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Abstract

Audio coding is used to compress digital audio signals, thereby reducing the
amount of bits needed to transmit or to store an audio signal. This is useful when
network bandwidth or storage capacity is very limited. Audio compression algorithms
are based on an encoding and decoding process. In the encoding step, the uncompressed
audio signal is transformed into a coded representation, thereby compressing the audio
signal. Thereafter, the coded audio signal eventually needs to be restored (e.g. for
playing back) through decoding of the coded audio signal. The decoder receives the
bitstream and reconverts it into an uncompressed signal.

ISO-MPEG is a standard for high-quality, low bit-rate video and audio coding.
The audio part of the standard is composed by algorithms for high-quality low-bit-rate
audio coding, i.e. algorithms that reduce the original bit-rate, while guaranteeing high
quality of the audio signal. The audio coding algorithms consists of MPEG-1 (with
three different layers), MPEG-2, MPEG-2 AAC, and MPEG-4.

This work presents a study of the MPEG-4 AAC audio coding algorithm.
Besides, it presents the implementation of the AAC algorithm on different platforms,
and comparisons among implementations. The implementations are in C language, in
Assembly of Intel Pentium, in C-language using DSP processor, and in HDL. Since
each implementation has its own application niche, each one is valid as a final solution.
Moreover, another purpose of this work is the comparison among these
implementations, considering estimated costs, execution time, and advantages and
disadvantages of each one

Keywords: MPEG-4 AAC, Audio coding, Perceptual Coders, Psychoacoustics, PC,
MMX, DSP, VHDL.
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1 Introduction

In many situations, network bandwidth or storage capacity may be very limited.
On a network, for instance, there may be many users trying to send large amounts of
data. In this context, reducing the amount of information is imperative. The main
application of audio coding is in reducing the amount of bits needed to transmit or to
store an audio signal. Therefore, through an algorithm, the audio coder compresses the
signal prior to sending or storing it.

Audio compression algorithms are based on an encoding and decoding process.
The encoding is the step in which the uncompressed pulse code modulated (PCM)
signal is transformed into a coded representation. The encoder's purpose is to compress
the audio signal. Thus, the compressed audio signal takes fewer bits to represent audio
information because of the set of parameters created by the encoder. This set of
parameters is a bitstream that may be then transmitted on a network or stored on a
media.

The coded audio signal eventually needs to be restored (e.g. for playing back).
To accomplish this, the coded audio signal is decoded, where it will loose its
compressed form and return to the original audio format. The decoder receives the
bitstream and reconverts it into a PCM representation through audio synthesis, based on
the parameters held by the bitstream. shows the encoding-transmission-
decoding process:

original decoded
PCM audio Compressed LTI ~< PCM audio
signal signal /" Transmission | signal

p| Encoder | ,(\ Storage I__yp| Decoder | >

~—_ —_

FIGURE 1.1 — Encoding and decoding of audio signal

The compression and decompression process performed by the coder may be
lossless or lossy. Lossless compression provides bit-exact restoring of the original audio
signal by the decoder, i.e. the original signal and the decoded signal hold the same byte-
sequence. Therefore, no audio information is lost in the encoding process. Lossy
compression does not guarantee that the decoded signal is a replica of the original
signal. In this case, the decoded signal may be perceptually similar to the original
signal.

Lossy compression algorithms generally employ Psychoacoustic models to
codify audio signalsm% Psychoacoustic models make use of characteristics and

limitations of the human auditory system — like masking — to encode the signal. Thus,
Psychoacoustic models provide inaudible (imperceptible) degradation of the quality of



12

the original signal. Through this degradation, audio information is removed from the
original signal, thereby reducing the amount bits needed to represent it.

1.1 Implementation and platforms

When choosing a platform for implementation of an electronic system, there are
many options in sight. One first option is the implementation in software that runs on a
general-purpose processor. An interesting example is the software development for
IBM-PC architecture, since it is widespread in the market. However, even when
developing software for IBM-PC, there are still some choices to be done: for example,
an application that only uses the standard PC (8086) instruction set could be developed,
or special-purpose multimedia instruction sets could be applied, such as the Intel MMX
instruction set.

In some situations, using personal computers as the target platform is unfeasible.
For example, when designing a portable digital recording system, a general-purpose
processor such as Intel Pentium cannot be used, since its unitary cost is too high for this
application. In this case, depending on production scale, other options must be
considered. For medium production scale, the use of a Digital Signal Processor (DSP)
may be envisaged, since its unitary cost is lower than the cost of a general-purpose
processor such as Intel Pentium. However, when large production scale is considered, a
dedicated hardware application is the best choice. The so-called embedded systems are
the functional integration of hardware and software for a specific application. In this
case, the hardware description — which is usually done with the help of hardware
description language (HDL) — may be synthesized on a Field-Programmable Gate-Array
(FPGA), or detailed into a full-custom processor. Full-custom processors usually have
very high costs. However, through large production scale, its cost is reduced to a price
suitable for the consumer electronic market.

The purpose of this work is the implementation of blocks from the MPEG-4
AAC algorithm, considering the implementation options just mentioned. Since each
implementation has its own application niche, each one is valid as a final solution.
Moreover, another purpose of this work is the comparison among these
implementations, considering estimated costs, execution time, and advantages and
disadvantages of each one. These are the implementation accomplished in this work:

Implementation in C language. This is the first implementation and is strongly
based on the C source-code provided by ISO. This source-code is a tutorial
implementation of the MPEG-4 AAC algorithm and it is used for analysis and
comparison with other implementations.

Implementation in Assembly of Intel Pentium. Compilers of high-level
languages (e.g. C language) try to optimize the object-code through all compilation
steps. However, it is not always possible for a compiler to optimize every aspect of the
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code, since compilers are generic tools that have the purpose of generating guaranteed
correct executable code. In many situations, some specific optimizations are overlooked
by the compiler. Consequently, software development in Assembly can boost up the
performance of mathematical-intensive algorithms (such as MPEG-4 AAC), making the
executable code more efficient than its C-compiled correspondent. On the other hand,
Assembly programming is very machine-dependent, i.e. Assembly code written for
processor X (with its own instruction set) may not necessarily run on processor Y. Thus,
the choice of the target processor is very important. The Intel Pentium processor was
chosen, since it is widely used in the market and has a special-purpose multimedia
instruction set. In conclusion, this implementation runs on an Intel Pentium processor
with multimedia support.

Implementation in DSP_processor. While the first two implementations were
targeted on personal computer applications and general-purpose processors, the DSP
implementation is targeted on dedicated devices, where using general-purpose processor
is not a good financial approach. This implementation tries to take advantage of the
DSP processor characteristics (e.g. optimized performance on mathematical-intensive
computations) for increasing the performance of the MPEG-4 AAC algorithm.

Implementation in HDL. The last implementation is an AAC-dedicated
hardware solution. In other words, it is the design of architecture uniquely dedicated to
the implementation of a set of AAC module. This implementation should be well
balanced, i.e. it should be optimized for computation time efficiency, but also realistic
in terms of area and power.

1.2 Organization

This chapter has presented an introduction to audio coding. The second chapter
presents basic concepts of Psychoacoustics. The third chapter describes the MPEG-4
AAC encoding algorithm. The fourth chapter presents the implementations of the
algorithm. Finally, the last chapter presents the conclusions of this work.
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2 Psychoacoustics and perceptual coding

This chapter presents a brief introduction to Psychoacoustics. This field deals
with the understanding of the perception of sound. The study of human auditory system
is essential for the design of perceptual coding algorithms, since perceptual coding
algorithms take advantage of psychoacoustical features to compress audio signals
without degrading their quality.

2.1 Decibel scale

A signal may be defined as a variable that changes with time. For example, a
graph of temperature variation may define a signal. In the electrical domain, a signal
X(t) may be defined by the voltage variation (in VVolts). The signal power is given by

P(t) = x(t)i(t) , where i(t) is the instantaneous current in Amperes [HAR 98

The average power is defined by

5:%‘[0% P(t)dt, where Tp is the length of time for which the averaging is
taken.

The root-mean-square (RMS) value is based on the average power, and it is
given by

Xeus = VPR = %LTD x?(t)dt , where R is the resistance in Ohms (Q) and it is
usually definedasR=1 Q.

Both definitions of the average power and RMS value are useful to define the
Decibel. Given two signals, with powers P: and P2, the log relation between these two
signals is given by

— P,
Decibel =10logH=
I:)l

The Decibel may also be defined based on two signal amplitudes A and A,. In
this case, the definition is

A
Decibel =201log

>—>|m
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Note that the value in decibels (dB) is not a physical quantity as electrical
voltage or acoustical pressure amplitude, but just a measure of relationship between two
physical quantities.

When working in the acoustical domain, the instantaneous intensity I(t),
measured in W/m?, is based on the instantaneous pressure x(t), measured in N/m? or
Pascals, and the fluid velocity u(t), measured in m/s. It is defined as follows:

(1) = x(O)u(t)

The instantaneous intensity I(t) may also be defined by the acoustical impedance
pc, where p is the density in kg/m® and c is the speed of sound in m/s. The acoustical

impedance pc is defined in units of Rayls, and in the case of the air, it is 415 Rayls. In
this case, the instantaneous intensity I(t) is defined by 1(t) = x*(t)oc.

The absolute acoustical Decibel scale is based on the threshold of hearing for a
1000 Hz sine tone. A reference pressure Xg is provided by Xq. =20uPa. The

reference intensity is therefore given by
I(t) = x*(t)pc 0107*W /m?

Hence, the sound pressure level (SPL) decibel scale is given by

A
Level =10 Iog%L E[dB SPL] or by
0

A
Level =20|og§mg[d5 SPL]
XO

2.2 Threshold of hearing

In this section, we deal with loudness and the threshold of hearing. While
acoustical intensity is a physical quantity, loudness is a perceptual quantity. Therefore,
loudness cannot be measured with physical instruments, but only estimated in

psychoacoustical experiments

In the previous section, the absolute Decibel scale was defined based on the
threshold of hearing. Therefore, a 1000 Hz sine tone at a level of 0 dB SPL is on the
threshold of hearing. However, the human auditory system is not a linear device. Thus,
for some intervals of frequencies, the threshold is higher than 0 dB SPL. For example,
the threshold of hearing for an 80 Hz sine tone is 30 dB, and for a 40 Hz sine tone it is
50 dB.
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The equal loudness contours are a set of curves that estimate the same loudness
for audible frequencies. They are presented in m
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FIGURE 2.1 — Equal loudness contours (phon scale)

These contours are the base for the phon scale, which is actually a frequency-
compensated decibel scale. As usual, the frequency of 1000 Hz is taken as reference. So
a sine tone of 1000 Hz at a level of 50 phons (corresponding to 50 dB SPL) has the
same loudness as a sine tone of 100 Hz at a level of 50 phons (corresponding to 60 dB
SPL), although they do not have the same acoustical intensity.

2.2.1 Just-noticeable difference

In the study of loudness, an important measure is the smallest detectable change
in loudness. This measure is known as a difference limen (DL), or just-noticeable

difference (JND) m

The idealized measure of intensity DLs is the Weber’s law. This law specifies

that the DL in intensity Al is proportional to the intensity I, i.e. % =k, where k is a

constant. In other words, the JND in level is a constant number of decibels, no matter
what the starting level is.

While some psychoacoustic studies have shown that Weber’s law is applicable
to loudness, others have shown that it does not predict well the behavior of loudness.
These results depend mainly on the kind of stimulus that is applied. For example, when
white noise is used, Weber’s law holds. However, for tonal signals, the intensity DL
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decreases as the intensity increases. Therefore, studies of JND are not yet totally
conclusive.

2.3 Perception of periodic complex tones

Periodic complex tones are based on the sum of pure (sinusoidal) tones m
@ That is, the frequencies of a periodic complex tone are integer multiples of a
fundamental frequency. Mathematically, if ¢, is the fundamental frequency, a periodic

complex tone x(t) may be represented as a Fourier series l[.I:lARﬁSJJlDALLD_SQ.]l

X(t) = % ¥ i[Ak cos(kayt) + B, cos(ket)]

Integration is the ability of the auditory system to perceive a periodic complex
tone as a single entity, instead of perceiving the individual harmonic components as
separated (different) entities. In other words, the auditory system integrates the
harmonic components into a single auditory entity.

Although it is usually perceived as a single entity, there are some special
situations when listeners are able to perceive harmonic components individually. One
example is the case when there is a spectrally prominent harmonic component (e.g. a
fifth harmonic component that is 5 dB louder than the other harmonic components).
This harmonic component is then heard individually as a separate entity.

Segregation is the ability of the auditory system to categorize sounds coming
from uncorrelated sources. For example, the auditory system has the musical ability to
separate drums and piano on a song. It also has the ability to concentrate on a given
sound source and ignore other sound sources. Moreover, at a party, one is usually
capable of concentrating himself on someone’s voice and disregarding the other voices.
This is known as the cocktail party effect. Segregation is basically a cognitive process
of the auditory system, i.e. segregation is mostly performed in the brain. Gestalt
principles of grouping can be successfully applied to explain auditory segregation
phenomena

2.4 Masking

Masking occurs when one signal x hides another signal y. In this situation, signal
y is not perceived by the auditory system (i.e. it is not heard). Thus, signal x is masking
signal y. Signal x is called the masker and signal y is called the maskee or masked
signal. The loudness of the masker and the masked signal are very important. The
masking threshold is the loudness level when the masked signal is barely audible, and it
is a used to make assertions about the masking characteristics. There are three main
types of masking: tone-masking-tone (TMT), noise-masking-tone (NMT), and tone-
masking-noise (TMN). Furthermore, masking has temporal characteristics. Therefore,
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masking can also classified as simultaneous masking, backward masking, and forward
masking MO0 %ol

Tone-masking-tone happens when a tonal signal y (i.e. a signal generated by a
sine function) is masked by another tonal signal x. This may occur, for example, when
signal x and signal y have near frequencies, and signal x is strong, while signal y is
weak. This kind of masking is very useful for deriving masking patterns. Masking
patterns (also called masked audiograms) show the masked threshold as a function of
the masked signal frequency and intensity, while the frequency and intensity of the
masker remains constant

Noise-masking-tone takes place when a tonal signal y is masked by a noisy
signal x (e.g. a signal generated by a random function). Generally, this situation comes
up when x is weak and the noise is strong.

Tone-masking-noise shows up when a noisy signal y is masked by a tonal signal
X. This is exactly the contrary situation of the previous kind of masking. This feature of
the auditory system is important for audio coding, because the tonal signal (represented
by a frequency line) should mask the quantization noise generated by the encoding
process. Quantization noise is explained in details in the next chapter (chapter |§| section

Simultaneous masking occurs when the masker and masked signals are played
back simultaneously. Most psychoacoustical experiments and results are based on this
kind of masking. Therefore, results from the study of simultaneous masking are the
basis of the study of nonsimultaneous masking, i.e. backward and forward masking.
Besides, nonsimultaneous masking is still poorly understood

Backward masking (or pre-masking) happens when the masker signal can mask
a signal that comes before the masker itself. This may occur, for example, when a soft
signal is followed by a strong signal M Experiments show that backward
masking depends strongly on the psychoacoustical expertise of the subjects Mj

Forward masking (or post-masking) happens when the masker signal masks a
signal that comes after the masker. This may occur, for example, when a strong signal is
followed by a soft signalm. The amount of forward masking (in dB) is a linear
function of log(D), where D is the delay between the masker and masked signals.
Besides, increments in masker level do not correspond to the same amount of
increments in forward masking. For example, a masker level increase of 10 dB may
represent an increase of only 3 dB in forward maskingm
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2.5 Auditory filters

2.5.1 Tuning curve and characteristic frequency

When sound waves come to us, they are converted in the cochlea into neural
impulses. Roughly speaking, these impulses are used by the auditory nerve fibers (also
called neurons) to determine the spectral content of the sound waves. Each nerve fiber
has a characteristic frequency and a tuning curve, which are determined by
psychoacoustic experiments using sine-tone stimulus

The tuning curve determines what level of stimulus is needed to excite a nerve
fiber by 10% over its spontaneous firing rate. Thus, the turning curve presents values of
amplitudes (in dB SPL) as a function of frequency. The frequency that has the smallest
amplitude value is called the characteristic frequency.

2.5.2 Excitation patterns

Nerve fibers are used by the auditory system to determine the spectrum of the
incoming signal. Each nerve fiber has its own characteristic frequency, and the nerve
fibers may be ordered by increasing characteristic frequencym

When a sine-tone stimulus is applied to the auditory system, it will excite the
nerve fibers more or less, depending on the frequency of the stimulus and on the
characteristic frequency of each nerve fiber. The level of excitation of each nerve fiber
is considered to create an excitation pattern. m presents the excitation pattern
for a 750 Hz stimulus:

excitation pattern (sine wave, 750 Hz)
50

45 |

40 -

35}

0 1 1 1 1
0 500 1000 1500 2000 2500

spectrum (Hz)

FIGURE 2.2 — Excitation pattern for a 750 Hz stimulus
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As would be expected, each frequency has its own excitation pattern, which are
used to determine critical bands.

2.5.3 Critical bands

Critical bands (also called auditory filters) are channels used by the auditory
system to process the incoming spectral content. Each critical band represents a given
portion of the spectrum, and its bandwidth is called critical bandwidth. They may be

determined by noise-masking-tone experiments using notched noise|.[.|:lAR_Q8_]

kel

Critical bands may be described as rectangular filters. Although this is not a
realistic model, it simplifies the mathematical treatment of critical bands. Therefore, the
concept of rectangular critical bands is useful and commonly used. The bandwidth of
the rectangular critical bands is called equivalent rectangular bandwidth.

The roex filter is a more elaborate filter used to describe critical bands. It gives a
more realistic shape of the auditory filters, and, in mathematical terms, it is relatively
simple, since it has not too many parameters. The roex(p, r) filter is given by

; |f - fc| .
W(g)=@-r)@0+ pg)e ™ +r,where g = — and f. is the center frequency

of the filter. The parameter p determines the bandwidth and the slope of the skirts of the
auditory filter. m shows the shape of the roex filter (using parameters p=3, r=0,
and [g|=|-2..2)):

roex

1 1 1 1 1 1 1
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
lol

FIGURE 2.3 — Roex filter shape
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2.5.4 Critical bandwidth

The critical bandwidth is the most important characteristic of a critical-band
filter. Since many experiments were done and many models were conceived, there is not
a unique way to determine the critical bandwidth. Currently, the most widely adopted
models of critical bandwidth are the Cambridge, Munich, and the one-third-octave.

The Cambridge and Munich critical bandwidth models are both equivalent
rectangular filters. They can be approximated by the following expressions, where F is
the center frequency (in kHz)

B,, =25+75(1+1.4F%)"® for the Munich critical bandwidth, and

B. =24.7(1+4.37F), for the Cambridge critical bandwidth.

Both critical bandwidth models may be approximated by the one-third-octave,
using the following expression:

B,; = 232F
m presents a comparison between these critical bandwidth models:
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FIGURE 2.4 — Critical bandwidth models

As can be observed in the figure, the one-third-octave may be defined as a
linearization of the Munich critical bandwidth. Besides, the Cambridge model always
gives bandwidth values lower than the Munich model.
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2.5.5 Critical-band number & Bark scale

A critical-band number is an alternative measure of frequency based on critical
bands. The most widely adopted critical-band number is the Bark scale, and it is based
upon the Munich critical bandwidth model. The integer Bark values correspond to lower
band edges. m presents some values for the Bark scale

TABLE 2.1 — Bark scale

Bark Lower (Hz) Center (Hz) |Upper (Hz)

0 0 50 100
1 100 150 200
2 200 250 300
3 300 350 400
23 12000 13500 15500
24 15500

For example, the third band is from 200 Hz to 300 Hz (critical bandwidth of 100
Hz). And a value of 23.5 Bark corresponds to 13500 Hz.
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3 MPEG-4 AAC

ISO-MPEG is a standard for high-quality, low bit-rate video and audio coding. It
was created by the efforts of MPEG (Moving Pictures Experts Group), a group
established by ISO/IEC. The standard consists of a collection of algorithms, chosen
among several available coding algorithms for coding of video and audio. The audio
part was produced in collaboration with AT&T, CCETT, FhG/University of Erlangen,
Philips, IRT, and Thomson Consumer Electronics [BRA 96a]l The main task of the
audio subgroup was to standardize an algorithm for low-bit-rate audio coding, i.e. an
algorithm that should provide signals with bit-rates much lower than the CD bit-rate
(1378.125 kbit/s). Besides, audio quality should not be lost in the codification, so the
encoder must ensure the highest possible audio quality.

It is important to mention that the normative part of the standard only describes
the decoder, whereas the encoder is left to an informative part. The standard does not
explain how to build a high-quality audio encoder. It just presents the formulae and
algorithms that should be used by the encoder. Therefore, new encoders may be
developed, provided they are compliant with the standardized bitstream.

The Motion-Picture Expert Group (MPEG) has created many video and audio
coding algorithms. The audio coding algorithms consists of MPEG-1 (with three

different layers, corresponding to different coding algorithms) [BRA 96b]/ [BRA 99]|

MPEG-2 [[sTO 96][[MPG 94], MPEG-2 AAC [BRA 98]l[IMPG 97]] and

MPEG-4 [IMPG 2000]l In this chapter, just the MPEG-4 AAC encoding
process is described in details.

3.1 Overview

ISO-MPEG-4 Audio is composed by many audio coding tools, such as HILN

m and Structured Audio[[SCH 99a]([SCH 99b]I[SCH 99c]. Among them, there

is the MPEG-4 Advanced Audio Coding (AAC) tool |.[£.‘zR.I—J;L‘i]| which is an
improvement of the previous MPEG-1/2 Layer Il and MPEG-2 AAC algorithms.

m shows the block diagram of the algorithm[[BRA 96a][[BRA 96b]| as defined

by the standard
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FIGURE 3.1 - MPEG-4 AAC block diagram

The AAC encoder receives PCM audio samples and transfers them to the
filterbank and the perceptual model. The filterbank converts the samples from the time-
domain to the spectrum domain through a modified cosine transform. The perceptual
model, by its turn, provides information about bit-allocation (hnumber of bits used in the
encoding process) and maximum allowed noise. This information is used in the
encoding process to ensure high quality of the codified signal at the lowest bit-rates.

After the filterbank, the spectral data is passed through some tools to enhance
the coding quality or efficiency. The temporal noise shaping (TNS) tool is used to
control the quantization noise in the time-domain by applying a filtering process in the
spectral domain. The Intensity Coupling process is used in stereo channels to reduce the
number of bits needed for encoding by coding two channels as a single channel. The
perceptual noise substitution (PNS) is used to code noisy spectral data as white noise
instead of spectral coefficients simply by indicating the level of the noise energy. While
the PNS tool is used for noisy signals, the long-term prediction (LTP) tool is used to
enhance the coding of tonal signals by applying a prediction process to time-domain
samples and transmitting just the error (indicated by the difference between predicted
and actual signal). The M/S decision is used for stereo signals and determines if the
stereo channels should be encoded as the usual left and right channels, or as middle and
side channels.

The spectral data is quantized by AAC quantization process, which is composed
by four subblocks: quantization of scalefactors, quantization of spectral coefficients,
noiseless coding, and rate/distortion control loop. These blocks use the information
provided by the perceptual model to ensure high-quality and coding efficiency of the
encoded spectral data.

In the last step, the quantized spectral data and the side information from the
AAC tools are encoded in the bitstream. An additional CRC process is applied to the
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bitstream to reduce its vulnerability to transmission errors. Finally, the bitstream is
ready for transmission or storage.

M summarizes some characteristics of the AAC encoder. This
information is explained in the following sections.

TABLE 3.1 - MPEG-4 AAC characteristics

Characteristic Specification
Bit-rates 32-160 kbit/s (kbps) for mono signals
64-320 Kkbit/s (kbps) for stereo signals
Sampling-rates 8, 11.025, 12, 16, 22.05, 24, 32, 44.1, 48,
64, 88.2, 96 kHz
Stereo encoding modes Mono, Stereo, Joint-stereo  using

intensity stereo, and Joint-stereo using
M/S (middle-side).
Support for multichannels (up to 48

channels).
Block length (input PCM samples) 2048 and 256
Filterbank MDCT
Filterbank coefficients 2048 and 256
Overlap 50%
FFT (points) 1024
Encoding Uses Huffman coding and bit-reservoir

3.2 Filterbanks

A filterbank is a basic block of any audio encoder. It is used as a time-frequency
mapping from an audio signal (time-domain signal) to spectral components called
frequency lines When coding signals, redundancies and irrelevancies may
be removed from the original signals, thereby reducing the amount of bits needed to
code the signals. Filterbanks allow for signal decorrelation, and therefore reduce the
redundancies of the signal. Moreover, when filterbanks are combined with
psychoacoustical models, they reduce the irrelevancies of the original signal

Redundancies appear, for example, in a pure sinusoidal signal. In this kind of
signal, the values repeat themselves after a fixed period. Therefore, this signal is
redundant. Moreover, it requires many samples to be represented in the time-domain.
However, only three parameters (frequency, phase, and amplitude) are needed to
represent it in the frequency-domain. Thus, by representing the signal in the frequency-
domain in place of the time-domain, redundancies are removed from the original signal

Common audio signals do not have just one spectral component. Instead, they
have many components that appear at low and high frequencies. When all spectral
components have the same energy, it is called a flat spectrum. In this case, no coding
gains are achieved, since all spectral components demand the same number of bits.
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However, in many cases, audio signals usually do not have a flat spectrum; the low
frequency components have more energy than the high frequency ones (this kind of
spectrum is called a colored spectrum). In this case, by redistributing the bit pool (i.e.
the number of bits used for coding each spectral component) and assigning fewer bits to
high frequencies, coding gains can be achieved. Therefore, the spectral flatness measure
determines the coding gains of the bit pool redistribution M

Irrelevancies may be removed when psychoacoustical models are used. In this
case, some portions of the spectrum that are irrelevant to the human auditory system are
isolated and coded using fewer bits. Irrelevancy of each spectral component is
calculated through masking thresholds, as explained in section

MPEG-4 AAC uses a time-to-frequency transform as its filterbanks. It is a
modified version of the discrete cosine transform (DCT), accordingly called modified
discrete cosine transform (MDCT). The modification of the DCT consists of an
improvement for time-domain aliasing cancellation (TDAC) [_B_RA_&QaJ“[.BBA_%b_]J
Besides, the MDCT provides critical sampling (i.e. the number of frequency
components is equal to the number of time samples), and it is used in association with
windows of different lengths. The transition between different windows is called
adaptive window switching w These windowing methods are described in the
next section.

The DCT is strongly associated with the Discrete Fourier Transform (DFT). In
fact, the DCT can be derived from the DFT. Like the DFT, the DCT is an orthogonal
transform. However, while the DFT is a transform from real or complex sequences to
complex ones, the DCT is a transform from real sequences to real ones. Thus, the
spectral coefficients resulting from a forward DCT are real coefficients. While the DFT
is based on sine and cosine basis sequences, the DCT is based solely on cosine basis
sequences

The forward DFT and backward DFT transforms are defined, respectively, by
N-1 1 N-1
k]= n]g[n], and x[n]=— k]a [n
ALK] nZJX[]GQK[] x[n] N;A[]%[]
There are many different definitions of the DCT. Each definition constitutes a

different type, based on specific assumptions on symmetry and periodicity. The DCT-2
(DCT type two), for example, is defined by

X [K] = sz[n]cosgn%@and
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X[n] = %EB[k]X[k]cosW@ where BIK] = %' O%

k =
B, 1sk<N-1f

The main advantage of the DCT is its energy compaction property. Specifically,
the DCT-2 is used in many data compression applications (e.g. video and speech
compression), since the coefficients resulting from the forward transform are more
highly concentrated at low indices than the coefficients from the DFT @J

The input block for the AAC filterbank has a length of 2048 or 256 time-domain
samples, depending on the type of window used by the algorithm. Windowing is dealt
with more specifically in the next section. The MDCT formula is defined by

N-1

T .. N
X, =Y x.cos|[—(2i +1+—)(2k +1)],fork =0, 1, ..., N/2 -1, where:
K Z . [2N( 2)( )]

Xi are the input time-domain samples

Xk are the output spectral coefficients

i is the index of the time-domain samples
k is the index of the spectral coefficients

N is the length of the input block of samples

The MDCT can be calculated from a DCT-4 (DCT type four) by using two
equations of input permutation, as described in

An example of the use of filterbanks is shown below. m presents an
input audio signal:
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FIGURE 3.2 — Input audio signal (example)

shows the MDCT and the FFT of this input audio signal:
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FIGURE 3.3 - MDCT and FFT of the audio signal

These figures are referenced in section @ where AAC’s quantization is
discussed.
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3.3 Adaptive window switching

When an MPEG-4 AAC encoder receives the input time-domain samples, it
groups them into blocks of samples. These blocks are also known as windows. There
are two main types of windows, which are classified according to their lengths: the long
window (which holds 2048 samples), and the short window (which holds 256 samples).
There is an overlap of 50 % between consecutive windows. For long windows, for
example, two adjacent windows will have 1024 samples in common.

Because of its limited time-resolution, a window may not represent well the
rapid-changing (transient) signals. When a long window is used to encode signals with
many time-domain events, such as triangles or castanets, preechoes are heard in the
decoded signal, i.e., noise is spread out over some time before the music event causing
the noise. At a sampling frequency of 44.1 kHz, this spreading may occur over a signal
block of 46.44 ms (time resolution of 23.22 ms). By using a short window with one
eighth of the length of a long window, a time resolution of 2.9025 ms is achieved

Beh][BRA 99]

Adaptive window switching provides dynamic changing of the window length
and shape. The adaptation is based on the assumed condition for preechoes, which may
be evaluated by the amount of bits needed to encode the signal: when there is a demand
for bits far exceeding the average, a preecho condition is presupposed

As the encoder receives the input samples, a sequence of windows is created. In
this sequence, when changing from one type of window to another one (e.g. when
changing from a long window to a short one), a different type of window must be used
to smooth this transition. Therefore, when changing from long to short windows, a start
window is used, and when changing from short to long windows, a stop window is
used. Besides, for the sake of simplicity, the number of consecutive short windows if
fixed. Only eight windows may be used in a sequence, since eight short windows have
the same length as one long window

When using windows in sequence, the terminology is modified. All the
“sequenced windows” have the same length of 2048 samples, so this may be the
justification for the change of name. For example, a sequence of eight short windows
becomes an eight-short sequence.

MSummarizes these windows:
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TABLE 3.2 — Adaptive windows

Window Sequence Description
Long window | Only long sequence | This is the normal window used for blocks
holding stationary signal.
Start window |Long start sequence |This hybrid window is used to switch
between a long and short window.
Short window | Eight-short sequence |It has the same shape as the long window,
but compressed to one-eighth of the window
length.
Stop window | Long-stop sequence | This window is used to switch from a short
window back to a long window.

M illustrates the four types of windows. It shows the long, short, start,
and stop windows

long window short window
1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0 0
0 500 1000 1500 2000 0 500 1000 1500 2000
start window stop window
1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0 0
0 500 1000 1500 2000 0 500 1000 1500 2000

FIGURE 3.4 — Shape of adaptive windows

m exhibits a typical sequence of window types if adaptive window
switching is used. It contains two long windows (only-long sequence), followed by one
start window (long-start sequence), an eight-short sequence, one stop window (long-
stop sequence), and one long window.
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window sequences

F W

O I 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000
time (samples)

FIGURE 3.5 — Adaptive window switching sequence
3.4 Quantization and coding

Audio digitalization is the process that transforms an analog audio signal (e.g. an
electrical signal coming from a microphone) into a digital representation (also called
digital word). It consists of sampling and quantization. The following subsection
provides an overview of quantization.

3.4.1 Quantization and quantization noise

Quantization [ORE 96]I{OPP 98]l[BL E 78]I[GRA 98]/is assigning a digital word

to an incoming continuous analog voltage. Mathematically, if x(t) is the analog input
signal, and xq(t) is the digital output signal, the quantization is represented by:

Xy = X(t) +e(t)

Since digital information can only take a finite number of possible values, the
quantized value will always correspond to the original value plus an error e(t). The
signal e(t) is called quantization noise, and is considered uncorrelated to the original
signal x(t).

The number of bits of quantization plays an important role in the degree of
quantization noise. Increasing the number of bits decreases the quantization noise.
Therefore, the number of bits (B) is used as a measure of quality of an audio system.
For linear conversion, the signal-to-noise ration (SNR) of an audio system is determined

by:
SNR =20log,, 2° = 6.0206B = 6B [dB]
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Therefore, CD-quality systems (using 16 bits) have an SNR of 96 dB. And
newer 24-bit audio systems have an SNR of 144 dB.

Linear pulse-code modulation (LPCM) |[.B.LE.Z8_]][[_O_RF_95.]H[_O_EP_9_8_].|is the most

classical and widespread digitalization format. As the name implies, the quantization is
linear, i.e. there is a fixed quantization interval between one quantization level
(corresponding to a given digital word) and the next quantization level (corresponding
to the next digital word). Although LPCM is the most common format, other digital
representation systems exist, such as floating-point converters, differential PCM

(DPCM) [BLE 78] backward-adaptive differential PCM (ADPCM) [SAB 961l fwyL |

Meridian Lossless Packing (MLP) @ and Direct Stream Digital (DSD)

BLER_Q_SJH[_BBU_Q&]I among others.

MPEG-4 AAC quantization is actually a requantization process, since any digital
signal is already a quantized signal. The original digital signal representation is usually
in the pulse code modulation (PCM) format with fixed number of bits. One example is
the compact disc (CD) that uses the 16-bit PCM format. AAC's requantization changes
the original digital signal representation into a new representation, using fewer bits
without affecting the perceived audio quality.

3.4.2 Scalefactors

While the CD is based on the PCM format, which stores time-domain samples,
AAC uses time-frequency samples, given by spectral information based on short-term
windows of time-domain samples. As mentioned in section@, the output of AAC’s
filterbanks is spectral MDCT coefficients. In the quantization process, these coefficients
are converted into a kind of floating-point representation, given by a mantissa and an
exponent. In AAC terms, the exponent is called scalefactor, since it is a factor that
determines the resolution of the quantization scale.

The MDCT coefficients are grouped into different consecutive bands. Each band
is assigned a scalefactor. Therefore, these bands are called scalefactor bands. The
scalefactor bands try to imitate the auditory critical bands (as discussed in chapter El)
The number of coefficients for a given scalefactor band depends on sampling rate and
window length. As would be expected, there are more scalefactor bands for long
windows (e.g. 49 for 44.1 kHz sampling rate) as for short windows (e.g. 14 for 44.1 kHz
sampling rate), since long windows have more MDCT coefficients than short windows

To obtain the value of all scalefactors, a common scalefactor (csf) is calculated
based on the greatest MDCT coefficient value (max_x), using the following formula
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3
max_x*
MAX_QUANT
MAX_QUANT =8191. If max_x is zero, then csf =20.

), where start cfs=40 and

csf = start_cfs + int(% log, (abs(

All scalefactors use the common scalefactor as a starting point, thus reducing the

amount of bits necessary to encode scalefactors. Actually, the effective scalefactor
(real_sf) for band sb will be real_csf =sf(sh) —cfs, where sf is an array of scalefactors.

The value of all scalefactors is defined within the quantization loops. Thereafter,
the scalefactors are encoded. The first scalefactor is usually coded as the global gain,
and the other scalefactors are differentially coded according to the previous scalefactor.
For example, if scalefactor sf(2) is 24 and sf(3) is 23, sf(3) will be encoded as -1 (minus
one).

3.4.3 Quantization of MDCT coefficients

The requantization of the MDCT coefficients reduces the amount of bits
necessary to encode these coefficients. The requantization is based on the scalefactors.
For each MDCT coefficient x, its quantized value Xquant i given by

3 [i(sf(sb)—csf )|

Xquane = SIGN(X) Ont{[abs(x)* (2% ]+ MAGIC_NB}

where MAGIC _NB is 0.4054.

The inverse quantized value Xin quant 1S also used in the requantization. This
value is compared to original coefficient x in order to calculate the quantization noise
added to the signal. Quantization noise results from the fact that X and Xiny_quant Mmay be
different. The inverse quantized value Xiny_quant(i) IS given by

4 [—%(sf(sb)—csf N

w

Xinv_quant = Xquant

The distortion caused by the requantization (on a scalefactor band basis) is

calculated by [MPG 99

upper (sb)
distortion(sh) = Z[abs(x(i)) —xmv_mm(i)]2 , Where lower(sb) and upper(sb)

i=lower (sh)
indicate the lower and upper limits of the scalefactor band (i.e. they are indices to
MDCT coefficients).

3.4.4 Noiseless coding

Noiseless coding m is performed over the quantized information
(spectral coefficients and scalefactors) to further reduce the amount of bits needed to
encoding. As the name implies, no distortion is added to the signal through this kind of
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coding. The process is based on spectral clipping, Huffman coding, and sectioning (for
long windows) or grouping and interleaving (for short windows).

Spectral clipping is a dynamic range limiting method. It is applied to the
quantized spectrum when it results in savings of bits. The clipped coefficients are then
coded separately, and sent as side information in the bitstream. This kind of coding is
also called pulse escape method

Up to four clipped coefficients are allowed. An index i specifies the scalefactor
band of the lowest-frequency clipped coefficient. The clipped coefficients are coded as
magnitude and an offset from the base index i|.[.MP_G_9_9_]1 lELgur_LS_d illustrates the
spectral clipping method applied to 32 quantized spectral coefficients:

25 T T T T T T
, - D
>, 4—— clipped coefficients —p»
20 B / T
D
15r 1
limiter
D D D
10r 1
D P PO D
PP D
5 - .
; TT@ i TW [ TT [ ?T
0 5 10 15 20 25 30 35

FIGURE 3.6 — Spectrum clipping example

Huffman coding is then applied to the quantized information. Scalefactors and
quantized spectral coefficients are coded separately. There are eleven codebooks for
spectral coefficients and one codebook for scalefactors. The codebooks are
distinguished by dimension (two or four), sign (unsigned or signed), and largest
absolute value (ranging from 0 to 12, or greater values using the escape codebook)

For each scalefactor band, one of these eleven codebooks is chosen to code the
spectral coefficients (i.e. each scalefactor band may be coded using a different
codebook). Within each scalefactor band, the coefficients are grouped into 2- or 4-
tuples, depending on the codebook. For example, let the quantized spectral coefficients
be [0-10011..]. In this case, codebook 1 may be used, for which the spectral



35

coefficients are signed, their largest absolute value is 1, and they are grouped in 4-tuples
sequences. After choosing the codebook, the codeword (i.e. the bit sequence used to
encode the coefficients) must be determined. For each codebook, a specific algorithm is
used to determine the codeword. For codebook 1, the algorithm goes as follows.

The first 4-tuple is [0 -1 0 0], and the index to the codebook is given by the dot-
product with [27 9 3 1] plus 40. In this specific case, the result is 0*27 + (-1)*9 + 0*3 +
0*1 + 40 = 31. In codebook 1, the codeword for index 31 is 10111 (i.e. the hexadecimal
number 17), which only takes 5 bits for representation. Therefore, coefficients [0 -1 0 0]
are encoded as 10111.

Because consecutive scalefactor bands may employ the same codebook for
coding its coefficients, they can be grouped into sections m Therefore, each
section corresponds to a group of consecutive scalefactor bands that employ the same
codebook. As a first step, each scalefactor band corresponds to a section. A sectioning
method merges scalefactor bands that employ the same codebook. This method also
tries to merge scalefactor bands that do not use the same codebook, choosing the
codebook with higher index. Naturally, a section merge is only carried out when this
results in savings of bits. Please note that sectioning is only used for long windows.

illustrates sectioning:

section 5

scalefactor band 10 scalefactor band 11

o

FIGURE 3.7 — Sectioning of scalefactor bands

For short windows, a grouping and interleaving method is used instead |[_MT_|
@ Since there is always a sequence of eight consecutive short windows being applied
to the audio signal, these windows may be grouped. When two or more windows are
grouped, the scalefactor bands share the same scalefactor (e.g. if windows 2 and 3 are
grouped, then scalefactor band 1 would have the same scalefactor for these windows).
The interleaving method interchanges the order of scalefactor bands and windows.
shows how the bitstream would be arranged if windows 2 and 3 are grouped:
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FIGURE 3.8 — Grouping and interleaving
3.4.5 Rate and distortion control loop

AAC requantization is composed by two loops: an outer and an inner loop |[_ME|
The inner loop is also called rate loop and it controls the bit-rate of the
quantization. The outer loop is also called distortion loop and it controls the distortion
produced by the requantization.

The inner loop (rate control loop) makes the quantization of coefficients,
according to the formulae indicated in section @ and calls the noiseless coding
process. Thereafter, the loop counts the amount of bits used to encode the coefficient
and scalefactors. If the amount of bits is higher than a maximal value (derived from the
pre-established transmission bit-rate), the quantization is redone, until the value is not
higher than the maximal value.

The outer loop (distortion control loop) begins by executing the inner loop.
Then, it calculates the distortion produced by the requantization. If the distortion is
higher than the allowed distortion (indicated by the xmi, provided by the psychoacoustic
model, as explained in section|_3_:'1), the loop adjusts the scalefactors and calls the inner
loop again.

In order to avoid infinite loops, exit points must be defined in the outer loop.
Imagine the situation when the inner loop reduces the amount of bits for quantization,
because it exceeds the maximal value, and the outer loop increases the amount of bits,
because the distortion is too high. Of course, this can easily lead to an infinite loop.
Hence, scalefactors cannot be adjusted forever. Therefore, limiting the allowed
adjustment of scalefactors creates an exit point. As expected, this exit point allows some
distortion to be added to the encoded signal.

The result of the quantization depends largely on the input signal and the
implementation of the control loops. In section @ an input audio signal was presented.
An example of quantization of the MDCT coefficients and scalefactors is presented in
MT Please note that the sign of the scalefactors was inverted in this figure.
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FIGURE 3.9 — Quantization of MDCT coefficients and scalefactors

Comparing this figure with the original unquantized MDCT coefficients (m
, We observe that the scalefactors try to mimic the behavior of the coefficients,
assigning a higher scalefactor to scalefactor bands holding higher coefficient values, as
clarified by

mdct of signal
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FIGURE 3.10 — Original MDCT coefficients and quantized scalefactors

As shown in the figure, the scalefactors graph shows peaks in the same spectral
range as the original MDCT coefficients.
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3.5 Psychoacoustical model

This sections presents the AAC psychoacoustical model. Many features of
Psychoacoustics (explained in chapterE) are employed here. Firstly, noise shaping is
explained, followed by an explanation of masking of quantization noise. Then, the
psychoacoustical model is presented.

3.5.1 Noise shaping

Noise shaping was primarily employed in the design of analog-digital (A/D)
signal converters. As explained in section@, an error e(t) appears when quantization
is applied to the input signal, as given by x, =x(t)+e(t). The error e(t) is the
quantization noise, and it is assumed to be white noise. Therefore, the spectrum of the
quantization noise is flat. However, in many applications, it is desirable that the
spectrum of quantization noise be reshaped. For instance, delta-sigma converters, which
are based on oversampling, employ noise shaping to shift the spectrum of the
quantization noise to higher frequencies l[_O_RF_%_]“LlES_ZQQO_]I thereby reducing the
amount of quantization noise in audible frequencies.

In perceptual coders, noise shaping is used to lessen the amount of quantization
noise generated by the requantization of the spectral coefficients. For example, AAC
non-linear quantization formula (as shown in sectionm already provides some sort
of noise shaping. However, to make sure that quantization noise will not be heard in the
decoded signal, a masking mechanism must be used, as explained in the next section.

3.5.2 Masking of quantization noise

Masking of quantization noise is accomplished through the use of
sychoacoustical concepts explained in the previous chapter, such as masking (section
% and auditory filters (section .

For each critical band, a masking threshold is estimated. Within each critical
band, the spectral component with highest level is the masker, whose level is used to
estimate the masking threshold. All spectral components within the critical band that
have levels below the masking threshold are masked. This masking occurs for
quantization noise as well as for low-level tonal components. Therefore, if the level of
quantization noise is correctly set to be below the masking theshold, the quantization
noise remains inaudiblel[.N.Q_IﬁLlll

The signal-to-mask ratio (SMR) is the distance between the minimum masking
threshold and the level of the maske . Note that, at this point, all estimations
are based on the sound pressure level of the frequency components.

When quantization is applied to the spectral coefficients, a given signal-to-noise
ratio (SNR) depending on the number of bits used results, as explained in section k.4
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Actually, the SNR is not directly related to sound pressure level, but it is used to
estimate and control the quantization noise.

At this point, two ratios are available: the SMR and the SNR. To ensure that
quantization noise remains inaudible, the SNR must be greater than the SMR.
Therefore, the number of bits used to encode a given spectral component may be
reduced by requantization, as long as the SNR resulting from the requantization remains
greater than the SMR

3.5.3 AAC perceptual model

The main purpose of the perceptual (or Psychoacoustical) model is to calculate
the signal-to-mask ratio (SMR), the codec masking threshold (Xmin), the bit allocation
information (e.g. the minimal number of bits used for encoding in addition to the
average bits), and to indicate the window type (long, start, stop, or short type) to be
applied to the current block . When coding stereo channels, the perceptual
model is not only applied to the left and right channels, but also to the middle and side
channels (see section mmr more details about M/S-coding).

The perceptual model receives the input time-domain samples of the audio
signal. Hann-windowing is applied to the input audio signal x. This is given by

1i(

Xy (1) = x(t) EQO.5—0.5cos(t+O'5)), where N is the number of samples

(window length). m presents this window:
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FIGURE 3.11 — Hanning window

The Hann-windowed signal xy is then used to compute the spectrum using the
Fourier Transform. Computationally, this is accomplished through the Fast Fourier
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Transform (FFT). At first, the spectrum is in the rectangular form, which uses complex
numbers. The spectrum is then converted to the polar form, which is composed by the
magnitude and phase spectra.

The spectrum is divided into spectral partitions. These partitions are used to
calculate the threshold, which is the maximum distortion energy masked by the signal
energy. Hence, the partitions are also called threshold partitions. This partition is almost
equal to the one-third-octave division of the spectrum

The partitions are based on the same concept as the scalefactor bands applied to
the MDCT coefficients. However, one threshold partition does not correspond to one
scalefactor band. For example, using 44.1 kHz sampling rate and considering long
window, the first partition takes the first two spectral coefficients, while the first
scalefactor band takes the first four MDCT coefficients. Besides, for this very
configuration (44.1 kHz and long window), there are 70 spectral partitions and 49
scalefactor bands.

The spectra of the two previous input blocks are used to calculate the predicted
magnitude and phase. Considering that consecutive spectra represent an evolution of the
frequency components in time and assuming that musical signals are quasi-periodic,
there is always a degree of predictability that can be observed in succeeding spectra.
That is, we can predict the spectral coefficients of subsequent spectra by observing the
previous spectra. However, predictions may be not totally correct, i.e. the predicted and
the actual spectra may diverge to some degree. There are some spectral components that
cannot be predicted; i.e. they are unpredictable. Therefore, the unpredictability measure
is calculated, which measures how much of the spectrum cannot be predicted. Once
calculated for each spectral component, the unpredictability measure is calculated for
each spectral partition

Based on the spectrum, the energy of each spectral partition is calculated. This is
upper (p)
given by energy(p) = zspectral_magnitude(i)2 , Where p is the partition and

i=lower (p)
lower(p) and upper(p) are the limits of each partition in terms of spectral index. The
energy is used to calculate the actual energy threshold in a subsequent step.

After the energy and the unpredictability measure for each partition are
calculated, they are convolved with the cochlea spreading function. The convolution of
the energy and the spreading function generates the excitation pattern. The spreading
function estimates the effect of masking across critical bands and it is based on the Bark
scale. Therefore, a table that indicates the Bark value of each frequency is provided.

presents the spreading function:
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FIGURE 3.12 - Spreading function

m presents a two-dimensional graph of the spreading function for a
signal at the center frequency of 5 barks (510 Hz).
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FIGURE 3.13 - Spreading function for signal at 5 bark

The convolved unpredictability measure is used to calculate the tonality index of
each partition. Considering that any signal may have tonal (i.e. periodic) and noisy (i.e.
random) components, the tonality index measures the level of tonal components of the
spectral partitions
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The tonality index is used to calculate the signal-to-noise ratio (SNR) in each
partition. The SNR is then adapted to the power ratio, given by

—SNR(p)

pow_ratio(p) =10

Through the power ratio and the convolved energy, the actual energy threshold
is calculated. Then, the masking threshold is recalculated, taking the threshold in quiet
and the threshold for the previous block into consideration. The recalculated threshold
and the energy are used to calculate the perceptual entropy. The perceptual entropy is
mainly used in preecho control

Preecho control is actually accomplished by the use of window decision. As
explained in section |3,_3| preecho is avoided by switching from long window to the short
window type. Therefore, depending on the value of the perceptual entropy, one kind of
window or another is chosen.

Thereafter, the calculation of the SMR and the codec threshold Xmin is performed
@ Both calculations are adapted from the original spectral partitions to the
actual scalefactor bands. This is necessary because the AAC quantization uses this
information to quantize the MDCT coefficients, which are based on scalefactor bands.
The Xmin gives the maximum allowed distortion (i.e. quantization noise) for each
scalefactor band. This value is used by the distortion control loop to adjust the
scalefactors, as explained in section @

The last step is the calculation of the bit allocation information. This information
indicates to quantizer how many bits are available for encoding. This information is
used by the rate control loop, as explained in section@

3.6 Temporal noise shaping

When low time-resolution is available (e.g. at low bit-rates and lower sampling
frequencies), the time-structure of some signals may be too detailed to be correctly
represented by the encoder. In this case, the quantization noise is spread over the entire
temporal block, and it may become audible. The situation is critical when there are
transient signals, which are present, for example, at speech signals. Therefore, temporal
noise shaping (TNS) is employed to enhance the quality of the audio signal, especially

speech signals at low bit-rates LGBJ_QQ_]J

As explained in section m noise shaping is used to reshape the spectrum of
quantization noise. In the case of TNS, noise shaping is used to reshape the time-domain
shape of quantization noise within the transform block.

Temporal noise shaping is based on the fact that the spectrum of a sinusoidal

signal corresponds to a single peak. In other words, the time-domain tonal signals have
spectra that contain transients. For example, the signal x(t) =cos(2rr[440t) has a
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spectrum that holds a single peak at the frequency of 440 Hz. This is actually the basis
for the Fourier Transform theory.

Clearly, when viewing the spectrum as another signal, the peak at this frequency
corresponds to a transient signal. Therefore, it becomes apparent that transient signals at
the time domain correspond to tonal signals at the frequency domaith Either
at time or frequency domain, tonal signals are easily predicted through a technique
called linear predictive coding (LPC), as explained in the next subsection. Therefore,
filtering of the spectrum with LPC coefficients attenuates the increase of quantization
noise generated by transient signals.

3.6.1 Linear predictive coding

Linear predictive coding (LPC)LLSEA_ZO_O_O_]L[.ERE_Qﬂ is used for the analysis

and the synthesis of signals. It is a process where the current sample is predicted by a
linear combination of previous samples. The p-order LPC is represented by

p
X prea (K) = Zaix(k —1), where x is the input signal, Xyreq is the predicted signal, and a;
1=1

are the prediction parameters. The prediction parameters are obtained by minimizing the

mean square of the prediction error (&), as indicated by g_g =0,i1=212,...,p, where

€ = E[(x(k) —xp,ed(k))z]. In the last formula, E[.] denotes the statistical expectation

operator.

The most famous algorithm for efficient computation of LPC is the Levinson-
Durbin algorithm M This algorithm calculates reflection coefficients, which
can then be transformed into LPC parameters.

3.6.2 AAC Temporal noise shaping

The first step of AAC temporal noise shaping (TNS) [MPG 99]lis the choice of
the region of the spectrum where TNS will be applied. For example, the range from 1.5
kHz up to the higher scalefactor band may be a choice. Note that this frequency range is
indicated in terms of scalefactor bands.

LPC is calculated for the MDCT coefficients (for the pre-determined frequency
range). The LPC calculation is based on a fixed maximum noise shaping filter order,
which is 5 for long/start/stop windows, and 3 for short window. The LPC calculation
(through the Levinson-Durbin algorithm) provides the expected prediction gain g, and
the reflection coefficients r. Depending on the value of g,, TNS is used or not. This is
determined by a threshold value (established in the encoder) that should be exceeded to
activate the use of TNS.

The LPC reflection coefficients r are quantized. Then, the quantized reflection
coefficients ry are converted into index values index using inverse sine transformation
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These index values are sent as side information in the bitstream.
From index the inverse quantized reflection coefficients rin,  can be derived.

The actual noise shaping filter order is determined by searching for the last
reflection coefficient with an absolute value greater than a pre-determined threshold. All
reflection coefficients with absolute value smaller than the threshold are ignored, and
the remaining reflection coefficients indicate the filter order, as long as the filter order
does not exceed the maximum noise shaping filter order.

The remaining reflection coefficients are used to get the LPC coefficients
coeffie. These coefficients are used as FIR filter coefficients, and a FIR filtering process
is applied to the frequency range chosen in the first step of the TNS encoding, i.e. the
MDCT coefficients are processed through a FIR filter using coeffiye.

3.7 Stereo coding

Stereo signals are usually coded as two independent channels, i.e. the left (L)
and the right (R) channels are coded separately, as though they were completely
uncorrelated. Two alternative methods exist for coding of stereo channels: middle-side
(M/S) coding, and intensity coupling. These methods are mutually exclusive, i.e. M/S-
coding cannot be used in companion with intensity coupling, and vice-versa. The
following subsections describe these stereo coding methods.

3.7.1 Middle-side coding

Middle-side coding M groups the stereo channels and explores the

differences between two channels in a simple way: the middle channel is the sum of the
left and the right channels (M =(L+R)/2) and the side channel is the difference

between the channels (S =(L-R)/2). Middle-side coding is an efficient coding

method for stereo channels when there is a great degree of correlation between two
channels. For example, the same signal may be being transmitted through the left and
right channels. Or the right signal may be a phase-delayed version of the left signal. In
these cases, middle-side coding may be more efficient than the usual left-right coding.

As already mentioned in section @ the perceptual model is applied to the
M/S-channels, in addition to the usual L/R-channels. An imaging-control process is
used to adapt the results from the perceptual model to the fact that there may be
correlations between the L/R- or between the M/S-channels. This adapted information
from the perceptual method is then used within the rate and control loops for
quantization of scalefactors and coefficients. The number of bits required for coding the
M/S- and the L/R-channels is calculated and, based on this, the method that uses fewer
bits is chosen.
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3.7.2 Intensity coupling

While M/S coding does not necessarily incur in lost of information, intensity
coupling uses psychoacoustical features to reduce the number of bits needed for
encoding. Intensity stereo exploit irrelevancies at high frequencies. Coding using
intensity coupling is done as follows

A region of the spectrum (in terms of scalefactor bands) is chosen. For example,
the region of frequencies above 6 kHz may be chosen. For each scalefactor band, the
energy (E) of the left (L), right (R), and sum (S=L+R) channels is calculated. Using the
information of the energy, the intensity position is calculated by

E, (sfb).0
E, ()

is_position(sfb) = round%log(
il

The intensity positions are coded as side information in the bitstream.

Next, the spectral coefficients for intensity stereo are calculated, based on the
spectral coefficients of the left and right channels and the energy information as
follows:

spec (i) = [spec, (i) + spec, ()] %

For the scalefactor bands where intensity stereo is being applied, the spectral
coefficients of the left channel are replaced with the coefficients for intensity stereo
(specis), and the all coefficients of the right channel are set to zero. Then, the standard
quantization process may be applied to the coefficients and scalefactor bands.

3.8 Perceptual noise substitution

Perceptual noise substitution (PNS) M is a method for efficient coding
of noisy signals. The algorithm scans a given spectral range (e.g. frequency above 4
kHz) and performs a noise detection process. A spectral band is classified as noise-like
if it is neither tonal (what is indicated by the tonality index) nor has strong energy
changes over time. The tonality index is calculated in the psychoacoustical model, as
explained in section@

The noise detection process is performed in a scalefactor band basis. When a
noisy scalefactor band is detected, the whole scalefactor band marked as noisy (through
a noisy-flag). All coefficients of the band are set to zero before quantization, so no bit is
necessary for encoding these coefficients. The energy of the noisy scalefactor band is
calculated and coded into the scalefactor, which provides a resolution of 1.5 dB. This
scalefactor is then differentially encoded like all other scalefactors. Therefore, the only
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difference between the encoding of normal scalefactor bands and PNS-coded
scalefactor bands is a noisy-flag (which is assigned in the noiseless coding, using one
pseudo-codebook called NOISE_HCB).

3.9 Long-term prediction

Long-term prediction (LTP) is used to reduce the redundancy between
successive signal blocks. LTP is especially efficient for tonal signalsw and it is
only used in the encoding process when it leads to saving of bits.

The first step of LTP encoding is the estimation of the optimal LTP. This is
accomplished by minimizing the error through variation of parameters a and by in the
following formula:

P(z)= S bz,

k=-m;

Parameter o corresponds to the delay (lag) for prediction. Parameter by
represents the prediction coefficient. Both parameters are quantized and sent as side
information.

The predicted signal Xpreq for the (m+1)th frame is calculated from the inverse
quantized time-domain signal from previous frames, as indicated by

X preq (1) = Z By Xiny quant (i 2N +1—-k —a), where

k=—m,;

iI=mN+1mN+2..,(m+1)N.

The predicted signal and the actual signal are used to calculate the error signal.
The error signal is quantized and transmitted as side information.
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4 Implementations of critical AAC modules

This chapter presents the details of each implementation of AAC modules. As
already mentioned in chapterﬁl (section|.’|.._.1|), the implementations are in C language, in
Assembly, in DSP, and in VHDL.

4.1 C implementation

The C implementation consists of source-code provided by ISO-MPEG (version
990224). The source-code is completely written in C, and it is made as portable as
possible. It was used as a basis for average computation time analysis and
implementation and optimizations in other architectures. No modifications or
optimizations were done in the source-code; just adaptations to make it compile under
the PC platform.

4.1.1 Average computation time analysis for all modules and functions

Based on the ISO implementation of the AAC encoder, without modifications,
the average computation time for each frame was determined. The original C source-
code was compiled on an IBM-PC using Borland C++ 5.0 compiler. Two processors
were used for average computation time analysis: Intel Pentium Il 350 MHz processor,
and Intel Pentium Il 750 MHz processor. Twenty CD-quality (16-bit 44-kHz stereo)
PCM input files were used, with file size (duration) varying from 3.291 s to 10.029 s.
The sum of all file sizes gives 113.0150 s of sound used in the analysis of the average
computation time. The selection of the files took the variety of music styles into account
(e.q. classical, jazz, rock, and pop music). m presents details of the input files.
For the first analysis of the average computation time, the coding bit-rate was 320 kbps.

m presents the results for the average computation time per frame using
Pentium Il (P11) and Pentium 111 (PI11) processor. The results are based on input sound
files holding stereo channels, and the performance for mono channel is estimated by
simply dividing the result for stereo channels by two.

TABLE 4.1 — Average computation time analysis (C version, 320 kbps)

Analysis P11 350 MHz |PIIl 750 MHz | Speed-up
Average coding time (stereo channels) [0.836625 s 0.365897 s 2.2865
Average coding time (mono channel) [0.418313 s 0.182949 s 2.2865

As indicated in the table, running the same executable file on Pentium 11l 750
MHz instead of Pentium 11 350 MHz means a speed-up of 2.2865 times in the average
computation time.
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m shows the average coding time for each AAC module or internal
function (for Pentium 11 350 MHz), considering the codification of one frame and stereo
channels. mexplains the purpose of each module or internal function.
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FIGURE 4.1 — Computation time per frame for each module (stereo, 320 kbps, PII)

m shows the average computation time distribution for each AAC
module or function. We notice that the LTP and Psychoacoustic modules are the most
time-consuming modules, taking respectively 65.27% and 24.86% of the average
computation time. Both correspond to 90.13% of the average computation time.
Therefore, considering this analysis, optimizations of the execution of these modules are
necessary and provide sensible reduction in the overall average computation time.
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FIGURE 4.2 — Average computation time distribution (320 kbps, PII)
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Of course, the average computation time per frame (stereo) for each module
using Intel Pentium 111 750 MHz processor is lower, but the average computation time
distribution remains practically the same. For this processor, the most time-consuming
modules are the LTP (62.48%) and the Psychoacoustic module (26.33%), therefore not
too far from the results for the Pentium 11 350 MHz processor.

Changing the coding bit-rate also changes the results. Using the coding bit-rate
of 128 kbps in a new analysis, the average computation time of most modules remains
practically the same (compared to the results for 320 kbps). However, the average
computation time of the AAC quantization module increases, contributing to an increase
of 17.86% for the average computation time of the encoder. In addition, some modules
presented a very small reduction in average computation time (less than -0.5 %
contribution). As would be expected, these results modify the distribution of

computation previously presented in |J‘.Lgm'_e_4.2| lELgULe_A._SiI presents the average

computation time for each module:
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FIGURE 4.3 — Computation time per frame for each module (stereo, 128 kbps, P1I)

Using the coding bit-rate of 32 kbps, the average computation time of the AAC
quantization module increases again. In comparison with the average computation time
of encoding at 320 kbps, the average computation time of the encoder presents an
increase of 73.87%. The AAC quantization module contributes to an increase of 72.18%
of the average computation time of the encoder, while the LTP module contributes to an
increase of 2.09% of the average computation time, and the average computation time
of the other modules remains practically the same. The following figure presents the
average computation time of each module, considering the 32 kbps coding bit-rate:
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FIGURE 4.4 — Computation time per frame for each module (stereo, 32 kbps, P1I)

This demonstrates that the average computation time of the AAC quantization
module depends deeply on the choice of coding bit-rate, while the other modules
present a fairly constant average computation time. This occurs because the AAC
guantization module (as coded on the original C code from ISO) is based on the
rate/distortion loops without optimizations. When coding for low bit-rates, these loops
take too many cycles to minimize the distortion and at the same time achieve the
specified bit-rate. This job is easier for higher bit-rates (on this C code). In the following
sections, only the coding bit-rate of 320 kbps is considered, since it was the chosen
coding bit-rate for analysis and comparisons.

4.1.2 Average computation time of the LTP module

The profiling of the LTP module provides the following average computation
time distribution for its internal routines, as shown by
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end (0.01%)

Itp_enc_tf (3.14%)

pitch (96.85%)

FIGURE 4.5 — Computation time distribution of LTP's routines (Pentium I1)

We can clearly see in this figure that the pitch function takes most of the average
computation time, i.e. 96.85%. Therefore, a detailed analysis of this function was done,
as shown by

w_guantize (0.05%)

prediction (0.00%)

lag_calc (99.95%)
FIGURE 4.6 — Computation time distribution of LTP's pitch function (Pentium I1)

Within the pitch function, we observe that most of the average computation time
is spent on the lag_calc routine, which searches for the best correlation lag (the one that
gives the biggest value of correlation). This routine takes 99.95% of average
computation time of the pitch function. Therefore, optimizing this single routine should
reduce the average computation time of the LTP module, and consequently the average
computation time of the AAC encoder.
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4.1.3 Average computation time of the Psychoacoustic module

The profiling of the Psychoacoustic module resulted in the graph shown in
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FIGURE 4.7 — Computation time of Psychoacoustic module (Pentium I1)

As may be observed, the convolution function (conv) takes most of average
computation time, followed by the unpredictability measure (unpredic_mea) and the
FFT function. m shows the average computation time distribution of the
Psychoacoustic module:
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FIGURE 4.8 — Computation time distribution of Psychoacoustic module (PII)
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We see that the convolution functions takes 42.80% of average computation
time, the unpredictability measure takes 32.38%, and the FFT takes 18.42%. Therefore,
these three routines take 93.60% of average computation time and its optimization is
needed.

4.2 Assembly implementation

This section describes the Assembly implementation. First, a discussion of
SIMD architectures and the MMX architecture is accomplished. Then, results of
implementation of some modules are presented and an analysis of the results follows.

4.2.1 Single-data multiple-instructions architectures

The original single-instruction single-data (SIMD) concept was based on
multiprocessor architectures Im The idea is that the same instruction is executed
by multiple processors using different data streams. The processors are not strictly
independent. There is a single instruction memory and a control processor, responsible
for fetching and dispatching instructions. The processors receive instructions from the
control processors and have their own data memory. Considering that each processor's
memory has different data, each processor executes the same instructions on multiple
data.

SIMD was used in the early multiprocessors, and received more attention in the
1980s. However, multiprocessor architectures are now all based on the multiple-
instruction multiple-data (MIMD) concept. This concept is more flexible, since multiple
processors can follow the SIMD concept when needed (thereby executing the same
instructions) or they can execute different tasks in parallel. Besides, there is a cost-
performance advantage, since they can be built by a combination of multiple
microprocessors, i.e. there is no need to create a custom microprocessor for MIMD
architectures. These advantages of MIMD architectures were the very cause of some
lost of interest on SIMD architectures

The new SIMD concept is not based on multiprocessor architectures, but on a
kind of multiprocessing within a single processor. Sometimes, this concept is called
SIMD within a register (SWAR) m In this case, a general-purpose register is
divided in multiple fields. Each field corresponds to a new register with shorter word
length. A single instruction is applied to the register and is executed in parallel for all
register fields. All register fields have their own, independent result. Alternatively,
consecutive fields may be concatenated to give the result of the instruction execution.
However, the concatenated fields are still independent of each other. This kind of
processing is very easy to be adapted to current general-purpose microprocessors.
Therefore, there is a growing interest in the SWAR concept.
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4.2.2 MMX architecture and instructions

Intel Multimedia Extensions (MMX) architecture @ provides a
instruction set designed for exploiting the parallelism inherent in many multimedia and
communications algorithms. The MMX architecture was introduced in the Pentium
processor and its succeeding processor families. It is fully compatible with the Pentium
architecture, i.e. no new mode or state was created and all existing software run without
modification on a Pentium with MMX technology, even if they are not MMX-aware.

The MMX architecture is composed of eight 64-bit MMX registers. To allow
backward-compatibility, these registers are mapped into the existing 80-bit floating-
point registers. Therefore, no new states are created. However, the drawback is that no
mixing of MMX and floating-point instructions in source-codes is allowed. These two
kinds of instructions must be well separated in the source-code so that the software runs
smoothly.

MMX registers provide SWAR for integer data processing. Each register holds
packed data that correspond to independent variables within the same register. For
example, register MMX1 may hold 8 bytes (8-bit x 8 = 64 bits) or 4 words.
specifies the supported packed data types:

TABLE 4.2 - MMX packed data types

Data type Word-length Capacity
Packed byte 8-bit 8
Packed word 16-bit 4
Packed doubleword 32-bit 2
Packed quadword 64-bit 1

The MMX architecture features two different types of arithmetic: wraparound
and saturation arithmetic. The difference relies in the arithmetical treatment on
overflows and underflows. The wraparound arithmetic, which is the most common
integer arithmetic found in computer architectures, usually truncates the most
significant bit when overflow or underflow occurs. For example, when two large
numbers are added, wraparound causes the result to be smaller than the input operands.
On the other hand, saturation arithmetic “clips” the result when overflow or underflow
occurs, i.e. the result will be the largest or the smallest possible representable number in
the data type

The MMX instruction set is composed by many mathematical instructions:
add/subtract instructions, arithmetical and logical shifts instructions, logical
instructions, multiply instructions, multiply-add instruction, compare instructions,
packing and unpacking instructions, data transfer instructions, and an “empty floating-
point registers” instruction. Mpresents a summary of these instructions:
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TABLE 4.3 — MMX instructions

Instruction type Opcode
Add/subtract padd[b/w/d]
psub[b/w/d]
Shift psra[w/d]
pslifw/d]
psrifw/d]
Logical pand
pandn
por
pxor
Multiply pmullw
pmulhw
Multiply-add pmaddwd
Compare pcmpeq[b/w/d]
pcmpgt[b/w/d]
Packing/unpacking packss[wb/dw]
punpckl[bw/wd/dq]
punpckh[bw/wd/dq]
Data transfer mov[d/q]
Empty register emms

As an example of use of the MMX instruction set, an algorithm that computes
the dot-product of vectors A and B (AB=AB,+AB, +AB,+..+AB,) is

presented. The following source-code implements the algorithm using MMX
instructions:

pxor mv, nmv
Loop: novq mmD, dword ptr [a_vector]
novq mil, dword ptr [b_vector]
pmaddwd m0, il
padd mv7, m0
add [a_vector], 8
add [b_vector], 8
sub count, 4
jnz | oop
novq m0, mv
psrlqg mv, 32
padd mv, 0
movd dword ptr [memvdp], mv

The algorithm works as follows. First, register mm7 is reset. Then, the main loop
begins, where four 16-bit array positions are loaded into registers mmO and mml.
Multiply-add instruction is performed, and the result is added to register mm7. Pointers
are updated, and the loop restarts. After the loop, mm7 holds two partial sums of
products: one at the high double word, and the other at low double word. To get the
whole result, mm7 is copied into mmO, a logical shift is performed on mm7, and mmO is
added again into mm7. Now, mm7 holds the complete dot-product result. The last
instruction transfers the content of the low double word of mm7 into the memory.
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4.2.3 Analysis of precision of the LTP module

An analysis of fixed-point precision was done. LTP's correlation lag routine was
converted from its original floating-point version into a fixed-point version, i.e. most
floating-point variables (C's double) were converted into integer variables (C's long int).
Through an analysis of precision, it was verified that some routine variables (like corrl,
corr2, energy, and so on) should have at least 64-bit precision in order to provide the
correct final answer. It was verified that most values of energy were in the magnitude
order of 10°.

Since the Intel's MMX architecture does not deal with 64-bit variables in an
efficient manner, an alternative scaling scheme was used. In this case, some precision
was lost in the least significant bits (LSBs) of the word. Fortunately, this precision lost
did not change the final answer, i.e. the MMX version of the routine outputs the same
information as the original C version.

4.2.4 Implementation of the LTP module

In this implementation, LTP's correlation lag routine was completely rewritten in
Assembly for Intel-PC, using MMX instructions. Microsoft MASM 6.15.8803 was used
to assemble the routine. [Table 4.4] presents the performance results for this
implementation, always considering the computation for one frame. The first row
presents the encoder average coding time (using stereo channels) for the optimized
version. The second row presents the speed-up in average computation time for the
encoder, in comparison to the result of the original implementation. The third row
presents the speed-up in average computation time, when comparing the original LTP
module to the optimized one. The fourth row presents the speed-up in average
computation time, when comparing the original correlation lag routine with the
optimized one.

TABLE 4.4 — Average computation time analysis (LTP-optimized version)

Analysis P11 350 MHz [PII1 750 MHz
Encoder average coding time (stereo) |0.376642 s 0.198002 s
Encoder computation speed-up 2.2213 1.8479
LTP computation speed-up 6.9448 5.1857
Correlation lag routine speed-up 8.7299 5.0401

indicates this reduction in average computation time:
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FIGURE 4.9 — Average computation time using optimized LTP module (Pentium II)

Note that because of the optimization of the LTP module, the Psychoacoustic
module becomes the most time-consuming module.

4.2.5 Implementation of the Psychoacoustic module

The optimizations in the Psychoacoustic module consisted of hand-coding in
Assembly of computationally intensive routines. However, the floating-point variables
of the original code were not converted to integer variables. Therefore, MMX
instructions were not used. For example, by hand coding the unpredictability measure
routine, a speed-up of 5.4753 times (for Pentium Il 350 MHz) in the average
computation time of this routine was accomplished.

Besides, a lookup table scheme was used for the spreading function. That is,
instead of reusing the function each time a new value was needed, a simple table look-
up was enough to get the new value. Since only a limited set of points is calculated and
used for this function, these values may be pre-calculated and stored in a table.
Moreover, there is no lost of precision and no interpolation is required. Two lookup
tables were used: one for the long window, and one for the short window. The lookup
tables for the spreading function take 40.5 kbytes (for the long window) and 18 kbytes
(for the short window). The use of these tables leads to a speed-up of 8.7286 times (for
Pentium 11 350 MHz) in the average computation time of the convolution routine.

[Table 4.5 presents the results of the average computation time analysis for this
implementation (seconds per frame), considering all optimization (of both modules):
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TABLE 4.5 — Average computation time analysis (Assembly-optimized version)

Analysis P11 350 MHz | P11l 750 MHz
Encoder average coding time (stereo) 0.217543 s 0.143212 s
Encoder computation speed-up 3.8458 2.5549
Psychoacoustic module speed-up 2.4749 2.3427

The first row presents the encoder average coding time (using stereo channels)
for the optimized version (considering both optimizations on the LTP and

Psychoacoustic modules). The second
computation time for the encoder,

row presents the speed-up
comparing to the result of the original

in average

implementation. The third row presents the speed-up in average computation time,
when comparing the original Psychoacoustic module to the optimized one.

shows the average computation time within the optimized

Psychoacoustic module:
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FIGURE 4.10 — Computation time within the optimized Psychoacoustic module (P1I)

m shows the average computation time for this optimized version of

the AAC encoder:
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FIGURE 4.11 — Average computation time for each module (optimized version, PII)

This figure indicates that, although optimizations were done on the most time-
consuming modules, they remain the most time-consuming modules.

4.3 DSP implementation of the LTP module

This section presents the DSP implementation of the LTP module. It begins with
an overview of DSP architectures characteristics, a brief overview of the Texas C31 and
the Motorola DSP56309 architectures, an overview of other DSP implementations of
the AAC encoder, the results of this work’s implementation, and comments to these
results.

4.3.1 DSP architectures

Digital signal processors, as the name implies, are used to boost up the
performance of digital signal processing algorithms and as a basis for embedded signal
processing applications. These architectures are optimized for the repetitive nature of
sample-by-sample processing algorithms. They provide fast operators (multiplication,
accumulation), and efficient performance for memory moves

The most visible feature of DSP architectures is the multiply-acummulate
(MAC) operators, which perform reg =reg +ild2 usually within one clock cycle.
Since this kind of operation is very common in DSP algorithms, the use of MAC
operators enhances the performance of implementations of DSP algorithms. In addition,
many DSP processors provide parallelization of operations, so that two or more
operations are performed in the same clock cycle.
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4.3.2 Texas C31 architecture

The Texas TMS320C3x (such as the ‘C30, ‘C31, and others) contains a register-
based CPU architecture, which is composed by a floating-point/integer multiplier, an
arithmetic-logic unit (ALU), a 32-bit barrel shifter, internal data, address and DMA
buses, auxiliary register arithmetic units, and a register file

The register file is composed by 28 registers. Among them, there are 8 extended
precision register that can store 32-bit integer or 40-bit floating point numbers, 8
auxiliary registers that store 32-bit numbers and can be used to generate 24-bit
addresses.

The C31 memory is composed by two RAM blocks that hold 1k x 32 bits and
support two accesses in a single cycle. Four groups of addressing modes are available:
general instruction addressing modes (register, short immediate, direct, and indirect), 3-
operand instruction addressing modes (register and indirect), parallel instruction
addressing modes (register and indirect), and branch instruction addressing modes
(register, and PC-relative).

4.3.3 Motorola DSP56300 architecture

The Motorola DSP56300 is a 24-bit digital signal processor that features a
highly parallel instruction set, a fully pipelined parallel MAC, a data arithmetic logic
unit (data ALU), a 56-bit parallel barrel shifter, an address generation unit (AGU),
direct memory access (DMA) controller, program RAM, instruction cache, and two data

The architecture owns 6 data ALU registers that may be concatenated into two
56-bit general-purpose accumulators. In fact, the accumulators are 48-bit registers with
extension of 8 bits. This extension helps on the minimization of errors due to overflow.

The memory space is divided into program memory, and X and Y data memory.
The size of each space is programmable. Besides, the memory space may be expanded
by using off-chip memory.

4.3.4 Overview of other AAC implementations

Hilpert et al m worked on two real-time implementations of the MPEG-2
AAC algorithm using DSP processors (the Analog Devices ADSP-21060 and the
Motorola DSP563xx-80). The Low Complexity (LC) profile of the MPEG-2 AAC
algorithm was employed. An interesting and efficient fixed-point implementation of the
Psychoacoustic module is described in this paper. However, in terms of average
computation time reduction, no explicit comparisons between the original C code from
ISO and the optimized one is made.
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Chen and Taim presented an implementation of the MPEG-2 AAC
coder on Texas Instruments TMS320C26x fixed-point DSP processor. They
implemented all profiles of the algorithm (Main, LC, and Scalable Sampling Rate), and
they have chosen the last two profiles for real-time implementation. Nevertheless, no
specific optimization technique is described in this paper.

Huang et alm showed an implementation of the MPEG-4 AAC encoder
on Analog Devices ADSP-21060 SHARC. The authors cite optimizations made in the
original source-code provided by ISO for the DSP implementation. However, no
specific optimization in the Psychoacoustic module is mentioned. Moreover, since this
is an implementation of the Low Complexity profile, the LTP module is not used.

Hilpert et al Malso worked on the implementation of the MPEG-4
AAC algorithm on the Motorola DSP56300. This work is a progression of the
implementation presented at the AES 105th Convention m Again, several
optimization techniques are described. Nevertheless, no comparison between the
original and the optimized implementation is made. The authors also mention that the
LTP module was not yet implemented.

4.3.5 Implementation results on the Texas TMS320C31

Texas Instruments TMS320C31 floating-point processor was chosen for the first
DSP implementation. The choice was based on availability and convenience. Texas
Instruments Code Composer was used for developing C code. This application provides
C compilation and linking of C and Assembly routines. Besides, it provides simulation
of code execution. This simulation is optimistic, i.e. the results may have a better
(lower) average computation time than the one resulting from real execution of the code
on the C31 processor.

To get the simulated average computation time, a 25 MHz processor was
considered (clock cycle of 40 ns). Other choices of processor frequency were available,
e.g. 16.6 MHz, 20 MHz, 25 MHz, 30 MHz e 40 MHz (corresponding to clock periods of
60 ns, 50 ns, 40 ns, 33 ns and 25 ns).

Two implementations of the LTP’s correlation lag routine were taken into
consideration. Both were coded using C language. The first one is the C version that
was already used in the Pentium Il and Il implementations. This implementation uses
floating-point variables, and will be referred as “floating-point” version in the following
discussion. The second implementation is an integer version (also coded in C) of this
routine. This implementation employs integer variables in place of floating-point
variables, when possible.

m presents the simulation results for the floating-point version of the
LTP's correlation lag routine:
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TABLE 4.6 — Performance of floating-point LTP's correlation lag routine

Cycles Time (at 25 MHz)
Average computation (total) 50,835,140.0 2.0334 s
Average (per loop) 24,821.8 0.9929 ms
Maximum (per loop) 49,379.0 1.9752 ms
Minimum (per loop) 249.0 9.96 s

As shown in the table, the average computation time is 2.033 s. This is

considerably
11 350 MHz.

average computation time of the LTP’s correlation lag routine (corr_lag):

reater than the average computation time of the same routine on Pentium
ii 55|é ; E|presents a comparison among implementations, considering the

TABLE 4.7 — Comput. time comparison (Pentium vs. C31, floating-point version)

Analysis P11 350 MHz | PIIl1 750 MHz | C31
Corr_lag average coding time (C version) 0.308725 s 0.136255s| 2.0334 s
Corr_lag average coding time (Assembly 0.035364 s 0.027034 s -
version)
Speed-up of Pentium implem. (C version) 6.5851 14.9206 -
Speed-up of Pentium implementation 57.4878 75.2016 -
(Assembly version)

The first row presents the average computation time for the Pentium I1, Pentium
I11, and C31 implementations, considering the C version. The second row presents the
average computation time for the Pentium Il and Pentium Il1, considering the Assembly
version. The last two rows present the speed-up of the PC implementations over the C31
implementation.

In the integer version of the C code, the average computation time of the LTP's
correlation lag routine is better (i.e. Iower).m presents the simulation results of
this version:

TABLE 4.8 — Performance of integer LTP's correlation lag routine

Cycles Time (at 25 MHz)
Average computation (total) 26,196,824.0 1.0479 s
Average (per loop) 12,791.4 0.5117 ms
Maximum (per loop) 26,859.0 1.0744 ms
Minimum (per loop) 247.0 9.88 ps

Because of the modifications, the average computation time of the routine had a
speed-up of 1.9399 times. Despite this fact, this result is still greater than the average
computation time on a Pentium Il 350 MHz. The following table presents a new
comparison among implementations.

TABLE 4.9 — Computation time comparison (Pentium vs. C31, integer version)

Analysis P11 350 MHz | PIIl1 750 MHz | C31
Corr_lag average coding time (C version) 0.308725 s 0.136255s| 1.0479 s
Corr_lag average coding time (Assembly 0.035364 s 0.027034 s -
version)
Speed-up of Pentium implem. (C version) 3.3946 7.6915 -
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Analysis

P11 350 MHz

Pl11 750 MHz

C31

29.6347

38.7660

Speed-up of Pentium implementation
(Assembly version)

The first row shows the average computation time for the Pentium Il, Pentium
I1l, and C31 integer implementations, considering the C version. The second row
presents the average computation time for the Pentium Il and Pentium I11, considering
the Assembly version. The last two rows present the speed-up of the PC
implementations over the C31 implementation.

We may compare the results of both implementations by normalizing the C31
implementation results. This is accomplished by matching the clock frequency of the
implementations. In this case, this corresponds to extrapolate the clock frequency of the
C31 processor to equal the clock frequency of the Pentium Il and I11 (350 MHz and 750
MHz, respectively).

The performance of the DSP implementation is enhanced when considering
normalized clock frequencies. presents the normalized comparison for the
C31 floating-point version. We may observe that the normalized performance of the
C31 floating-point version is better than the performance of the C (floating-point)
version of the Pentium 1l and Ill implementations. However, the performance of the
Assembly (MMX) version is better than the performance of the C31 floating-point
version.

TABLE 4.10 — Normalized comparison (Pentium vs. C31, floating-point version)

Analysis P11 350 MHz | P111 750 MHz
Corr_lag average coding time (C version) 0.308725 s 0.136255 s
Corr_lag average coding time (Assembly version) 0.035364 s 0.027034 s
Normalized C31 computation time 0.145243 s 0.067780 s
Speed-up of Pentium implem. (C version) 0.4705 0.4975
Speed-up of Pentium implem. (Assembly version) 4.1071 2.5072

m presents the normalized comparison for the C31 integer version. In
this case, we observe again that the performance of the Assembly version of the
Pentium implementation is better than the normalized performance of the C31 integer

version.

TABLE 4.11 — Normalized comparison (Pentium vs. C31, integer version)

Analysis P11 350 MHz | PI11 750 MHz
Corr_lag average coding time (C version) 0.308725 s 0.136255 s
Corr_lag average coding time (Assembly version) 0.035364 s 0.027034 s
Normalized C31 computation time 0.074848 s 0.034929 s
Speed-up of Pentium implem. (C version) 0.2424 0.2564
Speed-up of Pentium implem. (Assembly version) 2.1165 1.2920

As observed in the tables, the performance of the Assembly version of the
Pentium implementation is better than the normalized performance of both versions of
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the C31 implementation. This may be a sign that the MMX architecture is better for
integer processing than the C31 architecture.

4.3.6 Implementation results on the Motorola DSP56309

The floating-point and the integer implementations used in the C31 processor
have run without changes in the Motorola DSP56309 processor.m presents the
results of the implementation on the DSP56309 processor:

TABLE 4.12 — Performance of implementations on the Motorola DSP56309

Cycles Time (66 MHz)
Computation time (floating-point version) 447,643,529 6.782478 s
Computation time (integer version) 47,597,705 0.721177 s
Speed-up (integer version) — 9.4047

It is interesting to compare the performance of the two DSP processors (Texas
C31 versus Motorola DSP56309). [Cable 4.13] presents this comparison. We may
observe that the performance of the C31 is better than that of the DSP56309 for the
floating-point version, and the performance of the DSP56309 is better than that of the
C31 for the integer version. This could be justified by noting that the C31 is a floating-
point processor, and the DSP56309 is an integer-point processor. However, this
statement is false when normalized comparison is considered, as will be discussed
below.

TABLE 4.13 — Comparison between DSPs (C31 vs. DSP56309)

Analysis C31 DSP56309 | Speed-up (C31)
Computation time (floating-point version) | 2.0334s| 6.782478 s 3.3355
Computation time (integer version) 1.0479s| 0.721177 s 0.6882

We may normalize the results of the C31 processor, by considering the clock
frequency of the DSP56309 processor (66 MHz). presents this normalized
comparison. In this case, the performance of the C31 is better than the performance of
the DSP56309 in both floating-point and integer versions. The enhanced performance of
the C31 may be justified by a better architecture of this processor, or a more efficient
code generation of the C compiler.

TABLE 4.14 — Normalized comparison between DSPs (C31 vs. DSP56309)

Analysis C31 DSP56309 | Speed-up (C31)
Computation time (floating-point version) | 0.7702s| 6.782478 s 8.8058
Computation time (integer version) 0.3969s| 0.721177 s 1.8169

[Table 4.15] presents a computation time comparison among the Pentium Il and
Il implementations and the DSP56309 implementation, considering the floating-point
version:
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TABLE 4.15 — Comput. time comparison (Pentium vs. 56309, floating-point version)

Analysis P11 350 MHz | PI11 750 MHz | 56309
Corr_lag average coding time (C version) 0.308725 s 0.136255 s | 6.78248 s
Corr_lag average coding time (Assembly 0.035364 s 0.027034 s -
version)
Speed-up of Pentium implem. (C version) 21.9693 49.7778 -
Speed-up of Pentium implementation 191.7905 250.8869 -
(Assembly version)

[Table 4.16] presents a computation time comparison among the Pentium Il and
I11 implementations and the DSP56309 implementation, considering the integer version:

TABLE 4.16 — Comput. time comparison (Pentium vs. 56309, integer version)

Analysis P11 350 MHz | PII1 750 MHz | 56309
Corr_lag average coding time (C version) 0.308725 s 0.136255s| 0.72118 s
Corr_lag average coding time (Assembly 0.035364 s 0.027034 s -
version)
Speed-up of Pentium implem. (C version) 2.3360 5.2929 -
Speed-up of Pentium implementation 20.3930 26.6767 -
(Assembly version)

The comparisons presented inltable 4 15 andltable 4.16 are both unfavorable for
the DSP56309 processor. The performance of Pentium implementations remains better
than that of the DSP56309 when normalizing the results of the DSP56309 floating-point
version. Mpresents the normalized comparison:

TABLE 4.17 — Normalized compar. (Pentium vs. DSP56309, floating-point version)

Analysis P11 350 MHz | PI11 750 MHz
Corr_lag average coding time (C version) 0.308725 s 0.136255 s
Corr_lag average coding time (Assembly version) 0.035364 s 0.027034 s
Normalized DSP56309 computation time 1.278981 s 0.596858 s
Speed-up of Pentium implem. (C version) 4.1428 4.3804
Speed-up of Pentium implem. (Assembly version) 36.1662 22.0781

The performance of the DSP56309 is only better than the performance of the C
version of the Pentium implementations. When the Pentium Assembly implementation
is considered, the performance of the Pentium processor is again better than the
performance of the DSP56309. This is presented in

TABLE 4.18 — Normalized compar. (Pentium vs. DSP56309, integer version)

Analysis P11 350 MHz [PI111 750 MHz
Corr_lag average coding time (C version) 0.308725 s 0.136255 s
Corr_lag average coding time (Assembly version) 0.035364 s 0.027034 s
Normalized DSP56309 computation time 0.135993 s 0.063464 s
Speed-up of Pentium implem. (C version) 0.4405 0.4658
Speed-up of Pentium implem. (Assembly version) 3.8455 2.3475

In summary, the comparisons presented in the previous tables indicate that the
performance of the DSP56309 is generally worse than the performance of the Pentium
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Il and I11. The performance of the DSP56309 is only better than that of the Pentium 11
and 111 when the specific case of the normalized comparison between the Pentium C
version and the DSP56309 integer version is considered.

4.3.7 Comments to the results of the DSP implementations

One usually expects that DSP processors run signal processing algorithms more
efficiently than a general-purpose processor. That was not the case for the LTP module
implementation on DSP processor. Although the normalized performance of the C31
floating-point version is better than the performance of the Pentium C version, the
comparison of the results are in general more favorable for the Pentium processors.

However, this may be not so surprising. General-purpose processors with DSP
enhancements are becoming a serious threat to DSP processor vendors. A comparison
among current DSP processors and general-purpose processors shows, for example, that
the performance of the Intel Pentium 111 1.3 GHz beats the performance of processors
such as Analog Devices ADSP-218x, ADSP-2106x, ADSP-2116x, Lucent DSP16410,
Motorola DSP563xx, and Texas Instruments TMS320C54xx (for a benchmark with
256-point FFT and an FIR filter)m. This demonstrates that, for some kind of
applications that do not require specific embedded application constraints (e.g. power,
compactness, portability, cost, etc), the use of a general-purpose processor may be
worthwhile.

However, when embedded systems needs (such as low unitary cost and low-
power consumption) are taken into consideration, the situation changes. General-
purpose processors are not usually suitable for embedded applications, since many of
them have high unitary cost and high power consumption. Therefore, when designing an
embedded system, DSP are usually preferred in place of general-purpose processors.

4.4 HDL implementation of the LTP module

VHDLM is a language used for hardware description and simulation. It
is very suitable for the description of algorithmic circuits (such as microprocessors or
finite automata). This kind of circuits may be modeled using algorithmic-state machine

charts m

The following subsections present an overview of Altera’s FPGA, an overview
of embedded applications, and some details of the VHDL implementation.

4.4.1 Altera FPGA and synthesis process

For the simulation of the VHDL description, Altera’s Flex10k devices were used
m Each FLEX 10K device contains an embedded array and a logic array. By
the combination of embedded and logic arrays, systems may be implemented into a
single device.
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The embedded array is used to implement several types of memory functions or
complex logic functions (such as digital signal processing, microcontroller, etc). It
consists of a series of embedded array blocks, each providing 2048 bits.

The logic array performs the same function as the sea-of-gates in the gate array,
i.e. it is used to implement general logic (such as counters, adders, state machines, and
multiplexers). It consists of logic array blocks, each consisting by its turn of eight logic
elements and local interconnect. A logic element consists of a 4-input lookup table, a
programmable flip-flop, and dedicated paths for carry and cascade functions.

4.4.2 Embedded applications

Embedded systems are based on the integration of hardware and software for a
specific application. There are many ways to design embedded systems. One way is
building an application-specific integrated circuit (ASIC), which requires large-scale
production to lower the unitary cost of the chip design and fabrication. Alternatively,
the circuit may be described in a hardware description language and synthesized on an
FPGA. The FPGA version is largely preferred in low-cost and low performance (or just-
needed performance) applications. In both cases, there is a custom designed circuit.

However, instead of designing custom circuits, largely available embedded
microprocessors may be employed. These microprocessors are usually especially
designed for embedded applications, taking into consideration factors such as
dimension, power consumption, and unitary cost. Examples of current embedded
microprocessors include ARM m MIPS'{.M.L&—Z)Qlll and PowerPC m
M, The complete embedded system is built by the combination of embedded
microprocessor and a software layer.

Some complex embedded systems may require an operating system. For
embedded applications, real-time operating systems are usually employed. This kind of
operating systems is optimized for real-time applications, such as interactive multimedia
applications. Examples of current real-time operating systems are VxWorks IDALI_.N_|

and Microsoft CE

4.4.3 Overview of the VHDL implementations

The LTP correlation lag routine was described as an algorithmic machine in
VHDL. The description was synthesized for the Altera’s Flex10k device family.
Altera’s Maxplusll software was used for synthesis and simulation of the description.

Three different descriptions were developed in this work, all written in Altera
VHDL. The difference among them are indicated by:

- The use of a separate Itp_lag proc or integration (merging) of the
Itp_lag_proc description into the main processor. In the separate version, the
Itp_lag_proc is responsible for performing the routine mathematical
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operations, while the main processor reads data from memory and specifies
the state of the Itp_lag_proc processor. In the merged version, there is only
one main processor (Itp_lag) that reads data and performs calculations.

- The use of separately designed multiply-and-accumulate (MAC) units or the
use of the Altera’s standard operators (provided in standard libraries or so-
called mega-functions). The specially designed MAC units are based on bit-
serial adders and multipliers.

[Lable 4.19summarizes the differences among the implementations:
TABLE 4.19 — LTP VHDL descriptions

Implementation |Ipt lag proc Operators
1 Separate processor MAC units
2 Integrated into Itp_lag MAC units
3 Integrated into Itp_lag Altera’s operators library

This section has presented an overview of the implementations. The next section
provides some details of them.

4.4.4 Description of the VHDL implementations

In this section, the units mentioned in the previous section (section m are
presented in details. This section presents the MAC unit, the Itp_lag_proc processor,
and the Itp_lag processor.

The n-bit MAC (multiply-accumulate) unit is responsible for performing
multiply-accumulate operations using bit-serial arithmetic. This kind of arithmetic
allows for lower area usage (indicated by the number of cells, in the case of FPGAS)
than the parallel arithmetic.m presents a simplified diagram of this unit. Note
that the MAC unit is used in implementations one and two. Implementation three
employs adders and multipliers from the Altera’s operators library.

clock — —p> done

reset  ——» n-bit bit-serial multiplier [7*—% mac_out
init  —»
set_acc —
sub —Pp 1-bit adder
mul_inG—~
mul_int—~|
acc_in —~» MAC unit

FIGURE 4.12 - Simplified diagram of the n-bit MAC unit
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As indicated by the figure, the MAC unit uses one 1-bit adder and an n-bit bit-
serial multiplier. The n-bit bit-serial multiplier is composed by n bit-serial multipliers.
The clock input receives the clock. The reset input allows for resetting the contents of
the MAC unit. The init input starts the multiply-accumulate operation. The set_acc
input allows for the MAC unit to be set by the value indicated at input acc_in. When the
sub input is on, the sign of the mul_in1 is reversed. The inputs mul_in0 and mul_in1 are
the input values to the MAC unit.

The Itp_lag_proc processor is responsible for performing the operations of the
correlation routine. In other words, its main purpose is to transfer the data received from
inputs i0 and i1 to the MAC unit and trigger this unit according to the operation to be
performed. In other words, this processor controls the datapath. m presents a
simplified diagram of the Itp_lag_proc processor:

clock —» —» busy
- corr_mac ) .
reset — MAC unit - COIT_ou
state  —p] 7—% enrg_out
i0 o »  enrg_mac
i1 —AP g MAC unit
Ipt_lag_proc

FIGURE 4.13 - Simplified diagram of Itp_lag_proc processor

Note that the Itp_lag_proc has a state input. This indicates that this processor
does not own a state machine. It controls the datapath according to the external state.
This state is received from the Itp_lag processor, which is the main processor. In this
situation, the Itp_lag processor is mainly responsible for controlling the state machine,
and receiving data from memory. M presents a simplified diagram that
illustrates the relation between the Itp_lag_proc and the Itp_lag processors:

clock —p—p L Tpp —p busy
reset — > 7—» corr_out
init — - enrg_out
i0 I Itp_lag_proc +> addr_o
i1 — S R — ——p addr_1

_ [control machlnel

input_ready —» —————— Ipt_lag

FIGURE 4.14 - Simplified diagram of Itp_lag processor (implementation 1)

The Itp_lag_proc processor is used just in implementation one. In the other
implementations, this processor is merged into the Itp_lag processor, i.e. the
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Itp_lag_proc description is merged into the Itp_lag description. Therefore, in
implementations two and three, the Itp_lag processor is not only responsible for the
state machine, but also for controlling the datapath.

The state machine of the algorithm within the lag_proc processor is not very
simple (when comparing it to the state machine of the MAC unit, for example), as may
be observed in . This is a simplified state machine of the implementation
three. The state machines of the other implementations are similar to this one.

A

st_reset

|—¢l+

LSt_init st_end —

— 3 v |
st_run_ini » st_run_second0 0 st_run_second2_0
Et_run_ini_wait_input st_run_second0_1 st_run_second2_1
I v ]
st_run_first0 st_run_second0_2 st_run_second2_2
! i '
st_run_firstl st_run_second1_0 st_run_second2_3
I v i |
st_run_first2 st_run_secondl 1 st run second? 4
— ] Il |
st_run_first3 st_run_secondl_2
| |

FIGURE 4.15 - State machine of implementation three

As may be observed in m the state machine has 20 states, and many
possible paths. This complexity contributes to the low maximum frequency achieved in
the FPGA synthesis, as discussed below.

indicates the FPGA synthesis results (number of cells and maximum
frequency) of each unit. For the synthesis, Altera’s EPF10K30RC240-3 device was
used.

TABLE 4.20 — FPGA synthesis of units

Unit Description Number of cells | Maximum frequency
add 1bs 1-bit adder 3 125.00 MHz
m_a_1bs 1-bit multiplier 5 125.00 MHz
mul_bs 16-bit multiplier 48 125.00 MHz
mac_bs 16-bit MAC unit 243 56.81 MHz
Itp_lag proc LTP processor 849 40.81 MHz
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m presents the FPGA synthesis results (number of cells and maximum
frequency) of the implementations (i.e. the results for the Itp_lag processor). For the
synthesis, Altera’s EPF10K30RC240-3 device (implementations one and two) and
EPF10K40RC240-3 device (implementation three) were selected.

TABLE 4.21 — FPGA synthesis of implementations

Implementation Number of cells Maximum frequency
1 1653 12.54 MHz
2 1597 16.31 MHz
3 2250 7.99 MHz

This section has presented some details of the VHDL implementations. The next
section provides details of the implementation results.

4.4.5 VHDL implementation results

The three implementations were simulated using Altera’s Maxplusll 9.26
software. [Table 4.22 table presents the number of cycles needed to compute the
correlation lag routine for one frame, the maximum frequency, the computation time,
and the speed-up of implementation three in relation to the other implementations:

TABLE 4.22 — Performance of the VHDL implementation

Implementation |Number of | Maximum clock |Computation |Speed-up of
Cycles frequency time (s) implem. 3
1 104,958,902 12.54 MHz 8.369928 5.3109
2 102,334,904 16.31 MHz 6.274366 3.9812
3 12,601,338 7.99 MHz 1.575985 -

In terms of average computation time, the most efficient description was
implementation three. Comparing the description style of these implementations gives
some important indications about efficient FPGA-synthesis-oriented description. It is
clear that the major advantage of implementation three over the other implementations
is its reduced number of cycles needed to compute the correlation lag routine. Although
this implementation has the lowest clock frequency, the reduced number of cycles
compensates this problem. Therefore, this implementation has the lowest computation
time.

The reduced number of cycles may be attributed to two reasons. First,
implementation three employs optimized operators from Altera’s standard operators
library in place of the bit-serial MAC unit. The use of bit-serial arithmetic may be
advantageous for low-power and low area applications, but it requires a high clock
frequency, at least many times higher than that of parallel arithmetic. This high
frequency may not be achievable on FPGAs. Among the implementations, the
maximum clock frequency of implementations one and two was not many times higher
than the maximum clock frequency of implementation three. Therefore, implementation
three presented the lowest computation time.
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A second reason for the reduced number of cycles in implementation three is its
simplified state machine. When compared to the other implementations, implementation
three presents the lowest number of states. Although the synthesis of this state machine
clearly requires a large number of FPGA cells, the reduced number of states leads to a
reduced number of cycles.

In comparison with implementations on other platforms, the VHDL
implementation three is not very successful. [Table 4.23 presents this comparison,
featuring the clock frequency, the computation time, and the speed-up (in relation to the
VHDL implementation three) of each implementation:

TABLE 4.23 — Comparison among LTP module implementations

Implementation Clock frequency | Computation |Speed-up (to
(MHz) time (s) hardware impl.)
PC C version (PI1) 350.00 0.308725 5.1086
PC C version (PIII) 750.00 0.136255 11.5749
PC MMX version (PII) 350.00 0.035364 44,5973
PC MMX version (PII1) 750.00 0.027034 58.3391
56309 integer version 66.00 0.721177 2.1869
C31 integer version 25.00 1.047873 1.5051
56309 floating-point version 66.00 6.782478 0.2325
C31 floating-point version 25.00 2.033406 0.7756
VHDL version (impl. 3) 7.99 1.575985 —

M illustrates the comparison among implementations:

5309 (float) \
I R
I O I O O |

C31 (float) ‘
I O

VHDL
I
c31 (int)
[

56309 (int)
|

PII (O j
PIIT (O ]
PLI (MWK
PITT (MWK

1 2 3 4 5 6
time (seconds)

FIGURE 4.16 — Computation time comparison (LTP module, all implementations)

The kable 4.23 and the reveal that, except for the DSPs floating-point

versions, the VHDL version is slower than all remaining implementations. There are
many reasons that contribute to this unfavorable comparison of the VHDL version
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performance with respect to the general-purpose processor (e.g. Pentium II, 111, and its
variations). One reason is the low clock frequency of the FPGA in comparison with the
clock frequency of other implementations. Although the number of cycles required for
computation on the VHDL (12,601,338) is lower than, for example, the number of
cycles required for the C31 integer version (26,196,824), the low clock frequency
achieved on the FPGA synthesis raises its computation time. The normalization of all
computation times for the Pentium Il clock frequency (350 MHz) clarifies the situation.

Mpresents this normalization:

TABLE 4.24 — Comparison among LTP implementations (normalized for 350 MHz)

Implementation Normalized Speed-up to hardware
computation time (s) | implementation
PC C version (PII) 0.308725 0.116621
PC MMX version (PII) 0.035364 1.018092
C31 floating-point version 0.145243 0.247886
C31 integer version 0.074848 0.481025
56309 floating-point version 1.278982 0.028150
56309 integer version 0.135993 0.264747
VHDL version (impl. 3) 0.036004 —

This table is represented graphically by m It presents the normalization
ordered by normalized computation time:

[T 1 [ [ T T [ [ T T T 1
309 (float) ‘
——
Pl (O
!
C31 (float)
56309 (int)
@31 (int) ::]
VHDL ]
PII (M) :}
0 1

time (seconds)

FIGURE 4.17 — Normalized computation time (LTP module, all implementations)

Table 4.24] and |figurg 417 show that, as long as the clock frequency are
normalized, the VHDL implementation is one of the best implementations, only slightly
worse than the PC MMX version on Pentium Il. The normalization of the computation
times for the Pentium Il clock frequency (750 MHz) reveals that the VHDL
implementation may be even better than the Pentium 111 MMX implementation.
presents this normalization for 750 MHz:
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TABLE 4.25 — Comparison among LTP implementations (normalized for 750 MHz)

Implementation Normalized Speed-up to hardware
computation time (s) | implementation
PC C version (PI11) 0.136255 0.123311
PC MMX version (PII1) 0.027034 0.621506
C31 floating-point version 0.067780 0.247886
C31 integer version 0.034929 0.481025
56309 floating-point version 0.596858 0.028150
56309 integer version 0.063464 0.264747
VHDL version (impl. 3) 0.016802 -

As may be observed in the and the table 4.25] the major problem of

the VHDL implementation is its low clock frequency. The main reason for this low
clock frequency may be the description style, which may not be appropriate for the LTP
algorithm. Thus, the behavioral description of the LTP leads to a synthesized hardware
having a lower clock frequency than that of a dedicated ASIC, which has its architecture
optimized for the algorithm. In summary, the choice between synthesizing the VHDL
description into an FPGA or mapping this description, for example, into an ASIC using
standard-cell is very important, since it may define the ultimate performance of the
implementation of the algorithm.

These bad results for the FPGA implementation also raise the question
concerning the model used for embedded application, i.e. whether it is profitable to
create a custom FPGA-synthesized description in VHDL, or build the system as
software upon an embedded microprocessor. The answer would be given by comparing
the FPGA implementation with an embedded-processor implementation, as mentioned
in section [4.4.2 Although this implementation on embedded processor was not
developed in this work, it would provide a larger basis for comparison among
implementation platforms.
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5 Conclusion

In this work, the MPEG-4 AAC standard was studied, resulting in a tutorial text
covering all aspects of the AAC encoder. Besides, some principles of Psychoacoustics
were presented in the text, thereby enlightening the study of AAC’s perceptual model.

The MPEG-4 AAC is a coding algorithm within the audio part of the ISO
MPEG-4 standard for multimedia contents coding and transmission. MPEG-4 AAC is
especially designed for low bit-rate coding of general audio (e.g. speech and music). It
is an improvement over previous coding algorithms created by the MPEG group, such
as the MPEG-1 Layer Il1. The main components of the AAC encoder are the filterbank,
the perceptual model (also called Psychoacoustic module), and the quantization module.
The filterbank converts input samples from the time-domain to the spectrum domain
(thereby generating spectral coefficients) through a modified cosine transform. The
perceptual model uses this spectral-domain data to ensure high quality of the codified
audio signal, by providing information about bit-allocation and maximum allowed noise
for the quantization process. The spectral data is quantized by AAC quantization
process, which is composed by four subblocks: quantization of scalefactors,
quantization of spectral coefficients, noiseless coding, and rate/distortion control loop.

The perceptual model is based on guiding rules derived from the field of
Psychoacoustics. Masking mechanisms of the human auditory system allows for
quantization noise to be added to the codified signal without affecting its quality.
Quantization noise is added to an audio signal when it is recoded using fewer bits.
Therefore, the masking mechanisms determine the allowed bit reduction that does not
degrade the perceived audio quality.

Much of this work was devoted to the implementation of the MPEG-4 AAC
encoder. In this work, three different platforms were used and four implementations
were developed. The choice of the platforms was guided by current market features,
such as availability, portability, cost, etc. For example, while general-purpose
processors are largely available, their unitary cost tends to be high, at least much higher
than the unitary cost of DSP processor and they are not portable as DSP processor.
Therefore, the chosen platforms were general-purpose processors (Intel Pentium Il and
I11), DSP processors (Texas C31 and Motorola DSP56309), and hardware
implementation (Altera Flex10k FPGA).

A public-domain version of the MPEG-4 AAC encoder in C language was used
as a basis for the development of the implementations. This version of the encoder is
very tutorial. That is, it exists to guide developers to create their own encoder.
Therefore, it is not an efficient implementation of the encoder and it does not reflect the
optimizations performed by the audio coding industry in the efforts to design efficient
audio encoders, i.e. fast encoders that ensure high coding quality and efficiency.
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This C-language code was employed in an analysis of computation time (code
profiling). This analysis revealed that the most time-consuming modules of the AAC
algorithm were the long-time prediction (LTP) and the Psychoacoustic module.
Optimizations on these modules were performed in order to enhance the computation
time of the algorithm. Therefore, the implementation work was directed to the
development of enhanced (i.e. faster) versions of these modules in several platforms.

The LTP module was developed for all platforms. The implementation results
provided some interesting results for comparisons among platforms. For example, this
comparison showed that the PC implementations had performance advantages over
implementations on other platforms (DSP and FPGA-synthesized hardware). Moreover,
the implementations indicated that Assembly optimizations on computation-intensive
loops and critical time-consuming routines contribute to significant performance
increase. However, comparisons that took normalization of the clock frequency into
account showed that the FPGA-synthesized implementation was one of the most
efficient implementation, due to its reduced number of cycles needed in the computation
of the LTP module. Since DSP processors also have relatively low clock frequency, this
was the case for one of them (the C31), too. Therefore, these comparisons revealed that
the clock frequency is an important feature of the target platform, as long as
computation time is concerned.

Future work using this master thesis as a basis could make the DSP and VHDL
implementations more efficient in terms of computation time. In the case of the DSP
implementation, this may be achieved by hand-optimizing the Assembly code generated
by C compiler. However, since Assembly mnemonics vary from processor to processor,
this means that a target DSP processor should be chosen at first. Besides, the choice of a
target DSP processor should be based on a comparison among different DSP processors,
considering their suitability to the development of audio coding algorithms.

In the case of the VHDL implementation, restructuring the control machine of
the descriptions by a simplification of the algorithm could provide a more efficient
synthesized circuit. Moreover, using other development tools (e.g. standard-cells) could
provide better results than the FPGA results.

As another suggestion, embedded processors could be employed for
implementation and comparisons, since they may be as low-costing and portable as DSP
processors, and as flexible as general-purpose processors.
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Appendix 1 Average computation time analysis data

This appendix provides information about the data used for the average
computation time analysis, such as the name and characteristics of the sound files used
for computation analysis, and tables.

1  Sound files

The following table presents the sound files used for average computation time

analysis:
Artists/composer | Song Start End Duration | Samples
M. P. Mussorgsky Pictures at the Exhibition: 00:00:07.729 | 00:00:13.883 | 00:00:06.154 271,425
Promenade
M. P. Mussorgsky The Great Gate of Kiev 00:00:00.296 | 00:00:06.544 | 00:00:06.247 275,530
Wagner The ride of the Valkyries 00:00:00.426 | 00:00:07.391 | 00:00:06.964 307,152
Vivaldi The four seasons: Spring | 00:01:55.995 | 00:02:01.315 | 00:00:05.319 234,576
Beethoven Fifth Symphony (I) 00:00:00.341 | 00:00:10.371 | 00:00:10.029 442,288
Tchaikovsky Thz Nutcracker (Dance of the | 00:01:05.777 | 00:01:09.069 | 00:00:03.291 145,176
reeds
Grieg Piano)Concerto () 00:00:02.655 | 00:00:06.998 | 00:00:04.342 191,484
Pachelbel Canon 00:01:47.640 | 00:01:52.911 | 00:00:05.271 232,470
Louis Armstrong What a wonderful world 00:00:06.132 | 00:00:09.941 | 00:00:03.809 167,994
Ray Charles Georgia on my mind 00:00:30.190 | 00:00:35.787 | 00:00:05.597 246,862
Frank Sinatra Night and Day 00:00:10.132 | 00:00:15.150 | 00:00:05.018 221,298
Glenn Miller In the mood 00:00:11.089 | 00:00:17.518 | 00:00:06.428 283,502
Morris Albert Feelings 00:00:08.724 | 00:00:13.331 | 00:00:04.606 203,136
The Platters Only you 00:00:04.842 | 00:00:10.121 | 00:00:05.278 | 232,794
Chuck Berry Sweet little sixteen 00:00:00.405 | 00:00:04.724 | 00:00:04.318 190,456
Billie Holiday Time on my hands 00:00:11.881 | 00:00:17.589 | 00:00:05.707 251,687
Tears for Fears Sowing the seeds of love 00:01:19.591 | 00:01:28.306 | 00:00:08.714 384,311
James Brown 1 got you (1 feel good) 00:00:00.354 | 00:00:04.372 | 00:00:04.017 177,174
Boyz Il Men A song for mama 00:00:25.760 | 00:00:31.808 | 00:00:06.047 266,708
Scorpions Wind of change 00:01:39.660 | 00:01:45.520 | 00:00:05.859 | 258,423
2 Tables

The following table presents the average computation time of each AAC
module, considering all PC implementations, versions, and parameters.

Module PlIC PlI C PlI C PIl ASM PlII C P11l ASM
320 Kbps 128 kbps 32 kbps 320 Kbps 320 Kbps 320 Kbps
Init 0.001314 0.001244 0.001214 0.001083 0.000869 0.001141
Channel 0.000021 0.000023 0.000013 0.000025 0.000007 0.000011
Psychoac 0.215356 0.212774 0.214004 0.087016 0.106398 0.045416
Blk_switch 0.000020 0.000019 0.000003 0.000017 0.000011 0.000009
pre-proc 0.000003 0.000003 0.000016 0.000014 0.000007 0.000013
t/f-map 0.022330 0.022270 0.022336 0.023603 0.012204 0.013450
psych2scfac 0.000099 0.000094 0.000101 0.000093 0.000053 0.000161
specLFE 0.000001 0.000003 0.000006 0.000005 0.000001 0.000002
guant&cod 0.000192 0.000229 0.000292 0.000259 0.000143 0.000122
coupling 0.000000 0.000000 0.000000 0.000000 0.000000 0.000001
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TNS 0.002813] 0.002747] 0.002856] 0.002715] 0.001222] 0.001619
LTP 0.565472| 0.561258| 0.583572| 0.081424| 0.252519| 0.048695
IntStereo 0.000920| 0.000784| 0.000851| 0.000768| 0.000473|  0.000509
Predict 0.000000|  0.000000|  0.000000|  0.000000|  0.000000| _ 0.000000
MSstereo 0.000099| 0.000109| 0.000096| 0.000118| 0.000085|  0.000069
DynRange 0.000002|  0.000000|  0.000000|  0.000000|  0.000000|  0.000000
AACquant 0.027807| 0.182546| 0.653176| 0.027432| 0.014393| 0.014613
MSstereoRec 0.000067| 0.000112| 0.000059| 0.000079| 0.000058|  0.000084
IntStereoRec 0.000068|  0.000069| 0.000081| 0.000091| 0.000025|  0.000033
SpecUpdt 0.027668| 0.027021| 0.027256| 0.028840| 0.014360| 0.015934
Write 0.002151| 0.001109| 0.000511| 0.002078] 0.001333| 0.001330
TOTAL 0.866403| 1.012414| 1.506443| 0.255660| 0.404161| 0.143212

The following table explains the purpose of each module:

Module Purpose

Init Initialization

Channel Determine channel elements

Psychoac Psychoacoustics

BIK_switch Block switching processing

pre-proc Pre-processing

t/f-map T/F mapping

Psych2scfac adapt ratios of psychoacoustic module to codec scale factor bands
SpecLFE Set upper spectral coefficients to zero for LFE
Quant&cod Quantization and coding

Coupling Coupling Coordinate calculation

TNS Perform TNS analysis and filtering

LTP LTP predictor info and residual spectrum
IntStereo Intensity Stereo

Predict predictor info and residual spectrum

MSstereo MS stereo

DynRange Dynamic range parameters

AACquant AAC gquantization and coding module
MSstereoRec | Reconstruct MS Stereo bands for prediction
IntStereoRec Reconstruct Intensity Stereo bands for prediction
SpecUpdt Add predicted spectrum, TNS decode, update LTP history buffer

Write

Write out all encoded channels
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Appendix 2 Original C source-code

This appendix provides the original C source-code from 1SO for specific
routines of the AAC encoder.

1 LTP module: lag correlation routine

This section presents the lag correlation routine in the C version:

int
pi tch(double *sb_sanples, short *x_buffer, int flen, int 1lag0, int Iagl, double
*predi cted_sanples, Float *gain, int *cb_idx)
{
int i, j, delay, start;
int offset;

doubl e corrl, corr2, lag_corr;
doubl e p_max, energy, |ag_energy;

p_max = 0.0;
lag_corr = |l ag_energy = 0.0;
delay = | ago;
/* Find the lag. */
for (i =1lag0; i < lagl; i++)
{
corrl = corr2 = 0.0;
start = 0,
of fset =1i;

if(i < DELAY / 2)

offset =i - lagO;
start = flen/ 2 +i;
el se
offset =i - DELAY / 2;
start = O;
}
if(start || offset == 0)
{
energy = 0. 0f;
for (j = start; j < flen; j++)
{
corrl += x_buffer[ NOK_LT_BLEN - offset - j - 1] * sb_sanples[flen
- 0.1
energy += x_buffer[ NOK LT BLEN - of f set - j - 1] *
x_buf fer[ NOK_LT_BLEN - offset - j - 1];
}
el se /* start == 0 && offset != 0 */
{

/* No need to conpute the whole energy. */
energy -= x_buffer[NOK LT BLEN - offset] * x_buffer[ NOK_LT_BLEN

of fset];

energy += x_buffer[ NOK_LT_BLEN - offset - flen] * x_buffer[ NOK_LT_BLEN
offset - flen];

for (j =0; j <flen; j++)
corrl += x_buffer[ NOK_LT_BLEN - offset - j - 1] * sb_sanples[flen - | -
1],
}

if (energy != 0.0)
corr2 = corrl / sqrt (energy);
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el se
corr2 = 0.0;

if (p_max < corr?2)

p_max = corr2;

delay = 1i;
lag_corr = corrl;
| ag_energy = energy;

}

/* Conpute the gain. */
if(lag_energy != 0.0)

*gain = lag_corr / (1.010 * |ag_energy);
el se

*gain = 0.0;
[* ... */

2  Psychoacoustical module

This section presents some extracts of the C version of the Psychoacoustical
module:

[* oo */
doubl e sprdngf (doubl e bl, double b2)
{
doubl e t npx, t mpy, t npz;
tmpx = (b2 >= bl) ? 3.0%*(b2-bl) : 1.5%*(b2-bl);
tnmpz = 8.0 * psy_mn( (tnpx-0.5)*(tnpx-0.5) - 2.0*(tnpx-0.5),0.0 );
tmpy = 15.811389 + 7.5*(tnpx + 0.474)-17.5 *sqrt (1.0 + (tnpx+0.474)*(tnpx+0.474));
return( tnpy < -100.0 ? 0.0 : pow(10.0, (tnpz + tnpy)/10.0) );
}
[* .. */
voi d psy_step2(doubl e sanpl e[ ][ BLOCK_LEN_LONG 2],
PSY_STATVARI ABLE_LONG *psy_stvar _| ong,
PSY_STATVARI ABLE_SHORT *psy_stvar_short,
FFT_TABLE_LONG *fft_thbl _Il ong,
FFT_TABLE_SHORT *fft_tbl _short,
int ch
)
{
int wi,j,kI,h n,d,ik,k2, n4;

doubl e t,s,c, dx, dy;
doubl e *xI, *yl;

/* FFT for long */
x| = (double *)mal |l oc( sizeof (double) * BLOCK_LEN LONG * 2 );
yl = (double *)nmall oc( sizeof (double) * BLOCK_LEN LONG * 2 );

psy_stvar_long->p_fft[ch] += BLOCK _LEN _LONG

i f(psy_stvar_long->p_fft[ch] == BLOCK LEN LONG * 3)
psy_stvar_long->p_fft[ch] = 0;

/* window *//* static int it = 0; */

for(i = 0; i < BLOCK_LEN LONG*2; ++i){
xI[i] fft_tbl _long->hwfi] * sanple[ch][i];

yl[i] 0. 0;

n = BLOCK _LEN _LONG 2;
nd = n/ 4,
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for (i =0; i <n; ++i) { /* bit inverse */
j = fft_tbl _long->brt[i];
if (i <j) {
t =xI[i]; xI[i] =xI[j]; xI[j] =t;
t=yl[il; yl[il =yl[jl; ylil =t;
} }
for (k =1; k <n; k =k2) { /* translation */
h=0 k2=k+k; d=n/ k2
for (j =07 j <k; j++) {
c = fft_tbl_long->st[h + n4];
s = fft_tbl_long->st[h];
for (i =j; i <n; i +=k2) {
ik =i +k;
dx = s * yl[ik] + ¢ * xI[ik];
dy = ¢ * yl[ik] - s * xI[ik];
xITik] = xI[i] - dx; xI[i] += dx;
} ylI[ik] =yl[i] - dy; yl[i] += dy;
h += d;
}
}

for(w = 0; w< BLOCK LEN LONG ++w){
psy_stvar_long->fft_r[ch] [w+psy_stvar_long->p_fft[ch]]
. = sqrt(xI[wi*xi[w] + yl[w*yl[w);
if( xI[w >0.0){
if( yl[w >=0.0)
psy_stvar_long->fft_f[ch] [wtpsy_stvar_long->p_fft[ch]] = at an(
yiiw 7 xi[w );

el se
psy_stvar_long->fft_f[ch] [wtpsy_stvar_long->p_fft[ch]] = at an(
yl[w / xI[w] )+ MPI * 2.0;
} elseif( xI[w <0.0) {

psy_stvar_long->fft_f[ch] [wtpsy_stvar_long->p_fft[ch]] = atan( yl[w [/
xl[w ) + MPI;
} else {
if( yl[w >0.0)
psy_stvar_long->fft_f[ch][wtpsy_stvar_long->p_fft[ch]] = MP *
0.5;
else if( yl[w <0.0)
psy_stvar_long->fft_f[ch][wtpsy_stvar_long->p_fft[ch]] = MP *
1.5;
el se
psy_stvar_long->fft_f[ch][wtpsy_stvar_long->p_fft[ch]] = 0.0; /*
tnp */
}
free(xl);
free(yl);
/* added by T. Araki (1997.10.16) */
/* FFT for short */
x| = (double *)nmal | oc( sizeof (double) * BLOCK_LEN SHORT * 2 );
yl = (double *)mal | oc( sizeof (double) * BLOCK_LEN SHORT * 2 );
for(l = 0; | < MAX_SHORT_W NDONS; ++l){
/* w ndow */
for(i = 0; i < BLOCK_LEN SHORT*2; ++i){
xI[i] = fft_tbl_short->hwfi] * sanpl e[ ch] [ OFFSET_FOR_SHORT +
BLOCK_LEN SHORT * | + i];
yl[i] =0.0;

n = BLOCK_LEN_SHORT*2;

n4 = n/ 4,
for (i =0; i <n; ++i) { /* bit inverse */
j = fft_tbl_short->brt[i];
if (i <j) {
t =xI[i]; xI[i] =xI[j]; xI[j] =t;
} t=yl[il; ylfil =yl{jl; yljl = t;
}
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h=0 k2=k+k; d=n/ k2
for (j =0; | <k j++) {
c = fft_tbl_short->st[h + n4];
s = fft_tbl_short->st[h];
for (i =j; i <n; i +=k2) {
ik =i +k;
dx = s * yl[ik] + ¢ * xI[ik];
dy = ¢ * yl[ik] - s * xI[ik];
xITik] = xI[i] - dx; xI[i] += dx;
} yl[ik] =yl[i] - dy; yl[i] += dy;
h += d;
}

}

for(w = 0; w < BLOCK_LEN_SHORT; wt++){
psy_stvar_short->fft_r[lI][w = sqgrt(xI[w*xI[w] + yl[w*yl[w]);
if( xI[w >0.0){

if( yl[w >=0.0)
psy_stvar_short->fft_f[I][w] = atan( yl[w / xI[w] );

el se
psy_stvar_short->fft_f[I][w] = atan( yl[w] / xI[w] )+ MPI
* 2.0;
} elseif( xI[w <0.0) {
psy_stvar_short->fft_f[I][w] = atan( yl[w] / xI[w] ) + MPI;
} else {
if( yl[wj >0.0)
psy_stvar_short->fft_f[I][w] = MPl * 0.5;
else if( yl[w <0.0)
psy_stvar_short->fft_f[I][w] = MPl * 1.5;
el se
psy_stvar_short->fft_f[I][w] = 0.0; /* tmp */
}
}
free(xl);
free(yl);
/* added by T. Araki (1997.10.16) end */
}
[* ... */

voi d psy_step4(PSY_STATVARI ABLE_LONG *psy_stvar _Il ong,
PSY_STATVARI ABLE_SHORT *psy_stvar_short,
PSY_VARI ABLE_LONG *psy_var _| ong,
PSY_VARI ABLE_SHORT *psy_var _short,
int ch

)

int wi;
double r,f,rp, fp;

for(w = 0; w< BLOCK_LEN LONG ++w){

r = psy_stvar_long->fft_r[ch][psy_stvar_long->p_fft[ch]+w;
f = psy_stvar_long->fft_f[ch][psy_stvar_long->p_fft[ch]+w;
rp = psy_var_long->r_pred[w;
fp = psy_var_l ong->f _pred[w;
if( r + fabs(rp) !'=0.0)
psy_var_long->c[w = sqrt( psy_sqgr(r*cos(f) - rp*cos(fp))

+psy_sqr(r*sin(f) - rp*sin(fp)) )/ ( r + fabs(rp) )

el se
psy_var_long->c[w = 0.0; /* tnp */

/* added by T. Araki (1997.10.16) */
for(i = 0; i < MAX_SHORT_W NDOWS; ++i){
for(w = 0; w < BLOCK_LEN_SHORT; ++w){
psy_stvar_short->fft_r[i]]
psy_stvar_short->fft_f[i]]
1
1M

psy_var_short->r_pred[i ;
psy_var_short->f_pred[i

r W
f w
rp = w
fp = w

if( r + fabs(rp) !'=0.0)



83

psy_var_short->c[i][w] = sqgrt( psy_sqr(r*cos(f)
rp*cos(fp))+ psy_sqr(r*sin(f) - rp*sin(fp)) )/ ( r + fabs(rp) ) ;
el se
psy_var_short->c[i][w] = 0.0; /* tmp */
} }
/* added by T. Araki (1997.10.16) end */
}
[* .. */

voi d psy_step6( PARTI TI ON_TABLE_LONG *part _t bl _I ong,
PARTI TI ON_TABLE_SHORT *part_tbl _short,
PSY_VARI ABLE_LONG *psy_var _| ong,
PSY_VARI ABLE_SHORT *psy_var _short
)

int b,bb,i;
doubl e ech, ct;
doubl e sprd;

for(b = 0; b < part_tbl_long->len; ++b){
ecb = 0.0;
ct = 0.0;
for(bb = 0; bb < part_tbl_long->len; ++bb){
sprd = sprdngf (part_tbl _l ong->bval [ bb], part _tbl _| ong->bval [b]);
ecb += psy_var_l ong->e[bb] * sprd;
ct += psy_var_long->c[bb] * sprd;

}
if (ecb!=0.0) {
psy_var_long->cb[b] = ct / ecb;
} else {
psy_var _| ong- >cb[ b]

0.0;

psy_var_long->en[b] = ecb * part_tbl_Ilong->rnornib];

}

/* added by T. Araki (1997.10.16) */
for(i = 0; i < MAX_SHORT_W NDOWS; ++i){
for(b = 0; b < part_tbl_short->len; ++b){
ecb = 0.0;
ct = 0.0;
for(bb = 0; bb < part_tbl_short->len; ++bb){
sprd = sprdngf(part_tbl_short->bval [ bb], part_tbl_short->bval [b]);
ecb += psy_var_short->e[i][bb] * sprd;
ct += psy_var_short->c[i][bb] * sprd;

}
if (echb!=0.0) {

psy_var_short->cb[i][b] = ct / ech;
} else {
psy_var _short->cb[i][b] = 0.0;

psy_var_short->en[i][b] = ecb * part_tbl_short->rnornib];
}

}
/* added by T. Araki (1997.10.16) end */
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Appendix 3 Assembly code

1 LTP module: lag correlation routine

. 686
. MW
. MODEL flat, C
. DATA
il dword O
start dword O
corrl gword O
ener gy gword O
corr2 real8 0.0
p_nmax real8 0.0
lag_corr real8 0.0
| ag_ener gy real8 0.0
gai n_const real 8 1.010
var 32 dword O
var _real real8 0.0
. CODE
DELAY_2 = 1024
NOK_LT_BLEN = 3072
LOOP_LOST_PRECI SI ON = 8
LOOP_SHI FT = LOOP_LOST_PRECI SI ON + 32
CorrlLag PROC uses eax ebx ecx edx esi edi
sb_sanpl es: ptr, \
x_buffer: ptr, \
flen: dword, \
| agO: dword, \
| agl: dword, \
del ay: ptr, \
gai n: ptr
nmv eax, del ay
nmv ecx, gain
nmv dword ptr [eax], O ; delay =0
fldz
fstp gword ptr [ecx] ; *gain =0
nov eax, |ag0
nmv i1, eax il =1ag0
outer_| oop
reg_alloc : eax = i1l
cnp eax, lagl
j ge end_corr_| ag
cnp_del ay:
pxor mv, mv ; corrl =0
nmov ecx, flen
cnp eax, DELAY_2 ; if(i < DELAY /2)
j ge cnp_del ay_el se
reg_alloc : eax = i1l, ebx = offset, ecx = flen, edx = start
nmv ebx, eax
sub ebx, |ag0 ; offset =i - lag0

mv edx, ecx o start =flen / 2 + i



85

sar edx, 1
jns short @np_del ayl
adc edx, O
@np_del ayl
add edx, eax
jnp short cnp_start_offset
cnp_del ay_el se
reg_alloc : eax = i1l, ebx = offset, ecx = flen, edx = start
nmv ebx, eax
add ebx, -DELAY_ 2 ; offset =i - DELAY / 2
xor edx, edx start =0
cnp_start_offset:
reg_alloc : eax = i1l, ebx = offset, ecx = flen, edx = start, esi =j, nmV7 = energy
nmv eax, i1
t est edx, edx ; if(start || offset == 0)
j ne short cnp_start_offset_then
t est ebx, ebx
j ne cnp_start_offset_el se
cnp_start_offset_then
pxor m6, mb ; energy =0
reg_all oc ebx = offset=>tnp2, ecx = flen, edx = start=>tnpl, esi = j, mb
energy, mmv = corrl
; tnpl = &_buffer + NOK LT _BLEN - offset - 1 - j
; tmp2 = &sb_sanpl es + flen - 1 - j
nmov esi, edx ;] = start
nmv edx, x_buffer ; tnpl = &_buffer
nmv eax, esi
sal eax, 1
sub edx, eax tnmpl = &_buffer - j
nmv eax, ebx
sal eax, 1
sub edx, eax tmpl = &_buffer - j - offset
mv eax, NOK LT _BLEN
sal eax, 1
add edx, eax ; tnpl = & _buffer - j - offset + NOK_LT_BLEN
nmv ebx, sb_sanples ; tnp2 = &sb_sanpl es
nov eax, ecx
sal eax, 1
add ebx, eax ; tnp2 = &sb_sanples + flen
nmov eax, esi
sal eax, 1
sub ebx, eax ; tnp2 = &sb_sanples + flen - |
sub edx, 8 ; tnpl = & _buffer - offset + NOK LT _BLEN -j — 1
sub ebx, 8 ; tnp2 = &sb_sanples + flen -j - 1
| oop_corr_1: ; for (j = start; j < flen; j++)
cnp esi, ecx
j ge | oop_corr_1_end
; corrl += x_buffer[ NOK_LT_BLEN - offset - j - 1]
; * sb_sanples[flen - j - 1];
novq m0, qword ptr [edx] ; mD <= x_buffer
novq mil, gword ptr [ebx] ; mml <= sb_sanples
pmaddwd m0, nmi
psrad m0, LOOP_LOST_PRECI SI ON
paddd m7/, m0
; energy += Xx_buffer[ NOK_LT_BLEN - offset - j - 1]

movq mo,

* x_buffer[ NOK_LT_BLEN - offset

gword ptr [edx] mD <=

x_buffer

j -

1];



86

novq ml, mD mil <= x_buffer
prmaddwd m0, nmi

psrad m0, LOOP_LOST_PRECI SI ON

paddd mb6, mD

add esi, 4

sub ebx, 8

sub edx, 8

jnp | oop_corr_1

| oop_corr_1_end

novq m0, mv
psrlqg m0, 32
paddd mv, 0
nmovq mo0, mb
psrlqg moO, 32
paddd m6, o
jmp ener gy_check

cnp_start_offset_el se

; else /* start == 0 & offset != 0 */
; {
; reg_alloc : ebx = offset=>tnp2, ecx = flen, edx = start=>tnpl, esi =j, mb
energy, mmv = corrl

; tmpl = &_buffer + NOK_LT_BLEN - offset (- j)

; tnp2 = &sb_sanpl es + flen - 1 (- j)
nmv esi, O j =0
nmv edx, x_buffer tmpl = &_buffer
nov eax, ebx
sal eax, 1
sub edx, eax ; tnpl = & _buffer - offset
mv eax, NOK LT _BLEN
sal eax, 1
add edx, eax ; tnpl = & _buffer - offset + NOK_LT_BLEN
nov ebx, sb_sanpl es ; tnp2 = &sb_sanpl es
nov eax, ecx
sal eax, 1
add ebx, eax ; tnmp2 = &sb_sanples + flen
sub ebx, 8 ; tnmp2 = &sb_sanples + flen - 1

energy -= x_buffer[ NOK_LT_BLEN - of fset]
; * x_buffer[ NOK_ LT BLEN - offset];
pxor me2, mg
nmvq mb, energy
psrlqg m6, LOOP_LOST_PRECI SI ON
nmovq m0, qword ptr [edx] m0 <= x_buffer
punpckl wd m0, mR2
novq mi, mm0 ;o mil <= x_buffer
pmaddwd m0, mil
psrad m0, LOOP_LOST_PRECI SI ON
psubd m6, Mo
; energy += Xx_buffer[ NOK_LT_BLEN - offset - flen]
; * x_buffer[ NOK_ LT BLEN - offset - flen];
nmov eax, ecx
sal eax, 1
sub edx, eax ; tnmpl = & _buffer - offset + NOK LT _BLEN - flen
novq mD, qword ptr [edx] ; mmD <= x_buffer
punpckl wd m0, mR2
novq ml, mD mil <= x_buffer
pmaddwd m0, mil
psrad m0, LOOP_LOST_PRECI SI ON
paddd m6, mo
add edx, eax tmpl = &_buffer - offset + NOK_LT_BLEN
sub edx, 8 ; tmpl = & _buffer - offset + NOK LT BLEN -j - 1
| oop_corr_2:
for (j =0; j < flen; j++4)
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cnp esi, ecx
j ge | oop_corr_2_end
corrl += x_buffer[ NOK_ LT _BLEN - offset - j - 1]

; * sb_sanples[flen - |j - 1];
nmovq mO, qword ptr [edx] ; mD <= x_buffer
nmovq mil, qgword ptr [ebx] ; mml <= sb_sanples
pmaddwd m0, mil
psrad m0, LOOP_LOST_PRECI SI ON
paddd m7, m0
add esi, 4
sub ebx, 8
sub edx, 8
jmp | oop_corr_2

| oop_corr_2_end

nmovq moO, mv
psrlqg m0, 32
paddd mv, 0

ener gy_check

pxor mb, mb

punpckl dg mv, mmb

punpckl dq mb6, mmb

nmovq mb, mv

psrad mb, 32

punpckl dg mv, mmb

psllqg mm7, LOOP_LOST_PRECI SI ON
nmovq corrl, mv

psllqg mmB, LOOP_LOST_PRECI SI ON
nmovq energy, mmb

emms

fild ener gy ; if (energy !'= 0.0)
fldz

fcom p st, st(1)

je energy_zero

energy_cal c:

corr2 = corrl / sqgrt (energy);

; st(0) = energy
fsqgrt ; st(0) = sqgrt(energy)
fild corrl ; st(0) = corrl, st(1l) = sqrt(energy)
fdivrp st(1), st(0) ; st(0) = corr2
f st corr2
fld p_nmax ;i f (p_max < corr?2)
fcom p st, st(1)
j ae outer_| oop_end

reg_alloc : ebx = &dJelay, ecx = &gain
; st(0) = corr2

fstp p_nax ; p_max = corr2

nmov ebx, del ay

nmv ecx, gain

nmv eax, i1l ; delay = i;

nmov dword ptr [ebx], eax

fild corrl ; lag_corr = corrl

f st I ag_corr

fild ener gy ; st(0) = energy, st(1l) = lag_corr
f st | ag_ener gy ; lag_energy = energy

f mul gai n_const ; *gain = lag_corr / (((short)1.010) * |ag_energy)
fdivp st(1), st(0) ; st(0) = gain

fstp real 8 ptr [ecx]



jmp

energy_zero:

outer_| oop_end

nmov ebx, del ay
nmov ecx, gain
outer_| oop_end:
nmov eax, i1l
inc eax
nmov i1, eax
jmp outer_l oop
end_corr_| ag:
nmv ebx, del ay
nmov ecx, gain
nmv eax, dword ptr
fld gword ptr [ecx]
fstp var _real
ret
CorrLag ENDP
_DATA segnent
scr_nmsgl@ | abel byt e
; s@0:
db "value = %", 10,0
align 4
scr_nmsg2@ | abel byt e
; s@0:
db "energy = %8I x", 10,0
align 4
scr_msg3@ | abel byt e
; s@0:
db "value = %", 10,0
align 4
scr_msgd@ | abel byt e
; s@0:
db "HERE!'!!" 10,0
align 4
_DATA ends
extrn printf:near
extrn _turboFl oat : word

END

[ ebx]

88

del ay

gain
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Appendix 4 VHDL implementation
The following section presents the third VHDL implementation.
1 Third implementation

Itp_lag.vhd

library | EEE;

use | EEE. std_| ogi c_1164. al | ;

use | EEE. std_| ogi c_unsi gned. al | ;
use | EEE. std_logic_arith.all;

entity Itp_lag is
generic (data_width : integer:= 16);

port (
reset: in std_|logic;
clock: in std_|logic;
init: in std_logic; -- Begin mathenatical processing
busy: out std_logic; -- Signaling
i nput _r eady: in std_| ogic;
i0, il: in std_| ogi c_vector(data_wi dth-1 downto 0);
corr_out, enrg_out: out std_|logic_vector(2*data_w dth-1 downto 0);
addr0, addr1l: out std_logic_vector(1l downto 0)
end entity;
architecture rtl of Iltp_lag is
const ant ADDRESS W DTH: integer := 13;
type state_type is (st_reset, st_ini, st_run_ini, st_run_ini_wait_input,
st_run_first_0O, st_run_first_1, st_run_first_2, st_run_first_3, st_run_second0_0,
st _run_second0_1, st _run_second0_2, st _run_secondl_0, st _run_secondl_1,
st _run_secondl_2, st _run_second2_0, st _run_second2_1, st _run_second2_2,

st _run_second2_3, st_run_second2_4, st_end);

signal state: state_type;

signal reg0, regl: std_l ogi c_vector(data_w dth-1 downto 0);
signal corr_int, enrg_int: std_|l ogi c_vector(2*data_wi dth-1 downto 0);
signal corr, enrg: std_l ogi c_vector(2*data_w dth-1 downto 0);

signal enable_corr_mul, enable_enrg_mul: std_logic;
si gnal enable_corr_add, enable_enrg_add: std_logic;

signal NOK_LT_BLEN, LAGL, DELAY 2, FLEN, FLEN 2: std_l ogi c_vect or (ADDRESS W DTH 1

downto 0);
begi n
fsm process(cl ock)
variable start, offset, j, lag: std_l ogi c_vect or (ADDRESS W DTH 1 downto 0);
begi n
if reset ="'1 then
state <= st_reset;
el sif(clock' event and clock = '1'") then
case state is
when st_reset => -- Initial state
if init ="'1 then
state <= st_ini;
end if;
reg0 <= (others =>"'0");
regl <= (others =>"'0");
start = (others =>"'0");
offset := (others =>"'0");
j = (others => "'0");
| ag = (others => "'0");

when st_ini => -- Waits for init command
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if lag >= LAGL then
state <= st_end;

el se
state <= st_run_ini;
if lag < DELAY_2 then
of fset :=lag;
start = FLEN_ 2 + | ag;
el se
offset := lag - DELAY_2;
start = (others =>"'0");
end if;
end if;
when st_run_ini =>
reg0 <= i0;
regl <= i1,
j ;= start;
if lag <= DELAY_2 then
-- start || offset ==
addrO <= NOK_LT_BLEN - offset - j - 1;
addrl1 <= flen - j - 1;
state <= st_run_ini_wait_input;
el se
addrO <= NOK LT _BLEN - offset;
addrl <= (others =>"'0");
if input_ready = '1' then
state <= st_run_second0_O0;
end if;
end if;

when st_run_ini _wait_i nput =>
if input_ready = '1'" then
state <= st_run_first_0;
end if;
when st_run_first_0 =>
-- corrl += x_buffer[ NOK_ LT _BLEN - offset - j - 1] * sb_sanples[flen - j - 1];
-- energy += x_buffer[ NOK_ LT_BLEN - offset - j - 1] * x_buffer[ NOK_ LT_BLEN - offset
- 1]
state <= st_run_first_1;
when st_run_first_1 =>
state <= st_run_first_2;
when st _run_first_2 =>

j =i+
if j < FLEN then
addrO0 <= NOK LT _BLEN - offset - j - 1;
addrl1 <= flen - j - 1;
state <= st_run_first_3;
el se
lag := lag + 1;
state <= st_ini;
end if;

when st_run_first_3 =>
if input_ready = '1'" then
state <= st_run_first_0;
end if;
when st_run_second0_0 =>
-- energy -= x_buffer[ NOK_ LT_BLEN - offset] * x_buffer[ NOK_ LT_BLEN - offset];
state <= st_run_second0_1;
when st_run_second0_1=>
state <= st_run_second0_2;
when st_run_second0_2=>
reg0 <= i0;
regl <= i1;

addrO0 <= NOK_LT_BLEN - offset - flen;

addrl <= (others => '0");

if input_ready = '1'" then

state <= st_run_secondl_O;
end if;
when st _run_secondl_0=>

-- energy += x_buffer[ NOK LT_BLEN - offset - flen] * x_buffer[ NOK LT _BLEN - offset
flen];

state <= st_run_secondl_1;

when st_run_secondl_1=>
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state <= st_run_secondl_2;
when st _run_secondl_2=>
reg0 <=1i0;
regl <= i1,
j 1= start;
addrO0 <= NOK_LT_BLEN - offset - j - 1;
addrl <= flen - j - 1;
if input_ready = '1" then
state <= st_run_second2_0;
end if;
when st_run_second2_0=>
corrl += x_buffer[ NOK_ LT _BLEN - offset - j - 1] * sb_sanples[flen - j - 1];
state <= st_run_second2_1;
when st_run_second2_1 =>
state <= st_run_second2_2;
when st_run_second2_2 =>
reg0 <= i0;
regl <= i1,
state <= st_run_second2_3;
when st_run_second2_3 =>
jo=o+ L
if j < FLEN then
addrO0 <= NOK_LT_BLEN - offset - j - 1;
addrl1 <= flen - j - 1;
state <= st_run_second2_4;
el se
I ag =lag + 1;
state <= st_ini;
end if;
when st_run_second2_4 =>
if input_ready = '1' then
state <= st_run_second2_0;
end if;
when st_end =>
if init ='1" then
state <= st_reset;
end if;
end case;
end if;
end process fsm
NOK_LT_BLEN <= conv_std_| ogi c_vector (3072, ADDRESS W DTH);
LAGL <= conv_std_| ogi c_vector (2048, ADDRESS W DTH);
DELAY_2 <= conv_std_| ogi c_vector (1024, ADDRESS W DTH);
FLEN <= conv_std_| ogi c_vector (2048, ADDRESS W DTH);
FLEN 2 <= conv_std_| ogi c_vector (1024, ADDRESS W DTH);
corr_out <= corr;
enrg_out <= enrg;
operators: process(clock)
begi n
if(clock'event and clock = '1") then
if enable_corr_mul ="'1" then
corr_int <= reg0 * regl;
end if;
if enable_enrg_mul ="'1" then
enrg_int <= reg0 * regO;
end if;
if enable_corr_add = '1' then
corr <=corr + corr_int;
end if;
if enable_enrg_add = '1' then
enrg <= enrg + enrg_int;
end if;
end if;

end process;

with state sel ect

enabl e_corr_mul <=

with state sel ect

when st_run_first_O,
when st _run_second2_0,
when ot hers;



enabl e_enrg_mul <=

with state sel ect
enabl e_corr_add <=

with state sel ect
enabl e_enrg_add <=

with state sel ect
busy <=

end rtl;
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when
when
when
when

when
when
when

when
when
when
when

when
when
when

st _run_first_O,
st _run_second0_0,
st _run_secondl_0,
ot hers;

st_run_first_1,
st _run_second2_1,
ot hers;

st_run_first_1,
st _run_second0_1,
st _run_secondl_1,
ot hers;

st _reset,
st _end,
ot hers;
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Appendix 5 MATLAB files

This chapter presents some of the MATLAB files used in the study of the
MPEG-4 AAC standard.

1 Windowing

These files may be used to generate windows and window sequences.

winlong.m

function x = w nl ong(w nshape, w nshape_prev)

wi n_l ength = 2048;
X = zeros(1l, win_length);

if wi nshape_prev == 0

x(1:1024) = sin(pi/win_length * (0:1023 + 0.5));
end
if winshape_prev == 1

a = kaiser (2048, 4);
x(1:1024) = a(1l:1024);
end

if winshape == 0
x(1025:2048) = sin(pi/wn_length * (1024:2047 + 0.5));
end
if winshape == 1
x(1025: 2048) = a(1025:2048);
end

winshrt.m
function x = wi nshrt(w nshape, w nshape_prev)

wi n_l ength = 256;
X = zeros(1l, win_length);

wl = zeros(1l, 128);
w2 = zeros(1l, 256);
if wi nshape_prev == 0
wl(1:128) = sin(pi/win_length * (0:127 + 0.5));
end
if wi nshape_prev == 1

a = kaiser (256, 6);
wl(1:128) = a(1l:128);
end

if winshape == 0
w2(1:128) = sin(pi/win_length * (0:127 + 0.5));
wW2(129: 256) = sin(pi/win_length * (128:255 + 0.5));
end
if winshape == 1
a = kaiser (256, 6);
w2(1:128) = a(1l:128);
w2(129: 256) = a(129:256);
end

x(1:128) = wi;
x(129: 256) = w2(129: 256);

winstart.m
function x = wi nstart(w nshape, w nshape_prev)

wi n_l ength = 2048;



x = zeros(1, win_length);

04

i f winshape_prev == 0

x(1:1024) = sin(pi/win_length * (0:1023 + 0.5));
end
if winshape_prev == 1

a = kaiser (2048, 4);
x(1:1024) = a(1l:1024);
end

x(1025: 1472) = 1.0;
x(1601: 2048) = 0.0
if winshape == 0
x(1473:1600) = sin(pi/256 * (128:255 + 0.5));
end
if w nshape ==

a = kaiser (256, 6);
x(1473:1600) = a(129: 256);
end

winstop.m

function x = w nstop(w nshape, w nshape_prev)

wi n_|l ength = 2048;
X = zeros(1l, win_length);

x(1:448) = 0.0;

if wi nshape_prev == 0

x(449:576) = sin(pi/256 * (0:127 + 0.5));
end
if winshape_prev == 1

a = kaiser (256, 6);
x(449:576) = a(1l:128);
end
x(577:1024) = 1.0;

if w nshape ==

x(1025:2048) = sin(pi/win_length *

end
if winshape == 1

a = kaiser (2048, 4);

x(1025: 2048) = a(1025: 2048) ;
end

wingraph.m
function wi n_graph
clear all; close all;
wi nshape = 0;

wi n_| engt h 2048,;
x = zeros(1, 7 * win_length);

hol d on;

X = winl ong(w nshape, wi nshape);
title('long wi ndow );

X = winshrt(w nshape, w nshape);
title(' short wi ndow );

X = winstart(w nshape, wi nshape);
title('start wi ndow);

X = w nstop(w nshape, wi nshape);

title('stop window );

my_seq.m
function ny_seq
clear all; close all;
wi nshape = 0;

wi n_l ength = 2048;
X = zeros(1l, 7 * win_length);

(1024: 2047 + 0.5));

subpl ot ( 2,
subpl ot ( 2,
subpl ot ( 2,

subpl ot ( 2,

1)
2)
3);

4);

pl ot (x);
pl ot (x);
pl ot (x);

pl ot (x);

axis([0
axis([0
axis([0

axis([0

2100

2100

2100

2100

17);
1)
17);
1),
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hol d on;

X = winl ong(w nshape, wi nshape); plot(x);

n= 1, x = [zeros(1l, n*wi n_|l ength*0.5) w nlong(w nshape, w nshape)]; plot(x);
n= 2; x [zeros(1l, n*win_|length*0.5) wi nstart(w nshape, wi nshape)]; plot(x);
n= 3; x = [zeros(1l, n*wi n_|length*0.5) wi nshrts(w nshape, w nshape)]; plot(x);

n=3 + 0/8; x = [zeros(1l, n*wi n_|length*0.5) wi nshrt(w nshape, w nshape)]; plot(x);
n=3 + 1/8; x = [zeros(1l, n*wi n_|l ength*0.5) wi nshrt(w nshape, w nshape)]; plot(x);
n= 3 + 2/8; x = [zeros(1l, n*wi n_|length*0.5) wi nshrt(w nshape, wi nshape)]; plot(x);
n= 3 + 3/8; x = [zeros(1l, n*wi n_|length*0.5) wi nshrt(w nshape, wi nshape)]; plot(x);
n=3 + 4/8; x = [zeros(1l, n*wi n_|l ength*0.5) wi nshrt(w nshape, w nshape)]; plot(x);
n= 3 + 5/8;, x = [zeros(1l, n*wi n_|length*0.5) wi nshrt(w nshape, w nshape)]; plot(x);
n=3 + 6/8; x = [zeros(1l, n*wi n_|length*0.5) wi nshrt(w nshape, w nshape)]; plot(x);
n=3 + 7/8; x = [zeros(1l, n*wi n_|length*0.5) wi nshrt(w nshape, wi nshape)]; plot(x);

n=4; x = [zeros(1l, n*wi n_|l ength*0.5) wi nstop(w nshape, w nshape)]; plot(x);
n=>5; x = [zeros(1l, n*wi n_|l ength*0.5) w nlong(w nshape, w nshape)]; plot(x);

2  Psychoacoustic model

crit_band.m

function crit_band

close all;
clear all;

F = 0:0.5: 20;

25 + 75.*%(1+1.4.*F."2)."0.69; % Muni ch critical bandw dth
24.7.%(1 + 4.37.*F); % Canbridge critical bandw dth
= 232.*F;

x| abel (' frequency (kHz)');
yl abel (‘critical bandwi dth');
| egend(' Munich', 'Canbridge', '1/3-octave');

spreadf.m

function spreadf

close all;
clear all;

DEF = 0. 1;

bl = 1: DEF: 20;
b2 = 1: DEF: 20;

spr =[];

for k1 = 1:1ength(bl)
tmp = [1;

for k2
tnp
end;
spr = [spr [tnp]'];

end

"1:1engt h(b2)
[tnp spreading_function(bl(kl), b2(k2))];

figure;

mesh(bl, b2, spr); view(-37.5, 80);

title('spreading function'); xlabel('frequency (bark)'); vylabel('frequency (bark)');
zl abel (' spreading (dB/ bark)');

figure;

pl ot (b1, spreading_function(5,bl)); axis([0 9 0 1]);

title('spreading function at 5 bark'); xlabel('frequency (bark)'); ylabel('normalized
spreadi ng');

function spr = spreadi ng_function(bl, b2)
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if b2 >= b1
tmpx = 3.0 .* (b2-bl);
el se
tmpx = 1.5 .* (b2-bl);
end
t npz 8.0 .* min((tnmpx-0.5).722 - 2.0 .* (tnmpx-0.5), 0.0);
tmpy = 15.811389 + 7.5 .* (tnpx + 0.474) - 17.5 .* sqrt(1.0 + (tnpx + 0.474).72);
if tnpy < - 100.0
spr = 0.0;
el se
spr = 10.*((tnpz + tnpy)./10.0);
end
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Appendix 6 Resumo em portugués

“ESTUDO DO ALGORITMO DE CODIFICAGCAO DE AUDIO DO PADRAO
MPEG-4 AAC (CODIFICADOR DE AUDIO AVANCADO) E COMPARAGAO
ENTRE IMPLEMENTACOES DE MODULOS DO ALGORITMO”

1 Resumo

A codificacdo de audio é utilizada para comprimir sinais de audio, dessa forma
reduzindo a quantidade de bits necesséria para transmitir ou armazenar sinais de audio.
Isso € dtil quando a larga de banda de uma rede ou a capacidade de armazenamento é
limitada. Algoritmos de compressdo de audio sdo baseados em um processo de
codificagdo e decodificacdo de audio. No processo de codificacdo, o sinal de dudio ndo
comprimido é transformado em uma representagdo codificada, dessa forma
comprimindo o sinal de audio. Apos isso, eventualmente necessita-se restabelecer o
sinal de &udio codificado (por exemplo, para a reproducdo desse sinal), 0 que ocorre
através da decodificacdo do sinal codificado. O decodificador recebe a cadeia de bits e a
reconverte em um sinal ndo comprimido.

O padréo 1ISO-MPEG é um padréo para a codificacdo em alta qualidade e baixas
taxas de transmissdo para video e audio. A parte de audio do padrdo é composta de
algoritmos para a codificacdo em alta qualidade e baixas taxas de transmissdo de audio,
isto €, algoritmos que reduzem a taxa de transmissdo original, a0 mesmo tempo que
garantem a alta qualidade do sinal de audio. Os algoritmos de codificacdo de audio
consistem em MPEG-1 (composto de trés camadas diferentes), MPEG-2, MPEG-2
AAC e MPEG-4.

Este trabalho apresenta um estudo do algoritmo de codificacdo de audio MPEG-
4 AAC (Codificador de Audio Avancado). Além disso, ele apresenta uma
implementacdo do algoritmo em diferentes plataformas e comparacGes entre as
implementacdes. As implementacdes sdo em linguagem C, em Assembly do Intel
Pentium, em linguagem C usando processador DSP e em HDL. Ja que cada
implementacdo tém o seu nicho de aplicacdo, cada uma delas é vélida como solugéo
final. Além disso, outro objetivo deste trabalho é a comparacdo entre essas
implementacdes, considerando-se custos estimados, tempo de execucdo e vantagens e
desvantagens de cada uma delas.

Palavras-chaves: MPEG-4 AAC, Codificagio de Audio, Codificadores Perceptuais,
Psicoacustica, PC, MMX, DSP, VHDL.
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2  Introducéo

Em diversas situacOes, a largura de banda de rede ou a capacidade de
armazenamento disponivel € bastante limitada. Por exemplo, em uma rede, diversos
usuarios podem estar tentando enviar grandes quantidades de dados. Nesse contexto, a
reducdo da quantidade de informacdo é extremamente necessaria. A principal aplicacdo
da codificacdo de audio € a reducdo da quantidade de bits necessario na transmissao ou
no armazenamento de um sinal de audio. Por isso, através de um algoritmo, o
codificador de dudio comprime o sinal antes de envia-lo ou armazena-lo.

Algoritmos de compressdo de audio sdo baseados em um processo de
codificacdo e decodificacdo. O processo de codificacdo € um passo em que o sinal
modulado em pulso (PCM) € transformado em uma representagdo codificada. O
objetivo do codificador é comprimir o sinal de audio. Assim, por causa desse conjunto
de parametros criado pelo codificador, o sinal de dudio comprimido necessita de menos
bits para a representacdo da informacéo de &udio. Esse conjunto de parametros € uma
cadeia de bits que pode ser transmitida em uma rede ou armazenada em um meio de
armazenamento.

Eventualmente, necessita-se reestabelecer o sinal de &audio codificado (por
exemplo, para a reproducdo desse sinal). Para realizar essa tarefa, o sinal de &udio
codificado é decodificado. Nesse processo, ele perde o seu formato comprimido e
retorna ao formato de audio original. O decodificador recebe a cadeia de bits e a
reconverte em uma representacdo PCM através de sintese de dudio, baseando-se nos
parametros obtidos da cadeia de bits.

O processo de compressao e decompressao € desempenhado pelo codificador e
pode ser sem ou com perdas. A compressdo sem perdas fornece uma reconstrucao exata
(em termos de bits) do sinal de audio original no processo de decodificacdo, isto €, o
sinal de audio original e o sinal decodificado apresentam a mesma sequéncia de bytes.
Por isso, nenhuma informacdo de &udio € perdida no processo de codificagdo. A
compressdo com perdas ndo garante que o sinal decodificado seja uma réplica do sinal
original. Nesse caso, o sinal decodificado pode ser perceptualmente similar ao sinal
original.

Os algoritmos de compressdo com perdas empregam em geral modelos
psicoacusticos para a codificacdo de sinais de &udio . Os modelos
psicoacusticos aproveitam as caracteristicas e limitagfes do sistema auditivo humano —
como mascaramento — para codificar o sinal. Por isso, eles exercem uma degradacgéo
inaudivel (imperceptivel) da qualidade do sinal original. Através dessa degradagdo, uma
quantia de informacdo de dudio € removida do sinal original e, através disso, diminui-se
a quantidade de bits necessaria para representar a informacao de audio restante.
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3  Escolha das implementacodes

Ao se escolher uma plataforma para a implementagdo de um sistema eletronico,
hd diversas opg¢Ges que podem ser vislumbradas. Uma primeira opgdo €é a
implementacdo de software que roda em um processador de uso geral. Um exemplo
interessante € o desenvolvimento de software para a arquitetura IBM-PC, ja que ela é
amplamente difundida no mercado. Entretanto, mesmo no desenvolvimento de software
para IBM-PC, ainda ha escolhas a serem realizadas. Por exemplo, pode-se desenvolver
uma aplicacdo que utilize apenas o conjunto de instrugdes padrdo PC (8086). Ou entéo
pode-se utilizar instrugdes especiais multimidia, como as do conjunto de instrucdes Intel
MMX.

Em muitas situagdes, a utilizacdo de computadores pessoais como plataforma
final € impraticavel. Por exemplo, ao se projetar um sistema de gravagéo digital portatil,
um processador de uso geral como o Intel Pentium ndo pode ser usado, pois 0 seu custo
unitrio € muito alto para esta aplicacdo. Nesse caso, dependendo da escala de
producdo, outras opcbes devem ser contempladas. Considerando-se média escala de
producdo, o uso de um processador de sinais digitais (DSP) pode ser vislumbrado, pois
0 seu custo unitario € menor que o custo de um porcessador de uso geral como o Intel
Pentium. Entretanto, ao se considerar uma larga escala de producdo, uma aplicagéo de
hardware digital pode ser a melhor escolha. Os assim chamados sistemas embutidos
representam a integracdo funcional entre hardware e software para uma aplicacéo
especifica. Nesse caso, a descri¢do de hardware — que, em geral, pode ser realizada com
0 apoio de uma linguagem de descri¢do de hardware (HDL) — pode ser sintetizado em
um conjunto de portas programaveis no campo (FPGA), ou detalhado em um
processador totalmente customizado. Em geral, processadores totalmente customizados
tém um alto custo. Entretanto, através da larga escala de producdo, o seu custo é
reduzido a um custo adequado para o mercado de eletrdnica de consumo

O objetivo deste trabalho é a implementacdo de blocos do algoritmo MPEG-4
AAC, considerando-se as opcdes de implementagdo mencionadas ha pouco. Como cada
implementacdo possui 0 seu préprio nicho de aplicacdo, cada uma delas é valida como
solucdo final. Além disso, outro objetivo do trabalho é a comparacdo entre essas
implementacdes, considerando-se custos estimados, tempo de execucdo e vantagens e
desvantagens de cada uma delas. As implementacdes realizadas neste trabalho séo:

Implementacdo em linguagem C. Essa é a primeira implementacdo e esta
fortemente baseada no cddigo-fonte fornecido pela 1SO. Esse codigo fonte € uma
implementacdo tutorial do algoritmo MPEG-4 AAC e ele € utilizado para a analise e
comparagdo com outras implementacdes.

Implementacdo em Assembly do processador Intel Pentium. Compiladores de
linguagens de alto nivel (p. ex. linguagem C) tentam otimizar o cddigo-fonte em todos
0s estagios da compilagdo. Entretanto, nem sempre é possivel que um compilador
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otimize cada aspecto do codigo, pois compiladores sdo ferramentas genéricas que tém a
finalidade de gerar cddigo executavel garantidamente correto. Em muitas situacoes,
algumas otimizacOes especificas ndo sdo vistas pelo compilador. Consequentemente, o
desenvolvimento de software em Assembly pode aumentar o desempenho de algoritmos
matematicos intensivos (0 que é caso do MPEG-4 AAC), fazendo com que o codigo
executavel seja mais eficiente que o cddigo compilado em C correspondente. Por outro
lado, a programacgdo em Assembly € bastante dependente de maquina, isto é, o cddigo
Assembly escrito para o processador X (com o seu conjunto de instrucbes especifico)
ndo necessariamente rodara em um processador Y. Por isso, a escolha do processador
alvo é muito importante. O processador Intel Pentium foi escolhido, ja que ele é
amplamente utilizado no mercado e tem um conjunto de instrucdes especial para
multimidia. Assim, essa implementacdo roda em um processador Intel Pentium com
suporte a multimidia.

Implementacdo em processador DSP. Enquanto que as duas primeiras
implementacdes tinham como alvos aplicacbes em computador pessoal e processadores
de uso geral, a implementacdo em DSP tem como alvo dispositivos dedicados, em que a
utilizacdo de processadores de uso geral ndo € aconselhada, do ponto de vista
financeiro. Essa implementacéo tenta tirar vantagem de caracteristicas de processadores
DSP (como desempenho otimizado em computacdo matematica intensiva) para
aumentar o desempenho do algoritmo MPEG-4 AAC.

Implementacdo em HDL. A ultima implementacdo € uma solugdo em hardware
dedicado ao algoritmo AAC. Em outras palavras, € um projeto de uma arquitetura
unicamente dedicada a implementacdo de um conjunto de modulos AAC. Essa
implementacdo deve ser bem balanceada, isto €, ela deve ser otimizada em termos de
tempo de computagdo, mas também deve ser realistica em termos de area e poténcia.

4  Mobdulos do MPEG-4 AAC

O ISO-MPEG € um padréo de codificacdo de video e dudio em alta qualidade e
baixas taxas de transferéncia. Ele foi criado através dos esforcos do grupo MPEG
(Moving Pictures Experts Group), estabelecido pela ISO/IEC. O ISO-MPEG 4 Audio €
composto de varias ferramentas. Entre elas, esta o Codificador de Audio Avangado
(AAC).

O codificador AAC recebe amostras de audio PCM e as transfere para o banco
de filtros e para o modelo perceptual. Através de uma transformada do cosseno
modificada, o banco de filtros converte as amostras em dominio temporal para o
dominio espectral. O modelo perceptual, por sua vez, fornece informacdes sobre a
alocacdo de bits (nimero de bits utilizados no processo de codificagdo) e maximo ruido
permitido. Essa informacéo é utilizada no processo de codificagdo para assegurar a alta
qualidade do sinal codificado nas taxas de transmissdo mais baixas.
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Apds o banco de filtros, os dados espectrais passam por algumas ferramentas, de
modo a aperfeicoar a qualidade ou eficiéncia de codificacdo. A ferramenta de
formatacéo de ruido temporal (TNS) é utilizada para o controle do ruido de quantizacao
no dominio temporal. Para isso, utiliza-se um processo de filtragem no dominio
espectral. O processo de acoplamento de intensidade € utilizado em canais estéreo para
reduzir o numero de bits necessarios para a codificacdo de dois canais. Isso é realizado
através da codificacdo de dois canais como um canal Gnico. A substituicdo de ruido
perceptual (PNS) € utilizada na codificacdo de dados espectrais ruidosos, que séo
codificados como sendo ruido branco ao invés de serem codificados como coeficientes
espectrais; para isso, utiliza-se uma indicacdo de nivel de energia do ruido. Enquanto
que a ferramenta PNS é utilizada para sinais ruidosos, a ferramenta de predi¢éo a longo
prazo (LTP) é utilizada para aperfeicoar a codificacdo de sinais tonais. Para isso, aplica-
se um processo de predi¢do nas amostras do dominio temporal e transmite-se apenas 0
erro (indicado pela diferenca entre o sinal predito e o sinal real). A decisdo centro/lados
(M/S) é utilizada em sinais estéreo e determina se canais estereo devem ser codificados
no formato usual esquerdo-e-direito, ou no formato centro-e-lados.

Os dados espectrais sdo quantizados pelo processo de quantizacdo AAC, que €
composto por quatro sub-blocos: quantizacdo dos fatores de escala, quantizacdo dos
coeficientes espectrais, codificacdo sem ruido e lago de controle de taxa e distorcao.
Esses blocos utilizam informacg6es fornecidas pelo modelo perceptual para assegurar
alta qualidade e eficiéncia de codificacdo nos dados espectrais codificados.

No dltimo passo, os dados espectrais quantizados e as informagGes adicionais
das ferramentas AAC séo codificadas na cadeia de bits. Um processo de checagem CRC
é empregado adicionalmente a cadeia de bits, de modo a reduzir a sua vulnerabilidade a
erros de transmissdo. Finalmente, a cadeia de bits esta pronta para a transmissdo ou o
armazenamento.

5 Implementacdo em linguagem C

A implementacdo em C consiste no codigo-fonte fornecido pela ISO-MPEG
(versdo 990224). Esse cddigo-fonte esta completamente escrito em C e ele foi
concebido de maneira a ser o mais portavel possivel. Ele foi utilizado como base na
analise do tempo médio de computacdo e nas implementacGes e otimizacdes em outras
arquiteturas. Nenhuma modificacdo ou otimizacdo foi realizada nesse codigo; apenas
adaptacOes necessarias para fazé-lo compilar na plataforma PC.

O tempo de computagdo médio para cada quadro foi determinado. O codigo-
fonte C original foi compilado em um IBM-PC utlizando-se o compilador Borland C++
5.0. Dois processadores foram utilizados nessa analise: o Intel Pentium 11 350 MHz e 0
Intel Pentium I11 750 MHz. Vinte arquivos de entrada em qualidade de CD (16-bit 44-
kHz stereo) foram utilizados, com duracdo sonora de 3,291 s a 10,029 s. A soma de
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todos os arquivos corresponde a 113,0150 s de som utlizados na anélise. Para a analise,
a taxa de codificacdo de 320 kbps foi utlizada.

O tempo de computacdo no Pentium Il foi de 0,836625 s, enquanto que no
Pentium 111 foi de 0,365897 s. A aceleracdo ficou em 2,2865 vezes. Assim, a execugéo
do algoritmo no processador Pentium 111 750 MHz resulta em uma aceleragéo de 2,2865
vezes, em comparacdo a execucao em Pentium 11 350 MHz.

Analisando-se 0s modulos internos do algoritmo, observou-se que 0s médulos
LTP e Psicoacustico sdo os modulos que tomam a maior parte do tempo de computacéo.
Percentualmente, eles correspondem a 65,27% e 24,86% do tempo de computacédo
médio, o que, somado, fornece o valor de 90,13%. Por isso, a reducdo do tempo de
computacdo desses modulos é necessaria e, através dela, ha uma reducéo sensivel no
tempo de computacao total do algoritmo.

A analise do modulo LTP mostrou que 96,85% do tempo de computacdo desse
modulo esta concentrado numa funcdo chamada pitch (tom). Dentro dessa funcéo, a
analise mostrou ainda que 99,95% do tempo de computacdo estd concentrado em uma
rotina que busca o melhor atraso para o célculo de correlacdo. Por isso, a otimizagdo
dessa rotina deve reduzir o tempo de computacdo do modulo LTP de maneira sensivel e,
da mesma forma, do algoritmo AAC como um todo.

A andlise do tempo de computacdo do modulo Psicoacustico mostrou que o
tempo de computacdo é gasto principalmente em trés funcdes: 42,80% no calculo da
convolucdo, 32,38% no calculo da medida de ndo-previsibilidade e 18,42% na
transformada rapida de Fourier (FFT). Ao se somar esses valores, percebe-se que
93,60% do tempo de computacdo é gasto nessas funcgdes, o que indica a necessidade de
otimizacao dessas funcoes.

6 Implementacdo em Assembly

Na implementagdo em Assembly, a rotina de busca de atraso da correlacdo (do
modulo LTP) foi completamente reescrita em Assembly do processador Intel-PC,
utilizando-se instrucées MMX. O montador Microsoft MASM 6.15.8803 foi utilizado
para montar a rotina.

Originalmente, a rotina utilizava varidveis em ponto-flutuante. Como as
instrugcdes MMX trabalhnam com valores inteiros, o algoritmo foi adaptado para
trabalhar com variaveis inteiras. Adicionalmente, foi feita uma analise de precisao, de
modo a garantir a correcdo dos dados.

Os resultados do desempenho dessa implementacdo, considerando-se a
computacdo de um quadro e sinais estéreo foram os seguintes. O tempo de codificacéo
médio na versao otimizada foi de 0,376642 s (PIl 350 MHz) e 0,198002 s (PlIlI 750
MHz). O tempo de computacdo médio da rotina de busca de atraso na versdo original
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foi de 0,198002 s (PIl 350 MHz) e 0,198002 s (PIll 750 MHz). Na versédo otimizada,
esse tempo de computacdo passou para 0,035364 s (PIl 350 MHz) e 0,027034 s (PlIlI
750 MHz). A aceleragdo no tempo de computacdo, em comparacdo com a
implementacdo original foi de 2,2213 vezes (PIl 350 MHz) e 1,8479 vezes (Pl 750
MHZz). A aceleracdo no tempo de computacdo do modulo LTP, em relagdo ao modulo
na versao original foi de 6,9448 vezes (P1l 350 MHz) e 5,1857 vezes (Pl 750 MHz). A
aceleracdo da rotina de busca do atraso de correlagdo — comparando-se a rotina original
com a otimizada — foi de 8,7299 vezes (PIl 350 MHz) e 5,0401 vezes (Pl 750 MHz).

As otimizag¢des no modulo Psicoacustico consistiram na codificacdo a mdo em
Assembly de rotinas computacionalmente intensivas. Entretanto, continuou-se a usar
variaveis em ponto-flutuante, da mesma forma como no cddigo original. Por isso,
instrugdes MMX ndo foram utilizadas.

Assim, por exemplo, por causa da reescrita da rotina de medida de ndo-
predibilidade, atingiu-se uma aceleracdo de 5,4753 vezes (para o Pentium Il 350 MHz)
no tempo de computacdo médio da rotina.

Além disso, um esquema de tabela de consulta foi utilizado em substituicdo a
funcéo interna de calculo de espalhamento. Para isso, ao invés de se reutilizar a funcéo a
cada vez que um novo valor era exigido, uma simples consulta a uma tabela era
suficiente para se obter um novo valor. Além disso, ndo foi preciso o uso de
interpolacdo e, também, nenhuma perda decorreu do uso desse esquema. Duas tabelas
de consultas foram utilizadas: uma para janelas longas e outra para janelas curtas. As
tabelas ocuparam 40,5 kbytes (para janelas longas) e 18 kbytes (para janelas curtas). O
uso de tabelas levou a uma aceleracdo de 8,7286 vezes (para Pentium Il 350 MHz) no
tempo de computacdo médio da rotina de convolucéo.

Os resultados da andlise do tempo de computacdo médio para essa
implementacdo (em segundo por quadro), considerando-se todas as otimizagdo (nos
modulos LTP e Psicoacustico) foram os seguintes. O tempo de computacdo médio para
o codificador (utilizando-se sinais estéreo) para a versdo otimizada foi de 0,217543 s
(P11 350 MHz) e 0,143212 s (P11l 750 MHz). A aceleracdo do tempo de computacgéo do
codificador foi de 3,8458 vezes (PIl 350 MHz) e 2,5549 vezes (PlIl 750 MHz). A
aceleragdo do tempo de computagdo do modulo Psicoacustico foi de 2,4749 vezes (PlI
350 MHz) e 2,3427 (P11l 750 MHz).

7  Implementacdo em DSP do modulo LTP

Essa secdo apresenta a implementacdo em DSP do modulo LTP. Para isso,
apresenta-se os resultados da implementacdo nos processadores Texas Instruments
TMS320C31 e Motorola DSP56309.
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No desenvolvimento da implementacdo no processador em ponto-flutuante
Texas Instruments TMS320C31, a ferramenta Code Composer (da Texas Instruments)
foi utilizada. Essa ferramenta permite a compilacdo de cédigo C e ligagéo entre rotina
em C e Assembly. Além disso, ela permite a simulagdo da execucdo do codigo. Essa
simulacdo € otimista, isto é, os resultados da simulacdo podem apresentar tempo de
computacdo médio melhor (menor) do que o de uma execucdo real no processador. Para
se obter o tempo de computacdo médio simulado, um processador operando a 25 MHz
(o que equivale a um ciclo de reldgio de 40 ns) foi escolhido.

Duas implementacdes da rotina de busca de atraso da correlacdo (do modulo
LTP) foram consideradas. Ambas foram codificadas em linguagem C. A primeira
versdo em C utilizou variaveis em ponto-flutuante, enquanto que a segunda utilizou
variaveis inteiras.

O tempo de computagédo da rotina em ponto-flutuante foi de 2,0334 s. A seguir
apresenta-se a comparacgdo desse resultado com os resultados das implementacGes em
PC. Apresentam a aceleracdo da implementacdo em PC (na versdo em linguagem C) em
relagdo a implementacdo em DSP foi de 6,5851 vezes (PIl 350 MHz) e 14,9206 vezes
(PHT 750 MHz). Quanto a implementacdo em PC com modulos em linguagem
Assembly, a aceleracdo da implementacdo em PC (em relacdo a implementacdo em
DSP) foi de 57,4878 vezes (PIl 350 MHz) e 75,2016 (P11l 750 MHz).

Na versdo que utiliza variaveis inteiras, o tempo de computacao foi de 1,0479 s.
A aceleracdo da implementacdo em PC (na versao em linguagem C) em relacdo a
implementacdo em DSP foi de 3,3946 vezes (PIl 350 MHz) e 7,6915 vezes (Pl 750
MHz). Em relacdo a implementacdo em PC que utiliza modulos em linguagem
Assembly, a aceleracdo da implementacdo em PC foi de 29,6347 vezes (Pl 350 MHz) e
38,7660 (P11 750 MHz).

Uma outra comparacao possivel decorre da normalizacdo dos resultados obtidos
com o processador C31. Nesse caso, a frequéncia de operagédo de todos os processadores
é normalizada. Para isso, extrapola-se a frequéncia de operacdo usual do processador
C31, de modo que ela se iguale a dos processadores Pentium 1l e I11.

O tempo de computacdo normalizados do C31, na versdao em ponto-flutuante, foi
de 0,145243 s (P11 350 MHz) e 0,067780 (PIIl1 750 MHz). Na versdo inteira, esse tempo
normalizado passou para 0,074848 s (PIl 350 MHz) e 0,034929 s (PIlIl 750 MHz).
Assim, considerando-se a normalizacdo dos tempos de computacdo, a aceleracdo da
implementacdo em Pentium, na versdo em C, em relacdo a implementagdo DSP em
ponto-flutuante ficou em 0,4705 vezes (Pl 350 MHz) e 0,4975 vezes (Pl 750 MHz).
Para a versdo com variaveis inteiras, a aceleracdo da implementacdo em PC ficou em
0,2424 (P11 350 MHz) e 0,2564 (PIIl 750 MHz). Comparando-se com a implementacéo
em PC em linguagem Assembly, a aceleracdo da implementacdo em Pentium em
relacdo a implementacdo DSP em ponto-flutuante ficou em 4,1071 vezes (P11 350 MHz)
e 2,5072 (PIlI 750 MHz). A aceleragdo da implementacdo em Pentium em relacéo a
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implementacdo DSP que utiliza varidveis inteiras ficou em 2,1165 vezes (Pl 350 MHz)
e 1,2920 vezes (PI11 750 MHz).

Pode-se observar que, nesse caso, a implementacdo no processador C31 inteira é
melhor que a maior parte das implementagfes em PC. Entretanto, o desempenho da
implementacdo em Assembly (MMX) ainda é melhor que o da versdo em ponto-
flutuante do C31.

O mesmo codigo C utilizado na implementagdo no processador Texas
Instruments TMS320C31 foi utilizado na implementacdo em Motorola DSP56309. O
tempo de computacdo da rotina em ponto-flutuante foi de 6,782478 s. A comparagao
desse resultado com os resultados das implementacdes em PC indica que a aceleragéo
da implementacdo em PC em relacdo a implementacdo em DSP, considerando-se a
versdo em C, ficou em 21,9693 vezes (PIl 350 MHz) e 49,7778 vezes (Pl 750 MHz).
Comparando-se a implementacdo em PC na versdo em Assembly com a implementacgéo
em DSP, a aceleracdo ficou em 191,7905 vezes (PIl 350 MHz) e 250,8869 (PIIl 750
MHz).

O tempo de computacdo — na versao inteira da implementacdo em DSP — foi de
0,721177 s. Assim, a aceleracdo da implementacdo em PC em relacdo a implementacéo
em DSP, considerando-se a versdao em C, ficou em 2,3360 vezes (PIl 350 MHz) e
5,2929 vezes (P11 750 MHz). Comparando-se a implementacdo em PC na versdao em
Assembly com a implementacdo em DSP, a aceleracao ficou em 20,3930 vezes (P1l 350
MHz) e 26,6767 (P11l 750 MHz).

A seguir estdo os resultados normalizados para o processador DSP56309. O
tempo de computacdo normalizado no DSP56309, considerando-se a versao em ponto-
flutuante, foi de 1,278981 s (PIl 350 MHz) e 0,596858 s (PIll 750 MHz).
Considerando-se a versao com varidveis inteiras, o tempo de computa¢do normalizado
ficou em 0,135993 s (Pl 350 MHz) e 0,063464 s (PIlIl 750 MHz). Baseando-se nessa
normalizacdo dos tempos de computacdo, a aceleracdo da implementacdo em Pentium
(na versdo em C) em relacdo a implementacdo DSP em ponto-flutuante ficou em 4,1428
vezes (PIl 350 MHz) e 4,3804 vezes (PIIl 750 MHz). Em relacdo a versdo com
variaveis inteiras, a aceleracdo da implementacdo em PC ficou em 0,4405 (PIl 350
MHz) e 0,4658 (PIlIl 750 MHz). Quanto a implementacdo em PC em linguagem
Assembly, a aceleracdo da implementacdo em Pentium em relacdo a implementacao
DSP em ponto-flutuante foi de 36,1662 vezes (PIl 350 MHz) e 22,0781 (P1Il 750 MHz).
A aceleracdo da implementacdo em Pentium em relacdo & implementacdo DSP que
utiliza variaveis inteiras foi de 3,8455 vezes (PIl 350 MHz) e 2,347 vezes (PlIl 750
MHz).

Na maioria dos casos, mesmo considerando-se a normalizacdo dos resultados, a
implementacdo em PC ainda € melhor que a implementacdo no processador DSP.
Apenas na compara¢do normalizada entre a versdo inteira do DSP56309 e a versao em
ponto-flutuante do PC, o desempenho do DSP é melhor.
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Geralmente, espera-se que processadores DSP sejam mais eficientes no
processamento de algoritmos com computacdo matematica intensiva. Entretanto, isso
ndo foi observado na comparacdo entre as implementacdes. Mesmo que a comparagao
normalizada tenha fornecido alguns resultados favoraveis aos processadores DSP, em
geral, os processadores de uso geral Pentium se sairam melhor na comparacao.

Entretanto, quando se considera as necessidades de sistemas embarcados (como
baixo custo unitéario e baixo consumo de poténcia), a situagao é outra. Os processadores
de uso geral normalmente ndo sdo adequados para esse tipo de aplicacdo, pois eles
possuem um alto custo unitario e um alto consumo de poténcia. Por isso, ao se projetar
um sistema embarcado, geralmente utiliza-se processadores DSP em lugar de
processadores de uso geral.

8 Implementacdo HDL do modulo LTP

O VHDL é uma linguagem para descricdo e simulacdo de hardware. Ela €
bastante adequada para a descrigdo de circuitos algoritmicos (como é o caso de
microprocessadores e autdbmatos finitos). Além disso, ela é bastante utilizada como
entrada para a sintese em FPGAs.

A rotina de busca de atraso da correlacdo do modulo LTP foi descrita como uma
maquina algoritmica em VHDL. A descricdo foi sintetizada para a familia de
dispositivos Flex10k da Altera. O software Maxplusll da Altera foi utilizado para
sintese e simulacdo da descricao.

Trés diferentes descrigdes foram desenvolvidas para este trabalho, sendo que
todas elas foram escritas em VHDL. As diferencas entre elas sdo as seguintes:

- O uso de um processador Itp_lag_proc separado (isto é, descrito como um
modulo VHDL separado) ou a sua descri¢do integrada em um processador
principal. Na versao separada, o Itp_lag_proc é responsavel pelas operacfes
matematicas, enquanto que o processador central I& os dados da memoria e
controla os estados do processador Itp _lag proc. Na versdo integrada, ha
apenas um processador central (Itp_lag) que 1€ os dados e realiza os calculos.

- O uso de unidades multiplicador-acumulador (MAC) separadas ou 0 uso de
operadores padrbes da Altera (disponiveis em bibliotecas ou em assim
chamadas mega-funcgdes). As unidades MAC mencionadas sdo baseadas em
somadores e multiplicadores bit-seriais.

As diferengas entre as trés implementacOes realizadas em VHDL sdo as
seguintes. Na primeira implementacdo, o processador Itp_lag proc estd separado do
processador principal e utiliza-se unidades MAC. Na segunda implementacdo, o
processador Itp_lag_proc esta integrado ao processador principal (isto é, ha apenas um
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processador que realiza todas as operacgdes) e utiliza-se unidades MAC. Na terceira
implementacao, ha apenas um processador principal e utiliza-se operadores da Altera.

As trés implementacgdes foram simuladas utilizando-se o software fornecido pela
Altera. Os parametros levados em conta para a comparacdo entre as implementacoes
foram o namero de ciclos para a computacdo de da rotina de procura em um quadro, a
freqiiéncia maxima de operacao e o tempo de computacdo. Na primeira implementacao,
0 namero de ciclos é de 104.958.902 ciclos, a freqliéncia maxima de operacdo é de
12,54 MHz e o tempo de computacédo € de 8.369928 s. Na segunda implementacéo, o
numero de ciclos é de 102.334.904 ciclos, a freqiiéncia maxima de operacéo é de 16,31
MHz e o tempo de computacédo é de 6,274366 s. Na terceira implementacdo, 0 nimero
de ciclos é de 12.601.338 ciclos, a frequéncia maxima de operacgéo é de 7,99 MHz e o
tempo de computacgédo é de 1,575985 s. O desempenho da terceira implementacédo é de
5,3109 vezes em relacdo ao desempenho da primeira implementacéo e de 3,9812 vezes
em relacdo ao desempenho da segunda implementacdo. A principal razdo para esse
desempenho otimizado da terceira implementacdo é o nimero reduzido de ciclos desta
implementacdo. Esse nimero reduzido de ciclos, por sua vez, origina-se na utilizagdo
dos operadores da biblioteca da Altera e em uma maquina de estados mais simples que a
das duas outras implementacdes.

Comparando-se essa terceira implementacdo em VHDL com as implementacdes
em outras plataformas, pode-se observar que a implementacdo em VHDL é somente
mais rapida que as implementacfes em DSP (tanto para o 56309, como para o C31) que
utilizam ponto-flutuante. No entanto, ao se normalizar os resultados de todas as
implementacdes, os resultados do VHDL sdo melhores. Nesse caso, a implementacao
em VHDL é somente um pouco menos eficiente que a implementacdo em MMX no
Pentium Il. A explicacdo para isso é o numero reduzido de ciclos da implementagcdo em
VHDL.

Quanto a baixa freqiiéncia maxima de operacdo da implementacdo em VHDL,
deve-se mencionar que todas as implementagdes realizadas em VHDL apresentam um
forte carater comportamental. Por isso, pode-se levantar a hipotese de que esse estilo de
descricdo comportamental pode ndo ser o mais apropriado para o algoritmo de busca do
modulo LTP. Assim, pode-se supor que esse estilo de descricdo atinga uma freqliéncia
méaxima de operacdo mais baixa que a de um ASIC dedicado, que possui uma
arquitetura otimizada para o algoritmo. Desta forma, a escolha entre qual estilo de
descrigdo deve ser adotado em um projeto é muito importante, pois isso pode determinar
o desempenho final do algoritmo.

9 Conclusdes

Neste trabalho, o padrdo MPEG-4 AAC foi estudado, resultando em um texto
tutorial em inglés que cobre todos os aspectos do codificador AAC. Além disso, alguns
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principios de PsicoacuUstica foram apresentados no texto, desta forma esclarecendo o
estudo do modelo perceptual do codificador AAC.

O MPEG-4 AAC é um algoritmo de codificacdo contido na parte de audio do
padrdo ISO MPEG-4 de codificacdo e transmissdo de conteddo multimidia. O MPEG-4
AAC foi especialmente especificado para a codificagdo de audio genérico (p.ex.: fala e
musica) em baixas taxas de codificacdo. Trata-se de um aperfeicoamento de algoritmos
de codificacdo de audio mais antigos criados pelo grupo MPEG, como o MPEG-1
camada Ill. Os principais componentes do codificador AAC sdo o banco de filtros, o
modelo perceptual (também chamado de modelo psicoacustico) e o modulo de
quantizacdo. O banco de filtros converte as amostras de entrada a partir do dominio
tempo para o dominio espectral (gerando desta forma coeficientes espectrais) atraves de
uma transformada modificada do cosseno. O modelo perceptual utiliza os dados do
dominio espectral para garantir alta qualidade do sinal de &udio codificado, provendo
desta forma informacbes sobre alocacdo de bits e ruido maximo permitido para o
processo de quantizacdo. Os dados espectrais sdo quantizados pelo processo de
quantizacdo do AAC, que é composto de quatro subblocos: o bloco de quantizacdo de
fatores de escala, o bloco de quantizacdo de coeficientes espectrais, o bloco de
codificacdo sem adicdo de ruido e o bloco de laco de controle de taxa de transmisséo e
distorgao.

O modelo perceptual baseia-se em regras derivadas do campo da Psicoacustica.
Mecanismos de mascaramento do sistema auditivo humano permitem que ruido de
quantizacdo seja adicionado ao sinal codificado sem afetar a qualidade. Esse ruido de
quantizacdo € adicionado ao sinal de audio no momento em que ele é recodificado
utilizando-se uma quantidade menor de bits. Desta forma, 0s mecanismos de
mascaramento determinam a reducdo de bits permitida que ndo degrade a qualidade
percebida do sinal.

Uma grande parte deste trabalho foi dedicada a implementacdo do codificador
MPEG-4 AAC. Neste trabalho, trés plataformas de implementacdo diferentes foram
utilizadas e quatro implementacdes foram desenvolvidas. A escolha das plataformas foi
guiada pelas caracteristicas atuais do mercado, como disponibilidade, portabilidade,
custos, etc. Por exemplo, a0 mesmo tempo que processadores de uso geral estdo
amplamente disponiveis, 0 seu custo unitario tende a ser alto (a0 menos, muito maior do
que o custo unitario de um processador DSP) e eles ndo sdo tdo portateis quanto
processadores DSP. Por estes motivos, as plataformas escolhidas foram processadores
de uso geral (Intel Pentium 11 e I1Il), processadores DSP (Texas 31 e Motorola
DSP56309) e implementacdo em hardware (Altera Flex 10k FPGA).

Uma versdo de dominio publico do codificador MPEG-4 AAC em linguagem C
foi utilizada como base para o desenvolvimento das implementacfes. Essa versdao do
codificador é bastante tutorial. Isto é, ela existe como base para guiar desenvolvedores
na criacdo de seus proprios codificadores. Por isso, ela ndo representa uma
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implementacdo eficiente do codificador e ndo reflete as otimizacGes realizadas pela
industria de audio em seus esforgos para implementar codificadores de audio eficientes,
isto é, codificadores rapidos que assegurem alta qualidade e eficiéncia de codificacgéo.

O codigo em linguagem C foi empregado na anélise do tempo de computacdo do
codificador. Essa andlise revelou que os modulos do algoritmo AAC que mais
consumiam o tempo de codificacdo eram a predicdo a longo prazo (LTP) e 0 mddulo
psicoacustico. As otimizacGes realizadas nesses médulos permitiram melhorar o tempo
de computacéo do algoritmo. Desta forma, o trabalho de implementacéo foi direcionado
para 0 desenvolvimento de versdes aperfeicoadas (isto é, mais rapidas) desses modulos
em diversas plataformas.

O mdédulo LTP foi desenvolvido em todas as plataformas mencionadas. Os
resultados das implementacgdes apresentaram relacdes interessantes entre as plataformas.
Por exemplo, demonstrou-se que as implementagdes em PC tém vantagens em termos
de desempenho sobre todas as implementaces em outras plataformas (DSP e hardware
sintetizado em FPGA). Além disso, as implementacdes demonstraram que otimizagdes
em Assembly para lagos de computacdo intensiva e rotinas criticas contribuem para uma
melhora significativa no desempenho. Entretanto, comparacgdes que levaram em conta a
normalizacdo da freqliéncia de relégio demonstraram que a implementacdo em FPGA-
sintetizado foi uma das mais eficientes, devido ao numero reduzido de ciclos
necessarios na computacdo do médulo LTP. Como os processadores DSP também
apresentam uma frequéncia de relogio relativamente baixa, esse também foi o caso de
um deles (o C31). Por isso, essas comparacdes revelaram que a freqliéncia de relogio €
uma caracteristica importante em uma plataforma alvo quando se trata de tempo de
computacao.

Futuros trabalhos que utilizarem esta tese de mestrado como base podem tornar
as implementacbes em DSP e VHDL mais eficientes em termos de tempo de
computacdo. No caso das implementacdes em DSP, isso pode ser atingido através de
otimizacBes manuais a partir do codigo Assembly gerado pelo compilador C.
Entretanto, como os mnemémicos variam de processador para processador, é necessario
que um processador DSP alvo seja escolhido em primeiro lugar. Além disso, essa
escolha do processador deve estar baseada em comparacGes entre diversos
processadores DSP, considerando-se a sua adequacdo para o desenvolvimento de
algoritmos de codificacdo de audio.

No caso da implementagdo em VHDL, o reestruturamento da maquina de
controle das descri¢des através de uma simplificacdo do algoritmo pode resultar em um
circuito sintetizado mais eficiente. Além disso, a utilizacdo de outras ferramentas de
desenvolvimento (como, p.ex., standard-cells) pode fornecer resultados melhores que 0s
obtidos com FPGAs.

Outra sugestdo ¢ a utilizacdo de processadores embebidos nas implementacdes e
comparacOes, ja que eles podem apresentar custos baixos e portabilidade (da mesma
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forma como processadores DSP) e podem ser tdo flexiveis quanto processadores de uso
geral.
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