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RESUMO

O planejamento da expansdo da capacidade de sistemas elétricos visa garantir o
fornecimento futuro de energia elétrica. A busca por esse objetivo deve ser feita tendo em
vista critérios como custos, tecnologias disponiveis, confiabilidade e impactos ambientais.
No presente trabalho, o foco sdo o0s objetivos de minimos custos e minimas emissdes de
gases de efeito estufa, da geracdo elétrica. No contexto global atual, esse planejamento
representa um grande desafio. Sendo uma atividade de grande importancia para o
desenvolvimento dos paises, envolve, alem das incertezas proprias da atividade, também as
incertezas das politicas energéticas, as quais dependem de outras agendas politicas da
administracdo em turno. Além disso, uma vez que a geracdo de energia é baseada em muitos
casos em recursos naturais sensiveis as condicOes climaticas, o processo de planejamento
também deve lidar com a incerteza da mudanca climética. Dessa forma, sdo necessarios
planos flexiveis capazes de antecipar possiveis mudancgas (resultado das incertezas
mencionadas) e evitar o desvio dos objetivos iniciais, que levariam em diferentes resultados.
O primeiro passo € conhecer o0 impacto que possiveis mudancas podem gerar nas metas
iniciais. Algumas metodologias e ferramentas exploradas nesta &rea, normalmente
consideram apenas os efeitos da mudanca climatica, enquanto que outras mais gerais
consideram as politicas de energia ou climéticas, mas ndo a possibilidade de mudanca nessas
politicas nem a sua combinacdo. Ou seja, sdo consideradas estaticas para o periodo de
planejamento. O presente trabalho traz como contribuigdo original para a &rea a incluséo da
incerteza inerente as politicas energéticas, combinada a incerteza climatica, e a avaliacdo o
desempenho dos caminhos possiveis, identificando os mais robustos. O objetivo deste
trabalho é determinar o impacto e a influéncia das incertezas das politicas energéticas e das
mudancas climatica, de forma combinada, sobre os resultados finais no planejamento da
expansao da capacidade de sistemas elétricos, em termos de custos e emissdes de COs.
Outros objetivos secundarios incluem a identificacdo de politicas robustas com boa
performance para qualquer cenario climatico e desenvolvimento de uma abordagem de
analises das mudancas climaticas e politicas. Sdo aplicadas técnicas de otimizacdo de
expansao de capacidade para elaborar uma metodologia hibrida que combina programacao
dindmica com programacao linear multiobjectivo para a geracdo dos diferentes cenarios de
mudanca da politica energética, bem como os trade-offs. A metodologia é aplicada em uma
regido estudo de caso envolvendo a expansdo de capacidade do subsistema elétrico sul do
brasil. Resultados mostram que: (i) é possivel determinar os impactos das mudancas de
politicas energéticas para diferentes cenarios de mudanca climatica a través dos trade-off de
custos e emissdes de COo; (ii) é possivel identificar politicas energéticas robustas; (iii) é
possivel identificar a influéncia da mudanca climéatica no desempenho (em termos de custos
e emissdes de CO») das politicas energéticas. Os resultados e métodos aqui produzidos sdo
Uteis para paises em desenvolvimento e emergentes, como o Brasil, ao oferecer um marco
metodoldgico capaz de auxiliar na programacdo de seus investimentos em expanséo da
geracdo de energia em ambientes com grandes incertezas, além de fornecer de uma
ferramenta para o desenho de politicas energéticas e climaticas.

Palavras chave: planejamento de incremento da capacidade, sistemas elétricos,
mudanca climatica, incertezas, politicas energeéticas, programacado dinamica,
programacéao linear multi-objetivo.
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ABSTRACT

The planning of Power systems capacity expansion aims to guarantee the future supply
of electrical energy. The pursuit of this objective should be made considering criteria such
as costs, available technologies, reliability and environmental impacts. In the present work,
the focus is the objectives of minimum costs and minimum emissions of greenhouse gases
in the power generation. In the current global context, such planning is a major challenge.
As an activity of great importance for the development of countries, it involves, in addition
to the inherent uncertainties of the activity, energy policies uncertainties, which depend on
other political agendas of the administration in turn. Also, since energy generation relies in
many cases on climate-sensitive natural resources, the planning process must also deal with
the climate change uncertainty. Hence, flexible plans are necessary to anticipate possible
changes (that come up of the mentioned uncertainties) and avoid the deviation from the
initial objectives, which would lead to different results. The first step is knowing the impact
that possible changes can generate on the initial goals. Some methodologies and tools
explored in this area consider only the effects of climate change, while others more general
consider energy or climate policies, but not the possibility of change in these policies or
their combination. That is, they are considered static for the planning period. The present
work has as an original contribution to the area by the inclusion of the inherent uncertainty
of energy policies, combined with the climatic uncertainty, and the evaluation of the
possible paths, identifying the most robust ones. The objective of this work is to determine
the impact and influence of energy policy and climate change uncertainties, combined, on
the final results in the planning of the power systems capacity expansion regarding costs
and CO2 emissions. Other secondary objectives include identifying robust policies with
good performance for any climate scenario and developing a climate change and policy
analysis approach. Capacity-optimization techniques are applied to develop a hybrid
methodology that combines dynamic programming with multi-objective linear
programming to generate different scenarios for energy policy change, as well as trade-offs.
The methodology is applied in a region case study involving the capacity expansion of the
Brazilian southern power subsystem. Results show that: (i) it is possible to determine the
impacts of energy policy changes for different scenarios of climate change through the
trade-off of costs and CO. emissions; (ii) robust energy policies can be identified; (iii) it is
possible to identify the influence of climate change on the performance (regarding costs and
CO:2 emissions) of energy policies. The results and methods produced here are useful for
developing and emerging countries, such as Brazil, by offering a methodological framework
capable of assisting in scheduling their investments in expanding energy generation in
environments with significant uncertainties, as well as providing a tool for the design of
energy and climate policies.

Keywords: Planning capacity expansion, power systems, energy policy, climate
change, uncertainties, dynamic programming, multi-objective linear programming.
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1 INTRODUCAO

O planejamento dos diferentes servigos pablicos, como o de energia elétrica, os sistemas
de abastecimento de &gua, as escolas e as estradas, entre outros, foram no geral, realizados
aplicando a metodologia de expansdo de capacidade, uma vez que a maioria desses sistemas ja
existe (HOUSE E WARFIELD, 1969; LUSS, 1982). O principal objetivo da expansdo da
capacidade € determinar os tamanhos de instalacdes a serem adicionadas, e quando isso deve
acontecer, com custos minimos (LUSS, 1982). Isto também pode exigir a consideracdo de
outros objetivos, como a minimizacao das emissdes de gases de efeito estufa e a incorporacédo
de energias renovaveis para mitigar impactos ambientais. Todas estas formulacGes devem ser
realizadas considerando as caracteristicas de ordem climatica, politica e econémica do ambiente

em que o plano serd implementado.

A respeito do clima, alteracbes em seu estado global tém sido identificadas; com o
aquecimento do sistema climético, desde a década de 1950, e muitas das mudancas observadas
ndo tém precedentes ao longo de décadas ou milénios. As emissdes antropogénicas de gases de
efeito estufa aumentaram desde a era pré-industrial. Seus efeitos, juntamente com os dos outros
condutores antropicos, foram detectados em todo o sistema climéatico e é extremamente
provavel que tenha sido a causa dominante do aquecimento observado desde meados do século
XX. O setor elétrico é um dos que mais contribuiu nas emissdes de CO2, com 25% do total de
emissdes em 2010. Nas ultimas décadas, as mudancas climaticas tém causado impactos nos

sistemas naturais e humanos em todos os continentes e através dos oceanos (IPCC, 2014).

Assim, 0 uso de recursos renovaveis é, atualmente, uma preocupacdo global, devido aos
impactos ambientais e as alteracdes climaticas, fazendo com que os governos adotem politicas
para a implantacdo de tecnologias com baixas emissdes de carbono (IYER ET AL., 2015). Tais
politicas sdo as chamadas politicas climaticas. A incorporacdo de politicas climéaticas no
planejamento adiciona complexidade e incerteza ao processo, assim, os planejadores devem
levar em conta a incerteza adicionada & complexidade, se comparado com as condi¢Ges do
passado, uma vez que os fatores-chave, como a configuracdo econdémica e politica, mudam
rapidamente e tém um grande impacto em todo o mundo (SCHWENKER E WULF, 2013).

Por sua vez, o planejamento dos sistemas elétricos, como definido por Seifi e Sepasian
(2011), é um processo no qual o objetivo é decidir sobre novos elementos dos componentes



existentes do sistema, ou sobre sua atualizacao, para satisfazer adequadamente as demandas de
energia elétrica no futuro. Isso resulta na definicdo de um cronograma de investimento para a
construgéo das plantas e dos links de interconexdo, considerando um fornecimento econdmico
e confiavel (GORENSTIN, CAMPODONICO ET AL., 1993). Os principais elementos
componentes do sistema elétrico sdo: geracdo, transmissdo, interconexdo e distribuicdo
(ELKARMI E ABUSHIKHAH, 2012). De entre eles, o planejamento da expansdo da
capacidade de geracdo é a primeira etapa decisiva em questfes de planejamento de longo prazo
(SEIFI E SEPASIAN, 2011), portanto deve lidar com as incertezas proprias do planejamento
de longo prazo. Na sua vez, um dos recursos renovaveis mais empregados para a geracao
elétrica é a agua (TSP, 2017). Sendo por tanto de muito interesse para area de estudo do
Planejamento e gestdo dos recursos hidricos, motivo pelo qual é foco do presente trabalho é o
componente de geracao.

Metodologias de planejamento foram desenvolvidas para cada um destes componentes,
sendo, cada um em si um importante objeto de estudo (IAEA, 1984). No caso do planejamento
de expansdo de geracdo de energia elétrica, a metodologia de programacao dinamica (DP) foi
classificada como uma das mais utilizadas, entre outras, como técnicas de decomposicéo,
otimizacdo estocastica, algoritmo genético (GA), a teoria dos conjuntos difusos, redes neurais
artificiais, fluxos de rede, recozimento simulado (simulated annealing), etc. (KAGIANNAS,
ASKOUNIS e PSARRAS, 2004). Tekiner et al. (2010) fez uma revisdo abrangente das
metodologias aplicadas, indicando o emprego de métodos de otimiza¢do multi-objetivo com
avaliacdo de riscos e incertezas, programacao linear multi-objetivo (MOLP — Multi Objective
linear programming), otimizag&o estocéstica, analise multicritério, analise de decisdo e anélise
trade-off. As incertezas no planejamento dos sistemas elétricos tém sido focadas na demanda
(DAVIS ET AL., 1987); e demanda e disponibilidade de recursos (GORENSTIN ET AL.,
1993); demanda e parametros de precos (AHMED, KING E PARIJA, 2003).

Politicas para a incorporagdo de energias renovaveis foram incluidas no planejamento da
expansao da geracdo, na forma de restricbes com percentuais minimos de energias renovaveis
(LI ET AL., 2014); ou como sistemas populares de incentivos: tarifas feed-in, imposicdo de
quotas, comercio de emissdes e imposto sobre o carbono (CARERI ET AL., 2011); também
como cumprimento das quotas de emissfes (REBENNACK, 2014) ou uma fungéo objetivo
adicional de minimizacgdo de emissdes de CO> (AGHAEI ET AL., 2013; TEKINER, COIT E
FELDER, 2010). Esforcos recentes consideram modelar a incluséo de grandes quantidades de



renovaveis aos sistemas elétricos (VITHAYASRICHAREON, RIESZ E MACGILL, 2015), a
través de uma metodologia de andlise que aplica conceitos de modelagem de portfélio de
geracdo, que consegue lidar com os diferentes riscos e incertezas das energias renovaveis (i.e.,
incertezas de precos do gas e do carvdo). Neste referido caso, para aplicacdo para a anélise do
papel do carvéo, do gas e das energias renovaveis nos futuros portfolios de geracéo no sistema
elétrico da Australia, para 2030. Assim, as politicas climaticas tém delineado as politicas
energéticas. Todas estas analises, incorporando politicas climaticas ao planejamento, avaliam
as incertezas das respostas dos diferentes instrumentos aplicados. Entretanto, no cenério de
volatilidade atual, o fato é que as politicas climéaticas vdo mudar com frequéncia sobre a

passagem do tempo, assim como as politicas energéticas.

A incorporacdo dos impactos das mudancas climéaticas nos modelos de planejamento de
geracdo de energia requer compreensdo sobre 0s impactos nas fontes de geracdo. A maior parte
da literatura foca nos efeitos das mudancas climaticas na energia hidrelétrica (SAMPLE, et al.,
2015; FILION, 2000; LEHNER, CZISCH e VASSOLO, 2005; LIMA, COLISCHONN e
MARENGO, 2014), com menor atencdo para a energia edlica e fotovoltaica, dada a maior
incerteza sobre essas fontes quando comparada a hidroelétrica (YAO, HUANG e LIN, 2012).
Os impactos das mudancas climaticas foram considerados em termos de fator de capacidade,
que indica a relacdo de energia que uma usina elétrica produz durante um determinado intervalo
de tempo e energia que poderia produzir em sua capacidade maxima de operacdo continua

durante esse mesmo periodo.

11 IDENTIFICACAO DA LACUNA

A Alemanha, um dos paises que adotaram politicas para a implantacdo de tecnologias de
baixo carbono, dobrou seus recursos de energias renovaveis entre 2000 e 2009, das quais a
geracdo edlica é a mais importante (REUTER ET AL., 2012). No entanto, a implementagéo
deste tipo de politicas tem um custo. Em 2013, estimou-se um total de US$ 120 bilhdes em
subsidios globais para tecnologias de energia renovavel (IEA, 2014). Recentemente, 0 Reino
Unido anunciou que anteciparia para 2016 o fim aos subsidios para novos parques eolicos on-
shore (BBC NEWS, 2015). Na Austréalia, o primeiro-ministro proibiu o fundo federal de energia
limpa de investir em energia edlica (SCHLANGER, 2015). As razdes por tras destas mudangas
de politica foram apontadas como a necessidade de ajudar outros tipos de tecnologia e
especulacdes de que os fundos dos subsidios ficaram sem recursos. Especial atencdo merecem
as mudancas nas politicas energéticas do Japdo entre os anos 2009 e 2013, como consequéncia



do desastre da usina nuclear de Fukushima, posterior ao sismo de marco de 2011 e das
mudancas na administracdo do governo (KURAMOCHI, 2015). Os citados exemplos mostram
como as politicas ndo sdo isentas de mudar, seja pelo motivo que for.

A respeito das mudancgas climéticas, um aspecto importante a se salientar € que ainda
existem grandes incertezas sobre a severidade das alteragdes climaticas quanto ao impacto na
geracdo e 0 custo das tecnologias necessarias para mitigar este problema, a eficacia dos
instrumentos da politica climatica, tais como taxacao ao carvdo, mercados de emissoes, feed-in
tariff para renovaveis. Porém, com o passar do tempo, mais informacGes sobre estes fatores
serdo obtidas, quer pela observacao, quer pela aprendizagem através da realizacdo de pesquisas.
Estes novos conhecimentos precisardo ser incorporados nas politicas e o0s planos,

consequentemente, necessitam ser atualizadas no decorre do tempo. (FUSS ET AL., 2009).

Assim, no planejamento da expansao da capacidade de geracdo de sistemas elétricos, por
um lado, tem-se os custos da implementacdo das politicas climaticas que subsidiam as energias
renovaveis junto com a incerteza da mudanca destas politicas no decorrer do tempo; por outro
lado, nos paises em desenvolvimento, tem-se a necessidade de reduzir as emissdes de CO; a
custos razoaveis (YEPEZ-GARCIA, JOHNSON E ANDRES, 2010); ademais, tem-se
anomalias climaticas impactando na geracdo. Porém, € necessario aprofundar o entendimento
a respeito do impacto das mudancas deste tipo de politicas no decorrer do tempo, na busca por
objetivos de redugdo de emisses de CO. e nos custos no planejamento da expansdo da

capacidade de geracdo, considerando os possiveis efeitos das mudancas climaticas.

A maioria dos trabalhos sobre a incerteza das politicas tem sido relatada em pesquisas
financeiras, analisando as influéncias das mudancas politicas governamentais sobre 0s precos
das ag¢Oes, como mostrou Pastor e Veronesi (2012). Nesse trabalho, foram definidos dois tipos
de incertezas: incerteza politica, que diz respeito a incerteza sobre eventuais mudangas na atual
politica governamental; e efeito da incerteza que uma nova politica do governo tera sobre a
rentabilidade do setor privado. Os trabalhos no planejamento da expansdo da capacidade de
geracdo, como mencionado anteriormente, estdo focados mais na aplicagdo dos instrumentos
das politicas climaticas. Dessa forma, é preciso um melhor entendimento nesta area do
planejamento da expansédo da capacidade de geragéo.

Né&o estdo identificados trabalhos que tenham considerado simultaneamente incertezas das
politicas energéticas e das mudancas climaticas. Assim, sob a incerteza das politicas
energéticas, a mudanga de clima pode adicionar mais a variacdo na probabilidade da obtencao



de determinados resultados esperados, tornando o planejamento da expansao da capacidade de
geracdo elétrica mais desafiador (i.e., 0 que é esperado ser uma boa decisdo sob um clima pode

tornar-se completamente desfavoravel sob outro).

1.2 DEFINICAO DO PROBLEMA

As politicas vao mudar no decorrer do tempo, como definido anteriormente, e podem
mudar pela nova informacao ou conhecimento — como € feito na gestdo adaptativa (adaptative
management): politicas de gestdo séo testadas para analisar as respostas — ou, simplesmente,
pela decisdo politica do governo em turno. A partir desse ponto, o presente trabalho emprega o
termo “politica” para definir uma determinada estratégia de expansdo. Assim, uma “politica de
expansdo” do parque gerador de energia representa uma sequéncia de decisdes de investimento
em um determinado conjunto (mix) de fontes geradoras (o0 que serd expandido e quando). A
escolha da melhor politica, ou eventuais mudancas de curso em uma politica inicialmente
definida fazem parte da atividade de Planejamento da Expansdo da Capacidade de Geracao
(PECG). Cada politica reflete as prioridades dadas pelos tomadores de decisdo a objetivos como
reducdo em gases de efeito estufa ou reducdo nos custos da expansdo. Considerando-se que a
politica pode mudar para favorecer objetivos normalmente antagénicos (e.g. reducdo em gases
efeito estufa e reducéo nos custos), coloca-se a seguinte questao:

E possivel identificar e quantificar, na base de conhecimento, das condigdes iniciais de
planejamento e das influéncias das mudancas climaticas, os impactos de mudancas nas politicas

energéticas otimizadas nos objetivos iniciais do plano de expansédo de capacidade de geracdo?

Derivam desta pergunta as seguintes:
1) E possivel identificar e classificar as mudancas nas politicas a respeito de seus
impactos finais no objetivo inicial do plano?
2) E possivel identificar os efeitos das mudancas climaticas nas politicas?
3) E possivel identificar politicas robustas que consigam manter a consecugdo dos

objetivos inicias além das mudancas nas condig¢des climaticas?

1.3 RELEVANCIA E JUSTIFICATIVA DA PESQUISA

Se as politicas mudam durante o processo de planejamento, serdo necessarios ajustes para

prevenir o plano de se tornar obsoleto. I1sso pode seduzir politicos e tomadores de decisdes a



optar por estratégias indicativas mais abrangentes que podem nao ter clareza ou certeza sobre

quais objetivos ou outros interesses a priorizar (PARKER E DOAK, 2012).

E importante conhecer com antecedéncia os possiveis impactos das mudancas das politicas
sobre os objetivos originais no decorrer do plano sob as incertezas dos efeitos das mudancas
climaticas, para dar subsidio relevante aos planejadores e tomadores de decisfes das possiveis
consequéncias das mudancas nestas politicas. Assim, serd possivel elaborar diretrizes para 0s
ajustes necessarios do plano, permitindo ao mesmo adaptar-se as novas condigdes, prioridades

e contextos geopoliticos com menor impacto nos objetivos.

A relevancia desta pesquisa na area de recursos hidricos é a identificacdo dos impactos das
mudancas climaticas sobre as politicas energéticas, assim como as mudancas das politicas na
selecdo do rol destes recursos como uma das fontes renovaveis de geracdo de energia elétrica.
Esta informacdo pode ser considerada, posteriormente, na gestdo dos recursos hidricos. Além
do indicado, as técnicas e ferramentas podem ser aplicadas, com adequacgdes, para o
planejamento de capacidade de expansdo de outros servicos publicos, como as plantas de

tratamento de agua e, inclusive, no planejamento da gestao dos recursos hidricos.

1.4 HIPOTESES E OBJETIVOS DA PESQUISA

1.4.1 Hipoteses

O presente trabalho parte do pressuposto que nédo é suficiente apenas definir uma politica
“Otima” para expansao de um sistema gerador sem considerar os efeitos da mudanca climatica.
Em vista de incertezas envolvidas e da necessidade de o planejamento ser flexivel, politicas
energéticas eventualmente passardo por mudancas e ajustes de curso. Nesse sentido, a hipotese
considerada neste trabalho é que: “a configuracdo das mudangas nas politicas energéticas pode
levar a resultados bem diferentes, sendo importante poder identificar também a melhor forma
de se executar estas mudancas na expansao da capacidade, de modo a se alcancar o objetivo

final”.



1.4.2 Objetivos

Para responder a hipotese colocada, o objetivo da pesquisa é determinar os impactos e as
influéncias das incertezas das politicas energéticas de expansao da capacidade no decorrer do
planejamento sobre os resultados da expansdo da capacidade de geragdo, como custos e

emissdes de CO., para diferentes condiciones climaticas.

Os objetivos secundarios, que subsidiaram o objetivo principal:

1) Identificar e classificar as mudancas de politicas robustas que conseguem um melhor
desempenho nos resultados finais, como custos e emissdes de COg;

2) Identificar as influencias das condi¢des climaticas nas politicas;

3) Elaborar a abordagem de analise das mudancas climaticas e das politicas no

planejamento da expansédo da capacidade de geragéo.

1.4.3 LimitagOes da pesquisa

A pesquisa se limita ao estudo dos impactos das mudancas nas politicas de expansao de
fontes geradoras de energia ou preferéncia da selecdo de um tipo de tecnologia de geracao, sob
a influéncia da mudanca climatica, nos resultados dos custos e emissdes de CO». O foco é o
planejamento estratégico de longo prazo, em nivel de governo ou entidade reguladora. As
condicOes de operacdo do sistema elétrico sdo simplificadas a uma restricdo para o fator de
capacidade de utilizacdo. O fator de capacidade de utilizacdo é considerado carateristico da
operacdo de um determinado sistema elétrico e sensivel unicamente a disponibilidade de
recursos hidricos no sistema. As incertezas das mudangas climéaticas sdo expressas como
cenarios resultantes de aplicacdo de diferentes modelos climéaticos para um Unico cenério de
emissdes de CO.. Todas as outras varidveis (demanda, precos, etc.) que configuram o problema

de expansdo da capacidade do sistema elétrico permanecem constantes.

1.5 ESTRUTURA DO TRABALHO

O conteldo desta tese € apresentado no formato de artigos. O presente capitulo apresentou

uma introducdo do tema abordado, a justificativa, a hipoteses e o objetivo da pesquisa.



No capitulo 2, apresenta-se um artigo publicado no periodico Environmental Modelling &
Software, intitulado: “Systems capacity expansion planning: Novel approach for environmental
and energy policy changes analysis”. Neste artigo apresenta-se uma breve introducdo ao
conceito da expansdo de capacidade, revisao literaria sobre metodologias empregadas para o
planejamento da expansdo de capacidade e as incertezas nas politicas energéticas, uma
metodologia desenvolvida para as analises das mudancas destas politicas e uma aplicagdo para
um caso hipotético. A politica energética conduze o planejamento da expansao da capacidade
pela preferéncia de selecdo de tecnologias segundo suas emissdes de CO2 ou seus custos
embutidos. A metodologia gera varios diferentes cenarios de mudancas das politicas energéticas
e seus trade-offs, pelo acoplamento de optimizacdo por programacao dinamica e programacao
linear multi-objetivo. Os resultados da aplicacdo para um exemplo hipotético apresentaram:
uma clara frente de Pareto, cenarios das mudancas politicas abruptas deveriam ser evitados no
lugar daqueles graduais e que politicas energéticas mais “verdes” em um dado estagio do
planejamento ndo sdo necessariamente as melhores se considerado o horizonte de planejamento

completo.

No capitulo 3, apresenta-se um artigo pronto para submissdo a publicacdo no periddico:
Renewable & sustainable energy reviews, intitulado: “Looking for a robust energy policy in
generation expansion facing climate change uncertainties/impacts”. Neste artigo, € apresentada
uma revisdo literaria focada na incorporacdo dos efeitos das mudancas climéaticas no
planejamento da expansdo de capacidade. Apresenta-se uma segunda metodologia
desenvolvida, incorporando na metodologia apresentada no capitulo 2, os efeitos das mudancas
climéticas a través da introducdo dos fatores de capacidade de utilizacdo e considerando seis
cenarios com condicdes climaticas diferentes. Para a selecéo de solucGes robustas é apresentado
um critério usando distancias normalizadas. A metodologia é aplicada ao subsistema eléctrico
da regido Sul do Brasil. Os resultados indicam um claro impacto das condig¢des climéticas na
performance dos diferentes cenarios de mudancas das politicas energéticas, condi¢cdes mais
secas resultam em altas incertezas nos custos e emissdes de CO. Os cenéarios de politica
energeética sao mais provaveis de serem robustos se ddo preferéncia no inicio por mudancas de

politicas de baixos custos para politicas de baixas emissdes de CO> no final.

No capitulo 4, apresentam-se as conclusdes e recomendagdes, assim como a resposta as

perguntas da pesquisa, subsidiadas pelos resultados apresentados nos capitulos 2 e 3.



2 Systems capacity expansion planning: Novel approach for environmental and energy

policy change analysis.
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Planning for power systems generation expansion follows environmental policies incorporating
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programming to generate several energy policy scenarios and their trade-offs, representing
plausible policy changes in the different stages of the planning horizon. The results indicate a
clear Pareto front and that energy policy scenarios with abrupt changes should be avoided in
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planners” future vision from myopic into a perspicacious one.
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1. Introduction

Advances in technology change the way we produce, use and allocate resources,
especially energy and water. For example, desalination plants have long been incorporated
into water supply systems, while photovoltaic and wind plants are now part of power systems.
Integrating renewable power sources into power grids is a common agenda worldwide given
concerns regarding CO, emissions and climate change, resulting in the adoption of low-carbon
technologies (lyer et al. 2015). However, economic growth policies still drive national plans,
and the occurrence of financial crises, global markets, and economy volatility, among other
factors, draw a complex environment for planning. Decision-making must take into account
uncertainty and the added complexity that may motivate policy change (Schwenker and Wulf,
2013). While one cannot be sure about the future, it is possible to evaluate how to best adapt
current policies as our perception, priorities and knowledge change. The methodology
proposed in this paper fulfills this goal.

Capacity expansion methodology is applied in planning for different public services
including electrical power, water resources, schools, and roads, given most of those systems
already exist. The main objective of capacity expansion is to determine the size and timing of
facilities to be added at minimal costs (Luss, 1982). It might also require consideration of other
objectives like minimizing emissions of greenhouse gas effects and the incorporation of

renewables. All in a highly uncertain environment.

For power generation expansion planning, Dynamic Programming (DP) approaches have
been widely applied, among other methods including stochastic optimization, genetic algorithm
(GA), fuzzy set theory, artificial neural networks, network flows and simulated annealing
(Kagiannas et al., 2004). When other objectives need to be included, the problem can be
addressed with multi-objective optimization, (e.g. multi-objective linear programming - MOLP),
stochastic optimization, multi-criteria analysis, decision analysis and tradeoff analysis (Tekiner
et al., 2010). Uncertainties have been included by focusing on demand (Davis et al. 1987),
demand and resources availability (Gorenstin et al. 1993), demand and price parameters
(Ahmed et al., 2003). Li et al. (2014) studied policies in generation expansion planning,
including renewables as constraints with a minimum percentage. Popular incentive systems
as feed-in tariffs, quota obligation, emission trade and carbon tax can also be incorporated as
constraints (Careri et al. 2011). Rebennack (2014) included fulfillment of emissions quotas as
an objective, while Aghaei et al. (2013); Tekiner et al. (2010) had minimization of CO.
emissions as an additional objective function. Most recent efforts consider the inclusion of
modeling high quantities of renewable generation (Vithayasrichareon et al., 2015). The

methodology in the later applies generation portfolio analysis concepts to account for risk and
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uncertainties of gas and carbon prices. The role of coal, gas, and renewables is analyzed for

peak demand in future (2030) generation portfolios in the Australian Power System.

The inclusion of policy uncertainty in recent literature about power systems expansion is
still limited. Most of the work in environmental policy evaluates causal effects of policies
implemented by governments and authorities in terms of achieving outcomes of interest
(Percoco, 2014). In planning expansion capacity, Zhou et al. (2011) investigate an optimization
approach to design incentive policy for investment in renewable energy in generation
expansion planning. Zhou et al. (2013) apply a planning approach associated with a fractal-

based robust methodology for environmental policy analysis.

When policy uncertainty is investigated, it often focuses on financial research and the
influence of government policy changes over stock prices. As in Pastor & Veronesi (2012),
who define two types of uncertainties: political uncertainty that relates to uncertainty about
whether the current government policy will change; and impact uncertainty, corresponding to
uncertainty about the potential impact of new government policy on the profitability of the

private sector.

Some examples of environmental policy effectiveness and the impact related to renewable
energy portfolios and others to climate policies such as taxation on fossil fuels are highlighted
through the “green paradox” concept, put forth by Sinn (2012). Li (2014) warns about the
undesirable effects of climate policies and the need for their improved design. Since climate

policies are subject to uncertainty, they become vulnerable to changes.

Germany, one of the European countries that have adopted policies for deploying low-
carbon technologies, has more than doubled its renewable energy sources between 2000 and
2009, where the wind power is the most important (Reuter et al. 2012). However,
implementation of such policies has a cost. In 2013, it was estimated that an amount of US$120
billion was spent in global subsidies for renewable energy technologies (IEA, 2014). Recently
the UK has announced an earlier end to subsidies for new on-shore wind farms (BBC NEWS,
2015). Australia’s prime minister banned the federal clean energy from investing in wind power
(Schlanger, 2015). While reasons behind these policy changes are beyond the scope of this

paper, they indicate how policies are subject to change.

If policies change during the planning process, adjustments are necessary to prevent the
plan from becoming obsolete. This fact may tempt politicians to opt for broader indicative
strategies that may not give clarity or certainty about other interests, as highlighted by Parker
and Doak (2012). It will be useful for planners, managers and decision makers to understand
in advance the possible impacts of the policy they intend to change on the main plan’s

effectiveness.
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This paper presents an approach for analyzing such impacts, using a combination of multi-
objective optimization (MOLP) and dynamic programming (DP), applied to the power capacity
expansion problem. Our approach considers specific policy changes at different stages of the
time horizon plan and their outcome in terms of cost, CO; emissions and decisions to invest in
different power sources. The approach generates a Pareto diagram with multiple possible
policy change scenarios. To illustrate the methodology, a simplified planning generation
capacity expansion is presented, where policy change scenarios have been analyzed and
classified.

This paper contributes to the existing body of knowledge by introducing a novel approach
to evaluate how a given change on “energy policy” may affect the final outcome in terms of
cost and CO, emissions. While change may be unavoidable giving uncertain exogenous
factors, how it is conducted may yield different trade-offs. The methodology proposed in this
paper is designed to identify dominated, undesirable trade-offs, so the decision maker can
focus on the best ones (at the Pareto frontier) when faced with necessary changes. The
proposed methodology couples DP and MOLP to solve a multi-objective optimization problem
in expansion capacity, classifying policy changes according to its impact on the optimal power
expansion strategy. This illustrates that not all logical policy changes will deliver the expected

results.

The remainder of this paper is organized as follows: Section 2 presents the proposed
approach. Section 3 describes an application through a hypothetical planning generation
capacity expansion. Section 4 shows the results of the application for different scenarios.

Finally, in section 5 the conclusions are presented.

2. Proposed approach

The methodology proposed here analyzes energy policy changes and its effect through the
planning time horizon over the generation capacity expansion in terms of costs, CO, emissions

and mix of selected energy generation sources, considering:
a) Technologies that use different natural resources.

b) Intermediate decisions about the selection of technologies that will affect the final

planning objectives.

c) Policies that could change from one stage to another during the planning process,

which are the basis for technology decisions.

d) The leading objective of capacity expansion is fixed at the beginning of the process.
13



This approach is based on Bellman’s Principle of Optimality, summarized by Lew & Mauch
(2007) as “optimal policies have optimal sub- policies.” The capacity expansion problem will
be optimized with a policy of minimum costs (“leading policy”), with sub-problems divided into

stages and solved using Dynamic programming (DP) for capacity expansion methodology.

In the capacity expansion problem, a possible total incremental capacity is represented by
the decision variable x. For each possible x in a given DP stage, there are multiple
combinations of individual power sources r that add up to x. A multi-objective linear
programming algorithm — MOLP is run at each DP stage to optimize the values of r considering
two objectives: minimize cost and minimize CO; emissions. The MOLP is constrained so that
the sum of all r is equal to x. Given the two objectives, MOLP produces a Pareto front indicating
the trade-offs (Meza et al., 2007) for each possible x, at each DP stage. Each point in the
Pareto front is a combination of r values resulting in a given cost and a given CO, emission.
The points also receive a label indicating the level of preference among the two objectives (e.g.
a point with high cost and low CO. emission indicates a stronger preference towards

environmental protection).

The question now is which point (i.e. combination of r values) should be selected so the
DP can move to the next stage. To answer this, we first define “energy policy” as the level of
preference between the two objectives behind a given point in the Pareto front. For example,
a strongly environmental energy policy means a point at the far right of a given Pareto front
(low COz emission, high cost). We also define a “change in the energy policy” when the level
of preference between the two objectives changes from one DP stage to the next. However,
when and how the preferences (and the energy policy) change is highly uncertain. To deal with
this uncertainty we now define an “energy policy scenario” as a sequence of energy policies in
time where there may or may not be a change in the energy policy. Considering a Pareto front
with m points and a DP with T stages one has a total of m" energy policy scenarios to represent

all possible changes in energy policy.

Thus, each possible energy policy scenario determines which point (i.e. combination of r
values) should be selected so the DP can move to the next stage. We run the DP model m'
times to screen through all different possibilities. Generation of all possible scenarios is a
methodology increasingly preferred among planners giving it represents a broader range of
alternative situations rather than a relatively limited range of future conditions represented by
probability distribution as stochastic approaches (Beh et al.,, 2015 ; Vithayasrichareon et
al., 2015).

The results provided by the methodology proposed here could, for example, be used by
decision-makers in a context where a given environmental target is defined in the future (i.e. a

CO; reduction agreement which gives the joining parties some lead time to adapt). Starting
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from a current environmental policy, the results from our model evaluate the different possible
energy policy scenarios (trajectories) that arrive at the designated target in the future, along
with the trade-offs. Such evaluation will allow poorly performing (dominated) trajectories to be

identified and avoided.

As pointed out in Loucks et al (1981), the solutions of capacity expansion models are not
intended to be used as guidelines for the entire horizon plan, but rather a reference for the first
stage when the decision is made. However, given environmental agreements (e.g. Kyoto
Protocol) often require a lead time to be met, it is necessary to somehow represent the
emissions’ target in the planning horizon and draw the decisions” trajectory that will reach it,

even though the future decisions are likely to be updated.

Given that the results from our model explore different combinations of energy policy
change scenarios, it will also inform, for a given starting energy policy, the range of variation
in the trade-offs for the next decision, which is a measure of uncertainty. By knowing this
uncertainty, decision-makers can elaborate responses for the best and worst-case scenarios
(e.g. creating environmental accounts to fund future change, CDM credits, emissions” markets,

subsidy or taxation programs).

The approach is implemented through three steps: problem configuration, mix sources

optimization, and Dynamic programming, explained as follows.

Step 1: Problem Configuration.

First, the problem is configured to be solved with a backward-moving discrete dynamic
programming algorithm. The state variable s; represents the existing capacity at the beginning
of stage t, and sw1 represents the existing capacity at the end of stage t. The decision variable

X: represents the added capacity in stage t.

The objective function and respective constraints are formulated to minimize costs

(“leading policy”) while satisfying the demands.

Fi(S;) = minimum {Cy(s¢, x;) + Fry1(S¢41)} (1)

s.t.
Str1= Xt 5S¢ 5 Vi (2)
52Dy 0<s;<Spaxt; 0=<X < Xppaxt ; VL (3)

Where: Ci(st, X;) is the present value of the cost capacity expansion x; at stage t given an

initial capacity of s;, considering the interest rate i; F1(St+1) is the minimum optimized cost at
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stage t+1, with Fr.a(st+1) = 0. Equation (1) is the recursive equation and equation (2) is the
state equation. D is the demand at the beginning of stage t, which can never exceed the

capacity at that stage. Maximum values in equation (3) are defined by:
Smax = Dr+1 3 Xmaxt = Dry1—Se; VU (a)
From the formulation, the possible x; values at each state t are subject to:
0< x¢ <Dry1— D¢ (5)

Figure 1 shows the definition of all the variables, as well the discretization of Demand at

each stage and all the possible candidate values for x:.

DT+1 o] O O/
DT O T T)
xmax,t
o l Xt
g D, 5 Y
©
Smax St
1 2 N 1l
Stages

Figure 1. Capacity expansion formulation

Considering expression (5), a defined number of possible candidate values for x; in
addition to zero, are generated for each stage as follows: for the first stage, t=1 there will be T
possible values defined by: D,-D1, D+-D1...Dr+1-Ds1; for the intermediate stages, t=2 to t=T-1 will
be (T-1) + (T-2) + ... + 1 possible values defined by the difference among possible next
demands and the state variable at each stage; and for the final stage just 1 possible value for
xt # 0. For example, for 4 stages there is a total of 14 possible “candidate values” for x;, besides
zero. All these “candidate values” for x; are the input for the next stage and are represented by

Xtc .

Step 2.Mix sources optimization.

Each possible candidate value x at stage ¢ is composed by a mix of n different type of

available power sources r, as defined by equation (6):

Xf=r+r++n; Vt (6)
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This is the “coupling equation”, which links the dynamic programming optimization and the
MOLP. There are many different possible combinations of r, resulting in the same x;°. The best
mix values will be found through the MOLP, which has two optimization objectives: minimum

costs and minimum CO2 emissions. The multi-objective problem is formulated as:

FO{:minimum Y (IC;.r; + OCy.r;) ; i=1..n (7)
FO,: minimum ) CO;,.1; ;i=1..n (8)
S.t.
Demand constraints:  r; +r, + 41, =x; Vit (9)
Operating constraints: OpC(r;) = B (10)

Where IC; is the investment cost for each source ri; OC;j is the operating cost related to the
source ri; CO, are the emissions related to the source r; OpC(r) represents operating
constraints as a function of the sources r; and B is the respective condition of operation (e.g.
limited capacity generation or reliability condition). Expression (7) and (8) are linear,

considering that costs and CO- emissions depend on the values of r..

The formulated problem results in a multi-objective linear programming — MOLP, which is
solved through an improved variation of the g-constraint approach, denominated augmented
g-constraint (AUGMECON), which was introduced by Mavrotas (2009). The improvements
introduced by the augmented e-constraint approach can be summarized as follows. First, it
uses a lexicographic optimization for every objective function, focusing on just Pareto optimal
solutions. Second, it modifies the optimization expressions (objective functions and
restrictions) forcing the algorithm to produce only efficient solutions. Finally, it improves the
process through the early exit from a nested loop when the problem becomes infeasible. The
last modification accelerates the algorithm significantly in the case of several (more than three)

objective functions. For a more comprehensive explanation refer to Mavrotas (2009).

The solution of the problem defined in (7) through (10) provides a discrete Pareto front with
m values of optimal Costs and CO; emissions for each possible combination of sources r; for
their correspondent possible values x. Figure 2 shows an example composed of three types
of sources, with m points in the Pareto front. Each point represents a solution. In this example,
the solution “m-1" in the Pareto front is related to the combination of energy sources “m-1”,
mainly composed of sources r, and rs with a small portion of source r.. This combination has

a resulting low CO; emission and high costs (point located far on the right in the Pareto front),
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which represents a preference for environmental energy policies. Likewise, each particular

solution represents an “energy policy” with its preferences.

Pareto Front Source Combination
012 X.
o~ ..3
o .4 r3
O | e5
N .67 mr2
E i * o . mrl
® mni1
L4 m
R 0
FO1: COSTS 123456 7.. mlm

Figure 2. Example of MOLP for x

The process is the same for all the x at each stage, resulting in a Pareto front with a
respective source combination for each x from the previous step. We call these optimal
solutions “MOLP Pareto front”, and label each of the discrete points with a number that

represents a level of preference among the two objectives, called “energy policy.”
Step 3. Dynamic Programming (DP)

To solve the generation capacity expansion with dynamic programming, following the
“leading policy” of minimum costs, we define the values of the cost for each of the candidate
value x¢in each stage. This is done by applying an “energy policy” for each stage. In addition,
considering that “energy policy” could change from one stage to another, an “energy policy
scenario” will be defined by a sequence of numbers indicating the points selected from the
MOLP Pareto front at each stage. For instance, for 4 stages, an “energy policy scenario” could
be: “1-1-2-2”; which means that for all possible candidate values x the point 1 will be selected
from the respective MOLP Pareto Front for the first and second stage and the point 2 will be

selected respectively for the third and fourth stage.

The problem defined by equations (1) through (4) is then solved with a backward moving
dynamic programming algorithm, beginning at t=T and finishing at t=1. Equation (11) is
considered to compute the CO, emissions along the time horizon planning:

Total CO,emissions = Y;—q1_1CO5(xt, S¢) (11)

Where CO2(x;,st) are CO, emissions due to expansion x; at stage t given an initial capacity

St.
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The final outputs of DP, resulting from the application of a defined “energy policy scenario”,
are the total cost of the capacity expansion, total emissions of CO; from the operation of the

total capacity and the capacity expansion sequence with a mix of sources by stage.

To take into account the high uncertainty in the decision-making process involving energy
policy, we have included multiple scenarios with different possible energy policy changes along
the planning horizon. Thus, for T stages, it will result in mT “energy policy scenarios”, each with
its respective values of x ri, Ci(s;,x) and CO2(x°). DP runs through all those “energy policy

scenarios”.

The final output of the whole optimization process are m' results of “energy policy
scenarios”, each one with their respective total Cost, total Emissions of CO, and capacity

expansion sequence with a mix of sources by stage, as shown in Figure 3.
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Figure 3. Final output

Figure 3 presents the m™ solutions. The extreme values correspond to opposite extreme
“energy policy scenarios” of minimum costs (1-1-...-1), upper left corner, and minimum CO
emissions (m-m-...-m), lower right corner. The other values correspond to different policy
mixes (such as 1-1-1...-m or 1-2-1-1...1), which represent changing policies from one stage to
another (i.e. switching priorities between environmental and economic objectives). All the

process is summarized in Figure 4.
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Figure 4. Process sequence

3. Application

The proposed approach is applied to a hypothetical generation capacity expansion problem

to demonstrate its concept.

3.1 Problem configuration

A generation capacity expansion planning horizon of four stages is considered. At each

stage, an expansion decision is made.
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An Interest rate of 18% per stage is adopted. Future expected demands are shown in Table
1. The main characteristics of the available sources are shown in Table 2. The mean
capacity factor of the whole system in the last 30 years was 0.49 from a range of 0.43 to
0.56. The inclusion of new units is expected to maintain at least the mean value, to
guarantee efficient use of the installed capacity. The initial installed capacity is 122,614
MW.

Table 1 Capacity Demands by stage

Stage: t 1 2 3 4 5

Demand at beginning of

122,614 | 131,907 | 138,072 | 142,777 | 150,595
stage: D: (MW)

Table 2 Characteristics of the available sources

Source Investment Costs | Variable Costs | CO, emissions | Capacity
type (10° US$/MW)* (US$/MWh)? (Ton/GWh)? Factor!
Hydraulic 1.20 2.413 26 0.58
Thermal 0.867 10.233 628.67 0.85
wind 1.00 10.00 26 0.25

Source: 1. From Lucena, et al., (2010, p. 349), average values for Thermal considering natural gas
and coal. 2 Mean values from WNA (2011, p. 6), average values for Thermal considering natural

gas and coal.

3.2 Problem formulation

The first step is the generation of discrete values for the possible capacity expansion at
each defined stage. There are three types of power sources: r; for hydraulic, r, for thermal
and rsz for wind, which are considered in the coupling equation. The values of r are

expressed in MW, representing the generation capacity of each type of source.

Based on the costs, CO, emissions and operation conditions related to each source r, the
MOLP is expressed by the dual objectives in (12) and (13).

FO{:min Costs:1.221.1{ + 0.9566.7, + 1.0876.13 [10° USS] (12)

FOZI min COzl 0.278. r{+ 5. 507.T2 +0.278. r3 [103 Ton] (13)
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S.t.

Demand/coupling: r +mr+1r; = x¢; vt MW] (14)

Operating: 0.58.1; +0.85.1, + 0.25.13 > 0.49.(r; + 1, +13) [MW] (15)

Coefficients in equation (12) represent the total costs (investment + variable) in Millions of
US$ for each MW of the sources r. Variable costs are estimated by year considering 8760
hours, same in equation (13), for CO2 emissions related to each type of source. Equation
(14) constrains the quantities sources to the demand both expressed in MWs. Equation
(15) represents a relationship between the individual capacity factor and the required total
system capacity factor. These are operational conditions of the power system.

The MOLP is solved using the AUGMECON methodology (Mavrotas, 2009). The
parameters used are eps=173, grid points: g«= m-1 = 10. The solver CPLEX is chosen for
the optimization, and a discrete Pareto front with the optimal solutions for CO2 emissions
and costs is generated. The number of discrete values are defined by the grid points, which
for the current example results in eleven values. Each point of the MOLP Pareto front is
labeled with a number m. Lower values of m represent preferences for lower cost policies

and higher values close to 11 represent preferences for low CO, emissions.

The backward moving dynamic programming algorithm is implemented through Matlab.
Considering four stages and the eleven values of the discrete Pareto front, all the possible
permutations yield 11* = 14,641 energy policy scenarios.

3.3 Energy Policy scenarios

The analysis of the energy policy scenarios involves three parts: (a) all 14,641 energy
policy scenarios are evaluated considering both the CO, emissions and cost objectives in
order to identify the non-dominated ones (Pareto front); (b) all the energy policy scenarios
are characterized in terms of how the energy policy changes in each scenario (i.e. the
sequence of changes throughout the planning horizon) and (c) the non-dominated energy
policy scenarios identified in (a) are then matched to the characteristics identified in (b).

Five types of change are identified:

o Resistant to change: The energy policies selected are in the same position of the
MOLP Pareto Front for all stages, (e.g. 1-1-1-1, 2-2-2-2, 11-11-11-11). This
configuration represents a constant energy policy being adopted for the whole
planning horizon. A preference for minimum CO; emissions for all the stages is
represented by 11-11-11-11.
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o Constant change: The energy policies selected are changing progressively in each
stage (e.g.1-2-3-4, 2-3-4-5, 3-4-5-6). The configuration in this example represents

a gradual change preference from minimum costs to minimum CO; emissions.

o Gradual changes: The energy policies selected change their preferences gradually.
For example, considering a low-cost scenario (1-1-1-1), a gradual improvement on
the CO, emissions objective may be represented by 1-1-1-2 or 1-1-2-2 or 1-2-2-2.
The energy policies selected here are in the closest position of the MOLP Pareto

Front.

o Abrupt changes: The energy policies selected change their preference abruptly
(e.g.1-1-1-11, 1-1-11-11, or 11-11-11-2, 2-2-2-11). This configuration represents a
policy change from a strong minimum costs preference to minimum CO_ emissions
preference (or vice-versa). The energy policies selected here are far from the
MOLP Pareto Front.

o Regretting changes: The energy policies present an initial pattern (resistant to
change, constant change or gradual change) followed by an abrupt change and
return to the previous pattern (e.g. 1-1-11-1, 1-2-11-3, 11-11-1-11). This
configuration represents constant or gradual policy changes, followed by abrupt

changes and then regret reverting to the initial pattern.
4. Results

Figure 5 shows the 14,614 different energy policy scenarios and their performance
considering both CO, emission and cost objectives. The non-dominated values define a clear
Pareto front (black dots), while most of the dominated values are concentrated in the middle
concave part. The scattered points farther from the Pareto front (upper right of the chart) were
identified as abrupt changes policies (e.g. 11-11-11-1) or regret abrupt changes (e.g. 11-11-1-
11). Values close to the non-dominated ones come from resistant to change, constant or
gradual policies (e.g., 8-9-10-11, 7-7-7-7 or 1-1-1-1). In the upper left region of the chart there
are values with similar CO, emissions but different costs. These are policies that must be
carefully observed as they represent failed attempts of policy changes to reduce CO
emissions that ended up with a significant cost increase. On the other extreme (lower right of
the chart) we see no failed attempt to reduce costs (i.e. it is always possible to reduce costs,

albeit with a given trade-off in terms of increased CO, emissions). All cost and CO, emission

figures are totals for the whole planning horizon (20 years).
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From all 14,614 policies, 80 were selected besides the non-dominated ones (shown in

Figure 6). These values represent samples of different policy scenarios described above.
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Figure 6. Selected results

Table 3 shows the values and the respective energy policy scenario for the solutions

indicated from A to

N. The values A, B, and C correspond to constant policies (resistant to
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change) which are non-dominated solutions. As shown in Figure 6, the other resistant to

change policies are close to the non-dominated front.

Most of the gradual and constant change policies are close to the non-dominated front.
Meanwhile, abrupt changes can be close or far from the front. Different energy policy scenarios
might have the same CO; emissions values, but very different costs (e.g. A, D, E and F), as
shown in Table 3. Some of these scenarios present poor performance and should be avoided
because, despite the cost increase, there is virtually no reduction in CO;emissions (e.g. D, E

and F, figure 6).

Table 3 Policy Scenarios A to M results

Costs CO:
Scenario Policy
Mill US$ 102 Ton

A 1-1-11 18,365.837 | 154,091.367
B 11-11-11-112 22,638.454 6,351.687
C 7-7-7-7 19,874.884 65,447.559
D 1-1-11-1;1-1-10-1 18,858.920 | 154,091.367
E 1-1-1-11;1-1-1-10 19,060.174 | 154,091.367

1-10-1-10; 1-10-1-11
F 19,822.556 | 154,091.367

1-11-1-10; 1-11-1-11
G 1-1-91 18,797.015 | 134,217.447
H 1-1-1-9 18,973.010 | 121,068.140
I 11-11-1-11 21,798.126 72,473.127
J 11-11-111 21,741.063 47,630.727
K 1-2-9-9 19,462.186 97,939.095
L 1-4-8-9 19,475.140 93,913.095
M 11-11-2-2 21,194.127 65,860.983
N 11-8-7-2 20,903.701 63,205.143

All cost and CO2 emission figures are totals for the whole planning horizon (20 years)

By comparing A, D, E and F, the impact of policy changes is evident. A decision maker

only interested in reducing costs would choose policy scenario A (1-1-1-1), which results in
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poor CO; emissions performance (154.09 million tons) and an 18.36 US$ Billion cost (the
lowest cost in the analysis). An attempt to provide a “greener” energy policy involving an abrupt
change by switching investment in renewable energy sources in the last stage (e.g. policy
scenario E: 1-1-1-11 or 1-1-1-10) would boost the costs to 19.06 US$ Billion but would result

in no CO; reduction benefit.

This result can be explained by the selected increase capacity considering the minimum
total cost for the time horizon plan. If a costlier “greener” energy policy takes place in the last
stage, the earlier capacity expansion occurring in stage 3 is strongly based on non-renewables,
which are less expensive. This behavior can be seen in figure 8 through the red line. While
providing a lower total cost, this energy policy offsets the CO, emission reduction provided by
the “greener” energy policy that takes place later. The final result is a more expensive overall
solution with no CO. emission reduction. It indicates that a change in energy policy with
apparently good performance in a given stage may prove to be a dominated solution in the
long run. This type of energy policy scenario should be avoided.
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Figure 7. Capacity Increase

Energy policy scenario 1-1-1-10 has a result similar to 1-1-1-11. It is observed that different
energy policy scenarios could generate the same Total Cost (Investment and operational) and

CO; emissions in the time horizon plan, as shown in Table 3.

To achieve a reduction in CO;, a different energy policy scenario must be applied.
Following the same previous example, to reduce CO; emissions with a change in the energy
policy at the last stage, one could adopt energy policy scenario 1-1-1-9 (scenario H), with 0.33
million tons of CO less than energy policy scenario 1-1-1-1 and with an additional cost of US$
0.61 Billion. If, however, the energy policy change is made in the third stage rather than in the

last (scenario G: 1-1-9-1) the cost is reduced but with higher CO, emissions.

26



Efforts to reduce the final cost with abrupt policy change present different response. For
example, an energy policy scenario with preference for minimum CO; emissions throughout
the four stages of the planning horizon (11-11-11-11) would result in US$ 22.6 Billion total
costs and 6.35 million ton CO2. An attempt to switch to a cost saving energy policy in the last
stage (11-11-11-1) would reduce the cost to US$ 21.7 Billion but boost the CO, emissions to
47.6 million ton, indicating a trade-off. If instead, the cost saving policy is adopted earlier (11-
11-1-11) the final cost is similar (US$ 21.8 Billion), but the CO, emissions trade-off is
significantly higher at 72.5 million ton. These results indicate that, in general, applying an
environmental policy favoring lower cost technology (but with high CO2 emissions) at the earlier
stages will reduce the cost due to the effects of time value, but there will be exceptions that
are explained as follows.

Table 4 shows costs for energy policy scenarios with an energy policy changing its position
in the different stages. To illustrate, suppose a given energy policy (e.g. “9”) being selected in
either one of the four decision stages, which results in four different energy policy scenarios
(the first four lines in Table 4, from 1-1-1-9 to 9-1-1-1). The “costs difference” column refer to
the cost of a given energy policy scenario minus the cost of the energy policy scenario in the
previous line of the table.

Table 4 Energy Policy Scenarios and stage variability

Energy Policy Costs Costs Costs difference
. difference Expectative
Scenario Mill US$
1-1-1-9 18,973.01 9 in early stages produce
higher costs than 9 in late
1-1-9-1 18,797.01 -176
stages. (+) Costs
1-9-1-1 19,032.51 235.5 difference is expected.
9-1-1-1 19,551.65 519.14
11-11-11-1 21,741.06 1 in early stages produces
lower costs than in final
11-11-1-11 21,798.13 57.07
stages. (-) Costs
11-1-11-11 21,508.93 -289.2 difference is expected.
1-11-11-11 20,662.88 -846.05

Considering the value of money through time, one would expect that high-cost investments

made earlier would produce higher total cost than high-cost investments made later. Energy
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Policy 9 is costlier than 1, and its selection in early stages results in higher cost than in later
stages, as shown in Table 4, except for the third stage. This exception could be explained by
the lower minimal expansion required for the third stage (from table 1: 142,777 — 138,072 =
4,705 MW) as it can be seen in Figure 8. The effects of energy policy changes in the final
selection of different sources, as well the scheduling of the increments can be seen in the
same figure. A significant increase in just one of the sources in one stage as a result of policy
scenario 11-11-1-11 (i.e. thermal in stage 3) and 11-1-11-11 (i.e. thermal in stage 2) could also
result in higher risk, given it lacks the flexibility usually associated with a more diverse portfolio
of energy sources.

For the illustrated case, energy policy changes at the last stages to reduce emissions
haven’'t worked in a proportional way. Those changes could work for the case of cost
reductions. But it will also depend on the projected demand of the different stages. Changes
in policies also affect final investment scheduling.
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Figure 8. Expansion sequence and sources results

For energy policy scenarios defined as resistant to change, constant change or gradual
changes, the results are localized very close or in the Pareto front. For example, policy
scenario C (7-7-7-7) might be a good “greener” alternative to high CO2 emissions policy
scenario A (1-1-1-1) with a US$ 1.53 billion cost increase and a considerable CO, emissions

reduction (88.6 million tons less).
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According to figure 6, the gradual change energy policy scenarios tend to perform better
than the abrupt change scenarios for most the situations. For example, consider the least cost
(US$ 18.36 hillion) and high CO, emissions (154.09 million tons CO;)energy policy scenario A
(1-1-1-1). If one expects to improve environmental performance by establishing a CO;
emissions goal by the end of the planning horizon, it could be attained in different ways.
Suppose the goal is to arrive at energy policy scenario 9. If implementation of more renewable
energy sources is delayed to end of the planning horizon, the energy policy may change
abruptly, for example, producing a policy scenario such as K (1-2-9-9), with US$ 19.46 billion
cost and 97.94 million tons CO.. This presents a significant reduction in CO, emissions from
policy scenario A, at a cost trade-off. However, if the change follows the more gradual route 1-
4-8-9 (policy scenario L), the resulting cost is slightly higher, at US$ 19.48 billion, but emissions
are much lower at 93.91 million tons CO,. Both scenarios present very similar cost
performance, but the gradual change does so at lower emissions. This indicates that the
gradual energy policy scenario is likely a better approach.

Similar results are found comparing energy policy scenarios to reduce cost, in the
context of recent policies that are removing subsidies from some renewable sources. For
example, consider the least CO, emissions (6.35 million tons CO,) and high cost (US$ 22.64
billion) energy policy scenario B (11-11-11-11). If one expects to reduce costs (e.g. by
removing subsidies) by the end of the planning horizon, it could be attained in different ways.
Suppose the goal is to arrive at energy policy scenario 2. If subsidies reduction is delayed to
end of the planning horizon, the energy policy may change abruptly, for example, producing a
policy scenario such as M (11-11-2-2), with US$ 21.19 billion cost and 65.86 million tons COx.
However, if the change follows the more gradual route 11-8-7-2 (policy scenario N), the costs
would be lower, at US$ 20.9 billion and there would be no emissions trade off (the emissions

would actually be smaller as well, at 63.21 million tons CO5).

Another interesting aspect emerges from this analysis. As results indicate, there is a high
emissions trade-off to pay for a relatively small cost reduction, which shows that cost reduction
policies based on shifting to less expensive energy sources have limited benefits, and
significant changes (such as having the energy policy 2 as goal here) should be carefully

evaluated.

As indicated before, the capacity expansion model presented here allows one to explore
the uncertainty that unfolds in the next stage as a decision is made at present time. Consider
the case of the same energy policy at the first stage, (e.g. energy policy 1, as in scenarios A,
D, E, F, G, and H), which are all located in the same region (upper left corner, Figure 6). Given
this region, it is possible to estimate the range of the impact of the energy policy decision at

the first stage. For this example, the cost could vary from 18 Billion US$ (best case, scenario
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A) to 19,8 Billion US$ (worst case, scenario F). The CO; emissions could vary from 121 million
tons (best case, scenario A) to 154 million tons (worst case, scenario H). Such range of

uncertainty can be useful to evaluate risk and identify preemptive responses.

These results are thus useful to evaluate in advance the impacts of the changes in the
energy policies, which would allow decision makers to avoid dominated solutions when making

necessary policy changes.

5. Conclusions

This paper presents a novel approach in systems capacity expansion planning that
contributes to the analysis of energy policy changes. The approach is based on the optimality
principle of Bellman. Dynamic programming and multi-objective linear programming have been

used to generate energy policy scenarios and their trade-offs.

The approach was demonstrated through a hypothetical case of a generation capacity
expansion, using three different available energy sources. 14,641 energy policy scenarios
were evaluated considering different combinations of energy policy changes. We concluded
that:

1. There is a clear Pareto front;

2. Energy policy scenarios characterized by gradual changes, resistant to changes and
constant changes tend to perform better than policies with abrupt changes and regretting
changes;

3. Policy change solutions that provide good results in a given stage do not necessarily
perform better in the long run;

4. Different energy policies may result in the same performance, which indicates that there
is room and flexibility for negotiating upon the “best” course of action. This is especially relevant

given the political context where such decisions are often made.

5. There is a measurable range of uncertainty that unfolds into the next stage as soon as
a decision is made in the current stage. This can be used for risk evaluation and design of

early response measures.
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Finally, the results indicate that policy change analysis through the planning process is
useful to clarify decision maker’s vision from a myopic to a more perspicacious view in respect

of the future responses, as well as to provide several possible alternative policy scenarios.
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Abstract

Climate change brings several challenges to energy production, but it is not the only source of
uncertainty. Demands, aging infrastructure and broader energy policies all contribute to a
highly variable environment. This paper analyzes how possible future climate change
scenarios uncertainty could impact the energy policy changes for generation capacity
expansion. By using a hybrid dynamic programming/multi-objective approach, we analyze the
energy production and CO, emissions to identify robust energy policy scenarios under different
possible climate change future scenarios. The results indicate a clear impact of the climate
conditions in the performance of energy policy scenarios; dryer conditions drive into higher
uncertainties in costs and CO, emissions. Robust energy policy scenarios are more likely if
follows policies changes preferences of low cost to a greener ones. The approach is useful in

providing planners a tool to analyze uncertainties from different sources simultaneously.

Highlights

Future energy policy decisions are highly uncertain and subject to change.
- Facing uncertainty requires knowledge of economic and environmental trade-offs.
- Integrating MOLP to optimize DP subproblems allows trade-offs identification.

- ldentification of robust solutions for multi-objective optimization problems is possible using

techniques from genetic algorithms analyses.

- Inclusion of climate change uncertainties with energy policy changes uncertainties along

planning horizon is important in capacity expansion.
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1. Introduction

For energy planners, in the actual global scenario, volatility is the new norm [1]. In one
side, climate change policies seek to mitigate CO. emissions [2] adopting low-carbon
technologies, through integration of renewable power sources into power systems [3].
Renewable sources, however, as hydro and wind, have considerable uncertainty given their
stochastic nature and are intensified by climate change effects [4]. On the other side, driving
guidelines for national energy plans involving investment and subsidies are formulated by
governments through public policies. Public policies are subject to change, given geopolitical
contexts, domestic economic pressure and other aspects affecting political agenda [5]. In a
context of global financial crises, markets, interconnectivity and economy volatility (public and
industrial), among other factors as climate change, the energy planning process becomes

more complex and uncertain [1,6].

In these circumstances, generation expansion planning of power systems requires taking
into account uncertainty that could motivate changes in energy policies [6,7] (i.e., policy
uncertainty) which could favor implementation of a determined energy source (e.g.
renewables) and the added uncertainty brought in by renewable sources because of climate
change [8,9] (i.e., climate uncertainty). All these aspects are combined under costs and CO»

emissions minimization objectives.

Initially, generation expansion planning was based on capacity expansion methodology to
determine the size and timing of facilities to be added at minimal costs, considering time value
[10]. Advanced approaches consider the inclusion of stochastic optimization in Dynamic
Programming (DP), and the use of computational intelligence as Genetic Algorithm (GA), fuzzy
set theory and Artificial Neural Networks (ANN) [11].

Concerns about climate change and environmental protection have driven efforts to include
energy, climate, and environmental policies in the generation expansion planning models.
Most of the literature is focused in the inclusion of economic instruments including minimum
percentage of renewables, feed-in tariffs, quota obligation, and emission trade and carbon
taxes. Some approaches consider economic instruments as constraints [12] while others focus

on their uncertainty [13-16].

Other literature investigating policies related to climate change mitigation have included as
objectives the fulfillment of emissions quotas [17] and minimization of CO, emissions [18,19].
Portfolio analysis concepts to account for risk and uncertainties of gas and carbon prices is
considered for modelling integration of high quantities of renewables [20]. However, few works

have focused in the design of incentive policies for investments in renewables [21].
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Recent events show how policies related to climate change and environmental care can
change. As have been happened in United Kingdom - UK with the earlier end to subsidies for
new on-shore wind farms [22]; in Australia, with the banishment of the federal clean energy
investments in wind power [23]; and in Canada, Nova Scotia community, with the closing of
the feed-in tariff program [24,25]. The two first ones without a clear cause, meanwhile the
former one because of high costs as explained by COMFIT [25]. The implementation of those
climate policies has a cost: by 2013, it was estimated that would be required US$120 billion to
spend in global subsidies for renewable energy technologies [26].

Not only economic issues are the possible causes for those policies changes. A clear
example of that is explained by Kuramochi in [27], through an analysis about changes in energy
policies before and after Fukushima nuclear disaster by the tsunami on march 2011. Initial
changes included restrictions of new nuclear plants in the energy plans and revision of CO»
emissions targets, next to a new revision of CO, emissions by the new administration in the

Japanese government of 2013. Natural disaster also can influence policy changes.

If policies change during the planning execution process, it is hecessary to adjust the plan.
Without any information about how future is going to be with the implementation of the new
policies, politicians could be tempted to opt for broader indicative strategies that may not give

clarity or certainty about other interests [7].

Arancibia et al. in [28] present a novel approach that considers the uncertainty on the
energy policies to select a specific source of power generation. While energy policy can change
at any stage within the planning time horizon, the goal is to minimize costs (investment and
operation) during that time planning. This was done through coupling multi-objective linear
programming (MOLP) and dynamic programming (DP) to account for the different possible
changes on the energy policy that produce minimum costs and CO, emissions for each
possible change, having a leading objective of minimum cost generation capacity expansion
in a given time horizon. The output of the coupling process is composed by as many results
as possible policies changes considered. The results show the trade-offs among CO:
emissions and costs, identifying a clear Pareto front. The approach did not consider effects of

climate change.

Climate change will affect temperature, rain patterns and also the economy [29-31],
ultimately reflecting on the effectiveness of power expansion decisions. Effects on energy are
related with the demand, production, and transmission [29,32]. Efforts to include those effects
on generation planning have considered variations in the demand, hydropower generation
capacity (because of changes in the hydrological patterns), decrement of the generation
efficiency in thermal power plants (because of rising temperatures), as well as in wind and

photovoltaic generation [33—35]. Most of these include mitigation measurements in the
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planning analysis, as reduction of sources with higher CO, emissions. The Integrated resource
planning approach applied to Brazilian Power Systems is applied in one case [33], and a
multistage interval-stochastic integer programming model is applied in the other case [35]. The
work carried out in [36] presents a generation expansion planning model considering climate
change impacts based on deterministic linear programming, including parameters as capacity
factor, transmission capacity, and demand, affected by changes in climate parameters as
precipitation and temperature and increasing frequency of extreme events. Climate change
uncertainty is analyzed by discrete scenarios. Where each scenario is established by the
definition of values for each one of the climate parameters considered. Two optimization
models for decision making are presented. The limitations are properly from the complexity of
power systems capacity expansion problems and uncertainty of climate conditions, amplified
by the number of the climate parameters considered.

Incorporation of climate change impacts in power generation planning models requires
understanding about the impacts on the generation sources. Most of the literature have
focused in climate change effects in hydropower [8,37—43], with less attention to wind power
and photovoltaic, given the higher uncertainty on those sources when compared to hydropower
[44]. The impacts of climate change were considered in terms of the capacity factor, which
indicates the ratio of energy that an electric power plant produces during a certain time interval
and the energy that could produce in its maximum capacity of continuous operation during that

same period.

Under policy uncertainty, climate change can further add to variation in the likelihood of
certain outcomes, turning the generation capacity expansion planning more challenging as
what is expected to be a good decision under one climate can prove quite unfavorable under
another one. Given these uncertainties in the planning process, it becomes necessary to
evaluate how robust a given expansion decision is. This paper builds upon the work done by
[28], presenting an improved methodology to identify robust energy policies for generation
expansion planning under climate change. The climate change impacts are limited to thermal
and hydro power. We adopt the term “capacity utilization factor”, that depends on the climate
conditions (e.g. very dry, dry, normal, wet or very wet) and represent the operational conditions
of a hydrothermal power system. Policy uncertainty is represented by the different possible
energy policy change scenarios. Where, energy policy denotes the preference for selecting
determined generation source and the change scenarios the changes in the selecting
preferences by stage through the planning time. The uncertainty of climate change is
represented by different scenarios and results from different climate models (terrestrial and
global) for the same location. The approach generates for each climate scenario a Pareto
diagram with multiple possible policy change scenarios. Robust solutions are then identified

by a selection considering minimum average distance to the Pareto front in different climate
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scenarios. To illustrate the methodology, a simplified planning generation capacity expansion

is presented.

This paper contributes to the existing body of knowledge by combining policy and climate
uncertainties in the generation expansion planning, with the objective to identify and
characterize robust energy policies. While energy policies might be pressed to change
responding to uncertain exogenous factors, how to implement such changes through time may
yield different results and trade-offs. When the climate is also expected to change, the trade-
offs are also uncertain, and one needs to verify if a “good” time change in the energy policy is
also robust. Here “good” refer to low cost and low CO; emission. The methodology proposed
in this paper is thus designed to identify robust trade-offs, so the decision maker can focus on
the best ones (closer to the Pareto frontier) when faced with necessary changes. The proposed
methodology includes climate change impacts through the “utilization capacity factor” into
multi-objective linear programming (MOLP) coupled to dynamic programming (DP) to solve a
multi-objective optimization problem in expansion capacity, identifying robust policy changes,
classifying them per its impact on the optimal power expansion strategy.

The remainder of this paper is organized as follows: Section 2 presents the proposed
approach. Section 3 describes an application through a hypothetical planning generation
capacity expansion. Section 4 shows the results of the application for different scenarios.
Finally, in section 5, the conclusions are presented. Annex A shows details in the determination
of the Utilization capacity factors used in the case study. Annex B shows the information used
to define the hydrological conditions used in the case study. Annex C shows the MOLP

formulation by stage of climate scenarios.
2. Methodology

The objective of the present paper is to identify robust energy policies considering climate
change and energy policies uncertainty, and analyzing in those robust solutions the energy
policy changes and its effect through the planning time horizon over the generation capacity
expansion in terms of costs, CO, emissions and mix of selected energy generation sources.
The methodology has four main stages: (i) problem formulation as capacity expansion problem
to be solved by backwards DP; (ii) climate uncertainty representation through a relationship
between the “utilization capacity factor” — UCF, local climate conditions and the operation
conditions of the power system; (iii) generation of all possible pathways of capacity expansion
generation (each one related to a policy change sequence) including the climate effects for a
determined number of scenarios and (iv) identification of robust energy policies for all the
established scenarios in the previous stage. The method is presented through a case study in

the Brazilian southern power sub-system. The Brazilian power system is hydro-thermal, with
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hydroelectric, wind, solar and thermal (coal, gas, nuclear) power plants all connected in major

system through transmission lines. A summary of the overall method appears on figure 1.

Demand, time Capacity Expansion T Climate uncgrtamty:
planning (T) /" 1 Problem Configuration Scenarios
Construction
UCF, time series
x¢, Possible for each scenario L
candidates £
PC 1.1
(i) | Operational Conditions | (ii)
1..PC
Energy policy change
scenarios
Capacity expansion for all
the energy policy change
scenarios for each Climate
scenario
Identification of robust *
energy policies (iv) (i)

Figure 1. Overall method

Policy change uncertainty is tackled by scenario analysis approach. Here we define an
energy policy as any particular choice of expansion in a given set of power sources at a given
decision stage. As this set of expanded power sources may change from one stage to the next
(i.e. varying the amount expanded in a given power source), we also define an energy policy
scenario as a particular time sequence of energy policies. An energy policy scenario may

include a set with any combination of energy policies.

Climate uncertainty is also tackled by scenario analysis approach. Climate scenarios were
established through results of different climate change models applied at the same localization.
We prefer scenario analysis over stochastic approaches since the first one represents a wide
range of possible alternative conditions and the second one just a limited variety of scenarios
[20,45].
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The applications of the methodology proposed here could be used, mainly for two
purposes. Firstly, to help in the design or formulation of energy policies to be applied in the
capacity expansion planning. In these case, the results of the identification of the robust
policies and their characterization will help to formulate the more likely suitable energy policies
to apply in the different stages of the time horizon plan. These will provide a broader range of
flexible energy policies (could change from one stage to another). Secondly, to provide a tool
for decision makers facing unavoidable change of plans. For example, initially an energy policy
was applied to achieve certain objectives (costs and CO, emissions), but after an analysis of
international compromises come up the necessity for changing the initial energy policy to
reduce the target of CO, emissions. There are financial limitations not allowing big increments
in the costs. Results of the different possible energy policy for different climate condition
showing trade-offs of costs and CO, emissions enable the analysis. The analysis will provide
information on how much it will cost achieve the new CO, emission target respect to the
previous energy policy. This situation could happen at any time of the planning process.

As mentioned by [46], results of capacity expansion models are a good reference for initial
decisions to be done at the first stage, more than guidelines for the whole horizon plan.
However, energy policy definition as well environmental agreements require time to be
implemented, then it is necessary a driving reference, even though changes will come up later

with the corresponding modelling update.

Since our model explore costs and CO. emissions trade-offs under different climate
conditions, it will also provide information about the uncertainty of costs and CO» emissions
related to determined climate conditions (i.e. whether costs or CO, emissions are more

susceptible to change regarding climate conditions changing).

2.1 Problem formulation

The model time planning horizon T is divided into t stages. D: represents demands at the
beginning of each stage t, Dt+1 represents demand at the end of the stage T, while initial

conditions of generation capacity and interest rate are represented by int.

The problem is configured to be solved with a backward-moving discrete dynamic

programming algorithm to minimize costs (“leading policy”), as in (1) through (3).

Fi(S,) = minimum {C,(s¢, x¢) + Fyy1(S¢11)} 1)
S.t.
Xt = Sty1— St ;5 Vi (2)

41



52Dy 0<s;<Spaxt; 0=<Xx < Xppaxs ; VL (3)

Where s; is the existing capacity at the beginning of the stage t (state variable); x; is the
added capacity at the beginning of the stage t (decision variable); Ci(s:, %) is the present value
of the cost given capacity expansion x; at stage t and an initial capacity of s;and interest rate
int; Fa(S+1) is the minimum optimized cost at stage t+1, considering Fr+1(st+1) = 0. Equation (1)
is the recursive equation and equation (2) is the state equation. Demands D: can never exceed

the capacity stage t. Maximum values of state and decisions variables are:
Smax = D141 5 Xmaxe = Dre1— S5 VU 4)
0 S xt S DT+1 - Dt (5)

A set of possible candidate values for x; in each of the stages is generated to define the
state space grid, considering that more than one x; is possible for each stage. For instance, if
there were 4 stages there will be a total of 14 possible “candidate values” for x;, besides zero.

All these “candidate values” for x; are the input for the next step and are represented by x.
2.2 Climate uncertainty

Climate conditions have a significant influence in the operation of renewables plants as
hydropower given their high dependence in water availability, with less influence on wind and
thermal generation [30,32]. For long-term planning purposes, the “utilization capacity factor” —
UCF could be a good indicator of climate and operational influences [47]. The UCF indicates
how much of the installed generation capacity of a power plant is being used in each time and
operating conditions, which could include its temporal shutdown. UCF for annual operation is
defined by (6):

Total annual energy generated [MWh]
Installed Capacity [MW]x8760[h]

UCF = x100 (6)

Inclusion of climate influence in the power system operation is done by the analysis of
historical data of UCF from each type of generation (e.g., hydro, thermal and wind) and climate
conditions. Doing that the operational criteria are captured, and it is considered will be the
same at future. In the case of a hydrothermal based power system such as the one used as
example in the present paper, we have identified a correlation between the UCF and

discharges, as follows:

UCF:; = f(Qy); vt €[1..T] (7) and

UCFirora, = f(UCFy;); vt €[1..T] (8
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Where UCF,; is the utilization capacity factor of the technology type i, in the year t and
UCF,1or4 is the utilization capacity factor of the whole power system in the year t. In the first
case UCF depend on the Q, : characteristic discharge in the year t. The UCF,rora, depends

on the values of UCF,;.

The climate uncertainty representation is made in two steps. First, climate conditions

scenarios are defined, followed by inclusion of the influence in the operational conditions.

2.2.1 Climate Conditions Scenarios Definition

Climate conditions scenarios are constructed with discharges time series Qt, with the same
extension that the time horizon planning for capacity expansion and one value for each year.
Usually, discharge time series results are expressed in monthly values (twelve values per
year), then an average of the monthly discharges of a year is considered as the one value for
that year. From time series Q:, and expressions (6) and (7) the respective UCF are calculated.
For the purpose of this work, other factors that could influence in the UCF values (i.e. demand,
price fuels, etc.) are neglected.

Finally, each scenario is represented by a time series of UCF values: UCF,; and

UCF,roraL- For the current analysis, a total of six climate scenarios are considered.

2.2.2 Influence in the operational conditions

The energy policy change scenarios are generated as result of the multi-objective linear
programming problem (MOLP) defined by the equations 9 to 12, for m' different scenarios,

considering T stages and m different energy policies (for the same climate conditions) [33].

FO,:minimum Y(IC;xr; + 0C;xr;) ; i=1..n (9)
FO,: minimum ) CO,;Xr; ;i=1..n (10)
Ss.t.
Demand constraints: 71+, + 41, =xf; Vt (11)
Operating constraints: OpC(r;) = B (12)

Where IC; is the investment cost for each source ri; OC; is the operating cost related to the
source ri; CO; are the emissions related to the source ri. Expressions (9) and (10) are linear,

considering that costs and CO; emissions just depend on the values of ri. OpC(r;) represents
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operating constraints as a function of the sources ri and B is the respective condition of

operation (e.g., limited capacity generation or reliability condition).

Since climate condition influences in the system operation, the terms related to the

operation system in equations (9) and (10) are described as follows:

0C; = (X, UCF ;% oc;/(1 +int)*"1)x8760 ; ¢=1..DT (13)

CO;, = COzemiss;x( X, UCF,;)x 8760 ; t =1..DT (14)

Where oc; are variable costs of the generated energy of the technology type i, int is the
annual interest rate, t is the number of years, CO,emiss; is the CO, emissions for the

generated energy of the technology type i, DT is the number of years of the respective stage.

Expression (11) is the “coupling equation” among MOLP and Dynamic Programming; it
expresses the different sources ri compounding the candidate capacity expansion xg.There
are expected different optimized sources of combination of the r; values for a x§, as shown in

figure 2.

Operating constraint represented by the expression (12) is a set of different constraints
defined by the operational characteristics of the modeled power system. The number of these
constraints depends on the information available and depends of the number of unknow

variables. One of the operational constraints is represented by (15):
2i(UCFy. 1) = UCFrotaisystem>X(XiTi) (15)

Where UCF; is the average utilization capacity factor in the respective stage of the DT
years of each i generation type, and UCFrqaisyeem iS the utilization capacity factor of the entire
power system in the same stage. For more than 3 generation technology type (i >3), it is
necessary include more restrictions than the represented by expression (15). It is going to

require more information about operational conditions from all the sources.

The problem defined by (9) through (15) is solved for a specific set of climate conditions

scenario through the augmented e-constraint (AUGMECON) algorithm [48].

Solving the problem results in a Pareto set with m paired values for CO, emissions and
costs, along with the respective combination of sources r; and their respective added capacity
decisions x. One Pareto set is produced for each climate scenario. An example appears on
figure 2 including three energy sources (on the right chart) and m points defining a Pareto front
(chart on the left). Solution point “1” shows only expansion on energy source r», with the least

cost and highest CO; emission. The introduction of r3 in the bundle produces a trade-off,
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reducing emissions at a cost expense (points 2 through 7). By introducing energy source r; the
CO; emissions can be further reduced, replacing rs. Each combination of energy sources
reflects a policy bias, or preference, with stronger bias towards environmental protection to the
right, and towards cost savings to the left. Thus, a given energy source expansion investment

bundle (r1, r2, r3) also represent an energy policy.

Pareto Front Source Combination
012 X.
[ ]
o~ .3
o .4 r3
(S e5
« ob mr2
E o o . mrl
® mni1
L m
; ; : ; ; . @ 1 0
FO1: COSTS 1234567 .. mlm

Figure 2. Example of MOLP for x, [28].

The process is the same for each climate condition scenario, for all the x at each stage,
producing a Pareto front with the energy source expansion investment bundle for each x°. This
is the “MOLP Pareto front.” Each point receives a label representing the preference among the

two objectives (minimize cost and minimize CO, emissions) defining the energy policy.

2.3 Capacity Expansion

The generation capacity expansion problem defined by equations (1) trough (4) is solved
with dynamic programming (with a backward moving dynamic programming algorithm,
beginning at t=T and finishing at t=1), following the “leading policy” of minimum costs, for the
values of the cost for each of the candidate value xin each stage. As we have multiple stages,
there is a finite number of energy policies combinations through time. Each particular time
sequence of energy policies thus represents an energy policy scenario. Thus, for T stages, it
will result in m™ “energy policy scenarios”, each with its respective values of x¢ ri, Ci(s, ") and
CO2(x). While we can'’t predict if a scenario will happen, we can compare different likely ones
for total costs and CO, emissions, in order to identify dominated solutions that should be
avoided, as presented in [33]. However, as additional uncertainty is brought in by climate
change, we can no longer be certain if a non-dominated solution will remain so if a different
climate unfolds. To address this limitation, we build upon the work in [33] and improve the

model to identify robust solution considering climate change uncertainty.
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The expression (16) is considered to compute the corresponding CO, emissions along the
time horizon planning:

Total CO,emissions = Y,;_1 7 CO,(x;,s;) (16)

Where CO2(x;,st) are CO; emissions due to expansion x; at stage t given an initial capacity

St.

The final outputs of DP, resulting from the application of a defined “energy policy scenario”,
are the total cost of the capacity expansion, total emissions of CO; from the operation of the

added capacity and the capacity expansion sequence with a mix of sources by stage.

The final output of the whole optimization process are m' results of “energy policy
scenarios”, each one with their respective total Cost, total Emissions of CO, and capacity
expansion sequence with a mix of sources by stage, as shown in figure 2. No persistence

policy is considered since actual political global condition is highly uncertain.

Figure 3 presents the mT solutions from a climate scenario. The extreme values correspond
to opposite extreme “energy policy scenarios” of minimum costs (upper left), and minimum
CO; emissions (lower right). The other values correspond to different policy trajectories
representing alternative changes in the energy policy from one stage to another (i.e. switching

priorities between environmental and economic objectives).
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Figure 3. Final output
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This is done for each one of the climate scenarios; resulting in mT solutions for each climate
scenario. The next step is identifying the robust solutions, i.e. best “energy policy scenarios”

under different climate conditions.
2.4 Identification of robust energy policies

The same “energy policy scenario” followed under different climate conditions results in a
different costs and CO2 emissions. When evaluating the performance of the different energy
policy scenario it is necessary to identify which one could maintain desired results for any likely
future climate conditions, in terms of costs and CO.. Desired results are the ones at, or close,

the Pareto front. This means identifying the robust energy policy scenarios.

Evolutionary algorithms have been used to evaluate effectiveness of multi-objective
optimization through different indicators [49-52]. The indicators are categorized in four core
groups by [51]: capacity, convergence, diversity and convergence-diversity. The more suitable
for our purposes are the ones measuring convergence. Convergence metrics measure the
proximity of the set of solutions to the Pareto front. In our case, the result to be analyzed has
the configuration shown in figure 4, with dominated and non-dominated solutions and a clear
identification of the Pareto front. There are two possibilities for a solution (energy policy
scenario): (a) non-dominated, i.e., it is part of the Pareto Front and (b) dominated (not a part
of the Pareto front) in any given climate scenario. Robust solutions will be the ones in or nearest

to the Pareto Front in any of the climate change scenarios considered here.

The normalized distance is used to measure the proximity of a solution (energy policy
scenario) to the Pareto Front in each climate scenario. The normalized distance between two

solutions a and b with two objectives functions f; and f; is defined by (17).

d(a,b) = J (fio) - fi@) + (30 - fr@) (17)

where: f;(.) is the objective function i normalized according the set of all solutions for each
scenario. The normalized function in x is defined by (18).

£ (x) = 100x L9 (18)

max min
i1

Where: f™" is the minimum attainable value for objective i considering all possible solutions
in a given climate scenario, while ™ is maximum attainable value for the same objective i.
For each climate scenario, the maximum distance d, is identified in a two-step procedure: first,
we calculate, for a given dominated solution, all the possible distances to all points in the

Pareto front, and then select the shortest one. This is repeated to all dominated solutions,

47



resulting in a set of minimum distances, one for each dominated solution. Finally, the maximum

distance among this set is selected, which the maximum distance d, as shown in figure 4.
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Figure 4. Distances to Pareto Front and robust solutions

This procedure is repeated for all climate scenarios considered, resulting in a set of d,
distances, once for each climate scenario. The distance dr from the Pareto Front is then
defined by the expression 19, where maxi-1.,d; and min-1_d, are the maximum and minimum
di values in the set of d, distances, respectively. The parameter p is a humber to define a
desired accuracy. For our case study, we considered p =0.15 given that, pre-feasibilities
studies find an accuracy of 30% for costs estimations as acceptable, then considering 15% of

the average cost variation, it will be enough for this application.

dr =p X (Illlla)‘r(l d; +Ir;111"r;l d,)/Z (19)

If an energy policy scenario has a distance d to their respective Pareto Front equal or lower
than dr in each one of the climate condition scenarios evaluated, it is defined as a “robust
energy policy”. In the example presented in figure 4, energy policy scenario A is not a robust
solution, while solution B is a robust one. Solution B presents a better performance (i.e. it is

closer to the Pareto front) in any of the climate condition scenarios.

After identification of the robust energy policy scenarios, the values are analyzed to
evaluate robustness. Such evaluation searches for patterns in the sequence of energy policies.
When evaluating robustness, we look for solutions that have considerable variation on the
distances among the different climate scenarios, by measuring and comparing their variability.
Finally, we analyze the configuration of capacity expansion increments, considering the

different climate scenarios and a robust energy policy.
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3. Case study

The proposed approach is applied to the generation capacity expansion problem of the

hydrothermal Brazilian southern power system.
3.1 Brazilian southern power subsystem

The Brazilian South Subsystem consists of the generating companies installed in the states
of Rio Grande do Sul, Santa Catarina, and Parana. The installed generating capacity in 2015,
according to [53] is 29,805 MW. The power source mix is more than 80% hydropower (HPP:
hydroelectric plants and PCH: small hydropower plants), followed by thermal (UTE:
thermoelectric plants) with 14%, and a small but significant part of wind (EOL: wind power)
6%, as shown in figure 5. More than 40% of thermal power is based on coal as fuel, and more
than 30% uses natural gas [58]. From the historical records, the generation capacity expansion
in the period 2009 — 2015, was around 4,714 MW total, from which 55.2% in hydropower,
10.7% in thermoelectric power and 34.1% in wind power.

PCH

6%

UTE

14%
EOL
6%

s J
74% T

Figure 5. Generation Sources in Southern Brazilian Power System

Basically, the Power System is mainly a hydrothermal power system, with significant
reliance on water availability. Since the region has a "homogeneous” climate characteristic (i.e.
Cfa and Cfb from Kdppen classification [54]), it is possible make a climate characterization
through the water discharges of their main river basins (as is discussed in the next section).
The main river basins of the region are the Uruguay River basin, Atlantic Southeast basin and
the Parana River basin. From the historical records of generation, installed capacity and power
generation was possible to compute the capacity factor of each technology (calculated using
expression 6). Then after an analysis of the relationship among hydrological conditions and
utilization capacity factor (corresponding yearly historical values), establish the values of the
utilization capacity factors related to each one of the hydrological shown in Table 1. Also,
establish a correlation of the utilization capacity factor for the whole power system with the

capacity factor of each one of the indicated sources.
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Table 1. UCF and hydrological conditions

Yearly Hydrological | Very Dry Dry Normal Wet Very wet
Conditions — YHC 1 2 3 4 5
UCFhydro 0.17 0.23 0.29 0.34 0.40
UCFThermo 0.39 0.35 0.30 0.25 0.21
UCFwind 0.21 0.21 0.21 0.21 0.21
UCFrotai system = 0.0064 + 0.823UCFyyqro + 0.151UCFrpermo + 0.003UCFyying

A detailed description of the process is shown in the Appendix A.
3.2 Climate change in Brazil

The climate variability and changes are studied using a set of climate models, at different
scales: global, regional or terrestrial models [55]. Global climate models are more useful for
the long-term and variability analysis, but they are limited by their scale, since adaptation
measures for climate change require information at regional scales, as it was pointed in [56,57],

regional models are required too.

For climate simulations in South America, specifically in Brazil, a regional climate model,
named ETA (40), have been used for representing the “present climate” (i.e. period 1961 —
1990) and for representing the “future climate” (i.e. 2010 — 2100), in the scenario of greenhouse
gas emissions A1B. The model ETA (40) is a numerical atmospheric complex model with a
resolution of 40 km, that is nested by four boundary conditions (named as unperturbed, low,
medium and high) of the global model HadCM3, that shows a good concordance with the
temperature and precipitation patterns of South America for the years 1961 — 1990, when
compared with historical observations of the Climate Research Unit — CRU from University of
East Anglia [57].

ETA (40) and global climate models as GFCM, HADC, MPEH, MRCG, and NCC are used
for analyzing hydrological impacts of future climate in Brazil in their main river basins (the ones
configuring the Brazilian Power System) [58]. The main findings about anomalies of the “future
climate” (period 2011-2040) respect the “actual climate” (1961-1990), regarding mean monthly

naturalized discharges are:

ETA40 — Control (ETA40-CTL). The results of this model show increments of more than
15% for the southern basins (mainly Rio Grande do Sul) and reduction until 15% in the

Paranaiba river (tributary of the Parana river).

GFCM. The results of this model show reduction in most of the river basin, the reduction is
more than 15%. Even for the southern part of Brazil, the main river basins show reduction for
more than 5% or even bigger than 15%, with a few river basins (small ones) presenting

increments around 5% and more than 15%.
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HADC. The results show increment between 5% to 15% just for the bigger river basin in
the Southern Brazil, but reductions for the rest of the river basin in this region from 5% to more
than 15%.

MPEH. For this model, results show increments until 15% in most of the main river basins

of the southern part of Brazil.

MRCG. The results show increment between 5% to 15% in most of the river basins,
including the bigger one, of the Southern region. Variability of -5% to 5% for some basins
located in the Santa Catarina state.

NCCC. For this model, results show increments until 15% in most of the main river basins
of the southern part of Brazil, but a variability from -5% to 5% for the bigger river basins in this

region.

There is not a coincidence about the results of future climate conditions projections (for
the same scenario of emissions A1B). There are river basins showing reduction for one model
and increment for the other.

Then with the results of those models, it is possible to build future climate scenarios,
that will include conditions of increment and reduction of water availability. From the previous
description of the results, it is possible define that the worst-case scenario could be
represented by the results from the model GFCM (reports reductions), while the best-case
scenario could be done with the results coming from the models ETA40-CTL or MPEH (since

shows increments). The results of the other models could configure intermediate scenarios.

For a better understanding of the differences regarding water availability in the same
period of analysis (i.e. 2012 — 2036, same period to be used for the capacity expansion
problem), from the resulting discharges of the explained methods, the monthly naturalized
discharges were rearranged to obtain one value for year (monthly average discharge). The
total natural discharges were computed for the identified river basin in the Brazilian southern

power subsystem (see Appendix B).

From the results shown in the figure 6, it is possible identify that, as it was supposed, with
the results of the model GFCM is possible to represent a worst case for water availability, and
with the model, MPEH to represent the best case of water availability. And the results from the
other models configure intermediate scenarios from low to high water availability ETA40-CTL,

HADC, MRCG, and NCCC. These scenarios will represent the climate uncertainty.
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Figure 6. Water availability for the different climate change models

Based on the processed information from the described models each year was classified
using the “frequency curve” into five equally likely classes of hydrological conditions: very wet,
wet, normal, dry and very dry. The reference discharges used was the corresponding to the
ETA40-CTL, from 1961 — 1990, as representing actual climate conditions. The boundaries for

the classification were defined as shown in Table 2.

Table 2. Definition of yearly hydrological conditions

Yearly Hydrological Conditions Low boundary | Upper boundary | Class
(m?/s) (m?/s) (m?/s)
Very dry: 1 3,879.3619 4,593.631 | 4,110.026
Dry: 2 4,593.6310 6,071.313 | 5,049.314
Normal: 3 6,071.313 7,366.839 | 6,271.416
Wet: 4 7,366.839 8,767.756 | 7,743.603
Very wet: 5 8,767.756 14,324.468 | 11,476.270

For further information about the determination of these classification see Appendix B.

3.3 Problem configuration

Considering the following conditions, the generation capacity expansion planning at the
Brazilian southern power subsystem was studied. A time horizon of 24 years was divided in
four stages each one of 6 years, starting at the year 2012. An annual interest rate of 8% is

adopted. The cost and CO- emissions for each type of technology are shown in Table 7.
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Table 3. Characteristics of the available sources

Technology Investment Costs | Variable Costs o
CO; emissions (ton/GWh)?
type (10° US$/MW)* (US$/MWh)?
Hydraulic 1.20 2.413 26
Thermal 0.867 10.233 628.67
wind 1.00 10.00 26

Source: * From [33], page 349, average values for thermal considering natural gas and coal. 2 Mean
values considering lifecycle approach from [59] page 6, average values for thermal considering natural

gas and coal.

The initial installed capacity is 27,783 MW. The Table 4 shows the future demands of
installed capacity (first column) and the yearly hydrological conditions for the period 2012 —
2036 as result of the generated discharges of regional and global models. These values

configure equally likely “climate scenarios.”

3.4 Problem formulation

After identification of the demands at the beginning of each of the four stages, and at the
end of the last stage, all the possible capacity expansion x at each established stage are

defined as was explained in 2.1.

Contemplating actual conditions of the Brazilian southern Power subsystem, there are
three types of technology to consider as be part of the possible capacity expansion x: r1 for
hydraulic, r; for thermal and r; for wind, which could configure are part of the coupling equation
(11). The values of r are expressed in MW, representing the generation capacity of each type
of technology. Each possible capacity expansion xi, has costs and CO; emissions attached,
not only because x value but also for different climate conditions influencing in the variable

costs and the operational conditions.

The next step is the generation of the set of m™ energy policy change scenarios, one set
for each climate scenario, then will be six sets. Considering m=11 and the four stages, each

set is composed by 114 = 14,641 energy policy change scenarios.

Given climate conditions are different from year to year (see Table 4), so are the
operational conditions, which are represented by the utilization capacity factor (i.e. UCF;; and
UCF,roraL), and conform equations (13) and (14). It is expected that the operational conditions
and the related to these will change from one stage to another stage. Then the formulation of
the MOLP through the application of the expressions (9) to (15) will generate different

coefficients of the MOLP formulation from stage to stage.
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Table 4. Projected Demands and Yearly Hydrology Conditions

vear Capacity | ETA40- | GFCM | HADC | MPEH | MRCG | NCCC
(MW) CTL

2012 27,783 3 4 5 5 5 5
2013 28,470 4 3 5 5 5 5
2014 29,157 4 2 3 3 3 3
2015 29,844 2 2 3 3 3 3
2016 30,531 1 3 5 5 5 5
2017 31,218 1 5 5 5 5 5
2018 31,905 1 5 5 5 5 5
2019 32,592 2 3 4 5 4 4
2020 33,279 4 1 2 2 2 2
2021 33,966 3 3 4 5 4 4
2022 34,653 2 1 2 2 2 2
2023 35,340 5 1 1 1 1 1
2024 36,027 5 1 1 2 1 2
2025 36,714 4 3 4 4 4 5
2026 37,401 5 2 3 4 3 3
2027 38,088 5 1 2 2 2 2
2028 38,775 5 1 3 2 2 2
2029 39,462 5 1 2 2 1 1
2030 40,149 4 1 2 2 1 1
2031 40,836 3 1 3 3 3 3
2032 41,523 1 1 2 2 1 1
2033 42,210 1 2 4 4 4 4
2034 42,897 2 5 5 5 5 5
2035 43,584 3 5 5 5 5 5
2036 44,271 2 2 3 3 3 3

Applying the equations (9) to (15), the expressions defining the MOLP for each stage,

considering climate conditions resulting from ETA40-CTL are:

Stage 1:

S.t.

FO{:min Costs:1.228Xr; + 1.008Xr, + 1.092 X713

FO,:min €0,:0.351x71; + 10.629xr, + 0.287x713

[105 USS$]

[10° Ton]

(20)

(21)
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Demand/coupling: r +r,+1r3 = x;; vVt [MW] (22)

Operating: 0.257xr; + 0.322xr, + 0.210Xr3 > 0.267X(ry + 15 +13) [MW] (23)
Stage 2:
FO{:min Costs:1.228xr{ + 1.007Xr, + 1.092 X713 [10° USS] (24)
F0O,:min C0,:0.378xr; + 10.188xr, + 0.287xr3 [10° Ton] (25)
s.t.
Demand/coupling: r +mr+1r;3 = x¢; vVt [MW] (26)
Operating: 0.277xr; + 0.308Xr, + 0.210Xr; > 0.281%X(r; + 1, +13) [MW] 27)
Stage 3:
FO{:min Costs:1.241Xr{ + 0.964Xr, + 1.092 X713 [10° USS] (28)
FO;:min C0,:0.533xry + 7.159%xr, + 0.287xr3 [10° Ton] (29)
S.t.
Demand/coupling: r +mr+1r;3 = x¢; Vit [MW] (30)

Operating: 0.390x7r; + 0.2167xr, + 0.210Xr; = 0.361X(ry + 15, +13) [MW] (31)

Stage 4:
FO.:min Costs:1.226Xr; + 1.013Xr; + 1.092Xr3 [10° USS] (32)
FO;:min C0,:0.339xr; + 10.904xr, + 0.287x13 [10° Ton] (33)
s.t.
Demand/coupling: r +1r,+13 = x¢; vVt (MW] (34)
Operating: 0.248xr; + 0.330Xr, + 0.210Xr3 = 0.261X(ry + 15, +13) [MW] (35)

The expressions for the other climate scenarios are shown in the Appendix C.

The MOLP for each stage of the corresponding climate scenario is solved using the
AUGMECON methodology [48], with the parameters eps=1"-3, grid points: gk =m-1 =10. The
SOLVER CPLEX is chosen for optimization, resulting in a discrete Pareto front with the optimal
solutions for CO, emissions and costs for each possible x:.. The discrete Pareto is composed

by eleven values (grid points + 1). Points at the Pareto front are labeled with numbers to
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represent preferences. The lower the number, the higher the preference for low-cost energy.

The higher the number, the higher the preference for low CO; emissions.
3.5 Energy Policy scenarios

The identification of robust energy policy scenarios now considers the six climate
conditions. The characterization of how the energy policies change throughout the planning
horizon is now established by the conditions indicated in Table 5. The conditions are defined
qualitatively through the difference between the label of the energy policy in one stage and the
previous one, totalizing three differences (e.g., Dif.1, Dif.2, and Dif.3). Qualitatively, the higher
the difference, the more abrupt is the change in preference from one objective to another (i.e.

low cost to low emissions or the other way around).

Table 5. Characterization of energy policy scenarios

Energy Policy scenario characterization

Condition

Resistant to change. Policies are in the
same position of the MOLP Pareto Front for

all stages.

|Dif.1|=|Dif.2| & |Dif.2|=|Dif.3| & |Dif.3|=0
Examples: 1-1-1-1, 2-2-2-2, 11-11-11-11

Constant change. Policies are changing
progressively in each stage.

|Dif.1|=|Dif.2| & |Dif.2|=|Dif.3| & |Dif.3|=1
Examples: 1-2-3-4, 2-3-4-5, 3-4-5-6

Gradual changes. Policies change their
preferences gradually. The policies are in the
closest position of the MOLP Pareto Front.

|Dif.1]| or |Dif.2] or |Dif.3| <=6
Examples: 1-1-1-1, 1-1-2-2, 1-2-2-2

Abrupt changes. Policies change their
preferences abruptly. The policies are in their

far positions on the MOLP Pareto Front.

|Dif.1| or |Dif.2| or |Dif.3] > 6
Examples: 1-1-1-11, 11-11-11-2, 2-2-2-11

Regretting abrupt changes. Constant or
gradual energy policies try to change
abruptly, but it regrets the decision and

reverts to the previous pattern.

Dif.1 or Dif.2 or Dif.3>-6
Examples: 1-1-11-1, 1-2-11-3,11-11-1-11

4. Results

For four stages and the eleven discrete values at the Pareto front, the number of possible
permutations is 11* = 14,641 energy policy scenarios, shown in Figure 7 along with their
respective CO, emission and cost objectives at the end of the time horizon for each one of the
six different climate change scenarios. The non-dominated values define a clear Pareto front
(black dots), while dominated values are differently distributed, depending on the hydrologic

conditions. Among all climate, maximum costs are around US$ 11,2 billion, with minimum CO-
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emissions around 20 million tons. The GFCM climate scenario, followed by the ETA40-CTL
presented the 14,641 solutions distributed over the largest area in the objectives region (higher
spread in the dots on Fig. 7), while the MPEH followed by HADC presented the solutions
concentrated over a smaller area (dots more concentrated on Fig. 7), and with lower values of

CO; emissions.
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Figure 7. Energy policy scenarios under different climate change scenarios
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The high-water availability for the MPEH scenario explains the low CO, emissions because
water availability reduces thermal power operation, consequently lowering CO; emissions and

increasing costs.

On the other hand, the lowest discharges in the GFCM model results in a preferred use of
the thermal source, generating higher CO, emissions. Compared to ETA 40 — CTL (Fig. 5) the
small difference in water availability impact in the CO2 emissions with a small reduction. In
general, the effects of the climate conditions (through the analysis of the climate scenarios)
explains that high CO. emissions happen because lower water availability (smaller low flows)
leads to increase preference for thermal power generation to fulfill energy demands, while

higher water availability explains the lower CO, emissions.

Table 6 shows the extreme values of costs and CO, emissions for the different climate
conditions and the accumulative discharge for the analysis time horizon expressed in volume.
It is possible verify that higher volume (higher water availability) in the time horizon of analysis
corresponds to more concentrated energy policy scenarios, with smaller differences across
likely costs and CO; emissions (i.e. smaller difference in the values at the extremes. The
opposite is also true. Lower volume (lower water availability) corresponds to more distributed
energy policy scenarios (which is the case for GFCM and ETA40-CTL. More distributed

solutions across the state region also means higher uncertainty about the results.

Table 6. Extreme values of Costs and CO2 emissions by climate condition

Climate Costs CO: Cumulative
conditions (Billion US$) (Million tons) discharge
Max | Min | Delta| Max Min Delta (km?)
ETA40-CTL 11.25| 9.77| 1.48|137.57 | 25.84 | 111.73 5,583
GFCM 11.17| 10.10 | 1.07 | 154.45 | 24.57 | 129.88 4,571
HADC 11.36 | 10.39 | 0.97 | 100.55 | 18.29 82.26 6,001
MPEH 11.43| 10.87 | 0.56 | 67.97 | 13.23 54.79 6,459
MRCG 11.36 | 10.36 | 1.00 | 108.93 | 18.59 | 90.34 6,053
NCCC 11.36| 10.35| 1.01|107.12 | 18.24 88.88 6,076
Maximum 11.43 | 10.87 154.45 | 25.84
Minimum 11.17 | 9.77 67.97 | 13.23
Delta (%)* 2 10 56 49

* Difference between the maximum and minimum values divided by the maximum

The uncertainty resulting from the climate change in terms of costs is lower than uncertainty
about CO, emissions. Costs could vary around 2% for the maximum values and about 10%

for the minimum values. CO; emissions could vary around 56% for the maximum values and
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about 49% for the minimum values. Thus, power expansion decisions targeting CO, emissions

are much sensitive to climate conditions.

Figure 7 also shows how the energy policy scenario “1-2-5-8" changes its performance
under the different climate conditions. This energy policy scenario was selected as an example
as it represents an initial preference for low-cost technologies at the first stage (“1”) and a final
preference for low CO. emissions technologies (“8”). This resembles current context in
several countries where cleaner energy sources are under discussion and deployment to
reduce CO; emission in the long run as the possible reformulation of green target is being
discussing in the UK [60]. As energy policy scenario 1-2-5-8 is located close to the Pareto front
for different climate conditions, it might be considered a robust solution, with a maximum
normalized distance d (expression 17) of 3.35. Table 7 shows the performance of energy policy
scenario 1-2-5-8 under different climate conditions. Again, the uncertainty about CO»
emissions is higher than the costs uncertainty. Even though in one of the climate scenarios the
distance to the Pareto front is zero, in the other scenarios it is located farther away from the
Pareto front, indicating that climate change will make finding perfect solutions (always at the
Pareto front) nearly impossible. Rather, one should seek solutions that present a good

compromise under uncertain future changes.

Table 7. Energy policy scenario 1-2-5-8 results

Models Costs (Billion | CO2 (Million tons) Normalized
US$) distance d
ETA40-CTL 9.86 106.53 0
GFCM 10.23 108.17 3.44
HADC 10.48 78.09 0.78
MPEH 10.95 48.47 1.28
MRCG 10.48 81.31 3.35
NCCC 10.47 80.08 1.00
Maximum 10.95 108.17 3.35
Minimum 9.86 48.47 0
Delta (%)* 10 55 Average: 1.64

* Difference between the maximum and minimum values divided by the maximum

To identify the robust solutions, we normalized the CO, and cost results. Considering the
normalized distance to the Pareto front for the six evaluated climate scenarios with p=0.15,
(19) yields dr = 5.669, which is adopted as the maximum distance for an energy policy to be

classified as a robust solution. For the dr value calculated a total of 880 robust energy policy
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scenarios were identified, representing more than 5% of the total energy policy scenarios. The

results are shown in the figure 8 as the dark gray points close to the Pareto Front.
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Figure 8. Normalized results

To explain the results, we select four energy policy scenarios, representing different
trajectories from low cost policies (“1”) to low CO: (“8”) and also the opposite (“7” to “1”): A (1-
2-5-8), B (1-5-5-8), C (7-1-1-1) and D (7-7-1-1). As seen, the energy policies change differently
among the example scenarios. The purpose is to show how climate change affects the
performance of a given energy policy scenario. Energy policy scenario as A is always inside
the area of robust solutions regardless of the climate (its d distance is always < dr = 5.669).

Other Energy policy scenarios, such as B, might be in the robust area (even be part of a Pareto
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Front) in a given climate scenario but outside in another. This indicates that B is not robust and

presents a higher risk of not delivering the expected performance given climate change.

Energy policy scenarios C and D are always outside of the robust area and are also non-
robust solutions. These should be avoided. Relative localization among some of the policies
presents some repeating pattern: energy policy A is always above and to the left side of B
(higher CO2 emissions and lower costs) given it delays the adoption of renewable energy
sources one stage to the future if compared to B. The same happens with policy C respect to
D.

Another observation in figure 8 is the concentration of the robust solutions. In the six climate
scenarios, most of the solutions are located in the upper part of the robust area. This must be

expected since the leading policy is optimization of minimum costs.

Besides the normalized distance, it is interesting to investigate which other characteristics
the robust solutions have in common, especially related to the type of energy policy.
Considering the defined 880 robust solutions with a maximum dr= 5.669, we have sorted and
classified the results considering the energy policy in the first stage (Start policy) and the policy

in the last stage (End policy). Table 8 shows a summary of the computation.

Column 1 shows the total number of energy policy scenarios starting with energy policy in
column 3. Column 2 shows how many of the energy policy scenarios in column 1 are robust.
For example, 311 of the energy policy scenarios starting with energy policy 1 are robust (first
row) and, out of this robust set, 30 policies end in 4 (1-#-#-4).

These results are useful for one important decision faced by energy planners: “Where to
aim” the changes, or, which should be the final energy policy (i.e., the target). While this
decision involves tradeoffs and likely included other parties, some insights are possible. For
example, if the current energy policy is heavily fossil fuel based, high CO» emitting and lower
cost (e.g. “1”) there are 11 final policies to aim at, including maintain the current policy 1. Table
8 indicates that most robust policies are located in the ending policy #8 (44), while only 14
robust policies are located in the “greener” ending energy policy #10. This indicates there are
more alternative robust decision trajectories (robust energy policy scenarios) towards 8 than
towards 10. Given there are 121 possible combinations of energy policies that start in 1 and
end in 8 (last row), as well as end in 10, to end in 8 we have 44/121 = 36.3% available robust
decision trajectories, while to end in 10 we have 14/121 = 11.6% available robust decision
trajectories. This means that if ending policy 8 is chosen, there could be a higher chance that
it will be reached with an energy policy scenario that maintains good performance throughout

climate uncertainty (closer to the Pareto front).
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In the other hand, if the current energy policy is slightly “greener” (e.g. “3”) than aiming at
8 as an ending energy policy now have significantly fewer robust decision trajectories (10/121
= 8.3%) while aiming at 10 still maintains a similar number (13/121 = 10.7%). In this case,
having 10 as final energy policy provides the planner with slightly more robust alternatives than
8.

Also important, in the vast majority of the cases, returning from a “greener” energy policy
to a least cost one (i.e. moving down in the number labels) is almost never a good decision,
as the number of zeros below the main diagonal in Table 8 indicates. There are very few robust

alternatives in this region

Table 8. Computation of different arrangement of the robust policies

End
Total Robust | Start 1 2 3 4 5 6 7 8 9 10 11
1331 311 1| 25 27 30 30 35 39 44 30 14 12
1331 258 2 24 24 27 25 29 33 26 13 12 20
1331 105 3 3 8 8 8 8 11 11 10 10 13 15
1331 40 4 0 0 0 0 0 0 2 7 9 10 12
1331 29 5 0 0 0 0 0 0 0 4 6
1331 25 6 0 0 0 0 0 0 0 1 5
1331 27 7 0 0 0 0 0 0 0 1 5
1331 27 8 0 0 0 0 0 0 0 1 5
1331 20 9 0 0 0 0 0 0 0 1 2
1331 19 10 0 0 0 0 0 0 0 1 2
1331 19 11 0 0 0 0 0 0 0 1 2 6 10
TOTAL 880 Robust 52 57 60 65 63 75 85 97 89 103 134
TOTAL| Start-end 121 121 121 121 121 121 121 121 121 121 121

Besides presenting the most robust energy policies, this methodology provides decision

makers a tool for analysis of the impacts of policy changes under different climate scenarios.

Consider, for example, a situation where a future expansion plan is initially devised, and
the decision maker faces the necessity to change it, given a change in the final goal (e.g.
further reduce CO; emissions). In this situation, the original power generation expansion plan,
referred here a “base energy policy scenario” could be defined as 4-4-4-4 (this is an example).
This plan now needs to be revised under a more stringent emissions protocol, which will bring
the final energy policy to reduce the amount of CO, emissions and move from “4” to “9”. There
are several possible alternative energy policy scenarios to reach the new final goal: 4-4-4-9,
4-6-8-9 and 4-9-9-9 are some of them. The first delays the adoption of renewable energy
sources to reduce CO, emissions as far as possible into the future, the second implements a

gradual change and the third anticipates the change to the beginning of the planning period.
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As expected, each path to reach the final goal has very different results both in terms of cost

and total CO, emissions along its development.

Table 9 summarizes the results, including, for each one of the six climate scenarios, the

costs, CO2 emissions and the normalized distance to the respective Pareto Front. The

alternative energy policy scenarios to the original plan 4-4-4-4 achieve the goal of reducing

CO; emissions with a cost trade-off. The same results are shown in figure 9.

Table 5. Results of policies 4-4-4-4, 4-4-4-9, 4-6-8-9 and 4-9-9-9

Base energy policy sc.

Alternative energy policy scenarios

4-4-4-4

4-4-4-9 4-6-8-9 4-9-9-9

Costs CO2 d |[Costs CO: d |[Costs CO: d |Costs CO2 d

(Billion (Million (Billion (Million (Billion (Million (Billion  (Million

US$) tons) US$) tons) US$) tons) US$) tons)
Scl 9.95 104.05 46| 10.02 85.72 0.80| 10.15 76.89 27| 10.35 66.06 6.2
Sc2 10.29 115.49 10.92| 10.39 97.52 15.53| 10.46 72.73 9.85| 10.63 57.36 34.28
Sc3 10.58 75.87 8.73| 10.60 7255 7.77| 1082 51.31 2.20| 11.05 37.42 19.65
Sc4 10.98 5154 8.12| 11.00 4823 7.68| 11.15 32.62 1.89| 11.23 26.85 19.39
Scb 10.56 81.83 10.79| 10.60 75.30 10.79| 10.76 53.39 3.73| 10.97 39.33 24.45
Sc6 10.55 80.45 8.20| 1059 73,92 8.15| 10.81 52.60 2.70| 11.04 38.69 19.27
d max 10.92 15.53 9.85 34.28

In figure 9, the results for each of the energy policy scenarios are shown in a specific color,

i.e. base energy policy scenario in green, and the others in brown, yellow and orange

respectively. The results for each of the climate scenarios are labeled with Sc1 through Scé6.

The results of the alternatives energy policies, for the same climate scenario, are all below at

the right side of the results of the “base energy policy”, indicating a reduction of CO, emissions

with cost trade-off
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Figure 9. Variation in the results for energy policies

63




Given the differences among the energy base policy and their alternatives are different in
each of the six climate scenarios, a numerical analysis of the differences might be helpful to
analyze changes in costs and emissions. Those differences are shown in Table 10. The

increase in cost in millions of US$ and the reduction of CO, emissions in thousands of tons.

Also, a ratio of how much it costs the reduce one ton of CO..

Table 10. Difference of costs increase, and CO, emissions reductions of

alternative policies respect base policy 4-4-4-4

4-4-4-9 4-6-8-9 4-9-9-9
D.Costs D.CO:2 D. Costs D. CO2 D. Costs D. CO2
MillUS$ k-Ton US$/Ton | Mill US$  k-Ton US$/Ton | Mill US$  k-Ton US$/Ton
Scl 77.0 -18333.3 4.199 207.8 -27153.0 7.654 402.6 -37993.0 10.598
Sc2 92.5 -17966.8 5.150 163.0 -42759.7 3.812 333.3 -58124.6 5.734
Sc3 17.8 -3318.7 5.356 234.9 -24562.5 9.565 468.3 -38454.0 12.179
Sc4 17.8 -3318.7 5.356 168.4 -18921.5 8.902 249.4 -24694.6 10.101
Scb 39.5 -6531.2 6.049 199.0 -28440.1 6.995 402.4 -42497.9 9.468
Sc6 39.5 -6531.2 6.049 255.6 -27853.7 9.177 490.1 -41764.9 11.734
Average 54 Average 7.7 Average 10.0

Then, to select one of the three alternatives energy policy scenarios, it is necessary a
decision criteria. The possible criteria could be: (a) select the alternative based on a minimum
amount of CO, emissions that needs to be reduced; (b) select the alternative that meets a
maximum Cost or (c) select the alternative with the smallest cost per ton of CO, emissions

removed (cost efficiency).

For example, if the decision criterion is achieving a minimum reduction of 20,000 k-Ton,
the alternative energy policy scenario 4-9-9-9 is preferred given it is more likely to achieve a
reduction of at least 24,694 k-Ton under all evaluated climate conditions. If the decision
criterion is achieving a maximum cost of 260 Mill of US$, there are two possible alternatives
(i.e. 4-4-4-9 and 4-6-8-9) that are more likely to achieving the criterion. From those alternatives,
4-4-4-9 has the lowest costs, but also the smallest CO, emissions reductions for any of the
climate scenarios and hence a trade-off. If the decision criterion is to select the one that is
more cost efficient, the ratio of how much does it cost (US$) to reduce one Ton of CO, drives
the selection process. The minimum rates of US$//ton are the ones corresponding to the
energy policy 4-4-4-9 (Table 10). Even though the energy policy scenario 4-6-8-9 has the
lowest cost per ton for the climate scenario Sc2 (GFCM), the average value of 4-4-4-9 as well

the variation of the values, makes alternative 4-4-4-9 the promise one.

Other aspect to be analyzed in the results is the increments stage by stage, which

represent the deployment of different technologies through time under different climate
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scenarios. Table 11 summarizes the incremental capacity expansions for energy policy A. The
results for each one of the different six scenarios stage by stage are presented in the
“increments sequence” column: the x-axis displays the decision stage, along with the
respective average hydrological conditions AHC, while the y-axis presents the installed power
considering the generation technologies considered in the model (w for wind, t for thermal, h
for hydropower). The second column “increments by stage in %” presents the % distribution of
added power capacity. Given each stage has six years and each year has a defining
hydrological condition from 1 to 5 (very dry - 1, dry - 2, normal - 3, wet - 4 and very wet - 5),
the average hydrological condition reflects the ordinal rank of the hydrological conditions of the
six years in the respective stage. For example, a value of 2.5 for the stage 1 means an
intermediate condition between 1 and 2, and so on. The total expansion in the energy policy
scenario A for all the stages is 4,122 MW. In general, after an analysis of all the results (14,614)
for the, each one of the six climate scenarios, the total expansion follow the same pathway of
increments (i.e. 4,122 MW at each stage).

As energy policy scenario A (1-2-5-8) gradually moves from lower cost/higher CO:
emissions energy policies to lower CO, emissions/higher costs policies, a corresponding
change is observed in the generation technology mix. However, the exact changes depend on
the future climate scenario. As a general trend, thermal generation is set to be reduced as we
move through the stages. In the two drier climate scenarios, an increasing trend in wind power
helps replacing the decreasing thermal. For the remaining four wetter scenarios, investment in
wind power is halted and faces a reduction as we approach the end of the planning period
(stage 4), being replaced by less expensive hydropower investment given higher water
availability. The energy policy scenario A is robust in terms of CO, emissions and Costs due
to its proximity to the Pareto front (optimal solutions). These results can be helpful in assisting
the decision making about the generation mix. As shown in Table 11, five out of six climate
scenarios pointed to significant investments in hydropower for the first stage and the last one.
While the result for the first stage can be used immediately, later stages depend on how long
does it take for a given technology to be commissioned, once a decision is made. For example,
hydropower projects usually take longer given complex licensing and construction. Thus, for a
hydropower to be available in each stage, the decision must be made two or three stages
before. In our model, that means planning in hydro expansion for stage one (given five out of
six climate scenarios pointed out to mostly hydropower investment in stage 1) and running the
model again after the stage one is realized to verify the solution for stage 3 (former stage 4,
which had dominant hydro investment in the previous model run). If dominant hydropower
investment still holds for stage 3 (former stage 4) then a decision should be made to start the

hydropower expansion.
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Table 11. Increment Results for Energy Policy Scenario A (1-2-5-8)

Increments sequence

Increments by stage in %
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Due to the scope of this paper, six climate change scenarios were investigated. If more
scenarios are available, the method can be applied to provide similar results and indicate the
technology investment most likely to provide the desired outcome (minimum costs and COy)

emissions.

These results are thus useful to evaluate in advance the impacts of the energy policy
changes, which one of them are more robust in terms of optimization cost and reductions of

CO; emissions for different climate scenarios.

5. Conclusions

This paper presents a new approach to consider energy policy uncertainties and climate
conditions simultaneously in power systems capacity expansion planning. The approach is
based on the optimality principle of Bellman and scenarios analysis. Dynamic programming
and multi-objective linear programming have been used to generate energy policy scenarios
and their trade-offs. Utilization capacity factor have been defined to include climate change
effects in operational conditions. Techniques for measuring multi-objective performance have

been used to identify robust energy policies.

The approach was demonstrated through a case of generation capacity expansion of the
Southern Brazilian power subsystem, using three different available energy sources for six
different scenarios of climate conditions. For each climate scenario, 14,641 energy policy
scenarios were evaluated considering different combinations of energy policy changes. We

concluded that:
1. There is a clear Pareto front in each set of solutions for each climate scenario;

2. The performance of energy policy is sensitive to the climate scenario where it is applied,
being able to go from being a non-dominated solution (Pareto Front) in a climate scenario to

being a dominated solution in another climate scenario (out of the Pareto Front);

3. Climate conditions have influence in the uncertainty about Costs and CO, emissions.
Climate scenarios with higher water availability presents lower uncertainties in the costs — CO»
emissions tradeoffs, while drier conditions in the scenario yields in higher uncertainty in the

costs — CO; trade-offs. Being the bigger impact in terms of CO, emissions;

4. Energy policy scenarios characterized by ascending changes (from a low cost to greener

energy policy) are more likely to be a robust solution in terms of costs and CO; emissions.
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Finally, the results indicate that policy change analysis considering climate conditions
uncertainty through the planning process is useful to give decision maker’s a broader vision
about the magnitude of the attached uncertainties and the related risk of the decision making

of today in the future.
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Appendix A. UCF historical analyses

The analysis of the utilization capacity factor for the Brazilian Southern Power System
was based in historical records from the ONS. Table A-1 shows the determination of the

UCF for the three main technologies used in the Power System.

Table A-1. UCF from historical records

Hydropower Thermal power Wind power TOTAL

Year | Generated | Installed | UCF Generated | Installed | UCF |Generated|Installed| UCF UCF
(GW-h) (MW) (GW-h) (MW) (GW-h) | (MW)

2000 46601 16767 | 0.32 8258 2772 | 0.34 0 0 0.00 0.32
2001 55341 16942 | 0.37 10454 3031 | 0.39 0 0 0.00 0.38
2002 51244 18095 | 0.32 7776 3521 | 0.25 0 3 0.00 0.31
2003 42617 18320 | 0.27 7173 3564 | 0.23 0 3 0.00 0.26
2004 46818 18455 | 0.29 9143 3577 | 0.29 0 8 0.00 0.29
2005 47260 19319 | 0.28 8765 3585 | 0.28 0 8 0.00 0.28
2006 29598 19491 | 0.17 10264 3593 | 0.33 0 167 0.00 0.20
2007 59003 20459 | 0.33 8998 3595 | 0.29 408 167 0.28 0.32
2008 60094 20842 | 0.33 8260 3610 | 0.26 422 167 0.29 0.32
2009 58009 21182 | 0.31 6548 3742 | 0.20 389 167 0.27 0.30
2010 75897 22173 | 0.39 7871 3759 | 0.24 419 176 0.27 0.37
2011 86510 22387 | 0.44 5696 4146 | 0.16 641 553 0.13 0.39
2012 53746 22954 | 0.27 10487 4161 | 0.29 909 669 0.16 0.27
2013 78492 23484 | 0.38 12167 4176 | 0.33 1003 756 0.15 0.37

To analyze the UCF and the hydrological conditions for the same period 2000 — 2013,

the methodology explained in Appendix B was done. For these case, was used historical
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records of the natural discharges from the ONS (1931-2013). The same river basins from

table B-1 were considered, the discharges and their respective hydrological conditions are

shown in Table A-2.

An analysis of correspondence between hydrological conditions and UCF, considering

the average, maximum and minimum, together with historical values, shown in Table A-3

was done. The analysis of “correlation” is shown in the figure A-1. Considering these

correlation, the UCF for the three technologies were established as shown in Table 1.

Table A-2. Discharges and Yearly Hydrological Conditions — YHC.

Year Q (m?/s) YHC

2000 7683 4

2001 7319 4

2002 7729 4

2003 6794 3

2004 7100 3

2005 8089 5

2006 6328 3

2007 8034 4

2008 7310 4

2009 8800 5

2010 8633 5

2011 9530 5

2012 6271 2

2013 8287 5

Table A-3. UCF and YHC considered
YHC UCF mydro YHC UCF Thermo

Historical 4 0.31 4 0.28
average 3 0.27 3 0.31
conditions 5 0.37 5 0.24
Minimum 1 0.17 5 0.16
Average 3 0.32 3 0.28
Maximum 5 0.44 1 0.39
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Figure A-1. Correlation between UCF and Yearly hydrological conditions

Appendix B. Hydrological conditions definition

Hydrological conditions in the Brazilian Southern Power subsystem related to power
generation are defined by the natural discharge of their main river basins. In these case
the gauge stations considered for the analysis (due to its location downstream of main

hydropower) are shown in Table B-1.

Table B-1. Main Hydropower river basin of Brazilian Southern Power System

ONS code Hydropower River River Basin State
113 Itatba Jacui Jacui RS
98 Castro Alves das Antas Antas RS
66 Itaipu Parana Parana PR
217 Machadinho Uruguai Uruguai SC

To establish the hydrological conditions of dry (1), very dry (2), normal (3), wet (4) and
very wet (5), the data corresponding to ETA40-CTL ATUAL (current situation scenario)
from [41] was used. Then variations on the discharge will be perceived since the
hydrological conditions were established for the current situation. From that data, the
monthly average discharge for each year at each river basin indicated in Table A-1 was
computed. The total discharge was calculated adding the values from each one of the four

river basins, except the corresponding to Parana. For the Parana river basin, since the
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power generation recorded as Brazilian production is the half, only 50% of the

corresponding discharge in Parana river was taken. Table B-2 shows the results.

With this data, a cumulative frequency curve was elaborated, and the limits for the five
equally like hydrological conditions were established considering 20% for each one. The

resultant values are shown in Table 2.

Table B-2. Monthly average discharges for Brazilian Southern hydropower system

Year Q (m?¥s) Year Q (m¥s) Year Q (m¥s)

1961 7,366.839 1971 7,784.158 1981 6,071.313
1962 9,877.998 1972 4,722.814 1982 4,136.828
1963 8,767.756 1973 3,879.362 1983 7,435.482
1964 6,366.738 1974 4,275.056 1984 12,983.287
1965 6,194.529 1975 7,675.177 1985 12,525.804
1966 8,922.667 1976 6,663.445 1986 6,243.386
1967 1,4324.468 1977 5,069.987 1987 4,593.631
1968 1,2931.911 1978 5,262.641 1988 5,439.488
1969 8,324.024 1979 4,088.038 1989 7,875.939
1970 5,207.327 1980 4,170.846 1990 6,089.089

Appendix C. MOLP formulation for climate scenarios: GFCM, HADC, MPEH, MRCG
and NCCC

C.1 Climate Scenario GFCM

Stage 1:
FO{:min Costs:1.231Xrq1 + 0.999%1r, + 1.092 X715 [10° USS] (C-1)
FO,:min C05:0.405x1r, + 9.693x1r, + 0.287x713 [10% Ton] (C-2)
S.t.
Demand/coupling: r +r,+13 = x4 vVt [(MW] (C-3)
Operating: 0.297Xxr; + 0.293xr, + 0.210Xr; = 0.295X(1y + 1 + 13) [MW] (c-4)
Stage 2:
FO{:min Costs:1.227xr; + 1.011Xxr, + 1.092 X713 [10° USS] (C-5)
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FO,:min C0,:0.339x7r, + 10.188x7r, + 0.287x713 [10° Ton]

S.t.
Demand/coupling: r+r,+1r3 = x;; Vit [MW]

Operating: 0.248xr; + 0.330xr, + 0.210Xr3 > 0.261X(ry + 1, +13) [MW]

Stage 3:
FO{:min Costs:1.221xr{ + 1.031Xr; + 1.092 X713 [10° USS]
FO,:min C0,:0.273Xry + 12.171Xr, + 0.287Xr3 [10° Ton]
S.t.
Demand/coupling: r +mr+1r; = x¢; vVt MW]

Operating: 0.200xr; + 0.368Xr, + 0.210Xr; > 0.227X(ry + 15, +13) [MW]

Stage 4:
FO{:min Costs:1.226Xr{ + 1.016Xr, + 1.092 X713 [10° USS]
FO;:min €C0,:0.351%x1r{ + 10.684 X1, + 0.287X713 [10% Ton]
S.t.
Demand/coupling: r +mr+1r;3 = x¢; vVt [MW]

Operating: 0.257xr; + 0.323Xr, + 0.210Xr3 = 0.267X(ry + 15, +13) [MW]

C.2 Climate Scenario HADC

Stage 1:
FO{:min Costs:1.238xr{ + 0.974Xr, + 1.092 X713 [10° USS]
FO;:min C05:0.497xr{ + 7.930%Xr, + 0.287Xr3 [10° Ton]
S.t.
Demand/coupling: r +1r,+13 = x¢; vVt [MW]

Operating: 0.363Xxr; + 0.240x1r, + 0.210Xr; = 0.342X (1 + 15 + 13) [MW]

Stage 2:

FO{:min Costs:1.231xr{ + 0.998Xxr, + 1.092 X713 [10° USS]

(C-6)

(C-7)

(C-8)

(C-9)

(C-10)

(c-11)

(c-12)

(C-13)

(C-14)

(C-15)

(C-16)

(C-17)

(C-18)

(c-19)

(c-20)

(C-21)
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FO,:min C0,:0.389xr; + 9.913xr, + 0.287X13 [10° Ton]

S.t.
Demand/coupling: r+r,+1r3 = x;; Vit [MW]

Operating: 0.285xr; + 0.300x1r, + 0.210Xr3 > 0.287%X(ry + 1, +13) [MW]

Stage 3:
FO{:min Costs:1.227Xr; + 1.012Xr, + 1.092 X713 [10° USS]
FO,:min C0,:0.353xr; + 10.684xr, + 0.287Xr;3 [10% Ton]
S.t.
Demand/coupling: r +mr+1r; = x¢; vVt MW]

Operating: 0.258xr; + 0.323Xr, + 0.210Xxr3 > 0.268%X(r; + 15, +13) [MW]

Stage 4:
FO{:min Costs:1.232Xr{ + 0.995Xr, + 1.092 X713 [10° USS]
FOZ: min 602: 0. 4'30)(1'1 + 9. 197XT2 + 0. 287)(1"3 [10° Ton]
S.t.
Demand/coupling: r +mr+1r;3 = x¢; vVt [MW]

Operating: 0.315xr; + 0.278Xr, + 0.210Xxr; = 0.308%X(ry + 1, +13) [MW]

C.3 Climate Scenario MPEH

Stage 1:
FO{:min Costs:1.238%xr{ + 0.974Xr, + 1.092 X713 [10° USS]
FO,:min C05:0.497x7r; + 7.930x71, + 0.287X7;3 [10% Ton]
s.t.
Demand/coupling: r+r,+1r3 = x;; vVt [MW]

Operating: 0.363Xxr; + 0.240x1r, + 0.210Xr; = 0.342X(1y + 15 + 13) [MW]

Stage 2:
FO{:min Costs:1.233Xr{ + 0.992Xr, + 1.092 X713 [10° USS]
FO,:min C0,:0.417Xrqy + 9.472Xr; + 0.287X13 [10% Ton]

(C-22)

(c-23)

(C-24)

(C-25)

(C-26)

(c-27)

(c-28)

(C-29)

(C-30)

(c-31)

(C-32)

(C-33)

(C-34)

(C-35)

(C-36)

(C-37)

(C-38)
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S.t.

Demand/coupling: r +r,+13 = x4 vVt [MW] (c-39)

Operating: 0.305Xxr; + 0.287Xr, + 0.210Xxr; = 0.301X(ry + 15, +13) [MW] (c-40)
Stage 3:

FO{:min Costs:1.228xr, + 1.008Xxr, + 1.092 X713 [10° USS] (C-41)

FO,:min C05:0.364x1; + 10.464x1, + 0.287x13 [10° Ton] (C-42)
s.t.

Demand/coupling: r+r+1r3 = x;; vVt [MW] (c-43)

Operating: 0.267xr; + 0.317Xr, + 0.210Xr; = 0.274X(ry + 15, +13) [MW] (C-44)
Stage 4:

FO{:min Costs:1.232Xr{ + 0.995Xr, + 1.092 X713 [10° USS] (C-45)

FO,:min C0,:0.430xr; + 9.197Xr; + 0.287xr3 [10° Ton] (C-46)
S.t.

Demand/coupling: r +r,+1r3 = x;; vVt [MW] (c-47)

Operating: 0.315Xr; + 0.278xr, + 0.210Xr; > 0.308%(r; + 1, +13) [MW] (C-48)

C.4 Climate Scenario MRCG

Stage 1.
FO{:min Costs:1.238%xr{ + 0.974Xr, + 1.092 X713 [10° USS] (C-49)
FOZ: min COZI 0. 4-97)(1"1 + 7. 930XT2 + 0. 287)(1"3 [103 Ton] (C-50)
S.t.
Demand/coupling: r +r,+13 = x4 vVt [(MW] (c-51)
Operating: 0.363Xxr; + 0.240Xr, + 0.210Xr3 = 0.342X(ry + 15, + 13) [MW] (c-52)
Stage 2:
FO{:min Costs:1.231Xr{ + 0.998Xxr, + 1.092 X713 [10°USS]  (C-53)
FO,:min C0,:0.389xr; + 9.913Xr; +0.287xr3 [10°Ton]  (C-54)
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S.t.
Demand/coupling: r +mr+1r; = x¢; vt MW]

Operating: 0.285xr; + 0.300Xr, + 0.210Xr3 > 0.287%X(r; + 15, +13) [MW]

Stage 3:
FO{:min Costs:1.225Xry + 1.017Xr, + 1.092 X715 [10° USS]
FO5,:min C0,:0.326x1r{ + 11.180xr, + 0.287xr3 [10° Ton]
s.t.
Demand/coupling: r +mr+1r;3 = x¢; vVt IMW]

Operating: 0.238xr; + 0.338Xr, + 0.210Xxr3 > 0.254%X(ry + 15, +13) [MW]

Stage 4:
FO{:min Costs:1.230xr; + 1.001Xr, + 1.092 X713 [10° USS]
FO;:min C05:0.403X1r{ + 9.638X1r; + 0.287X1;3 [10% Ton]
S.t.
Demand/coupling: r +mr+1r;3 = x¢; Vit [MW]

Operating: 0.295Xr; + 0.292xr, + 0.210Xr3 > 0.294X(ry + 1, +13) [MW]

C.5 Climate Scenario NCCC

Stage 1:
FO{:min Costs:1.238Xr; + 0.974X1r, + 1.092X13 [10° USS]
FOZ: min COZI 0. 4-97)(1"1 + 7. 930XT2 + 0. 287)(1"3 [103 Ton]
S.t.
Demand/coupling: r +r,+13 = x4 vVt [MW]

Operating: 0.363Xxr; + 0.240Xr, + 0.210Xr3 = 0.342X(ry + 15, + 13) [MW]

Stage 2:
FO{:min Costs:1.231Xr{ + 0.998Xxr, + 1.092 X713 [10° USS]
FO,:min C0,:0.389%xry + 9.913Xr, +0.287X713 [10% Ton]

(C-55)

(c-56)

(C-57)

(C-58)

(C-59)

(C-60)

(C-61)

(C-62)

(C-63)

(C-64)

(C-65)

(C-66)

(C-67)

(C-68)

(C-69)

(C-70)
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S.t.
Demand/coupling: r +mr+1r; = x¢; vt MW]

Operating: 0.285xr; + 0.300Xr, + 0.210Xr3 > 0.287%X(r; + 15, +13) [MW]

Stage 3:
FO{:min Costs:1.228xr, + 1.011Xr, + 1.092 X713 [10° USS]
F0,:min C0,:0.353%xr; + 10.739xr; + 0.287Xxr3 [10° Ton]
s.t.
Demand/coupling: r +mr+1r;3 = x¢; vVt IMW]

Operating: 0.258xr; + 0.325Xr, + 0.210Xr3 > 0.269%X(r; + 15, +13) [MW]

Stage 4:
FO{:min Costs:1.230xr; + 1.001Xr, + 1.092 X713 [10° USS]
FO;:min C05:0.403X1r{ + 9.638X1r; + 0.287X1;3 [10% Ton]
S.t.
Demand/coupling: r +mr+1r;3 = x¢; Vit [MW]

Operating: 0.295Xr; + 0.292xr, + 0.210Xr3 > 0.294X(ry + 1, +13) [MW]

(c-71)

(c-72)

(C-73)

(C-74)

(c-75)

(c-76)

(C-77)

(C-78)

(C-79)

(c-80)
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4 CONCLUSOES

O planejamento da expansdo da capacidade de geracdo dos sistemas elétricos, que visa
garantir as futuras demandas de energia elétrica com custos minimos e baixas emissdes de COs,
aplica politicas energéticas que, por sua natureza, vdo mudar ao longo do tempo (por diferentes

razdes), num contexto de condigdes climaticas andmalas, geradas pela mudanca climatica.

Confrontado com este problema, a seguinte questdo motivou o desenvolvimento desta tese:
E possivel identificar e quantificar, na base do conhecimento, das condic@es iniciais de
planejamento e das influéncias das mudancas climéticas, os impactos de mudancas nas
politicas energéticas otimizadas nos objetivos iniciais do plano de expansao de capacidade

de geracao?

Para aprofundar o entendimento a respeito do problema apresentado, foi desenvolvida uma
nova abordagem na optimizacdo da expansdo da capacidade para considerar as incertezas da
politica energética e as condigBes climéaticas simultaneamente. A abordagem baseia-se no
principio da otimizacdo de Bellman e analise de cenarios. A programacdo dinamica e a
programacao linear multi-objetivo tém sido utilizadas para gerar cenarios de politica energética
e seus trade-offs. O fator de capacidade de utilizacdo foi definido para incluir os efeitos da
mudanca climatica nas condi¢des operacionais. Técnicas para medir o desempenho de
algoritmos genéticos multi-objetivo tém sido utilizadas para identificar politicas energéticas
robustas. As incertezas foram incluidas através de formulacdo de cenérios, onde as fontes de

incerteza politicas energéticas e mudanca climatica, configuram diferentes possiveis cenarios.

A abordagem foi demonstrada através de um caso de expansao da capacidade de geracdo
do Sistema de Energia do Sul do Brasil, utilizando trés diferentes fontes de energia disponiveis
para seis diferentes cenarios de condigcdes climaticas. Para cada cenario climatico foram
avaliados 14.641 cenarios de politica energética, considerando diferentes combinagdes de
mudancas na politica energética. Uma versao inicial da abordagem sem considerar os efeitos
das mudancas climaticas foi demostrada a través de um caso hipotético para um namero similar

de cenérios de mudanca na politica energética.
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Com base nos resultados obtidos, os que foram apresentados nos capitulos 2 e 3, chega-se

as seguintes conclusoes:

1. Existe uma frente de Pareto perfeitamente identificavel para cada conjunto de solugdes
e para cada cenario climatico. O conjunto de solugbes estd conformado pelos
resultados, em termos de custos e emissdes de CO: totais, gerados ao final do periodo
de analise, da aplicacdo dos diferentes cenarios de mudancas das politicas energéticas
na expansdo da capacidade. As solucdes que conformam a frente de Pareto séo as
solugdes ndo dominadas e as que ndo o conformam séo as solucGes dominadas. Este
fato, implica que:

a. Primeiro, que € possivel identificar os impactos das mudancas nas politicas
através dos diferentes resultados obtidos por cada cenario de mudanca da
politica (custos e emissbes CO2);

b. Segundo, que é possivel classificar as mudangas nas politicas, neste caso em
duas: dominadas e ndo dominadas. Considera-se as que conformam a frente de
Pareto como as melhores mudancas.

Os resultados que sustentam esta concluséo sdo apresentados nas figuras 5 e 6 do
segundo capitulo e nas figuras 7 e 8 do terceiro capitulo. Nestas figuras, fica evidente

uma frente de Pareto.

2. O desempenho da politica energética e sensivel ao cenério climéatico onde é aplicado,
podendo passar de ser uma solucdo nao dominada (Frente de Pareto) num cenario
climatico, a ser uma solucdo dominada em outro cenario climatico.

Dos resultados apresentados na figura 8 do terceiro capitulo, evidencia-se que a politica
B deixa de ser uma solucéo ndo dominada, no cenario climatico ETA40-CTL, parauma

solucdo dominada, no cenario climatico MRCG.

3. As condicdes climéticas tém influéncia na incerteza sobre custos e emissdes de COs.
Os cenarios climaticos com maior disponibilidade de agua apresentam incertezas mais
baixas nos trade-off de custos — emissdes de CO>, enquanto que as condigdes mais secas
do cenario geram uma maior incerteza nos trade-off custos — CO2 sendo o maior
impacto em termos de emissdes de COx.

Nos resultados apresentados na Tabela 6 do terceiro capitulo, fica evidente que, para o
cendrio climatico com melhor disponibilidade hidrica (no caso cenario MPEH), as

diferencas dos valores maximo e minimo, tanto em termos de custos, como de emissdes
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de CO», séo os mais baixos. Isto implica uma incerteza menor. No caso que se refere,
para as emissdes de CO; as diferengas encontradas sdo maiores se comparadas aos
custos.

Nos resultados apresentados na Tabela 7 do terceiro capitulo, destaca-se que: 0s
resultados dos custos obtidos para o cenario de mudanga da politica energética: “1-2-
5-8” variam, no maximo 10% em relacdo ao maximo valor, e em 55% para o caso das

emissodes de CO-.

4. Os cenarios de politica energética caracterizados por mudancas ascendentes (de uma
politica de baixo custo para uma politica energética mais ecologica) sdo mais
susceptiveis a constituir uma solugdo robusta em termos de custos e emissdes de CO..
Na Tabela 8 do terceiro capitulo, foram analisadas as diferentes configuraces das
politicas energéticas (cenarios, forma como elas podem mudar), identificando-se as
robustas, i.e., aquelas que tem um bom desempenho para quaisquer dos cenarios
climéticos avaliados. Das andlises, foi possivel identificar, para cada configuragéo,
quantas politicas resultam em robustas. Assim as configuragdes com mudancas

ascendentes apresentam mais politicas robustas do que nao robustas.

Finalmente, os resultados confirmam a hipo6teses formulada, ao respeito das politicas
energéticas: “A configuracdo das mudancas nas politicas energéticas pode levar a resultados
bem diferentes, sendo importante poder identificar também a melhor forma de se executar estas

mudancas na expansao de capacidade, de modo a se alcangar o objetivo final”.
Efetivamente, os diferentes cenarios de mudanca das politicas energéticas (14,641), ou

seja, a configuracdo das politicas energéticas, conduziram a diferentes resultados. Estes mesmos

resultados modificam-se segundo o cenario climatico considerado.
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5 RECOMENDACOES

Os objetivos propostos neste trabalho foram atingidos, a metodologia apresentada é

promissora para analise das incertezas politicas e climéticas descritas. No entanto, algumas

recomendacdes devem ser consideradas a respeito dos resultados obtidos neste trabalho:

1) As condicbes de operagdo do sistema elétrico foram “simplificadas” através da

2)

3)

introdugdo do conceito de “fator de capacidade de utilizacdo”. Assim, para
conseguir uma melhor representatividade das condi¢fes de operacdo dos sistemas
elétricos a modelar recomenda-se melhorar o sistema de coleta de dados, para
incrementar a extensao das informagdes (maior quantidade de dados) de capacidade
instalada e de energia gerada, por tipo de fonte a ser modelada. Alternativamente,
fazer uma interface com outro modelo de operacdo do sistema ja comprovado, 0
que poderia demandar mais tempo para o processamento da informacéo e para as

simulagdes;

Recomenda-se explorar a potencialidade das aplicacdes da metodologia
desenvolvida no presente trabalho, ndo s6 para uso como ferramenta para tomada
de decisdo ou para desenho de politicas, mas também para sua aplicabilidade em

outras areas, como gestao de sistemas de recursos hidricos;

Os cenérios climaticos empregados no presente trabalho foram utilizados pela
facilidade de se acessar esta informacéo, de modo que, no caso de ndo se contar
com este tipo de informacdo, deve-se considerar o processo de modelagem

climética, ajuste e naturalizacéo das vazdes a serem empregadas.

Trabalhos futuros com aplicacdo desta metodologia poderiam também considerar: as

demandas concorrentes pelo recurso hidrico assim como a variagdo nos custos do investimento

para cada estagio.

Finalmente, recomenda-se explorar as vantagens da utilizacdo da combinacdo da

Programacdo Dindmica com a Programacdo Linear Multi-objetivo como técnica para enfrentar

0 problema da dimensionalidade da Programagé&o Dinamica.
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