
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

RAFAEL BILLIG TONETTO

A Platform to Evaluate the Fault Sensitivity
of Superscalar Processors

Thesis presented in partial fulfillment
of the requirements for the degree of
Master of Computer Science

Advisor: Prof. Dr. Antonio Carlos Schneider
Beck
Coadvisor: Prof. Dr. Gabriel Nazar

Porto Alegre
October 2017

CIP — CATALOGING-IN-PUBLICATION

Billig Tonetto, Rafael

A Platform to Evaluate the Fault Sensitivity of Super-
scalar Processors / Rafael Billig Tonetto. – Porto Alegre:
PPGC da UFRGS, 2017.

93 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2017. Advisor: Antonio Carlos Schneider Beck; Coadvisor:
Gabriel Nazar.

1. Fault injection. 2. Superscalar processor. 3. Register-
transfer level. I. Beck, Antonio Carlos Schneider. II. Nazar,
Gabriel. III. A Platform to Evaluate the Fault Sensitivity of Su-
perscalar Processors.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Rui Vicente Oppermann
Vice-Reitora: Profa. Jane Fraga Tutikian
Pró-Reitor de Pós-Graduação: Prof. Celso Giannetti Loureiro Chaves
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do PPGC: Prof. João Luiz Dihl Comba
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

ABSTRACT

The aggressive shrinking of transistors, which led to the reductions in the operating volt-

age, has been providing enormous benefits in terms of computational power while keep-

ing the energy consumption at an acceptable level. However, as feature size and voltage

decrease, the susceptibility to soft errors tends to increase, and the importance of fault

evaluations grows. Superscalar processors, which nowadays dominate the market, are a

significant example of systems that take advantage of these technological improvements

and are more susceptible to errors. Along with that, there exist several methods for fault

injection, which is an efficient means to evaluate the resiliency of such processors. How-

ever, traditional fault injection methods, such as the hardware-based technique, impose

that the processor must be physically implemented before the tests can be conducted,

while not providing reasonable levels of controllability. On the other hand, techniques

based on simulators implemented in Software offer high levels of controllability. How-

ever, while high-level SW simulators (which are fast) may lead to an incomplete, or even

misguided, evaluation of the system’s resiliency since they don’t model the hardware in-

ternals (such as the pipeline registers), low-level SW simulators are extremely slow and

are hardly available at RTL (Register-Transfer Level). Considering this scenario, we pro-

pose a platform that bridges the gap between the HW and SW approaches to evaluate

faults in superscalar processors: it is fast, with high controllability, available in software,

flexible, and, most importantly, it models the processor at RTL. The tool was implemented

on top of the framework used to generate the Berkeley Out-of-Order Machine (BOOM)

superscalar processor, which is a highly scalable and parameterizable processor. This

property allowed us to experiment with three different architectures of the processor:

single-, dual-, and quad-issue out-of-order cores, and, by analyzing how the resiliency

to faults is influenced by the complexity of different processors, use them to validate our

tool.

Keywords: Fault injection. superscalar processor. register-transfer level.

RESUMO

A diminuição agressiva dos transistores, a qual levou a reduções na tensão de operação,

vem proporcionando enormes benefícios em termos de poder computacional, mantendo o

consumo de energia em um nível aceitável. No entanto, à medida que o tamanho dos re-

cursos e a tensão diminuem, a susceptibilidade a falhas tende a aumentar e a importância

das avaliações com falhas cresce. Os processadores superescalares, que hoje dominam o

mercado, são um exemplo significativo de sistemas que se beneficiam destas melhorias

tecnológicas e são mais suscetíveis a erros. Juntamente com isso, existem vários métodos

para injeção de falhas, que é um meio eficiente para avaliar a resiliência desses processa-

dores. No entanto, os métodos tradicionais de injeção de falhas, como a técnica baseada

em hardware, impõem que o processador seja implementado fisicamente antes que os tes-

tes possam ser conduzidos, sem fornecer níveis razoáveis de controlabilidade. Por outro

lado, as técnicas baseadas em simuladores implementados em software oferecem altos

níveis de controlabilidade. No entanto, enquanto os simuladores em SW de alto nível

(que são rápidos) podem levar a uma avaliação incompleta, ou mesmo equivocada, da

resiliência do sistema, uma vez que não modelam os componentes internos do hardware

(como os registradores do pipeline), simuladores em SW de baixo nível são extremamente

lentos e dificilmente estão disponíveis em RTL (Register-Transfer Level). Considerando

este cenário, propomos uma plataforma que preenche a lacuna entre as abordagens em

HW e SW para avaliar falhas em processadores superescalares: é rápida, tem alta contro-

labilidade, disponível em software, flexível e, o mais importante, modela o processador

em RTL. A ferramenta foi implementada sobre a plataforma usada para gerar o proces-

sador superescalar The Berkeley Out-of-Order Machine (BOOM), que é um processador

altamente escalável e parametrizável. Esta propriedade nos permitiu experimentar três

arquiteturas diferentes do processador: single-, dual- e quad-issue, e, ao analisar como a

resiliência a falhas é influenciada pela complexidade de diferentes processadores, usamos

os processadores para validar nossa ferramenta.

Palavras-chave: Injeção de falhas , processadores superscalares , nível de transferência

de registradores.

LIST OF ABBREVIATIONS AND ACRONYMS

ACE Architecturally Correct Execution

ALU Arithmetic Logic Unit

API Application Programming Interface

AVF Architectural Vulnerability Factor

BHT Branch History Table

BPD Backing Predictor

BPU Branch Prediction Unit

BTB Branch Target Buffer

CHISEL Constructing Hardware in an Scala Embedded Language

CMOS Complementary Metal-Oxide-Semiconductor

CUDA Compute Unified Device Architecture

DRAM Dynamic Random Access Memory

DUT Design Under Test

EPC Exception Program Counter

FIT Failures in Time

FPU Floating-Point Unit

GPGPU General-Purpose Graphics Processing Unit

GPU Graphics Processing Unit

ILP Instruction Level Parallelism

IPC Instructions per Cycle

ISA Instruction Set Architecture

JVM Java Virtual Machine

MBU Multiple Bit Upset

RAS Return Address Stack

RAW Read After Write

RF Register File

RISC Reduced Instruction Set Computer

ROB Reorder Buffer

RTL Register-Transfer Level

SEE Single Event Effect

SER Soft Error Rate

SET Single Event Transient

SEU Single Event Upset

SIMT Single Instruction/Multiple Threads

SOC System on Chip

SRAM Static Random Access Memory

TMR Triple Modular Redundancy

VCS Verilog Compiler Simulator

VHDL VHSIC Hardware Description Language

WAR Write After Read

WAW Write After Write

LIST OF FIGURES

Figure 2.1 A high-level view of the BOOM processor. ..17
Figure 2.2 The fetch unit of the BOOM processor. ..19
Figure 2.3 The instruction decode unit. ..20
Figure 2.4 The rename stage - logical registers are mapped into physical ones.21
Figure 2.5 The issue slot. ..23
Figure 2.6 A dual-issue BOOM has two Execute Units..24
Figure 2.7 A ROB for a two-wide BOOM - up to two instructions can be dis-

patched and written to a single ROB row..26
Figure 2.8 The Chisel code transformation flow. ..31
Figure 2.9 Chisel description of the multiplexer and its equivalent transformed C++. ..32
Figure 2.10 Performance of the Chisel-generated Verilog/C++.34

Figure 3.1 The DrSEUS fault injector architecture...44
Figure 3.2 The F-SEFI fault injector architecture. ..46
Figure 3.3 The MaFIN and GeFIN fault injector architectures.48
Figure 3.4 GPU-Qin injection process. ...50

Figure 4.1 Build process of the fault injection platform. ..54
Figure 4.2 The fault injection life cycle. ...56
Figure 4.3 The checkpointing mechanism - the application is first fast-forwarded

to Cprev, and it may be halted in any Cpost in case the fault is masked.57
Figure 4.4 Example of a C++ simulator exported from Chisel.......................................59
Figure 4.5 Register extraction and grouping by the RegExporter tool - the new gen-

erated source files form the RegisterBase component. ...60
Figure 4.6 Saving/restoring the state of the processor for the SHA application in

cycle 500. ..62
Figure 4.7 Saving/restoring the processor state for the SHA application.63
Figure 4.8 Generating checkpoints and profiling the application.65
Figure 4.9 Fast-forwarding to the cycle 500 and fault injection in cycle 730.................66
Figure 4.10 Workflow for the Logger component...68
Figure 4.11 An example usage of the BOOMulator. ..69
Figure 4.12 High-level view of the simulator infrastructure...70

Figure 5.1 RF and RENAME sensitivities for the each benchmark for the three
processor configurations. ..78

Figure 5.2 IU and EXE sensitivities for the each benchmark for the three processor
configurations..81

Figure 5.3 Sensitivities for all structures averaged for all the 7 benchmarks.83
Figure 5.4 Sensitivity for each processor averaged for all the benchmarks....................83

LIST OF TABLES

Table 3.1 Comparison between hardware-based, simulation-based, and the pro-
posed fault injection tool..51

Table 5.1 Faults per second (FPS) achieved, on average, and speedup for the four
cases. ..72

Table 5.2 Number of flip-flops in each structure...74
Table 5.3 Configured sizes for the main components. ..74
Table 5.4 Configured Execute Units. ..75
Table 5.5 An approximation to the average ACE registers, per cycle, in the RF (%).....77
Table 5.6 IPC for each benchmark. ...80
Table 5.7 Average sensitivity for each benchmark (%)...84

Table A.1 Sensitivities for the single-issue core (%). ...93
Table A.2 Sensitivities for the dual-issue core (%). ..93
Table A.3 Sensitivities for the quad-issue core (%). ...93

CONTENTS

1 INTRODUCTION...11
1.1 Problem Statement and Context of this Work ...12
2 BOOM - THE BERKELEY OUT-OF-ORDER MACHINE14
2.1 Introduction...14
2.1.1 The Basic Functionality of Superscalar Processors ...14
2.2 An Overview on The Berkeley Out-of-Order Machine.......................................15
2.2.1 Introduction..15
2.2.2 Architecture and Organization ...16
2.2.2.1 Instruction Fetch ...19
2.2.2.2 Instruction Decode ..19
2.2.2.3 Register Renaming..20
2.2.2.4 The Instruction Issue Unit...22
2.2.2.5 The Execute Stage...23
2.2.2.6 The Register File and Bypass Network ..24
2.2.2.7 The Load/Store Unit ...25
2.2.2.8 The Reorder Buffer and the Commit Stage ..26
2.2.2.9 The Branch Predictor ..28
2.2.3 Parameterization of the BOOM Processor...29
2.3 Chisel - Constructing Hardware in an Scala Embedded Language...................30
2.4 The RISC-V ISA ...35
3 BACKGROUND ON FAULT INJECTION AND RELATED WORK38
3.1 Soft Errors and Technology Scaling..38
3.2 Hardware-based Fault Injection..41
3.3 Simulation-based Fault Injection ..43
3.4 Related Work on Fault Injection Tools ...44
3.4.1 DrSEUS - A Dynamic Robust Single-Event Upset Simulator44
3.4.2 OVPSim-FIM...45
3.4.3 F-SEFI - Fine-grained Soft Error Fault Injector ..46
3.4.4 MaFIN and GeFIN...47
3.4.5 GPU-Qin - A GPU Fault Injector ..48
3.5 Main Contributions of the Proposed Platform...50
4 A PLATFORM TO EVALUATE THE BOOM’S SENSITIVITY TO FAULTS ...53
4.1 Platform Overview..53
4.2 Fault Injection Process ...56
4.2.1 The Fault Injection Life Cycle ...56
4.2.2 Fault Classification...58
4.3 Platform Infrastructure..58
4.3.1 The BOOMlib Component ..58
4.3.2 The RegisterBase Component..60
4.3.3 The Checkpointing Manager Component..62
4.3.4 The Saboteur Component ..64
4.3.5 The Logger Component ...67
4.3.6 The BOOMulator Component ...69
5 RESULTS AND SENSITIVITY ANALYSIS OF BOOM71
5.1 Speeding up Fault Injection Campaigns with Checkpointing72
5.2 Processor Sensitivity Analysis..73
5.2.1 Hardware Occupancy and Sensitivity ..75
5.2.2 The Register File and Register Renaming Circuitry Sensitivities76

5.2.3 The Issue Unit and Execution Units Sensitivities ..80
5.2.4 Average and Global Sensitivities of BOOM..83
6 CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK.........................86
REFERENCES...89
APPENDIX A — SENSITIVITY TABLES...93

11

1 INTRODUCTION

It has been widely reported that the decrease in technology size is allowing for

the implementation of progressively dense and complex processors that boost the com-

putational power to a remarkable level. However, achieving even higher performance

while keeping energy consumption at an acceptable level comes at a price, and there are

trade-offs that should be taken into account.

Much of the improvement in computational performance is a consequence of the

technology advances that nowadays allow the multiplication of resources in complex pro-

cessors, such as the superscalar ones. Nowadays, superscalar processors dominate the

market due to their efficiency. Therefore, reliability research should pay special attention

to them.

The technology shrinking resulted in the improvements of superscalar processors

because it allowed more transistors to be packed in the same area, resulting in more com-

plex structures and in the multiplication of resources that makes it possible to execute

more instructions per cycle. This achievement was mainly possible due to the increase of

the density of transistors enabled by technology scaling, which is a consequence of the

ameliorations in the complementary metal-oxide-semiconductor (CMOS) technology, as

transistors tend to be smaller and faster (DODD et al., 2010).

As a consequence of the technology scaling, transistors must now operate at lower

voltages since the amount of charge necessary to change a single bit in a state element

(the critical charge) has decreased. More precisely, as transistors’ shrink, the voltage has

to be reduced to prevent them from wearing out or collapsing due to high electric fields

because the critical charge decreases linearly with the voltage (KARNIK; HAZUCHA,

2004).

As it seems to be a natural law, it is impossible to achieve any sort of improvement

while not paying the price for it. Most of the advances in computational power were

enabled by the technology shrinking, which led to an increase in the rate of soft errors.

However, due to the growing demand for performance that can mainly be explored

by means of instruction-level parallelism (ILP), superscalar processors are of increasing

relevance for many of the everyday applications. As this demand for superscalar pro-

cessors is accompanied by the increasing levels of sensitivity of the transistors, research

should pay special attention regarding fault tolerance strategies for such processors. How-

ever, the design of efficient fault tolerance mechanisms demand that the system’s behav-

12

ior should be first evaluated when it is subject to faults. By evaluating, it is meant that

the processor should be artificially deployed in harsh conditions where the environment

constantly injects faults into it, all the while its behavior is observed. This way, an un-

derstanding of the system’s behavior when it encounters faults is provided. Therefore, in

this work, we present a fault injection platform for the Berkeley Out-of-Order Machine

(BOOM) superscalar processor.

1.1 Problem Statement and Context of this Work

One of the most common and efficient strategies adopted for the evaluation of a

system’s sensitivity to faults is fault injection, which consists in intentionally flipping the

bits of the processor in a scale way bigger than it would experience in a real environment.

However, often some of the fault injection techniques, such as hardware-based methods

and methods based on high-level simulators have inherent deficiencies and trade-offs.

Even though the good level of representativity of the hardware-based fault injec-

tion method is attractive, it demands that the system is physically implemented before

it can be evaluated, hence its levels of accessibility is not much encouraging, and it is

also expensive because it requires special equipment to induce faults. Moreover, there

is no easy way, if any, of controlling where and when faults should be injected into the

hardware.

When the hardware-based method does not satisfy due to its shortcomings, one

could take advantage of more abstract methods, such as the ones that use high-level simu-

lators. In this scenario, the system is represented by means of a software-based simulator

that abstracts several of the micro-architectural structures of the system. In many cases,

such simulators are so high-level that they model only the functional aspect of the system.

However, as the processor is modeled in software, the levels of controllability and acces-

sibility are attractive. Note, however, that this strategy does not model the system at RTL,

which may lead to loss of representativity when the reliability is evaluated.

Therefore, the importance of this dissertation is based on three main claims:

1. Superscalar processors are becoming even more important and ubiquitous.

2. Superscalar processors are becoming more sensitive to faults due to technology

scaling.

3. There is a growing need for efficient tools to evaluate the resiliency of superscalar

13

processors.

Items (1) and (2) tell that the resiliency evaluation of superscalar processors is of

growing importance. Item (3) is accompanied by the fact that there is a trade-off between

hardware-based methods and strategies that use high-level simulators. For this reason, in

this work, we proposed and implemented a platform for the evaluation of the susceptibility

to soft errors of the BOOM superscalar processor.

The proposed platform trades off the deficiencies imposed by hardware- and simulation-

based methods as it is based on an RTL software-implemented model of the processor,

hence it inherits levels of representativeness close to the hardware-based method, and the

levels of controllability of the techniques based on simulators.

We believe that fault evaluations of BOOM can provide significant understandings

about the processor’s behavior when it is deployed in harsh environments, mainly because

the proposed tool works at RTL. Besides, the proposed platform is based on a highly flex-

ible simulator generator that allows us to parameterize several features of the processor,

such as the issue-width. Because it is easy to parameterize the BOOM processor, we

evaluated three versions of it: single-, dual-, and quad-issue cores were experimented.

Because the proposed platform is based on a software-implemented simulator that

works at RTL (thus every single bit of the processor is modeled), it should be no sur-

prise that the fault injection process is not as fast as the methods based on high-level and

functional simulators. Therefore, we implemented a checkpointing mechanism in order

to speedup the fault injection campaigns; this trick yielded remarkable gains in terms of

number of faults injected per second.

This dissertation is organized as follows:

• Chapter 2: Reviews the basics on superscalar processors and gives an overview,

to a certain detail, of the BOOM’s architecture, its ISA, and the Chisel language.

• Chapter 3: Gives a background on soft errors and presents some related fault in-

jection tools.

• Chapter 4: Details how the proposed platform was implemented and how it works.

• Chapter 5: Evaluates the implemented tool by injecting faults in the BOOM pro-

cessor.

• Chapter 6: Final conclusions and suggestions for future work.

14

2 BOOM - THE BERKELEY OUT-OF-ORDER MACHINE

2.1 Introduction

As demand for performance increases, the importance of superscalar processors

also grows since they deliver significant gains in terms of instructions per cycle (IPC) at

an acceptable cost.

Superscalar processors functionality, such as in (PALACHARLA; JOUPPI; SMITH,

1997), consists of issuing and executing multiple instructions per cycle. This organi-

zation is possible nowadays due to technology improvements that allow the multiplica-

tion of resources of the processor, such as multiple functional units. By benefiting from

multiple functional units, speculative execution and instruction scheduling (static or dy-

namic), superscalar designs achieved such a significant performance that nowadays they

lead the market of embedded systems. Basically, superscalar processors deliver better

performance by exploring instruction-level parallelism (SMITH; SOHI, 1995).

2.1.1 The Basic Functionality of Superscalar Processors

Generally speaking, superscalar processors may be categorized into two types: in-

order and out-of-order execution. For the in-order execution case, the instructions are

statically scheduled (at compile time) and are executed in the same order the programmer

would expect they should execute. In other words, instructions are executed in the same

sequence as they are fetched from the instruction memory.

One shortcoming imposed by in-order execution is related to some aspects of the

program flow that can bring the processor performance down. For example, when one

instruction depends upon the results of a previous one and this hazard cannot be resolved

by any means, then the pipeline has to stall until the first instruction completes. This usu-

ally happens when the results from the previous instruction arrive from load operations,

which have a high latency when there is a cache miss. Stalling the processor implies that

some structures of the processor will be kept idle, which in turn harms the processor per-

formance. This problem can be attenuated by executing instructions out of the program

order.

The out-of-order execution allows for the processor to dynamically schedule and

execute decoded instructions out of the expected order. This technique can significantly

15

reduce the impact of some data dependencies, as happens with the in-order example afore-

mentioned. In this scenario, when the next instruction depends upon the results of a pre-

vious load instruction, then instead of stalling the pipeline, the processor can execute

another instruction, ahead of the next one, that has no dependencies yet to be resolved. In

short, out-of-order processors increase performance because they are keen on: 1) finding

more instructions that can execute in parallel (i.e., they explore ILP); and 2) tolerating/-

masking instruction latencies, such as load operations. Simply put, out-of-order execution

increases the processor’s performance (ACOSTA; KJELSTRUP; TORNG, 1986).

Authors in (PALACHARLA; JOUPPI; SMITH, 1997) describe the basic func-

tionality of the pipeline of a generic and abstract superscalar processor, which may be

summarized as:

1. Multiple instructions are fetched every cycle from the instruction cache, and branch

prediction is made for conditional branch instructions.

2. Instructions are decoded and their register operands are renamed to resolve false de-

pendencies. Renamed instructions are dispatched to the instruction window, where

they wait for their source operands and the appropriate functional unit, such as

ALUs or FPUs, to become available.

3. As soon as the conditions in (2) are satisfied, instructions are issued and executed

in the functional units. The operand values of an instruction are either fetched from

the register file or are bypassed (through a bypass logic) from earlier instructions in

the pipeline.

The next sections present the basic architecture and organization of the BOOM

processor, which fits into the out-of-order category.

2.2 An Overview on The Berkeley Out-of-Order Machine

2.2.1 Introduction

The development of a fault injection platform demands, of course, a careful choice

of the processor the fault injector is supposed to be built upon.

An initial alternative for such processor could be, for example, the OpenSPARC

T1 processor (PARULKAR et al., 2008), which was developed by Sun Microsystems

and released as an open-source Verilog project to the public back in 2006. Benefiting

16

from an RTL description of the processor sounds attractive, however, as this processor is

developed as a multithreading/multicore CPU (it contains eight cores), it turned out to be

too complicated for our purposes. Moreover, OpenSPARC T1 does not support out-of-

order execution and has the disadvantage of not being parameterizable; one cannot just

easily configure the processor in a desired way. As a consequence, the fault injection

platform would be restricted only to one processor configuration.

As an alternative to OpenSPARC, one could resort to the gem5 simulator (BINKERT

et al., 2011), for instance, which is a very popular and low-level open-source simulator in

academia. However, even though gem5 may provide some reasonable degree of hardware

representativity, it does not model any processor at RTL.

The Berkeley Out-of-Order Machine (BOOM) processor was chosen as an alter-

native to the aforementioned strategies, its RTL description is open-source and is not as

complex as the OpenSPARC one. These properties already justify choosing BOOM as

our target processor. However, BOOM has also the advantage of being parameterizable,

hence it facilitates the evaluation of a vast range of different processor configurations.

BOOM is a superscalar, out-of-order RISC core designed to serve as the prototyp-

ical baseline processor for future micro-architectural studies of out-of-order processors

(CELIO; PATTERSON; ASANOVIé, 2015). It is inspired by the MIPS R10k (YEAGER,

1996) and in the Alpha 21264 (KESSLER, 1999) out-of-order processors. It implements

the RISC-V instruction set architecture (ISA), detailed in (WATERMAN et al., 2014) and

(WATERMAN, 2016). This ISA is shortly reviewed in Section 2.4.

BOOM is currently embedded in the Rocket Chip System on Chip (SoC) generator,

presented in (ASANOVIć et al., 2016). Most notably, BOOM is developed in the Chisel

hardware construction language, which is introduced in Section 2.3.

Since this work is about a fault injection platform for the BOOM processor, it

is important to introduce its basic architectural functionalities. A basic knowledge of

the hardware structures of the processor is necessary to understand its behavior under

the presence of faults. Therefore, the architecture and organization of the processor are

described in the next sections.

2.2.2 Architecture and Organization

BOOM supports pipelined execution of multiple instructions in the same cycle.

In theory, instructions may execute in up to 10 pipeline stages: Fetch, Decode, Regis-

17

Figure 2.1: A high-level view of the BOOM processor.

Branch
Prediction

I$

Fetch
Buffer

Decode Register
Rename

Dispatch Issue

Issue Window

ALUUnified
Register

File
2R,2W

Execute

Data
Mem

addr

wdata
rdata

LAQ

SAQ

SDQ

Memory WB

ROB

RenameDecodeFetch1 RegisterRead

Commit

Br
Logic

Resolve
Branch μDec

PC1

Fetch2

BTB

ExeBrTarget

NPC

Front-end Back-end

Mul/Div

variable, multi-cycle

Load-Store
Unit

addr

data

BHT

PC2

Front-end

TakePC

BHT
Target

Source: (CELIO; PATTERSON; ASANOVIé, 2016)

ter Rename, Dispatch, Issue, Register Read, Execute, Memory, Writeback, and Commit.

But, in practice, BOOM combines some of the stages, which reduces the pipeline to

six stages: Fetch, Decode/Rename/Dispatch, Issue/Register Read, Execute, Memory, and

Writeback. The instruction commit stage (sometimes called instruction retirement) occurs

asynchronously so it is not considered part of the pipeline.

Figure 2.1 depicts a high-level model of the BOOM processor. The main point of

interest of the following sections is to point out some of the hardware components that

constitute the processor, which are subject of interest for the BOOM’s fault sensitivity

analysis and characterization. As Figure 2.1 shows, the processor is constituted of:

• Register file (RF): A unified physical register file constituted of many more registers

than the programmer-visible logical registers.

• Reorder buffer (ROB): Hardware component responsible for committing the in-

structions in order, even though they are executed out of order. The ROB makes sure

the out-of-order execution of the instructions does not change the expected program

behavior by providing the "illusion" that instructions execute in-order, preserving

the meaning of the program. Also, the ROB facilitates the branch prediction of the

processor and guarantees precise exception handling.

• Issue window: Instructions are decoded and placed in the instruction window,

where they wait until their resources are free so that they can be issued and exe-

18

cuted.

• Branch predictor: Constituted of a branch history table (BHT), a branch target

buffer (BTB), a return address stack (RAS), and other components responsible for

the management of branch prediction.

• Register rename: Circuitry that handles the register renaming process by mapping

logical registers into physical registers, so that some data hazards can be resolved.

It enhances the processor performance by increasing the ILP.

• Load/store queue: Constituted of three queues: Load Address Queue (LAQ), Store

Address Queue (SAQ), and Store Data Queue (SDQ). These queues are responsible

for handling memory operations when load and store instructions execute.

• Execution units and bypass network: Constituted of arithmetic and logic units

(ALU), floating point units (FPU), and integer multipliers and dividers. ALU re-

sults may be fed back (bypassed) to the ALU operands before results are written to

the RF or memory.

As can be observed in Figure 2.1, BOOM is divided into a front-end and a back-

end "part". The front-end handles the instruction fetch and a single-cycle branch pre-

diction; in this stage, instructions are fetched from the instruction memory and written

into a fetch buffer of instruction. The fetch buffer decouples the instruction fetch stage

in the front-end from the subsequent stages in the back-end (Decode/Rename/Dispatch,

Issue/Register Read, Execute, Memory, and Writeback).

BOOM’s instruction pipeline functionality may be summarized as follows: first,

a packet of instructions is fetched from the instruction cache and is stored in the fetch

buffer of instructions while branch prediction is made if there are branch instructions in

the packet. Later, instructions residing in this buffer are pulled out and decoded and the

logical identifiers of the registers in the instructions are mapped into physical registers

residing in the register file (i.e., register renaming). In the same cycle, the instructions are

dispatched to the ROB and to the instruction window.

Instructions residing in the instruction window wait there until all their resources

are available, when they can finally be issued out of the instruction window and begin

execution. Once the instruction ends execution, it then sends signals to the reorder buffer,

which takes the appropriate actions to make the state of the instruction visible (i.e., re-

sults are written in the RF or memory) by committing the instruction if it was not miss-

speculated and did not cause any exception.

19

Figure 2.2: The fetch unit of the BOOM processor.

Branch
Prediction

I$

Fetch
Buffer

Fetch1

 μDec
PC1

Fetch2

NLP

ExeBrTarget

NPC

BPD

PC2

Front-end

TakePC?

BPD
Target

Source: (CELIO; PATTERSON; ASANOVIé, 2016)

2.2.2.1 Instruction Fetch

The front-end is responsible for fetching a fetch packet of instructions from the

instruction memory and storing them in a fetch buffer of instructions (a First-in/First-

out queue). In the subsequent pipeline stages, instructions residing in the fetch buffer

are decoded and renamed before they are stored in the instruction window and in the

ROB. These phases are handled in-order, and out-of-order execution only starts when

instructions are issued out from the instruction window to the execute stage.

Figure 2.2 depicts the BOOM’s fetch unit. As multiple instructions may execute

at the same cycle, BOOM fetches a packet of instructions each cycle. Instructions being

fetched from the instruction memory are place in a First-in First-out (FIFO) fetch packet

of instructions.

In parallel with the instruction fetch, BOOM predicts every cycle (and in a single

cycle) where the next instruction should be fetched from by using the Next-line predic-

tor (NLP) branch prediction strategy. The BOOM’s branch predictor will be detailed in

Section 2.2.2.9.

2.2.2.2 Instruction Decode

The decode stage takes instructions from the fetch buffer (in-order), decodes them,

and allocates the necessary resources as needed by each instruction. This stage will stall if

not all resources are available. Otherwise, after instructions are decoded, they are renamed

and dispatched to the instruction window and to the reorder buffer, as shown in Figure 2.3.

20

Figure 2.3: The instruction decode unit.

Source: Adapted from (CELIO; PATTERSON; ASANOVIé, 2016)

2.2.2.3 Register Renaming

As stated in Section 2.1, superscalar processors make extensive use of ILP. But due

to the limited number of logical registers in most processors, the ILP may be drastically

reduced by data hazards, such as true dependencies, or read after write (RAW), output

dependencies, or write after write (WAW), and anti-dependences, or writer after read

(WAR).

Register renaming is a technique used to overcome the WAW and WAR hazards. It

consists in mapping the logical registers (those visible by the programmer) into physical

registers in the register file.

Even though the RISC-V ISA defines 32 user-visible (logical) registers, BOOM

implements a physical register file with many more registers that hold both the commit-

ted architectural register state and speculative register state. Also, BOOM implements a

unified physical register file: both integer and floating point registers reside in a single

register file.

BOOM relies on an explicit renaming technique, which means the logical registers

are explicitly mapped to physical register in a register file by means of rename map tables,

which maps logical registers to physical ones by using the logical register identifiers as

indexes.

Register renaming also requires circuitry to detect dependencies between registers

being renamed. For instance, when a register being renamed depends upon an earlier

21

instruction, the dependency check logic consists in setting the appropriate control signals

in the multiplexers depicted in Figure 2.4 which select the appropriate physical register

designator.

The state of the physical registers has to be tracked every cycle, so that appropriate

actions may be taken during the register renaming process. The main hardware structures

that handle the renaming are:

• Map table: The Rename Map Table contains the assignments from logical to phys-

ical registers. More precisely, it contains the speculative mappings from ISA reg-

isters to physical registers. Each branch will have its own copy of the rename map

table, if there is a branch mispredict, the map table can be reset instantly from the

mispredicting branch’s copy of the map table.

• Free list: The free-list is a bit-vector that tracks the physical registers that are cur-

rently unused and is used to allocate new physical registers to instructions passing

through the Rename stage. It contains as many bits as there are registers in the phys-

ical register file. A value ’1’ in the bit 5, for example, means the physical register

of index 5 is free. Multiple registers may be allocated in a single cycle.

• Busy table: This structure holds the status and readiness of the physical regis-

ters. When an instruction is to be issued, the busy table is consulted to check if

its operands are ready and contain valid values. When a register leaves the free list,

Figure 2.4: The rename stage - logical registers are mapped into physical ones.

Map table

rd

lrd lrs1 lrs2

stale pdst(1)

rs1

rs2

lrd lrs1 lrs2

stale
bypass

Freelist
pdst(0)

pdst(1)

pdst prs1 prs2

Inst(0)

Inst(1)

=

stale

pdst prs1 prs2 stale

stale pdst(0)

uop(0).ldst
?= uop(1).ldst

map table

rd

reg src
bypasses

uop(0).ldst
?= uop(1).lrs2

uop(0).ldst
?= uop(1).lrs1

p0
p0

ldst
 renamed
and !x0

Vec(ready)

Vec(requests)

map table

freelist empty

busy table

=
=

Source: (CELIO; PATTERSON; ASANOVIé, 2016)

22

its corresponding bit in the busy table is set to the busy state. When a register is

written by an execution unit, its corresponding bit in the busy table is reset.

• Stale destination specifiers: For instructions that will write a register, the map table

is read to get the stale physical destination specifier (stale pdst). Once the instruc-

tion commits, the stale pdst is returned to the free list, as no future instructions will

read it.

Figure 2.4 depicts a high-level view of the register renaming circuitry. Up to two in-

structions go through the rename stage at the same cycle and their respective source and

destination registers are compared in order to detect possibly dependencies. Any renamed

register has to be passed to dependent instructions. When the logical registers read the

map table, physical registers are provided for the instruction and the free list and busy

table are updated.

2.2.2.4 The Instruction Issue Unit

Once instructions are decoded and renamed, micro-operations are generated and

then dispatched to the instruction window where they wait until all of their operands are

ready and resources such as execution units are free. The ’p’ bit depicted in Figure 2.5

stands for presence, and indicates when the source registers are available in the register

file. Once this criterion is met, the instruction can be issued by setting a request bit high.

The issue select logic selects a slot with a request bit high. Issued micro-operations can

then read their operands in the register file and their issue slot is freed to make room for

another dispatched instruction.

BOOM’s instruction window is unified, thus both integer and floating point in-

structions are placed in a single issue window. An issue slot is depicted in Figure 2.5.

There are two issue policies available in BOOM:

• Age-ordered Issue: dispatched instructions are placed into the bottom of the is-

sue window (at lowest priority). Every cycle, every instruction is shifted upwards.

Thus, the oldest instructions will have the highest issue priority. For out-of-order

superscalars, branches and load instructions should be resolved as soon as possible,

hence this policy can increase the performance of the processor since instructions’

priorities tend to increase, hence branches and loads would not be "stuck" at low

priorities. However, this policy may result in poor energetic performance since each

slot may have to be read and write at each cycle.

23

Figure 2.5: The issue slot.

ready

UOP Code BrMask RS1 p1RDstCtrl...

WD
es
t0

WD
es
t1

=
=

RS2 p2

=
=

(From the register file's two write ports)

Resolve
or Kill

Br
Logic

Val

Issue
Select
Logic

request
issue slot is valid

ready

issue

Issued to the Register Read stage

Control Signals
Physical

Destination
Register

Physical Source
Registers

Source: (CELIO; PATTERSON; ASANOVIé, 2015)

• Un-ordered Issue: dispatched instructions are placed into the first available issue

window slot and remain there until they are issued. This policy may harm the

performance if branches or loads are inserted in the lowest priority slots and are not

able to be issued as soon as possible. However, there is no energy penalty such as

in the Age-ordered Issue.

Each issue select logic port uses a static-priority encoder that selects the first avail-

able instruction in the issue window. Each port will only schedule an operation that its port

can handle (e.g., floating point micro-ops will only be scheduled onto the port governing

the Floating Point Unit).

2.2.2.5 The Execute Stage

BOOM makes use of Execute Units (EUs) in order to operate on data. Each EU

will hold different units of execution, as depicted in the dual-issue version of BOOM in

Figure 2.6.

Different EUs are composed of different functional units to execute specific in-

structions. As an example, in Figure 2.6 the Execution Unit #0 handles ALU, FPU and

integer multiplication operations, while the Execution Unit #1 handles ALU, integer di-

vision and load/store operations.

Each EU is connected to a single issue port in the Issue Window, so for each issue

24

Figure 2.6: A dual-issue BOOM has two Execute Units.

Source: Adapted from (CELIO; PATTERSON; ASANOVIé, 2016)

port, there will be only one associated EU. Therefore, the number of EUs in BOOM

corresponds to the processor’s issue-width, so for a dual-issue, for example, there are

two EUs. Instructions are issued to the appropriate EU by an Issue scheduler. The issue

scheduler will only schedule instructions that the Execution Unit supports.

2.2.2.6 The Register File and Bypass Network

BOOM has a unified physical register file (PRF), which dictates that the register

file holds both the integer, floating point, committed and speculative instructions.

As the BOOM’s floating point functional units work with 65-bit operands, the

register file is comprised of 65-bit registers. ALU operations can be issued back-to-back

by having the write-back values forwarded through the bypass network. Bypassing occurs

at the end of the Register Read stage.

The number of read and write ports in the register file depends on the issue width.

For a single-issue processor, for instance, the register file needs 3 read ports to satisfy

fused multiply–add (FMA) 1 operations and 2 write ports.

For the issued instructions, the register file statically provides the register read

ports as in the following example: if for a dual-issue processor, for example, issue port

#0 provides access to the Execute Unit that holds an ALU, and issue port#1 provides

access to the Execute Unit that handles FPU operations, then the first two read ports will

statically serve the ALU, and the remaining three read ports will operate on the FPU.

1FMA is a floating-point multiply–add operation performed in one step. For operations such as a x b + c,
the whole expression is first evaluated, then the result is rounded. This contrasts with unfused multiply–add,
where the product a x b is first calculated and rounded, then the result is added to c and, finally, it is rounded
again.

25

2.2.2.7 The Load/Store Unit

Load and store instructions are handled by means of the Load/Store Unit (LSU),

which consists of three queues: the Load Address Queue (LAQ), the Store Address Queue

(SAQ), and the Store Data Queue (SDQ). The LSU decides when memory operations

should be fired to the memory.

When a load instruction is issued, its address is first calculated and placed in the

LAQ. Stores are inserted into the issue window (dispatched) as a single instruction (i.e., a

single instruction handles address and data generation). When a store instruction is issued,

two actions may be taken depending on the conditions, it may either fire a Store Address

Generation (STA), or a Store Data Generation (STD). The STA micro-op calculates the

store address and places its result in the SAQ queue. The STD micro-op moves the store

data from the register file to the SDQ. Each of these micro-ops will issue out of the Issue

Window as soon their operands are ready. More precisely, load and store instructions are

performed as follows:

• Store instructions: Stores are issued out of the instruction window to the LSU.

When both operands are ready, the store can be issued to the LSU as a single micro-

op which provides both the address and the data. However, often the address will

be available before the data, hence only the STA micro-op is issued to the SAQ to

allow later loads to avoid any memory ordering failures. Once a store instruction

is committed, the corresponding entry in the Store Queue is marked as committed.

The store is then free to be fired to the memory system. Stores are fired to the

memory in program order.

• Load instructions: For loads, entries in the LAQ are allocated during the Decode

stage. In Decode, each load entry is also given a store mask, which marks which

stores in the Store Queue the given load depends on (if any). Loads are fired to

memory as soon as they arrive in the LAQ, because reading memory contents as

soon as possible is convenient for out-or-order pipelines. When a load is to be

performed, its load address is simultaneously compared to all the store address it

depends on, if there is a match, the memory request is killed. If the corresponding

store data is present, then the store data is forwarded to the load and the load is

considered successful. If the store data is not present in the SDQ, then the load

goes to sleep, where they wait until they are retried at a later time.

The LSU must also handle load/store dependencies, which happens when a load

26

instruction depends on the contents of a memory address written by a previous store in-

struction. Such dependencies may cause memory order failures. If an ordering failure

occurs, then the pipeline must be flushed and the rename map tables are reset.

To discover ordering failures, when a store commits, it checks the entire LAQ for

any address matches. If there is a match, the store checks to see if the load has executed,

and if it got its data from memory or if the data was forwarded from an older store. In

either case, a memory ordering failure has occurred.

2.2.2.8 The Reorder Buffer and the Commit Stage

The reorder buffer (ROB) is a circular buffer organized with N banks, where N is

the dispatch and commit width of the machine (see Figure 2.7). The ROB tracks the state

of all inflight instructions in-order. After instructions are decoded and renamed, they are

dispatched from the fetch packet and written into the tail of the ROB.

Each dispatched instruction is written to a different bank across a row in the ROB.

Once instructions are dispatched, they are marked as busy, which means the instructions

are not complete. By doing so, older instructions will always reside in the head of the

ROB, while the newest ones will reside in the tail.

Once instructions end execution, they are marked as not busy. When a not busy

instruction "moves" to the head of the ROB, and it is not miss-speculated and did not

cause any exception, it is then committed and its results are made architecturally visible.

As an example, Figure 2.7 depicts the ROB of a two-wide version of BOOM. Up

Figure 2.7: A ROB for a two-wide BOOM - up to two instructions can be dispatched and
written to a single ROB row.

PC

rob_head

rob_tail

0x2000

addw bne11
dis_mask dis_uops

add mul11
com_mask com_uops

0x2008
0x2010
0x2048
0x2040

Execution Units

wb_valids

wb_uops
(clears busy bit)

div -01Instruction Bank(0)
val bsy exc uopc brmask

1
1 1
1

1
1

ADD
SUB
LD
SW

-

0000
0000
0000
0001

Instruction Bank(1)
val bsy exc uopc brmask

1
1 1

MUL
BNE

1
1

ADD
ADD

1 1 DIV

0001
0001

0000
0000
0000

1 bne

(updates rename state)

Source: (CELIO; PATTERSON; ASANOVIé, 2016)

27

to two instructions can be dispatched to the ROB per cycle, each of them will be written

to the head of the two ROB banks, and they will be written in the same row. In that case,

a ROB row consists of two instructions, which is the maximum number of instructions

that can be committed in a cycle 2.

Since superscalar commit is supported, the entire ROB row is analyzed for not

busy instructions, so that the ROB may commit as many instructions as possible per row

in a single cycle, which in turn releases as many resources as possible. Be aware that the

ROB does not look across multiple rows in order to find instructions that can be committed

(i.e., only the ROB head is committed in a cycle).

As can be seen in Figure 2.7, for each bank in the ROB, each row contains a

branch mask that "tells" the instruction in the bank of a row which branch the instruction

is speculated under. If a micro-op in the ROB "belongs" to a miss-speculated branch, it is

then flushed and its architectural state is not made visible.

The ROB must know the PC for each inflight instruction since 1) any instruction

may cause exceptions, so the exception program counter (EPC) must be known for latter

recovery of the program context, 2) branch and jump instructions must know their own

PC for the correct target calculation, and 3) jump-register instructions must know both

their own PC and the PC of the following instruction to verify if the front-end predicted

the correct JR target. Since instructions are fetched, decoded and dispatched to the ROB

in-order (hence are located consecutively in memory), keeping a single PC for each ROB

row is enough.

Each entry in the ROB is marked with an exc flag that indicates whether or not the

instruction has caused an exception. An exception will be thrown only if the excepting

instruction is in the head of the ROB. When an exception is thrown, the pipeline is flushed

and the ROB emptied.

Note that the instruction is still speculative during the register renaming stage,

thus the correspondence between physical and logical registers stored in the rename map

tables may be miss-speculated. If that is the case, the rename map tables will be invalid.

Therefore, if the head of the ROB is marked as not busy (i.e., if the instruction ends

execution) and it is miss-speculated or caused an exception, then the rename map tables

must be reset so that the miss-speculated or excepting mapping of logical to physical

registers is eliminated, and the correct architectural state is maintained.

2Note that the dispatch and commit width are the same.

28

2.2.2.9 The Branch Predictor

BOOM supports branch prediction and speculation. The branch prediction occurs

at two distinct levels: while one prediction is made combinationally by the Next-Line

Predictor (NLP) in the BOOM’s front-end during the instruction fetch, another prediction

is made by the Backing Predictor (BPD) in the back-end part.

During the instruction fetch, the NLP takes the current Fetch-PC (the current pro-

gram counter that fetches the fetch packet of instructions) as input and works together

with a branch history table (BHT), a branch target buffer (BTB) and a return address

stack (RAS) depending on what kind of instruction is being speculated (conditional, un-

conditional or a return instruction).

First, the Fetch-PC is compared to all entries (PC tags) in the BTB in order to find

any tag match. If a match occurs, and if the current instructions is a ret, then the return

address for the instruction is retrieved from the RAS. If the instruction is a conditional

branch, then the BHT is consulted in order to make the prediction, and the predicted

branch target will be retrieved from the BTB so that the NLP does not have to wait for the

execute stage to calculate the target address. If the instruction is an unconditional branch,

then the BHT is not consulted.

Since the NLP has to store PC tags and branch targets in the BTB, it becomes

really expensive in terms of area and power, so only a few dozen branch predictions can

be stored. To overcome that, BOOM makes use of the BPD as a second level branch

predictor. The BPD is not as expensive in terms of power and area as the NLP because

it does not retrieve branch targets from the BTB, instead, it actually computes the target

address during the execute state.

The BPD does not make any prediction before the fetch packet has been decoded

and the branch targets are computed directly from the instructions themselves. Therefore,

there is no need for the BPD to store predicted target addresses.

When a prediction is being performed in the subsequent stages in the back-end,

the BPD provides a bit-vector of taken/not-taken predictions, for which there is one bit for

each instruction fetched. When the instructions from the fetch packet are decoded and the

target branches are calculated, the prediction bits in the bit-vector are consulted in order

to decide if the processor’s front-end has to be redirected or not. The BPD will be updated

in two distinct phases: during the execute stage, if a misprediction is detected, and during

the commit stage so that the branch prediction is updated only with non-speculative state.

29

2.2.3 Parameterization of the BOOM Processor

As will be detailed in Section 2.3, Chisel enhanced the way modern and com-

plex systems are designed by benefiting from facilities that allow the step-by-step and

high-level development of individual components that together may form a more com-

plex system, such as a processor.

BOOM was implemented in the Chisel hardware construction language and, by

convenience of design, there are "knobs" in its source code that make it easy to param-

eterize the processor. This way, for BOOM, the main structure sizes of the processor

can be chosen by the user before the processor description is compiled, and no further

modifications in the source code of the processor are required.

Some of the possible configurations of the BOOM processor that can be easily

parameterized are:

1. Fetch/Decode/Commit width: Defines the maximum number of instructions that

can be fetched, decoded and committed per cycle. Note that the maximum number

of decoded and committed instructions in a cycle, on average, is limited by the

fetch width, so actually only the maximum number of fetched instructions has to be

parameterized.

2. Issue width: Defines the maximum number of instructions that can be issued out of

the instruction window in a cycle.

3. Issue scheduler policy: Can be selected as Un-ordered or Age-ordered.

4. Map table: The commit map table can enable or disabled.

5. ROB size: Defines the number of entries in the ROB.

6. Issue window size: Defines the number of instructions that can reside in the instruc-

tion window.

7. LSU size: Defines the number of entries in the load/store queues.

8. RF size: Defines the number of physical registers in the RF.

9. Fetch buffer size: Defines the size of the fetch buffer that holds the fetched instruc-

tions.

10. Enable/Disable BPU: The backing branch predictor can be either enabled or dis-

abled.

11. Max in-flight branches: Defines the maximum number of branches that can be is-

sued per cycle.

30

12. RAS/BTB: Defines the sizes of the RAS and BTB structures.

13. Cache configurations: Defines the number of sets and ways in the L1 instruction

and data caches. It is also possible to enable or disable the L2 cache and configure

its parameters.

14. Latencies: The FPU and integer and multiplier and dividers latencies can be de-

fined.

Note that because it is easy to parameterize the BOOM processor, and there are

plenty of possibilities that can be parameterized, the design space to be explored in terms

of fault injection and fault tolerance tends to be high. In our fault injection analysis, for

instance, we could easily experiment with three different configurations of the BOOM

processor just by setting the appropriate values of the structure sizes.

2.3 Chisel - Constructing Hardware in an Scala Embedded Language

BOOM is developed in the Chisel (Constructing hardware in a Scala embedded

language) hardware construction language, which is derived from the Scala programming

language (BACHRACH et al., 2012). This language can be understood as a set of pre-

defined classes and libraries embedded in Scala. Chisel leverages Scala and gives it the

ability to abstract and to design hardware components with high-level programming fea-

tures, such as object orientation, functional programming, parameterized types, and type

inference.

Moreover, Chisel can generate optimized C++-based cycle-accurate simulators

and low-level Verilog that can be mapped either to field-programmable gate array (FPGA)

or application-specific integrated circuit (ASIC). The various Chisel backends are shown

in Figure 2.8.

The Chisel language was elaborated aiming to solve three common problems faced

by traditional hardware description languages (HDLs):

1. Because the most popular hardware-description languages (e.g., Verilog/VHDL)

were originally developed as hardware simulation languages, they were only later

adopted for hardware synthesis, hence their semantics are based on simulation,

which complicates synthesizable designs.

2. These languages did not evolve at the same pace modern programming languages

did. So they lack the powerful abstraction facilities that are common in modern

31

software languages, such as the object-oriented paradigm. This aspect lowers the

productivity as it is difficult to reuse components, for example.

3. These languages make it difficult to explore the design-space of complex structures,

as they have limited module generation facilities, which makes it difficult to produce

and compose highly parameterized modules required to support thorough design-

space exploration.

To overcome the deficiencies in (1)-(3), Chisel was designed as a language that

leverages great ideas in software engineering in hardware design. In other words, Chisel

takes the modern facilities and aspects of a modern programing language (Scala) and

enhances the design of complex, parameterizable, flexible and synthesizable hardware

structures. Therefore, the language improves the productivity as its modern features pro-

vide facilities to design hardware by composing smaller and reusable structures with way

better semantics than Verilog/VHDL.

Differently from the traditional concept of HDLs, where the hardware description

is translated into a netlist, Chisel works by a transformation of its source code into equiv-

alent C++/Verilog source codes. Since Scala is compiled to Java bytecodes, the process

of code translation from Scala to C++/Verilog works by compiling the Scala and then

running such bytecodes in the Java Virtual Machine (JVM). The JVM then constructs an

abstract syntax tree (AST) representing the hardware description, which in turn is trans-

lated into C++/Verilog equivalent source codes.

The C++ Chisel-exported code defines an “RTL” object-oriented simulator that

Figure 2.8: The Chisel code transformation flow.

Source: Author

32

Figure 2.9: Chisel description of the multiplexer and its equivalent transformed C++.
(a) Chisel description of the multiplexer. (b) C++-transformed multiplexer module.

(c) C++ behavioral description of the mul-
tiplexer. (d) An instance of the multiplexer.

Source: Author

33

honors the behavior of the system in a low-level mode. One could consider this exported

simulator as being, somehow, a C++ RTL description of the system, since it is as detailed

as its corresponding Verilog representation.

Figure 2.9 depicts an example of a two-input multiplexer written in Chisel and its

C++-transformed code. After this model is described in Chisel, the Chisel build process

generates the equivalent C++-modeled simulator in Figure 2.9b.

Note how high-level the Chisel model is; even the clock signal is implicit to the

designer, so it is not necessary to handle clock events. Conversely, Verilog/VHDL mod-

els have to manage clock events explicitly. In Chisel, the clock signal is automatically

created in the corresponding C++ model, as can be seen in Figure 2.9b. Also, note how

there are high-level classes such as Reg that create abstract concepts of elements, which

is a sophisticated object-orientation semantics applied in hardware descriptions. These

object-oriented concepts may increase the designer productivity significantly.

Figure 2.9b depicts the equivalent multiplexer module transformed into C++. The

C++ simulator is based on a fast multi-word library using C++ template classes, where

the signals and registers are represented by the dat_t special class definition (memories

defined in Chisel will be represented as mem_t objects in C++). Note also that the Chisel

transformation topologically sorts nodes based on dependencies by preserving the original

variable names while prefixing them with their top module name.

Figure 2.9c depicts the behavioral description of the multiplexer. The behavior of

the system in the exported code is based on the clock_lo(), and clock_hi() primitives. The

clock_lo() method handles all of the combinational updates, while the clock_hi() handles

the sequential ones. Notice that this model yields a cycle-accurate representation of the

system.

Figure 2.9d depicts an example instance and usage of the multiplexer module. In

this phase, all the user has to do is to feed the module with the inputs and invoke the

clock_lo() and clock_hi() method appropriately.

Notice in Figure 2.9 that there is a 1:1 correspondence between the Chisel model

and the C++-exported code (also valid for the Verilog-exported one). Each signal and

register represented in the Chisel will be represented in the C++ simulator with exactly

the same number of bits. In other words, there is no single loss of information about the

system’s model when the code is transformed from Chisel to C++.

As simulation speed is often an important aspect to be considered, a study in

(BACHRACH et al., 2012) compared the performance of the C++-based simulator to

34

Figure 2.10: Performance of the Chisel-generated Verilog/C++.
(a) Simulation times for the Chisel C++ simulator, Synopsys VCS Verilog simulation, and FPGA emula-
tion when a 64-bit five-stage RISC processor boots an OS.

(b) Total time required to compile and simulate a system us-
ing various Chisel back-ends.

Source: Adapted from (BACHRACH et al., 2012)

the performance of the equivalent Verilog by using the Synopsys Verilog Compiler Simu-

lator (VCS), where an RISC five-stage pipelined processor was implemented and used to

boot an operating system (OS). Figure 2.10 compares the significant difference between

performances of various Chisel backends.

Results show that the C++ simulator booted the OS 7.7 times faster than the VCS

simulator, as shown in Figure 2.10a. This figure compares the total time taken (compile

time + run time) for various Chisel backends in order to boot the OS.

Notice how the compilation time is the bottleneck for the FPGA, so even though

the FPGA boots the OS about 575/76 ≈ 7.5 times faster than the C++ simulator, the total

time required to compile the processor and to configure the FPGA makes it slower than

the C++ backend. Because compilation time is not negligible and it is constant, the fastest

method will depend on the number of cycles the application executes. As an example, note

that the C++ simulator will only be faster than the VCS when millions or more cycles are

simulated, this limit is highlighted by the red dash in Figure 2.10b. Notice also that the

performance of the C++ simulator is highly dependent on compiler optimizations.

35

2.4 The RISC-V ISA

RISC-V is an open source Reduced Instruction Set Computer (RISC) ISA pre-

sented in (WATERMAN et al., 2014) and (WATERMAN, 2016). This ISA is divided in

a small base integer ISA, useful for education an research, and an optional extension that

supports applicable software development. Also, the ISA is subdivided in different cat-

egories that may be deployed on 32-, 64-, and even 128-bit architectures, depending on

the requirements and performance/energy trade-offs. While the base ISA is simple and

suitable for education and research, it is efficient enough to be used in low power devices.

Conceptually, the ISA is subdivided in the subsets RV32I/RV32G, RV32E, and

RV64I/RV32G. These categories implement the same instructions and behave similarly,

differing only on the width of the physical registers and the size of the memory space.

RV32E is a variant of RV32I, it implements the same instructions, but contains half the

number of registers, making it suitable for small, power-constrained and energy-efficient

applications. BOOM implements the RV64G ISA variant as its register file consists of

65-bit3 registers.

The RV32I is the most basic and simple variation of RISC-V. It implements 47

instructions, subdivided in system instructions (system calls and performance counters),

computation, control flow, and memory access instructions. The ISA is termed a load/-

store architecture, as only load/store operations can transfer data between the processor

and the memory. The arithmetic and logic instructions operate only on registers.

Both RV32I and RV64I ISAs implement 32 logical registers (x0-x31), 31 of them

are of general-purpose use, and register x0 is hard-wired to the constant zero. Instructions

are fixed 32-bit long, and are classified in computation, control flow, and memory access

instruction, and each of this classes of instruction has a different format.

Each instruction consists at most of one destination and two source registers (i.e.,

computation). Source and destination register specifiers always occupy the same position

in different instructions, regardless of the instruction class. That aspect simplifies the

processor implementation and allows for the register fetch and decode to occur in parallel.

As this dissertation does not intend to be a reference manual on the RISC-V in-

struction set, the following items just shortly illustrate some of the basic aspects of the

ISA instructions, which are classified as:

3BOOM’s physical registers are 65-bit wide because it implements the Berkeley hard float floating point
units which use internal 65-bit operands.

36

• Computational Instructions: Comprised of 21 arithmetic, logic, and comparison

instructions. They operate between two integer registers, or between one integer

register and one immediate value, and save the results in a destination register.

Arithmetic operations are addition, subtraction, and bitwise shifts. The logical op-

erations perform bitwise Boolean operation, such as logical AND, OR, and XOR.

Comparison operations perform arithmetic magnitude comparisons between two

sources and write either 0 or 1 values into a destination register depending on the

comparison result.

• Memory Access Instructions: Comprised of load and store instructions. Load in-

structions are divided into five different types that can load a single byte (LB or

LBU), 16-bits (LH or LHU), or 32-bits (LW) from memory into a destination reg-

ister. The ’U’ stands for unsigned. There are three possible store instructions, SW

(for 32-bits), SH (for 16-bits) and SB (for a single byte).

• Control Flow Instructions: Comprised of six conditional branch instructions that

work by comparing the contents of two source registers and then changing the pro-

gram flow in a rage of ±1K instructions. Also, there are two unconditional branch

instructions that may set the program counter to a given address while saving the

address of the next instruction in a destination register, so that it is possible to return

to the address of the instruction fallowing the branch.

• System Instructions: Comprised of eight instructions that can perform system calls,

invoke the debugger and operate on control and status registers (CSR). The current

CSRs hold the values of the cycle counter, real-time clock and number of instruc-

tions retired. These are 64-bit counters, so each of them is implemented as two

32-bit registers and there is a specific instruction to read each of them, yielding six

instructions necessary to access the CSR registers.

Beyond the basic functionalities required by any ISA, RISC-V offers additional exten-

sions that makes the ISA flexible. The extensions are termed "MAFD". M provides

additional instructions that perform integer multiplication and division. A stands for

atomic memory operations useful for synchronization of parallel applications. F stands

for single-precision floating point operations, it adds 30 new instructions to operate on

data movement (load/store), conversions, comparisons, and arithmetic instructions, all of

them operating on floating point data. D stands for double-precision floating point oper-

ations. This extension is similar to the F extension, but operates on 64-bit registers and

new instructions are added to operate on double-precision values.

37

When a base integer ISA RV32I/RV64I is extended to handle the MAFD exten-

sion, the extended version of the ISA is termed RV32G/RV64G. Where the abbreviation

G is used for the combination of the base integer ISA plus the MAFD extension (i.e., G is

an alternative for the term IMAFD).

38

3 BACKGROUND ON FAULT INJECTION AND RELATED WORK

3.1 Soft Errors and Technology Scaling

Until a few decades ago, most of the concerns with soft errors were related to 1)

space applications, where the levels of radiation-induced faults are high due to cosmic

rays; and 2) alpha particles emitted by radioactive impurities of uranium and thorium

in packaging materials operating at ground level. The latter proved to be the dominant

cause of soft errors in DRAM devices during the 1970s (BAUMANN, 2005). Moreover,

a study in (MAY; WOODS, 1979) discovered that alpha particles imposed significant

contributions to soft errors in dynamic memories, and the soft error rate (SER) was found

out to be proportional to the alpha particle flux.

Regarding space applications, a study in (BINDER; SMITH; HOLMAN, 1975),

for instance, investigated the influence of cosmic rays that caused anomalies on satellites

back in the 70’s. However, due to the technology aggressive scaling, transistors’ sensitiv-

ity to faults tends to increase, and nowadays faults can be experienced even in applications

operating at ground level.

Soft errors are radiation-induced, non-permanent faults which happen due to a par-

ticle hit, e.g., an alpha particle from radioactive decay of impurities in packaging material

or a neutron from cosmic rays (CHANDRA; AITKEN, 2008). When a particle hits the

transistor of the sequential logic of a system, it creates a transient current pulse. If the cur-

rent pulse is large enough, it can flip the value stored in a single element (memory cells,

latches, flip-flops, etc...). These upsets are called Single Event Upsets (SEU) and are the

main contributors to soft errors observed in many of the current technology operating at

ground level (DODD et al., 2010). Furthermore, as the density of transistors in a system

has increased, the distance between sensitive regions, such as memory cells, decreased.

Hence devices containing multiple elements close to each other can experience Multiple

Bit Upsets (MBU), which is defined as any event or series of events that cause more than

one bit to be upset during a single measurement (REED et al., 1997).

As a consequence of this shrinking process, transistors become more sensitive

to soft errors due to the reduction of the critical charge (KARNIK; HAZUCHA, 2004).

Furthermore, even though the soft error susceptibility, mainly SEUs, decreases linearly as

area decreases, it increases exponentially as voltage decreases. So it should be expected

that the voltage reduction that follows the transistors’ size aggressive scaling would cause

39

growth in SEU rates (DIXIT; WOOD, 2011).

Soft errors can affect static random access memories (SRAM), dynamic random

access memory (DRAM), combinational logic and sequential elements in a circuit. Each

of these structures may be vulnerable, and they have different sensitivity levels and their

fault models are considerably different.

A study in (DODD et al., 2010) delineates some trends in memory cells as fea-

tures’ sizes shrink from 200nm to 40nm CMOS technologies. Two main trends can be

identified:

• DRAM’s SER per bit decreases because DRAM’s storage capacitors have not de-

creased significantly. Hence an individual DRAM cell of today’s technology is not

significantly more sensitive than it was generations of technology ago. At the same

time, the cell’s size has indeed shrunk with technology scaling, hence the SER per

bit has decreased since there are more bits per area.

• For SRAMs, the decrease in the charge collection efficiency, which is a measure

of the magnitude of charge generated by a particle strike, has caused growth in

SER per bit with device scaling until the last two or three technology generations.

However, SRAM’s SER appears to be saturated or even became slightly smaller

with 90nm and smaller technologies.

A common method used to report the levels of dependability of a system is based

on the rate at which soft errors occur: the failures in time (FIT) metric tells that 1 FIT cor-

responds to 1 failure in one billion hours. The trends observed in the DRAM and SRAM

memories led their soft error sensitivities to become considerably different. At 90nm

technology, for instance, SRAM and DRAM’s SERs are about 800 and 2 FIT/Mbit, re-

spectively, evidencing that SRAMs are considerably more sensitive than DRAMs (DODD

et al., 2010). Note, however, that this metric relates to the number of failures per bit, and

does not reflect the overall failures observed in today’s memories. As technology shrinks,

the number of bits in memory grows significantly as the bit density increases, hence the

raw failures experienced in SRAMs increases, while the overall number of DRAM’s soft

errors is roughly constant over the years.

Soft errors can also arise from faults in the combinational logic of the circuit when

sufficient radiation induced charges are created in the transistors, these are known as

Single-event transient (SET). If such a glitch propagates to the inputs of a latch or flip-

flop during the latching clock signal, the noise will be stored in the input, and possibly

40

will alter the actual correct value that should be stored (BAUMANN, 2005).

Faults in combinational logic can only be observed if the fault hits the cell in

appropriate circumstances, which makes the combinational logic much less susceptible

to soft errors than memory cells (SHIVAKUMAR et al., 2002). This low susceptibility is

justified by three main phenomena that can naturally mask the faults:

1. Logical masking: Occurs when the fault affects an input of a logic gate that will

eventually produce a result that is independent of the faulty input. An example

could be a two-input AND gate, where one of the inputs is set low. If a fault affects

the other input, the result will not be changed, since it is deterministically zero.

2. Electrical masking: Occurs mainly due to the attenuation of the electrical pulse

generated by the particle hit. It is expected that signals propagating from combi-

national logic to a state element tend to be attenuated as it propagates through the

circuits.

3. Latching-window or temporal masking: Occurs when the fault propagates to the

latch in a period of time that is not the period where the latch is supposed to be

written. Note that this masking effect depends on the frequency of operation of the

system.

Even though these three masking factors lead combinational logic to be less sensi-

tive to faults than memory cells, the technology shrinking may eventually attenuate these

masking effects, or even prevent them from happening in some exascale technologies.

The electrical masking caused by attenuation tends to be less effective as the transistors’

size diminishes. Likewise, the voltage reduction allows an increase in the frequency of

operation of the system, which reduces the latching-window time, hence the temporal

masking may be less effective (SHIVAKUMAR et al., 2002). Additionally, more up-to-

date experiments conducted in (MAHATME et al., 2014) and (LI; DRAPER, 2016) con-

cluded that combinational SER is even comparable to the sequential SER with particular

technologies.

Despite SET effects tend to become more and more problematic, in this work we

focus on SEUs since they are still the main contributors to soft errors (SHIVAKUMAR et

al., 2002). More specifically, we focus on SEUs that affect the sequential logic (i.e., the

flip-flops) of BOOM.

As systems are more susceptible to soft errors, fault-tolerant circuits are of increas-

ing importance. Therefore it is necessary to understand the behavior of the system under

41

the presence of faults, so efficient fault-tolerance mechanisms can be devised. One of the

most common and efficient techniques to estimate the fault-tolerance levels of a system

is by means of fault injection, which can be defined as the intentional perturbation of the

elements in a system in order to alter their logical values, while the fault propagation is

observed (HSUEH; TSAI; IYER, 1997).

For low-level evaluations, fault injection techniques usually work by changing the

state of latches, flip-flops or even individual transistors. For higher-level evaluations,

however, it consists in disturbing the state of more abstract elements such as registers,

instructions or the contents of memory addresses.

Fault injection can be traditionally categorized in hardware-, emulation-, simulation-

, and software-based techniques, and each of them can be traded-off in terms of cost,

injection time, precision, and representativeness.

It is important to illustrate both advantages and deficiencies imposed by hardware-

based fault injection, hence evidencing the trade-offs between this method and the simulation-

based ones. This way, Sections 3.2 and 3.3 briefly review hardware-based and simulation-

based fault injection methods, respectively. Some examples of simulation-based fault

injection methods are introduced in Section 3.4

3.2 Hardware-based Fault Injection

Hardware-based fault injection consists in injecting faults directly in the physical

hardware in a pure analog way. It relies on specialized equipment to disturb the hardware

components. This method is traditionally categorized in fault injection with and without

physical contact (HSUEH; TSAI; IYER, 1997), as follows:

• With physical contact: There is a direct physical contact with the system and works

at pin-level. It may either use probes to produce voltage or current disturbances in

the pins or it can work by inserting sockets that force analog signals in the pins that

perturb logic values of the state elements.

• Without physical contact: There is no direct contact with the hardware. External

tools induce heavy-ion radiation into the system, or the system is placed in an elec-

tromagnetic field that causes the fault. This tactic causes spurious currents that

disturb the system.

Hardware-based fault injection becomes expensive since it requires setting up the

42

system with dedicated equipment to perform the fault injection and to analyze the behav-

ior of the system under the presence of faults. Also, the setup time it takes to prepare the

system with such equipment should be taken into account, even though it is a one-time

process (ZIADE; AYOUBI; VELAZCO,). However, it should be mentioned that after the

setup process, running applications and injecting faults in an actual hardware is usually

faster than doing it in a simulator that models the hardware.

Beyond the costs imposed by the specialized equipment, one must consider the

costs and accessibility of the hardware itself. In that sense, the limitations are:

• The hardware is, of course, not available before it is actually implemented, therefore

it is not possible to make early evaluations of the target system. Therefore, in case

hardware structures are found to be fault-sensitive, it would have to be rebuilt from

scratch.

• The hardware may be damaged in the fault injection process, hence becoming use-

less and the costs tend to increase.

Another deficiency of such technique is related to its levels of controllability, ob-

servability, and repeatability. Usually, there is no way to control where the faults are

supposed to be injected with accuracy, mainly when there is no direct contact with the

target system. Hence, any sort of failure cannot be repeated, nor can its behavior be easily

observed. Moreover, one of the most difficult parts of such technique is related to its fault

monitoring and observability because the detection of the fault in the internal structures

of the processor may be really difficult and requires the usage of complex monitoring

hardware (CARREIRA et al., 1998).

Even though the hardware-implemented technique has many shortcomings, it has

some advantages, such as:

• There is a low-level model of the system, so the entire system is exposed to the

tester, meaning that the fault coverage is usually the highest possible.

• It is not intrusive, so the design under test (DUT) does not need to be modified by

any means to perform the faults.

• Experiments are usually fast after the setup process.

• It puts the equipment to work in a situation that resembles the actual environment

the equipment is supposed to be used, so that the evaluation may be realistic.

Since the limitations of the hardware-based fault injection method may be a pro-

hibitive factor, designers can appeal for RTL descriptions (i.e., Verilog or VHDL models)

43

of the hardware, which can be used to emulate the hardware behavior at low-level and

with high controllability. This method may work as an emulation-based technique im-

plemented on FPGAs. Unfortunately, such RTL descriptions are frequently intellectual

property and hence are not publicly available. Also, this technique tends to be slower than

the hardware-based one, since the system is simulated at low-level.

3.3 Simulation-based Fault Injection

On account of the restrictions imposed by the hardware- and emulation-based fault

injection methods, some techniques rely on software-based simulators, mostly described

in C/C++ high-level languages, that intend to mimic the behavior of the system in a more

high-level perspective where the low-level structures are not modeled. Good examples

of such tools are the instruction set simulators (ISS). An ISS may be defined as a layer

of software that resides in a host system that enables instructions compiled to one target

architecture that is different from the host architecture to execute in the host (LV et al.,

2008).

An ISS can either work by means of binary translation, such as QEMU (BEL-

LARD, 2005), where the target instructions are translated to the host instructions and

then are executed natively, or they can work by means of interpretation and simulated

execution of the target instructions without explicitly translating them, such as the gem5

simulator (BINKERT et al., 2011).

The main advantages of the simulation-based over the hardware-based strategy

are:

• It is flexible, so it is easy to modify the hardware-models, or even the fault models,

for instance.

• No need for the hardware to be physically implemented, so it is possible to early-

evaluate the system’s reliability with certain accuracy.

• It is highly controllable, so fault location and time can be deterministic.

• It is does not rely on RTL descriptions of the system, which may not be of public

domain.

One of the worst limitations of some high-level simulation-based techniques are

related to their degree of representativeness. Most of these tools only model the hardware

at high-level, which brings difficulties in evaluating the hardware structures with the same

44

accuracy provided by RTL models.

The next sections introduce some tools related to simulation-based fault injection.

3.4 Related Work on Fault Injection Tools

Several fault injection platforms for General-purpose Processors (GPPs) and Graphic

Processing Units (GPUs) have been developed on top of different simulators and using

different strategies. This section briefly discusses some of them, pointing out their func-

tionalities, benefits and deficiencies.

3.4.1 DrSEUS - A Dynamic Robust Single-Event Upset Simulator

In (CARLISLE et al., 2016), the authors propose DrSEUs, a fault injector capable

of simulating two types of single event effects (SEE): single event upsets (SEU) and single

event functional interrupts (SEFI).

The tool works coupled with the Simics simulator, which provides functionalities

to save and restore processor checkpoints (the state of the processor in a given cycle).

DrSEUs injects faults in a Freescale’s PowerPC-based processor by modifying

application checkpoint files and loading it into the Simics simulator. Put another way,

DrSEUs does not require any modifications of the design under test (DUT) - neither the

Simics simulator nor the application needs to be modified since the fault injection process

consists basically of modifying checkpoint files by an external tool (the fault injector

itself).

Figure 3.1 depicts architecture of the fault injector. Communication between

Figure 3.1: The DrSEUS fault injector architecture.

Source: (CARLISLE et al., 2016)

45

DrSEUs and Simics is done by means of the standard STDIN and STDOUT ports. Also,

a pseudo-terminal that emulates serial communication is used to issue commands and to

monitor the Simics execution. A virtual Ethernet port is implemented in order to send and

receive files to Simics, which includes applications binaries and input/output files.

As a first step, the fault injection campaign collects golden checkpoints in a fault-

free run (the state of the processor in a given cycle where no faults are injected). Then,

the fault is injected by picking a copy of a randomly selected checkpoint and bit-flipping

a random bit of an arbitrary register of it. After that, the mutated checkpoint is loaded into

the Simics simulator, and the simulation starts execution from that checkpoint.

If the application completes execution with no errors, an output file is extracted

from Simics in order to compare it with the golden equivalent file in order to detect fail-

ures.

The main disadvantage is that the Simics is a functional simulator that works at the

instruction level, so it does not provide a low-level perspective of the hardware compo-

nents that could be targeted in a hardware-based fault injection. Therefore fault injections

have to be performed at the architectural level (usually at user-visible registers only) of

the processor components.

3.4.2 OVPSim-FIM

In (ROSA et al., 2015), the authors propose the OVPSim-FIM fault injection plat-

form aiming to evaluate the ARM Cortex-A9, Cortex-A15, and Cortex-M4F processors.

The tool was implemented by coupling a fault injection library to the OVPSim simulator.

The OVPSim-FIM fault injection process can be summarized in five stages:

1. Golden execution: Applications execute in a fault-free mode. No faults are injected

and the final processors state, memory and instructions count is logged.

2. Fault configuration: This phase configures the fault location and time. As the OVP-

Sim simulator is not cycle-accurate, the number of instructions executed is used as

a temporal reference, and the fault time actually tells in which instruction the fault

is supposed to be injected. The fault locations are any randomly chosen register or

memory address, and the fault model is based in a single bit-flip.

3. Error analysis: Compares the results of the fault campaigns with the equivalent

golden execution in order to detect failures. Also, failures are classified in this

46

phase.

4. Error report: Reports results created during phase 4.

Since this simulator is not cycle-accurate, the dynamic instruction count was used

as a temporal reference during campaign time, which is considerably coarse-grained.

Also, the simulator models the processor behavior at high-level, and faults can be injected

only on architectural registers and memory.

3.4.3 F-SEFI - Fine-grained Soft Error Fault Injector

In (GUAN et al., 2014), the authors propose F-SEFI, a fault injection tool built

by coupling a fault injection broker (a module) to the QEMU virtual machine. The tool

performs binary injection dynamically.

QEMU works by translating instructions from the guest ISA to the host ISA by us-

ing the Tiny Code Generator (TCG). After the translation phase is complete, the translated

instructions can be executed natively by the host machine. Fault injections are performed

by intercepting instructions and replacing them with faulty instructions during the TCG

translation.

F-SEFI can target instructions in specified functions by benefiting from a binary

symbol table. Also, multiple instances of Guest OS’es can execute in parallel and in an

isolated form, so that different architectures can be evaluated at the same time without

interference. F-SEFI can also target a specific application, hence multiple applications

running in the same Guest OS can be targeted in a controllable manner.

Figure 3.2 depicts the architecture of the platform. The F-SEFI Broker intercepts

selected instructions coming from the Guest OS (the OS being emulated). Faults are

injected in the intercepted translated instruction, then the instruction is executed by the

Figure 3.2: The F-SEFI fault injector architecture.

Source: (GUAN et al., 2014)

47

Host Kernel.

The main disadvantage of this strategy is that QEMU works at instruction-level,

hence it can only target specific micro-operations to inject faults. In other words, since

the fault injections are performed in the instructions (at the assembly level), it does not

accurately reflect equivalent hardware fault injections.

3.4.4 MaFIN and GeFIN

In (KALIORAKIS et al., 2015), two different fault injectors, MaFIN and GeFIN

(for MARSS-based and Gem5-based Fault Injector, respectively) are proposed in order

to investigate the propagation of faults in the x86 and ARM ISAs at micro-architectural

level. The work aimed at studying the reliability on different ISAs and reliability studies

on the same ISA on different simulators. Also, both MaFIN and GeFIN support transient,

intermittent and permanent fault models.

Both MaFIN and GeFIN functionalities are depicted in Figure 3.3. The process of

injecting faults consists in:

1. Generating a list of fault masks: In step 1, a list of fault descriptions is generated

in the form of masks. A fault mask consists of the processor core where the fault

is going to be injected, the microarchitecture structure on which the fault will be

injected, the exact bit position of the injection, the exact simulation cycle or exact

instruction on which injection happens (for transient or intermittent), the type of

fault, and the population of faults (single or multiple).

2. Running & Injecting the fault: The Injection Campaign Controller reads fault

masks from the masks repository and sends it to a Injection Dispatcher, which

is the module that communicates directly with the MARSS and Gem5 simulators.

Finally, step 2 retrieves files with the results of the fault injection process and logs

them in the logs repository.

3. Process the results: In step 3, the Parser component takes the log files generated in

step 2 and processes the files in order to detect and classify the faults.

Even though both MaFIN and GeFIN are micro-architectural and detailed simula-

tors, they do not model the system at RTL (i.e., the C++ description of these simulators is

not equivalent to the RTL description of the same system). That implies that these sim-

ulators do not model, for instance, all the intermediate flip-flops found in an equivalent

48

Figure 3.3: The MaFIN and GeFIN fault injector architectures.

Source: (KALIORAKIS et al., 2015)

RTL description of the system. Functional units, for example, are not modeled by these

simulators in a way that resembles the actual hardware implementation. Also, these simu-

lators do not model the combinational logic of the processors, meaning that the faults may

not propagate through the components in the same way they would when injecting faults

in a real RTL description. As a consequence, MaFIN and GeFIN can only inject faults

in hardware components that are modeled as arrays, such as the register file, load/store

queues, and caches.

3.4.5 GPU-Qin - A GPU Fault Injector

The methodology developed in (FANG et al., 2016) (the GPU-Qin framework)

aims to evaluate the resiliency of GPGPU applications written in the NVIDIA Compute

Unified Device Architecture (CUDA) and running them on an actual NVIDIA GPU.

CUDA is a standard API (application programming interface) that enables pro-

grammers to use a GPU device as a means for processing big amounts of data in parallel

in a programming model known as single instruction/multiple threads (SIMT). Basically,

this API allows for the programmers to transfer input data from the host CPU to the GPU,

the GPU then splits a kernel C/C++ function into several distinct threads working on the

data in parallel. Once the output is calculated, it is then transferred back to the host CPU.

This model extends the usage of GPUs to general purpose applications, so it is commonly

termed General Purpose Graphics Processing Unit (GPGPU).

49

Aiming to evaluate the resiliency of some GPGPU applications, GPU-Qin injects

faults at instruction level using a GPU-based debugger (cuda-gdb), which provides meth-

ods to trace and modify the application at runtime. The injection process consists in three

different phases: Grouping, Profiling and Fault injection. Grouping and Profiling phases

are performed in the GPGPU-Sim GPU simulator, but the applications execute natively

(i.e., in a real GPU hardware) when faults are injected.

Figure 3.4 depicts the fault injection process, and it can be summarized as:

1. Grouping: As the number of threads in GPGPU applications may be too high (often

tens of thousands), it is infeasible to obtain an execution trace for each of the possi-

ble threads. To overcome that, the method used consists in analyzing the behavior

of the application and in separating similar threads in different groups. Threads

are considered similar when they execute a similar number of dynamic instructions.

After the threads are grouped, one thread from each group is selected to obtain the

execution trace.

2. Profiling: This phase consists in mapping the dynamic instructions executed by the

selected threads in the previous phase to their corresponding CUDA source code

line. This is important since the fault injector relies on the cuda-gdb tool, which

needs the source-code line for setting breakpoints along the program flow. The

output of the profiling step is an instruction trace consisting of the program counter

values and the source line associated with each instruction (FANG et al., 2016).

3. Fault injection and monitoring: In this phase, a random thread is selected to inject

the fault. A conditional breakpoint is triggered when the selected thread reaches

a chosen source-code line that corresponds to a randomly selected instruction ob-

tained from the trace from the previous phase. Faults are injected at the instructions

(source or destination registers; or memory addresses) when any breakpoint is trig-

gered. This process is repeated until a significant number of faults are injected.

Since this process works at the assembly level, this technique is useful to assess

the impact of faults only at the architectural state of the GPGPU. Even though the real

hardware is used in the process, cuda-gdb provides access only to a subset of the GPGPU

state, so it is not possible to directly target any specific component of the GPGPU.

50

Figure 3.4: GPU-Qin injection process.

Source: Adapted from (FANG et al., 2016)

3.5 Main Contributions of the Proposed Platform

As it was already mentioned, fault injection tools generally have intrinsic charac-

teristics that should be considered when a system’s reliability is to be evaluated. We point

out six primitives that should be considered:

1. Representativeness: How accurately is the system modeled? Is there a real hard-

ware? If not, how accurately is the hardware modeled?

2. Controllability: What is the level of controllability of the fault injection? Can one

choose where/when faults should be injected?

3. Accessibility: Is there an available model of the system in which faults can be

injected? Is there a real hardware? Is there an available simulator or an HDL

description of the system?

4. Cost: Is there additional costs to inject faults into the system? Or is it for free?

5. Synthesizability: Can the system be synthesized?

6. Performance: How many faults can be injected per second?

The main problem statement of this work is based on the fact that there is a trade-

off between hardware-based techniques and methods based on high-level simulators. For

51

both techniques, the items (1)-(6) are never provided altogether (ARLAT et al., 2003).

However, the main goal of this work aimed to implement a fault injection tool for a super-

scalar processor that is controllable and cheap, while working at RTL. This aspect requires

that such a tool inherits both the levels of representativity of a hardware (to some extent)

and the levels of controllability of a simulator implemented in software. Moreover, as

some techniques may or may not allow the physical implementation of the system, the

synthesizability is an important aspect to be considered.

Note that, although our platform works at RTL, it is not as representative as the

real hardware because it does model the electrical characteristics, voltages, features’ sizes

and propagation delays between gates, for example. However, since in this work we are

interested only on SEUs, working with a simulator at RTL is arguably accurate and fault

injections in this model may be considered similar to fault injection in the real hardware.

By similar, we mean that the SEUs tend to propagate through the simulated processor

in an analogous way they would propagate in the real hardware if no electrical events

masked the fault. On the other hand, if the phenomenon to be investigated are MBUs,

for example, then our tool would lack the physical model of the characteristics of the

hardware that influence the propagations of MBUs, because these events depend on the

actual distances between gates and latches and the frequency of operation, for example.

Table 3.1 compares the items listed in (1)-(6) for each of the fault injection meth-

ods considered. The symbols ’+’, ’++’, ’-’, and ’- -’ represent the different "intensities"

for each of the characteristics listed in the table. For the hardware-based method, the ’- -’

symbol means it has really poor performance, while the ’++’ symbol means it is strongly

representative, for example. Note how our tool meets the criteria of a really sophisti-

cated fault injection tool, because it fits in one of the best possibilities (i.e., it is accurate,

controllable, available and cheap, etc...).

Table 3.1: Comparison between hardware-based, simulation-based, and the proposed
fault injection tool.

Feature Hardware-based High-level simulator-based Proposed tool
Representativeness ++ - +

Controllability - + +
Accessibility - + +

Cost + - -
Synthesizability + - +

Performance - - ++ +
Source: Author

52

In order to highlight the main accomplishments of our platform, we explain Table

3.1 as follows:

• Hardware-based: Even though it has good representativeness, it is usually expen-

sive due to the infrastructure necessary to inject faults and has poor performance

(bad). Also, the acquisition of a hardware is often both difficult and expensive (also

bad).

• High-level simulator-based: It is highly controllable and has the best performance

among all methods (good), but the levels of representativeness may vary consider-

ably as some simulators may be purely functional (bad), while others may model

the micro-architectural level of the system, but not at RTL (so-so).

• Proposed tool: Models the system at RTL (good), hence its performance tends to

suffer (bad). It is based on a software simulator, so it is controllable (good). It is

available (good). It is for free (good).

As a final note, it is important to mention that the availability of such a platform

is only possible because there is a 1:1 correspondence between the Verilog description of

BOOM and its simulator, which is automatically generated by the build tools we benefit

from (Chisel itself). Therefore, another notable aspect that boosts our platform one step

ahead of the high-level simulators is that, as Chisel generates Verilog, the BOOM pro-

cessor can actually be physically synthesized or programmed in an FPGA, while other

popular high-level simulators, such as gem5, are restricted to work only in software.

53

4 A PLATFORM TO EVALUATE THE BOOM’S SENSITIVITY TO FAULTS

As it can be noted from the previous sections, there are several methodologies

and tools developed in the area of resilience evaluation. However, the most important

aspect to be learned is that there is a trade-off between the hardware- and simulation-

based techniques. In short, this trade-off can be summarized as:

1. The hardware-based technique, in some cases, is not plausible mainly due to its

poor accessibility, high costs and lack of controllability. But since it uses the real

hardware, it does not rely on high-level methods that could provide non-realistic

evaluations (i.e., it has good representativeness).

2. The techniques based on high-level simulators are not as detailed as the hardware

they intend to model, hence it may provide poor representativeness. In other words,

injecting faults in such simulators may not resemble fault injections in the real hard-

ware. But it comes at low-cost and experiments are often controllable.

Besides the trade-off between (1) and (2), it is important to mention that there is

a lack of open-source tools that evaluate the resilience to faults of superscalar processors

at low-level. In fact, none of the tools studied over the course of this work allows for the

resilience evaluation of such complex systems at RTL.

Therefore, we developed a fault injection platform that trades off the shortcomings

imposed by the fault injection techniques discussed so far. The development of the tool

works by leveraging the BOOM’s simulator infrastructure in a way that faults can be

injected in the registers of the processor.

The next sections describe how the platform to evaluate the sensitivity of the

BOOM processor was implemented and how the process of injecting faults is performed.

4.1 Platform Overview

The basic foundation of the proposed fault injector is the BOOM’s simulator RTL

infrastructure. Recall that, since BOOM is developed in Chisel, we benefit from an auto-

matically generated C++ simulator that packs all of the processor state and behavior. The

adopted approach to implement the platform was to couple a fault injection module to the

BOOM’s C++-exported simulator. Figure 4.1 shows the build process of the platform.

The C++ exported simulator is highly detailed, meaning that the complete proces-

54

Figure 4.1: Build process of the fault injection platform.

Source: Author

sor state is accessible in the simulator’s internal behavior, i.e., for each bit in BOOM’s

Verilog representation, there is an equivalent bit in the C++ simulator. This feature is

the core and fundamental idea behind our tool because it bridges the gap between the

hardware and simulation-based traditional fault injection tools by providing access to the

processor at RTL by means of a cycle-accurate simulator.

First, the BOOM’s Chisel source code is compiled, and the equivalent C++ simu-

lator is generated, as shown in the Chisel’s work part on the left side of the figure. After

the BOOM’s C++ source code is available, an external tool (the RegExporter) scans this

source code looking for variables that represent each of the registers of the processor (i.e.,

all sequential components). The registers are filtered by their respective variable names

and are grouped according to their functionalities in the processor (e.g., registers in the

RF or ROB). As an outcome, several other C++ source files that enable the access to

any of the registers of the processor are grouped into bundles of registers. Once these

new automatically generated source files are exported by the RegExporter tool, they are

then compiled and linked together to form the RegisterBase component. This process is

illustrated in the Our work side of the figure.

The framework can be seen as a tool composed roughly of 6 different components:

• BOOMlib: It is the library compiled from the C++ exported source code that mod-

els the processor’s behavior in a cycle-accurate way. This library consists of the

entire processor state and behavior. All of the processor’s registers and behavior

55

will be encapsulated inside a single C++ top class termed Top_t, which holds the

clock_lo() and clock_hi() methods for the BOOM’s combinational and sequential

behavior.

• AppProfiler: Collects fault-free information about the application, which is the first

step in the fault campaign. It works by running the benchmark and storing some

information such as the final virtual memory state (namely, the golden memory)

and the number of cycles executed by the application (golden cycles). The golden

memory is the correct result provided by the processor.

• RegisterBase: Consisted of an array of pointers to the registers of the processor.

During the framework’s build process, the C++ BOOM’s source code is scanned by

an external tool (the RegExporter), and the registers are exported from it, forming

new source codes with methods to push the registers’ addresses to an array. At

runtime, registers are grouped according to their functionalities (see Figure 4.1).

For instance, there is a method responsible for pushing all of the address of the RF’s

registers to the array in a proper file, while the addresses of the ROB’s registers are

pushed by a method in another file. At runtime, the fault injection module can target

any of these registers. This component is also used to save and restore the processor

state so that our tool can afford a checkpointing mechanism.

• CheckpointingMgr: The checkpointing manager accelerates the fault injection

campaigns by fast forwarding and early stopping the application execution.

• Saboteur: Responsible for injecting faults in the processor. It basically consists of

a structure that defines the fault model and a pointer to the RegisterBase component.

As transient faults are supported, this module works by injecting a single bit-flip in

a random cycle in any arbitrary register during the application execution.

• Logger: Compares the final memory state to the golden memory in order to detect

failures and logs the results in a status file.

Beyond the fault injection modules, the platform was also enhanced with an in-

struction and performance monitor module. This component allows the analysis of the

instruction trace and provides a profile of the instruction mix executed by the workload.

Also, this module provides the IPC metric of the application. This is useful since it pro-

vides the characterization of the workload, which may reflect in the fault sensitivity of the

hardware structures.

More implementation details for the modules will be discussed in Section 4.3, but

56

first, it is important to have a basic understating of the overall fault injection process,

discussed in the next section.

4.2 Fault Injection Process

4.2.1 The Fault Injection Life Cycle

Our framework supports two different modes of operation: fault-free and faulty

mode. In the fault-free mode, no faults are injected, and it is used to collect golden

checkpoints and to profile the application. Application profiling works by collecting the

contents of the main memory and the number of cycles taken by the application to be exe-

cuted. That must be the first step of the fault injection campaigns, as shown in Figure 4.2.

The checkpointing mechanism works by saving and restoring the state of the registers,

caches, and memory considering a given interval between them. Note that the step Profile

application & Collect checkpoints is a one-time process, hence can be skipped for future

campaigns.

Once the fault-free mode is complete and all the necessary checkpoints are col-

lected, the faulty mode starts, when the actual faults are injected in the processor.

The faulty mode is the framework’s bottleneck in terms of execution time since the

simulator is supposed to run for several times in this mode, as thousands of faults have to

Figure 4.2: The fault injection life cycle.

Source: Author

57

Figure 4.3: The checkpointing mechanism - the application is first fast-forwarded to
Cprev, and it may be halted in any Cpost in case the fault is masked.

Source: Author

be injected. Therefore, performance becomes of crucial importance, and the checkpoint-

ing mechanism is used to achieve better performance.

As shown in Figures 4.2 and 4.3, the checkpointing mechanism works in two dis-

tinct ways: it either fast-forwards the application and, lately, it early-stops the execution

in case the fault is masked. This idea is similar to the strategies adopted in (CHATZIDIM-

ITRIOU; GIZOPOULOS, 2016) and (CARLISLE et al., 2016). In short, this mechanism

works as follow:

1. Since the processor’s execution and state before the fault is injected is of no im-

portance, it can be skipped without any loss of information. The checkpointing

manager fast forwards the application execution to the nearest checkpoint available

right before the fault injection cycle (the Cprev checkpoint).

2. The checkpointing manager early stops the application execution: After the fault is

injected, it is possible that the faulty register is overwritten before it is read, prevent-

ing the fault from propagating to other hardware components. This masking effect

can be detected in any post-fault checkpoint by comparing the state of the processor

to its corresponding golden state. In case the fault is masked, the application can

be halted since we know it will not lead to any failure. For empirical reasons, the

early stop is handled by comparing a maximum of five checkpoints, which are the

next four available checkpoints right after the fault cycle and, lastly, the checkpoint

located right in half of the remaining application execution. These are called the

Cpost checkpoints, depicted in Figure 4.3.

More details of the checkpointing mechanism will be given in Section 4.3.3.

58

4.2.2 Fault Classification

Once the simulator starts running the faulty mode and the fault is injected, the

behavior of the simulation becomes unpredictable (e.g., it may crash). When the simula-

tion ends execution, and if it was not early-stopped, and no timeouts or crash occurred,

then the contents of the final memory state are compared with the contents of the golden

memory in order to detect failures. The fault can be either considered masked, or it can

manifest as a failure.

In short, the simulation outcomes may be summarized as:

• Masked fault: The faulty register is never used, or it is overwritten before it is

read and hence the fault cannot propagate. In this scenario, the final contents of the

memory are identical to the contents of the golden memory, hence no failures can

be detected.

• Silent Data Corruption (SDC): The injected fault is not masked and propagates

through the processor causing the final memory state to be different from the golden

memory, and it cannot be detected during the application execution by any means,

hence the term silent.

• Timeout: The faulty register causes the processor to enter into a hang state. To

avoid running the application indefinitely, it stops executing when the number of

executed cycles reaches twice the golden cycles.

• Crash: The injected fault causes segmentation-fault in the simulator. It happens

mainly when the processor tries to access invalid/corrupted memory addresses.

4.3 Platform Infrastructure

4.3.1 The BOOMlib Component

As explained in Section 2.3, the behavior of any C++ simulator exported from

Chisel consists in instantiating an object-module of the exported class that models the

hardware, then invoking the clock_lo() and clock_hi() primitives in order to update the

combinational and sequential state of the system, respectively.

In that sense, the BOOMlib component is a library that holds the necessary code

to mimic the BOOM processor. More specifically, when the Chisel description is trans-

59

Figure 4.4: Example of a C++ simulator exported from Chisel.

Source: Author

formed into C++, the processor state will be exported to a Top_t class, and all of the

registers of the processor will be found as objects declared inside this class along with

the processor behavior that will be modeled by the clock_lo() and clock_hi() methods. In

order to simulate the SoC, it is necessary to instantiate an object of the Top_t class, and to

invoke the clock_lo() andclock_hi() methods appropriately.

Figure 4.4 shows, in a really high-level perspective, an example usage of the

BOOM simulator. The basic functionality is straightforward: an instance of the SoC

is instantiated, then the program is loaded to an emulated virtual memory system that is

connected to the SoC and the simulation enters a loop that starts invoking the clock_lo()

and clock_hi() methods to update the processor state, while the memory is ticked. For

each sequence of execution of clock_lo() and clock_hi() methods, one clock cycle is ad-

vanced. For BOOM, the simulation will stop executing when a trap (an instruction) writes

a proper value to a control and status register (CSR) of the processor.

Note that the only code that is exported from Chisel to C++ is the Top_t class,

which contains the clock_lo() and clock_hi() methods, and the registers and caches, while

the code illustrated in the Figure 4.4 is handwritten, and its role is to instantiate the SoC

in order to simulate it.

60

4.3.2 The RegisterBase Component

The RegisterBase component is simply a library composed of an array that holds

the addresses of the processor’s registers. It is constructed by the RegExporter external

application tool, which is is a Java-based application that filters each of the registers by

taking a substring of their variable names as an input filter. It then emits corresponding

source codes for each group of registers, as in Figure 4.5.

As already stated, the BOOM’s compilation flow consists in transforming the

Chisel source code into an equivalent C++ description. After the C++ source code is

generated, the RegExporter tool takes such source codes as an input and extracts the reg-

isters (represented as variables inside the code) from the source files. Extraction, in this

context, means that new source codes are automatically generated by the tool. These new

generated C++ source codes contain methods that push the addresses of the variables that

represent each register to an array, as shown on the bottom part of Figure 4.5.

Figure 4.5: Register extraction and grouping by the RegExporter tool - the new generated
source files form the RegisterBase component.

Source: Author

61

Fault injections and the checkpointing mechanism consist in operating on this ar-

ray of registers. Whenever required, the array is loaded with the adequate register group

by invoking the proper method (e.g., load_registers_rf() will fill the array with the RF

registers’ addresses). After the array is filled up, the operation on it is performed. After

the operation is done, the array is freed to make room for other registers whenever needed.

An implementation-level view of the BOOM processor is depicted in Figure 4.5

(on the top left corner) in order to illustrate the functionality of the RegExporter. For

simplicity, the figure only illustrates how the groups RF, IU, and ROB are filtered by their

corresponding names. The filter is highlighted in blue as a substring of the variable’s

name.

Recall from section 2.2.1 that the BOOM processor is instantiated inside the Rocket

Chip SoC generator. Also, recall from section 2.3 that the Chisel → C++ code trans-

formation preserves the order of the variable names, while organizing them in a topo-

logical manner. For example, in the C++ BOOM’s source codes in Figure 4.5, the

Top_BOOMTile_core_regfile__regfile_0 variable is an object that represents a register in

the processor. This name was preserved when it was transformed from Chisel to C++,

and this object holds the actual value of the register.

The name of such variable suggests that the Top prefix represents the top mod-

ule described in Chisel that instantiates the SoC itself. The SoC, in turn, instantiates the

BOOM processor core inside it, represented by the BOOMTile_core substring. The regis-

ter file is placed, obviously, inside of the core, so that the regfile__ substring represents the

instance of the whole physical register file module, and the attached regfile_0 substring

represents the register of index 0 inside the register file, which holds the actual 65-bit

value of a single register in the BOOM’s RF. The same analysis may be conducted for all

of the registers present in BOOM.

When Chisel is transformed into C++, all of the variables/objects that represent

registers are encapsulated inside a single class, and an instance of this class represents the

main module of the described hardware. Inside of this class, each register is instantiated

as an object. In this scenario, the tile object in Figure 4.5 is an instance of the main class

that instantiates the SoC, which includes the BOOM processor. More precisely, the entire

SoC is instantiated by the tile object, and all of the operations on the BOOM processor

must manipulate the objects inside the tile instance.

62

4.3.3 The Checkpointing Manager Component

The CheckpointingMgr (checkpointing manager) component handles the applica-

tion checkpointing by saving and restoring the contents of registers, caches, and virtual

memory in a given cycle. If the context of the processor is available in any given cycle,

the application execution may be latter resumed to that cycle.

For the proposed platform, checkpointing is used to speed up the fault injection

campaigns by both restoring the application context to the nearest cycle before the fault

injection cycle and by early-stopping the application, if possible, after the fault injection

cycle in case the fault is masked.

In the BOOM simulator, each register is represented by means of a unique variable

(i.e., there is one variable for each register). Recall that, for the purpose of injecting faults

in the processor, all of the registers were first collected and grouped in the RegisterBase

component according to categories (e.g., RF, ROB, EXE, IU, etc...).

The process of saving the context (or state) of the processor works simply by

saving the contents of each register (also memory and caches) in the desired cycle in an

appropriate file. For each array of registers (i.e, for each register group), a binary file will

hold, sequentially, the contents the registers contained in it. In this architecture, a different

file is required to save the state of registers (which also includes the caches) and memory,

Figure 4.6: Saving/restoring the state of the processor for the SHA application in cycle
500.

Source: Author

63

and for the same application, a different file is created for each desired cycle the context

is supposed to be saved in. For this reason, the contents of registers and the memory are

saved in files whose names are patterned as follows: ApplicationName_reg_Cycle.dat, for

registers and caches; and ApplicationName_mem_Cycle.dat for the memory.

As an example, Figure 4.6 illustrates the process of saving/restoring the processor

context in cycle 500 while running the SHA application. Consider that each of the vertical

gray "cells" represents a single register; in our framework, the whole "pile" of cells is

stored in an array of registers. Note that, for simplicity, the figure only depicts the RF,

ROB, BPU, CSR and the Issue Window register groups (and also memory and caches),

but the checkpointing mechanism actually saves all of the register groups.

In order to save the processor’s context, for each group of registers, an array is first

loaded with all of the required addresses of such registers that are pulled from the Regis-

terBase component, which also includes the caches’ contents. After that, the contents of

the array are written sequentially to the file. For later recovery of the context, the array

has just to be read from the file in the same order it was written. As the memory of the

Figure 4.7: Saving/restoring the processor state for the SHA application.
(a) In cycle 500, the checkpoint is created by writing the processor’s state to proper files.

(b) In cycle 500, the processor’s state is restored by reading it from the proper files.

Source: Author

64

processor is simply represented by a vector, the process of saving and restoring its context

is straightforward.

After processor state is saved, all of the checkpoint files will be found in a folder

located in the simulation directory. More precisely, for each application, there will be two

different files for each cycle the checkpoint was saved in, as shown in Figure 4.6. The

application’s context may be lately restored to a required cycle by reading the values of

each register and memory content that are read from the associate file.

Another checkpointing example is depicted in Figure 4.7 in order to give a more

consistent and generic example of how the application context is saved and restored. How-

ever, in this case, consider that the gray vectors represent the whole processor state and

memory (again, just for simplicity).

Suppose, for instance, that the processor’s context must be saved in cycle 500 for

the SHA application. First, the program is loaded into the memory and the simulator

starts at cycle 0. When the simulation reaches cycle 500, the application halts, then the

CheckpointingMgr component saves the state of each of register, caches, and memory.

After the files are saved, the application resumes the execution right from the point it

stopped. This process is illustrated in Figure 4.7a.

In a future execution of SHA, if the state of the processor before cycle 500 is of no

interest, the state of the processor may be restored from the appropriate checkpoint files

by passing the cycle of interest as an argument to the simulator. The process of restoring

the context of the processor to a given cycle is called fast-forwarding, and it is depicted

in Figure 4.7b.

The CheckpointingMgr provides a considerable speedup for the fault injection

campaigns by restoring the processor context to the proper cycle. Moreover, as will be

described in the next section, this component is also used to stop the application execution

when faults injected in the processor are masked.

4.3.4 The Saboteur Component

The proposed fault injection platform aims to inject a single bit flip (an SEU) in a

random bit of any arbitrary register of the BOOM processor. For that matter, the Saboteur

component was implemented and coupled with the BOOM simulator. This component

basically consists of a pointer to the RegisterBase component, which enables the access

to all of the registers contained in it.

65

Figure 4.8: Generating checkpoints and profiling the application.

Source: Author

The fault injection process is simple, and it works as follows:

1. Generate a cycle in which the fault is supposed to be injected.

2. Randomly select a register in the processor from the RegisterBase component.

3. Generate a random index (ri) that represents the bit supposed to be flipped in that

register.

4. Using the random bit index, generate a fault mask in which only the ri-bit is ’1’,

and all other bits are ’0’.

5. When the fault cycle is reached, operate an exclusive-or (XOR) operation between

the value of the register and the fault mask.

6. Monitor the state of the processor. If the fault is masked in any Cpost cycle, halt

the simulation.

Before any fault injection campaign starts, a golden run is necessary in order to

collect fault-free information about the application, such as the final contents of the mem-

ory and the number of executed cycles by the application. Also, it is worth collecting

golden checkpoints in a regular interval along the application flow in order to feed the

checkpointing mechanism and speedup future fault injection campaigns. The AppProfiler

component handles such profiling and it is depicted in Figure 4.8. After the profiling is

complete, there will be a golden memory file for the application that will be used by the

Logger component in order to detect failures in future fault injection campaigns.

As we benefit from a checkpointing mechanism, it is convenient to generate many

checkpoints for an application in a regular cycle interval. Once all the checkpoints are

collected and the application profiling is complete, the faulty simulation starts. After

the cycle in which the fault will be injected is generated, the state of the processor can

be fast-forwarded to the nearest available checkpoint before the fault cycle (the Cprev

checkpoint).

As an example, suppose that the SHA application is executing, and a fault is sup-

66

Figure 4.9: Fast-forwarding to the cycle 500 and fault injection in cycle 730.
(a) After fault configuration, the processor is fast-forwarded to cycle 500
and keeps executing.

(b) A single bit is flipped when the simulation reaches the fault cycle.

(c) In a Cpost checkpoint, the simulation is early stopped in
case the fault is masked, otherwise it keeps running.

Source: Author

posed to be injected in the processor in a random cycle, for instance, cycle 730 (see Figure

4.9). Just in case there is an available checkpoint for this application before cycle 730,

e.g., cycle 500, then the processor state can be fast-forwarded straight to that cycle, and

the time that would be spent to execute 500 cycles is saved.

After the fault is injected, it is naturally possible that the fault becomes masked

due to the program flow (i.e., application masking), and since there are checkpoints at

regular intervals after the fault injection cycle, the current state of the processor may be

compared to the state of such checkpoints (the Cpost checkpoints), which are fault-free.

67

By performing such comparison it is possible to detect whether the fault was

masked (if the current state of the processor is identical to the checkpoint state) or not. Re-

call that the checkpoint files contain the entire state of the processor (registers, caches and

memory), hence if the current state of the processor is identical to an equivalent fault-free

checkpoint in a given cycle, the fault is guaranteed to be masked. Therefore, in this case,

the application may be aborted since it is known beforehand the fault will not manifest as

a failure, hence even more execution time is saved.

Figure 4.9 depicts the complete scenario of a single fault injection being helped

by the checkpointing strategy. Each separate figure may be explained as follows:

• Figure 4.9a: First, the simulator starts and the program is loaded into the memory.

After that, the Fault Setup process randomly generates the faulty cycle and the

register the fault is supposed to be injected. As the generated fault cycle is 730, the

application is fast forwarded to cycle 500 and then it executes the remaining 230

cycles until it reaches cycle 730.

• Figure 4.9b: When the application reaches the fault cycle (730), an SEU is injected

in the randomly selected register, then it resumes the execution.

• Figure 4.9c: When any Cpost is reached, the state of the processor is compared to its

equivalent golden state. If the fault is masked in this cycle, then the simulation stops

executing and campaign time is saved. If the fault is still present, however, the sim-

ulation must keep running. Acknowledge that, in our experiments, the maximum

number of Cposts that will be compared is five. One could consider comparing even

more checkpoints in order to check if the simulation can be early-stopped, but have

in mind that comparing checkpoints implies in an overhead, hence there is a trade-

off between the time to compare a certain number of checkpoints and the number

of early-stopped simulations.

4.3.5 The Logger Component

For each fault to be injected, there will be one instance of the simulator process.

More specifically, when a fault injection is to be performed, the process of the simulator

starts, then it simulates the execution of an application and injects the fault and, when

the simulation ends, the Logger component compares the final state of the processor’s

memory (which we call the Work memory) to the golden memory state.

68

Figure 4.10: Workflow for the Logger component.

Source: Author

The Logger will then update a status file for the executed application. This file

holds information about the fault injection. More specifically, the file contains vectors of

counters for each of the possible outcomes of the fault injection campaign.

As several fault injections must be performed, the status files must accumulate the

results for each application. Thus, after the simulation ends and the two memories are

compared, a status structure is first read from the proper file to retrieve the results from

previous fault injections, the structure is then updated (i.e., its counters are incremented)

and the results are written back to the same file. This process is depicted in Figure 4.10.

Each position in the vector of counters is bound to a specific hardware component

where faults can be injected, hence there are currently six positions (for the RF, ISSUE,

RENAME, EXE , BPU, and ROB). As an example, when a fault is injected in the RF, and

it leads to an SDC, then the command stats→counter_sdc[RF_ID]++ will increment the

number of SDCs caused by faults injected in the RF component.

After several faults are injected, the status file of an application should be pro-

cessed by a proper application in order to get the statistics about the whole fault injection

campaign. Basically, it only consists of reading the stats structure from the binary file.

69

4.3.6 The BOOMulator Component

Note that we have described the individual functionalities of each module as a sep-

arate unit. In order to use the simulator, it is necessary an instance of the simulator that

contains, uses and coordinates the usage of such components. This way, the BOOMulator

component is a class that holds these different components inside of it. In order to execute

the simulator, an instance of the BOOMulator can be declared inside of the main() func-

tion, for example, and after that, this object must invoke the routines that actually execute

the simulation by triggering the clock_lo() and clock_high() methods.

This idea is illustrated in Figure 4.11. Note that there can be different instances

of the simulator, since both faulty and fault-free simulations are supported. After the

application ends a faulty execution, the Logger component processes the output generated

by BOOM. Also, when the simulation ends a fault-free execution and the user wants to

record the golden profile of the application, then the AppProfiler will save the BOOM’s

final memory state and the number of cycles taken by the application.

Figure 4.12 shows in a high-level perspective the infrastructure of the simulator.

Have in mind, however, that the figure is not the complete UML representation of the

platform at all, since its role is merely illustrative. However, some insights about the plat-

form are given, which should be self-explanatory. Note how the BOOMulator "contains"

a Top_t member object that represents the SoC. This way, the processor is simulated when

Figure 4.11: An example usage of the BOOMulator.

Source: Author

70

Figure 4.12: High-level view of the simulator infrastructure.

Source: Author

a BOOMulator object triggers the run() method, which in turn invokes the clock_lo() and

clock_hi() primitives of the Chisel-exported Top_t class.

71

5 RESULTS AND SENSITIVITY ANALYSIS OF BOOM

Authors in (CZECK; SIEWIOREK, 1992) showed that the behavior of a proces-

sor when faults are injected in it depends not only on the fault location, but also on the

application being executed. Therefore, resilience evaluations should be performed by

executing applications commonly used by the general public. One of the most popular

workloads to fulfill this requirement is MiBench (GUTHAUS et al., 2001). MiBench en-

compasses different application domains such as communication, industry, and security.

That justifies the use of such suite in the fault injection campaigns.

In order to validate our fault injection tool, the following MiBench workloads were

used:

• SHA: The secure hash algorithm takes 512-bit input blocks and produces a 160-bit

message digest as an output. It is often used in the secure exchange of cryptographic

keys and for generating digital signatures. Also, it is used in data integrity by using

the message digest of the transmitted data as verification mechanism.

• CRC32: Used in error detection for data transmission. It works by calculating a 32-

bit Cyclic Redundancy Check (CRC), or checksum, on the transmitted data. The

checksum is calculated based on the remainder of a polynomial division of the data

values, and is attached to the transmitted data before the data is transmitted.

• String search: Algorithm that searches a given string in a set of strings or text.

• FFT: Computes the Fast Fourier Transform on a sampled input signal. It delivers

the different frequencies with their respective amplitudes contained in the signal.

The FFT algorithm has a wide range of applications in signal processing, telecom-

munication, and several other fields.

• Quicksort: An efficient algorithm used for sorting an array of arbitrary types of

data.

• Dijkstra: Computes the shortest path between two nodes in a graph. A graph is

implemented as an adjacency matrix, then the algorithm calculates the shortest path

between every pair of nodes using repeated executions of Dijkstra’s algorithm. This

algorithm is mostly used in computer networking, mainly in routing systems.

• Rijndael (encrypt): A symmetric cryptographic algorithm also known as Advanced

Encryption Standard (AES). The encrypt algorithm takes a plaintext (input data to

be encrypted) and a secret key as input and produces a ciphertext output (output

72

encrypted data). This algorithm is highly used in network security.

Two types of results are presented in the next sections: the speedup the check-

pointing mechanism provided, presented in the next Section, and the fault sensitivity and

characterization of the BOOM processor, presented in Section 5.2.

5.1 Speeding up Fault Injection Campaigns with Checkpointing

The more faults are injected in a processor, the more reliable its characterization

to faults become. Speeding up application execution comes at no cost and has advantages

since it necessarily implies in faster fault injection campaigns, which means that more

faults can be injected in the same amount of time. Also, fault tolerance techniques such as

instruction redundancy imply in a considerable overhead, so speeding up the application

execution in this scenario can provide an even more significant performance improvement.

We investigated the speedup our checkpointing mechanism can yield for the single-

issue version of the BOOM processor by running some MiBench applications in the fol-

lowing distinct cases:

1. No fast forwarding and no early stopping: the checkpointing mechanism is not

used.

2. Early stopping only: It is early stopped, but not fast forwarded.

3. Fast forwarding only: It is fast forwarded, but not early stopped.

4. Fast forwarding & early stopping: The best case - the application is either fast

forwarded and early stopped whenever possible.

Table 5.1 depicts the average execution time, in seconds, for the 7 benchmarks

executed in the four modes of operation. For each application, 1,000 faults were injected

(hence 7,000 executions) for each of the four cases, totalizing 28,000 fault injections.

Table 5.1: Faults per second (FPS) achieved, on average, and speedup for the four cases.

Fast Forward/Early Stop Seconds Taken FPS Speedup
OFF/OFF 14979 0.46 N/A
OFF/ON 9688 0.72 1.54
ON/OFF 7290 0.96 2.0
ON/ON 3539 1.98 4.3

Source: Author

73

The time for profiling the application and saving the checkpoints is also considered in the

table, but it tends to be amortized since this is a one-time process.

Column 4 shows the average speedup achieved when comparing the underlying

faults per second to the case 1, where no checkpoints are used (the worst case). As can be

noted, fast forwarding the application has more effect than early stopping it. That is due to

the fault injection effects that sometimes prevent the application from being early stopped.

When the application is both fast forwarded and early stopped, a speedup of up to 4.3 was

reached. The faults per second metric depends upon the checkpoint interval (500 cycles

in this case) and, of course, the performance of the machine running the fault campaigns.

In this case, an Intel I7-860 with four cores @ 2.8 GHz with 16GB of memory.

5.2 Processor Sensitivity Analysis

This section presents the results obtained from the validation tests of the fault in-

jection platform. The platform was explored and validated by injecting faults in three

versions of BOOM. Also, the level of controllability of the platform was tested by selec-

tively injecting faults in particular areas of the processors in a cycle-accurate manner.

As reliability is a fundamental concern of today’s processors, it may be really

important to measure/estimate which of the main components are the most sensitive to

faults. In other words, it is important to characterize the processor’s sensitivity to faults by

analyzing its behavior when faults are injected into it. If such metrics are available during

the implementation phase, for example, then protection mechanisms could be devised in

order to protect the most sensitive components, thus the final product would be a more

error-resilient processor by benefiting from fault detection and fault removal mechanisms.

As the validation of the fault injection platform is essential, fault injections were

performed in three different versions of the BOOM processor, and the results are dis-

cussed in this chapter. The experiments presented here illustrate how fault injections can

be performed in particular chosen areas of the processors. Also, this section illustrates

how the processor sensitivity is influenced by some application characteristics.

As discussed in Section 2.2.2, BOOM is constituted of six major hardware struc-

tures:

1. RF: The physical register file.

2. RENAME: Register renaming circuitry.

74

Table 5.2: Number of flip-flops in each structure.
Flip-flops Single-issue Dual-issue Quad-issue

RF 6500 7150 8320
RENAME 3285 5933 6149

IU 4897 8342 11792
EXE 20597 32492 49937
BPU 1557 1638 2257
ROB 11865 22151 56583

Source: Author

3. ISSUE: Instruction issue logic unit, including the instruction window.

4. EXE: Execution units, bypass network, and load/store queues.

5. BPU: Branch prediction unit, including branch target buffer (BTB), branch history

table (BHT), and return address stack (RAS).

6. ROB: The reorder buffer.

In order to validate our platform and to estimate the sensitivity to faults of the

BOOM processor, fault injections were performed in the registers that compose the hard-

ware structures listed in (1)-(6), which also include all of the sequential logic related to

these structures (i.e., it includes all of the interconnections in between these structures).

As an outcome, it provided a characterization of the BOOM’s sensitivity to faults.

The results provide an estimate of which are the most sensitive components and

how much sensitive the components are when executing a given workload. Moreover,

the sensitivities of different processors were estimated and compared. Three processor

configurations were evaluated: single-, dual-, and quad-issue. Results show that the levels

of sensitivity for the three processors are significantly different. Also, there is a direct

correspondence between the components’ sensitivities and applications characteristics.

As three different processors are evaluated, it is important to have in mind that the

structure sizes for each component of the processors vary. The number of flip-flops for

each item in (1)-(6) is depicted in Table 5.2. The main structures’ sizes for each of the

Table 5.3: Configured sizes for the main components.
Feature sizes Single-issue Dual-issue Quad-issue

Physical registers in the RF 100 110 128
ROB entries 24 48 128

Issue window entries 12 20 28
LSU entries 8 16 32

Source: Author

75

Table 5.4: Configured Execute Units.
Core Execute Unit ALU FPU iMul iDiv LSU

Single-issue EU#0 x x x x x
Dual-issue EU#0 x x x

EU#1 x x x
Quad-issue EU#0 x

EU#1 x x x
EU#2 x x
EU#3 x

Source: Author

experimented cores are depicted in Table 5.3. The most complex core is the quad-issue

one, and it can be compared to the ARM Cortex-A15.

Recall from Section 2.2.2.5 that the BOOM processor is constituted of Execute

Units (EU) , where different execution units operate on different data types and different

types of instructions. Different Execute Units may be constituted of ALUs, FPUs, load

and store units (LSU) and integer multipliers and dividers (iMul and iDiv). Each EU is

connected to a single issue port, hence the number of EUs is correlated to the processor’s

issue width, so there is one EU for the single-issue, two EUs for the dual- and four EUs for

the quad-issue processor. For the single-, dual-, and quad-issue processor configurations,

the functional units are organized as depicted in Table 5.4.

Note that single-issue core is constituted of a single Execute Unit that provides all

of the functional units supported by BOOM, while in the dual- and quad-issue cores the

functional units are spread in different Execute Units (the dual-issue configuration can be

more easily seen in Figure 2.6).

5.2.1 Hardware Occupancy and Sensitivity

There is a close relationship between the occupancy of a hardware structure and

its sensitivity to faults. Occupancy, in this context, reflects the fraction of live bits in the

component.

Regarding the relationship between sensitivity and hardware occupancy, authors

in (MUKHERJEE et al., 2003) introduced the concept of architectural vulnerability factor

(AVF) as the probability that a fault in a particular structure will result in an failure. The

AVF is estimated by tracking the fraction of bits in a processor that is necessary for the

correct execution of the workload. These bits are termed architecturally correct execution

76

(ACE) bits and are related to a number of live bits in a given structure of the processor.

Similarly, bits that are not necessary for the correct execution of the workload are

termed un-ACE bits, and faults injected in such bits cannot lead to errors.

AVF analysis is an approach used to estimate the sensitivity of a processor (i.e., it

is an alternative to fault injection). The more un-ACE bits are detected in a processor, the

more error-resilient the processor is.

To a certain degree, our fault injection platform can provide an approximation to

the ACE bits in the register file by tracking the number of allocated physical registers in

each cycle that contains valid values assigned to them. However, it is possible to improve

the functionalities of the simulator so that it would provide a more sophisticated profile of

the application that executes on the processor, yielding a precise fraction of the ACE bits.

As our tool affords an approximation to the ACE bits in the RF, experiments were

conducted in order to validate the tool and to estimate such metric, and hence we could

correlate this metric with the sensitivity of the RF that was estimated by means of fault

injection.

5.2.2 The Register File and Register Renaming Circuitry Sensitivities

As a first analysis and as a means of validation of the platform, and also as an

example usage of it, we first start this section by demonstrating the influence of fault

injections performed particularly in the RF and RENAME components. Note that, due to

the high degree of controllability of our tool, we can freely choose where and when faults

are injected at bit-level and with cycle-accurate precision.

As faults were injected in the RF and RENAME components, we will start with

a quick reminder about the BOOM’s register renaming circuitry; as stated in Section

2.2.2.3, the Register Renaming process relies on two of many hardware structures:

1. A free list: A list that tracks which physical registers in the register file are currently

free. In other words, it tracks the registers that are not allocated, hence they do not

represent any logical register.

2. A busy table: For instructions residing in the issue window, this table tracks the

readiness status of their physical register operands by indicating whether they con-

tain valid values (i.e., it indicates whether the operand registers have been already

written).

77

Fortunately, the implemented platform allows the monitoring of these hardware

structures (actually, everything concerning the BOOM pipeline can be monitored).

By monitoring such hardware structures, it is possible to estimate the occupancy

of the register file. From the items (1) and (2), it is expected that if a register is currently

allocated and contains valid values, than such a register possibly contains ACE bits. How-

ever, monitoring the free list and the busy table is an approximate method since it only

provides the number of currently allocated registers in the physical register file, but does

not provide an estimate of the fraction of ACE bits in the registers itself (i.e., it does not

detect the fraction of bits in the register that are ACE). Also, note that the allocated reg-

isters containing valid values are not necessarily ACE, that is because we do not monitor

whether such registers will, in fact, be used in future. These tracked registers may be

used by dynamically dead or mispeculated instructions, or maybe they will not even be

read by any other instruction, for example, and that would imply that the registers are

actually un-ACE. Therefore, we use this metric as an approximation to the ACE registers

(A-ACE) in the RF. Said again, we term the average number of currently allocated regis-

ters in the RF that hold valid values (per cycle) A-ACE registers, and this metric is taken

as an approximation for the ACE registers.

We estimated the A-ACE registers for each application by monitoring the free list

and the busy table, considering that only allocated registers containing valid values may

form ACE-bits. The approximation for the ACE registers is shown in Table 5.5. As an

example, for each cycle that the single-issue version of BOOM executed SHA, only about

3.3% of the registers in the RF may contain ACE bits.

All of the previously discussed applications from MiBench were used in order to

estimate the sensitivity of the three versions of the processor. Recall that the BOOM pro-

Table 5.5: An approximation to the average ACE registers, per cycle, in the RF (%).
Benchmark Single-issue Dual-issue Quad-issue

SHA 3.3 5.76 12.9
Rijndael (encrypt) 2.8 5.74 7.8

FFT 2.5 3.6 4.3
CRC32 2.2 4.4 17.5

String-search 2.0 3.5 3.7
Qsort 1.4 2.37 3.1

Dijkstra 1.8 2.32 2.7
Average 2.0 4.0 7.4

Source: Author

78

Figure 5.1: RF and RENAME sensitivities for the each benchmark for the three processor
configurations.

(a) Single-issue: The most sensitive one.

(b) Dual-issue: RF and RENAME are more error-resilient than the single-issue ones.

(c) Quad-issue: The RF and RENAME are the most error-resilient for this core.

Source: Author

79

cessor may be easily parameterized, so we could experiment with three different versions

of it: 1-, 2-, and 4-issue cores were used in order to make an extensive validation of our

platform.

In order to estimate the sensitivity of a structure S, we divided the number of

detected failures due to faults injected in S by the number of faults injected in the structure.

As an example, if F faults were injected in S, and f of them resulted in failures, then the

sensitivity of structure S is estimated by the division f/F.

The sensitivities of the RF and RENAME components for the single-, dual-, and

quad-issue are compared in Figures 5.1a, 5.1b, and 5.1c, respectively.

Recall from Section 2.2 that BOOM makes use of the register renaming strategy.

At microarchitectural-level, the RENAME structure maps logical registers to physical

ones in RF, which in turn updates the RENAME state during instruction commit. There-

fore, faults injected in RENAME tend to propagate to RF, and vice-versa, hence both

components appear to have a very similar characterization to failures, as applications that

make the RF more sensitive equally make the RENAME more sensitive, as shown in

Figure 5.1.

Note that there appears to be, in fact, a relationship between the fraction of A-

ACE registers measured in Table 5.5 and the RF and RENAME sensitivities depicted in

Figure 5.1. The RF and RENAME components are more sensitive when the processors

execute SHA, Rijndael, and FFT, which is in accordance with the values in Table 5.5. The

same analysis can be applied to the string-search, Qsort, and Dijkstra applications, which

showed to have a smaller fraction of A-ACE registers and presented fewer failures in RF

and RENAME. This analysis appears to be consistent with most of the workloads, with

exception to Qsort, which makes the RF more sensitive than string-search and CRC32,

so there is a slight mismatch between the sensitivity and the data shown in Table 5.5.

However, note that the table only suggests an approximation to the useful/live registers.

As a final analysis, note that the average fraction of A-ACE registers residing in

the register file for the single-, dual-, and quad-issue are 2.0, 4.0, and 7.4, respectively.

That, supposedly, implies that the RF is more error resilient for smaller processors since it

has lower occupancy. However, this is not true. Results showed that the single-issue’s RF

is about 17% more error prone than the dual-issue’s one, and about 33% more error prone

than the quad-issue’s. We suggest that the explanation for that resides in the fact that

the dual- and quad-issue’s RF have a residency time considerably shorter than the single-

issue’s one because they issue more instructions per cycle, which means their RFs are

80

written more frequently, hence fault injections in the RF are more likely to be overwritten.

An equivalent analysis may be conducted on the RENAME component. More complex

processors fetch and rename more instructions per cycle, which reduces the residency

time of the bits in the rename map tables and in the circuitry that handles the register

renaming. This characteristic, in turn, makes the RENAME component more resilient

to faults for processors that have bigger issue-widths and rename more instructions per

cycle.

5.2.3 The Issue Unit and Execution Units Sensitivities

For further experiments with our platform, the fault sensitivities of the issue unit

(IU) and execution units (EXE) of the three processors were evaluated.

As stated earlier, the occupancy of a hardware component reflects its sensitivity

to faults. A good metric that suffices for the estimation of occupancy of the IU and EXE

components is the number of instructions per cycle (IPC) the processor executes. More

instructions being issued and executed implies in bigger IU and EXE occupancies, respec-

tively. In other words, the more busier the pipeline is, the more sensitive the processor

is.

Table 5.6 depicts the average IPC metrics obtained for each of the workloads for

the three processor configurations. Note that the IPC depends on the processor architec-

ture, organization and the application characteristics, as some applications may be natu-

rally more parallel than others.

The fault sensitivity for the IU and EXE structures, for the single-, dual-, and

quad-issue is depicted in Figures 5.2a, 5.2b, and 5.2c, respectively. The strategy adopted

Table 5.6: IPC for each benchmark.

Benchmark Single-issue Dual-issue Quad-issue σ

SHA 0.914 1.608 2.067 0.47
CRC32 0.905 1.427 1.771 0.36
Dijkstra 0.726 1.011 1.193 0.19

String-search 0.694 0.91 0.907 0.10
Qsort 0.604 0.765 0.789 0.08

Rijndael (encrypt) 0.485 0.607 0.644 0.07
FFT 0.459 0.513 0.525 0.03

Source: Author

81

Figure 5.2: IU and EXE sensitivities for the each benchmark for the three processor
configurations.

(a) Single-issue: IU and EXE are the most error-resilient ones.

(b) Dual-issue: IU and EXE are the most sensitive ones.

(c) Quad-issue: IU and EXE are slightly more resilient than the dual-issue ones.

Source: Author

82

to estimate such sensitivities was the same used for the RF and RENAME structures - the

sensitivity is the division of the number of failures detected due to faults injected in the

component by the number of faults injected in it.

Note how the IU and EXE components are more sensitive to faults when the pro-

cessor executes applications with bigger IPCs, such as SHA, CRC32, and Dijkstra. On

the other hand, such components are more fault tolerant when the processor executes

workloads that have lower IPCs, such as Qsort, Rijndael, and FFT.

In order to emphasize the relationship between the IPC and the fault sensitivity

of the IU and EXE components, consider, for example, the IPC variations the workloads

presented when executed on different processors, shown in the standard deviation (σ)

column of Table 5.6. Bigger IPC variations reflect in bigger IU and EXE sensitivity

variations. Note how SHA, CRC32, and Dijkstra are the benchmarks whose IPC varied

the most when executed on different processors, this aspect implied that the sensitivities

of IU and EXE also varied the most when executing these applications. On the other

hand, applications that have a more stable IPC, such as Qsort, Rijndael and FFT caused

the EXE component sensitivity to be similar for the three processors.

A particular analysis may be conducted on the EXE component when FFT exe-

cutes. Note that this is the case where the EXE component is the most error resilient

for the three processor architectures. Among all the applications used in the fault in-

jection tests, FFT is the only one that makes extensive use of floating point operations

(GUTHAUS et al., 2001). Also, acknowledge that, in BOOM, there is only one FPU unit

regardless the issue-width (i.e., the three cores have 1 FPU). That suggests that, for the

FFT, there are structural hazards that bring the IPC down and, as a consequence, the sen-

sitivity in IU and EXE tends to be low because lower IPCs imply in lower sensitivities for

these structures.

As a final remark, note that, on average, the IU is more error prone than the EXE

structure. This aspect should be expected since the residency time of the bits in the in-

struction window is significantly longer than in EXE, because instructions must wait in

the instruction window until they can be issued and executed. On the other hand, the

registers in the EXE unit are written frequently, which increases the probability of a fault

to be masked.

83

Figure 5.3: Sensitivities for all structures averaged for all the 7 benchmarks.

Source: Author

5.2.4 Average and Global Sensitivities of BOOM

The average sensitivity for each individual component is depicted in Figure 5.3.

For each processor, this average was estimated by averaging the sensitivities for each

executed benchmark. More specifically, the average sensitivity is the average of the values

in Figures 5.1 and 5.2.

Figure 5.4 compares the global sensitivity estimated for each processor, averaged

for all the benchmarks. In order to estimate the global sensitivity, we weighted the sen-

sitivity of each individual component on the fraction of area occupied by them, which is

approximated by number of flip-flops (bits) of the component. We adopted this strategy

because the fault rate (i.e., the number of faults per unit of time) experienced by a par-

Figure 5.4: Sensitivity for each processor averaged for all the benchmarks.

Source: Author

84

Table 5.7: Average sensitivity for each benchmark (%).
Benchmark Single-issue Dual-issue Quad-issue

SHA 4.22 4.58 3.42
Rijndael (encrypt) 3.68 2.95 1.90

FFT 3.90 2.82 1.54
CRC32 3.13 3.30 2.29
Qsort 3.98 3.09 1.51

Dijkstra 2.38 2.59 1.47
String-search 2.67 2.29 1.71

Source: Author

ticular part of the processor is proportional to its area, in which bigger structures tend to

be more affected by faults, as opposed to smaller ones. The global sensitivity may be

modeled by the equation bellow:

GlobalSensitivity =
1

TotalFF

6∑
s=1

(Failures[s]/Faults[s])× FF [s]

In the formula above, s represents the six different structures where faults were injected,

TotalFF represents the total number of flip-flops calculated by adding up the bits of the six

structures, Failures[s] is the number of failures caused due to faults injected in structure s,

Faults[s] is the number of faults injected in structure s, and FF[s] represents the number

of flip-flops in the structure. Note that the division FF[s]/TotalFF represents the approx-

imate fraction of area occupied by structure s1. When this fraction is multiplied by the

component sensitivity, and all the factors are added together, it yields an approximation

to the global sensitivity of the processor. Using this formula, the approximate global sen-

sitivities given for the single-, dual-, and quad-issue cores are 3.18%, 2.84%, and 1.97%,

respectively. That means, for example, if a fault hits the single-issue processor, then there

is a 3.18% probability that a failure will occur.

Table 5.7 summarizes the data in Figure 5.4 by adding up together SDCs, hangs,

and aborted simulations due to crashes for all the workloads. When the single-issue pro-

cessor executes SHA, for instance, the sensitivity of the processor is about 4.22%, and it

can be understood as the probability that a failure will occur if a fault is injected.

Figures 5.4 and 5.3, and Table 5.7 lead to some conclusions that can be summa-

1We consider the number of flip-flops as an approximation to the area of each component. However, this
metric is not very accurate since we do not consider the gate-level model of the processors. More precise
area information may be estimated by making use of synthesis tools.

85

rized as follows:

1. Figure 5.3:

• The RF and RENAME are the most sensitive components, and their sensi-

tivities tend to decrease for more complex processors, arguably due to the

decrease in their residency times.

• There is no single trend for the sensitivity in the IU and EXE components,

which increases for the dual-issue, but decreases for the quad-issue.

• The BPU and ROB components are highly fault-tolerant and are multiplied

by a factor of ten. For the quad-issue, faults injected in the BPU and ROB

never led to failures. Regarding the ROB, have in mind that, in BOOM, this

component does not hold temporary values (as happens in many processor

architectures, such as the Pentium 4 and the ARM Cortex A57), because the

results of both speculative and non-speculative instructions always reside in

the RF. We believe that this is one of the factors that makes the ROB consid-

erably error-resilient.

2. Figure 5.4: The single- and quad-issue processors are the most and least error-prone

ones mainly because of the influence of the RF and RENAME structures, which are

the structures that influence the global sensitivity the most.

3. Table 5.7: The fault sensitivity does not depend only on the processor architecture

and its hardware structures, it also highly depends on the application the processor

executes since two different algorithms that execute on the same processor may

cause the processor to respond differently when faults are injected into it.

As a final remark, note that the results exposed in this chapter were only possible

due to the controllable and low-level nature of the fault injection platform. By using

another kind of fault injection tool, such as the referenced ones in section 3.4, it would

not be possible to inject faults in the same way it was done in this work. More specifically,

our platform not only provides bit-level access to the processors but also provides all of

the real bits present in them, while affording complete control over where and when faults

are supposed to be injected. Note, also, that the proposed platform is highly configurable,

hence flexible, so experiments with different processors could be easily be performed,

yielding a vast design space to be explored.

86

6 CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

This work presented a fault injection platform implemented over an RTL C++-

implemented simulator of the BOOM processor.

Due to the existent shortcomings imposed by the hardware-based fault injection

strategies and the methods based on high-level simulators, we found out that there is a gap

between these two techniques that can only be bridged by means of the development of a

tool that inherits both the positive features of the hardware-based method (representative)

and the simulation-based one (controllable and cheap). The trade-off between such fault

injection techniques was reviewed in Chapter 3.

The development of the fault injection platform is based on the infrastructure of an

RTL controllable simulator of BOOM, which was possible due to the compilation strate-

gies of the Chisel language which generates the low-level cycle-accurate C++ simulator

automatically. Because it works at RTL and it is controllable, we believe that the deficien-

cies imposed by the hardware- and simulation-based techniques were traded off. Until a

short time ago, and to the best of our knowledge, there was no publicly-available fault

injection platform such as the one we developed and presented in this work.

The implementation of the platform was purely based on leveraging the infras-

tructure of the Chisel→C++ exported simulator: the strategy adopted consisted roughly

in coupling separate components to the original exported BOOM’s simulator that allowed

us to inject faults in each individual bit of the processor. Moreover, we developed a check-

pointing mechanism for the simulator that provided a really significant speedup for our

fault injection campaigns. All of the strategies adopted to implement the tool is explored

in Chapter 4.

As BOOM is a highly parameterizable processor, we could experiment with three

different versions of this core: we generated three different fault injectors for a single-, a

dual-, and a quad-issue version of the processor. The functionality of each fault injector

is exactly the same except that they instantiate different processors.

In order to evaluate our platform, we used some applications from the MiBench

benchmark and injected faults in the three versions of BOOM. Our fault injection tests

explored in Chapter 5 were purely conducted in order to explore and validate our fault

injection platform. However, future evaluations could take a more sophisticated approach

by using statistical models concerning fault injection significance for each processor.

Nonetheless, the evaluations of our platform provided some relevant results regarding the

87

sensitivity of each of the experimented processor. The experiments were efficient enough

to confirm that there is a significant difference in terms of sensitivity for different proces-

sors; more complex processors tend to be more error resilient. Also, we confirmed that

there is a close relationship between the characteristics of the application the processor

executes and the processor’s sensitivity.

For the experiments, we injected faults in six different components of the three

versions of BOOM: the register file, the register renaming circuitry, the instruction win-

dow, the registers associated with the execute stage of the pipeline, the branch prediction

unit and the reorder buffer. The results showed that, for each application, faults injected in

each of these six different structures may lead to significantly different sensitivity levels

due to the nature of the application and the influence of the component itself.

Future work may use our platform in order to evaluate the efficacy of traditional

fault tolerance strategies, especially the software-implemented ones. For example, in-

struction redundancy techniques may be applied in a given application, then our platform

could execute the application while injecting faults in the processor. One could then ob-

serve the behavior of the processor while running applications that benefit from instruc-

tion redundancy and, as a result, one could estimate how efficient such method is. Note

that, since our platform is controllable, we can inject faults in any specific component

and estimate what hardware components the fault tolerance system protects better. For

example, if faults affect the reorder buffer, how much instruction redundancy is necessary

to protect the application? At what cost?

Another example of fault tolerance technique that could be evaluated using our

platform is the Triple Modular Redundancy (TMR) implemented both in software and

hardware. The hardware-implemented TMR imposes severe overheads in terms area,

energy and performance. This way, when such a technique is applied, it is important

to know well what parts of the processor could benefit the most from such technique.

For example, a TMR deployed in a hardware component that already presents affordable

levels of fault tolerance may be inconvenient.

Beyond evaluating the traditional fault tolerance strategies, our platform may be

used to guide the development of other sorts of low-cost fault tolerance methods. Once a

new fault tolerance technique is implemented, we can then use our fault injector in order

to evaluate its efficacy.

We could also use the platform in order to evaluate already existent fault sensitivity

methods. For example, we could use the BOOM’s simulator to conduct an AVF analysis

88

of the processor for specific applications, after such analysis is performed, faults could be

injected in the processor and the results could be compared to the AVF analysis. Which

one is faster? AVF or fault injection? Which one provides the best coverage in terms of

characterization of the processor to faults?

Beyond evaluating fault tolerance systems, one could also use the platform in order

to evaluate the levels of fault tolerance of different applications. In other words, some

applications are better than others in terms of fault masking. One could investigate, in

details, what are the characteristics that make an application more or less fault tolerant.

For example, what kind of data structures are more fault tolerant? Also, does compiler

optimizations have an effect on the levels of fault masking? How much?

For any evaluated fault tolerance system, one could use our platform coupled with

the McPAT framework (LI et al., 2009) in order to evaluate the energy consumed by

it, hence the relationship between energy spent by the fault tolerance system and fault

detection and removal could be explored.

Future work could also use the BOOM’s Verilog in order to extract the area of the

processor and, if possible, extract the area of each individual component where faults can

be injected. As a result, one could estimate more precise levels of sensitivity than the ones

we presented in this work.

Finally, even though in this work we only explored the BOOM processor, future

work may evaluate the resilience of other systems implemented in Chisel by adopting

strategies similar to the ones adopted for BOOM.

89

REFERENCES

ACOSTA, R. D.; KJELSTRUP, J.; TORNG, H. C. An instruction issuing approach to
enhancing performance in multiple functional unit processors. IEEE Transactions on
Computers, C-35, n. 9, p. 815–828, Sept 1986. ISSN 0018-9340.

ARLAT, J. et al. Comparison of physical and software-implemented fault injection
techniques. IEEE Transactions on Computers, v. 52, n. 9, p. 1115–1133, Sept 2003.
ISSN 0018-9340.

ASANOVIć, K. et al. The Rocket Chip Generator. [S.l.], 2016. Disponível em:
<http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html>. Acesso
em: Ago. 2017.

BACHRACH, J. et al. Chisel: Constructing hardware in a scala embedded language.
In: DAC Design Automation Conference 2012. [S.l.: s.n.], 2012. p. 1212–1221. ISSN
0738-100X.

BAUMANN, R. Soft errors in advanced computer systems. IEEE Design Test of
Computers, v. 22, n. 3, p. 258–266, May 2005. ISSN 0740-7475.

BELLARD, F. Qemu, a fast and portable dynamic translator. In: Proceedings of the
Annual Conference on USENIX Annual Technical Conference. [s.n.], 2005. (ATEC
’05), p. 41–41. Disponível em: <http://dl.acm.org/citation.cfm?id=1247360.1247401>.
Acesso em: Ago. 2017.

BINDER, D.; SMITH, E. C.; HOLMAN, A. B. Satellite anomalies from galactic cosmic
rays. IEEE Transactions on Nuclear Science, v. 22, n. 6, p. 2675–2680, Dec 1975.
ISSN 0018-9499.

BINKERT, N. et al. The gem5 simulator. SIGARCH Comput. Archit. News, v. 39,
n. 2, p. 1–7, ago. 2011. ISSN 0163-5964. Disponível em: <http://doi.acm.org/10.1145/
2024716.2024718>. Acesso em: Ago. 2017.

CARLISLE, E. et al. Drseus: A dynamic robust single-event upset simulator. In: 2016
IEEE Aerospace Conference. [S.l.: s.n.], 2016. p. 1–11.

CARREIRA, J. et al. Xception: Software fault injection and monitoring in
processor functional units. Dependable Computing and Fault Tolerant Systems,
SPRINGER-VERLAG, v. 10, p. 245–266, 1998.

CELIO, C.; PATTERSON, D. A.; ASANOVIé, K. The Berkeley Out-of-Order
Machine (BOOM): An Industry-Competitive, Synthesizable, Parameterized
RISC-V Processor. [S.l.], 2015. Disponível em: <http://www2.eecs.berkeley.edu/Pubs/
TechRpts/2015/EECS-2015-167.html>. Acesso em: Ago. 2017.

CELIO, C.; PATTERSON, D. A.; ASANOVIé, K. The Berkeley Out-of-
Order Machine (BOOM) Design Specification. 2016. Disponível em: <https:
//github.com/ccelio/riscv-boom-doc>.

CHANDRA, V.; AITKEN, R. Impact of technology and voltage scaling on the soft error
susceptibility in nanoscale cmos. In: 2008 IEEE International Symposium on Defect
and Fault Tolerance of VLSI Systems. [S.l.: s.n.], 2008. p. 114–122. ISSN 1550-5774.

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
http://dl.acm.org/citation.cfm?id=1247360.1247401
http://doi.acm.org/10.1145/2024716.2024718
http://doi.acm.org/10.1145/2024716.2024718
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-167.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-167.html
https://github.com/ccelio/riscv-boom-doc
https://github.com/ccelio/riscv-boom-doc

90

CHATZIDIMITRIOU, A.; GIZOPOULOS, D. Anatomy of microarchitecture-level
reliability assessment: Throughput and accuracy. In: 2016 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS). [S.l.: s.n.],
2016. p. 69–78.

CZECK, E. W.; SIEWIOREK, D. P. Observations on the effects of fault manifestation
as a function of workload. IEEE Transactions on Computers, v. 41, n. 5, p. 559–566,
May 1992. ISSN 0018-9340.

DIXIT, A.; WOOD, A. The impact of new technology on soft error rates. In: 2011
International Reliability Physics Symposium. [S.l.: s.n.], 2011. p. 5B.4.1–5B.4.7.
ISSN 1541-7026.

DODD, P. E. et al. Current and future challenges in radiation effects on cmos electronics.
IEEE Transactions on Nuclear Science, v. 57, n. 4, p. 1747–1763, Aug 2010. ISSN
0018-9499.

FANG, B. et al. A systematic methodology for evaluating the error resilience of gpgpu
applications. IEEE Transactions on Parallel and Distributed Systems, v. 27, n. 12, p.
3397–3411, Dec 2016. ISSN 1045-9219.

GUAN, Q. et al. F-sefi: A fine-grained soft error fault injection tool for profiling
application vulnerability. In: 2014 IEEE 28th International Parallel and Distributed
Processing Symposium. [S.l.: s.n.], 2014. p. 1245–1254. ISSN 1530-2075.

GUTHAUS, M. R. et al. Mibench: A free, commercially representative embedded
benchmark suite. In: Proceedings of the Fourth Annual IEEE International
Workshop on Workload Characterization. WWC-4 (Cat. No.01EX538). [S.l.: s.n.],
2001. p. 3–14.

HSUEH, M.-C.; TSAI, T. K.; IYER, R. K. Fault injection techniques and tools.
Computer, v. 30, n. 4, p. 75–82, Apr 1997. ISSN 0018-9162.

KALIORAKIS, M. et al. Differential fault injection on microarchitectural simulators.
In: 2015 IEEE International Symposium on Workload Characterization. [S.l.: s.n.],
2015. p. 172–182.

KARNIK, T.; HAZUCHA, P. Characterization of soft errors caused by single event
upsets in cmos processes. IEEE Transactions on Dependable and Secure Computing,
v. 1, n. 2, p. 128–143, April 2004. ISSN 1545-5971.

KESSLER, R. E. The alpha 21264 microprocessor. IEEE Micro, v. 19, n. 2, p. 24–36,
Mar 1999. ISSN 0272-1732.

LI, J.; DRAPER, J. Joint soft-error-rate (ser) estimation for combinational logic and
sequential elements. In: 2016 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI). [S.l.: s.n.], 2016. p. 737–742.

LI, S. et al. Mcpat: An integrated power, area, and timing modeling framework for
multicore and manycore architectures. In: 2009 42nd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). [S.l.: s.n.], 2009. p. 469–480. ISSN
1072-4451.

91

LV, M. et al. Armiss: An instruction set simulator for the arm architecture. In: 2008
International Conference on Embedded Software and Systems. [S.l.: s.n.], 2008. p.
548–555.

MAHATME, N. N. et al. Impact of technology scaling on the combinational logic soft
error rate. In: 2014 IEEE International Reliability Physics Symposium. [S.l.: s.n.],
2014. p. 5F.2.1–5F.2.6. ISSN 1541-7026.

MAY, T. C.; WOODS, M. H. Alpha-particle-induced soft errors in dynamic memories.
IEEE Transactions on Electron Devices, v. 26, n. 1, p. 2–9, Jan 1979. ISSN 0018-9383.

MUKHERJEE, S. S. et al. A systematic methodology to compute the architectural
vulnerability factors for a high-performance microprocessor. In: Proceedings. 36th
Annual IEEE/ACM International Symposium on Microarchitecture, 2003.
MICRO-36. [S.l.: s.n.], 2003. p. 29–40.

PALACHARLA, S.; JOUPPI, N. P.; SMITH, J. E. Complexity-effective superscalar
processors. SIGARCH Comput. Archit. News, v. 25, n. 2, p. 206–218, maio 1997.
ISSN 0163-5964. Disponível em: <http://doi.acm.org/10.1145/384286.264201>. Acesso
em: Ago. 2017.

PARULKAR, I. et al. OpenSPARC: An Open Platform for Hardware Reliability
Experimentation. 2008.

REED, R. A. et al. Heavy ion and proton-induced single event multiple upset. IEEE
Transactions on Nuclear Science, v. 44, n. 6, p. 2224–2229, Dec 1997. ISSN
0018-9499.

ROSA, F. et al. A fast and scalable fault injection framework to evaluate multi/many-core
soft error reliability. In: 2015 IEEE International Symposium on Defect and Fault
Tolerance in VLSI and Nanotechnology Systems (DFTS). [S.l.: s.n.], 2015. p.
211–214. ISSN 1550-5774.

SHIVAKUMAR, P. et al. Modeling the effect of technology trends on the soft error rate
of combinational logic. In: Proceedings International Conference on Dependable
Systems and Networks. [S.l.: s.n.], 2002. p. 389–398.

SMITH, J. E.; SOHI, G. S. The microarchitecture of superscalar processors. Proceedings
of the IEEE, v. 83, n. 12, p. 1609–1624, Dec 1995. ISSN 0018-9219.

WATERMAN, A. Design of the RISC-V Instruction Set Architecture. Tese
(Doutorado) — EECS Department, University of California, Berkeley, Jan 2016.
Disponível em: <http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-1.
html>. Acesso em: Ago. 2017.

WATERMAN, A. et al. The RISC-V Instruction Set Manual, Volume I: User-Level
ISA, Version 2.0. [S.l.], 2014. Disponível em: <http://www2.eecs.berkeley.edu/Pubs/
TechRpts/2014/EECS-2014-54.html>. Acesso em: Ago. 2017.

YEAGER, K. C. The mips r10000 superscalar microprocessor. IEEE Micro, v. 16, n. 2,
p. 28–41, Apr 1996. ISSN 0272-1732.

http://doi.acm.org/10.1145/384286.264201
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-1.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-1.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html

92

ZIADE, H.; AYOUBI, R.; VELAZCO, R. A survey on fault injection techniques.
Disponível em: <https://hal.archives-ouvertes.fr/hal-00105562>. Acesso em: Ago. 2017.

https://hal.archives-ouvertes.fr/hal-00105562

93

APPENDIX A — SENSITIVITY TABLES

Table A.1: Sensitivities for the single-issue core (%).
Benchmark RF RENAME IU EXE BPU ROB Total

SHA 1.94 0.80 0.53 0.81 0.04 0.09 4.22
CRC32 1.07 0.49 0.71 0.73 0.04 0.09 3.13

String-search 1.07 0.43 0.30 0.74 0.04 0.09 2.67
FFT 1.84 0.86 0.38 0.40 0.05 0.38 3.90
Qsort 1.39 0.45 0.44 0.64 0.05 1.01 3.98

Dijkstra 0.62 0.51 0.50 0.61 0.04 0.09 2.38
Rijndael (enc) 1.91 0.84 0.30 0.49 0.04 0.09 3.68

Average 1.41 0.63 0.45 0.63 0.04 0.03 3.18
Source: Author

Table A.2: Sensitivities for the dual-issue core (%).
Benchmark RF RENAME IU EXE BPU ROB Total

SHA 1.12 0.74 0.89 1.61 0.03 0.18 4.58
CRC32 0.55 0.38 0.94 1.12 0.02 0.29 3.30

String-search 0.70 0.40 0.33 0.74 0.02 0.11 2.29
FFT 1.03 0.68 0.27 0.47 0.02 0.36 2.82
Qsort 0.79 0.35 0.52 0.79 0.02 0.62 3.09

Dijkstra 0.36 0.40 0.51 0.94 0.02 0.36 2.59
Rijndael (enc) 1.16 0.71 0.38 0.68 0.02 0.00 2.95

Average 0.81 0.52 0.55 0.90 0.02 0.03 2.84
Source: Author

Table A.3: Sensitivities for the quad-issue core (%).
Benchmark RF RENAME IU EXE BPU ROB Total

SHA 0.68 0.41 0.79 1.54 0.00 0.00 3.42
CRC32 0.40 0.27 0.73 0.89 0.00 0.00 2.29

String-search 0.37 0.24 0.32 0.78 0.00 0.00 1.71
FFT 0.58 0.37 0.16 0.44 0.00 0.00 1.54
Qsort 0.43 0.16 0.35 0.57 0.00 0.00 1.51

Dijkstra 0.23 0.19 0.31 0.74 0.00 0.00 1.47
Rijndael (enc) 0.64 0.42 0.32 0.53 0.00 0.00 1.90

Average 0.48 0.29 0.42 0.78 0.00 0.00 1.97
Source: Author

	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	1 Introduction
	1.1 Problem Statement and Context of this Work

	2 BOOM - The Berkeley Out-of-Order Machine
	2.1 Introduction
	2.1.1 The Basic Functionality of Superscalar Processors

	2.2 An Overview on The Berkeley Out-of-Order Machine
	2.2.1 Introduction
	2.2.2 Architecture and Organization
	2.2.2.1 Instruction Fetch
	2.2.2.2 Instruction Decode
	2.2.2.3 Register Renaming
	2.2.2.4 The Instruction Issue Unit
	2.2.2.5 The Execute Stage
	2.2.2.6 The Register File and Bypass Network
	2.2.2.7 The Load/Store Unit
	2.2.2.8 The Reorder Buffer and the Commit Stage
	2.2.2.9 The Branch Predictor

	2.2.3 Parameterization of the BOOM Processor

	2.3 Chisel - Constructing Hardware in an Scala Embedded Language
	2.4 The RISC-V ISA

	3 Background on Fault Injection and Related Work
	3.1 Soft Errors and Technology Scaling
	3.2 Hardware-based Fault Injection
	3.3 Simulation-based Fault Injection
	3.4 Related Work on Fault Injection Tools
	3.4.1 DrSEUS - A Dynamic Robust Single-Event Upset Simulator
	3.4.2 OVPSim-FIM
	3.4.3 F-SEFI - Fine-grained Soft Error Fault Injector
	3.4.4 MaFIN and GeFIN
	3.4.5 GPU-Qin - A GPU Fault Injector

	3.5 Main Contributions of the Proposed Platform

	4 A Platform to Evaluate the BOOM's Sensitivity to Faults
	4.1 Platform Overview
	4.2 Fault Injection Process
	4.2.1 The Fault Injection Life Cycle
	4.2.2 Fault Classification

	4.3 Platform Infrastructure
	4.3.1 The BOOMlib Component
	4.3.2 The RegisterBase Component
	4.3.3 The Checkpointing Manager Component
	4.3.4 The Saboteur Component
	4.3.5 The Logger Component
	4.3.6 The BOOMulator Component

	5 Results and Sensitivity Analysis of BOOM
	5.1 Speeding up Fault Injection Campaigns with Checkpointing
	5.2 Processor Sensitivity Analysis
	5.2.1 Hardware Occupancy and Sensitivity
	5.2.2 The Register File and Register Renaming Circuitry Sensitivities
	5.2.3 The Issue Unit and Execution Units Sensitivities
	5.2.4 Average and Global Sensitivities of BOOM

	6 Conclusions and Suggestions for Future Work
	References
	Appendix A — Sensitivity Tables

