
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE ENGENHARIA DE COMPUTAÇÃO

RENNÊ SILVA DA SILVA

Using Software Optimization Techniques and
Exploiting Hardware Capabilities to Speed-Up

BLSTM Neural Network on CPUs

Work presented in partial fulfillment
of the requirements for the degree of
Bachelor in Computer Engeneering

Advisor: Prof. Dr. Bruno Castro da Silva
Coadvisor: M. Sc. Vladimir Rybalkin

Porto Alegre
July 2017

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Rui Vicente Oppermann
Vice-Reitora: Profa. Jane Fraga Tutikian
Pró-Reitor de Graduação: Prof. Vladimir Pinheiro do Nascimento
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do Curso de Engenharia de Computação: Prof. Renato Ventura Bayan Hen-
riques
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“There is no path to happiness.

Happiness is the path.”

— ABRAHAM JOHANNES MUSTE

ACKNOWLEDGMENTS

First of all, I need to thank my family, especially my mother Ema Rosa, my father

Carlos Renato and my sister Renata. They are the strongest pillar of my structure and

without them, I would probably never get here. They support me on all my way, giving me

everything I’ve needed and always encouraging me to move forward. The most important

thing I’ve learned from them is education; not a scholar or academic education, but the

most important one: moral education. My family always taught me valuable lessons and

thanks to them all the care, affection and love they give to me will be passed on to the

people who I will meet on my way.

Second, I would like to express my enormous gratitude to M.Sc. Vladimir Ry-

balkin for guidance, patience and lots of useful insights provided during this work, be-

sides for sharing his vast knowledge. I would like to thank Prof. Dr.-Ing. Norbert Wehn

and Taisy Weber by the opportunity of the exchange program in Kaiserslautern, Germany.

They allowed me to live one of the most important experiences of all my life. My grat-

itude to all the staff of the Microelectronic Systems Design Research Group from TU

Kaiserslautern for receiving me in an environment where I could feel at home.

I would like to thank all professors of Universidade Federal do Rio Grande do Sul

(UFRGS) and structure provided by this university. Besides the UFRGS professors, my

gratitude to all my teachers/professors during my way, especially the good ones. They are

at some point, part of my personality.

Another important acknowledgment is to all my friends, especially for those who

have lived with me for longer periods of time: my colleagues at ADP and colleagues of

the exchange program in Germany.

During this year, Prof. Dr. Bruno Castro da Silva helped me a lot as advisor. He

really took part in this work. His knowledge, guidance, interest, participation, concern,

meaningful insights and support made this graduation work possible and less stressful.

My enormous gratitude to him!

Finally, thanks to my girlfriend Bruna Pinzon that with all her dedication, affection

and love helped me and encouraged me to move forward.

ABSTRACT

Many current applications benefit from using neural networks to solve machine learn-

ing problems, since they often outperform other conventional approaches both in terms

of accuracy and robustness. However, training and deploying high accuracy networks

sometimes requires using complex neural networks with many weights. This has a direct

impact on the time needed to train and run such networks since these procedures involve

intensive computations and many memory accesses. Such high processing costs may be a

challenging burden even to modern computational platforms such as multi-cores and vec-

tor units. Although GPUs can be used in order to improve runtime, they are not always

the best option—small networks, for instance, may not benefit from GPUs, and GPUs

may not always be available in simpler devices. This graduation work introduces and

demonstrates the efficacy of many software optimization techniques that allow for neu-

ral networks to fully benefit from the capabilities of CPUs without compromising their

accuracy. We evaluate the proposed optimization techniques using a Bidirectional Long

Short-Term Memory (BLSTM) neural network to solve an Optical Character Recognition

(OCR) problem. Different architectures (Intel and ARM CPUs), memory access patterns,

parallelization schemes, linear algebra high-performance libraries, numerical representa-

tions, lookup tables and vectorization (SSE, AVX and NEON) were taken into account

to specify optimization strategies that allow for improvements in the runtime of the net-

work. Finally, we present performance comparisons between different implementations

of a BLSTM, both in terms of runtime and energy consumption, and show that the imple-

mented optimizations improve runtime by a factor of 9 (when compared to an optimized

floating-point baseline) while undergoing negligible loss of accuracy.

Keywords: Recurrent Neural Networks. BLSTM. Software Optimization Techniques.

Improving Runtime. Energy Consumption Reduction. Parallel and High-Performance

Computing. SSE, AVX, NEON Intrinsics.

Usando Técnicas de Otimização de Software e Explorando Capacidades de

Hardware para Acelerar Redes Neurais BLSTM em CPUs

RESUMO

Muitas aplicações atuais se beneficiam ao usar redes neurais para solucionar problemas

de aprendizado de máquina, visto que elas frequentemente superam outras abordagens

convencionais tanto em termos de acurácia e robustez dos resultados. Contudo, algumas

vezes, treinar e executar redes com alta acurácia requer o uso de redes neurais complexas

com muitos pesos. Isto tem um impacto direto no tempo necessário para treinar e executar

uma rede neural, visto que estes procedimentos envolvem computação intensa e muitos

acessos à memória. Tais altos custos de processamento podem ser uma carga computa-

cional desafiadora até mesmo para plataformas computacionais modernas tais como as

que possuem vários núcleos e unidades vetoriais. Apesar de GPUs poderem ser usadas

a fim de melhorar tempo de execução, elas nem sempre são a melhor opção—redes pe-

quenas, por exemplo, podem não se beneficiar do uso de GPUs além de nem sempre elas

estarem disponíveis em dispositivos mais simples. Este trabalho de graduação introduz e

demonstra a eficácia de várias técnicas de otimização de software que permitem que redes

neurais se beneficiem totalmente das capacidades de CPUs sem comprometer sua acurá-

cia. Nós avaliamos as técnicas de otimização propostas ao usar uma rede neural BLSTM

para resolver um problema de Reconhecimento Ótico de Caracteres. Arquiteturas dife-

rentes (CPUs Intel e ARM), padrões de acesso a memória, esquemas de paralelização,

bibliotecas de alta performance para álgebra linear, representações numéricas, lookup ta-

bles e vetorização (SSE, AVX e NEON) foram levadas em consideração neste trabalho

para especificar estratégias que permitem melhorias no tempo de execução da rede. Fi-

nalmente, nós apresentamos uma comparação entre diferentes implementações de uma

BLSTM tanto em termos de tempo de execução quanto de consumo de energia e mostra-

mos que as otimizações implementadas melhoram o tempo de execução por um fator de

9 com perda insignificante de acurácia.

Palavras-chave: Redes Neurais Recorrentes. BLSTM. Técnicas de Otimização de Soft-

ware. Otimização de Tempo de Execução. Redução de Consumo de Energia. Computa-

ção Paralela e de Alta Performance. Funções Intrínsecas SSE, AVX e NEON..

LIST OF ABBREVIATIONS AND ACRONYMS

CPU Central Processing Unit

GPU Graphics Processing Unit

ARM Advanced RISC Machine

LSTM Long Short-Term Memory

BLSTM Bidirectional Long Short-Term Memory

NN Neural Network

ANN Artificial Neural Network

RNN Recurrent Neural Network

BRNN Bidirectional Recurrent Neural Network

CNN Convolutional Neural Network

OCR Optical Character Recognition

SIMD Single Instruction Multiple Data

SSE Streaming SIMD Extensions

AVX Advanced Vector Extensions

NEON Advanced SIMD Extension for ARM CPUs

BLAS Basic Linear Algebra Subprogram

ALU Arithmetic Logic Unit

CTC Connectionist Temporal Classification

TDP Thermal Design Power

LIST OF FIGURES

Figure 2.1 Artificial Neural Network ..18
Figure 2.2 A recurrent neural network and its unrolling over time.................................19
Figure 2.3 LSTM Cell Structure ...22
Figure 2.4 Single instruction, multiple data ..26
Figure 2.5 Size of the new registers added by SSE and AVX instruction set extensions27

Figure 3.1 Runtime and energy consumption comparison between a dedicated-hardware
and optimized software implementations of a BLSTM..31

Figure 4.1 BLSTM implementation..36
Figure 4.2 Example of the BLSTM execution and output ..37
Figure 4.3 Runtime measurements of the main functions of the code............................38
Figure 4.4 Runtime measurements of specific functions of the neurons39
Figure 4.5 Input-level parallelization ...41
Figure 4.6 Threads creation example with OpenMP ..41
Figure 4.7 Neuron-level parallelization ..43
Figure 4.8 Allocation of the weights used by the LSTM cells dot products before

weight aggregation..44
Figure 4.9 Weights aggregation in a single vector, instead of using four different

weights for each hidden layer ...44
Figure 4.10 Loop unrolling example...46
Figure 4.11 Eigen dot product example ..47
Figure 4.12 Scaling the weights and images...49
Figure 4.13 Initializing lookup table operations ...50
Figure 4.14 Example of 16-byte alignment of a memory block52
Figure 4.15 Vector addition example with SSE intrinsic function..................................52
Figure 4.16 Dot product with SSE2 intrinsic functions ..53
Figure 4.17 Integer implementation of dot product function with SSE intrinsics55
Figure 4.18 Integer implementation of dot product function with AVX intrinsics56
Figure 4.19 Integer implementation of dot product function with NEON intrinsics58

Figure 6.1 Runtime of a floating-point BLSTM implementation under different op-
timization techniques on the Intel i7-4500U @ 3.0 (turbo) architecture64

Figure 6.2 Runtime of an integer BLSTM implementation under different opti-
mization techniques on the Intel i7-4500U @ 3.0 (turbo) architecture66

Figure 6.3 Runtime of an integer BLSTM implementation using lookup tables on
the Intel i7-4500U @ 3.0 (turbo) architecture ..67

Figure 6.4 Complete runtime comparison of floating-point and integer BLSTM im-
plementations on an Intel i7-4500U @ 3.0 (turbo) architecture67

Figure 6.5 Runtime comparison of floating-point and integer-based BLSTM im-
plementations under the main optimization techniques, using just offline par-
allelization on a Xeon E5-2670 v3 @ 3.1 GHz (turbo) architecture68

Figure 6.6 Runtime of floating-point and integer BLSTM implementations under
the main configurations of software optimization techniques on an ARM Cortex-
A53 @ 1.2 GHz architecture ..69

Figure 6.7 Runtime of floating-point and integer BLSTM implementations under
the main configurations of software optimization techniques on an ARM Cortex-
A9 @ 800MHz..70

Figure 6.8 Runtime vs energy consumption of the main optimized configurations
of the BLSTM, on all architectures...71

Figure A.1 Header file to use lookup tables for the neuron activation functions............78
Figure A.2 C++ source file implementing functions to use lookup tables instead of

regular neuron activation functions...79

LIST OF TABLES

Table 2.1 The reference CPU architectures used in this work ..25

Table 4.1 General information about the baseline BLSTM implementation35

CONTENTS

1 INTRODUCTION...13
1.1 General Objective ...16
1.2 Outline..16
2 THEORETICAL BACKGROUND...17
2.1 Neural Networks ...17
2.1.1 Recurrent Neural Networks ...19
2.1.2 LSTM and BLSTM Neural Networks ...20
2.2 Optical Character Recognition..23
2.3 String Comparison Algorithms ...24
2.3.1 Levenshtein Distance ...24
2.4 CPU Architectures and Instruction Set Extensions...25
2.4.1 Streaming SIMD Extensions (SSE) ...26
2.4.2 Advanced Vector Extensions (AVX)..27
2.4.3 NEON Advanced SIMD Architecture Extension ..28
3 RELATED WORK ...29
3.1 Accelerating Neural Networks via Dedicated Hardware29
3.2 Accelerating Neural Networks via Software-Only Optimizations31
3.3 Accelerating Neural Networks via Software Optimizations and Hardware

Capabilities ..32
4 OPTIMIZATION TECHNIQUES FOR NEURAL NETWORKS.........................34
4.1 Baseline BLSTM Implementation...34
4.1.1 Step 1: Data Structure Allocation and Loading...35
4.1.2 Step 2: Computing Neural Network Outputs...35
4.1.3 Step 3: Metrics Gathering/Performance Evaluation ..37
4.2 Identifying Bottlenecks in the Baseline BLSTM Implementation......................38
4.3 Software Optimization Techniques ...39
4.3.1 Parallelization Scenarios ..40
4.3.1.1 Input-level Parallelization (Offline) ..40
4.3.1.2 Neuron-level Parallelization (Online) ...42
4.3.2 Hidden Layers Aggregation ...42
4.3.3 Memory Allocation and Access...43
4.3.4 Loop Unrolling...45
4.3.5 Use of High-Performance Libraries...46
4.3.6 Precision Reduction ...47
4.3.7 Lookup Tables for Activation Functions..48
4.4 Hardware Dependent Optimization Techniques..51
4.4.1 SSE Intrinsic Functions ...52
4.4.2 AVX Intrinsic Functions ..54
4.4.3 NEON Intrinsic Functions ...57
5 EXPERIMENTAL METHODOLOGY ..59
5.1 Evaluation Problem ..59
5.2 Comparisons..59
5.3 Evaluation Metrics..60
5.3.1 Accuracy ..60
5.3.2 Runtime..60
5.3.3 Energy Consumption ...61
5.4 Compilation Settings for Experiments..62

6 RESULTS...63
6.1 BLSTM runtime on Intel architectures ..63
6.2 BLSTM runtime on ARM architectures...68
6.3 Runtime and energy consumption on Intel and ARM architectures70
7 CONCLUSION ...73
7.1 Future Work ..75
REFERENCES...76
APPENDIX A — C++ IMPLEMENTATION OF LOOKUP TABLE......................78

13

1 INTRODUCTION

Large-scale neural networks, with thousands or millions of weights, are currently

being deployed in applications to achieve super-human accuracy. However, training and

running such networks is computationally and memory expensive since these procedures

involve costly mathematical operations and many memory accesses. Such operations

could be run in parallel, in GPUs, thereby achieving a considerable computation speed-

up; this is possible since GPUs usually have more resources and faster memory band-

width, besides providing a better architecture to manipulate vectors. However, affordable

and powerful GPUs are not always available for deployment, due to a variety of reasons

including cost, component reliability, and programming complexity (VANHOUCKE; SE-

NIOR; MAO, 2011). The overhead of launching GPU kernels and transferring data be-

tween the CPU and GPU, for instance, cannot always be amortized over the execution

time of some workloads, according to the size of the data (batch size) that must be of-

floaded. With this in mind, we show that software optimization techniques and hard-

ware capabilities of traditional CPUs can be used and result in significant scalability and

performance improvements. Some of the techniques applied in this work are not new

to researchers working in high-performance computing, but when they are combined as

presented in this work, result in new neural network development methods that provide

considerable runtime and energy consumption improvements. We also show that using

specific hardware capabilities of a target architecture results in expressive runtime im-

provements even compared to the use of optimized high-performance BLAS libraries.

To develop and evaluate the contributions presented in this work, we will con-

sider the use and optimization of a Bidirectional Long Short Term-Memory (BLSTM)

neural network designed for high-accuracy Optical Character Recognition (OCR), when

applied to old German text (Fraktur). Optical Character Recognition is the conversion

of printed or handwritten text images into machine encoded text. It is a building block

of many important visual recognition processes such as data mining, machine translation

and text-to-speech translations. BLSTM neural networks are a variant of the Long Short-

Term Memory (LSTM) architecture, which is known to often outperform other types of

approaches in terms of accuracy and robustness of the results on the task of character

recognition (RYBALKIN et al., 2017), (BREUEL et al., 2013), (AFZAL et al., 2015),

(GRAVES, 2008), (HAYKIN, 1999) and many other tasks.

BLSTM neural networks are Recurrent Neural Networks (RNNs) that are known

14

to perform well when processing data with a sequential or temporal characteristic, such

as sequences of letters in an image for OCR and sequences of wave forms for speech

recognition, where the identification of a given word is made easier by taking into account

the words and sounds that preceded it. BLSTMs achieve this capability by implementing a

memory-like functionality, capable of preserving information from previous outputs of an

input signal to the network as part of an internal state. In the context of OCR applications,

BLSTMs are an appropriate machine learning algorithm since they allow for the network

to consider both preceding and following characters in an image, when performing the

transcription of a specific part of a text.

There are many challenges involved in developing an efficient software implemen-

tation of a BLSTM. A first challenge is the high memory bandwidth needed to transfer

network weights from memory to computational units (e.g. ALU). Some characteristics

of BLSTMs make it difficult to efficiently implement them in terms of better memory

usage: first, they have recurrent connections, which makes it harder to parallelize the

computation of their outputs; secondly, BLSTMs differ from RNNs in that they have four

additional gates to control the data flow within a neuron, which has an impact in the

amount of data that needs to be loaded and processed by each individual neuron; thirdly,

BLSTMs, unlike classic neural network architectures, read input data in two directions:

forward and backward. This means that the hidden layer of the network needs to be dupli-

cated, which has a direct impact on the amount of memory needed to compute the output

of the network. In this work we propose to deploy a series of optimization techniques

over a baseline BLSTM implementation in order to overcome these difficulties; the tech-

niques are: 1) rearrange weighs in memory and use new access patterns that allow us to

avoid a duplication of the hidden layer; 2) rearrange weights in memory to have full data

vectors in contiguous memory, making better use of cache locality; 3) reduce the memory

required for intermediate results, which can be high due to the fact that BLSTMs have

recurrent connections; and 4) tolerate a small reduction in the accuracy of the network by

reducing the numerical precision of the weights that compose it.

A second challenge in efficiently implementing BLSTMs is the high complexity

of each LSTM cell structure, which includes activation functions and multiple multiplica-

tive units making use, in particular, of expensive dot product algebraic operations. In

order to speed up the baseline implementation of BLSTM that we consider in this work,

we suggest to explore runtime improvements by 1) making use of sequential data vec-

tors for processing high-dimensional inputs; 2) performing loop unrolling of dot product

15

operations; 3) using BLAS library for more efficient dot product operations. Although

these standard optimization techniques allow us to accelerate the relevant algebra opera-

tions and result in better performance, we aim to further accelerate the implementation of

dot products by modifying a baseline BLSTM implementation by also exploiting specific

hardware capabilities. We propose, for instance, to do so by allowing more data to be

processed by a same instruction, using: 4) SSE and AVX intrinsic functions (for Intel

architectures); and 5) NEON intrinsic functions (for ARM architectures). And finally, we

intend to accelerate BLSTMs by 6) applying lookup tables to the neuron activation func-

tions, in order to replace runtime-intensive mathematical functions with simpler arrays

indexing operations while tolerating a small decrease in accuracy.

To parallelize the neural network, we take into consideration two common sce-

narios of visual recognition mobile applications: one where the tasks are offloaded to the

cloud to be run in high-performance machines, and another where the tasks run locally on

an embedded processor. The second scenario has an important concern: energy consump-

tion. In order to reduce this requirement in mobile applications, we also take into consid-

eration the need to reduce the amount of allocated resources. With these two aspects in

mind we propose two different parallelization scenarios: one that is better suited for batch

processing (where all inputs are loaded in memory), which we call Input-level paral-

lelization or Offline, and another one that is better suited to process one high-dimensional

input or a sequence of inputs at a time, but using fewer CPU resources; we call this the

Neuron-level parallelization or Online scenario.

As previously mentioned, we demonstrate the performance improvements ob-

tained by our proposed techniques in an image recognition application. In our experi-

ments, we use a network composed of one hidden layer with 200 neurons, divided equally

into forward and backward direction functions. The test set of our application is composed

of 3401 text images. We evaluate the accuracy of the outputs computed by the network,

as well as its runtime. The reference recognition accuracy of the baseline BLSTM im-

plementation is 98.2337% using single-precision floating-point format. We consider ap-

plying optimizations over two Intel architectures: the Intel I7-4500U, a power-optimized

CPU designed for laptops, and the Intel Xeon E5-2670 v3, a high-performance CPU. We

also consider two ARM low-power CPUs for embedded devices: the ARM Cortex-A53

(e.g. used by Zynq FPGA board) and the ARM Cortex-A9 (e.g. used by Raspberry pi

3 board). We show that by using our proposed optimizations, it is possible to produce

a BLSTM that is 9x faster than a baseline implementation with parallelization. We also

16

show a significant decrease in energy consumption, while undergoing a negligible loss in

accuracy.

1.1 General Objective

In this work, we present contributions to improve performance and energy con-

sumption of neural network software implementations in CPUs without compromising

their accuracy. We aim to achieve this objective by applying software optimization tech-

niques, and using hardware capabilities of modern computational platforms, to speed-up

the most intensive calculation parts of the code of a BLSTM neural network for Optical

Character Recognition.

1.2 Outline

The thesis is structured as follows. In Section 2 we review the theoretical basis that

underlies this work and present the different architectures used to evaluate our implemen-

tations. In Section 3, we review previous publications that also aim at speeding up neural

networks. The software optimization techniques and hardware capabilities explored in

this work are described in Section 4. In Section 5, we show the way that we intend to

conduct the experimental analysis. Finally, Section 6 presents the results obtained via

the proposed techniques and compares different configurations of the implementations.

Section 7 concludes this work by outlining its main results and discussing future work.

17

2 THEORETICAL BACKGROUND

In this chapter we will review the main neural networks concepts that are relevant

to the implementation of BLSTM neural networks. We will also introduce the Optical

Character Recognition problem, used in this work to evaluate the performance of our op-

timized neural network, as well and a string comparison algorithm that is used to measure

the accuracy of our neural networks. Finally, we present the main computer architectures

that are relevant to this work, giving special attention to some particular features of each

one of them.

2.1 Neural Networks

Artificial Neural Networks (ANNs or just NNs) are interconnected groups of nodes

that computationally model the functionality of the human brain. The goal of NNs is to

solve problems in the same way humans would do. Each node of an NN can be iden-

tified as a neural unit, and they are connected with many others within a same layer or

among layers (see Figure 2.1). The input signals presented to a network travel from the

first (input) to the last (output) layer, passing through intermediate layers—either just one

(single-layer) or more hidden layers (multi-layer). The activation function of a neuron

determine its output, given inputs; they typically compute this by taking a weighted sum

of the inputs (weighted by their respective weights) and limiting it to a pre-defined range,

before propagating this output to other neurons. Typical activation functions used in neu-

rons include the functions 1/(1+exp−x) and tanh(x). The connections/weights between

neurons can enforce or inhibit the effect on the activation state of connected neural units.

NNs need to be trained from examples, rather than explicitly programmed. The

training process aims at finding weights that result in the NN correctly mapping given

inputs to the most appropriated outputs. There are many algorithms to train a NN and

estimate the optimal weights of each neuron. One of the most popular algorithms is

called Backpropagation.

The Backpropagation algorithm ((BRYSON; DENHAM; DREYFUS, 1963)) con-

sists in measuring the error of the network when applied to a given input (specifically, by

comparing its output with the desired/ground truth output), and then using this informa-

tion to modify the network weights in order to minimize the error. The Backpropagation

algorithm is a supervised learning technique that receives as input a training set (con-

18

Figure 2.1: Artificial Neural Network

Representation of a feed forward artificial neural network with ten neurons. Each neuron is rep-
resented by a circular node. The arrows represent the connections/weights between neurons. In
this example, the neurons are split into three layers. Three neurons compose the input layer, five
neurons the hidden layer and two neurons compose the output layer.

sisting of sample pairs of input and corresponding desired output) and iterates over its

elements in order to optimize the weights of the neurons. At first, all weights are ini-

tialized randomly. Following, input samples are propagated forward through the network

and its output is compared with the expected one (i.e. ground truth) using a given loss

function; if the difference/error is not satisfactory, the error is propagated back to the pre-

vious layers of the network and used to adjust their internal weights. After that, another

iteration starts, where the next example is presented and weights are adjusted, and the

process is repeated until a stop criterion is met.

A simplified version of the method used to determine the output of a neuron is

presented in Equation 2.1. The weighted sum of the inputs is represented here by the dot

product between an input vector X and the weight vector W of the neuron. This sum is

processed by a σ activation function resulting in h, the neuron output (MCCULLOCH;

PITTS, 1943):

h = σ(W ·X). (2.1)

Among the many different existing ANNs architectures we can highlight those

purely built with acyclic connections, also known as feed-forward neural networks (see

Figure 2.1), and those with cyclic connections, referred to as Recurrent Neural Networks

(RNNs).

19

2.1.1 Recurrent Neural Networks

RNNs are able to look at recent information (i.e. previous outputs) to perform

the present task. The cyclic connections of an RNN architecture allow for a memory-

like functionality, preserving the previous activation outputs of the network as a type of

internal state (see Figure 2.2). This is helpful for sequence processing tasks that need

access to past network outputs in order to improve accuracy at a current input.

Figure 2.2: A recurrent neural network and its unrolling over time

Figure adapted from: (OLAH, 2015). On the left of the equality, an RNN with its cyclic con-
nection. It receives a given input Xt and outputs a value ht at time t. The loop/cyclic connection
allows for information about previous activations to be taken into account at future timesteps, when
processing subsequent inputs. On the right of the equality, we see the same RNN but with its loop
unrolled in time. The network can be thought of as multiple copies of a same network, repeated
over time, each one passing its output as a message to a successor network. The loop unrolled
RNN makes it explicit how this architecture keeps track of input sequences, by clarifying how
context information about previous inputs/outputs is passed ahead when processing subsequent
inputs.

Bidirectional Recurrent Neural Networks (BRNNs) were proposed to take into

account previous outputs from both sides of an input signal (e.g. past and future letters

of an input image). The input signal is processed both in the forward and backward

directions by passing it through two separate hidden layers. The outputs of these layers

are added by a common output layer that has access to past and future context of the given

input.

Despite being extremely important, RNNs present a problem of long term depen-

dencies. Olah (2015) explains this problem by considering the difficulties of building a

language model capable of correctly predicting which words may follow other words:

“If we are trying to predict the last word in "the clouds are in the sky", we

do not need any further context—it is pretty obvious the next word is going

to be sky. In such cases, where the gap between the relevant information and

20

the place that it is needed is small, RNNs can learn to use the past informa-

tion (...) There are cases where we need more context. Consider trying to

predict the last word in the text "I grew up in France... I speak fluent French".

Recent information suggests that the next word is probably the name of a lan-

guage, but if we want to narrow down which language, we need the context

of France, from further back. It is entirely possible for the gap between the

relevant information and the point where it is needed to become very large.

Unfortunately, as that gap grows, RNNs become unable to learn to connect

the information” (OLAH, 2015)

Due to this limited range of accessible context (i.e. the network can keep informa-

tion just from the recent outputs and not of long-term dependencies) with RNNs, Long

Short-Term Memory (LSTM) architecture was proposed in (HOCHREITER; SCHMID-

HUBER, 1997) to overcome this problem.

2.1.2 LSTM and BLSTM Neural Networks

LSTM networks are a special type of RNN architecture, capable of storing and

encoding long-term dependencies between its inputs. The LSTM architecture replaces

the simple nodes (i.e. neurons) of an RNN (such as a hyperbolic tangent function) with

memory blocks, or “memory cells”. Each memory cell (i.e. neuron) has three different

internal gates that control the flow of the input data and determine in which way the inter-

nal state (or memory) of the cell will be updated, as it processes new input signals. The

LSTM cells that compose the overall LSTM neural network can be thought as repetitive

connections of one LSTM cell with the next one, similarly to the repetitive connections

previously shown in Figure 2.2.

The three control gates that compose an LSTM cell are called forget, input, and

output gates: (f , i and o), respectively. These gating functions can be interpreted as

reset, write and read operations, respectively. They are applied to the cell internal state

(C) and are responsible for preserving the internal state of the memory cell over longer

periods of time. The cell state signal C is propagated through the entire chain of memory

cells, undergoing changes and updates determined by the above-mentioned gates. Each

gate regulates the way in which state information must be removed or added to the cell

state. Each control gate is implemented as a sigmoid neural net layer and a pointwise

21

multiplication operation; the outputs of this layer are numbers between zero and one,

specifying how much of each component of the memory/state should be preserved.

In the case of a forget gate, an output of zero can be interpreted as a signal ordering

the network to remove information from the current memory state. In an OCR application,

for instance, this might happen when we reach the end of a sentence, in which case we can

forget the last word that was processed since it may be irrelevant, e.g., to predict if the next

word will be a verb or a noun. An output of one, on the other hand, can be interpreted

as a signal ordering the network to completely preserve (not forget) a given part of the

state, since it may be very relevant to determine the class of upcoming words. A similar

intuition applies also to input gates (which determine how strongly information about

new words should be included in the current state/memory), and to output gates (which

determines how strongly the current state/memory values will be used in determining the

present output or prediction being made by the network). In Figure 2.3, the output of the

forget, input, and output gates are depicted, respectively, as the control gates of the cell

state.

A complete description of an LSTM cell structure is presented in Figure 2.3. Equa-

tion 2.2 presents formulas that compute the forward activation (or output) of an LSTM

network (GREFF et al., 2015). In Equation 2.2, t denotes the current time, t − 1 refers

to the previous timestep/input, (X) is an input vector; and (h) refers to the cell’s output.

These equations specify, in particular, 1) how the current state/memory, Ct, is updated

based on the previous state, Ct−1 and on the outputs of the control gates; and 2) how its

outputs are updated, ht, given the current input, Xt. In these equations, (b) is a bias vec-

tor, (W) is a rectangular input weight matrix for each gate, and (R) is a square recurrent

weight matrix. The so-called peephole connections (p) are responsible for allowing the

gates to access the cell’s internal state. Since the goal of this work is not to provide an

in-depth derivation for these equations, we refer the interested reader to (GREFF et al.,

2015) and (OLAH, 2015) for more technical details.

ft = σ(WfXt +Rfht−1 + pf � Ct−1 + bf) forget gate

it = σ(WiXt +Riht−1 + pi � Ct−1 + bi) input gate

zt = tanh(WzXt +Rzht−1 + bz) block input

ot = σ(WoXt +Roht−1 + po � Ct + bo) output gate

Ct = it � zt + ft � Ct−1 cell state

ht = ot � tanh(Ct) block output.

(2.2)

22

Figure 2.3: LSTM Cell Structure

Figure adapted from: (YAN, 2016)

In Figure 2.3, the output of each control gate is processed through an activation

function, which is a non-linear function that bounds the output’s range to a known numer-

ical interval. Activation functions are point-wise non-linear functions and typically im-

plemented as a logistic sigmoid function (1/1 + exp−x), denoted by σ, and a hyperbolic

tangent function, denoted by tanh. The hyperbolic tangent is usually used to implement

the block input zt and the output gate ot. Computing the output of activation functions can

be computationally expensive, and one of the contributions of this work will be to show

how it can be accelerated.

Another important feature of the LSTM architecture is the presence of a forward-

backward algorithm, known as Connectionist Temporal Classification (CTC) (GRAVES

et al., 2006). It is used to process the numeric outputs generated by the network in order

to associate them with a discrete label or class. In particular, CTC runs the real-valued

outputs of the network through a softmax function, which scales to the range [0, 1] so that

they can be interpreted as probabilities; then, CTC uses the resulting information about

class probabilities (given the input that was presented) to identify/generate the particular

23

class that will be used as the predicted output of the network. In the OCR setting, the CTC

algorithm is responsible for allowing an LSTM to generate outputs that are directly asso-

ciated with indices in an alphabet containing all possible characters that may be present

in a given input image. In this way, LSTM networks are capable of recognizing entire

input sequences without any pre-segmentation or post-processing of their corresponding

inputs. They can directly transform the outputs of the network into label sequences be-

cause they are trained to predict the conditional probabilities of the possible output labels,

given input sequences. The last step is performed by a Translate Back function, which is

responsible for identifying, in the alphabet data structure, the target character by an index,

and outputs it, one by one, to the output vector of the network creating the predicted string

for the given input image.

Even though LSTMs achieve good performance in tasks where a type of mem-

ory is necessary, in this work we consider a variant of the LSTM architecture, known

as BLSTM. BLSTMs consist of a bi-directional recurrent neural network (as previously

defined in Section 2.1.1) composed of many LSTM memory cells. This type of network

is composed of two hidden layers: a Forward Hidden Layer (FHL) and a Backward Hid-

den Layer (BHL), both of which are connected to a common output layer. The FHL is

a layer composed of N LSTM cells that take as input, e.g., an image, and processes its

pixel columns from left to right. The BHL, on the other hand, uses a different set of N

LSTM cells for processing the same input, e.g., the same image presented to the FHL,

and processes its pixels columns from right to left. Each such hidden layer has its own

distinct set of weights. The capability of analyzing an image from different perspectives

(e.g., by processing its pixels in different orders) results in better accuracy, since it allows

the network to take into account information about preceding and following letters when

determining which particular character corresponds to the current image location being

processed. BLSTMs inherit many of the advantages of LSTMs, such as the capability

of preserving the long-term dependencies of its inputs for a longer period of time). In

Section 4.1 we will describe characteristics of the particular BLSTM used in this work.

2.2 Optical Character Recognition

As mentioned in Chapter 1, LSTM neural networks often outperform other types

of neural networks in terms of accuracy and robustness, when applied to the task of char-

acter recognition. For this reason, we choose evaluate the performance of our proposed

24

optimization techniques (when applied to a baseline BLSTM neural network) in this prob-

lem.

The Optical Character Recognition (OCR) problem consists in recognizing printed

or handwritten text images; that is, converting printed or handwritten image characters

(stored as an image) into machine encoded characters. A text image is usually scanned

or taken by a camera from a printed paper data record, such as a passport, receipt, card,

book, or other types of documents. The OCR conversion process consists of an analysis

of the image, character by character, translating its alphabetic letters, symbols, or numeric

digits, into computer character codes that can represent them, such as ASCII codes. This

process is an important step of digitizing printed texts in order to make them electronically

available, and is widely used in machine processes such as cognitive computing, machine

translation, text-to-speech conversion, and text mining.

2.3 String Comparison Algorithms

When evaluating the accuracy of a network tasked with recognizing characters,

we need to choose a metric to compare the output produced by the network (a string)

and the desired/ground truth output. One possible way of comparing strings is by using

string distance algorithms which compute the dissimilarity between two words of arbitrary

length.

2.3.1 Levenshtein Distance

The Levenshtein Distance is a metric used to measure the difference between two

sequences of characters, or strings. The Levenshtein Distance algorithm measures the

difference between two sequences of characters by calculating the minimum number of

character additions, deletions, and substitutions required to transform one sequence into

the other (Levenshtein, 1966).

The Levenshtein distance between two strings a and b with length |a| and |b|,

respectively, is denoted by leva,b(|a|, |b|) and defined in Equation 2.3. Here, the term

1(ai 6=bj) is the indicator function, equal to 0 when ai = bj and equal to 1 otherwise, and

leva,b(i, j) is the distance between the first i characters of a and the first j characters of b.

The first element in the “min” clause of the equation represents the possibility of deletion

25

(from a to b); the second clause corresponds to the possibility of character insertion, and

the third one to the match or mismatch, depending on whether the respective characters

are the same.

leva,b(i, j) =



max(i, j) if min(i, j) = 0,

min


leva,b(i− 1, j) + 1

leva,b(i, j − 1) + 1

leva,b(i− 1, j − 1) + 1(ai 6=bj)

otherwise.
(2.3)

2.4 CPU Architectures and Instruction Set Extensions

In our work, we consider using many CPU-specific optimizations, which depend

on the particular architecture a neural network is implemented on. In this section we

present the CPU architectures used in this work to conduct our experiments and tests.

Table 2.1 shows four selected architectures. Xeon E5-2670 is a high-performance CPU

targeted at non-consumer workstation/server/embedded systems markets. Core i7-4500U

is a power-optimized CPU designed for laptops. The ARM Cortex-A53 and Cortex-A9

architectures are low-power CPUs for embedded devices. They are used by the Raspberry

Pi 3 Model B and by Xilinx Zynq-7000 XC7Z045 SoC, respectively. The maximum

working frequency of each processor above mentioned is shown in the first column of

Table 2.1. The second column of Table 2.1 presents the thermal design power (TDP) in

watts of the corresponding processors. TDP is defined as the maximum amount of heat

generated by the processor when in typical operation. The number of cores and threads of

each processor is presented in the third column of the table; the last column enumerates

the extensions to the instruction set of each architecture—which will be exploited in this

work when introducing and proposing possible hardware-specific optimizations.

Table 2.1: The reference CPU architectures used in this work
Processor TDP

[W]
Cores

(Threads)
Instruction Set
Extension

Intel Xeon E5-2670 v3 @ 3.1 GHz (turbo) 90 16(32) SSE4.2 / AVX2.0
Intel Core i7-4500U @ 3.0 GHz (turbo) 15 2(4) SSE4.2 / AVX2.0
ARM Cortex-A53 @ 1.2 GHz <1 4(4) NEON
ARM Cortex-A9 @ 800MHz <1 2(2) NEON

One of the most important optimization techniques applied in this work consists

26

in exploiting hardware-specific processing units of each architecture. Single Instruction,

Multiple Data (SIMD) describes computers with multiple processing units that apply a

single instruction to multiple data elements in parallel. Figure 2.4 shows the operating

method of these computational units. SIMD processing exploits data-level parallelism.

Most modern processors implement SIMD features, but the implementation details vary

according to the manufacturer. SIMD operations usually manipulate vectors and are, for

this reason, also referred to as vectorization instructions.

Figure 2.4: Single instruction, multiple data

SIMD

Instruction Stream Parallel Data
Streams

Results

Most modern CPU designs also use SIMD instructions to improve the performance

of multimedia or intensive calculation portions of the code. Intel architectures provide

SIMD through the Streaming SIMD Extensions (SSE) and Advanced Vector Extensions

(AVX)—both of which are extensions to the basic x86 instruction set architecture. ARM

architectures, on the other hand, provide SIMD through the NEON advanced SIMD ar-

chitecture extension for the ARM Cortex-A series and Cortex-R52 processors. In the next

sections we discuss the specific instruction sets that will be exploited in this work in order

to design hardware-specific optimization techniques; in particular, we introduce the SSE,

AVX, and NEON instruction set extensions.

2.4.1 Streaming SIMD Extensions (SSE)

Streaming SIMD Extensions (SSE) is a hardware technology that enables a sin-

gle instruction to process multiple data. It is an instruction set extension over the x86

architecture, designed by Intel. Older processor architectures only processed a single data

27

element per instruction. SSE enables some special instructions that can handle multiple

data elements. This can greatly increase performance of intensive processing applications

where a same operation needs to be performed on multiple data objects; e.g. digital sig-

nal processing and graphics processing. SSE was designed to replace MMX technology,

which is another SIMD Intel technology. It has expanded over the generations of Intel

processors to include SSE2, SSE3/SSE3S, and SSE4. Each iteration has brought new

instructions and increased performance.

SSE originally added eight new registers of 128-bits, known as XMM0 through

XMM7. The 64-bit Intel architectures added a further eight registers, XMM8 through

XMM15. Each such register can store four single-precision floating-point numbers of

32-bits or eight short integer numbers of 16-bits as a single data type. Figure 2.5 shows

the registers size for the SSE technology.

Figure 2.5: Size of the new registers added by SSE and AVX instruction set extensions

Float 32-bit

Int 16-bit
xmm

xmm

ymm

SSE 128 bits

AVX 256 bits

Figure adapted from: (LOMONT, 2017)

2.4.2 Advanced Vector Extensions (AVX)

Advanced Vector Extensions (AVX) are more recent extensions to the x86 instruc-

tion set architecture for Intel and AMD microprocessors. AVX provides new features,

new instructions, and a new coding scheme. AVX increases the size of SIMD registers

from 128 bits to 256 bits and renames them from XMM to YMM. Intel AVX was designed

to support 512- or 1024-bits in the future.

Originally, AVX added more sixteen new registers of 256 bits, known as YMM0

through YMM15. Each YMM register can store eight single-precision floating-point

numbers of 32-bits or sixteen short integer numbers of 16-bits. In processors with AVX

support, the legacy SSE instructions (which previously operated over 128-bit XMM reg-

isters) can be extended by using lower 128 bits of the YMM registers, as shown in Figure

2.5.

28

2.4.3 NEON Advanced SIMD Architecture Extension

ARM architectures also provide SIMD extensions, which are known, in this case,

as Advanced SIMD Extension, or NEON. The NEON technology is a combined 64- and

128-bit SIMD instruction set that provides standardized acceleration for media- and signal

processing applications. The NEON architecture extension was designed for the Cortex-A

series and Cortex-R52 processors. It is included in all Cortex-A8 devices, but is optional

in Cortex-A9 devices. NEON features a comprehensive instruction set, separated register

files, and independent execution hardware.

Similarly to SSE, NEON also supports 8-, 16-, 32- and 64-bit integer and single-

precision (32-bit) floating-point data and SIMD operations for handling intensive process-

ing applications. NEON can also process four single-precision floating-point numbers of

32-bits or eight short integer numbers of 16-bits as a single data type. Devices such as

the ARM Cortex-A8 and Cortex-A9 support 128-bit vectors but process 64 bits at a time,

whereas newer Cortex-A15 devices can process 128 bits at a time.

29

3 RELATED WORK

In this chapter we review related work that also aims at using different types of

optimization techniques to accelerate neural networks. As previously mentioned, some

of the optimization techniques presented in this document, such as better memory alloca-

tion, different parallelization schemes, loop unrolling, and intrinsic functions have been

previously used to optimize different applications; in this work, we focus on how they

can be used in isolation or combined in order to improve one particular complex type

of recurrent neural network. In this chapter we introduce and discuss existing hardware

implementations of neural networks which are good representatives of how developers

typically convert existing software implementations to dedicated hardware, in order to

exploit low-level features and improve performance. We also discuss previous works that

speed up neural networks by using software-only optimizations, and works that combine

software optimizations and hardware capabilities of a given target architectures where the

NN will be deployed. As will be discussed in what follows, many works aim at optimiz-

ing simpler neural network architectures, but few focus on optimizing recurrent neural

networks such as BLSTMs.

3.1 Accelerating Neural Networks via Dedicated Hardware

Many researchers have proposed to use dedicated hardware (e.g. FPGAs) to speed

up neural networks. However, this approach is expensive and time-consuming, since it is

necessary for an expert to migrate a software implementation to a hardware implemen-

tation; the approach is also not flexible in that future modifications to the network are

harder to be implemented, since a modification to the hardware is needed. When this

approach is possible, however, the resulting implementation offers considerable runtime

and power consumption reduction. In this work we focus on the particular case where

these assumptions cannot be met and the developer may choose, by contrast, to deploy

software optimizations and to exploit hardware capabilities in order to speed up an NN.

In this section, we review a few existing works that aim at accelerating neural networks

via dedicated hardware implementations.

The use of dedicated hardware (e.g. FPGA) to speed up Convolutional Neural

Networks (CNNs) is proposed in works, such as (ZHANG et al., 2015), (QIU et al.,

2016) and (MOTAMEDI et al., 2016). (ZHANG et al., 2015) implements a CNN ac-

30

celerator on a VC707 FPGA board, and analyzes its computing throughput and required

memory bandwidth after using various optimization techniques, such as loop tiling and

loop transformation. (QIU et al., 2016) proposes a CNN accelerator to be deployed on an

Xilinx Zynq ZC706 board for use in the Image-Net large-scale image classification task.

It uses a dynamic-precision data quantization method, a convolution design, and a better

data arrangement method to achieve state-of-the-art performance. (MOTAMEDI et al.,

2016) proposes an accelerator that can effectively leverage all of the available parallelism

sources to minimize the execution time of a neural network. All of these works have in

common the use of three main optimization techniques that we also consider: the use of

all parallelization methods available, better memory allocation and access, and the reduc-

tion of the amount of memory required by the NN. These approaches also use specific

low-level optimizations methods available in FPGAs.

The work of (RYBALKIN et al., 2017) proposes a hardware implementation of

a BLSTM neural network for optical character recognition. They show that this compu-

tationally intensive visual recognition task benefits from being migrated to a hardware

accelerator, outperforming high-performance CPUs in terms of runtime, while consum-

ing less energy than low-power systems with negligible loss of recognition accuracy. The

baseline software implementations used in our work, which we will optimize via a set

of proposed techniques, is the same one used by (RYBALKIN et al., 2017) to construct

their dedicated hardware. All of the optimizations used to improve the runtime in their

hardware accelerator were also considered when designing our optimization techniques;

ours, by contrast, do not require the neural network to run in a dedicated hardware. In

(RYBALKIN et al., 2017), the authors designed a hardware architecture capable of imple-

menting a BLSTM in FPGA; in our work, we will optimize (via many specific software

and hardware optimization techniques) that same baseline software. A comparison be-

tween their dedicated hardware and the same software baseline that we use in this work is

shown in Figure 3.1. Note that the analyses presented in (RYBALKIN et al., 2017) com-

pare only with a partially optimized version of the BLSTM. In this work, we propose and

evaluate other combinations of optimization techniques that can also be used to further

improve this neural network implementation. See Chapter 4 for more details.

As can be seen in Figure 3.1, depending on the target architecture where the neural

network is deployed, a dedicated hardware architecture can provide runtime acceleration

in the range of 5 to more than 600 times, when compared to a baseline software imple-

mentation with simple optimizations. Although these results are impressive, this kind of

31

Figure 3.1: Runtime and energy consumption comparison between a dedicated-hardware
and optimized software implementations of a BLSTM

hardware-only approach has disadvantages with regards to the expertise required to im-

plement an NN in hardware; furthermore, hardware-implemented NNs are not flexible in

terms of how easy it is to perform updates to them or to the algorithm that trains them.

The experiments results we present in Section 6.3 show that by deploying novel optimiza-

tion techniques, it is possible to decrease the gap between the performance achievable via

a hardware-dedicated architecture (such as in (RYBALKIN et al., 2017)) and what can be

achieved by combining software optimizations and by exploiting hardware capabilities.

3.2 Accelerating Neural Networks via Software-Only Optimizations

Software-only optimizations are attractive because they are simpler to deploy and

more people are capable of performing them, but they do not exploit all resources avail-

able that could lead to improvements to a neural network, such as specific hardware in-

structions that implement linear algebra operations (SSE, AVX and NEON).

It is not common people to focus purely on software optimizations, while leaving

aside the architecture where the neural network will be executed. When a software-only

approach is used, the optimizations can be of two types: 1) general-type optimizations,

which could be applied to any software (e.g. loop unrolling, parallelization via threads);

or 2) optimizations that take into account the sequence of computations required to pro-

duce the output of a particular type of neural network, given an input. Optimization

techniques of the second type exploit the fact that it is possible to implement the function-

ality of a neuron through the dot product of inputs and weights, or, equivalently, through

linear algebra functions where the inputs and the weights are no longer interpreted as sets

of scalars, but as vectors. The advantage of this second interpretation is that developers

often have access to scientific computing libraries that implement extremely efficient ver-

32

sions of linear algebra operations in software. Most available implementations of neural

networks make use of such software-based optimizations.

In this work, we also explore these commonly-used software optimizations, but

we extend the set of optimizations to be deployed with other software-based acceleration

techniques. We observed in our literature review, for example, that hardware-based op-

timization methods often speed up processing i) via the reduction of numerical precision

(e.g. floating-point parameters are transformed and processed as short integers or via a

fixed-point representation); and ii) by using lookup tables designed specifically to deal

with the problem of computing activation functions of neurons. In this work, we discuss

(in Sections 4.3.6 and 4.3.7) ways to implement such optimizations at the software level

as well. We also propose software optimizations that are designed specifically for the par-

ticular baseline neural network used in this work; we do so, for instance, by allowing two

types of parallelization (at the input level and at the level of neurons), thereby effectively

calculating the various intermediate outputs of a network simultaneously.

3.3 Accelerating Neural Networks via Software Optimizations and Hardware Capa-

bilities

In cases where implementing a dedicated hardware is not possible, developers may

wish to combine software-based optimization techniques while also exploiting hardware

capabilities that are architecture-dependent. This is the type of approach that we adopt in

this work, in great part because it allows, in our opinion, for a better trade-off between

the performance levels that can be achieved (via software and hardware optimization tech-

niques) while still not requiring one to fully re-implement a baseline software in dedicated

hardware.

Some techniques to reduce the computational costs of neural networks on x86

CPUs are discussed in (VANHOUCKE; SENIOR; MAO, 2011). Loop unrolling, data

layout, memory allocation, use of SSE instructions, among other improvements, are dis-

cussed in that article. Many of the improvements proposed there are used in this work,

but via approaches that do not require a dedicated hardware. (VANHOUCKE; SENIOR;

MAO, 2011) evaluates their hardware on a speech recognition task, showing that a real-

time hybrid Hidden Markov model/neural network (HMM/NN) can be built and produce

a 10x speedup over an unoptimized baseline software, and a 4x speedup over an aggres-

sively optimized floating-point baseline software while undergoing no costs in terms of

33

accuracy. We extend that work in many ways, by proposing i) novel optimizations for

software implementations, such as lookup tables, AVX and NEON intrinsics; and, 2)

by showing how to deploy some of their hardware-dependent optimizations in different

architectures, and by adjusting them to a different and more complex neural network ar-

chitecture.

(COLLOBERT; KAVUKCUOGLU; FARABET, 2012) introduces a new frame-

work, called Torch7, which is especially suited to achieve a high computational perfor-

mance. To do so they provide float or double representation for the neural networks

parameters, memory allocation control, ordered accesses to memory, use SSE or NEON

instructions when possible, and support two ways of parallelization: OpenMP and CUDA.

These authors mention that GPUs (e.g. running with CUDA) are often not as attractive in

practice as most could have expected: GPU-specific implementations of a neural network

may require heavy extra work for a speedup to be achieved, which can be significant when

compared to the performance that can be achieved in simpler ways—e.g. with just a few

extra lines of code with OpenMP for developing parallel applications on CPUs.

(APPLEYARD; KOCISKÝ; BLUNSOM, 2016) describes three stages of opti-

mizations that be incorporated into a BLSTM neural network running on GPUs. Firstly,

the optimization of a single cell, secondly the optimization of a single layer, and thirdly the

optimization of entire network as a whole. They combine matrix operations that share a

same input into a single larger matrix operation—one of our first optimization techniques

that we also evaluate. The first type of optimization they propose to apply to a single cell

corresponds to increasing the parallelism of a single RNN cell. The second improvement

proposed to a single cell corresponds to the fusion of point-wise operations—because of

their independent nature, it is possible to fuse all the point-wise kernels into one larger

kernel. The primary strategy used in this latter case was to expose as much parallelism

to the GPU as possible in order to maximize the use of hardware resources. As previ-

ously mentioned, the use of GPUs has a few advantages (a larger number of processing

units), but it is also more complex to deploy, and the architecture is not always available

in simpler devices. Furthermore, the overhead of launching GPU kernels, and of transfer-

ring data between CPU and GPUs, can sometimes be hard to amortize when using small

neural networks.

34

4 OPTIMIZATION TECHNIQUES FOR NEURAL NETWORKS

In this chapter we propose and discuss neural network optimization methods that

are based both on software optimization techniques and/or that exploit hardware capabil-

ities of the particular architecture where the network will be deployed. First, we discuss

the baseline BLSTM implementation that will be improved upon in our work. We also

discuss how we identified the main runtime bottlenecks of that baseline, before applying

the optimizations that are proposed here. Finally, we introduce all proposed techniques

explored in this work, explaining each one in details, showing their benefits, trade-offs,

and discussing how to apply them.

4.1 Baseline BLSTM Implementation

The baseline BLSTM software implementation that we will optimize in this work

is presented in this section; many of our optimization design decisions were made in order

to exploit particular characteristics of this software. Every optimization that we propose

in this section will be compared (in Chapter 6) to this baseline version of the neural net-

work. The baseline software was originally developed in C++ and it is a straightforward

implementation of a BLSTM NN. In (RYBALKIN et al., 2017), this baseline implemen-

tation (un-optimized) was compared to an FPGA hardware implementation of the same

network, as previously discussed in Chapter 3.

A set of pre-trained network parameters (weights) and an image testing set com-

posed of text images were computed and made available for use by (RYBALKIN et al.,

2017), and will be used later on when evaluating our optimized BLSTM NN in the task of

Optical Character Recognition. The baseline implementation of the BLSTM makes use

of single-precision floating-point format to store weights and input images that must be

processed. It is composed of three main parts, or steps, which are executed sequentially:

1) allocation and loading of data structures; 2) BLSTM NN processing; and 3) metrics

gathering. We explain each one of these steps in what follows.

35

4.1.1 Step 1: Data Structure Allocation and Loading

The first step is responsible for allocating and loading all the testing set input

images and ground-truth strings from the hard drive (HD) to memory. All the other data

structures used during the NN processing are also allocated and loaded to memory at

this part of the code. These other data structures are the weights used by the NN to

appropriately represent a mapping function from inputs to outputs, passing through the

hidden layer (see Section 2.1 for more details), as well as the alphabet needed to transform

the output probabilities of the NN into characters.

4.1.2 Step 2: Computing Neural Network Outputs

The second step is the NN processing itself, i.e., the computation of its outputs.

Figure 4.1 presents the implementation details of the BLSTM neural network with all the

main functions and NN processing steps. This is the most important part of the code,

since this is the portion of the software that we aim at speeding up in this work. Table 4.1

introduces important information and parameters used by the baseline implementation.

Table 4.1: General information about the baseline BLSTM implementation
Number of images in the testing set, T 3401
Max number of columns per image, C 732
Number of pixels per column, P 25
Number of LSTM memory cells in a hidden layer (neurons), N 100
Number of gates including block inputs to a memory cell, G 4
Number of inputs per gate, IG 126
Number of alphabet symbols, A 110
Number of inputs per output unit, SO 201

A testing set of T images, corresponding to text lines, is used as input to the NN.

The baseline network implementation includes an input layer that receives these images,

column by column. Each input is represented as a grayscale image that is P pixels height

and that has a variable length of up to C columns. The BLSTM network is composed

of a Forward Hidden Layer (FHL) and a Backward Hidden Layer (BHL). As discussed

in Section 2.1.2, an FHL is a layer composed of N LSTM cells that takes as input, e.g.,

an image, and processes its pixel columns from left to right. A Backward Hidden Layer

(BHL), on the other hand, includes a different set of N LSTM cells for processing im-

ages from right to left. Each such hidden layer has its own distinct set of weights. These

36

Figure 4.1: BLSTM implementation.

Alphabet
[0]:
[1]: !
…
[31]: F
…
[71]: r
…
[101]: ü
…
[110]: �

SOFTMAX

TranslateBack

F ü r

FW_HIDDEN_LAYER BW_HIDDEN_LAYER

INPUT IMAGE:

OUTPUT:

N

0 C-1 0 C-1

P P
FW_WEIGHTS BW_WEIGHTS

N⨉(IG ⨉ G+3)N⨉(IG ⨉ G+3)

...

OUTPUT_WEIGHTS

((2 ⨉ N)+1) ⨉ A

N

N ⨉ C

31 101 71

C ⨉ A

weights were previously loaded to memory by the first step of the code, and the loaded

weights are passed as parameters to the corresponding hidden layer. Within the FHL and

BHL, we have the LSTM cells, or neurons, of the NN. Each LSTM gate receives IG as

inputs a set of source values: a single bias value, a set of P pixels of an image column,

and N output values received via the recursive connections of the network (originating

from the neuron’s activation at the previous time step). The LSTM cells process their

source values and weights by using dot products, vector multiplications, vector concate-

nations, and activation functions; see Section 2.1.2 for more details about the LSTM cell

processing.

As a result of the hidden layers processing, two output vectors of probabilities are

generated, one with the output of the forward processing, and other one with the output

of the backward processing. In order to use this network as a classifier, we make use of

a CTC layer. The outputs of the hidden layers are normalized using a softmax function

and set to the range (0, 1). The normalized outputs from the softmax layer are then used

by the Translate Back function to estimate the conditional probabilities of a given label

(character) in the Alphabet (or a blank) at time t during the processing of a given input

37

image. The Translate Back function identifies, in the Alphabet data structure, the target

symbol encoded by the probabilities vector, and outputs the corresponding characters, one

by one, thereby creating the string output for the given input image.

4.1.3 Step 3: Metrics Gathering/Performance Evaluation

The last step is responsible for gathering important metrics to be used as a way

of comparing the different configurations of the software, in terms of which subset of

optimization techniques are deployed. Accuracy, runtime and energy consumption are

the main metrics used in this work to evaluate our optimizations—see Section 5.3 for

more details. Later, in chapter 6, we will present the results obtained after the application

of the software optimization techniques and hardware capabilities explored in this work.

As soon as the last testing set image is processed by the NN, a function computes

the recognition accuracy of the results based on the Levenshtein distance with respect to

the testing set ground truth; see Section 5.3. The runtime of step 2) alone is then com-

puted and printed to the user. Therefore, the default information shown to the user of the

software is the accuracy and the runtime of the network. A debug flag allows it to out-

put the text lines, as produced by the network, the corresponding testing set ground truth

strings, and the number of necessary computational operations to transform the output

of the NN into the ground truth string. The software output when running the BLSTM

neural network with this debug flag enabled is exemplified in Figure 4.2.

Figure 4.2: Example of the BLSTM execution and output

Since our goal is to speed up a software implementation of the NN, one of the first

things to do is to identify runtime bottlenecks by making use of profiling tools; that is,

by collecting runtime measurements of the different functions and instructions to find the

38

most intensive/expensive computational parts of the code. In the next section, we show

the first runtime measurements of the main functions of the code, identified via the C++

<chrono> library.

4.2 Identifying Bottlenecks in the Baseline BLSTM Implementation

Imagine a hypothetical application which spends 80% of its runtime in a function

that represents just 5% of the code. An improvement of 50% in runtime on this small part

of the code would generate a general improvement of 40% of the application runtime.

Identifying bottlenecks of a software is very important and useful since we desire to max-

imize the impact of any optimization steps by applying them to the most computationally

expensive parts of the code.

The aim of this section is to identify the bottlenecks of the BLSTM processing

procedure described in step 2. The main parts of the NN code, with large runtime, will

be measured and evaluated in order to decide if they deserve special attention when im-

plementing improvements. We start the bottleneck identification procedure by applying

runtime measurements to the main functions of the code. The results of these measure-

ments can be seen in Figure 4.3. Such measurements appear to suggest that the main

bottlenecks are inside the Forward and Backward hidden layer functions, since together

they represent 85% of the NN runtime.

Figure 4.3: Runtime measurements of the main functions of the code

After this first look at the data, we applied more specific runtime measurements,

in specific parts of the code, such as the neuron function, which consists of the implemen-

39

tation of complex LSTM cells and their processing. Figure 4.4 shows these additional

measurements. A closer look at the collected data indicates that we have as main bottle-

necks the dot products between source inputs and weights of the LSTM, and that these

have a direct impact on the total BLSTM runtime.

Figure 4.4: Runtime measurements of specific functions of the neurons

The most expensive computations of the NN are the dot products, responsible

together for more than two-thirds of total runtime. The data yielded by the chart of Figure

4.4 provides strong evidence that the optimization techniques must be applied at least at

a first moment in the crucial dot products between the inputs and weights of the neural

network FHL and BHL. Other important part of the code that must have our focus for

improvements is the output layer dot product inside the softmax function. However, it

is still interesting to notice and keep in mind that one quarter of runtime is being used

by the neuron activation functions and other neuron operations. This part of the code

involves much more operations and complexity, hence it will not be the focus for our

first optimization techniques. Now we have analyzed the bottlenecks lets move on to the

optimization techniques we have adopted to speed up the runtime of the NN.

4.3 Software Optimization Techniques

Having identified the main bottlenecks of the baseline neuron network, we now

introduce the main optimization techniques that can be applied to the software, and that

are architecture-independent. We discuss, in what follows, the two parallelization scenar-

ios that can be used to split the work of the network among the available computational

40

units. We start by introducing some general and important software-based optimization

techniques that can be used, such as hidden layers aggregation, better memory alloca-

tion/access, and dot product loop unrolling. After that, we evaluate the impact of replac-

ing simple loop unrolling by the use of an optimized linear algebra library for the dot

products; however, since this is one of the bottlenecks of our application, as shown in

the previous section, we also propose other, more aggressive optimization techniques for

this problem (see Section 4.4). At the end of this section, we introduce two optimization

techniques which allow a trade-off between NN accuracy and NN performance: one that

reduces the amount of data that needs to be manipulated during the most intensive parts of

the code, and another that changes the way expensive neuron operations are implemented.

4.3.1 Parallelization Scenarios

One of the simplest techniques to exploit CPU hardware capabilities is the use of

parallelization or threads. To use these, we first need to make a non-trivial decision: to

define which parts of the code must be parallelized. One possibility, in case of a testing

set of T images, is to process each image in parallel using T threads. Therefore, each

thread corresponds to the execution of a whole BLSTM NN to process a specific input

image. We call this input-level parallelization. Another possibility is to parallelize the

set of computations needed to determine the output of the NN when applied to a given

input. In particular, it is possible to parallelize the computation of the individual neurons

(LSTM cells) of the hidden layer. In this case, we have one thread per neuron of the

NN. We call this neuron-level parallelization. The creation of the threads, in this work,

was made via the Open Multi-Processing (OpenMP) API. We chose this API since it

provides a portable, scalable, simple, and flexible interface for parallel development for

many different platforms, ranging from the standard computers to supercomputers. The

following sections discuss these two possible parallelization scenarios in more details.

4.3.1.1 Input-level Parallelization (Offline)

The first parallelization scenario described above is better suitable for batch pro-

cessing, since the parallelization is applied in order to process separate images at different

points in time—see Figure 4.5. We call this scenario input-level parallelization, or just

“Offline”. In this approach, there is one thread implementing the entire neural network,

41

and it used to process one given input image. Many threads/NNs are run in parallel, for

different images, and the output of each thread is stored in a data structure collecting all

the output strings. The code presented in Figure 4.6 shows how we can create such threads

in order to process different input images in the testing set.

Figure 4.5: Input-level parallelization

1 2 3 T

...

...

...

One thread for each image

Outputs of the networks in the same vector structure

Step 1: Data Structure
Allocation and Loading

* Starting time of the NN processing

* End of NN processing
Step 3: Metrics Gathering

BLSTM BLSTM BLSTM BLSTMBLSTM BLSTM BLSTM

Figure 4.6: Threads creation example with OpenMP

1 . . .
2 #pragma omp parallel
3 #pragma omp f o r schedule (dynamic)
4 f o r (u n s i g n e d i n t i = 0 ; i < vecInputImage .size () ; i++) {
5 . . .

This is an interesting approach for use when a batch of images are available in

memory for processing, which allows the NN to perform the dot products of all the chain

of LSTM cells before to use them inside the LSTM computations. Since we start present-

ing an image to the network, we can compute the dot products between the corresponding

inputs and the weights of all neurons in timestep t, storing the resulting intermediate out-

puts for posterior processing. Other important feature of this parallelization scenario is

the possibility to use a contiguous and big portion of memory to the weights (network pa-

rameters), benefiting from memory locality advantages that will be discussed in Section

4.3.3.

42

There are few possibilities to parallelize BLSTM NNs internal computations, since

the architecture of this network requires the computation of all outputs at a given t, and

only then, in a synchronous way, use them as inputs to the next time step. This is generally

true except for some specific computations, such as the LSTM dot products mentioned

above.

4.3.1.2 Neuron-level Parallelization (Online)

Another parallelization scenario can be advantageous when input images appear

one at a time and can only be read incrementally, instead of being completely pre-loaded

in memory. In this case, the allocation of a whole NN resource at the beginning of the

processing step of a given input image is not the best alternative, since the NN does not

have the entire image available for use. Therefore, the parallelization must be applied for

each neuron inside a LSTM cell and no dot product pre-processing can be performed as

previously suggested for the input-level parallelization. When implementing neuron-level

parallelization, the software only allocates resources which will be used, which in some

cases is the best option given an energy budget.

In this second parallelization scenario, we parallelize the network at the level of

neurons, meaning that each thread processes separate parts of the internal computation

of a neural network at a given point in time. All threads’ outputs are then composed to

form the output of the neural network for one given input image. This output is stored in

an intermediate data structure to be compared to the ground truth, providing the accuracy

metric. We call this scenario neuron-level parallelization, or just “Online” because of

its application (i.e. real-time OCR). In short, we have in this scenario one image being

processed at a time and the neural network’s output for a given image is obtained by

composing N threads, one per neuron; see Figure 4.7 for an example of this type of

parallelization.

4.3.2 Hidden Layers Aggregation

Since the most expensive functions (dot products and activation functions) are split

in two different hidden layers, one possibility would be to join them and take advantage

from operations that could be reused, or from data aggregation. In particular, instead of

processing two hidden layers separately, we aggregate the data used by them in order to

43

Figure 4.7: Neuron-level parallelization

1

One thread for each neuron (LSTM cell)

Step 1: Data Structure
Allocation and Loading

* Starting time of the NN processing

* End of NN processing
Step 3: Metrics Gathering

Hidden Layer

Output Layer

...

...Neuron 1

T

...
One thread for each neuron (LSTM cell)

Hidden Layer

Output Layer

...

...

...

...

Neuron 2 Neuron 3 Neuron 4 Neuron 5 Neuron 6 Neuron N

Neuron 1 Neuron 2 Neuron 3 Neuron 4 Neuron 5 Neuron 6 Neuron N

Neuron 1 Neuron 2 Neuron 3 Neuron 4 Neuron 5 Neuron 6 Neuron N

Neuron 1 Neuron 2 Neuron 3 Neuron 4 Neuron 5 Neuron 6 Neuron N

reduce the number of allocated resources, at a cost of increased data structures, i.e. instead

of using 8 vectors to store the network weights, we start using just one big vector.

The use of hidden layer aggregation implies that it is possible to process input

images and weights with forward and backward data interleaved. This step is closely

related to the next section of this work, in which we show how to rearrange the memory

allocations that are passed as arguments to these two separate hidden layers putting them

together. As result of this change, it is possible to compute the NN output as if it had only

one hidden layer, containing all the data but with doubled number of operations.

4.3.3 Memory Allocation and Access

One of the most basic principles of high-performance computing is that once a

given memory address is read, nearby memory addresses get loaded into the various

caches on the processor. This makes nearby data available to the CPU much faster than

it would be if it had to fetch it from memory. The most immediate consequence of this

fact is that one should strive to have most data necessary for any given computation walk

stored in contiguous memory.

With this in mind, and knowing that the dot product computations between weights

44

and inputs are the bottleneck of our application, we start by aggregating all the dot product

functions interleaving their data structures, in order to have better cache locality perfor-

mance. Initially, the dot product functions performed by the neurons were processed sep-

arately by four different functions, one for each gate. Each function was executed twice

since there were two hidden layers, totaling eight dot product function calls per neuron.

We change this part of the code to execute a single function that could compute the eight

necessary results per neuron. The hidden layer of the network is changed to receive just

one large vector of weights containing the data of all the separated weights used before

this modification. Instead of four weights being accessed twice, we create this vector of

weights with the forward and backward layers weights interleaved, in order of faster ac-

cess by the new single dot product function. Other data structures used by the NN are

also rearranged to occupy contiguous memory addresses, so that they can be accessed in

sequence, thereby avoiding jumps between the data addresses needed to perform some

computation.

The four different weights mentioned above are the WGI, WGF, WGO and WCI

(responsible to control the input, forget, output and block input gates, respectively). They

are aggregated into a single vector WS; see Figures 4.8 and 4.9 to compare the different

ways one can allocate the weights.

Figure 4.8: Allocation of the weights used by the LSTM cells dot products before weight
aggregation

1 WGI = new f l o a t [NUMBER_OF_NEURONS ∗ NUMBER_OF_INPUTS] ;
2 WGF = new f l o a t [NUMBER_OF_NEURONS ∗ NUMBER_OF_INPUTS] ;
3 WGO = new f l o a t [NUMBER_OF_NEURONS ∗ NUMBER_OF_INPUTS] ;
4 WCI = new f l o a t [NUMBER_OF_NEURONS ∗ NUMBER_OF_INPUTS] ;

Figure 4.9: Weights aggregation in a single vector, instead of using four different weights
for each hidden layer

1 WS = new f l o a t [NUMBER_OF_HIDDEN_LAYERS ∗ NUMBER_OF_GATES ∗
2 NUMBER_OF_NEURONS ∗ NUMBER_OF_INPUTS]

Another important aspect related to memory allocation for higher performance

results is memory alignment. Memory alignment means putting data at a memory address

that is some multiple of the word size of the CPU, which can increase performance of the

system due to the way CPU handles memory. To align the most important data vectors

we reallocate every vector whose size is not a multiple of 16 bytes to the minimum size

45

necessary to make it a multiple of 16. This implies in using zero padding: inserting

zeros between the last value stored in the vector and the lowest value for the valid word

size. In the OCR application we consider in this work, the number of inputs given to

the network (NUMBER_OF_INPUTS in code) is 126, represented by IG in Table 4.1.

The lowest value multiple of 16 that is larger than 126 is 128, so a new definition, called

NUMBER_OF_INPUTS_SSE, is created and used instead of NUMBER_OF_INPUTS,

and every data structure using this definition had two additional 0 values added at their

ends. For linear operations, such as dot product and matrix addition and multiplication,

the embedding of these zeros do not affect results. More reasons for these modifications

will be explained in details in Section 4.4.

4.3.4 Loop Unrolling

Loop unrolling, also known as loop unwinding, is a loop transformation technique

that attempts to optimize the program execution speed at the expense of its binary size,

which corresponds to a space-time trade-off. This transformation can be performed man-

ually or via an optimizing compiler.

The goal of loop unrolling is to decrease the runtime needed for a loop iteration

by reducing or eliminating instructions that control the loop, such as pointer arithmetic

and “end of loop” tests at each iteration, thereby reducing branch penalties and hidden

latencies, such as delays to read data from memory. To eliminate such computational

overhead, we re-write all dot product loops in our application so that they become re-

peated sequences of similar but independent statements, as shown in Figure 4.10. With

the multiple accumulators being updated in parallel, the compiler has more freedom to

pipeline operations and distribute them across different floating-point units.

We introduce in Figure 4.10 an example of the use of loop unrolling in a dot

product function. This technique can be easily deployed and is used by compilers to

optimize loops. However, as discussed in Section 4.3.3 we changed the code to perform

dot products in just one function, and in this case, the implementation of loop unrolling for

the dot product function is much more extensive and complex than the example provided.

The gcc compiler do not identify that it could apply loop unrolling to the dot product

function of the baseline implementation, even if provided special compilation flags such

as -O3, which forced us to implement this technique manually. Using -Ofast, gcc compiles

using some technique to better run the loops of the code, nevertheless, the results are not

46

Figure 4.10: Loop unrolling example

1 / / d o t p r o d u c t f u n c t i o n between i n p u t s and w e i g h t s w i t h o u t any ←↩
o p t i m i z a t i o n s

2 i n l i n e f l o a t DotProduct (f l o a t ∗source , f l o a t ∗weight) {
3 f l o a t sum = 0 . 0 ;
4 f o r (i = 0 ; i < NUMBER_OF_INPUTS ; i++) {
5 sum += source [i] ∗ weight [i] ;
6 }
7 r e t u r n sum ;
8 }
9

10 / / d o t p r o d u c t f u n c t i o n between i n p u t s and w e i g h t s w i th loop ←↩
u n r o l l i n g

11 i n l i n e f l o a t DotProduct (f l o a t ∗source , f l o a t ∗weight) {
12 f l o a t sum = 0 . 0 ;
13 f o r (i = 0 ; i < NUMBER_OF_INPUTS ; i+=4) {
14 sum0 += source [i+0] ∗ weight [i+ 0] ;
15 sum1 += source [i+1] ∗ weight [i+ 1] ;
16 sum2 += source [i+2] ∗ weight [i+ 2] ;
17 sum3 += source [i+3] ∗ weight [i+ 3] ;
18 }
19 r e t u r n sum0 + sum1 + sum2 + sum3 ;
20 }

comparable with the technique applied directly in code.

4.3.5 Use of High-Performance Libraries

One of the first things to consider when optimizing software performance is to

use optimized code designed by expert researchers/professionals who spend considerable

effort creating solutions that achieve best performance. To compare with our optimization

techniques to solve the dot product function of the BLSTM, we create a configuration of

dot product function making use of Eigen BLAS package— see (EIGEN. . . , 2017) for

more detailed information about this library.

Eigen is a C++ template library for linear algebra, and includes functions to pro-

cess matrices and vectors. It is versatile, fast and reliable. Optimized dot product func-

tions are provided via the functions adjoint() or dot(), whose use when implementing the

dot products required by a neural network is depicted in Figure 4.11. Internally, SIMD

instruction set operations and cache optimizations are used to provide the best possible

performance for the target architecture.

Even though this library is easy to use, efficient and portable, higher performance

can be achieved if custom optimization techniques can be applied to the code, even if at

47

Figure 4.11: Eigen dot product example

1

2 #include <Eigen /Eigen>
3 u s i n g namespace Eigen ;
4

5 . . .
6

7 vo id DotProduct (f l o a t ∗source ,
8 f l o a t ∗WS ,
9 f l o a t ∗outputs) {

10

11 Map<VectorXf> pSource (source ,NUMBER_OF_INPUTS_SSE) ;
12 Map<VectorXf> wgi (WS ,NUMBER_OF_INPUTS_SSE) ;
13 Map<VectorXf> wgf ((WS+NUMBER_OF_NEURONS∗NUMBER_OF_INPUTS_SSE)←↩

,NUMBER_OF_INPUTS_SSE) ;
14 Map<VectorXf> wgo ((WS+2∗NUMBER_OF_NEURONS∗←↩

NUMBER_OF_INPUTS_SSE) ,NUMBER_OF_INPUTS_SSE) ;
15 Map<VectorXf> wci ((WS+3∗NUMBER_OF_NEURONS∗←↩

NUMBER_OF_INPUTS_SSE) ,NUMBER_OF_INPUTS_SSE) ;
16

17 outputs [0] = pSource .adjoint () ∗wgi ; / / pSource . d o t (wgi) ;
18 outputs [1] = pSource .adjoint () ∗wgf ; / / pSource . d o t (wgf) ;
19 outputs [2] = pSource .adjoint () ∗wgo ; / / pSource . d o t (wgo) ;
20 outputs [3] = pSource .adjoint () ∗wci ; / / pSource . d o t (wci) ;
21

22 }

To make use of Eigen library and enable vectorization—see Section 4.4 for more details,—it is
necessary to call the functions whenever you want to have optimized performance and compile
the software with the correct flags to enable the SIMD instruction set operations intended. We
make use of (-Ofast) and (-msse4.2 or -mavx2 or -march=native) flags for Intel architectures and
(-Ofast) and (-mfpu=neon) flags for ARM architectures.

the cost of developing time, complexity and precision reduction. In the next section, we

discuss one of these possible custom optimization techniques to further improve runtime

and improve performance.

4.3.6 Precision Reduction

Dot products performed in the hidden and output layers of a neural network op-

erate over network weights and are responsible for the largest part of required memory

bandwidth. Furthermore, the vector data structures are responsible for the highest mem-

ory resource consumption. Thus, these vectors are one of the top priorities for optimiza-

tions. The baseline implementation of the software uses single-precision floating-point

representation to store and compute weights, which means that each number occupies 4

bytes (32 bits) in memory. We reduce the precision of the network parameters by using

48

short integers of 16 bits both for its weights and inputs. This new configuration of the op-

timized neural network is referred to in what follows as INTEGER IMPLEMENTATION,

while the previous configuration of the software, with no precision reduction, is referred

as FLOAT IMPLEMENTATION. In Chapter 6, we show that a negligible accuracy reduc-

tion is incurred if using the integer implementation, in comparison to the performance of

the original float implementation.

To make use of this technique, both weights and image inputs are first represented

as float variables and scaled by taking the maximum value of each data vector and nor-

malizing them to the [-128,127] range. The code that performs this scaling procedure is

shown in Figure 4.12. In this work, we empirically selected the coefficients to be used in

the scaling process according to the maximum and minimum values found in the weights

and images dataset used to our OCR problem.

The vectors used in the NN processing are declared as short integers and use 16

bits to each position. Whenever the previous floating point data would be assigned to

a vector position, it is first multiplied by the coefficient pre-defined at the begin of the

code. After this process, vectors are used normally by neural network except by the fact

that they must be treated as integers. The conversion from integers back to floating point

is made at the end of the processing of dot product functions, since the multiplication

between two 16-bit integers results in an integer value of 32 bits, thus making possible a

direct conversion to the previous floating-point representation.

We observed, during our literature review, that this precision reduction technique

is commonly used when designing dedicated hardware implementations, but not so much

when seeking to construct optimized networks via pure software-based optimizations or

methods that exploit particular hardware characteristics of the target architecture—like

in this work. Furthermore, this technique is an important feature when one wishes to

decrease the memory required to represent numbers and when exploiting certain advan-

tages offered by the hardware and that depend on the representation of the data; i.e. faster

integer operations available on many architectures.

4.3.7 Lookup Tables for Activation Functions

A lookup table is an array that stores pre-computed values for a given operation,

replacing runtime computations with a simpler array indexing it. The savings in terms of

processing time can be significant, since retrieving a value from memory is often faster

49

Figure 4.12: Scaling the weights and images

1 //###
2 // Scaling coefficients and defining integer size
3 //###
4 typedef int16_t t_weight;
5 typedef int16_t t_image;
6

7 #define IMAGE_UPPER_LIMIT 4.0 // Experimentally found limit
8 #define WCI_UPPER_LIMIT 4.0 // Experimentally found limit
9 #define WCI_LOWER_LIMIT -4.0 // Experimentally found limit

10 #define W2_LOWER_LIMIT -4.0 // Experimentally found limit
11 #define IMAGE_SCALE_COEFF 31.0 // = 127 / WCI_UPPER_LIMIT or IMAGE_UPPER_LIMIT
12 #define WEIGHTS_COEFF_WGI 31.0 // = 127 / WCI_UPPER_LIMIT or IMAGE_UPPER_LIMIT
13 #define WEIGHTS_COEFF_WGF 31.0 // = 127 / WCI_UPPER_LIMIT or IMAGE_UPPER_LIMIT
14 #define WEIGHTS_COEFF_WGO 31.0 // = 127 / WCI_UPPER_LIMIT or IMAGE_UPPER_LIMIT
15 #define WEIGHTS_COEFF_WCI 31.0 // = 127 / WCI_UPPER_LIMIT or IMAGE_UPPER_LIMIT
16 #define WEIGHTS_COEFF_W2 31.0 // = 127 / W2_LOWER_LIMIT or IMAGE_UPPER_LIMIT
17 //###
18 ...
19 // weight used by the neuron dot products of the hidden layer
20 WS = new t_weight [NUMBER_OF_HIDDEN_LAYERS * NUMBER_OF_GATES * NUMBER_OF_NEURONS * ←↩

NUMBER_OF_INPUTS];
21 ...
22 // weight used by the softmax function in the output layer
23 W2 = new t_weight [NUMBER_OF_CLASSES * (1 + NUMBER_OF_NEURONS * 2)];
24 ...
25 //vectors with the images in forward and backward directions
26 image_fw = new t_image [numberOfColumns * HIGHT_IN_PIX];
27 image_bw = new t_image [numberOfColumns * HIGHT_IN_PIX];
28 ...
29 //###
30 // Scale the weights
31 //###
32 if(local_count < NUMBER_OF_NEURONS * NUMBER_OF_INPUTS_SSE) // WGI
33 WS[local_count] = WEIGHTS_COEFF_WGI * weight;
34 else if(local_count < 2 * NUMBER_OF_NEURONS * NUMBER_OF_INPUTS_SSE) // WGF
35 WS[local_count] = WEIGHTS_COEFF_WGF * weight;
36 else if(local_count < 3 * NUMBER_OF_NEURONS * NUMBER_OF_INPUTS_SSE) // WGO
37 WS[local_count] = WEIGHTS_COEFF_WGO * weight;
38 else // WCI
39 {
40 //##
41 // Limit the range and scale the weight
42 //##
43 if(weight > WCI_UPPER_LIMIT)
44 weight = WCI_UPPER_LIMIT;
45

46 if(weight < WCI_LOWER_LIMIT)
47 weight = WCI_LOWER_LIMIT;
48

49 WS[local_count] = WEIGHTS_COEFF_WCI * weight;
50 }
51 //###
52 ...
53 //###
54 // Scale the input images
55 //###
56 if(pix > IMAGE_UPPER_LIMIT)
57 pix = IMAGE_UPPER_LIMIT;
58 image_fw[column] = IMAGE_SCALE_COEFF * pix;
59 ...
60 //###

than undergoing expensive computations or input/output operations. Each neuron ac-

tivation function operation are pre-calculated and stored in static arrays (one array per

operation) and “pre-fetched” as part of the program’s initialization phase (memoization).

50

This method implies in a small loss of accuracy since the results of the operations can be

approximated according to the inputs.

All five activation functions of the LSTM memory cell can be implemented using

2*256 lookup tables (experimentally better runtime given the lost of accuracy). The ini-

tialization of the lookup tables is made with the reference functions from < math.h >

header—see Figure 4.13. The header and source files used to create the lookup tables in

C++ language is presented in Appendix A in Figure A.1 and A.2, respectively. The lower-

and upper-bound on the number entries for each function were experimentally obtained

and passed as a parameter to the initialization of each operation since we wish the network

to be accurate only for the range of inputs given to the operations used by the NN.

Figure 4.13: Initializing lookup table operations

1

2 //###
3 // Structures required for LUTs
4 //###
5 LUTs _hw[NUMBER_OF_FUNCTIONS_TOBE_APPROXIMATED];
6 // The vector of pointers to member-functions of LUTs class;
7 // The member-functions return float and receive float as an argument
8 std::vector<float(LUTs::*)(float)> _functions;
9

10 ...
11

12 //###
13 // Initialization of the LUTs functions
14 //###
15 unsigned int numberOfLUTs = 2 * 256;
16 //4 * 256: Accuracy: 98.2343\%
17 //2 * 256: Accuracy: 98.2267\%
18 //256: Accuracy: 98.1795\%
19

20 // Initial configuration of the vector with the functions
21 // Initialize it with the reference functions from <math.h>
22 _functions.push_back(&LUTs::LUT_coarse);//0
23 _functions.push_back(&LUTs::LUT_coarse);//1
24 _functions.push_back(&LUTs::LUT_coarse);//2
25 _functions.push_back(&LUTs::LUT_coarse);//3
26 _functions.push_back(&LUTs::LUT_coarse);//4
27 _functions.push_back(&LUTs::LUT_coarse);//5
28

29 _hw[0].Init("tanh_2" , &tanhf , -7.59431, 9.01091, 1.0);
30 _hw[1].Init("tanh_1" , &tanhf , -7.59431, 9.01091, 1.0);
31 _hw[2].Init("exp_1" , &expf , -23.8223, 23.2473, 1.0);
32 _hw[3].Init("sigmoid_2", &sigmoidf, -56.0446, 17.3286, 1.0);
33 _hw[4].Init("sigmoid_3", &sigmoidf, -66.8248, 17.3286, 1.0);
34 _hw[5].Init("sigmoid_1", &sigmoidf, -88.7229, 17.3286, 1.0);
35

36 _hw[0].GenerateLUTs(numberOfLUTs);
37 _hw[1].GenerateLUTs(numberOfLUTs);
38 _hw[2].GenerateLUTs(numberOfLUTs);
39 _hw[3].GenerateLUTs(numberOfLUTs);
40 _hw[4].GenerateLUTs(numberOfLUTs);
41 _hw[5].GenerateLUTs(numberOfLUTs);
42 //###

Note that the software optimization techniques discussed so far are hardware-

independent; all of them can be deployed on any target architectures and executed without

51

any further modifications. In the next section, we discuss hardware-dependent optimiza-

tion techniques that can further improve the performance of a neural network.

4.4 Hardware Dependent Optimization Techniques

In this work we consider any optimization techniques that require modifications

to be compiled/executed in different architectures as being hardware-dependent. This

section discusses many possible hardware-dependent optimization techniques that can be

deployed to speed up neural networks.

Single Instruction Multiple Data (SIMD) instructions, presented in Section 2.4,

are fundamental building blocks of low-level parallelization and performance gains on

CPUs. These instructions perform multiple operations in parallel on contiguous data,

thereby making the issues of data locality discussed in Section 4.3.3 even more critical.

Most modern Intel and ARM CPUs have SIMD instructions available, but it is important

to note that they are architecture-dependent, since each architecture can be built to include

them or not.

When using SIMD instructions, data layout; to achieve best performance, it is

important to observe a few properties of these instructions. First, SIMD instructions gen-

erally operate faster on 16-byte blocks that are 16-byte aligned in memory, both if using

SSE or NEON extensions. AVX extensions, on the other hand, work faster on 32-byte

blocks that are 32-byte aligned in memory. Being 16- or 32-byte aligned implies that the

memory address of the first byte of a memory block is a multiple of one of these values.

As consequence, if an array of data to be processed via SIMD instructions is not aligned

to 16 or 32 bytes, performance may be negatively affected. Forcing 16-byte and 32-byte

alignment of a memory block can be done in C++ by replacing calls to malloc() or new

with calls to posix_memalign(), or by using custom allocators; see Figure 4.14 for an

example of alignment of the WS weight. Note, also, that since every SIMD instruction

operates on a block of 16 or 32 bytes, if the size of a data vector is not a multiple of 16

or 32 bytes, computation will suffer from corner cases where the vector computation is

affected to adapt data loaded to be processed without the complete word size. The solu-

tion to this problem is to include extra positions with zeros at the end of the data vector,

as previously discussed in Section 4.3.3.

52

Figure 4.14: Example of 16-byte alignment of a memory block

1 / / WS −> 16 b y t e memory a l i g n e d
2 i f ((posix_memalign ((vo id ∗∗)&WS , 16 , s i z e o f (f l o a t) ∗ 2 ∗ 4 ∗ ←↩

NUMBER_OF_NEURONS ∗ NUMBER_OF_INPUTS_SSE)) != 0) {
3 std : : cerr << " pos ix_memal ign WS" ;
4 exit (EXIT_FAILURE) ;
5 }

4.4.1 SSE Intrinsic Functions

SIMD instructions can be used by means of assembly instructions. Since these

are not easy to program, thin wrapper functions known as intrinsic functions have been

made available for the most popular C and C++ compilers which convert these wrapper

functions into assembly instructions.

Streaming SIMD Extensions (SSE) is a hardware technology that enables single

instruction multiple data on Intel and AMD CPUs (see Section 2.4.1 for more details).

SSE instructions typically operate on 16-bytes chunks of data, which may correspond to

2 doubles, 4 floats, 8 shorts, or 16 bytes. Various data types have been defined by Intel on

special headers to use the intrinsics (such as < mmintrin.h > and < pmmintrin.h >

according to the technology version of SSE) to represent these types: __m128i, __m128

and __m128d, representing, respectively, 8x16-bit integers, 4x32-bit floating-points, and

2x64-bit doubles. As an example of how to use SSE intrinsic functions, consider the

case when one has two vectors of 4 floats: sources = [s1, s2, s3, s4] and weights =

[w1, w2, w3, w4]. We can obtain the resulting sum vector, addition = [s1 + w1, s2 +

w2, s3 + w3, s4 + w4], by writing (in C or C++) the code shown in Figure 4.15 with just

one instruction using the __m128 datatype.

Figure 4.15: Vector addition example with SSE intrinsic function

1 # i n c l u d e < mmin t r in . h>
2 __m128 c = _mm_add_ps (a , b) ;

In order for a compiler to be able to translate the wrapper functions specified by intrinsics to
assembly instructions, particular compilation flags are needed. These can be enabled according to
the specific SSE version one wishes to use (e.g. -msse2, -mssse3, -msse4, -msse4.1, -msse4.2) or
based on the target architecture where the software will be compiled in (e.g. -march=native).

Intel processors that support SSE2 (one of the first SSE versions available on In-

tel architectures) provide the basic instructions to perform the multiply-and-add steps

using floating-point SIMD arithmetic via the following functions: _mm_add_ps() and

53

_mm_mul_ps(). Figure 4.16 shows a simple example where one wishes to accumu-

late the dot product of __m128 ∗ sources and __m128 ∗ weights to a third vector,

__m128 sum.

Figure 4.16: Dot product with SSE2 intrinsic functions

1 / / mul [0] = s o u r c e s [0]∗ w e i g h t s [0] , . . . , mul [3] = s o u r c e s [3]∗ w e i g h t s [3]
2 __m128 mul = _mm_mul_ps (∗sources , ∗weights) ;
3 / / sum [0] += mul [0] , . . . , sum [3] += mul [3]
4 sum = _mm_add_ps (mul , sum) ;

In the example depicted in Figure 4.16, the variable sum stores 4 partial sums

which have to be added horizontally (addition of all partial sums) to yield the final result

via a mechanism such as horizontal sums (_mm_hadd_ps()) available on SSE3. Most

modern compilers are capable of leveraging SSE or other kinds of SIMD instructions au-

tomatically from simple codes. However, automatic vectorization does not come close to

the performance gains that one can achieve by writing code that leverages such instruc-

tions explicitly.

In the previous sections we have introduced two general ways in which a neural

network can be sped up, by trading-off speed and accuracy: one where weights and inputs

are represented with floating point numbers, and another one where this data is stored as

short integers. With that in mind, we now highlight the main SSE intrinsic functions that

can be used in each one of these cases in order to perform a dot product; more details of

each one of these intrinsics can be found in (INTEL. . . , 2011):

1. definition of the vectors using SSE data types:

FLOAT : __m128 s1;

INTEGER: __m128i s1;

2. initialization of accumulators:

FLOAT : sum = _mm_set1_ps(0.0f);

INTEGER: sum = _mm_setzero_si128();

3. conversion from normal vectors to SSE data types:

FLOAT : __m128 *pSource = (__m128*)source;

INTEGER: __m128i *pSource = (__m128i*)source;

4. main dot product computation via multiply and accumulate wrappers:

FLOAT : s1 = _mm_add_ps(s1,_mm_mul_ps(*pSource,*pWeight));

INTEGER: s1 = _mm_add_epi32(s1,_mm_madd_epi16(*pSource,*pWeight));

5. performing horizontal sums to store the result in the (standard) vector received as
parameter:

FLOAT : s1234 = _mm_hadd_ps(_mm_hadd_ps(s1,s2),_mm_hadd_ps(s3,s4));

INTEGER: s1234 = _mm_hadd_epi32(_mm_hadd_epi32(s1,s2),_mm_hadd_epi32(s3,s4));

54

Since dot product functions that manipulate integers are more complex and have

more details than it would be feasible to show in this document, we introduce in Figure

4.17 a simplified version of an integer implementation of dot product (required by neu-

rons) which makes use of SSE intrinsics. The float implementation of the dot product is

similar, except for the use of different intrinsics, as explained above, and also in jumps

over data vectors that are made after every 128 bits (4 positions for floats in contrast of 8

positions for short integers). Since different weights in an optimized neural network are

stored in a same vector, in order to make better use of cache locality, some fixed jumps

can be seen in the first parameter of _mm_madd_epi16 wrapper in Figure 4.17. When

designing an optimized integer implementation of the dot product, we performed many

experiments to analyze the best memory layout and access patterns to set this. The above

mentioned optimized integer implementation of the dot product, using SSE intrinsic func-

tions, can be used to accelerate both the computations in the hidden layer of a BLSTM,

as well as the dot products required by the softmax in the output layer. Experimental

analyses of these optimization techniques are presented in Chapter 6.

4.4.2 AVX Intrinsic Functions

Advanced Vector Extensions (AVX) are more recent extensions to the x86 instruc-

tion set architecture for microprocessors from Intel (see Section 2.4.2 for more details).

AVX extends the size of the registers that perform SIMD and its instructions so that they

typically operate on 32-bytes chunks of data at a time. By using these extensions, it is

possible to optimize neural network operations so that an implementation using AVX can

process 8 floats and 16 integers at a time with just one instruction. Various intrinsic func-

tions and data types are provided with this extension set. The data types that we use when

evaluating optimized neural networks that use AVX are __m256i and __m256, which

represent, respectively, 16 16-bit integers and 8 32-bit floating points.

We present, below, the main AVX intrinsic functions that can be used in integer

and floating point implementations of the dot product operations required by a BLSTM

NN:

1. definition of the vectors using AVX data types:

FLOAT : __m256

INTEGER: __m256i

2. initialization of accumulators:

55

Figure 4.17: Integer implementation of dot product function with SSE intrinsics

1 inline void DotProduct128_SSE(t_weight *source,
2 t_weight *WS,
3 int32_t *output){
4

5 // DEFINING AND INITIALIZING ACCUMULATORS
6 __m128i s1 = _mm_setzero_si128();
7 __m128i s2 = _mm_setzero_si128();
8 __m128i s3 = _mm_setzero_si128();
9 __m128i s4 = _mm_setzero_si128();

10

11 // CONVERTING NORMAL VECTORS TO SSE DATATYPES
12 __m128i *pWS = (__m128i*)WS;
13 __m128i *pSource = (__m128i*)source;
14 __m128i *pOutput = (__m128i*)output;
15

16 for (unsigned int i = 0; i < NUMBER_OF_INPUTS_SSE/8; i++)
17 {
18 // MULTIPLY AND ACCUMULATE (dot product)
19 s1 = _mm_add_epi32(s1, _mm_madd_epi16(*(pWS + (0 * NUMBER_OF_INPUTS_SSE*←↩

NUMBER_OF_NEURONS/8)), *pSource));
20 s2 = _mm_add_epi32(s2, _mm_madd_epi16(*(pWS + (1 * NUMBER_OF_INPUTS_SSE*←↩

NUMBER_OF_NEURONS/8)), *pSource));
21 s3 = _mm_add_epi32(s3, _mm_madd_epi16(*(pWS + (2 * NUMBER_OF_INPUTS_SSE*←↩

NUMBER_OF_NEURONS/8)), *pSource));
22 s4 = _mm_add_epi32(s4, _mm_madd_epi16(*(pWS + (3 * NUMBER_OF_INPUTS_SSE*←↩

NUMBER_OF_NEURONS/8)), *pSource));
23

24 // JUMPS TO NEXT DATATYPE POSITION (8 positions to integers)
25 pSource++;
26 pWS++;
27

28 }
29

30 // HORIZONTAL SUMS TO RETURN RESULT TO NORMAL VECTOR
31 __m128i s1234 = _mm_hadd_epi32(_mm_hadd_epi32(s1,s2),_mm_hadd_epi32(s3,s4));
32

33 // NORMAL VECTOR (output) RECEIVES 4 POSITIONS THROUGH (pOutput)
34 pOutput[0] = s1234;
35

36 }

We use the header #include < pmmintrin.h > and −march = native compiler flag to make
use of the intrinsics for this software configuration.

FLOAT : sum = _mm256_setzero_ps();

INTEGER: sum = _mm256_setzero_si256();

3. conversion from normal vectors to AVX data types:

FLOAT : (__m256 *pSource = (__m256*)source;)

INTEGER: (__m256i *pSource = (__m256i*)source;)

4. main dot product computation via multiply and accumulate wrappers:

FLOAT : (s1 = _mm256_fmadd_ps(*pSource,*pWeight,s1);)

INTEGER: (s1 = _mm256_add_epi32(s1, _mm256_madd_epi16(*pSource,*pWeight));)

5. horizontal sums and conversions from AVX data types to vector data types, in order
to store the results in the (normal) vector received as parameter:

FLOAT : (__m256 s1234 = _mm256_hadd_ps(_mm256_hadd_ps(s1,s2),_mm256_hadd_ps(s3,s4));)

(__m128 low1234 = _mm256_extractf128_ps (s1234, 0);)

(__m128 high1234 = _mm256_extractf128_ps (s1234, 1);)

(__m128 out = _mm_add_ps(low1234, high1234);)

INTEGER: (__m256i s1234 = _mm256_hadd_epi32(_mm256_hadd_epi32(s1,s2), _mm256_hadd_epi32

56

(s3,s4));)

(__m128i low1234 = _mm256_extractf128_si256(s1234, 0);)

(__m128i high1234 = _mm256_extractf128_si256(s1234, 1);)

(__m128i out = _mm_add_epi32(low1234, high1234);)

Figure 4.18 presents a simplified version of an AVX-based integer implementation

of the dot product required to compute the output of neurons. The AVX float implemen-

tation is similar except for the use of different intrinsics, as previously explained, and in

jumps over data vectors that are made after every 256 bits (8 positions for floats in contrast

of 16 positions for integers).

Figure 4.18: Integer implementation of dot product function with AVX intrinsics

1 inline void DotProduct128_AVX(t_weight *source_fw,
2 t_weight *WS,
3 int32_t *output){
4

5 // DEFINING AND INITIALIZING ACCUMULATORS
6 __m256i s1 = _mm256_setzero_si256();
7 __m256i s2 = _mm256_setzero_si256();
8 __m256i s3 = _mm256_setzero_si256();
9 __m256i s4 = _mm256_setzero_si256();

10

11 // CONVERTING NORMAL VECTORS TO AVX DATATYPES AND OUTPUT TO SSE DATATYPE FOR ←↩
CONVERSION PURPOSE

12 __m256i *pWS = (__m256i*)WS;
13 __m256i *pSource = (__m256i*)source;
14 __m128i *pOutput = (__m128i*)output;
15

16 for (unsigned int i = 0; i < NUMBER_OF_INPUTS_SSE/16; i++)
17 {
18

19 // MULTIPLY AND ACCUMULATE (dot product)
20 s1 = _mm256_add_epi32(s1, _mm256_madd_epi16(*(pWS + (0 * NUMBER_OF_INPUTS_SSE*←↩

NUMBER_OF_NEURONS/16)), *pSource));
21 s2 = _mm256_add_epi32(s2, _mm256_madd_epi16(*(pWS + (1 * NUMBER_OF_INPUTS_SSE*←↩

NUMBER_OF_NEURONS/16)), *pSource));
22 s3 = _mm256_add_epi32(s3, _mm256_madd_epi16(*(pWS + (2 * NUMBER_OF_INPUTS_SSE*←↩

NUMBER_OF_NEURONS/16)), *pSource));
23 s4 = _mm256_add_epi32(s4, _mm256_madd_epi16(*(pWS + (3 * NUMBER_OF_INPUTS_SSE*←↩

NUMBER_OF_NEURONS/16)), *pSource));
24

25 // JUMPS TO NEXT DATATYPE POSITION (16 positions to integers)
26 pSource++;
27 pWS++;
28

29 }
30

31 // HORIZONTAL SUMS AND DATATYPE CONVERSIONS TO RETURN RESULTS TO NORMAL VECTOR
32 __m256i s1234 = _mm256_hadd_epi32(_mm256_hadd_epi32(s1,s2),_mm256_hadd_epi32(s3,s4←↩

));
33 __m128i low1234 = _mm256_extractf128_si256(s1234, 0);
34 __m128i high1234 = _mm256_extractf128_si256(s1234, 1);
35 __m128i out = _mm_add_epi32(low1234,high1234);
36

37 // NORMAL VECTOR (output) RECEIVES 4 POSITIONS THROUGH (pOutput)
38 pOutput[0] = out;
39

40 }

To have access to the intrinsic functions provided by Intel we use the header #include <
pmmintrin.h > and −march = native compiler flag. It could also be enabled by the com-
piler flags −mavx and −mavx2 according to the intrinsic functions used.

57

Finally, we highlight that it is possible to use AVX intrinsic functions as an addi-

tional way to speed up the hidden layer and softmax dot products in an optimized NN. In

subsequent experiments and analyses, we will compare a network optimized with AVX

intrinsics with ones optimized using features available only on Intel architectures.

4.4.3 NEON Intrinsic Functions

NEON technology is the ARM architecture SIMD extension (see Section 2.4.3 for

more details). The use of NEON intrinsics is similar to the use of SSE: the data structures

used with NEON intrinsics must, for example, be aligned in memory blocks of at least

16 bytes. Figure 4.19 shows an integer implementation of the dot product via NEON

intrinsics.

The code depicted in Figure 4.19 is organized in a similar way to the dot prod-

uct implementation using SSE and AVX intrinsics. We first initialize the accumulators

with zeros and create special vectors to the NEON data type registers for each one of our

normal vectors received as parameters. Inside the main loop, we load the normal vec-

tors to the special vectors used by NEON. After this, multiplications and additions are

performed with the use of two intrinsic functions: vaddq_s32() and vmulq_s16(). Since

the NEON intrinsic vmulq_s16() returns an int16x8_t data type, and we need to perform

the addition of two int32x4_t vectors via the vaddq_s32() function, we apply the func-

tion _convert_to_32x4int(int16x8_t a, int16x8_t b) to convert the multiplication results

of vmulq_s16() from integers of 16 bits to integers of 32 bits before executing the dot

product accumulation. At the end of the procedure, we use another conversion function

to store the values currently in the NEON data type (i.e. accumulators: s1, s2, s3 and s4)

into the normal vector pointed by *weights parameter. The floating point implementation

of this procedure is similar, except that it uses just one function to perform the vector

multiplications and accumulations: vmlaq_f32(float32x4_t a, float32x4_t b, float32x4_t

c);. Such a function implements both multiplication and addition simultaneously with a

same underlying assembly instruction.

58

Figure 4.19: Integer implementation of dot product function with NEON intrinsics

1 inline __attribute__((always_inline)) int32_t _convert_to_int(int32x4_t a)
2 {
3 return vget_lane_s32(vpadd_s32(vpadd_s32(vget_high_s32(a), vget_low_s32 (a)), ←↩

vpadd_s32(vget_high_s32(a), vget_low_s32 (a))),0);
4 }
5

6 inline __attribute__((always_inline)) int32x4_t _convert_to_32x4int(int16x8_t a, ←↩
int16x8_t b)

7 {
8 return vpaddlq_s16(vmulq_s16(a , b)); // load vectors of 16 x 8 bits ints ←↩

multiply and add
9 }

10

11 inline void DotProduct128_NEON(t_weight *source,
12 t_weight *WS,
13 int32_t *weights)
14 {
15

16 // DEFINING AND INITIALIZING ACCUMULATORS
17 int32x4_t s1 = {0, 0, 0, 0}, s2 = {0, 0, 0, 0}, s3 = {0, 0, 0, 0}, s4 = {0, 0,←↩

0, 0};
18

19 // DEFINING NEON DATATYPE REGISTERS TO LOAD NORMAL VECTORS TO NEON REGISTERS
20 int16x8_t pSource,pWS1,pWS2,pWS3,pWS4;
21

22 for (unsigned int i = 0; i < NUMBER_OF_INPUTS_SSE; i+=8)
23 {
24 // LOADING SOURCE AND WEIGHTS TO MEMORY
25 pSource=vld1q_s16(&source[i]);
26 pWS1=vld1q_s16(&WS[i+(0 * NUMBER_OF_INPUTS_SSE*NUMBER_OF_NEURONS)]);
27 pWS2=vld1q_s16(&WS[i+(1 * NUMBER_OF_INPUTS_SSE*NUMBER_OF_NEURONS)]);
28 pWS3=vld1q_s16(&WS[i+(2 * NUMBER_OF_INPUTS_SSE*NUMBER_OF_NEURONS)]);
29 pWS4=vld1q_s16(&WS[i+(3 * NUMBER_OF_INPUTS_SSE*NUMBER_OF_NEURONS)]);
30 // MULTIPLY AND ACCUMULATE (dot product)
31 s1 = vaddq_s32(s1, _convert_to_32x4int(pWS1, pSource));
32 s2 = vaddq_s32(s2, _convert_to_32x4int(pWS2, pSource));
33 s3 = vaddq_s32(s3, _convert_to_32x4int(pWS3, pSource));
34 s4 = vaddq_s32(s4, _convert_to_32x4int(pWS4, pSource));
35

36 }
37

38 // RETURNING RESULTS TO NORMAL VECTOR
39 weights[0] = _convert_to_int(s1);
40 weights[1] = _convert_to_int(s2);
41 weights[2] = _convert_to_int(s3);
42 weights[3] = _convert_to_int(s4);
43

44 }

The built-in intrinsics for the ARM Advanced SIMD extension are available when the −mfpu =
neon compiler flag is used. The NEON intrinsics are defined in the header file arm_neon.h. The
header file defines both the intrinsics and set of vector types.

59

5 EXPERIMENTAL METHODOLOGY

This chapter describes how we will perform experiments in order to evaluate the

performance and accuracy of the different optimization strategies we described in the

previous chapters. We also discuss the metrics that will be used to measure the possible

improvements obtained by deploying them. Specific results and numerical analyses will

be presented in Chapter 6. The main metric used to evaluate the accuracy of our proposed

optimized BLSTM implementation is, as discussed in Section 2.3.1, the Levenshtein Dis-

tance. In this chapter, we also introduce how differently optimized neural networks are

evaluated and compared with respect to runtime and energy consumption metrics.

5.1 Evaluation Problem

As discussed in Section 2.2, in this work we choose to evaluate our optimized

BLSTM in an Optical Character Recognition problem. This decision was made because

OCR is a typical sequence recognition task and in this problem, BLSTMs have shown

superior performance in terms of accuracy and robustness, when compared to other types

of neural networks. Furthermore, OCR is an important component part used by many

different different real-world applications, such as cognitive computing, machine transla-

tion, text-to-speech, and text mining. Next, we present the ways in which we evaluate and

compare the different implementation configurations of our optimized neural networks.

5.2 Comparisons

In order to evaluate the advantages gained by combining the proposed software

optimization techniques and by exploiting specific hardware capabilities, we evaluate our

differently-optimized networks under different conditions. Concretely, we measure dif-

ferent performance metrics, such as accuracy, runtime, and energy consumption, when

running each particular implementation in a different hardware architecture, and when

deploying specific combinations of the proposed optimization techniques—for instance,

when combining precision reduction, intrinsic functions, lookup tables, etc. In Chapter 6

we will discuss the results obtained by executing such comparisons.

60

5.3 Evaluation Metrics

Each possible configuration of an optimized neural network will, as mentioned in

Section 5.2, be evaluated according to three main metrics, which we discuss below.

5.3.1 Accuracy

As discussed in Section 2.3, one way to evaluate the accuracy of an NN is by com-

paring its outputs with respect to true reference, or ground truth outputs. This metric is

especially important when implementing optimizations that can affect the accuracy of the

intermediate numeric results calculated by the network, such as when using optimizations

that involve numerical precision reduction. To measure accuracy, we use a testing set

containing T images as inputs and T ground truth strings; the latter are compared to each

correspondingly produced NN output. Since we are, in this work, evaluating the network

on as OCR problem, the network output is a string. To compare the similarity between the

NN predicted string and the testing set ground truth, we use a function that compares all

of the resulting strings processed by the neural network with their corresponding ground

truth outputs. The overall BLSTM neural network accuracy is then defined as the mean

distance between between all of the network output strings and their associated testing set

ground truth strings.

The recognition accuracy of the un-optimized baseline BLSTM of is 98.2337%,

when using single-precision floating-point format to store data and weights. In Chapter 6

we show that runtime can be improved by applying the software optimization techniques

presented here, and exploiting hardware capabilities, without significantly decreasing this

reference recognition accuracy.

5.3.2 Runtime

In this work, runtime (or execution time) is defined as the processing time required

to process the instructions related to the output computation of the BLSTM neural net-

work. The runtime of the NN is measured in milliseconds in order to better control the

impact of our improvements. Note that runtime, as defined above, is the execution or de-

ployment time of the NN with respect to applying it to predict the output to novel inputs;

61

it does not include the time needed to train the network, since optimizing it is not the main

goal of this work.

As discussed in Section 4.1, we begin measuring the neural network runtime im-

mediately after reading all input images and data structures to memory. When the neural

network finishes its processing, by storing all recognized strings to memory, we collect

the final processing time stamp. By comparing that time stamp with the one when runtime

began being measured, we obtain the (wall-clock) time required to process all testing in-

stances. In this work we perform time measurements by using a time library for the C++

language, called <chrono>.

Each modification to the baseline un-optimized BLSTM will have its runtime mea-

sured to later comparison with other possible software configurations.

5.3.3 Energy Consumption

Energy consumption is an important metric for embedded systems in which the

energy budget is restricted. Given that the mobile market is one of the most important

markets in terms of devices where Artificial Intelligence can be deployed, we also, in this

work, evaluate our proposed software optimizations with respect to the resulting energy

consumption required to execute a given neural network.

To calculate the energy consumption of a given optimization configuration of a

BLSTM NN we first estimate the idle power of a given target architecture, by performing

direct measurements when possible (e.g. on a laptop processor, Raspberry pi 3 Model B

Board, and Zynq board) or by checking its documentation (e.g. XEON). We then make

power measurements while the neural network is being executed, by using a multimeter

placed between the component that uses CPU power and the power source. The multime-

ter is connected to another computer while it collects measurements, resulting in a power

consumption sample for each processing second of the NN. At the end of the processing

of the NN, we make the total power estimation by calculating the mean of all power mea-

surements obtained minus the idle power estimated for the corresponding architecture.

The NN processing power is multiplied by the NN runtime, resulting in the NN energy

consumption estimation, since Energy = Power × Time. We use a multimeter in all ex-

periments that require direct power measurement, except for measuring it on laptops; in

this case the measurements are made by using the Powerstat software.

To summarize, four main steps are involved in estimating the energy consumption

62

required to execution a given optimized or un-optimized BLSTM: 1) direct measurement

or estimation of the architecture power while in idle Pidle; 2) execution of the NN and mea-

surement of the mean architecture power dissipation during execution Pexec; 3) calculation

of the power required just by the NN processing PBLSTM ; that is PBLSTM = Pexec−Pidle;

4) estimation of the energy consumption, performed by multiplying PBLSTM and the NN

runtime: EnergyBLSTM = PBLSTM × RuntimeBLSTM .

5.4 Compilation Settings for Experiments

The experiments described in Chapter 6 are influenced by the way the software

implemented, using different optimization techniques subsets, is compiled. Our imple-

mentations of the optimization techniques are compiled with gcc and icc compilers, de-

pending on the particular target architecture being considered.

The gcc compiler is used with -O3 and -std=c++11 flags for the first configurations

of our software (baseline, just with online and offline parallelization and with the loop un-

rolling technique) and with the -Ofast flag, instead -O3, for all other optimizations. We

used the icc compiler when testing our implementations on the supercomputer architec-

ture (Xeon), and it presented better results compared to gcc. We always compiled directly

on the target architecture, since our attempts to cross-compilation resulted in worse run-

time. Some additional optimization flags were used in both compilers in order to enable

specific hardware features, as discussed in Section 4.4.

63

6 RESULTS

This chapter presents the performance evaluation of the neural networks resulting

from the use of the proposed optimization techniques. Some of the software optimiza-

tion techniques discussed in Section 4 were analyzed in (RYBALKIN et al., 2017); in

this chapter, we present novel results which were not presented in that article, including

the use of different combinations of software-based optimizations, and of optimization

strategies that exploit particular features of a given target architecture. We also present

a more in-depth discussion and analysis of each result obtained by deploying different

optimizations.

6.1 BLSTM runtime on Intel architectures

The first performance evaluation we conduct in this work consists in processing

the testing set of images through the baseline floating-point NN implementation on the

Intel i7-4500U architecture. We apply different optimization techniques to verify their

effects and advantages. Each optimization technique is deployed individually or in com-

bination with other optimizations, as will be discussed in more details in what follows.

We collect results (performance measurements, as discussed in Section 5) and use them

to compare the different optimization configurations that can be applied over the baseline

un-optimized BLSTM. Once we identify a given optimization strategy that has a positive

impact we re-apply it in combination with subsequent optimization techniques that we

wish to verify.

Figure 6.1 shows the impact of different optimization techniques when applied to

the floating-point implementation of the NN on an Intel architecture, without deployment

of any techniques that may reduce network accuracy. The first improvement shown in

this figure is the application of parallelization achieved via the OpenMP library, by im-

plementing the online and offline scenarios introduced in Section 4.3.1. The performance

data gathered for this optimization configuration suggests large runtime improvements, in

the range of 1.7 times faster in the online parallelization scenario, and 2.6 times faster in

the offline parallelization scenario. Since parallelizing different components of the net-

work offers a clear runtime improvement, in subsequent experiments we will combine

it with other optimization techniques, instead of evaluating them in isolation, when de-

ployed to the baseline un-optimized network.

64

Figure 6.1: Runtime of a floating-point BLSTM implementation under different optimiza-
tion techniques on the Intel i7-4500U @ 3.0 (turbo) architecture

0

50

100

150

200

250

R
u

n
ti

m
e

, [
s]

FLOAT
Accuracy: 98,2337%

Besides parallelization, another significant runtime reduction can be achieved (as

shown in the fourth bar of Figure 6.1) by applying three new optimization techniques: 1)

aggregation of the hidden layers; 2) contiguous memory allocation of weights and inputs;

and 3) loop unrolling of the dot product operations. Before deploying these improve-

ments, computing the BLSTM output required processing two separated hidden layers

with 4 different weights for each LSTM cell, resulting in the processing of 8 different

weight arrays and dot product functions. The hidden layer aggregation strategy allows us

to allocate just one array with all the data needed to process the NN output. With this

single large weight array, it becomes easier to perform tests to determine the best memory

allocation and access to the data, since each modification in this big array represents a big

difference of memory usage by the architecture memories.

We evaluated the impact of deploying loop unrolling together with the above men-

tioned optimizations of hidden layers aggregation, new memory allocations, and new

memory accesses in combination with the offline parallelization strategy. This resulted

in an improvement of 1.5 times better runtime when compared to the offline paralleliza-

tion scenario without any other optimization techniques. Since the dot product could be

processed using a better approach (i.e. Eigen library and SSE instructions) we just show

in Figure 6.1 the result obtained with the offline parallelization scenario. In what follows,

we show that other optimization techniques can also contribute to speeding up the dot

65

product implementation.

In the subsequent experiments presented in this section, we use hidden layer ag-

gregation and apply the idea of allocating all memory structures in a contiguous way. We

then evaluate the effect of composing these base optimization strategies with others, in or-

der to speed up the dot product operations, for instance, using the Eigen library (see more

details in Section 4.3.5). The use of the Eigen library, in combination with the previously

mentioned optimizations, results in an runtime improvement of 1.8 times, compared to

the offline implementation that uses loop unrolling.

Since, in these experiments we are using an Intel architecture, we now consider

the impact of using the SIMD instructions available on it. The use of SSE (discussed in

Section 4.4.1) to accelerate the dot product operations results in a considerable runtime

improvement, even compared to the dot product version using the highly optimized Eigen

library. Our SSE implementation outperforms Eigen by 15% (when using online paral-

lelization) by 20% (when using offline parallelization). It is important to mention that

Eigen is a much more general library than just one to compute dot products, and the re-

sults we obtain here should not be construed as a general statement about the capabilities

or performance of Eigen library in other applications.

Before presenting the next experimental results, one important thing to mention

is the way in which we have compiled the different optimized NNs. While performing

experiments, we realized that -Ofast flag provides a considerable runtime improvement,

mainly if used to compile the less optimized versions of the network (baseline and with

just online and offline parallelization). This happens mainly because this compilation flag

optimizes loops, and the simplest optimization configurations that we evaluate here do

not implement manually-constructed loop unrolls or exploit any kind of loop optimiza-

tion. The loop-unrolled version of our baseline NN does not work properly (i.e. network

accuracy lost) using -Ofast, demonstrating that this flag compiles all loops using loop

optimizations. The first four bars in Figure 6.1 show the performance results using the

-O3 compilation flag, while the remaining software configurations make use of -Ofast

compilation flag. The same approach will be considered to the next results.

Figure 6.2 shows the effect of different optimization techniques when applied to

the integer implementation of the NN on an Intel i7-4500U architecture. In this config-

uration of the code we convert all floating-point parameters and inputs to integer (see

Section 4.3.6 for more details). This conversion results in a small accuracy reduction due

to reduced numerical precision. We show in Figure 6.2 only the main combinations of

66

optimization techniques obtained in Figure 6.1 and make use of the architecture-specific

AVX instruction set. Making use of AVX instructions decreases runtime on average by

9%, when compared to the use of SSE.

Figure 6.2: Runtime of an integer BLSTM implementation under different optimization
techniques on the Intel i7-4500U @ 3.0 (turbo) architecture

0

20

40

60

80

100

120

140

R
u

n
ti

m
e

, [
s]

INTEGER
Accuracy: 97,9794%

The trade-off between accuracy and runtime, which results from approximating

floating point numbers with integers, is an important question to be discussed. We ob-

served, in our experiments, that a small accuracy reduction (of only 0.25%) when using

integers is balanced off by a large reduction in the data processed by the NN (each net-

work parameter is represented with 16-bit per integer instead of 32-bit per float) and

consequently a big reduction of runtime. Our experiments show that the integer-based

NN optimized configuration of the NN can be executed at almost half of the runtime of

the floating-point implementations. The SSE version of the integer network results in a

runtime reduction of 34% (if using online parallelization) and 9% (if using offline paral-

lelization) compared to the floating-point implementation of the network.

The last improvement proposed for the Intel i7-4500U architecture, which reduces

accuracy in an almost insignificant way but that offers a large gain in runtime, is the use

of lookup tables to approximate the neuron activation functions. The results obtained

by evaluating the use of lookup tables (in an integer-based NN), and combining it with

different parallelization scenarios, is presented in Figure 6.3.

Figure 6.4 aggregates all different optimized configurations of the NN when exe-

cuted on an Intel i7-4500U. This figure clarifies which specific combination of optimiza-

tion techniques allows for the best way of tackling the different computational bottlenecks

67

Figure 6.3: Runtime of an integer BLSTM implementation using lookup tables on the
Intel i7-4500U @ 3.0 (turbo) architecture

0

5

10

15

20

25

30

R
u

n
ti

m
e

, [
s]

INTEGER AND LUTS
Accuracy: 97,9228%

of the baseline BLSTM. The best runtime we achieved when using a floating-point net-

work is of 10.7 seconds, compared to the 248 seconds required for running the baseline

implementation of the BLSTM. This corresponds to an improvement of 23.2 times. If ap-

plying the offline parallelization strategy to the integer implementation of the NN, along

with better memory allocation, AVX instructions and lookup tables, runtime improves by

approximately 9 times compared to the floating-point implementation with offline paral-

lelization.

Figure 6.4: Complete runtime comparison of floating-point and integer BLSTM imple-
mentations on an Intel i7-4500U @ 3.0 (turbo) architecture

0

50

100

150

200

250

300

R
u

n
ti

m
e,

 [
s]

FLOAT
Accuracy: 98,2337%

INTEGER
Accuracy: 97,9794%

INTEGER AND LUTS
Accuracy: 97,9228%

68

Figure 6.5 shows performance results for the offline parallelization scenario using

different optimization techniques on a Xeon E5-2670 v3 architecture. We omit the results

for online parallelization since they did not result in any significant runtime improvement.

This occurred, we believed, due to the high inter-thread synchronization costs involved in

fine-grained parallelization, which were exacerbated by the recurrent nature of the NN. If

using offline parallelization, we observed a 9 times runtime improvement when comparing

the floating-point software just with parallelization to the best results achieved via an

integer-based NN with AVX instructions and lookup tables. If we compare the baseline

floating-point implementation (omitted in Figure 6.5) with the best result achieved, this

improvement is of up to 169 times (baseline with no parallelization runs in 220 seconds

on Xeon).

Figure 6.5: Runtime comparison of floating-point and integer-based BLSTM implementa-
tions under the main optimization techniques, using just offline parallelization on a Xeon
E5-2670 v3 @ 3.1 GHz (turbo) architecture

0

2

4

6

8

10

12

14

R
u

n
ti

m
e,

 [
s]

FLOAT
Accuracy: 98,2337%

INTEGER
Accuracy: 97,9794%

INTEGER AND LUTS
Accuracy: 97,9228%

Loop
unrolling

SSEOpenMP OpenMP SSE AVX SSE AVX

6.2 BLSTM runtime on ARM architectures

This section presents the runtime improvements achieved by the best optimized

configurations of the NN when deployed on ARM architectures. We apply the same opti-

mization techniques previously presented, with one key difference: the intrinsic functions

that are used to implement dot products. Instead of using SSE or AVX (available on Intel

architectures), we use the intrinsics provided by ARM architectures: NEON (see Section

69

4.4.3 for more details).

Figure 6.6 shows, on the left, the runtimes achieved by a floating point implemen-

tation of the BLSTM on an ARM Cortex-A53 (Raspberry Pi 3 board). The light blue bars

show, respectively, the performance of the un-optimized baseline BLSTM and best opti-

mization configurations we identified—both deploying different types of parallelization,

using new memory blocks allocation, hidden layers aggregation, and NEON intrinsics.

These floating point-based NNs did not incur any accuracy loss. The dark blue bars show

the optimized floating-point configurations when applying lookup tables to approximate

the activation functions, where a small reduction in accuracy is tolerated in exchange for

better runtimes. The same type of performance evaluation shown for floating point NNs

are repeated on an integer-based implementation of the BLSTM (light- and dark-red bars

in Figure 6.6).

Figure 6.6: Runtime of floating-point and integer BLSTM implementations under the
main configurations of software optimization techniques on an ARM Cortex-A53 @ 1.2
GHz architecture

0

200

400

600

800

1000

1200

1400

1600

1800

R
u

n
ti

m
e,

 [
s]

FLOAT
Accuracy: 98,2337%

INTEGER
Accuracy: 97,9794%

INTEGER AND LUTS
Accuracy: 97,9228%

FLOAT AND LUTS
Accuracy: 98,2286%

Figure 6.7 shows the comparison of the optimized floating-point implementations

of the NN with the integer-based ones on an ARM Cortex-A9 (Zynq board). We omit the

results of the baseline network due to their large runtimes, when compared to the results

obtained via the optimized configurations presented here; in particular, the floating-point

baseline implementation runs in almost 3000 seconds, while even the less efficient opti-

70

mized NN presented in Figure 6.7 runs in less than 900 seconds.

Figure 6.7: Runtime of floating-point and integer BLSTM implementations under the
main configurations of software optimization techniques on an ARM Cortex-A9 @
800MHz

0

100

200

300

400

500

600

700

800

900

1000

R
u

n
ti

m
e,

 [
s]

FLOAT
Accuracy: 98,2337%

INTEGER
Accuracy: 97,9794%

INTEGER AND LUTS
Accuracy: 97,9228%

FLOAT AND LUTS
Accuracy: 98,2286%

The results obtained on ARM architectures demonstrate, once again, that com-

bining different subsets of the optimization techniques proposed in this work can result

in large runtime improvements. The proposed optimizations for parallelization, memory

allocation, memory aggregation, and use of intrinsics, results in the largest runtime reduc-

tions. In the cases where even better runtimes are required, the use of numerical precision

reduction (by converting floats to integers) and using lookup tables, are valuable options.

6.3 Runtime and energy consumption on Intel and ARM architectures

Finally, we present results comparing runtime and energy consumption of all the

main optimized configurations of our BLSTM, on all architectures. Figure 6.8 presents

energy consumption measurements under different network configurations; these were

collected according to the methodology described in Section 5.3.3. Runtime, in this fig-

ure, is shown on the horizontal axis using a logarithm scale, since the ARM implementa-

tions run much slower than Intel implementations. Different symbols are used to represent

the different optimizations being evaluated. All optimized configurations of the network

use AVX (Intel) and NEON (ARM) intrinsics for vectorization. We once again omit the

71

performance of the un-optimized baseline network and present just the best configura-

tions obtained during our tests, so that they can be compared in terms of their relative

performances; all of them performed significantly better than the baseline, as previously

discussed.

Figure 6.8: Runtime vs energy consumption of the main optimized configurations of the
BLSTM, on all architectures

0

100

200

300

400

500

600

700

800

900

0,1 1 10 100 1000

En
er

gy
, [

J]

Runtime, [s]

float, online

float, offline

int, online

int, offline

int, online, LUTS

int, offline, LUTS

Accuracy (32-bit float) = 98,2337%
Accuracy (16-bit int) = 97,9794%
Accuracy (16-bit int and LUTS) = 97,9228%

float, online

float, offline

int, online

int, offline

int, online, LUTS

int, offline, LUTS

It is possible to observe, in Figure 6.8, that Intel architectures provide the best run-

time results. In particular, the best runtime we achieved, when considering all architec-

tures and optimization techniques, was achieved on an Intel Xeon CPU. That implemen-

tation of the BLSTM network was capable of analyzing the entire testing set of images in

just 1.3 seconds, compared to approximately 220 seconds required by the baseline imple-

mentation of the BLSTM that we optimized in this work on the same architecture. This

configuration of the network is about 8 times faster than the best network we analyzed

on Intel i7 CPU; this happens due to the number of available threads of each architec-

ture. The Intel i7-4500U CPU, designed specifically for laptops, presents the best energy

consumption (if executing the NN with offline parallelization using integers) across all

configurations that we considered in this work; in particular, it requires 19 times less en-

ergy than the floating-point baseline network (baseline consumes 2090 joules). Compared

to the floating-point implementation with parallelization, this energy reduction is of 8.5

times. Xeon E5-2670 v3 CPU reduces its energy consumption in 32 times compared to

the floating-point baseline implementation (baseline consumes 8466 joules).

Despite their larger runtime, ARM architectures have good energy consumption

72

results, since they are designed to use very low power when executing tasks. Cortex-A9

(Zynq board) presents great energy consumption results and the most optimized version

of the NN requires 5.5 times less energy than the floating-point baseline (baseline con-

sumes 911 joules). The same comparison for Cortex-A53 (Raspberry pi 3 board) shows

a reduction of 6 times of energy consumption compared to the baseline floating-point

implementation (baseline consumes 1782 joules).

73

7 CONCLUSION

Recurrent Neural Networks, such as BLSTMs, are being increasingly used in im-

portant applications due to their superior accuracy. Current applications often require the

deployment and use of these networks in devices with limited computational power. In

this work, we proposed and evaluated many possible software- and hardware-based opti-

mization techniques to speed up the execution of a BLSTM on CPUs. These optimization

techniques can also be extended to other kinds of NNs, since they accelerate components

that are common to all of them, such as dot product optimizations. We empirically show

that by combining specific optimization methods, it is possible to speed up a baseline

BLSTM implementation on different CPU architectures—by 9 times, on average, on an

Intel architecture, compared to un-optimized parallel implementations, and by more than

2.3 times, on average, on ARM architectures given the same comparison. The Xeon ar-

chitecture can achieve a reduction of up to 169 times comparing a complete un-optimized

baseline with the best combination of optimization techniques we propose in this work.

Deploying an effective combination of optimization techniques on an ARM architecture

(Cortex-A53, Raspberry pi 3 model b) results in similar improvements, when compared

to a baseline floating-point NN; in particular, it results in a runtime reduction of up to 9

times.

In this work we have also shown that it is possible to successfully implement, in

software, optimization techniques that are typically implemented in hardware, such as

numerical precision reduction and lookup tables, achieving an average runtime reduction

of up to 50%. In case numerical precision reduction is used, one could expect a significant

decrease in accuracy of the network, but we empirically observe that in an important

application (Optical Character Recognition), the trade-off between accuracy and runtime

reduction is worth it: by implementing and deploying such techniques, one incurs in a

<0.32% accuracy reduction.

We have observed that performance improvements using vectorization strategies

are central to achieving significant runtime improvements. However, implementing such

strategies involves dealing with many trade-offs in a vast landscape of possible CPU ar-

chitectures. We show that it is possible to make use of hardware-specific instructions (i.e.

SSE, AVX and NEON vectorization) in order to implement critical linear algebra oper-

ations that often constitute computational bottlenecks in recurrent neural networks, and

obtain better runtime even when compared to an optimized BLAS library.

74

Many of the optimization techniques used here perform better if used in particular

combinations, instead of being deployed separately. A combination of software-based

optimization techniques, associated with actively exploiting hardware capabilities, was

shown to produce the best runtime improvements. Empirically, we have observed that

the factor that results in largest runtime improvements is parallelization, followed by the

use of SIMD instructions, numerical precision reduction, and the use of lookup tables to

approximate neural network activation functions (i.e., memoization). Although memory

optimizations are not mentioned above, they are one of the most important optimizations

presented in this work and responsible for taking the maximum potential of all other

optimizations.

By deploying the optimization techniques proposed in this work, we have shown

that it is possible to perform OCR on thousands of images, with a BLSTM neural network,

in just a few seconds, while undergoing negligible cost in accuracy. This is in contrast with

the cost of running these same analyses but via a neural network that does not implement

our proposed optimizations; in this case, it could take up to 5 minutes on Intel and 50

minutes on ARM to process the same amount of data.

Besides demonstrating that significant runtime improvements can be achieved, we

have also shown that it is possible to reduce energy consumption in all evaluated architec-

tures. The energy consumption reduction on Xeon was observed to be of up to 32 times,

and up to 6 times on ARM CPUs. In this latter case, one could expect better ARMs to be

more energy efficient (since they are designed as low power CPUs); however, the signif-

icant runtime gains on Intel i7-4500U architecture designed for laptops ensures that the

most significant energy consumption improvements and results occurred in this architec-

ture.

In this work we have focused on optimization methods that are software-based

and/or that exploit hardware-specific capabilities. We have not, however, evaluated the

possibility of using dedicated hardware, capable of speeding up critical linear algebra

operations, such as GPUs. In this respect, we have performed preliminary experiments on

a Xeon phi co-processor, which has 236 available threads for parallelization. Preliminary

experiments suggest that by using GPUs (even if possible from a monetary point of view,

and in devices that allow for such a hardware) may not always be advantageous. This is

supported by our observation that the time required to offload a relatively small BLSTM

network and training set (e.g., 200 neurons and 3401 images) to a co-processor may not

be amortized by the faster processing capabilities of such a dedicated hardware. This

75

further supports our motivating assumption of the importance of studying optimization

techniques that do not necessarily rely on this type of dedicated hardware.

We expect that the discussion presented here, about how different software or hard-

ware optimizations can be implemented, and in which combinations, will benefit future

implementations of neural networks that are required to run in general-purpose archi-

tectures (such as Intel) and in devices with important computational limitations, thereby

also allowing for such machine learning methods to be more widely used in embedded

systems.

7.1 Future Work

One future extension of this work relates to the idea of empirically evaluating

the performance of the (un-optimized) baseline BLSTM neural network used here, but

on a GPU. After performing this analysis, we could initiate efforts to adapt such NN

implementation to this new target architecture, and determine how much performance

improvement could be achieved when compared to the ones we have presented here—

which were obtained without requiring a dedicated hardware.

Another line of future work related to trying to further improve performance by

offloading the BLSTM to a hardware with more threads. As mentioned above, we have

performed preliminary experiments where we offload the NN and training set to a Xeon

phi co-processor, which has many much more threads than the Xeon processor. We have,

however, encountered difficulties achieving high-accuracy results. An important next step

could be to better understand why this is the case, and which optimizations could be

deployed in order to better exploit this kind of architecture.

Finally, another important future step (after conducting more conclusive offload

experiments) is the evaluation of a BLSTM NN when deployed natively on a Xeon phi

co-processor. In particular, we would like to investigate what types of runtime and energy

consumption improvements could be achieved if we send all data and NN parameters to

the co-processor, before running the resulting BLSTM directly on the 236 threads avail-

able on this architecture.

76

REFERENCES

AFZAL, M. Z. et al. Document image binarization using lstm: A sequence
learning approach. In: Proceedings of the 3rd International Workshop on
Historical Document Imaging and Processing. New York, NY, USA: ACM,
2015. (HIP ’15), p. 79–84. ISBN 978-1-4503-3602-4. Available from Internet:
<http://doi.acm.org/10.1145/2809544.2809561>.

APPLEYARD, J.; KOCISKÝ, T.; BLUNSOM, P. Optimizing performance of recurrent
neural networks on gpus. CoRR, abs/1604.01946, 2016. Available from Internet:
<http://arxiv.org/abs/1604.01946>.

BREUEL, T. M. et al. High-performance ocr for printed english and fraktur using
lstm networks. In: Proceedings of the 2013 12th International Conference on
Document Analysis and Recognition. Washington, DC, USA: IEEE Computer Society,
2013. (ICDAR ’13), p. 683–687. ISBN 978-0-7695-4999-6. Available from Internet:
<http://dx.doi.org/10.1109/ICDAR.2013.140>.

BRYSON, A. E.; DENHAM, W. F.; DREYFUS, S. E. Optimal programming problems
with inequality constraints. AIAA journal, v. 1, n. 11, p. 2544–2550, 1963.

COLLOBERT, R.; KAVUKCUOGLU, K.; FARABET, C. Implementing neural networks
efficiently. In: Neural Networks: Tricks of the Trade. [S.l.]: Springer, 2012. p.
537–557.

EIGEN, a C++ template library for linear algebra. 2017. <http://eigen.tuxfamily.org/>.
[Online; accessed in April].

GRAVES, A. Supervised sequence labelling with recurrent neural networks. 1-117 p.
Thesis (PhD) — Technical University Munich, 2008.

GRAVES, A. et al. Connectionist temporal classification: Labelling unsegmented
sequence data with recurrent neural networks. In: Proceedings of the 23rd
International Conference on Machine Learning. New York, NY, USA: ACM,
2006. (ICML ’06), p. 369–376. ISBN 1-59593-383-2. Available from Internet:
<http://doi.acm.org/10.1145/1143844.1143891>.

GREFF, K. et al. LSTM: A search space odyssey. CoRR, abs/1503.04069, 2015.
Available from Internet: <http://arxiv.org/abs/1503.04069>.

HAYKIN, S. Neural Networks - A comprehensive Foundation. 2nd. ed. [S.l.]: Pearson
Education, Inc, 1999.

HOCHREITER, S.; SCHMIDHUBER, J. Long short-term memory. Neural Comput.,
MIT Press, Cambridge, MA, USA, v. 9, n. 8, p. 1735–1780, nov. 1997. ISSN 0899-7667.
Available from Internet: <http://dx.doi.org/10.1162/neco.1997.9.8.1735>.

INTEL Intrinsics Guide. 2011. <https://software.intel.com/sites/landingpage/
IntrinsicsGuide/>. [Online; accessed in April 2017].

Levenshtein, V. I. Binary Codes Capable of Correcting Deletions, Insertions and
Reversals. Soviet Physics Doklady, v. 10, p. 707, feb. 1966.

http://doi.acm.org/10.1145/2809544.2809561
http://arxiv.org/abs/1604.01946
http://dx.doi.org/10.1109/ICDAR.2013.140
http://eigen.tuxfamily.org/
http://doi.acm.org/10.1145/1143844.1143891
http://arxiv.org/abs/1503.04069
http://dx.doi.org/10.1162/neco.1997.9.8.1735
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/

77

LOMONT, C. Introduction to Intel Advanced Vector Extensions. 2017. <https:
//software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions>.
[Online; accessed in July].

MCCULLOCH, W. S.; PITTS, W. A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics, Springer, v. 5, n. 4, p. 115–133,
1943.

MOTAMEDI, M. et al. Design space exploration of fpga-based deep convolutional
neural networks. In: 2016 21st Asia and South Pacific Design Automation Conference
(ASP-DAC). [S.l.: s.n.], 2016. p. 575–580.

OLAH, C. Understanding LSTM Networks. 2015. <http://colah.github.io/posts/
2015-08-Understanding-LSTMs/>. [Online; accessed in May 2017].

QIU, J. et al. Going deeper with embedded fpga platform for convolutional
neural network. In: Proceedings of the 2016 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays. New York, NY, USA: ACM,
2016. (FPGA ’16), p. 26–35. ISBN 978-1-4503-3856-1. Available from Internet:
<http://doi.acm.org/10.1145/2847263.2847265>.

RYBALKIN, V. et al. Hardware architecture of bidirectional long short-term memory
neural network for optical character recognition. In: Design, Automation Test in
Europe Conference Exhibition (DATE), 2017. [S.l.: s.n.], 2017. p. 1390–1395.

VANHOUCKE, V.; SENIOR, A.; MAO, M. Z. Improving the speed of neural networks
on cpus. Proc. Deep Learning and Unsupervised Feature Learning NIPS Workshop,
2011.

YAN, S. Understanding LSTM and its diagrams. 2016. <https://medium.com/
@shiyan/understanding-lstm-and-its-diagrams-37e2f46f1714>. [Online; accessed in
May 2017].

ZHANG, C. et al. Optimizing fpga-based accelerator design for deep convolutional
neural networks. In: Proceedings of the 2015 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays. New York, NY, USA: ACM,
2015. (FPGA ’15), p. 161–170. ISBN 978-1-4503-3315-3. Available from Internet:
<http://doi.acm.org/10.1145/2684746.2689060>.

https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions
https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://doi.acm.org/10.1145/2847263.2847265
https://medium.com/@shiyan/understanding-lstm-and-its-diagrams-37e2f46f1714
https://medium.com/@shiyan/understanding-lstm-and-its-diagrams-37e2f46f1714
http://doi.acm.org/10.1145/2684746.2689060

78

APPENDIX A — C++ IMPLEMENTATION OF LOOKUP TABLE

Figure A.1: Header file to use lookup tables for the neuron activation functions

1 #ifndef FUNCTIONS_HPP
2 #define FUNCTIONS_HPP
3

4 #include <vector> // std::vector< >
5 #include <math.h> // tanh, log
6 #include <iostream> // std::cout, std::cerr
7 #include <string> // std::string
8

9 float sigmoidf(float x);
10

11 //---
12 // LUTs
13 //---
14 class LUTs
15 {
16 public:
17

18 LUTs();
19 ~LUTs();
20

21 unsigned int ReturnNumberOfLUTs();
22

23 void Init(std::string name, float(*ref_function)(float), float lower, float ←↩
upper, float scale);

24 void Report();
25

26 void GenerateLUTs(unsigned int size);
27

28 float LUT_fine(float input);
29 float LUT_coarse(float input);
30

31 float func_ref(float input);
32

33 std::vector<float> LUT;
34

35 protected:
36

37 unsigned int numberOfLUTs;
38 float lower_limit;
39 float upper_limit;
40 float step;
41 float recip_step;
42 float scale_factor;
43

44 std::string Name;
45

46 float(*p_ref_function)(float);
47

48 private:
49

50 };
51

52 #endif

79

Figure A.2: C++ source file implementing functions to use lookup tables instead of regu-
lar neuron activation functions

1 #include "functions.hpp"
2 #include "neuron.hpp"
3
4 float sigmoidf(float x)
5 {
6 return 1.0 / (1.0 + expf(-x));
7 }
8 //---
9 // LUTs

10 //---
11 LUTs::LUTs()
12 {
13 numberOfLUTs = 0;
14 lower_limit = 0.0;
15 upper_limit = 0.0;
16 step = 0.0;
17 recip_step = 0.0;
18 Name = ".";
19 scale_factor = 1.0;
20 }
21 LUTs::~LUTs()
22 {
23 LUT.clear();
24 }
25 unsigned int LUTs::ReturnNumberOfLUTs()
26 {
27 return numberOfLUTs;
28 }
29 void LUTs::Init(std::string name, float(*ref_function)(float), float lower, float upper, float scale)
30 {
31 Name = name;
32 p_ref_function = ref_function;
33 lower_limit = lower;
34 upper_limit = upper;
35 scale_factor = scale;
36 }
37 void LUTs::Report()
38 {
39 std::cout << "Number of LUTs in " << Name + ": "<< numberOfLUTs << std::endl;
40 }
41 void LUTs::GenerateLUTs(unsigned int size)
42 {
43 numberOfLUTs = size;
44 LUT.resize(numberOfLUTs);
45 // numberOfLUTs - 1 != 0
46 if(numberOfLUTs - 1 < 1)
47 {
48 std::cerr << "ERROR: the number of LUTs is incorrect" << std::endl;
49 return;
50 }
51 else
52 step = (upper_limit - lower_limit) / (float)(numberOfLUTs - 1);
53 recip_step = 1.0 / step;
54 unsigned int i = 0;
55 for (float x = lower_limit; x <= upper_limit + (step / 2.0); x += step, i++)
56 LUT[i] = scale_factor * p_ref_function(x);//tanhf(x) or expf(x) or sigmoidf(x);
57 }
58 float LUTs::LUT_fine(float input)
59 {
60 // If we are outside of LUT range
61 if (input <= lower_limit) return LUT.front();
62 if (input >= upper_limit) return LUT.back();
63 // Scale from [lower, upper] to [0, N]
64 float xi = (input - lower_limit) / step;
65 // Get left and right point of xi
66 unsigned int x1 = floor(xi);
67 unsigned int x2 = ceil(xi);
68 // Bilinear interpolation
69 float y1 = LUT[x1];
70 float y2 = LUT[x2];
71 return (y2 - y1) * (xi - x1) + y1;
72 }
73 float LUTs::LUT_coarse(float input)
74 {
75 // If we are outside of LUT range
76 if (input <= lower_limit) return LUT.front();
77 if (input >= upper_limit) return LUT.back();
78 // Scale from [lower, upper] to [0, N]
79 float xi = (input - lower_limit) * recip_step;
80 unsigned int index = (unsigned int)xi;
81 float y1 = LUT[index];
82 return y1;
83 }
84 //---
85 // REFERENCE
86 //---
87 float LUTs::func_ref(float input)
88 {
89 return p_ref_function(input);
90 }

	Acknowledgments
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	1 Introduction
	1.1 General Objective
	1.2 Outline

	2 Theoretical Background
	2.1 Neural Networks
	2.1.1 Recurrent Neural Networks
	2.1.2 LSTM and BLSTM Neural Networks

	2.2 Optical Character Recognition
	2.3 String Comparison Algorithms
	2.3.1 Levenshtein Distance

	2.4 CPU Architectures and Instruction Set Extensions
	2.4.1 Streaming SIMD Extensions (SSE)
	2.4.2 Advanced Vector Extensions (AVX)
	2.4.3 NEON Advanced SIMD Architecture Extension

	3 Related Work
	3.1 Accelerating Neural Networks via Dedicated Hardware
	3.2 Accelerating Neural Networks via Software-Only Optimizations
	3.3 Accelerating Neural Networks via Software Optimizations and Hardware Capabilities

	4 Optimization Techniques for Neural Networks
	4.1 Baseline BLSTM Implementation
	4.1.1 Step 1: Data Structure Allocation and Loading
	4.1.2 Step 2: Computing Neural Network Outputs
	4.1.3 Step 3: Metrics Gathering/Performance Evaluation

	4.2 Identifying Bottlenecks in the Baseline BLSTM Implementation
	4.3 Software Optimization Techniques
	4.3.1 Parallelization Scenarios
	4.3.1.1 Input-level Parallelization (Offline)
	4.3.1.2 Neuron-level Parallelization (Online)

	4.3.2 Hidden Layers Aggregation
	4.3.3 Memory Allocation and Access
	4.3.4 Loop Unrolling
	4.3.5 Use of High-Performance Libraries
	4.3.6 Precision Reduction
	4.3.7 Lookup Tables for Activation Functions

	4.4 Hardware Dependent Optimization Techniques
	4.4.1 SSE Intrinsic Functions
	4.4.2 AVX Intrinsic Functions
	4.4.3 NEON Intrinsic Functions

	5 Experimental Methodology
	5.1 Evaluation Problem
	5.2 Comparisons
	5.3 Evaluation Metrics
	5.3.1 Accuracy
	5.3.2 Runtime
	5.3.3 Energy Consumption

	5.4 Compilation Settings for Experiments

	6 Results
	6.1 BLSTM runtime on Intel architectures
	6.2 BLSTM runtime on ARM architectures
	6.3 Runtime and energy consumption on Intel and ARM architectures

	7 Conclusion
	7.1 Future Work

	References
	Appendix A — C++ Implementation of Lookup Table

