chapters, the later ones analyze the reliability and performance trade-offs at system level 

in Zynq-7000. As final result, an analysis flow based on fault injection for estimating the 

reliability trend of hardware-only designs, software-only designs, and hardware and software 

co-designs, is proposed. 
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5 ANALYSING SINGLE EVENT EFFECTS ON THE PS PART OF 

ZYNQ-7000 

 

This chapter presents static and dynamic radiation tests performed in the PS part of 

Zynq-7000 for measuring the sensitivity of its embedded memories under SEUs. 

Static tests investigated the main memory storage groups of Zynq-7000 under heavy 

ions and protons such as OCM; L2 Cache, and the BRAMs of the PL part, which is embedded 

into the PL but is also an important memory group for the PS. It was not possible to statically 

test the L1 Cache under a particle beam due to its very dynamic behavior and the absence of a 

L1 Cache controller. In addition, some of the experiments also considered variations in the 

nominal supply voltage and temperature according to the ranges specified in the datasheet of 

the device. Such analysis is necessary because due to the technology scaling, the amount of 

charge used to store information in the memory nodes is continuously decreasing. Thus, less 

charge from an energetic particle is needed to change the logical state of a node. Moreover, 

the analysis of the temperature influence on the cross section behavior of devices like Zynq-

7000 is important because according to (BAGATIN et al., 2011), the cross section of SRAM 

memories is strongly affected by temperature. However, temperature also induces changes in 

other parameters, such as charge collection efficiency and electron-holes mobility. These 

parameters can also be responsible for changing the cross section of modern devices like 

Zynq-7000. 

Since it was not possible to statically test the L1 Cache, dynamic tests consisting of 

different cache schemes (L1 and L2 caches) were performed aiming to evaluate the impacts of 

the cache scheme on the sensitiveness of the PS part of the Zynq-7000 under heavy ions. The 

justification for this analysis relies on the fact that cache memories are traditionally disabled 

in safety-critical applications since it is believed that the sensitive area they introduce 

compromises the system reliability and the performance, consequently. 

 

5.1 Static tests 

 

5.1.1 Tests procedures 

 

The static tests of the OCM, L2 Cache, and BRAMs, consisted of the same steps 

described in Section 4.3.1. Although the static tests procedures were practically the same for 
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all the tested memories, each one was evaluated separately to achieve more precise results. 

This means that during an irradiation, only the memory under test was being used by the 

processor, while the others were disabled (i.e., OCM or L2 Cache) or even not instantiated 

(i.e., BRAMs). Fig. 5.1 shows an integrated block diagram illustrating the architectures of the 

static tests. Concerning the size of the memories, three quarters of the OCM (192 KB), half of 

the L2 Cache (256 KB), and all the available BRAMs (4.9 Mb), were evaluated. It was left 

free space in OCM and L2 Cache for safety reasons, such as to not have any chance of having 

a segmentation fault or for the case in which an unknown instruction could start to be 

executed by the processor. All the obtained cross sections are per bit. It is also worth noting 

that the parity support for all the memories was disabled during the experiments and none of 

them were implementing any ECC technique. Finally, the test programs were running from 

the board’s DDR memory and the known pattern adopted (reference data) for all three 

memories was “AAAAAAAA’h”. 

 

Figure 5.1 – Integrated block diagram of the static tests architectures. 

 

 

Differently from OCM and BRAMs, in which the user can freely write and read data 

and as well as L1 Cache, L2 Cache is a very dynamic memory and additional procedures are 

required to get a deterministic response from it and test it statically. Aiming to achieve this 

with the L2 Cache of the PS part of Zynq-7000, it was necessary to manage the L2 Cache 

controller (PL-310), since it provides a feature to lock data or code into the cache. Locking of 

data or code in cache is an indication to cache replacement algorithm to prevent these entries 

from being evicted. Thus, the solution found to perform the static test of the L2 Cache was to 

preload data into the cache, lock them, and then constantly read the memory content searching 
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for errors. The procedures to lock data into the L2 Cache are executed in the beginning of the 

application. They are the following: 

1. Write the exact amount of data (AAAAAAAA’h) to be preloaded into the L2 

Cache in the DDR memory; 

2. Invalidate L1 and L2 Data caches; 

3. Disable both L1 Instruction as well as Data caches; 

4. Preload the data from the DDR into the L2 Cache; 

5. Lock all the 8 ways of L2 Cache; 

6. Start analyzing the memory content as shown in Section 4.3.1. 

 In the computer that controlled the experiments, a script monitored the serial interface 

for incoming errors sent by the running program (described in Section 4.3.1) on the processor 

for monitoring the OCM and L2 Cache. Once the script received an error, the error was time-

stamped and then logged for posterior analysis. Regarding the BRAMs, another script handled 

the Xilinx iMPACT tool to write and read the content of the BRAMs, which are included in 

the PL’s bitstream. The script constantly compared the fault-free bitstream (the golden) 

against the last read. If differences were found, which means errors, the script time-stamped 

and logged the errors for then reconfigure the PL with the golden bitstream. 

With regard to variations in the nominal supply voltage, they were performed by 

directly accessing the Zedboard power supply lines after the embedded input power regulator. 

With regard to the temperature variations, they were performed by heating the device with an 

air heater. 

 

5.1.2 Tests setups 

 

Heavy ion experiments were performed at two different facilities. For lower energies, 

a specially experimental setup at the Laboratório Aberto de Física Nuclear (LAFN) of the 

Universidade de São Paulo (USP), Brazil (AGUIAR et al., 2014) was mounted. Aiming to 

achieve very low particle fluxes in the range from 102 to 105 particles.cm-2.s-1, as 

recommended by the European Space Agency (ESA) for SEU tests (ESA, 2005), a standard 

Rutherford scattering setup using a gold foil was used. The experiment was performed in both 

vacuum and air. An approximate pressure of 10-6 Torr was used in the chamber for the tests in 

vacuum. A silicon barrier detector was mounted inside the vacuum chamber at an angle of 45º 

to monitor the beam intensity. In front of this detector, it was mounted a collimator with a 

diameter of 4 mm, defining a solid angle of about 0.085 msr. The ion beams were produced 
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and accelerated by the São Paulo 8UD Pelletron Accelerator. The SEU events were observed 

irradiating 12C, 16O, 19F, 28Si and 35Cl beams, scattered by a 184 µg/cm² gold target, with 

energies that provide effective LETs in the border of the active layer ranging from 2.6 to 17 

MeV/mg/cm², and penetration in Si ranging from 16.6 to 47.6 µm. To achieve the desired 

particle flow, the DUT was positioned at a scattering angle of 15º. Table 5.1 summarizes the 

experiment parameters and Fig. 5.2 shows the experiment setup mounted at the LAFN-USP. 

For higher energies, experiments were performed at the Russian Federal Space Agency 

(ROSCOSMOS) tests facilities, Russia. The heavy ion test facility is based on a Cyclotron U-

400M. The characteristics of the heavy ion facility are shown in Table 5.2 and the 

characteristics of the ions used in the experiments are shown in Table 5.3. 

 

Table 5.1 – Characteristics if the heavy ion beams used at LAFN-USP. 

Beam 

type 
Vacuum 

Incident 

energy (MeV) 

Effective LET 

(MeV/mg/cm²) 

Penetration 

in Si (µm) 
12C Yes 40.9 2.60 47.6 
12C No 38.0 2.70 43.8 
12C No 29.4 3.13 31.0 
16O No 41.0 5.00 28.5 
16O Yes 41.0 5.00 27.5 
16O Yes 34.0 5.50 22.0 
16O Yes 30.9 5.70 19.0 
19F Yes 48.2 6.20 26.7 
19F No 43.0 6.40 25.0 
28Si Yes 68.4 12.55 20.9 
28Si No 54.6 13.02 18.8 
35Cl Yes 80.8 16.60 19.5 
35Cl No 62.6 17.00 16.6 
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Figure 5.2 – Heavy ion experiment setup mounted outside and inside the vacuum chamber at the 

LAFN-USP. 

 

 

Table 5.2 – Characteristics of the ROSCOSMOS heavy ion facility. 

Source name IS OI-A (400 M) based on U-400M 

Accelerator type Cyclotron 

Ion species and energy ranges O, Ne, Ar, Fe, Kr, Xe, Bi 

Effective LET 4.5 - 99 MeV/mg/cm² 

Range in Si > 30 µm 

Min - Max fluxes 10 – 105 particles.cm-2.s-1 

User flux control Yes 

Spot size / Uniformity 

60 x 60 mm /≤ 10% 

60 x 90 mm /≤ 15% 

60 x 180 mm /≤ 30% 

Beam counting and monitoring 

system 

5 proportional counters - active track 

detectors - passive 

Test chamber Vaccum 

Device positioning system Yes 
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Table 5.3 – Characteristics if the heavy ion beams used at ROSCOSMOS. 

Beam 

type 
Vaccum 

Incident 

energy (MeV) 

Effective LET 

(MeV/mg/cm²) 

Penetration 

in Si (µm) 
20Ne Yes 78 8.40 38 
40Ar Yes 144 18.50 37 
84Kr Yes 253 21.90 42 

132Xe Yes 404 32.30 45 

 

For the heavy ion experiments, the package of a Zynq-7000 device, part XC7Z020-

CLG484, was thinned to allow that irradiated particles penetrate the active region of the 

silicon. Fig. 3.10 shows the surface of the chip without its package, where it is possible to 

distinguish between the PS part on the top of the left side and the PL. Fig. 5.3 shows the 

microscopic section of the chip performed for evaluating the energy loss of the heavy ions 

after passing the passive layers. The passive layers consist of eleven copper metallization 

layers separated by dielectric layers. The estimated total thickness of the passive layers is 

12.87 µm. For estimating the energy loss of the heavy ions, it was assumed a total thickness 

of copper metallization layers of 7.87 µm and a total thickness of dielectric layers of 5.0 µm. 

The energy losses estimation and the effective LET values in the border of the active layer 

were obtained with the SRIM software (SRIM, 2013) together with chip structure data 

(XILINX, 2015d). 

 

Figure 5.3 – Microscopic section of a Zynq-7000 device, part XC7Z020-CLG484. 
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Proton experiments were also performed. They were carried out on a compact 

synchrotron built by JSC Proton and located at the medical center of Protvino, Russia. The 

characteristics of the synchrotron proton used in the experiments are shown in Table 5.4. 

 

Table 5.4 – Characteristics of the Russian proton facility. 

Proton energy 60…330 MeV 

Bunch duration 10…1000 ms 

Proton in the bunch 107...109 pcs 

Proton beam diameter 2…4 mm 

Beam bending HWD 70 x 700 mm 

Beam non-uniformity 5% 

 

Table 5.5 summarizes the test schemes performed in the embedded memories of the 

PS part of Zynq-7000. 

 

Table 5.5 – Heavy ion and proton test schemes performed in the embedded memories of the PS part of 

Zynq-7000. 

Memory 
Core voltage 1 

(V) 

Core voltage 2 

(V) 

Core voltage 3 

(V) 

Temperature 

(ºC) 

 
Heavy ion tests 

BRAM 0.95 * 1.05 52.5 

OCM 0.95 * 1.05 52.5 

 
Proton tests 

L2 Cache * 1.0 * 36.0 

 * Configuration unable to test due to beam limitations. 

 

5.1.3 Tests results 

 

Fig. 5.4 shows the obtained results from heavy ion irradiations, which are shown in 

terms of cross section versus LET. Considering each memory type, the biggest cross section 

variation with supply voltage for each one was of 19% for OCM (1.05V/0.95V, LET = 8.4 

MeV.cm²/mg) and 15% for BRAM (1.05V/0.95V, LET = 18.5 MeV.cm²/mg). However, if we 

consider the same supply voltage, like 1.05V, and the same LET, like 21.9 MeV.cm²/mg, the 

difference between the OCM cross section and BRAM cross section can reach 46%. 

Regarding proton irradiations, it was obtained a cross section per bit for the L2 Cache 

of 1.0x10-16 cm²/bit for an energy of 250 MeV. Based on the neutron cross sections informed 
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by Xilinx in (XILINX, 2016c), such result is in accordance with the expected ones. However, 

additional data are needed for performing a more accurate analysis. 

The obtained results are fundamental, once they can guide designers to choose the 

most reliable memory for implementing a shared memory between PS and PL parts, for 

example. 

 

Figure 4.4 – Cross section results from the heavy ion irradiations in the embedded memories OCM 

and BRAM of the Zynq-7000. 

 

 

5.2 Dynamic tests 

 

5.2.1 Tests procedures 

 

Dynamic tests were performed to investigate the impacts of the cache organization on 

the sensitiveness of the PS part of Zynq-7000. Considering a processor with L1 and L2 

caches, it is reasonable to assume that there is a given configuration, such as using no caches, 

only L1, or both levels, that optimizes reliability (in terms of exposure time and sensitive 

area). As already mentioned, in general, cache memories are traditionally disabled in safety-

critical applications since it is believed that the sensitive area they introduce compromises the 

system reliability. However, the choice of the more reliable configuration is not 

straightforward. 
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Tests were based on a bare-metal application running on one core of the ARM Cortex-

A9 processor (here referred just as ARM), always at its maximum frequency (667 MHz). The 

application performs a sequence of multiple matrix multiplication operations in order to 

increase caches’ utilization and exercise all cache levels. Matrix multiplication was chosen as 

the basic application because it is a common task in critical systems, such as in control and 

filter operations. The sizes were chosen empirically, resulting in a set of 140 matrices of 

25x25 integers, which totalizes 350 KB of data. The choice of performing multiple 

multiplications of small matrices instead of a single matrix multiplication relies on the fact 

that it would be necessary very large matrices to fill L1 Data (L1D) and L2 caches and it 

would not exercise the L1 Instruction (L1I) Cache. Moreover, as it is considered a worst-case 

scenario, the parity of the L2 Cache was disabled. However, it was not possible to disable the 

parity of L1 Cache in these experiments. 

The dynamic tests procedures consisted of the same steps described in Section 4.3.2. 

The detection of incorrect outputs was achieved by comparing the computed results C of the 

multiplication of matrices A and B with a golden copy G, which is the expected correct results 

calculated at compilation time. A monitor computer monitored the processor through a serial 

interface. At each execution set, if there were not differences in the results, the processor sent 

a “PASSED” message to the computer. Otherwise, if differences were found, the program sent 

an “NOT PASSED” message to the computer and then the processor was reset. In both cases 

the messages were time-stamped for future analysis. 

Since the ARM core has three cache memories (L1I, L1D, L2), eight possible cache 

configurations were implemented by enabling or disabling each cache level. Table 5.6 lists 

the possible configuration (Enabled – E or Disabled – D) together with the respective 

program size and execution time of each one. When all the caches are disabled (D/D/D 

configuration), the processor uses the OCM to store instructions and data. If needed, the 

processor also can use the DDR memory of the board. From the execution time data, it is 

possible to observe a significant improvement of 92% when all cache levels are enabled 

(E/E/E configuration). When comparing configuration D/D/D with E/E/D and E/E/E, it is 

easy to observe by configuration E/E/D that L1 Cache plays a significant role in the 

performance improvement, providing an enhancement of 91% in performance. 

Results are presented in terms of Silent Data Corruption (SDC) cross section, which is 

related to errors detected by the application without program interruption (data flow errors), 

and Single Event Interrupt (SEFI) cross section, which is related to program crashes (control 

flow errors). Errors in L1D cache are more prone to provoke SDC errors, because the L1D 
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cache memory stores mainly data of the program running in the ARM core. Consequently, 

errors in the program data may result in unexpected program outputs. Errors in L1I cache are 

more prone to provoke SEFIs errors, because the L1I cache memory stores the instructions of 

the program running in one ARM core. Consequently, errors in the program instructions may 

result in program crashes. 

 

Table 5.6 – Application information running on Zynq-7000’s ARM Cortex-A9 Core 0 with different 

cache schemes (D = Disabled, E = Enabled). 

Configuration 

(L1I/L1D/L2) 

Program size 

(bytes) 

Execution 

time (s) 

D/D/D 8036 2.4966 

D/D/E 8036 0.9809 

D/E/D 8036 1.9040 

D/E/E 8036 0.5722 

E/D/D 8036 2.2220 

E/D/E 8036 0.9610 

E/E/D 8084 0.2012 

E/E/E 8080 0.1988 

 

5.2.2 Tests setup 

 

Experiments were also conducted through heavy ion tests performed at LAFN-USP, 

Brazil, where the ion beams are produced and accelerated by the São Paulo 8UD Pelletron 

Accelerator. The setup configuration of the experiments is quite similar to the one of the static 

tests. However, in this case, the experiments were performed in air. 

The SEU events were observed using a 16O beam, scattered by a 184 µg/cm² gold 

target, with an energy of 59 MeV (effective energy at the active region of 11.6 MeV), which 

provides an effective LET at the active region of 7.3 MeV/mg/cm² and penetration in Si of 28 

µm. To achieve the desired particle flow, the DUT was positioned at a scattering angle of 15º, 

resulting in an average flux of 5.84x10² particles.cm-2.s-1. Such configuration was chosen 

based on several trials and it was the most suitable in terms of particle flux and number of 

errors for these experiments. Finally, the beam was focused on the PS part. 

 

5.2.3 Tests results 
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Experimental results from the heavy ion irradiation campaigns are listed in Table 5.7 

and shown in Fig. 5.5. Errors in which their sources are unknown are considered in the error 

bars. Data show that the SDC cross section increases with the addition of caches to the 

memory hierarchy, since radiation can affect cache array and circuitry. Experimental results 

also show that the addition of L2 Cache to the memory hierarchy is critical, making it even 

impossible to estimate the SDC cross section due to the prevalence of SEFI over SDC errors. 

In fact, the addition of any cache memory to the memory hierarchy affects significantly the 

cross section of the ARM processor. 

 

Table 5.7 – Obtained SDC and SEFI cross sections from the heavy ion irradiations. 

Configuration 

(L1I/L1D/L2) 

SDC cross section 

(cm²) 

SEFI cross section 

(cm²) 

D/D/D 2.85x10-6 8.56x10-6 

D/D/E - 1.33x10-5 

D/E/D 1.23x10-5 8.56x10-6 

D/E/E - 1.52x10-5 

E/D/D 1.61x10-5 1.05x10-5 

E/D/E - 1.62x10-5 

E/E/D 1.90x10-5 1.33x10-5 

E/E/E 1.99x10-5 1.71x10-5 

 

Figure 5.5 – Obtained SDC and SEFI cross sections from the heavy ion irradiations. 

 

 

The SEFI data in Table 5.7 and Fig. 5.5, which are related to control flow errors, show 

that the SEFI cross section also increases with the addition of caches to the memory 
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hierarchy, but mainly with the addition of L2 cache. However, it is possible noticing an 

increase in cross section when caches L1I and/or L2 are enabled. This is particularly 

interesting because it confirms that control flow errors are the main source of SEFIs in 

processors and they are more related to the program instructions than the program data. The 

adoption of Software Implemented Hardware Fault Tolerance (SIHFT) or Algorithm-based 

Fault Tolerance (ABFT) techniques are possible solutions to improve the SEFI results, for 

example. 

Table 5.8 shows the MWBF values for all the tested caches configurations. In this 

case, the workload w of the application, i.e. the amount of data processed by the application at 

each execution, is 2.80x106 bits. Table 5.7 shows that the most reliable configuration under 

heavy ions is the one with all caches disabled. Regardless the smaller cross section imposed 

by disabling all caches, its execution time is so high not to be compensated by the benefit in 

terms of performance. For the other configurations, despite the increase in the complexity and 

sensitive area, the smaller the execution time, the bigger the MWBF. In this case, although the 

small improvement in the MWBF values when comparing to the execution time values of the 

corresponding configurations, it is worth maintaining at least L1I and L1D caches enabled to 

not compromise the system performance. It is worth mentioning that all the data obtained are 

strongly dependent of the application and the cache policy. 

 

Table 5.8 – Obtained MTBF, MEBF, and MWBF from the heavy ion irradiations. 

Configuration 

(L1I/L1D/L2) 

MTBF 

(hours) 

MEBF 

(executions) 

MWBF 

(data) 

D/D/D 6.00x102 8.66x105 2.42x1012 

D/D/E - - - 

D/E/D 1.39x102 2.63x105 7.37x1011 

D/E/E - - - 

E/D/D 1.06x102 1.72x105 4.82x1011 

E/D/E - - - 

E/E/D 9.01x101 1.61x106 4.52x1012 

E/E/E 8.60x101 1.56x106 4.36x1012 

 

Fig. 5.6 compares the experimentally measured SDC cross section from heavy ion 

experiments and the evaluated MWBF. The graph shows that whenever the speed-up is higher 

than the increase in cross section, the faster configuration computes a large workload before 

experiencing a failure. Thus, enabling caches not only improves performance but also 

increases reliability to radiation-induced errors. 
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In processors-based systems running on Zynq-7000, it is possible to achieve an even 

higher speed-up than just the one provided by enabling cache memories. In this case, co-

processors in the PL are used as hardware accelerators, such as dedicated IPs or soft-core 

processors. Using the PL, tasks are offloaded from the PS to the PL part, which accelerates 

the tasks and reclaims processor bandwidth for additional tasks. Therefore, the next chapter 

investigates the Zynq-7000’s PL part and the overall trade-offs between performance and 

reliability that different designs running on the PL provide to a system. 

 

Figure 5.6 – Comparison between the obtained SDC cross section and MWBF values from the heavy 

ion irradiations. 
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6 ANALYSING SINGLE EVENT EFFECTS ON THE PL PART OF 

ZYNQ-7000 

 

This chapter presents static and dynamic radiation tests performed in the PL part of 

Zynq-7000 for measuring the sensitivity of its configuration memory and the trade-offs 

between performance and reliability of hardware designs implemented in it. 

Static tests investigated the Configuration Memory (CRAM) of the PL part of Zynq-

7000 under heavy ions and protons. Similarly to the experiments performed in the Zynq-

7000’s PS part, some of the experiments also considered variations in the nominal supply 

voltage and temperature according to the ranges specified in the device’s datasheet. Such 

analysis is necessary because due to the technology scaling, the amount of charge used to 

store information in the memory nodes is continuously decreasing, and less charge from an 

energetic particle is needed to change the logical state of a node. Moreover, the analysis of the 

temperature influence on the cross section behavior of devices like Zynq-7000 is important 

because according to (BAGATIN et al., 2011), the cross section of SRAM memories is 

strongly affected by temperature. However, temperature also induces changes in other 

parameters, such as charge collection efficiency and electron-holes mobility. These 

parameters can also be responsible for changing the cross section of modern devices like 

Zynq-7000. 

Dynamic tests investigated the trade-offs of different designs implemented into an 

Artix-7 FPGA (equivalent to the Zynq-7000’s PL) in terms of not only resource utilization 

and performance, but also reliability, by analyzing their behaviors under SEUs and comparing 

them to a standard processor-based implementation. The designs were implemented by HLS, 

since HLS tools provide a design methodology able to generate optimized digital designs for 

different application needs, as already shown in Section 2.2. Moreover, HLS tools have 

significantly evolved in the last years, providing very optimized results in area and 

performance with a very short development time. Such analysis is also important because 

HLS-based designs have been employed in several safety-critical applications that require 

high performance and high reliability level, such as the ADAS (XILINX, 2016d), medical 

systems (XILINX, 2016b), satellites (ITURBE et al., 2015), and particle accelerators 

(HUSEJKO, EVANS, DA SILVA, 2015). The experiments considered different HLS 

optimization strategies such as default, pipeline and loop unroll in different places, array 

partition with different configurations, and inline functions. The case-study designs consisted 
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of several design architectures based on three benchmark algorithms: Matrix Multiplication 

(MxM), Advanced Encryption Standard (AES), and Adaptive Differential Pulse-Code 

Modulation (ADPCM). The designs were evaluated by several radiation experiments with 

heavy ions and FPGA-based Fault Injection (FI) campaigns. As a result, this chapter proposes 

a reliability analysis for HLS-based designs and even traditional hardware designs that want 

to investigate the trade-offs between reliability and performance. 

 

6.1 Static tests 

 

6.1.1 Tests procedures 

 

As well as the static tests of the PS part of Zynq-7000, the tests of the PL part 

consisted of the same steps described in Section 4.3.1. First, the configuration memory is 

configured with a fault-free bitstream (the golden) containing most of its bits in “0”. Then, a 

script running on a control computer was constantly reading back the PL’s configuration 

memory with the Xilinx iMPACT tool through a JTAG interface and comparing the bitstream 

read against the golden one. If differences were found, which means errors, the script time-

stamped and logged the errors for then reconfigure the PL with the golden bitstream. The 

entire PL’s configuration memory (32.3 Mb) was evaluated and all the obtained cross sections 

are per bit. 

Concerning variations in the nominal supply voltage, they were performed by directly 

accessing the Zedboard power supply lines after the embedded input power regulator. With 

regard to the temperature variations, they were performed by heating the device with an air 

heater. 

 

6.1.2 Tests setups 

 

The characteristics of the heavy ion and proton experiments are the same of the static 

tests performed on the PS part, which were already described in Section 5.1.2. Table 6.1 

summarizes the test schemes performed in the configuration memory of the PL part of Zynq-

7000. 
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Table 6.1 – Heavy ion and proton test schemes performed in the configuration memory of the PL part 

of Zynq-7000. 

Memory 
Core Voltage 1 

(V) 

Core Voltage 2 

(V) 

Core Voltage 3 

(V) 

Temperature 

(ºC) 

 
Heavy ion tests 

CRAM 0.95 * 1.05 51.0 

 
Proton tests 

CRAM 0.95** 1.0 1.05 36.0 

 * Configuration unable to test due to beam limitations. 

 ** Configuration also tested at 92 ºC. 

 

6.1.3 Tests results 

 

Fig. 6.1 shows the obtained results from heavy ion irradiations. Experiments 

performed at lower LETs were performed at the LAFN-USP facility, while the ones 

performed at higher LETs were performed at the ROSCOSMOS facility. The obtained results 

are in accordance to what was expected. Regarding supply voltage variation, the biggest cross 

section difference was only 4% (1.05V/0.95V, LET = 8.4 MeV.cm²/mg), what is smaller than 

the error bars. It is important to highlight that for LETs higher than 6.5 MeV/mg/cm², it was 

possible to observe precisely the occurrence of MCUs, when an SEU affects multiple bits, and 

MBUs, when an SEU affects multiple bits in the same word. From the total number of events 

observed, 33% were SEUs, 16% were MBUs together with MCUs and 51% were MCUs. No 

isolated MBUs were observed. Such behavior is quite critical, since MBUs and MCUs reduce 

the efficacy of ECCs, such as Single-Error Correct/Double-Error Detect (SECDED) codes. 

Fig. 6.2 shows the obtained results from proton irradiations. From the results, one can 

observe that there are not significant differences in cross section according to the supply 

voltage applied to the PL part (CRAM). Moreover, uncertainties are such that the behavior is 

approximately constant. It is interesting to note that the biggest cross section variation was of 

about 20% (0.95V,92ºC/0.95V,36ºC, 250 MeV), and it was achieved when the device was 

heated and not with the supply voltage variation. 
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Figure 6.1 – Cross section results from the heavy ion irradiations in the configuration memory of the 

PL part of Zynq-7000. 

 

 

Figure 6.2 – Cross section results from the proton irradiations in the configuration memory of the PL 

part of Zynq-7000. 

 

 

6.2 Dynamic tests and proposed reliability analysis for hardware-only designs 
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The dynamic tests performed focused on investigating the trade-offs of different 

hardware designs in terms of not only resource utilization and performance but also 

reliability. Thus, an analysis of their behavior under soft errors was performed and compared 

to a standard processor-based implementation running on a soft-core processor embedded in 

an SRAM-based FPGA. Although such investigation is not new, the novelty of it is that the 

hardware designs were generated by HLS targeting future applications in APSoCs, as 

addressed in the next chapter in Zynq-7000.  

Different HLS optimization strategies were considered, such as default, pipeline and 

loop unroll in different places, array partition with different configurations, and inline 

functions. The goal was to observe that depending on the coding style of the high-level 

software programming language and optimization directives applied in the HLS tool, different 

amounts of FPGA resources and configuration bits, and distinct execution times are achieved 

by the generated hardware. Consequently, the cross section and MWBF may present 

significantly different results. However, it is not only the amount of FPGA resources and 

configuration bits that determine the sensitivity of a hardware. The error masking effect of the 

application algorithm implemented using HLS plays an important role, directly affecting the 

reliability of a design implemented in an FPGA, as shown in this section. 

The designs were evaluated by several radiation experiments with heavy ions and 

FPGA-based Fault Injection (FI) campaigns, from which the dynamic cross section and 

MWBF are estimated for each design version. As a result, a reliability analysis for HLS-based 

designs is proposed. Results show that, in general, the estimation of the dynamic cross section 

and MWBF values of HLS-based designs through the proposed flow based on fault injection 

is a suitable method for predicting their trend before radiation experiments. Results also 

reveal that there are important trade-offs between the use of resources, optimization strategies, 

and execution time in order to achieve higher MWBF values. 

 

6.2.1 Proposed reliability analysis for hardware-only designs 

 

The reliability analysis of a design implemented in an FPGA depends on the 

characteristics of the design and susceptibility of the underlying FPGA platform. This section 

presents the proposed methodology flow to estimate the reliability of HLS-based designs 

based on fault injection campaigns. Nevertheless, the proposed methodology is capable to be 

generic and extendable to any type of design if slight adjustments are performed. It aims to 

accelerate the search for the design with the best trade-off between performance and 
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reliability, i.e. the design that provides a performance enhancement higher than the cross 

section increase. The methodology takes into account four parameter groups: A) Resources 

and performance in terms of execution time; B) Errors and critical bits; C) Radiation 

measurements such as static and dynamic cross sections; and D) Mean Workload Between 

Failures. Fig. 6.3 summarizes the proposed reliability analysis in a flow diagram. 

 

Figure 6.3 – Proposed reliability analysis flow for hardware-only designs. 

 

 

6.2.1.1 Resources and performance 

 

The area of an implemented design can be expressed in terms of the number of used 

resources, such as LUTs, flip-flops, BRAM blocks, DSP blocks, etc. It is also possible to 

express the area in terms of configuration frames and configuration bits. A configuration 

frame is a group of configuration bits. It is the smallest addressable memory segment of the 

configuration memory (bitstream) of an SRAM-based FPGA. Since each frame is related to a 

specific resource and position in the floorplanning of the FPGA, the number of configuration 

frames (and configuration bits) used by a design can be calculated. In case of Xilinx 7-Series 

devices, a configuration frame is composed of 101 32-bit words (XILINX, 2014). In terms of 
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reliability, the resource information is important since it is used to determine how much the 

design is physically exposed to radiation. 

The performance of a design can be expressed in terms of execution time, operational 

frequency, and processed workload. The execution time can be defined by the number of 

clock cycles needed to perform an operation. According to the FPGA and embedded design 

architecture, a maximum clock frequency is achieved. Another important parameter is the 

workload processed by the design, which is the amount of data computed at each design 

execution. In terms of reliability, performance information is important to determine how 

much time the design is exposed to soft errors during the execution of the implemented 

function. 

 

6.2.1.2 Errors and critical bits 

 

An error is defined as any deviation from the expected behavior of a design. As 

already mentioned, an error can be classified as SDC error (erroneous data in the design 

output) or SEFI error (absence of data in the design output after a given time). With regard to 

critical bits, Xilinx defines critical bits in (XILINX, 2012b) as the amount of configuration 

bits that once flipped, they cause an error in the expected design behavior (SDC or SEFI). 

Critical bits are obtained by means of fault injection in the DUT. In this thesis, the critical bits 

of each design version are obtained by an exhaustive and sequential fault injection campaign, 

in which all the configuration bits of the injection area are flipped one at a time. A bit is 

considered critical if it causes a deviation from the expected design output (SDC or SEFI). 

Thus, the process of generating a complete list of critical bits for a specific design is a time-

consuming task that involves validating the correct design behavior while moving a single 

upset through all the configuration memory bits in the design region. 

 

6.2.1.3 Radiation measurements 

 

The methodology takes into account the cross section parameters already introduced in 

Section 4.3.2. 

 

6.2.1.4 Mean Workload Between Failures 
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The methodology also takes into account the MWBF metric, which was also already 

introduced in Section 4.3.2. 

 

6.2.1.5 Xilinx analysis tools 

 

Xilinx Vivado design tool provides the area of an implemented design in terms of 

resource utilization after the design is placed and routed, and Xilinx Vivado HLS tool 

provides the performance of the design in terms of clock cycles. The execution time of an 

HLS-based design is obtained by multiplying the number of clock cycles by the clock period. 

The execution time of the processor-based design is obtained at execution time. 

 

6.2.1.6 Fault injection method and analysis 

 

The fault injector platform used in this thesis and the method for obtaining the critical 

bits were already presented in Section 4.2.1. 

With regard to the analysis of the fault injection results, the method proposed by 

Velazco, Foucard, and Peronnard (2010) was used to estimate the dynamic cross section and 

MWBF, consequently, of hardware designs before radiation test campaigns. The method 

supposes that an approach allowing injecting bit-flips can be implemented for the considered 

DUT, which in this case is the fault injection platform already presented. In addition, the 

method requires a cross section derived from a static test for providing the average number of 

particles of a given type which is necessary to provoke a bit-flip of one of the memory cells 

included in the DUT. The static cross section for a specific particle and for a specific device 

can be obtained from previous experiments or reports, such as (XILINX, 2016c). The 

masking upset probability can be considered by using the information about the critical bits, 

which are first evaluated by means of fault injection. The dynamic cross section is then 

calculated by multiplying the static cross section by the masking upset probability of the 

design, as shown in Eq. 6.1. 

 

(Equation 6.1)             𝜎𝑑𝑦𝑛𝑎𝑚𝑖𝑐−𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 =  𝜎𝑠𝑡𝑎𝑡𝑖𝑐  . (
#𝑏𝑖𝑡𝑠𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙

#𝑏𝑖𝑡𝑠𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑑
)   [𝑐𝑚2] 

 

6.2.2 Case-study designs and resources and performance results 

 



 

 

118 

 

Three C language-based benchmark algorithms were evaluated: i) 32x32 floating-

point matrix multiplication (MxM) (XILINX, 2016a), ii) 128-bit Advanced Encryption 

Standard (AES) (HARA et al., 2008), and iii) Adaptive Differential Pulse-Code Modulation 

(ADPCM) (HARA et al., 2008). These algorithms were chosen because they cover a variety 

of domains, such as arithmetic (MxM), security (AES), and media processing (ADPCM). 

Moreover, they range from a data flow oriented algorithm (MM) to a control flow oriented 

algorithm (ADPCM). The processor-based design has a Microblaze (MB) soft-core processor, 

which is a 32-bit 5-state pipeline Reduced Instruction Set Computer (RISC) soft processor. 

The architecture of both HLS-based designs and processor-based design are shown in Fig. 

6.4. 

 

Figure 6.4 – Architecture of the (a) processor-based design and the (b) HLS-based design. 

 

 

Three HLS-based designs for each benchmark application were generated in Xilinx 

Vivado HLS, each one with different optimization strategies. The optimizations applied are 

summarized in Table 6.2. The optimizations were chosen focusing on speeding up the critical 

path of the algorithms. In the MxM benchmark, the main optimization effect was the increase 

in pipeline depth, which resulted in a 21-stage pipeline in HLS1, 220-stage pipeline in HLS2, 

and a 3235-stage pipeline in HLS3. It is worth noting that in MxM-HLS3, the array partition 

directive was applied aiming to increase the throughput of the input data, which significantly 

increased its pipeline depth and performance. In the AES and ADPCM benchmarks, the main 

optimizations applied were also related to the data parallelism (unroll loop and pipeline), 

although at different levels of granularity. This was done since they present a lot of data 

dependencies among their several internal functions and to not modify the original benchmark 

programs. The inputs and outputs of the three benchmarks use the resource directive to force 

the variables to be synthesized as Advanced eXtensible Interface Stream (AXI-S) channels in 

order that all the HLS-based designs have the same interface architecture, as shown in Fig. 
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6.4(b). Moreover, the input data of the three benchmarks were fixed so that they were known. 

All the input and output elements were implemented with BRAM memories protected with 

ECC for the designs tested under radiation. All designs were synthesized into a Xilinx Artix-7 

FPGA, part XC7A100TCSG324-1, embedded into a Digilent Nexys 4 board, and with an 

input clock of 100 MHz. 

 

Table 6.2 – Optimization strategies applied in each HLS-based design for each benchmark program. 

Benchmark 
Optimization strategy 

HLS1 HLS2 HLS3 

MxM - None 
- Pipeline in the middle 

loop 

- Pipeline in the middle loop 

- Array partition in the inputs 

- Function inline 

AES - None 

- Unroll the loops of the 

main 

- Pipeline the encryption 

function 

- Pipeline the decryption 

function  

- Unroll the loops of the main 

- Pipeline the encryption 

function 

- Pipeline the decryption 

function  

- Pipeline the key function 

ADPCM - None - Pipeline fine grain - Pipeline coarse grain 

 

Resource usage, performance results in terms of clock cycles, and number of critical 

bits obtained by fault injection for each case-study design are presented in Table 6.3. The 

workload considered for each benchmark was 32768 bits (1024 values of 32-bit each) for the 

MxM, 1024 bits (32 values of 32-bit each) for the AES, and 3200 bits (100 values of 32-bit 

each) for the ADPCM. Results show that as the optimization level of the HLS-based designs 

is increased, the number of resources used (15.6 times for the MxM in the worst case) and the 

number of critical bits increases as well (4.19 times for the AES in the worst case). However, 

the highest increase is related to the performance (73.5 times for the MxM in the worst 

resource increase). This means that increasing the hardware parallelism using more resources, 

greatly increases the workload capability of the system. Moreover, the use of the array 

partition directive also plays an important role by decreasing memory bottlenecks. By 

comparing the use of a processor-based approach versus an HLS-based design, one can see 

that, in general, HLS-based designs use more area. However, the performance improvement 

they provide is even higher (31.0 times when comparing ADPCM-MB versus ADPCM-HLS1 

in the worst case). 
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Table 6.3 – Resource usage and performance results of each case-study design. 

Design 

version 

Resources and performance 

# 

LUT 

# 

FF 

# 

DSP 

# 

BRAM 

# 

Config. bits 

# Critical bits  

(% of config. bits) 

texec (clock 

cycles) 

MxM 

MB 1159 1452 0 0 524342 70089 (13.37) 41611263 

HLS1 755 944 5 3 435879 35199 (8.08) 366354 

HLS2 2397 3374 10 3 1000132 47164 (4.72) 19613 

HLS3 11787 13924 160 33 4606244 94692 (2.06) 4982 

AES 

MB 1159 1452 0 0 524342 70089 (13.37) 104905 

HLS1 5780 2380 0 17 896694 79205 (8.83) 3188 

HLS2 25243 6511 0 19 2023681 198661 (9.82) 2269 

HLS3 34725 12343 0 15 3823592 331971 (8.68) 1317 

ADPCM 

MB 1159 1452 0 0 524342 70089 (13.37) 1091250 

HLS1 5435 6385 103 8 1898542 230420 (12.14) 35144 

HLS2 4911 6157 103 14 1806674 232686 (12.88) 17316 

HLS3 14959 18681 240 14 6023727 817025 (13.56) 8462 

 

The number of critical bits that cause SDC or SEFI errors for each case-study design is 

also shown in Table 6.3. Comparing the obtained results from fault injection with the number 

of configuration bits in the DUT area, one can observe that a small fraction of the 

configuration bits (from 2% to 13%) is, in fact, critical. Moreover, a slight variation in the 

percentage of critical bits over the total number of configuration bits among the different 

HLS-based designs of each benchmark circuit can also be observed. In some cases (all MxM-

HLS designs and AES-HLS1 vs. AES-HLS3), the percentage of critical bits decreased even 

with the increase in the resource utilization. This behavior is similar to one observed in 

(HILL, LIPASTI, 2010), in which authors stated that deeper pipelines are in many cases more 

resilient that their shallower counterparts if proper metrics are taken into account for 

considering effects such as timing window masking, such as MWBF. 

 

6.2.3 Cross section and MWBF results 

 

Radiation experiments were also carried out with heavy ions at LAFN-USP, Brazil 

(AGUIAR et al., 2014), where the ion beams were produced and accelerated by the São Paulo 

8UD Pelletron Accelerator. The setup configuration of the experiments is quite similar to the 



 

 

121 

 

one of the previous experiments. However, this time the experiments were performed in 

vacuum and the SEU events were observed using a 16O beam scattered by a 184 μg/cm² gold 

target, with an energy of 56 MeV, which provided an effective LET on the active region of 5 

MeV/mg/cm² and penetration in Si of 28.5 μm. To achieve the desired particle flux, the DUT 

was positioned at a scattering angle of 90º, which resulted in an average flux between 2.0x102 

and 2.5x102 particles∙cm-2∙s-1. This configuration was chosen based on several trials and was 

the most suitable in terms of particle flux and number of errors. Each experiment run was set 

by the total number of errors observed (60) in the DUT output. Errors in the soft-core 

processor that sends data to the DUT are not considered in the count. All other uncertain 

errors observed are considered in the errors bars. For the heavy ion experiments, the package 

of an XC7A100TCSG324-1 device was thinned to allow irradiated particles to penetrate the 

active region of the silicon. 

A small FSM (one-hot encoding) implemented with TMR performed the detection of 

incorrect outputs by comparing the computed results of the DUTs with their expected 

reference values stored in embedded BRAMs protected with ECC. A host computer 

monitored the FSM through a serial interface. If there were no differences in the results, the 

FSM sent an alive signal to the host computer at each execution set. Otherwise, if differences 

were found, the FSM sent the number of mismatches to the host computer and then the FPGA 

was reset. Timeouts in the DUT were monitored through a watchdog circuit in the FSM. The 

host computer also had a watchdog circuit to monitor timeout occurrences in the FSM. In case 

of timeout, the FPGA was reset. 

The obtained SDC, SEFI, and TOTAL (sum of SDCs and SEFIs) dynamic cross 

section results from both fault injections and radiation experiments are presented in Fig. 6.5, 

6.6, and 6.7. With regard to the fault injection results, a reference static cross section of 

1.11x10-9 cm² (effective LET = 5.25 MeV/mv/cm2 and flux = 1.32x102 particles∙cm-2∙s-1) was 

adopted, which was obtained from previous heavy ion experiments with the same device. 

Notably, one can observe that there are differences in the obtained values from fault injections 

and radiation experiments (3.18 times in average and 13.07 times for the worst case - 

ADPCM-HLS3-TOTAL). In general, data from fault injection are more pessimistic than the 

ones from the radiation experiments. Such behavior was already expected, since the fault 

injection methodology is more deterministic and gives a very fine fault granularity, enabling 

to estimate the worst-case cross section of a design without considering side-effects, such as 

beam variations and fault masking by the design. Therefore, it is possible to determine 

precisely the exact number of bits that are critical and consider them in the estimated dynamic 
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cross section. It is also worth noting that radiation experiments cover the whole architecture, 

while the fault injection campaigns cover only the DUT (shown in Fig. 6.4). However, for a 

same benchmark application, the HLS-based design (DUT) is the only part of the system that 

changes among the different versions. This somehow normalizes the sensitivity of the 

processor among the designs, since the soft-core processor and peripherals never change 

among the designs. It is also important to reinforce that the proposed reliability analysis is 

capable of estimating the dynamic cross section trend for different HLS-based designs of a 

same benchmark application, even with the mentioned differences. 

By analyzing the obtained dynamic cross section trends from both radiation 

experiments and fault injections for all HLS-based designs, one can notice interesting 

behaviors. The higher the optimization level, the more resources a design uses. However, in 

general, this does not necessarily imply in higher values of critical bits and SDC and SEFI 

cross sections. Data flow oriented algorithms are characterized by a significant amount of 

latches (high number of FFs compared to LUTs) and arithmetic operations with few control 

dependencies, while control flow oriented algorithms contain many combinational logic (high 

number of LUTs compared to FFs) and relational operations. Thus, in the most data flow 

oriented algorithm, the MxM, one can generalize that their cross sections followed the trend 

of the amount of configuration bits, most probably due to the increase in the pipeline depth 

and consequent latch count, which could have masked SEUs. On the contrary, in the most 

control flow-oriented algorithms, the AES and ADPCM, one can generalize that their cross 

sections followed the trend of the amount of critical bits as expected, most probably due to the 

lower probability of masking effects in their combinational logic. With regard to the 

comparison between SDC and SEFI cross section results, the most evident one is that, in 

general, HSL-based designs presented a higher SDC cross section than the processor, which 

presented higher a SEFI cross section than the HLS-based designs. This happened most likely 

because the processor is more prone to experience SEFIs due to its control flow logic, which 

is more complex than in HLS-based designs. On the contrary, in HLS-based designs 

predominate data structures, making them more prone to experience SDCs. One can also note 

that is important to consider both SDC and SEFI cross section separately, since the TOTAL 

cross section may mask important data about the designs, such as the SEFI cross section 

decrease of the AES HLS-based designs with the optimization level increase. 
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Figure 6.5 – SDC, SEFI, and TOTAL dynamic cross section results obtained for the MxM designs 

from both fault injections and radiation experiments. 
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Figure 6.6 – SDC, SEFI, and TOTAL dynamic cross section results obtained for the AES designs both 

fault injections and radiation experiments. 
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Figure 6.7 – SDC, SEFI, and TOTAL dynamic cross section results obtained for the ADPCM designs 

both fault injections and radiation experiments. 
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The obtained MWBF results from both fault injections and radiation experiments are 

depicted in Fig. 6.8, 6.9, and 6.10. A comparison between the fault injections and radiation 

experiments results shows that there are slight differences in the obtained values (2.13 times 

in average and 7.21 times for the worst case - ADPCM-HLS3-SDC). In addition, they show 

that the proposed reliability analysis is capable of estimating the MWBF trend of different 

HLS-based designs for the same benchmark application with a higher precision than for the 

cross section. This reinforces the importance of taking into account additional parameters, 

such as the execution time, and not only the sensitivity of the device. By analyzing the 

obtained MWBF values from both fault injections and radiation experiments, it is possible to 

observe that the use of different optimization strategies has a direct impact in the final MWBF 

values of the different HLS-based. Such behavior is mainly guided by the execution time 

improvement achieved with the different optimization strategies chosen and cannot be 

observed if only the dynamic cross section measurements are taken into account. The only 

performance decrease observed after applying some optimization strategy is related to the 

AES benchmark. This is related to how the benchmark is encoded. Moreover, we chose not to 

modify the algorithm. In this case, the main AES function has the following structure: for 

loop, encrypt function call, for loop, decrypt function call, for loop. In addition, inside the 

encrypt and decrypt functions, there are calls to a key function, which calculates the key of the 

algorithm. With such organization, whatever the optimization strategy applied in the for loops 

or the internal functions, there will always be a data bottleneck among such blocks. This 

behavior cannot be observed in the MxM benchmark because the algorithm is quite simple 

and very data flow oriented, which facilitates data parallelization. Concerning the ADPCM 

benchmark, even though the algorithm is control flow oriented, it is more modularized than 

the AES and with less data exchange among them. The lower MWBF values for the 

processor-based design were already expected due to their higher execution times. 
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Figure 6.8 – SDC, SEFI, and TOTAL MWBF results obtained for the MxM designs both fault 

injections and radiation experiments. 
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Figure 6.9 – SDC, SEFI, and TOTAL MWBF results obtained for the AES designs both fault 

injections and radiation experiments. 
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Figure 6.10 – SDC, SEFI, and TOTAL MWBF results obtained for the ADPCM designs both fault 

injections and radiation experiments. 
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A comparison between the obtained dynamic cross sections by fault injection and 

radiation experiments and the performance rate improvement for each HLS-based design 

compared to its corresponding processor-based version is presented in Fig. 6.11, 6.12, and 

6.13. The performance rate is calculated as shown in Eq. 6.2. 

 

(Equation 6.2)               𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑟𝑎𝑡𝑒 =  
𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 .  𝜎𝑑𝑦𝑛𝑎𝑚𝑖𝑐−𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟

𝑡𝐻𝐿𝑆 .  𝜎𝑑𝑦𝑛𝑎𝑚𝑖𝑐−𝐻𝐿𝑆
 

 

The performance rate relation states that, whenever the speed-up is higher than the increase in 

cross section (
𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟

𝑡𝐻𝐿𝑆
>  

𝜎 𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝐻𝐿𝑆

𝜎 𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟
), the faster configuration computes a larger 

workload before experiencing a failure and, thus, the operational reliability of the system is 

higher. Thus, one can be concluded that, in this case, the designs with the best trade-off 

between reliability and performance for each benchmark application are MxM-HLS3, AES-

HLS2, and ADPCM-HLS2. These result reveals that designs with very different architectures 

may present similar results due to a smaller cross section or execution time, such as in the 

AES HLS-based designs. 

 

Figure 6.11 – Comparison between SDC, SEFI, and TOTAL dynamic cross sections and their 

respective performance rates for the MxM designs from fault injection and radiation experiment 

results. 
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Figure 6.12 – Comparison between SDC, SEFI, and TOTAL dynamic cross sections and their 

respective performance rates for the AES designs from fault injection and radiation experiment results. 
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Figure 6.13 – Comparison between SDC, SEFI, and TOTAL dynamic cross sections and their 

respective performance rates for the ADPCM designs from fault injection and radiation experiment 

results. 
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6.3 Summary 

 

Results show that, in general, the estimation of the dynamic cross section and MWBF 

of an HLS-based design through the proposed flow is a suitable method for predicting their 

trend before radiation experiments. Results also show that it is mandatory to take into account 

each design option available and all the parameters of the system involved in a dynamic test, 

such as the cross section, execution time, and workload of the application. Moreover, the 

proposed methodology is capable to be generic and extendable to any type of design if slight 

adjustments are performed. 

With regard to the effects of optimization strategies in the final HLS-based designs, 

results reveal that HLS tools have evolved in the last decade by providing very structured and 
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optimized RTL codes. The influence of HLS optimizations in the dynamic cross section of the 

designs is lower (increase up to 2.85, 1.49, and 0.86 times for the MxM, AES, and ADPCM 

benchmarks, respectively) when compared to their performance enhancement (increase up to 

73.54, 2.42, and 4.15 times for the MxM, AES, and ADPCM benchmarks, respectively), 

which contributes significantly to increase the MWBF and the performance rate of them.  
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7 EXPLORING BOTH PS AND PL PARTS OF ZYNQ-7000 UNDER 

SINGLE EVENT EFFECTS 

 

This chapter presents an analysis of the impact of using both PS and PL parts of Xilinx 

Zynq-7000 APSoC in the overall system failure rate. Different memory organizations, 

communication schemes, and computing modes, were considered. Such investigation is 

fundamental since there are various possibilities to implement a system in an APSoC and each 

one imposes a different amount of resources and a different resource utilization efficiency, 

which impacts the reliability of the system. Moreover, defining the correlation between 

hardware and software resource sensitivity and the benefits brought to the system efficiency is 

essential to evaluate the system sensitivity, besides the balance between hardware and 

software in terms of reliability has not yet been investigated. 

 

7.1 Reliability of hard- and soft-cores heterogeneous processing in the Zynq-7000 

 

This section presents a reliability analysis of a multiprocessor-based heterogeneous 

system aiming to evaluate the sensitivity of different system architectures implemented in an 

APSoC to radiation-induced errors. Different configurations were implemented, each one 

using the PS and PL parts of the Zynq-7000 in distinctly, as described below. The processors 

were configured in an asymmetric multi-processing scheme (please refer to Secion 2.1.1.1). 

The case-study architecture is a heterogeneous computing system consisting of one 

ARM Cortex-A9 (ARM) core of the PS part and one Microblaze soft-core processor (MB) 

embedded in the PL part, as shown in Figure 7.1. Both processors are 32-bits and have their 

caches enabled. The design uses the OCM memory as data memory and to exchange data 

among the processors. Four different architectures were implemented. The first two 

configurations were developed to investigate the reliability of sharing memory among the 

ARM and Microblaze processors while in the latter two configurations were developed to 

investigate the co-processing behavior by using both ARM and Microblaze processors in 

tandem. The resources usage of each configuration is shown in Table 7.1 and each 

configuration is described as follows: 

 Case A: parallel executions of ARM and Microblaze processors without shared 

data. ARM uses OCM memory space from address FFFC0020’h to 
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FFFCEA60’h and Microblaze uses OCM memory space from address 

FFFCEAE0’h to FFFDD540’h. 

 Case B: parallel executions of ARM and Microblaze processors with shared 

data. ARM uses OCM memory space from address FFFC9CA0’h to 

FFFCEAC0’h and Microblaze uses OCM memory space from address 

FFFD8760’h to FFFDD580’h. The operands are shared and they are stored in 

a shared memory space that ranges from address FFFC0020’h to 

FFFC9C60’h. When the system runs for the first time, ARM processor 

generates the operands. In any other case, like when one of the processors 

crashes, the operational processor refreshes the operands generating new 

values. 

 Case C: heterogeneous co-processing with ARM processor acting as main 

processor and Microblaze processor as a support processor. In this case, 

Microblaze processor performs only the matrix multiplication operation and 

ARM processor performs all other operations. Both processors share the same 

memory space, which ranges from address FFFC0020’h to FFFCEA80’h. 

 Case D: heterogeneous co-processing with Microblaze processor acting as 

main processor and ARM processor as a support processor. In this case, ARM 

processor performs only the matrix multiplication operation and Microblaze 

processor performs all other operations. As in Case C, both processors share 

the same memory space. 

Both processors, in all configurations, execute the benchmark application in bare-

metal, which is a 25x25 integer matrix multiplication operation implemented in standard C 

programming language. The detection of incorrect answers is achieved by calculating and 

comparing the Cyclic Redundancy Check (CRC) of the results. The code executed by both 

processors is represented in Figure 7.2. 
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Figure 7.1 – Block diagram of the case-study multiprocessor-based heterogeneous system. 

 

 

Table 7.1 – Resource usage and performance of each case-study architecture implemented. 

 Case A Case B Case C Case D 

 ARM MB ARM MB ARM MB 

Area of the 

processors 
1 

1640 

LUTs, 6 

BRAMs, 

3 DSPs 

1 

1640 

LUTs, 6 

BRAMs, 

3 DSPs 

1 + (1640 

LUTs, 6 

BRAMs, 3 

DSPs) 

1 + (1640 

LUTs, 6 

BRAMs, 3 

DSPs) 

Address 

space 

60 Kb 

in OCM 

and L1 

and L2 

caches 

60 Kb in 

OCM and 

8 KB of 

instructio

n and data 

caches in 

BRAMs 

20 Kb 

in OCM 

and L1 

and L2 

caches 

20 Kb in 

OCM and 

8 KB of 

instructio

n and 

data 

caches in 

BRAMs 

60 Kb shared in 

OCM, L1 and 

L2 caches of 

ARM and 8 KB 

of instruction 

and data caches 

in BRAMs for 

MB 

60 Kb shared 

in OCM, L1 

and L2 caches 

of ARM and 8 

KB of 

instruction and 

data caches in 

BRAMs for 

MB 
40 Kb shared in 

OCM 

Peripheral 

resources 

2 AXI interconnect buses, 1 AXI bus split, 1 AXI timer, 1 clock generator, 1 

reset system, 2 high performance ports, 1 general purpose port 

Area of the 

peripherals 

resources 

3337 LUTs 

Execution 

time 
3.06 ms 18.2 ms 3.06 ms 18.2 ms 15.5 ms 5.09 ms 
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Figure 7.2 – Matrix multiplication algorithm. 

setup_system() 

loop 

   A = generate_random_matrix() 

   B = generate_random_matrix() 

   Cgolden = A * B 

   CRCgolden = calculate_crc(Cgolden) 

   run = 0 

   loop 

      C = A * B // main operation 

      CRC = calculate_crc(C) 

      if CRC = CRCgolden then 

         if run <500 then 

            run = run + 1 

         else 

            run = 0 

            print(success) 

         end if 

      else 

         print(fail) 

      end if 

   end loop 

end loop 

 

Experiments were carried out at Los Alamos National Laboratory’s (LANL) Los 

Alamos Neutron Science Center (LANSCE) Irradiation of Chips and Electronics House II, 

Los Alamos, USA. As mentioned in (VIOLANTE et al., 2011), LANSCE provides a white 

neutron source that emulates the energy spectrum of the atmospheric neutron flux. The 

neutron flux was approximately 1x106 n.cm-2.s-1) for energies above 10 MeV. The beam was 

focused on a spot with a diameter of 2 inches plus 1 inch of penumbra, which provided 

uniform irradiation of the APSoC chip without directly affecting nearby board power control 

circuitry. Irradiation was performed at room temperature with normal incidence and nominal 

voltages. Each approach was executed for more than 6 hours under the beam, each receiving a 

fluence of at least 3x108 n.cm-2. 

A test monitor application running on a monitor computer was responsible for 

collecting and time-stamping incoming logs from the DUT through UART connections. In 

case of error in the ARM processor, the processor is reset. In case of error in the MB 

processor, first a readback of the configuration memory is performed and then the processor is 

reset. The test monitor application also served as a watchdog for irrecoverable situations, such 

as SEFIs, detecting when the DUT exceeded a timeout larger than the application execution 
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time without sending executions logs. In such cases, the timeout was time-stamped and 

logged, and the board was rebooted. 

Table 7.2 summarizes the obtained experimental results during the neutrons radiation 

test campaign. One can notice that the presented cross section values refer to SDC and SEFI 

errors, and not to permanent errors in the PL. As already mentioned and shown, results show 

that for APSoCs systems, the cross section measurement itself is also not enough to 

characterize the reliability of the system. It is also fundamental to take into account also the 

system execution time and data workload to have a better picture of the sensitivity of the 

system under upsets. 

 

Table 7.2 – Experimental results from the neutron radiation tests for the four case-studied system in 

Zynq-7000. 

 
Case A Case B Case C Case D 

ARM MB ARM MB ARM+MB MB+ARM 

Cross 

section (cm²) 
1.01x10-9 4.60x10-8 9.00x10-10 1.50x10-9 3.43x10-10 4.23x10-8 

MTBF 

(hours) 
7.62x107 1.67x106 8.55x107 5.13x107 2.24x108 1.82x106 

MEBF 

(executions) 
1.78x1011 6.59x108 2.00x1011 2.02x1010 1.04x1011 2.22x109 

MWBF 

(data) 
1.11x1014 4.12x1011 1.25x1014 1.26x1013 6.50x1013 1.39x1012 

 

As a first analysis it is investigated the impact of sharing memory between the ARM 

and MB processors, looking at implementations in Case A and in Case B. Notice that the 

measured cross section of ARM in Case A is 1.01x10-9 cm² compared to 9.00x10-10 cm² of 

Case B. ARM has shown a small improvement in cross section when the memory space of the 

systems is reduced (which means that the sensitive area and, thus, its cross section, is also 

reduced). However, comparing the metrics of MEBF and MWBF, both implementation cases 

A and B of ARM present very similar results, probably due to the same execution times of the 

applications. 

With regards to the Microblaze implementations in cases A and B, one can notice that 

the measured cross section of Microblaze in Case A is 4.60x10-8 cm² compared to 1.50x10-9 

cm² of Case B. Microblaze also presented an improvement in cross section when the memory 

space of the systems is reduced (i.e. sensitive area). Now comparing the metric MEBF and 

MWBF, Case B also present a significant improvement in two orders of magnitude due to its 

implementation. Such improvement probably happened because the first part of the matrix 
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multiplication algorithm, the generation of the matrices, is not performed on the Microblaze, 

but on the ARM processor. Thus, beyond the reduction of the sensitive area by sharing part of 

the memory, sharing part of the memory also reduced the exposure time of the algorithm 

running in the Microblaze. 

When comparing soft- and hard-core processors, ARM processor shows a smaller 

cross section compared to Microblaze in both cases A and B. This result was already 

expected, since hard-core processors are known to be less sensitive to radiation than soft-core 

processors embedded in FPGAs (KASTENSMIDT, CARRO, REIS, 2006). Interesting results 

were obtained by analyzing the MEBF and MWBF values of the processors of Case B. For 

sake of comparison, in Case A, the difference between processors in terms of MWBF was of 

about three orders of magnitude. However, in Case B, this difference was reduced to one 

order of magnitude even with both cases having the same execution time. This result was also 

achieved by reducing the exposure time of the algorithm running in the Microblaze processor, 

which resulted in less failures and more workload correctly processed, consequently. 

Comparing single-core to multi-core, one can observe that Case C, where Microblaze 

processor performs only the matrix multiplication operation and ARM processor performs all 

other operations, has a lower cross section to Case A-ARM and a similar one to Case B-ARM, 

where the hard-core ARM processor performs all the matrix multiplication operation, even 

Case C presenting very different implementation areas than cases A-ARM and B-ARM. 

Concerning MWBF, all implementations have similar values, even with their very distinct 

execution times. It is also interesting to notice that there were practically no changes in the 

MEBF values in all three cases. These results show the advantages of using heterogeneous 

systems where the ARM processor is the main processor and a hardware embedded in the 

FPGA as a secondary processor, because even with a significant overhead in area and time, 

the obtained results are similar or even better than using a single-core processor. Additionally, 

having a longer execution time in Case C may bring benefits to the system, because it enables 

the master processor to perform other tasks while waiting for the slave processor. 

When comparing Case D with cases A-MB and B-MB, where ARM processor 

performs only the matrix multiplication operation and Microblaze processor performs all 

other operations, Case D presented intermediate values for both cross section, MEBF, and 

MWBF. These results are similar to what were obtained for the ARM processor cases. 

Now, comparing both heterogeneous cases C and D, it is evident that ARM plays a 

major role in terms of reliability, because even with an execution time three times worse than 

Case D, Case C presented better results in all metrics. This result is of extreme importance, 
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because if the soft-core processor is changed by a dedicated hardware in the FPGA with a 

better execution time than the ARM processor, the results should be even better. 

 

7.2 Reliability of heterogeneous processing through hardware and software co-designs in 

the Zynq-7000 

 

This section aims at complementing the previous one by performing a reliability and 

performance analysis of heterogeneous processing through hardware and software co-designs 

with different workload distributions between hardware and software. The novelty of this 

section is that now the PL part has embedded dedicated hardware cores instead of a soft-core 

processor, which implies in smaller execution times compared to the PS part. 

 

7.2.1 Case-study designs and resources and performance evaluations 

 

Based on Section 6.2, two benchmark algorithms were selected for this study: a data 

flow oriented 32x32 floating-point Matrix Multiplication (MxM) (XILINX, 2016a) and a 

control flow oriented 128-bit Advanced Encryption Standard (AES) (HARA et al., 2008). The 

selected output size (workload) is 32,768 bits (1024 values of 32-bit each) for the MxM and 

1024 bits (32 values of 32-bit each) for the AES. 

Aiming at generating different hardware and software co-designs, both algorithms 

were partitioned having portions running on the PS, i.e., one ARM Cortex-A9 core (hereafter 

shortened to only “processor”) and portions implemented in the PL, used in the form of a 

hardware accelerator. MxM algorithm was partitioned in two sets (set1 and set2) of matrix 

multiplication operations, while AES algorithm was partitioned with respect to its encode 

(enc) and decode (dec) functions. The AES algorithm is particularly interesting because the 

enc function takes 10 times more time than the dec function. Fig. 7.3 shows a generic 

representation of the case-study benchmark algorithms. 

Figure 7.4 shows the architecture developed for evaluating the case-study designs. The 

data transfer between the processor (PS) and the hardware design implemented in the PL part 

is performed through the processor’s Accelerator Coherency Port (ACP) and a BRAM 

protected with ECC. Besides the processor, the hardware design, the shared memory, and the 

peripherals needed to connect them, the architecture also has embedded a hardware block 
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(Control DUT) protected with TMR that monitors the system during the radiation experiments 

and sends diagnostic data to a computer. 

 

Figure 7.3 – Generic representation of the case-study benchmark algorithms. 

// SOFTWARE-ONLY VERSION 

setup_system() 

generate_golden_values_set1() 

generate_golden_values_set2() 

loop 

   wait_start_from_control_dut() 

   run_set1() 

   run_set2() 

   send_done_to_control_dut() 

end loop 

// HARDWARE-ONLY VERSION 

setup_system() 

generate_golden_values_set1() 

generate_golden_values_set2() 

loop 

   wait_start_from_control_dut() 

   send_input_a_to_hardware() 

   send input_b_to_hardware() 

   run_hardware() 

   wait until hardware_is_busy() 

   send_done_to_control_dut() 

end loop 

 

Figure 7.4 – Block diagram of the architecture developed for evaluating the case-study hardware and 

software co-designs in Zynq-7000. 

 

 

The use of the processor’s L1 cache is also considered. L2 cache was left disabled 

since its addition to the memory hierarchy severely affects the cross section of the processor, 

as observed in Section 5.2. The hardware designs in the PL were generated by High-Level 

Synthesis (HLS) directly from the original C language code with the Xilinx Vivado HLS tool. 
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Two different versions were generated for each set, one without any performance 

optimization and other highly optimized for performance, as investigated in Section 6.2.  

All the case-study designs are presented in Table 7.3. They are classified into 

workload distribution (how much of the algorithm is implemented in software and hardware), 

design configuration of the PS (L1 cache disabled or not), and the HLS-based hardware 

design (with or without optimization). The resources are given in terms of number of 

processors, LUTs, flip-flops, DSPs, BRAMs, and essential bits (PL configurations bits 

associated with the circuitry of the design). The performance is presented as number clock 

cycles. All hardware and software co-designs operate in the PS part at 667 MHz and in the PL 

part at 100 MHz. 

Data resources show that the more performance-optimized a hardware accelerator is, 

the more resources it uses (2.31 times for the MxM and 3.15 times for the AES in the best 

cases). However, the number of clock cycles are significantly reduced (83.18 times for MxM 

and 94.69 times for AES). This means that offloading the entire algorithm for the PL aiming 

to increase its parallelism at hardware level greatly increases the workload capability of the 

system. The best hardware and software co-designs in terms of acceleration for the MxM and 

AES are 10 and 14, when considering using cache L1, otherwise are versions 09 and 13, 

respectively. However, comparing the designs with distributed workload with the ones that 

run entirely in the PL, one can observe that the inherent sequential processing of the processor 

severely affects the execution time, mostly in the MxM algorithm, which is very data flow 

oriented. In addition, comparing the essential bits data with the obtained execution times, one 

can also observe that it is worth offloading the entire algorithm to the PL instead of distribute 

it between PS and PL. 
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Table 7.3 – Case-study hardware and software co-designs and their respective configurations, resource 

usage, and performance results. 
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7.2.2 Cross section, MWBF, and performance evaluation 

 

Radiation experiments were also carried out with heavy ions at Laboratório Aberto de 

Física Nuclear at Universidade de São Paulo (LAFN-USP), Brazil. The ion beams were 

produced and accelerated by the São Paulo 8UD Pelletron Accelerator, but now in a new 

beamline (AGUIAR et al., 2017). This new beamline is used to transport very low-flux, high 

uniformity, and large area heavy ion beams up to 28Si by defocusing and multiple scattering 

techniques using two gold foils and from 35Cl to 107Ag by a defocusing technique. These 

characteristics are required by the European standards (CARLIN et al., 2005) for radiation 

testing of electronic devices and to test the radiation hardness of devices to SEEs. The SEU 

events were observed using a 16O beam, with a primary energy of 39 MeV, which provides an 

effective LET on the active region of about 5.5 MeV/mg/cm² and penetration in Si of about 

24 μm. The average beam flux was maintained between 1.0x102 and 1.0x103 particles.cm-2.s-1 

in a 4.0 cm² beam area with an uniformity of about 93%. 

 

Figure 7.5 - Heavy ion experiment setup mounted at the new beam line of the LAFN-USP. 

 

 

A host computer monitored the experiments through a serial interface. If there were no 

differences in the results, the Control DUT sent an alive signal to the computer at each 

execution set. Otherwise, if differences are found, it sent the number of mismatches to the 

computer and then the Zynq-7000 is reset. Timeouts in the system were monitored through a 

watchdog circuit in the Control DUT. The host computer also acts as a watchdog to monitor 
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timeout occurrences in the Control DUT. In case of timeout, the Zynq-7000 is reset. Each 

experiment run was set by the total number of errors observed (50) at the system output. All 

other uncertain errors observed are considered in the errors bars. For the experiments, the 

package of an XC7Z020-CLG484 device was thinned to allow irradiated particles to penetrate 

the active region of the silicon. Results are presented in terms of total errors, which consider 

SDC errors (data errors detected by the application without system interruption) and SEFI 

errors (system crashes). 

The obtained SDC, SEFI, and TOTAL (sum of SDCs and SEFIs) dynamic cross 

sections for the MxM and AES algorithms are presented in Fig. 7.6 and 7.7. With regard to 

the PS-only designs (design versions 01 and 02), one can observe that enabling the L1 cache 

barely affects the cross section (difference of 28% and 2% for the MxM and AES, 

respectively). The nature of the algorithm (data or control flow oriented) and its execution 

time seems to directly affect the cross section of the system. With regard to the designs in 

which the entire algorithm is offloaded to the PL (design versions 03, 04, 05, and 06), one can 

observe that, for both algorithms, the cross section of the system is directly proportional to the 

PL’s resources usage. When there is hardware and software co-designs, one can observe that 

the lowest cross sections were achieved by enabling the L1 cache in the PS and using a 

hardware design without optimization in the PL (design version 08). This configuration is 

particularly interesting because it helps reducing the exposure time by enabling the L1 cache 

and the sensitive area by using a hardware design that occupies a smaller area. Moreover, one 

can observe that in the AES, the best cross section results were achieved by offloading the 

most time-consuming set (enc) to the PL (design versions 07, 08, 09, and 10). Note that for 

hardware and software co-designs, the interface and the amount of data exchange between PS 

and PL (and vice versa) play an important hole in the susceptibility too, explaining the 

average increase in cross section. 

The obtained MWBFs for the MxM and AES algorithms are presented in Fig. 7.8 and 

7.9. For both algorithms, the MWBF increase follows the execution time improvement, which 

in turn is obtained by offloading the workload to the PL and enabling the processor’s L1 

cache. 
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Figure 7.6 – SDC, SEFI, and TOTAL dynamic cross section results obtained for the MxM designs 

from radiation experiments. 
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Figure 7.7 – SDC, SEFI, and TOTAL dynamic cross section results obtained for the AES designs from 

radiation experiments. 
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Figure 7.8 – SDC, SEFI, and TOTAL MWBF results obtained for the MxM designs from radiation 

experiments. 
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Figure 7.9 – SDC, SEFI, and TOTAL MWBF results obtained for the AES designs from radiation 

experiments. 

 

 

 

 

A more direct comparison between the obtained dynamic cross sections and the 

performance of the designs can be performed through Eq. 6.2. As stated, the performance rate 
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relation states that whenever the speed-up is higher than the increase in cross section, the 

faster configuration computes a larger workload before experiencing a failure and, thus, the 

operational reliability of the system is higher. 

Fig. 7.10 and 7.11 compare the obtained dynamic cross section and performance rate 

for the MxM and AES, respectively. With regard to the MxM algorithm, one can observe that 

the designs with the best performance rates are versions 05 and 06 due to their significant 

improvement in execution time. With regard to the AES algorithm, one can observe that the 

designs with the best performance rates are versions 02, 03, 04, 05, and 08. Such result 

reveals that designs with very different architectures may present similar results due to a 

smaller cross section (design version 08) or execution time (design version 05). 

 

Figure 7.10 – Comparison between SDC, SEFI, and TOTAL dynamic cross sections and their 

respective performance rates for the MxM designs from radiation experiment results. 
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Figure 7.11 – Comparison between SDC, SEFI, and TOTAL dynamic cross sections and their 

respective performance rates for the AES designs from radiation experiment results. 
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7.3 Summary 

 

The reliability of systems based on hardware and software co-design seems to be 

inversely proportional not only to the device sensitivity, but also to the total exposure time. 

Thus, the next chapter aims confirming such statement and the obtained results through 

several fault injection campaigns in both PS and PL parts of Zynq-7000. As final a result of 

this thesis, the next chapter also expands the proposed flow in Section 6.2.1 for trying to 

estimate the reliability trend prior to radiation experiments of not only hardware-only designs, 

but also software-only designs and hardware and software co-designs.  
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8 PROPOSED RELIABILITY ANALYSIS FOR HARDWARE AND 

SOFTWARE CO-DESIGNS 

 

The reliability prediction of system designs through fault injection by emulation is a 

complex task due to several factors. In FPGAs (PL parts), in general, data from fault injection 

are more pessimistic than the ones from the radiation experiments, as presented in Section 

6.2.3. Such behavior is mainly guided by the fact that fault injection methodologies are more 

deterministic and give a very fine fault granularity, enabling to estimate the worst-case cross 

section of a design without considering side-effects, such as particle beam variations and fault 

masking by the design. Therefore, it is possible to determine precisely the exact number of 

bits that are critical and consider them in the estimated dynamic cross section. It is also worth 

noting that, in radiation experiments, the particle flux covers the whole architecture, while 

fault injection campaigns may be constrained to only the DUT. However, in COTS processors 

(PS parts), the fault injection behavior is generally the opposite in comparison with radiation 

experiments. This happens mainly because the end-users have no access to all resources of a 

COTS processor, which limits fault injection platforms to only a subset of available resources, 

such as the general-purpose registers and embedded memories, while ionizing particles are 

capable of hit on any resource of the device.  Another issue is related to the fact that, in COTS 

processors, faults are injected more at software level than at hardware level, which makes 

unfeasible the estimation of the dynamic cross section of a software, since the cross section 

metric is expressed in are units (cm²). 

In this context, since is very complex to precisely estimate in numbers the behavior of 

a system running on a COTS device under radiation, this chapter aims to expand the analysis 

flow proposed in Section 6.2.1 for estimating also the reliability trend prior to radiation 

experiments of not only hardware-only designs, but also hardware and software co-designs 

and software-only designs. 

 

8.1 Analysis flow 

 

Fig. 8.1 summarizes the proposed reliability analysis in a flow diagram. The hardware 

flow concepts are similar to the ones presented in Section 6.2.1. However, a parallel software 

flow was added to the main one for also considering software-only designs and hardware and 
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software co-designs. Moreover, additional metrics were adopted to make possible the merge 

between the hardware and software fault injection results.  

 

Figure 8.1 – Proposed reliability analysis flow for hardware and software co-designs. 

 

 

The input of the flow must be an algorithm written in C or C++ programming 

languages so that they can be synthesized by the synthesis tools adopted. The first step is the 

division of the algorithm source code for distributing the processing and the workload 

between PS and PL parts.  

The second step is the setup of the hardware and software parts. The portion of the 

code that will run on the PL has to be configured with pragmas optimizations to guide the 

HLS tool (Xilinx Vivado HLS) during the generation of the RTL code. The remaining portion 

of the code, the one that will run on the PS part, must be adapted so that the software can 

interface with the hardware design in the PL.  

The third step is the synthesis of each portion by the synthesis tools. Xilinx Vivado 

Design Suite and Xilinx SDK are used for generating the hardware and the software, 

respectively. Information about the usage of resources and performance are collected at this 

stage. 

The fourth step consists in carrying out the fault injection campaigns in both hardware 

and software (or only in one of them, in case of standalone hardware or software designs). 
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The fault injection platforms adopted are the ones previously described in the sections 4.2.1 

and 4.2.2. It is worth mentioning that the platforms are not integrated, thus fault injection 

campaigns in hardware and software must be performed independently, which can affect the 

final result. In addition, the software fault injection injects faults only in the processor’s 

register file. However, this limitation is minimized by the fact that every data must be loaded 

in registers to be processed. Concerning the size of a fault injection campaign, the hardware 

fault injection is limited by the number of configuration bits inside the DUT area, while the 

software fault injection is limited by the number of faults to be injected, which is defined by 

the user. This means that the higher the number of faults to be injected in software, the higher 

the confidence of the results. The results of this step are the numbers of SDC and SEFI errors 

in each part of the design. 

The fifth step consists in calculating the chosen reliability metrics. With regard to the 

hardware flow, the estimation of the dynamic cross section is still possible, since the 

methodology of analysis is the same of Section 6.2.1. However, this method is not applicable 

for software designs for two main reasons. First, it is practically impossible for an end-user 

obtaining the static cross section of a COTS processor, since it does not have access to the 

entire low-level processor hardware. Moreover, COTS processor tests are done with specific 

softwares, which means that they are not static and thus the resulting cross sections differ 

according to the software in use. Second, since the static cross section of the processor is not 

available and the faults are injected in a software context in the software designs (PS part), it 

is more meaningful to evaluate the probability that a fault in the system will result in an error 

in its final output than in terms of sensitive area. Therefore, AVF was chosen as the main 

resulting metric from the fault injection campaigns of the proposed reliability analysis.  

The total AVF (𝐴𝑉𝐹𝑡𝑜𝑡𝑎𝑙) of a hardware and software co-design is obtained by adding 

the hardware AVF (𝐴𝑉𝐹𝑃𝐿) and the software AVF (𝐴𝑉𝐹𝑃𝑆) resulting from the hardware and 

software fault injection campaigns, respectively. However, as well as previously observed for 

the cross section, the AVF also does not give information about the performance efficiency 

and operational reliability of the system. Therefore, MWBF was chosen as the main resulting 

metric of the proposed reliability analysis.   

The total MWBF (𝑀𝑊𝐵𝐹𝑡𝑜𝑡𝑎𝑙) of a hardware and software co-design is obtained by 

adding the hardware MWBF (𝑀𝑊𝐵𝐹𝑃𝐿) and the software MWBF (𝑀𝑊𝐵𝐹𝑃𝑆). It is worth 

mentioning that, since the AVF was chosen as the main resulting metric from the fault 

injections in the proposed reliability analysis, it replaced the cross section in the MWBF 

equation (Eq. 4.10), as shown in Fig. 8.1. As consequence, the MWBF values from fault 
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injections and radiation experiments will present differences of magnitudes when compared. 

However, the proposed reliability analysis flow aims to estimate the reliability trend of 

systems designs prior to radiation experiments and not the exact values to be obtained from 

them. 

The proposed reliability analysis flow also considers the performance rate metric 

previously introduced in Section 6.2.3 for comparing directly two designs in terms of 

execution time and reliability (AVF). As in the MWBF, the cross section was replaced by the 

AVF in the performance rate equation (Eq. 6.2), as shown in Fig. 8.1. The performance rate 

relation states that, whenever the speed-up is higher than the increase in cross section 

(
𝑡𝑡𝑜𝑡𝑎𝑙 0

𝑡𝑡𝑜𝑡𝑎𝑙 1
>  

𝐴𝑉𝐹𝑡𝑜𝑡𝑎𝑙 1

𝐴𝑉𝐹𝑡𝑜𝑡𝑎𝑙 0
), the faster configuration computes a larger workload before experiencing 

a failure and, thus, the operational reliability of the system is higher. 

 

8.2 Case-study designs 

 

The case-study designs chosen for evaluating the proposed reliability analysis flow are 

the same of Section 7.2.1. The benchmark algorithms chosen are a data flow oriented 32x32 

floating-point Matrix Multiplication (MxM) (XILINX, 2016a) and a control flow oriented 

128-bit Advanced Encryption Standard (AES) (HARA et al., 2008). The selected output size 

(workload) is 32,768 bits (1024 values of 32-bit each) for the MxM and 1024 bits (32 values 

of 32-bit each) for the AES. 

Aiming at generating different hardware and software co-designs, both algorithms 

were partitioned having portions running on the PS, i.e., one ARM Cortex-A9 core (hereafter 

shortened to only “processor”) and portions implemented in the PL, used in the form of a 

hardware accelerator. MxM algorithm was partitioned in two sets (set1 and set2) of matrix 

multiplication operations, resulting in ten different design versions. AES algorithm was 

partitioned with respect to its encode (enc) and decode (dec) functions, resulting in fourteen 

different design versions. As in the other chapters, the target device is the Xilinx Zynq-7000 

APSoC. 

With regard to the fault injection campaigns, the respective fault injection hardware 

blocks were added for injecting faults in the PS and PL parts, as illustrated in Fig. 8.2. 

However, they are not considered in any measurement, such as resource usage and 

performance.  
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Figure 8.1 – Block diagrams of the architectures developed with the hardware (a) and software (b) 

fault injectors embedded. 

 

 

8.3 Obtained results 

 

Table 8.1 presents the number of critical bits and AVF of the hardware part of each 

case-study design obtained from the hardware fault injection campaigns. Each hardware fault 

injection campaign was divided into two steps. The first step consisted of injecting faults only 

in the DUT area. The second step consisted of injecting faults in the peripheral hardware 

blocks, such as the AXI interconnects and DMA. It is worth noting that all the designs have 

the same peripheral blocks, which in somehow normalizes them. Moreover, since the design 

versions 01 and 02 do not have a hardware accelerator, the critical bits and AVF values 

presented in Table 8.1 are related to the peripheral blocks. These values are already included 

in the results of the other designs, which have a hardware accelerator beyond the peripheral 

blocks. 

Comparing the obtained results from fault injection with the number of configuration 

bits used in the PL, one can observe that a small fraction of the configuration bits (from 

0.98% to 3.32%) is, in fact, critical. The number of critical bits and, consequently, the AVF 

(obtained from Eq. 4.7), followed the resource usage increase, as already observed in Section 

6.2.2. 

Table 8.2 presents the AVF result of the software part of each case-study design 

obtained from the software fault injection campaigns in the processor’s register file. Aiming 

to modify as little as possible the algorithms, the software fault injection campaigns focused 

on injecting faults within their main loop (Fig. 7.3), since it is the most executed part of them 
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and, thus, the most exposed in a harsh environment. Each fault injection campaign injected 

25,000 bit-flips randomly on time and space. 

 

Table 8.1 – Number of critical bits and AVF of the hardware part of each hardware and software co-

design obtained from the hardware fault injection campaigns. 

Design version 
Critical bits AVF 

# SDC # SEFI # TOTAL (% of config. bits) SDC SEFI TOTAL 

MxM 

01 17820 6096 23916 (0.98) 0.01195 0.00409 0.01604 

02 17820 6096 23916 (0.98) 0.01195 0.00409 0.01604 

03 27615 60395 88010 (2.11) 0.06348 0.18834 0.03560 

04 27615 60395 88010 (2.11) 0.00655 0.00995 0.03560 

05 52332 74308 126640 (2.28) 0.01117 0.02443 0.03667 

06 52332 74308 126640 (2.28) 0.06348 0.18834 0.03667 

07 20586 50700 71286 (1.76) 0.00655 0.00995 0.02936 

08 20586 50700 71286 (1.76) 0.01117 0.02443 0.02936 

09 48451 50359 98810 (1.98) 0.03169 0.04375 0.03275 

10 48451 50359 98810 (1.98) 0.00655 0.00995 0.03275 

AES 

01 17820 6096 23916 (0.98) 0.01184 0.00405 0.01589 

02 17820 6096 23916 (0.98) 0.01184 0.00405 0.01589 

03 66726 39343 106069 (2.22) 0.02430 0.01433 0.03863 

04 66726 39343 106069 (2.22) 0.02430 0.01433 0.03863 

05 193045 73876 266921 (3.32) 0.04059 0.01553 0.05613 

06 193045 73876 266921 (3.32) 0.04059 0.01553 0.05613 

07 46293 32746 79039 (1.84) 0.01809 0.01280 0.03089 

08 46293 32746 79039 (1.84) 0.01809 0.01280 0.03089 

09 78210 40830 119040 (2.27) 0.02479 0.01294 0.03773 

10 78210 40830 119040 (2.27) 0.02479 0.01294 0.03773 

11 45810 32591 78401 (1.82) 0.01793 0.01276 0.03069 

12 45810 32591 78401 (1.82) 0.01793 0.01276 0.03069 

13 157720 63710 221430 (3.07) 0.03700 0.01494 0.05194 

14 157720 63710 221430 (3.07) 0.03700 0.01494 0.05194 

 

Software-only designs (design versions 01 and 02) presented the higher AVF SDC 

values on both algorithms tested. This behavior is mainly guided by the fact that the entire 

algorithm is processed on the processor, which increases the susceptibility of its data to SDCs. 

On the contrary, the software-only versions presented the lower AVF SEFI values on both 

algorithms tested, probably because the code (Fig. 7.3) for interfacing with the hardware part 

(hardware accelerator and DMA interface codes), which is quite substantial, is more 

susceptible to crashes than the original algorithm. 

With regard to the designs in which the entire algorithm is offloaded to the hardware 

part (design versions 03, 04, 05, and 06), results show that the SDC AVF values decreased 11 

times in average when compared with the software-only designs. This happens mainly 

because all the data processing is performed in hardware, which decreases the software 

susceptibility to SDCs. On the contrary, the AVF SEFI values of the designs increased 7.5  
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Table 8.2 – AVF of the software part of each hardware and software co-design obtained from the 

software fault injection campaigns. 

Design version 
AVF 

SDC SEFI TOTAL 

MxM 

01 0.16316 0.04506 0.20822 

02 0.17160 0.04503 0.21663 

03 0.01140 0.55511 0.56651 

04 0.01156 0.55646 0.56802 

05 0.01044 0.55586 0.56630 

06 0.01036 0.55646 0.56682 

07 0.01480 0.61166 0.62646 

08 0.01380 0.61174 0.62554 

09 0.01420 0.61166 0.62586 

10 0.01400 0.61110 0.62510 

AES 

01 0.13957 0.07697 0.21654 

02 0.13915 0.08093 0.22008 

03 0.01740 0.22214 0.23954 

04 0.01773 0.23307 0.25081 

05 0.01788 0.22250 0.24038 

06 0.01656 0.20454 0.22110 

07 0.02512 0.24482 0.26995 

08 0.02368 0.23366 0.25735 

09 0.02400 0.24458 0.26859 

10 0.02407 0.26683 0.29090 

11 0.02796 0.24746 0.27543 

12 0.02727 0.24605 0.27333 

13 0.02648 0.24718 0.27367 

14 0.02604 0.24722 0.27327 

 

times in average when compared with the software-only designs. This result reinforces the 

last statement of the previous paragraph, which mentions that the code for interfacing with the 

hardware part is more susceptible to crashes than the original algorithms. 

With regard to the designs with distributed workload between software and hardware 

(design versions from 07 to 14), the obtained AVF SDC values are in accordance with the 

ones from the other design versions, since half of the algorithms are executed on the 

processor. Thus, it is understandable that they are lower than the ones of the software-only 

designs, but higher than the ones of the designs with the entire algorithm offloaded to the 

hardware. Concerning the AVF SEFI values, one can notice that they are slight higher than 

the ones of the designs with the entire algorithm offloaded to the hardware. This happens 

because the softwares of these versions are the most complex of all, since they consist of part 

of the original algorithm plus the code for interfacing with the hardware part embedded, while 

the other ones have one part or another. It is worth mentioning that the interface code with a 

hardware part is the same for any design that has a hardware accelerator in the PL, 
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independently if it implements one set of the algorithm or both. The interface consists always 

of one input stream and one output stream. 

Fig. 8.2 and 8.3 compare the total SDC, SEFI, and TOTAL (SDC + SEFI) AVF values 

of the MxM and AES benchmark designs obtained from both hardware and software fault 

injection campaigns with the respective dynamic cross sections obtained from radiation 

experiments. By comparing the obtained AVF and dynamic cross section trends, one can 

clearly observe that there are differences in the obtained values from fault injections and 

radiation experiments, as also observed in Section 6.2.3 for hardware-only designs. The 

reasons can be quite diverse, such as: in the PL part, faults are injected only in configuration 

bits related to CLBs (LUTs, user FFs, and interconnections) and clock distribution 

interconnections, and not in the BRAMs; in the PS part, faults are only injected into the 

processor's register file, and not in the other functional blocks and memories of the processor; 

and, in case of the radiation experiments, the particle beam and flux may present variations 

and the probability of a particle hits the PS or PL parts is different, since the PS occupies 

almost only one quarter of the Zynq-7000's die. However, in most of the cases, mainly in the 

SDC and SEFI ones, it is still possible to observe the reliability trend of the designs. Results 

also reveals that it is mandatory to consider both SDC and SEFI values separately, since the 

TOTAL values may mask important data about the designs, such as the behavior of the SEFI 

AVF and dynamic cross section in the MxM benchmark. 

 

Figure 8.2 – Comparison between the total SDC, SEFI, and TOTAL (SDC + SEFI) AVF values 

obtained from both hardware and software fault injection campaigns with the respective dynamic cross 

sections obtained from radiation experiments for the MxM benchmark. 
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Figure 8.3 – Comparison between the total SDC, SEFI, and TOTAL (SDC + SEFI) AVF values 

obtained from both hardware and software fault injection campaigns with the respective dynamic cross 

sections obtained from radiation experiments for the AES benchmark. 
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Fig. 8.4 and 8.5 compare the total SDC, SEFI, and TOTAL (SDC + SEFI) MWBF 

values of the MxM and AES benchmark designs obtained from both hardware and software 

fault injection campaigns with the respective MWBF values obtained from radiation 

experiments. The MWBF values obtained from fault injections considered the same particle 

flux experienced by the designs during the radiation experiments of Section 7.2. In those 

experiments, the particle flux varied between 1.0x102 and 1.0x103 particles.cm-2.s-1. The 

execution time of each design was already specified in Table 7.3. 

The comparison between the fault injections and radiation experiments results shows 

clearly that there are differences in the obtained values, as expected and mentioned in Section 

8.1. However, results also show that the proposed reliability analysis is capable of estimating 

the MWBF trend of different hardware and software co-designs for the same benchmark 

application with a considerably precision. This verifies the effectiveness of the proposed 

analysis, since the MWBF metric was chosen as the main resulting metric of it. 
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Figure 8.4 – Comparison between the total SDC, SEFI, and TOTAL (SDC + SEFI) MWBF values 

obtained from both hardware and software fault injection campaigns with the respective MWBF 

values obtained from radiation experiments for the MxM benchmark. 
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Figure 8.5 – Comparison between the total SDC, SEFI, and TOTAL (SDC + SEFI) MWBF values 

obtained from both hardware and software fault injection campaigns with the respective MWBF 

values obtained from radiation experiments for the AES benchmark. 

 

 

 

 

Fig. 8.6 and 8.7 compare the total SDC, SEFI, and TOTAL (SDC + SEFI) 

Performance rate values of the MxM and AES benchmark designs obtained from both 

hardware and software fault injection campaigns with the respective Performance rate values 

obtained from radiation experiments. In general, results from fault injections and radiation 
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experiments show a good agreement, reinforcing the effectiveness of the proposed reliability 

analysis. 

 

Figure 8.6 – Comparison between the total SDC, SEFI, and TOTAL (SDC + SEFI) Performance rate 

values obtained from both hardware and software fault injection campaigns with the respective 

MWBF values obtained from radiation experiments for the MxM benchmark. 
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Figure 8.7 – Comparison between the total SDC, SEFI, and TOTAL (SDC + SEFI) Performance rate 

values obtained from both hardware and software fault injection campaigns with the respective 

MWBF values obtained from radiation experiments for the AES benchmark. 

 

 

 

 

8.4 Summary 

 

Results show that, in general, the estimation of the reliability trend of hardware and 

software co-designs, hardware-only designs, and software-only designs, through the proposed 
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flow is a suitable method for estimating their behavior before radiation experiments. 

Moreover, fault injection results also reinforce the need of taking into account each design 

option available and all the parameters of the system involved, such as the cross section/AVF, 

execution time, and workload. 

Several improvements can be performed aiming to increase the confidence of the fault 

injection platforms and the accuracy of the flow. In the PL (hardware) side, faults can also be 

injected in the BRAMs. In the PS (software) side, the software fault injector can be updated to 

consider injecting faults in the processor’s configuration registers and embedded memories. In 

addition, the integration of both fault injectors would certainly improve the precision of the 

results. 
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9 CONCLUDING REMARKS 

 

As observed, modern commercial APSoCs offer a plethora of advantages and are very 

attractive for safety-critical markets. However, their high complexity and density increase the 

susceptibility of systems implemented in them to noises that are present in the environment, 

such as the ones caused by the radiation. In this thesis, a deep investigation of the radiation 

effects on APSoCs was performed together with an investigation about the correlation 

between hardware and software resources sensitivity in the overall system performance. As a 

final result, a reliability analysis flow was proposed aiming to estimate the reliability trend of 

hardware and software co-designs, hardware-only designs, and software-only designs 

implemented in APSoCs. 

The next sections summarize the main contributions of this thesis, present future 

works, and list the publications of the author during his Ph.D. 

 

9.1 Main contributions 

 

9.1.1 Extensive review about APSoCs, possible radiation effects on them, and the methods 

and metrics for evaluating them under radiation 

 

This thesis presented that programmable devices have evolved very rapidly in the last 

decade, mainly because of performance pressure in the high-volume commercial marketplace. 

As a consequence, several APSoC devices were introduced in the market providing higher 

programmable flexibility and overall system performance at lower costs than standalone 

processors and FPGAs. However, the high complexity and density of these devices increase 

the system’s susceptibility to noises that are present in the environment, such as the ones 

caused by radiation. 

With regards to radiation effects, this thesis made it clear that state-of-the-art complex 

devices such as APSoCs have created many challenges for the radiation effects field. That is 

because radiation-induced failures in such devices and architectures may result in a complex 

chain of effects due to their heterogeneous nature. Consequently, additional methodologies 

and metrics become necessary for estimating the reliability of such devices, such as the 

MWBF. The MWBF metric identifies the workload that can be correctly computed by the 

system before experiencing a failure. Thus, this thesis supports that the MWBF must always 
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be considered in the analysis of APSoC-based systems, since it considers that the capability of 

a system to provide correct data depends on several factors, such as the execution time and 

workload of the system, and not only of the sensitive area (cross section). It is also worth 

highlighting that, as far as it is known, this is the first time that the possible radiation effects 

on APSoCs are listed together in one single document. 

 

9.1.2 Original static data about Xilinx Zynq-7000 under radiation 

 

This thesis presented original static data about several hardware parts of Xilinx Zynq-

7000 under heavy ion and proton irradiations. The CRAM, BRAM, OCM, and L2 cache were 

tested. Some of them were also tested under different conditions. Although results revealed 

that there are not significant differences among their cross sections, the obtained results are 

important for guiding designers during the implementation of a shared memory between the 

PS and PL parts of Zynq-7000, for example). 

 

9.1.3 Original dynamic analysis and data about Xilinx Zynq-7000 under radiation 

 

Dynamic experiments showed that there are several choices of architectures and 

resources to be chosen when implementing a system on an APSoC. Moreover, results also 

showed that there are logic resources that can increase or decrease the vulnerability of an 

entire system to failures.  

In the PS part, dynamic tests consisted of different cache schemes (L1 and L2 caches) 

aiming to evaluate the impacts of the cache scheme on the sensitiveness of the processor 

under heavy ions. Cross section results showed that the addition of any cache memory to the 

memory hierarchy affects the sensitivity of the processor significantly. However, regardless 

the smaller cross section imposed by disabling all caches, its execution time is so high not to 

be compensated by the benefit in terms of performance. Thus, for the other configurations, 

despite the increase in the complexity and sensitive area, the smaller the execution time, the 

bigger the MWBF. 

In the PL part, for the first time, dynamic tests investigated the trade-offs of different 

HLS-based designs implemented into an Artix-7 FPGA (equivalent to the Zynq-7000’s PL) in 

terms of not only resource utilization and performance, but also reliability, by analyzing their 

behaviors under SEUs and comparing them to a standard processor-based implementation. 

Results showed that the influence of HLS optimizations in the dynamic cross section of the 
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designs is low when compared to their performance enhancement, which contributed 

significantly to increase the MWBF and the performance rate of them. 

This thesis also investigated for the first time the impact of using both PS and PL parts 

of Xilinx Zynq-7000 APSoC in the overall system failure rate. Different memory 

organizations, communication schemes, and computing modes were considered for building 

hardware and software co-designs. Results showed that the reliability of systems based on 

hardware and software co-design seems to be inversely proportional not only to the device 

sensitivity but also to the system execution time. 

 

9.1.4 Reliability analysis flow for hardware-only designs, software-only designs, and 

hardware and software co-designs 

 

The final result of this thesis was a methodology flow to estimate the reliability trend 

of software-only, hardware-only, and hardware and software co-designs based on fault 

injection campaigns. The main objective was to accelerate the search for the design with the 

best trade-off between performance and reliability, i.e. the design that provides a performance 

enhancement higher than the sensitivity increase. Results showed that, in general, the 

estimation of the reliability trend of software-only, hardware-only, and hardware and software 

co-designs through the proposed flow is a suitable method for estimating their behavior 

before radiation experiments. 

 

9.2 Future works 

 

9.2.1 Completing the static measurements of Zynq-7000 

 

Additional heavy ion and proton experiments can be performed to complete the static 

data results of the PS part and for help refining the proposed reliability analysis flow. 

However, obtaining the static cross section of hardware blocks of a processor, such as the 

processor’s register file and L1 cache, is a complex task, since the entire device is irradiated 

and the static test of these blocks are, in fact, semi-static, which certainly affects the final 

results. An interesting approach to work around this problem is to perform laser test 

campaigns for evaluating the static cross section of each memory block separately, since laser 

tests provide a high level of accessibility to locate the circuit elements where faults are 
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injected. The small laser spot and precise beam localization characteristics allow sensitive 

device nodes to be pinpointed with submicron accuracy without affecting the entire device. 

 

9.2.2 Improving the reliability analysis flow 

 

Several improvements can be performed aiming to increase the confidence of the fault 

injection platforms and the accuracy of the flow. In the PL side, faults can also be injected in 

the BRAMs. In the PS side, the software fault injector can be updated to consider injecting 

faults in the processor’s configuration registers and embedded memories. In addition, the 

integration of both fault injectors would certainly improve the precision of the results. 

 

9.2.3 Analyzing the use of fault-tolerant techniques in APSoCs 

 

The use of fault-tolerant techniques can also be evaluated. In fact, this thesis motivated 

the beginning of three ongoing works, which are the following: 

 The exploration of the use of dual-core lockstep as a fault tolerance solution to 

increase the dependability in hard-core processors embedded in COTS 

APSoCs. As a case study, it was designed and implemented an approach based 

on lockstep to protect the dual-core ARM Cortex-A9 processor embedded into 

the Xilinx Zynq-7000. Experimental results show the effectiveness of the 

proposed approach in mitigating around 91% of the bit-flips injected in the 

processor’s registers. It was also observed that the performance overhead 

depends on the application size, the number of checkpoints performed, and the 

checkpoint and rollback routines. 

 The use of TMR at processor’s instruction level. The VAR3Ra is a software-

only technique capable of recovering from errors, specially designed for the 

ARM-v7 architecture (ARM Cortex-A9). The technique is based on the 

detection technique VAR3 (CHIELLE et al., 2016). Each operation, data, or 

register has two replicas, which are independent of the original, providing both 

spatial and temporal redundancy/protection. Due to the lack of enough 

available registers to apply software triplication in the ARM-v7 architecture, 

part of an embedded memory is used as the third register (second replica). 

 The use of TMR in hardware accelerators designs described in C 

programming language and synthesized by HLS. A setup composed of a soft-
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core processor and a matrix multiplication design protected by TMR and 

embedded into an SRAM-based FPGA was analyzed under accumulated bit-

flips in its configuration memory bits. Different configurations using single 

and multiple inputs and output workload data streams were tested. Results 

show that by using a coarse grain TMR with triplicated inputs, voters, and 

outputs, it is possible to reach 95% of reliability by accumulating up to 61 bit-

flips and 99% of reliability by accumulating up to 17 bit-flips in the 

configuration memory bits. These numbers imply in an MTBF of the coarse 

grain TMR at ground level from 50% to 70% higher than the MTBF of the 

unhardened version for the same reliability confidence. 

Another fault-tolerant technique that could be interesting to evaluate in an APSoC 

context is the use of scrubbing in the configuration memory of the PL and configuration 

registers of the PS. Scrubbing would avoid the accumulation of bit-flips and could reduce the 

occurrence of SDCs and SEFIs drastically. 

 

9.2.4 Evaluation of other APSoCs 

 

Similar APSoCs to Xilinx Zynq-7000, such as Microsemi SmartFusion and 

SmartFusion2 and Altera Cyclone V can be easily evaluated by using the evaluation 

methodology adopted in this thesis. In fact, Microsemi SmartFusion2 has already started 

being evaluated and a work presenting the first results was already approved for publication. 

Finally, it is also worth mentioning that the proposed reliability analysis flow is 

capable of being generic and extendable to other APSoCs if slight adjustments are performed. 
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