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Abstract

The ubiquity of high-energy tails in the charged particle velocity distribution functions (VDFs) observed in space
plasmas suggests the existence of an underlying process responsible for taking a fraction of the charged particle
population out of thermal equilibrium and redistributing it to suprathermal velocity and energy ranges. The present
Letter focuses on a new and fundamental physical explanation for the origin of suprathermal electron velocity
distribution function (EVDF) in a collisional plasma. This process involves a newly discovered electrostatic
bremsstrahlung (EB) emission that is effective in a plasma in which binary collisions are present. The steady-state
EVDF dictated by such a process corresponds to a Maxwellian core plus a quasi-inverse power-law tail, which is a
feature commonly observed in many space plasma environments. In order to demonstrate this, the system of self-
consistent particle- and wave-kinetic equations are numerically solved with an initially Maxwellian EVDF and
Langmuir wave spectral intensity, which is a state that does not reflect the presence of EB process, and hence not in
force balance. The EB term subsequently drives the system to a new force-balanced steady state. After a long
integration period it is demonstrated that the initial Langmuir fluctuation spectrum is modified, which in turn
distorts the initial Maxwellian EVDF into a VDF that resembles the said core-suprathermal VDF. Such a
mechanism may thus be operative at the coronal source region, which is characterized by high collisionality.

Key words: solar wind – Sun: corona – Sun: particle emission

1. Introduction

Inverse power-law velocity or energy distributions of
charged particles are either directly observed or inferred in
various regions of the universe accessible to either direct or
remote observations, which includes 4–5MeV protons accel-
erated at the heliospheric termination shock and detected by the
Voyager 1 and 2 spacecraft (Stone et al. 2008), tens of MeV
electrons energized at the magnetic-field loop-top X-ray
sources during solar flares (Krucker & Battaglia 2014; Oka
et al. 2015), energetic ions and electrons measured in the
geomagnetic tail region during disturbed conditions (Christon
et al. 1991), etc. The solar wind is also replete with background
populations of protons and electrons featuring inverse power-
law tail distributions even in extremely quiet conditions
(Vasyliunas 1968; Feldman et al. 1975; Lin 1998; Gloeckler
2003; Fisk & Gloeckler 2012).

In particular, the solar wind electron velocity distribution
function (EVDF) is composed of a Maxwellian core ( 95% of
the total density), with energies around 10 eV, a tenuous
(4 5%~ ) high-energy halo with energies up to 10 10 eV2 3~ ,
and a highly energetic “superhalo” population with the density
ratio of 10 109 6~- - and with energies up to 100 keV~
(Lin 1998). For fast wind, sometimes a narrow beam-like
structure called the strahl, which is aligned with the magnetic
field and streaming in the anti-sunward direction, is also
measured (Feldman et al. 1976, 1978; Pierrard et al. 1999).

Given the prevalence of non-thermal distributions in nature,
the study of the charged particle acceleration mechanisms that
produce such distributions is of obvious importance and has a
wide-ranging applicability across different sub-disciplines in
astrophysical and space plasma physics. One of the first kinetic
models on how suprathermal electron populations are generated
involves the assumption that a sub-population of suprathermal

electrons in low coronal regions exists, which is “selected” by
Coulomb collisions and interacts with the thermal core and the
surrounding environment in order to form the power-law EVDF
at 1 au (Scudder & Olbert 1979a, 1979b). Later improved
models generally rely on Coulomb collisional dynamics at the
coronal base and phase-space mapping along inhomogeneous
solar magnetic field lines (Lie-Svendsen et al. 1997; Pierrard
et al. 1999, 2001). Collisional effects, however, become rather
insignificant for solar altitudes higher than, say, 10 solar radii. In
order to explain the observed quasi-isotropic nature of EVDF
near 1 au, wave-particle resonant interaction must be important.
Thus, the collective effects on the EVDF have been considered
with or without other global features (Vocks et al. 2005;
Vocks 2012; Pavan et al. 2013; Seough et al. 2015; Kim
et al. 2016).
An outstanding issue is whether the suprathermal EVDFs are

generated at the coronal source region in the first place. This
issue may have important ramifications on the coronal heat flux
and inverted temperature profile. If an enhanced number of
high-energy particles is assumed to be present in the low
transition region of the Sun, more particles are capable of
escaping the gravitational potential, unleashing the so-called
“velocity filtration effect,” which is shown to produce the
observed temperature inversion in the solar corona, a feature
that may be relevant to the coronal heating (Scudder 1992a,
1992b; Teles et al. 2015). In this regard, Che & Goldstein
(2014) proposed a scenario in which electron streams
accelerated by nanoflares can lead to the two-stream instability,
and ultimately produce a core-halo distribution in the inner
corona. According to their model, the core-halo population is
simply convected outward along open field lines while
preserving the phase-space properties.
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In this Letter we propose an alternative mechanism. This is
not an acceleration in the traditional sense, but rather it is a
mechanism that relies on a new fundamental plasma process
involving the wave-particle interaction in a collisional plasma.
Our theory is based on a recent paper by Yoon et al. (2016),
where the kinetic theory of collective processes in collisional
plasmas was formulated. The problem of combined collisional
dissipation and collective processes had not been rigorously
investigated from first principles in the literature. This is not to
say that collisional dissipation processes or collective processes
are not understood separately. On the contrary, each process is
well understood. Indeed, if one is interested in the situation
where the binary collisional relaxation is dominant, then
transport processes can be legitimately discussed solely on the
basis of the well-known collisional kinetic equation (Helander
& Sigmar 2002; Zank 2014). Conversely, if one’s concern is
only on relaxation processes that involve collective oscillations,
waves, and instabilities, there exists a vast amount of literature
on linear and nonlinear theories of plasma waves, instabilities,
and turbulence. It is the dichotomy that separates the purely
collisional versus purely collective descriptions that had not
been rigorously bridged until Yoon et al. (2016).

Among the findings of Yoon et al. (2016) is a hitherto-
unknown effect that came out without any ad hoc assumption.
The first principle equation of this new effect depicts the
emission of electrostatic fluctuations, in the eigenmode
frequency range, caused by particle scattering. This electro-
static form of “braking radiation” was appropriately named
electrostatic bremsstrahlung (EB) by the authors of Yoon et al.
(2016), which is not to be confused with a process sometimes
known in the literature by the same terminology. In the
literature, the process of relativistic electrons scattering
Langmuir waves into transverse radiation is also called the
“electrostatic bremsstrahlung” (Gailitis & Tsytovich 1964;
Colgate 1967; Melrose 1971; Windsor & Kellogg 1974;
Akopyan & Tsytovich 1977; Schlickeiser 2003), which is
actually an induced scattering of transverse radiation off of
relativistic electrons mediated by Langmuir waves. The
“electrostatic bremsstrahlung” of Yoon et al. (2016) is the
emission of electrostatic eigenmodes by collisional process,
which is analogous to but distinct from the emission of
transverse electromagnetic radiation by collisional process.

As will be demonstrated subsequently, the combined effects
of Langmuir wave-electron resonant interaction in the presence
of the new EB process leads to the self-consistent formation of
the core-halo EVDF, which is a process that may be operative
pervasively in the lower coronal environment. We thus suggest
that the present mechanism may be the most widely operative
process that is responsible for the formation of non-thermal
EVDFs, not only in the solar environment, but also in other
astrophysical environments. In the rest of this Letter, we detail
the present finding.

2. Theoretical Formulation

The essential idea behind the new process responsible for
taking a fraction of the electron population out of thermal
equilibrium and redistributing it to suprathermal velocity and
energy ranges is that the presence of the EB emission term (as
well as the collisional damping term) in the wave-kinetic
equation, combined with the particle kinetic equation, leads to a
new steady-state electron distribution function, which corre-
sponds to a Maxwellian core plus a quasi-inverse power-law

tail. Conceptually, such a state is a new quasi-equilibrium that
is distinct from thermodynamic equilibrium. In such a state,
enhanced electrostatic fluctuations coexist with a population of
charged particles while maintaining a dynamical steady state.
In order to demonstrate this process, we numerically solve
the system of particle- and wave-kinetic equations of the
generalized weak turbulence theory (Yoon et al. 2016), starting
with an initially Maxwellian electron velocity distribution and
Langmuir wave spectral intensity that reflects the presence of
only the customary spontaneous and induced emissions, but not
the EB or the collisional damping. Of course, such an initial
state is out of force balance. The EB and collisional damping
terms subsequently drive the system to a new force-balanced
steady state for the wave intensity. The initial Langmuir
fluctuation spectrum is thus significantly modified as a result of
the additional terms in the wave-kinetic equation. The modified
Langmuir wave spectrum in turn distorts the initial Maxwellian
electron distribution, and transforms it into a new quasi-steady-
state velocity distribution function (VDF) that superficially
resembles the core-suprathermal velocity distribution function.
In what follows, we discuss the details of this numerical
demonstration.
We perform the self-consistent numerical analysis on the EB

emission in the Langmuir L( ) electrostatic eigenmode
frequency range by including the new mechanism in the
wave-kinetic equation. Instead of making use of the complete
set of nonlinear weak turbulence equations presented in Yoon
et al. (2016), we restrict our analysis to the quasi-linear
formalism, which includes single-particle spontaneous emis-
sion and wave-particle induced emission. We also take into
account in the wave equations the effects of collisional
damping. Such a simplified approach allows the study of the
time evolution of the system, and puts in evidence the new
mechanisms that have been introduced in Yoon et al. (2016).
Besides, in the absence of free-energy sources, with which the
present Letter is not concerned, the nonlinear mode-coupling
terms are not expected to play any important dynamical roles.
The equation describing the dynamics of L waves is therefore
given by
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spectral component of the wave electric field, and the
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n e m4pe e0
2w p= and T n e4D e 0

2l p= ( ) stand for the
plasma frequency and Debye length, respectively, and n0, e, me,
and Te are the ambient density, unit electric charge, electron
mass, and electron temperature, respectively.
The first term on the right-hand side of Equation (1) contains

two contributions: the first term within the large parenthesis,
proportional to the EVDF, vFe( ), represents the discrete-particle
effect of spontaneous emission; the second term, proportional
to the derivative, v vFe¶ ¶( ) , represents the induced emission.
The second line of Equation (1) on the right-hand side includes
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the collisional wave damping rate, k
Lgs , obtained in the same

context as the EB (Yoon et al. 2016), and numerically analyzed
and discussed in Tigik et al. (2016a). The collisional damping
is defined by
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where Ti is the proton temperature, and k, w( ) is the linear
dielectric-response function. In the literature, the collisional
damping rate of plasma waves are often computed by heuristic
means. That is, the collisional operator is simply added to the
exact Vlasov (or Klimontovich) equation by hand, as it were,
and the small-amplitude wave analysis is carried out, leading to
the so-called Spitzer formula for the collisional damping rate
(Lifshitz & Pitaevskii 1981). A similar heuristic and ad hoc
recipe is also applied even for a turbulent plasma (Makhankov
& Tsytovich 1968). Such approaches are at best heuristic and,
strictly speaking, incorrect, as the collisionality represents
dissipation and irreversibility, whereas the Vlasov or Klimon-
tovich equation exactly preserves the phase-space information,
and thus is reversible. In the non-equilibrium statistical
mechanics it is well known that the irreversibility enters the
problem only as a result of statistical averages and the
subsequent loss of information. The authors of Yoon et al.
(2016) carried out the rigorous analysis of introducing the
collisionality starting from the exact Klimontovich equation
and taking ensemble averages. The collisional damping rate
that emerged, namely Equation (2), is the correct expression
that replaces the heuristic Spitzer formula, and it was found in
Tigik et al. (2016a) that the heuristic Spitzer collisional
damping rate grossly overestimates the actual rate.

The term Pk
Ls in Equation (1) describes the EB emission

process, which is new and is the subject of this Letter. In Yoon
et al. (2016) a specific approximate form of Pk

Ls was derived. In
this Letter we have revisited the approximation procedure, and
find that a more appropriate form is given by
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where mi is the proton mass and v T m2e e e= stands for
electron thermal speed. The detailed derivation of the above-
improved formula is reserved for another full-length article, as
it is too lengthy for the present Letter.

The dynamical equation for EVDF vFe( ) is given by the
particle kinetic equation, which includes the Coulomb collision

operator written in the form of the velocity-space Fokker-
Planck equation,
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where the coefficient vAi ( ) represents the velocity-space
friction, and the coefficient vDij ( ) describes the velocity
diffusion. The distribution functions, vFa ( ) and vFb ( ), are both
normalized to unity, v vd F 1a b,ò =( ) , where a e i,= and
b e i,= represent the interacting particles. The term

F F,ab a bq ( ) depicts the effects of Coulomb collisions between
particles of species a and b.
For the present analysis, we adopt a linearized form of the

Landau collision integral for F F,ab a bq ( ), in which it is assumed
that the evolving EVDF collides with a Maxwellian back-
ground distribution. This assumption relies on the fact that the
growing tail population of the EVDF has a much lower density
than the core electrons, so that the effects of collisions between
the tail electrons with the background EVDF are more
significant than the effects of collisions among electrons of
the tail population. The lengthy linearization procedure can be
found in detail in Tigik et al. (2016b) and will not be repeated
here for the sake of space economy. In short, the linearized
collision operator is given by
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where x v vab a tbº , vtb is the thermal velocity of the particles of
species b, ne m4 ln e

4 2pG = L , and x x x xY º F - F¢( ) ( ) ( ) is
an auxiliary function (Gaffey 1976), in which xabF º( )

e dt
x t2

0

2

òp
- is the error function and x eab

x2 2F¢ =
p

-( ) is its
derivative.

3. Numerical Analysis

The set of integro-differential equations for waves and
particles, (1) and (4), was numerically solved in 2D wave-
number space and 2D velocity space, respectively. The purpose
of the numerical analysis is to demonstrate that the coupled
system of equations leads to an asymptotically steady-state
EVDF that resembles the core-halo distribution, regardless of
how the solution is initiated. As a concrete example, we
assumed an initial state of isotropic Maxwellian VDF for both
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ions and electrons, given by
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1 2= ( ) , with a i e,= . The ion VDF is

assumed to be constant along the time evolution, which is a
reasonable assumption as we are working in the much-faster
timescale of electron interactions. The electron-ion temperature
ratio of T T 7.0e i = is adopted, and the plasma parameter of
n 5 10D0

3 1 3l = ´- -( ) is used. This choice represents a
relatively high collisionality. For the coronal-base source
region, at the point where the plasma becomes fully ionized,
the electron density is of the order 10 10 cm9 11 3-– and the
electron temperature may reach 10 10 K4 6~ – (Aschwanden
2005) [or equivalently, 10 10 eV0 2~ - ]. If we assume a
central value for the density and the temperature,10 cm10 3- and
10 K5 , for instance, the corresponding plasma parameter would
be n 10D0

3 1 5l »- -( ) , more than two orders of magnitude below
the value, which we have used for the numerical analysis. Such
a higher value was purposely utilized in order to reduce the
computational time necessary to obtain the results. The final
outcome of the time evolution, however, is not affected by the
inflated plasma parameter.

The initial Langmuir wave intensity was chosen by
balancing only the spontaneous- and induced-emission pro-
cesses in the equations for the wave amplitudes, namely,
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Because the VDF and the Langmuir spectrum have azimuthal
symmetry, we plot the results of numerical solution by using a
1D projection on the parallel direction of the velocity and wave
number.

It is important to note that the initial electron distribution and
Langmuir wave spectral intensity, (6) and (7), do not satisfy the
steady-state condition t 0¶ ¶ = in the particle- and wave-
kinetic Equations (4) and (1), respectively. This is purposeful,
since our aim is to demonstrate that the set of Equations (4) and
(1) do not permit the electron distribution and Langmuir wave
spectral intensity, (6) and (7), respectively, as the legitimate
steady-state solution, and so the equations will force the initial
state to make a transition to a new steady state or, equivalently,
a new quasi-equilibrium state.

For the numerical analysis, we take into account the new
effects of collisional damping and EB, starting from the above
initial condition. With the addition of these new terms, the
initial wave spectrum is no longer in equilibrium with the
particle distribution, triggering an interesting evolution. Let us
define normalized Langmuir wave intensity

g
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where g n2 4 e D
3 2 2 3 1p l= -[ ( ) ] . We also define the normalized

temporal variable, tpet w= , and the normalized wave number

kve pew . Figure 1 shows the time evolution of q
LEs . It is seen

that the bremsstrahlung radiation emitted in the frequency
range corresponding to L waves alters the spectrum, creating a
modification that starts at q 0.4» and ends in a peak around

q=0. The wave growth appears early in the time evolution
and evolves rapidly, as can be seen in Figure 1. After

5000t = , the shape of the curve starts to change and the wave
growth becomes slower. At τ=50,000, the Langmuir
spectrum appears to be very close to an asymptotic state.
The early stages of the time evolution of the EVDF are quite

gradual, but the first signs of modification start to appear
around 2000t = and are almost imperceptible. In Figure 2, the
earliest indication of change is shown at 4000t = . At this time
an energized tail becomes apparent. The demarcation between
the core and tail occurs around u v v 4.6e= » . The velocity
spectrum associated with the energetic tail population con-
tinues to harden as time progresses, while the core defined for
u 4.6 remains essentially unchanged. In short, we have
demonstrated that the initial Maxwellian electron distribution

Figure 1. Time evolution of the Langmuir spectrum, taking into account the
influence of the bremsstrahlung emission.

Figure 2. Time evolution of the electron velocity distribution function.
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(6) has made a transition to a new quasi-equilibrium state in
which the electron distribution function bears a superficial
resemblance to the Maxwellian core plus a quasi-inverse
power-law tail population.

4. Final Remarks

The results obtained suggest that, in the presence of EB
emission, the wave-particle system attains a state of
asymptotic equilibrium, in which the EVDF possesses a
feature of core-halo distribution that is highly reminiscent of
the solar wind EVDF. We thus conclude that the present
mechanism of the collective wave-particle interaction process
that takes place in a collisional environment, such as the
coronal source region, may be a highly efficient and common
process in many astrophysical environments. Before we close,
we note that we have also analyzed the particle kinetic
equation in which the collisional operator is not present on the
right-hand side of (4). The result (not shown) is not very
different from the present result, which indicates that the
mechanism of generating the suprathermal electrons mainly
comes from the wave dynamics that operate in a collisional
environment.

We have also checked the overall energy budget of the
system. Since the initial state, comprised of Maxwellian
distribution and Langmuir spectral intensity that does not
reflect the bremsstrahlung emission, is not in force balance,
there is a transfer of energy between the particles and waves
early on, but over a longer time period the system enters a state
where the net exchange between the particles and waves
gradually settles down to a minimal level. Note that in terms of
the total energy content, the tail portion of the EVDF contains a
relatively low proportion of the net energy, as the number
density is several orders of magnitude lower than the core
distribution. Although it is not so easy to verify by visual
means, there is a slight cooling associated with the core part of
the EVDF. This shows that the present process is not an
acceleration mechanism, but rather involves the redistribution
of particle population in velocity or energy space in order to
form a new quasi-equilibrium.
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