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ABSTRACT

Low-frequency noise (LFN) is a performance limiter for analog, digital and RF circuits,

introducing phase noise in oscillators and reducing the stability of SRAM cells, for exam-

ple. Metal-oxide-semiconductor field-effect-transistors (MOSFETs) are known for their

particularly high 1/ f and random telegraph noise levels, whose power may be orders

of magnitude larger than thermal noise for frequencies up to dozens of kHz. With the

technology scaling, the corner frequency — i.e. the frequency at which the contributions

of thermal and shot noises to noise power overshadow that of the 1/ f noise — is in-

creased, making 1/ f and random telegraph signal (RTS) the dominant noise mechanism

in CMOS technologies for frequencies up to several MHz. Additionally, the LFN lev-

els from device-to-device can vary several orders of magnitude in deeply-scaled devices,

making LFN variability a major concern in advanced MOS technologies. Therefore, to

assure proper circuit design in this scenario, it is necessary to identify the fundamental

mechanisms responsible for MOSFET LFN, in order to provide accurate LFN models that

account not only for the average noise power, but also for its variability and dependences

on geometry, bias and temperature. In this work, a new variability-based LFN analysis

technique is introduced, employing the autocorrelation of multiple LFN spectra in terms

of parameters such as frequency, bias and temperature. This technique reveals information

about the mechanisms responsible for the 1/ f noise that is difficult to obtain otherwise.

The correlation analyses performed on three different commercial mixed-signal CMOS

technologies (140-nm, 65-nm and 40-nm) provide strong evidence that the LFN of both

n- and p-type MOS transistors is primarily composed of the superposition of thermally

activated random telegraph signals (RTS).

Keywords: 1/f noise. CMOS. low-frequency noise. MOSFET. Random Telegraph Noise.





Análise de autocorrelação no domínio frequência como ferramenta para a

caracterização do ruído de baixa frequência em MOSFETs

RESUMO

O ruído de baixa frequência é um limitador de desempenho em circuitos analógicos,

digitais e de radiofrequência, introduzindo ruído de fase em osciladores e reduzindo a

estabilidade de células SRAM, por exemplo. Transistores de efeito de campo de metal-

óxido-semicondutor (MOSFETs) são conhecidos pelos elevados níveis de ruído 1/ f e

telegráfico, cuja potência pode ser ordens de magnitude maior do que a observada para

ruído térmico para frequências de até dezenas de kHz. Além disso, com o avanço da tec-

nologia, a frequência de corner — isto é, a frequência na qual as contribuições dos ruídos

térmico e shot superam a contribuição do ruído 1/ f — aumenta, tornando os ruídos 1/ f

e telegráfico os mecanismos dominantes de ruído na tecnologia CMOS para frequências

de até centenas de MHz. Mais ainda, o ruído de baixa frequência em transistores na-

nométricos pode variar significativamente de dispositivo para dispositivo, o que torna a

variabilidade de ruído um aspecto importante para tecnologias MOS modernas. Para as-

segurar o projeto adequado de circuitos do ponto de vista de ruído, é necessário, portanto,

identificar os mecanismos fundamentais responsáveis pelo ruído de baixa frequência em

MOSFETs e desenvolver modelos capazes de considerar as dependências do ruído com

geometria, polarização e temperatura. Neste trabalho é proposta uma técnica para análise

de ruído de baixa frequência baseada na autocorrelação dos espectros de ruído em função

de parâmetros como frequência, polarização e temperatura. A metodologia apresentada

revela informações importantes sobre os mecanismos responsáveis pelo ruído 1/ f que

são difíceis de obter de outras formas. As análises de correlação realizadas em três tecno-

logias CMOS comerciais (140 nm, 65 nm e 45 nm) fornecem evidências contundentes de

que o ruído de baixa frequência em transistores MOS tipo-n e tipo-p é composto por um

somatório de sinais telegráficos termicamente ativados.

Palavras-chave: CMOS, MOSFET, Ruído 1/f, Ruído de Baixa Frequência, Ruído Tele-

gráfico.





LIST OF ABBREVIATIONS AND ACRONYMS

ACF Autocorrelation Function

ACM Advanced Compact MOSFET model

BSIM Berkeley Short-Channel IGFET model

BTI Bias Temperature Instability

CDF Cumulative Distribution Function

CMOS Complementary Metal-Oxide-Semiconductor

DUT Device Under Test

EKV Enz-Krummenacher-Vittoz MOSFET model

FinFET Fin Field-Effect Transistor

GR Generation-Recombination

HEMT High-Electron-Mobility Transistor

IGFET Insulated-Gate Field-Effect Transistor

LDD Light Doped Drain

LFN Low-Frequency Noise

MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor

NFET n-type Metal-Oxide-Semiconductor Field-Effect Transistor

PFET p-type Metal-Oxide-Semiconductor Field-Effect Transistor

PSD Power Spectral Density

PSP Penn-State Phillips MOSFET model

RTN Random Telegraph Noise

RTS Random Telegraph Signal

SNR Signal-to-Noise Ratio

SRAM Static Random Access Memory

WKB Wentzel-Kramers-Brillouin approximation





LIST OF SYMBOLS

Cox Gate oxide capacitance per unit area

E Energy

EB Activation Energy

Ec Conduction band energy level

E f Fermi Energy

EFn Electron quasi Fermi energy

Ei Intrinsic Fermi energy

Eox Electric field across the oxide

Esat Electric field at which carrier velocity saturates

ET Trap energy level

ET 0 Trap energy in flat band conditions

Ev Valence band energy level

Ex Electric field along the x-axis

f Frequency in Hz

fH Upper limit of the bandwidth

fL Lower limit of the bandwidth

fmax Upper limit of the observation window

fmin Lower limit of the observation window

fre f Reference frequency for autocorrelation analysis

frollo f f Measurement system roll-off frequency

ft Fermi-Dirac distribution

gds Drain-to-source transconductance

gm Gate-to-source transconductance

gmbs Substrate-to-source transconductance



k Boltzmann constant in eV·K−1

kB Boltzmann constant in J·K−1

K Normalized variance

h Planck constant in J·s

I Electric current

ID Drain current

I0 Dark saturation current

L Transistor Length

Le f f Effective channel length

N Surface carrier concentration

Total number of traps in a device

Nl Estimated surface carrier concentration at the drain side

Nt Surface trap density of occupied traps

Ntr Surface trap density in area and energy

N∗tr Equivalent trap density in area and energy incorporating mobility fluctuations

Ntr/γ ′ Surface trap density in energy, area, and log-domain of time constants

Nt,empty Average number of empty traps

Nt, f ull Average number of occupied

N0 Estimated surface carrier concentration at the source side

q Elementary charge

Qinv Inversion layer charge

R Resistance

Coupling coefficient between carrier number fluctuation and trap occupancy

RDS Drain-to-source resistance

RX Autocorrelation function of X(t)

SID Power spectral density of the drain current noise



SID,inv 1/ f Noise power spectral density estimated in strong inversion

SID,subVt 1/ f Noise power spectral density estimated in subthreshold region

SN Power spectral density of the fluctuations in the charge carriers concentration

SVG Gate referred noise power spectral density

SX Power spectral density of X(t)

T Temperature

Tox Gate oxide thickness

Tre f Reference Temperature for autocorrelation analysis

VD Potential applied across a semiconductor junction

VDS Drain-to-source voltage

VDSsat Saturation drain-to-source voltage

Vdse f f Effective drain-to-source voltage

VFB Flat band voltage

VGS Gate-to-substrate voltage

VGS Gate-to-source voltage

Vgste f f Effective gate-to-source voltage

VGS,re f Reference gate voltage for autocorrelation analysis

VT Estimated threshold voltage of a device population

Vth0 Threshold voltage of the long-channel device at zero substrate bias

W Transistor Width

Wp Noise power integrated over a bandwidth

x0 Location parameter of the Cauchy-Lorentz distribution

xtr Trap position along the channel

Xtr Uniformly distributed trap position along the channel

ztr Trap depth within the oxide

α Scattering coefficient



αH Hooge parameter

γ Wave function attenuation factor

γ ′ Log-uniform distribution parameter

∆ f Difference between f1 and f2

∆ f ′ Ratio between f1 and f2

∆I Difference between high and low current states

∆ID Drain current difference between occupied and empty trap states
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1 INTRODUCTION

The word noise is used to describe a plethora of phenomena that are (usually) un-

wanted. Commonly, noise refers to acoustic noise, which is characterized by disturbing,

often loud, sounds, caused by e.g. traffic, aircraft, machines and bad musicians. Physi-

cally, noise and sound are indistinguishable; both are propagating mechanical waves of

pressure. There is, therefore, an innate subjectivity in acoustic noise, i.e. what is agreeable

and what is not to human hearing. The 1980 track by Australian band AC/DC, entitled

Rock and Roll ain’t noise pollution, plays on this idea by implying that their music, though

loud and disturbing to some, is not noise.

Even though acoustic noise is certainly the most recognizable form of noise, sev-

eral other fields — such as electronics, physics, biology and economy — are familiarized

with the concept. And while the word noise usually carries the stigma of unwantedness,

it is certainly not always the case: in computer graphics, for example, gradient and value

noises (e.g. Perlin Noise) are widely employed for procedural generation of textures; in

physics, Albert Einstein demonstrated in one of his works during the Annus Mirabilis of

1905 that the Avogadro number could be derived from a stochastic quantity (Brownian

motion) (COHEN, 2005).

In electronics, however, noise is understood as undesirable fluctuations in mea-

surable quantities, such as current and voltage. These fluctuations carry no meaningful

information, and may obscure a signal. Using the acoustic analogy, imagine trying to

convey a message to a friend on the other side of a bar. If the bar is empty and silent, it is

easy to convey the message as the speech is easily audible. On the other hand, if the bar

is crowded and loud, transmitting the information becomes difficult, meaning the trans-

mitter may need to shout. In electronics the same is valid: transmitting a signal through a

noisy medium requires a larger signal, i.e. more signal power.

Interestingly, the randomness and unpredictability are fundamental properties of

both information and noise (HAYKIN; MOHER, 2007). If one could predict information,

there would be no need to communicate it, as the receiver would be able to foresee it.

Similarly, were the receiver able to predict noise, then the receiver would be able to re-

move the noise, negating its effects. The goal is, thus, to separate noise from information

to the maximum extent possible (HAYKIN; MOHER, 2007).

Regarding its origins, noise in electronics can rise from external and internal

sources. External sources cause deterministic disturbances due to electromagnetic and
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electrostatic effects. One common example of this kind of noise is the crosstalk between

telephone lines; the coupling between the lines causes the signal from one line to disturb

another. This disturbance is not truly random, but may obscure the information on the line

nonetheless. Internal sources, on the other hand, are stochastic processes, i.e. the value of

the disturbance is random at any given time. The most fundamental example of internal

noise source in electronics is the thermal noise (also known as Johnson or Nyquist noise),

caused by the random-walk of electrons due to thermal agitation. Chapter 3 of this work

provides a deeper discussion on the fundamental noise sources in electronics.

Due to its stochastic (i.e. random) nature, it is convenient to describe noise from

internal sources using statistical quantities. While observing the probability density func-

tion and the autocorrelation function of noise signals are possible methods, the primary

metric for noise analysis used in this work is the power spectral density (PSD), which

provides the amount of noise power per unit frequency. It is possible to categorize noise

based on its PSD behaviour; this classification is referred to as colours of noise. Typi-

cally, noise can be white, pink, blue, brown and violet. Noise sources that have a constant

power over a bandwidth (that is, the power is independent of the frequency) are called

white; those whose power decreases with 1/ f and 1/ f 2 factors over the bandwidth are

called pink and brown, respectively; those whose power increases with f and f 2 factors

over the bandwidth are called blue and violet, respectively. This work focus mainly on

pink noise, also known as 1/ f noise or flicker noise.

Fluctuations with a 1/ f power spectrum have been reported from voltages and

currents in diodes and vacuum tubes; to frequency of quartz oscillators; average seasonal

temperature; annual amount of rainfall; rate of traffic flow; rate of insulin take by diabet-

ics; economic data; loudness and pitch of music; flow of the river Nile; and luminosity

of stars (KESHNER, 1982; BAK; TANG; WIESENFELD, 1987). The observation of

1/ f noise in a multitude of systems has led Bak, Tang and Wiesenfeld (1987) to pro-

pose a model for ubiquitous 1/ f noise based on self-organized criticality, though Jensen,

Christensen and Fogedby (1989) claimed that such model produces a 1/ f 2 spectrum.

Due to the 1/ f decay of pink noise, lower frequencies contribute more signifi-

cantly to noise power than higher frequencies. Thus, 1/ f noise is one of the major com-

ponents of low-frequency noise (LFN) in integrated circuits. Other important components

of LFN are the random telegraph signal (RTS) and generation-recombination noise. These

components will be further discussed in Chapters 3 and 4.

From a designers perspective, low-frequency noise is a performance limiter for
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analog, digital and RF circuits. Providing accurate LFN models that account not only for

the average noise power but also for variability and its dependences on geometry, bias and

temperature is therefore imperative for proper circuit design.

Historically, two main schools of thought have emerged to explain the 1/ f be-

haviour of the LFN power-spectral density in metal-oxide-semiconductor field-effect tran-

sistors (MOSFETs). The first assumes the origin of the LFN is related to the capture and

emission of charge carriers by defects (traps) (MCWHORTER, 1957), and it is commonly

referred to as number fluctuation theory. The second attributes the LFN to bulk mobility

fluctuations (HOOGE, 1969), being referred to as mobility fluctuation theory.

While trapping/de-trapping has emerged as the prevalent model in recent years,

the trapping mechanism itself is not thoroughly understood. While studies on random

telegraph signals and 1/ f noise (SURYA; HSIANG, 1988; KIRTON; UREN, 1989) sug-

gest a thermally activated process, direct tunnelling (MCWHORTER, 1957), which is

essentially temperature independent, is still the basis of the LFN in compact models, such

as BSIM and PSP (HUNG et al., 1990b; HUNG et al., 1990c).

In this work, a novel technique, based on the analysis of the autocorrelation of

numerous LFN power-spectra density measurements, is introduced. The analyses reveal

the statistical relationship between the LFN levels at a given frequency and temperature

compared to their levels under different conditions. It is shown that the correlation co-

efficient is extremely sensitive to the physical mechanisms assumed for interpreting and

modelling the LFN PSD. Consequently, it proves possible to draw valuable conclusions

about the frequency dependence of the fundamental noise sources causing the 1/ f noise,

as well as the origin of the trapping mechanism (tunnelling/thermal activation).

The analyses presented in this work were performed on measured LFN data from

n- and p-type MOS transistors in 140-nm, 65-nm and 40-nm mixed-signal CMOS tech-

nologies. The results provide strong evidence for a unified description of N- and PFET

LFN in terms of thermally activated random telegraph signals, providing a statistical ap-

proach to the classical work of Dutta and Horn (1981).

This work is organized as follows: the introductory chapters 2 and 3 provide a

mathematical background for noise analysis, and a brief discussion on the fundamental

noise sources in electronics, respectively. An in-depth review of MOSFET LFN mod-

elling is presented in chapter 4, followed by a discussion on the temperature dependence

of MOSFET LFN in chapter 5. In chapter 6, the noise measurement set-up as well as im-

portant noise quantities (such as expected value and variance) from commercial mixed-
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signal CMOS technologies are displayed. The autocorrelation technique proposed for

LFN analysis is discussed in chapter 7 and applied for several case studies. The closing

remarks of this work are presented in chapter 8.
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2 MATHEMATICAL REPRESENTATION OF NOISE

The study of noise in electronics consists in the analysis of random, unwanted,

electric signals in devices, circuits and systems, aiming at providing an useful descrip-

tion of these processes for circuit designers. However, due to the stochastic nature of

most noise processes (e.g. thermal noise), detailed knowledge about the time variation

of a random signal is unavailable, meaning that it is not possible to predict exactly what

waveform will be observed in the future.

For this reason, to deal with noise one must speak in terms of probabilities and

statistical properties in order to convey a useful description of the process. The purpose of

this chapter is to provide a brief introduction on the mathematical description of noise, in

particular the definition of the power spectral density, which is the primary noise quantity

analysed in this work.

The discussion in this chapter will consider only real-valued random processes.

2.1 Random Processes

A random process or stochastic process, X(t), is a time-varying function which,

due to randomness, can have many outcomes. Each outcome is a time function known as

sample function, x(t). The collection of all possible outcomes of an experiment is called

the sample space or ensemble (CARLSON; CRILLY, 2010; LATHI; DING, 2009).

When the statistical characteristics of the random process are independent of time,

the process is described as being stationary. It is said to be strictly stationary if the joint

distribution of any set of random variables obtained by observing the random process X(t)

is independent of the location of the origin t = 0 (HAYKIN; MOHER, 2007), and wide-

sense stationary if the average is independent of time and the autocorrelation function,

RX(t, t + s), depends only on the time difference s (CARLSON; CRILLY, 2010), that is

E [X(t)] = constant (2.1)

and

RX(t, t + s) = R(s) , (2.2)

where E is the expected value operator.
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2.2 Autocorrelation Function of a Random Process

Even though random processes are unpredictable by definition, similarities be-

tween samples of the process at different times may be observed, meaning they are corre-

lated (HAYKIN; MOHER, 2007). The autocorrelation function (ACF) is the mathemati-

cal description of the similarity between observations of a random process with a certain

lag in time. In other words, it describes the rapidity of the amplitude change of a signal

in time (LATHI; DING, 2009).

For a generic wide-sense stationary random process, X(t), the autocorrelation

function between times t and s, RX(t, t + s), is given by

RX = E [X(t) ·X(t + s)] . (2.3)

If the ensemble average of the random process X(t), E [X(t)] is equal to the time

average of any sample function, 〈x(t)〉; and the autocorrelation function of the process,

RX(t, t + s), is equal to the time autocorrelation function of any sample function, so that

E[X(t)] = 〈x(t)〉 , (2.4)

E [X(t) ·X(t + s)] = 〈x(t)·x(t + s)〉 , (2.5)

the process is defined as ergodic.

For an ergodic wide-sense stationary random process

RX(s) = lim
T→∞

1
2T

T∫
−T

x(t)·x(t + s)dt . (2.6)

It is worth noting that the ACF of a wide-sense stationary random process is max-

imum at the origins, i.e. RX(0) ≥ |RX(s)|, and that its value at the origin is equal to the

mean-square value of the random process, i.e. RX(0) = E
[
X(t)2] (HAYKIN; MOHER,

2007).
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2.3 Power Spectral Density

The power spectral density describes the amount of power per unit frequency (Hz)

of a given signal or random process. In order to determine the PSD of a random process

from the sample function x(t), it is necessary to define its Fourier transform. However,

since power signals have infinite energy, the sample function may not be Fourier trans-

formable (HAYKIN; MOHER, 2007). To overcome this limitation, the following steps

are taken: consider the finite-duration (truncated) version of the sample function of an

ergodic stationary process, given by

xT (t) =

x(t), if |t|< T/2

0, if |t|> T/2 .
(2.7)

As long as T is finite, the truncated sample function, xT (t) has finite energy, which

enables the determination of its Fourier transform XT ( f ). The energy spectral density of

xT (t) is given by |XT ( f )|2 and the average power, PX , from Rayleigh’s energy theorem

(Parseval’s Theorem), in the form of

T/2∫
−T/2

x2(t)dt =
∞∫
−∞

xT (t)dt =
∞∫
−∞

|XT ( f )|2d f , (2.8)

is given by

PX = lim
T→∞

1
T

∞∫
−∞

E
[
xT (t)2]dt = lim

T→∞

1
T

∞∫
−∞

E
[
|XT ( f )|2

]
d f . (2.9)

Notice that, as T increases, the energy in xT (t) also increases. Correspondingly,

|XT ( f )|2 increases with T and, as T → ∞, so will |XT ( f )|2 → ∞. However, since that

average power has to be finite, |XT ( f )|2 must approach infinity at the same rate as T . This

convergence allows the interchange between the limiting operation and the integration

in the right-hand side of (2.9) (CARLSON; CRILLY, 2010; HAYKIN; MOHER, 2007;

LATHI; DING, 2009), that is

PX = lim
T→∞

∞∫
−∞

1
T

E
[
|XT ( f )|2

]
d f =

∞∫
−∞

lim
T→∞

1
T

E
[
|XT ( f )|2

]
d f . (2.10)
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The power spectral density is then defined as

SX = lim
T→∞

1
T

E
[
|XT ( f )|2

]
, (2.11)

and, consequently,

PX =

∞∫
−∞

SX( f )d f . (2.12)

Following to the Wiener-Khinchine theorem (HAYKIN; MOHER, 2007; LATHI;

DING, 2009; CARLSON; CRILLY, 2010), the PSD of a random process, SX( f ), is related

to the autocorrelation function of the process, RX(τ), by the Fourier transform

SX( f ) =
∞∫
−∞

RX(s)·e− j2π f τds , (2.13)

RX(s) =
∞∫
−∞

SX( f )·e j2π f τd f . (2.14)

which may be simplified for even, real-valued, functions in the form of

SX( f ) =
∞∫
−∞

RX(s) · cos(2π f s)ds , (2.15)

RX(s) =
∞∫
−∞

SX( f ) · cos(2π f s)d f . (2.16)

Even though the PSD and the ACF contain, essentially, the same information about

the noise source, the former is more commonly used to describe its behaviour. The rea-

sons for that include the convenience of working in frequency-domain and the ease of

determining the power within a bandwidth, required for signal-to-noise ratio (SNR) esti-

mation.

2.3.1 Power Spectral Density Estimation

The problem of PSD estimation consists of obtaining, from a finite record of sta-

tionary data sequence, how the total power is distributed over frequency. There are two

broad approaches to spectral analysis: the first, called non-parametric, is based entirely
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on the definition of the PSD (2.11), which, for discrete-time data can be rewritten as

SX = lim
N→∞

1
N

E [X [k]]2 ; (2.17)

the second, postulates a model for the data, providing a means to parametrize the spec-

trum, thereby reducing the spectral estimation problem to that of estimating the parame-

ters in the assumed model.

The more common non-parametric estimators are the periodogram and the cor-

relogram. The periodogram relies on the definition (2.17), neglecting the expected value

and limit operations, such that

S̃X =
1
N

N

∑
n=1

x[n]·e− j2π f n, (2.18)

where x[n] and S̃X are the sampled signal, and the PSD estimate, respectively.

The correlogram, on the other hand, uses the definition (2.13), so that

S̃X =
N−1

∑
k=−(N−1)

R[k]·e− j2πk, (2.19)

where R[k] and S̃X are covariance lag obtained from the sampled function (equivalent to

the autocorrelation function), and the PSD estimate

Notice, however, that both the periodogram and the correlogram are poor esti-

mates of the PSD (STOICA; MOSES, 1997). To circumvent the natural limitations of the

periodogram, several periodogram-based methodologies have been proposed. Examples

include the Bartlett (1950) method — which consists of splitting the available sample of

N observations into L = N/M subsamples of M observations each, and then averaging the

periodograms obtained from the subsamples for each value of f —, and the Welch (1967)

method — which is similar to the Bartlett method, but the data segments are allowed to

overlap.
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3 FUNDAMENTAL NOISE SOURCES IN ELECTRONICS

In order to properly address and model noise in integrated circuits it is necessary

to identify the individual noise sources in electronic devices. Primarily, disturbances can

originate from external sources — due to electrostatic and electromagnetic interaction

— and from internal sources, i.e. random fluctuations in the physical mechanisms that

govern electron transport. In this chapter, and henceforth in this work, the term noise will

refer to the latter (internal sources).

The following sections provide a background on the fundamental noise sources

present in electronics, which are: thermal noise, shot noise, generation-recombination

noise (GR noise), random telegraph signal and 1/ f noise.

3.1 Thermal Noise

The thermal noise is a broadband white noise — i.e. it has a constant power spec-

tral density — that arises from the random motion of electron and is present in any pas-

sive resistor above absolute zero temperature, even without bias applied. Experimentally

reported by Johnson (1928) and theoretically explained by Nyquist (1928), the thermal

noise is also known as Johnson or Nyquist noise.

Each time an electron is scattered, its velocity is randomized; therefore, instantly,

there could be a number of electrons flowing in a given direction, resulting in a small

net current. Due to its random characteristic, this current fluctuates in amplitude and

direction, but its expected value is always zero (HAARTMAN; ÖSTLING, 2007). The

PSD of the thermal noise of a piece of material with resistance R and at a temperature T

can be written as

SI =
4kBT

R
, (3.1)

where kB is the Boltzmann constant in Joules per Kelvin.

Notice, from (3.1), that the thermal noise in an ideal resistor is white, i.e. its

intensity is constant throughout the frequency spectra. This approximation, however,

is only valid if kBT�h f (where h and f are the Planck constant in J·s and f in Hz,

respectively). At low temperatures and high frequencies, quantum effects become relevant
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and the more general expression

SI = 4 · h f

exp
(

h f
kBT

)
−1
· 1

R
, (3.2)

proposed by Nyquist (1928), must be used. Note that if kBT�h f , the quantum correction

factor reduces to kBT , resulting in equation (3.1).

For long-channel MOS transistors, the thermal noise can be estimated using

SID = 4kBT εgm (3.3)

where gm is the small-signal transconductance and at the bias point and ε is a bias depen-

dent parameter (ε = 1/2 for weak inversion and ε = 2/3 for strong inversion) (TEDJA;

SPIEGEL; WILLIAMS, 1994).

From a transistor modelling perspective, the BSIM4 equation model provides two

methods for channel thermal noise calculation: a charge-based model and an holistic

model, whose schematics are shown in figure 3.1.

Figure 3.1: Schematics for the BSIM4 channel thermal noise modelling for the a) charge-
based model and b) holistic model.

Source: BSIM4.6.0 MOSFET Manual (2006).

The charge-based model estimates the noise current using

i2d =
4kBT ∆ f

RDS(V )+
L2

e f f
µe f f |Qinv|

·NT NOI , (3.4)

where ∆ f is the system bandwidth, RDS(V ) is the bias-dependent light doped drain (LDD)

source-drain resistance, Le f f is the effective channel length, µe f f is the effective carrier

mobility, NT NOI is a fitting parameter for short-channel devices, and Qinv is the inversion

layer charge.

Conversely, the holistic model estimates the thermal noise incorporating short-

channel and velocity saturation effects, the thermal noise amplification through gate and

substrate transconductances (gm and gmbs, respectively), as well as the induced-gate noise
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with partial correlation to the channel thermal noise. The noise voltage partitioned to the

source is given by

v2
d = 4kBT θ

2
tnoi ·

Vdse f f ∆ f
Ids

(3.5)

whereas the noise current source in the channel region is given by

i2d = 4kBT ·
Vdse f f ∆ f

Ids
· [gds +βtnoi · (gm +gmbs)]

2− v2
d · (gm +gds +gmbs)

2 (3.6)

where

θtnoi = RNOIB ·

[
1+T NOIB ·Le f f ·

(
Vgste f f

EsatLe f f

)2
]

(3.7)

βtnoi = RNOIA ·

[
1+T NOIA ·Le f f ·

(
Vgste f f

EsatLe f f

)2
]

(3.8)

and Vdse f f is the effective voltage between drain and source; Ids is the drain current; gds

is the drain transconductance; Vgste f f is the the effective gate voltage subtracted of the

threshold voltage; Esat is the critical electric field at which the carrier velocity becomes

saturated; T NOIA and T NOIB are the channel-length dependence of the total channel

thermal noise and the channel thermal noise partitioning, respectively; and RNOIA and

RNOIB are model parameters (DUNGA et al., 2006).

From a designer’s perspective, thermal noise from resistive elements is unavoid-

able, but it is possible to minimize it through clever circuit design. Reactive elements,

for example, do not generate thermal noise. Therefore, input matching techniques using

reactive elements can be used to reduce thermal noise. Also, narrowing the system band-

width reduces the thermal noise power. Finally, noise cancelling techniques have also

been proposed to mitigate the thermal noise (BRUCCOLERI; KLUMPERINK; NAUTA,

2004).

3.2 Shot Noise

Due to the discrete nature of charge carriers (electrons), which have a quantized

charge equal to the elementary charge, the current flow through a potential barrier, like a

pn junction is not continuous; thus, shot noise current is generated when electrons flow

independently and at random through the barrier (HAARTMAN; ÖSTLING, 2007). Sim-

ply put, if one could "observe" the flow of carriers through a barrier for an ensemble of
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time intervals, the average number of carriers flowing in each interval would represent the

DC current whereas the deviation from this average for each time interval would represent

the shot noise current.

This effect was first described in the context of vacuum tubes by Schottky (1918).

Since the shot noise is related to the corpuscular nature of the current flow through a

potential barrier, a current is imperative for the existence of shot noise. The PSD of the

shot noise can be expressed as

SI = 2qI (3.9)

where I is the DC current across the barrier and q is the elementary electron charge. From

equation (3.9), the shot noise PSD is constant with frequency, resulting in a white noise

spectrum.

For an ideal pn junction, the current flowing through the potential barrier is given

by

I = I0

[
exp
(

qVD

kBT

)
−1
]

(3.10)

where I0 is the dark saturation current and VD is the potential applied across the junction.

From equation (3.10), when no bias is applied, the forward and backward components of

the current cancel each other, resulting in zero net current. The shot noise, however, is not

zero; the total shot noise is given by the contributions to the shot noise of the forward and

backward currents separately, as

SI = 2qI0·exp
(

qVD

kBT

)
+2qI0, (3.11)

hence, for VD = 0

SI = 4qI0. (3.12)

3.3 Generation-Recombination Noise

The generation-recombination (GR) noise in semiconductors originates from ran-

dom transitions of the charge carriers between electronic states, which causes the number

of free carriers available for current transport to fluctuate. These transitions occur not

only between the valence and conduction bands, but also between the bands and localized

states (bulk traps) within the semiconductor forbidden gap (SAH; NOYCE; SHOCKLEY,

1957).
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These energy states exist due to various defects, such as the presence of impurities

in the semiconductor and imperfections in its crystalline structure, and may be neutral or

charged in its empty state. From the work of Sah, Noyce and Shockley (1957), there are

four basic processes involved in the carrier generation and recombination. If an energy

state is occupied by a hole, it may either emit the hole to the valence band or capture

an electron from the conduction band to recombine with the hole; if it is occupied by an

electron, it may either emit the electron to the conduction band or capture a hole from the

valence band to recombine with the electron. These processes are illustrated in figure 3.2,

where Ev, Ec and ET are the top of the valence band, the bottom of the conduction band

and the trap energy level, respectively.

Figure 3.2: Basic processes involved in the generation and recombination of carriers
through traps. From left to right: a) electron capture; b) electron emission; c) hole cap-
ture; d) hole emission. Processes a) and c) result in recombination of a charge carrier;
processes b) and d) result in generation of a charge carrier.
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 + 
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ET 
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Source:Adapted from Sah, Noyce and Shockley (1957)

The GR noise is more significant for bulk traps located near the Fermi level, within

few kBT ; if the Fermi level is far above or below the trap level, the trap will be filled

or empty for the majority of the time, thus it will rarely transition. The PSD of the

fluctuations in the number of carriers are given by

SN( f ) = 4∆N2 · τ

1+(2π f τ)2 (3.13)

where τ is the time constant of the transitions and ∆N2 is the variance, which can be
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expressed as
1

∆N2
=

1
N
+

1
Nt, f ull

+
1

Nt,empty
(3.14)

where Nt, f ull and Nt,empty are the average number of full and empty traps, respectively

(HAARTMAN; ÖSTLING, 2007). The spectrum given by (3.13) is called a Lorentzian

due to its similarity with the probability density function of the Lorentz(ian) distribution

(also known as Cauchy and Cauchy-Lorentz distribution), with parameters x0 and ψ ,

shown in equation (3.15) for the sake of completion. The Lorentzian has a constant PSD

for frequencies below the characteristic time constant, 1/τ , and decreases with 1/ f 2 for

frequencies above 1/τ .

f (x;x0,ψ) =
1

πψ

[
1+
(

x−x0
ψ

)2
] (3.15)

3.4 Random Telegraph Signal

The random telegraph signal, also known as random telegraph noise (RTN), is a

special case of GR noise (HAARTMAN; ÖSTLING, 2007). In MOS transistors, the tele-

graphic noise is characterized by discrete fluctuations in the channel conduction, produc-

ing a random telegraph signal (RTS). These fluctuations occur due to capture and emission

of charge carriers by defects (traps) located in the oxide and at the oxide-semiconductor

interface of these devices (KIRTON; UREN, 1989; HUNG et al., 1990a). Figure 3.3

illustrates the effect of RTS in the drain current of a MOS transistor under constant bias.

Figure 3.3: Random telegraph signal observed in the drain current of a transistor due to
capture and emission of carriers by a single trap.
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According to Yamamoto (2004), it can be demonstrated that the times spent at

the high and low current states (τ1 and τ0, respectively) are exponentially distributed,



41

resulting in a Poisson process. For an ergodic process, the average time the signal spends

at the high current state, 〈τ1〉, is given by

∞∫
0

t p1(t)dt = 〈τ1〉= τ1 , (3.16)

where τ1 is the ensemble average of τ1 and p1(t) is the probability that state 1 will not

transition between times 0 and t; the standard deviation is given by

 ∞∫
0

t2 p1(t)dt− τ1
2

 1
2

= 〈τ1〉= τ1 . (3.17)

In essence, despite the inherent similarities between GR noise and RTS — as it

will be discussed in the following chapter, RTS can also be modelled using (3.13) —, the

first originates in the semiconductor bulk, whereas the latter originates from trapping in

the oxide and at the oxide-semiconductor interface.

Random telegraph signals are usually observed in small-area devices for two main

reasons: i) the reduced number of traps in these devices makes it easier to identify the

two-level signal; and ii) the trap impact on the drain current is increased in small-area

devices. Under certain circumstances (such as high drain bias), however, it is also possible

to observe RTS in larger devices.

3.5 1/ f Noise

The 1/ f noise, also known as flicker or pink noise, is characterized by fluctuations

whose PSD have a 1/ f λ dependence, being λ ≈ 1. Figure 3.4 shows noise PSD of a large-

area NFET under uniformly charged channel conditions, which approximately follows the

1/ f behaviour.

Given its importance, several MOSFET 1/ f noise models have emerged over the

last decades, assuming different physical mechanisms to explain its bias, area and temper-

ature behaviour. These models, as well as the physical mechanisms underlying the 1/ f

noise, are discussed in detail in chapter 4.

To put the importance of the 1/ f noise into perspective, the predicted thermal and

shot noises are in the order of 10−23 A2/Hz for the device shown in Figure 3.4. Thus, the

corner frequency (the frequency at which the contributions of the shot and thermal noises
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Figure 3.4: Measured LFN PSD of a large-area NFET (140-nm technology). The fre-
quency exponent (λ ), measured between 10 Hz and 30 Hz, is approximately 1.176. Bias
conditions are VDS = 0.1 V and VGS = 1.8 V.
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become more relevant than that of the 1/ f noise) is expected to be between 10 kHz and

100 kHz. With the technology scaling, the corner frequency is further increased, making

the 1/ f noise the dominant noise mechanism, together with the RTS, in deeply-scaled

CMOS technologies.

Throughout most of this work, a normalized noise PSD quantity is used, i.e. SID/I2
D

in Hz−1. While this quantity is useful for the analysis proposed, from a designer’s per-

spective, however, the input referred noise (or gate referred noise) provides better infor-

mation. The conversion from drain current noise to gate referred noise is straightforward

through

SVG =
SID

g2
m

, (3.18)

where gm is the transistor transconductance.
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4 LOW-FREQUENCY NOISE MODEL IN MOSFETS

The modelling of LFN in MOSFET requires understanding of fundamental phys-

ical mechanisms responsible for the current fluctuations. The first section of this chapter

presents the mathematical description of the RTS, critical for the derivation of the RTS-

based 1/ f noise model presented in section 4.2.4, which states that 1/ f noise and RTS

originate from the same physical mechanism: capture and emission of charges by traps

(MCWHORTER, 1957; KIRTON; UREN, 1989; BANASZESKI DA SILVA et al., 2014).

On the opposite hand, bulk mobility fluctuation models, more prominently the model by

Hooge (1969), state that the 1/ f noise and RTS have different origins.

In this chapter, the conventionally used RTS model as well as popular 1/ f noise

models are presented and discussed.

4.1 Random Telegraph Noise Model

The PSD of a telegraphic signal can be calculated based on its capture and emis-

sion time constants, as presented by Machlup (1954). From the Wiener-Khintchine theo-

rem, the PSD of an ergodic, wide-sense stationary, random process, S( f ), can be obtained

through the Fourier transform of the autocorrelation function of the process, R(s), accord-

ing to

S( f ) = 4
∫

∞

0
R(s) · cos(2π f s)ds . (4.1)

From Machlup (1954), the autocorrelation function of a random telegraph process

can be described by

R(s) = ∑
i

∑
j

xi · x j · {prob. that x(t) = xi} · {prob. that x(t + s) = x j, given that x(t) = xi} ,

(4.2)

where xi and x j are the possible values for the telegraphic signal; x(t) and x(t + s) are the

values of the telegraphic signal at times t and t+s, respectively; and i and j are the indexes

of the RTS states (0 being the low state and 1 being the high state). The probability that,

at any given time, the RTS in state 1 is given by

px=1 =
τ1

τ1 + τ0
, (4.3)
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whereas the probability of being in state 0 is given by

px=0 =
τ0

τ1 + τ0
, (4.4)

being τ1 and τ0 the average times spent on states 1 and 0, respectively.

By assuming that x0 = 0 and x1 = ∆I, where ∆I is the difference between the

current between states 1 (high) and 0 (low), three out of the four summation terms in (4.2)

are cancelled, reducing it to

R(s) = ∆I2 · τ1

τ1 + τ0
·P11(s) , (4.5)

where P11(s) is the probability that the signal remains on state 1 after time s, that is, an

even number of transitions occur during time s, starting at state 1. Taking P01(s) as the

probability of an odd number of transitions occurring in a given time s, starting at state 1,

from the Law of Total Probability

P11(s)+P01(s) = 1 . (4.6)

The probability of an even number of transitions, P11, at a given time s+ ds —

being ds a sufficiently small time step so that the probability of more than one transition

occurring is negligible — is comprised of two mutually exclusive probabilities: i) the

probability of an odd number of transitions during time t, P01(s), followed by one transi-

tion during ds; ii) the probability of an even number transitions during time t, P11(s), and

no transitions during ds. This probability can be written in differential form as

P11(s+ds) = P10(s) ·
ds
τ0

+P11(s) ·
(

1− ds
τ1

)
. (4.7)

Substituting (4.6) in (4.7) and applying the limit ds→ 0, results in

d
ds

[P11(s+ds)]+
(

1
τ0

+
1
τ1

)
·P11(s) =

1
τ0

(4.8)

which can be solved for the initial condition P11(0) = 0, since there can be no transitions

at time 0, yielding

P11(s) =
τ1

τ0 + τ1
+

τ1

τ0 + τ1
· exp

[
−
(

1
τ0

+
1
τ1

)
· s
]
. (4.9)
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Replacing (4.9) in (4.5) gives the autocorrelation function of the process as

R(s) = ∆I2 · τ1

τ0 + τ1
·
{

τ1

τ0 + τ1
+

τ0

τ0 + τ1
· exp

[
−
(

1
τ0

+
1
τ1

)
· s
]}

. (4.10)

Then solving (4.1) using (4.10) gives

S( f ) = 4
∫

∞

0
R(s) · cos(2π f s)ds =

4∆I2

(τ0 + τ1) ·
[(

1
τ0
+ 1

τ1

)2
+(2π f )2

] (4.11)

which gives the PSD of a telegraphic signal as a function of its average times spent on

high and low states. In the context of trapping and de-trapping of charge carriers by

defects, the average times spent on low and high states can be understood as the average

time required to emit (τe) and capture (τc) a charge carrier, respectively.

Equation (4.11) can be rewritten in a more useful form by substituting

β =
τe

τc
(4.12)

and
1
τ
=

1
τc

+
1
τe

, (4.13)

resulting in

S( f ) = 4∆I2 · β

(1+β )2 ·
τ

1+(2π f τ)2 , (4.14)

where β and τ are the ratio between emission and capture, and the characteristic time

constant, respectively. From detailed balance (KIRTON; UREN, 1989),

β =
τe

τc
= g · exp

(
EF −ET

kT

)
, (4.15)

where g, k, EF and ET are the degeneracy (approximately equal to one), Boltzmann con-

stant in eV·K−1, Fermi energy and trap energy, respectively

For the particular case in which τ0 = τ1 = τx, (4.14) can be simplified into

S( f ) = 2∆I2 · τx

4+(2π f τx)2 , (4.16)

resulting in maximum total noise power. For this reason, experimentally identifiable tele-

graphic signals usually display τc≈ τe, which may be wrongly interpreted as a correlation

between the two parameters that are, essentially, uncorrelated (GRASSER et al., 2009).
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4.2 1/ f Noise Models

Historically, two main schools of thought have emerged to explain and model the

1/ f behaviour of the power-spectral density. The first assumes the origin is related to the

capture and emission of charge carriers by surface defects (traps) (MCWHORTER, 1957),

and is commonly referred to as number fluctuation theory. The second attributes the 1/ f

to bulk mobility fluctuations (HOOGE, 1969; HOOGE; VANDAMME, 1978), and is

commonly referred to as mobility fluctuation theory. A unified theory has been proposed

(HUNG et al., 1990b; HUNG et al., 1990c; GHIBAUDO et al., 1991), incorporating

mobility fluctuations due to Coulomb scattering to the number fluctuation model. This

unified model is not, however, a combination of both models (SCHOLTEN et al., 2003),

as the mobility fluctuations share the same origin as number fluctuations and are, thus,

correlated.

While bulk mobility fluctuation models have been used to describe the 1/ f noise

bias dependence of PFETs (CHANG; ABIDI; VISWANATHAN, 1994; VANDAMME;

HOOGE, 2008; HAARTMAN; ÖSTLING, 2007), number fluctuation models have been

recently shown to explain the 1/ f bias dependence of both P- and NFETs if a non-

uniform distribution of traps in energy (VAN DER WEL et al., 2005; WIRTH; SILVA;

KACZER, 2011) is assumed for p-type devices (BANASZESKI DA SILVA et al., 2014;

BANASZESKI DA SILVA et al., 2016). Even in the context of trapping of charges, the

trapping mechanism itself is not thoroughly understood. While studies on random tele-

graph signals and 1/ f noise (DUTTA; HORN, 1981; SURYA; HSIANG, 1988; KIRTON;

UREN, 1989) suggest a thermally activated process, compact 1/ f noise models models,

such as BSIM and PSP (HUNG et al., 1990b; HUNG et al., 1990c), still employ direct

tunnelling (MCWHORTER, 1957), which is temperature independent.

In this section, number and mobility fluctuation models are presented. The corre-

lated mobility model is also presented, as well as its compact version.

4.2.1 Number Fluctuation Model - McWhorter Model

Number fluctuation models assume that the primary mechanism responsible for

the 1/ f noise are the capture and emission of carriers by traps, which cause fluctuations

to the surface potential of the device. As discussed in section 4.1, the activity of a single

trap produces a Lorentzian power-spectrum. The work of Surdin (1939) proved that a 1/ f
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spectrum could be obtained by the superposition of Lorentzian spectra with τ homoge-

neously distributed in log-scale, as shown in Figure 4.1.

Figure 4.1: Sum of uniformly-spaced (in log-scale) Lorentzians, resulting in an approxi-
mately 1/ f spectrum.
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A physical model was proposed by McWhorter (1957) for a semiconductor with

an oxide on the surface. This model, widely regarded as the McWhorter model, assumes

that the uniformly distributed τ arise from direct tunnelling of charge carriers to traps

located within the oxide, causing the current to fluctuate. Essentially, variations in trap

occupancy result in carrier number fluctuations in the channel. The normalized drain

current fluctuation can be written as

∂ ID

ID
=

[
1

∆N
∂∆N
∂∆Nt

]
∂∆Nt , (4.17)

where ∆N =NW∆x and ∆Nt =NtW∆x, being N and Nt the number of channel carriers and

and occupied traps per unit area, respectively; W the transistor width and ∆x a distance

along the transistor length. The ratio ∂∆N/∂∆Nt = R is the coupling coefficient between

the carrier number fluctuation in the channel and the trap occupancy. This ratio, R, is

approximately 1 for strong inversion, but may assume smaller values for other regions of

operation, being expressed by

R =
Ci

Cox +Ci +Cd +Cit
, (4.18)

where Cox, Ci, Cd and Cit are the oxide, inversion layer, depletion, and interface trap

capacitances per unit area. Substituting

Ci ≈
q2N
kBT

, (4.19)
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equation (4.18) can be rewritten as

R =− N
N +N∗

, (4.20)

where

N∗ =
kBT
q2 · (Cox +Cd +Cit) , (4.21)

with typical N∗ values being of the order of 10−10 cm−2 (HUNG et al., 1990b).

Consequently, the power spectral density of the local drain current fluctuation is

given by

S∆ID(x, f ) =
(

ID

W∆x

)2

·
(

R
N

)2

·S∆Nt (x, f ) , (4.22)

where S∆Nt (x, f ) is the PSD of the mean-square fluctuations in the number of occupied

traps in the area W∆x, and it is given by

S∆Nt (x, f ) =
∫ Ec

Ev

∫ W

0

∫ Tox

0
4Ntr(E,x,y,z)∆x ft ·(1− ft) ·

τ(E,x,y,z)
1+ω2τ(E,x,y,z)2 dzdydE ,

(4.23)

where Ntr(E,x,y,z) is the distribution of the traps in the oxide and over the energy, length,

width, and depth; τ(E,x,y,z) is the trapping time constants; ω = 2π f is the angular

frequency; Tox is the oxide thickness; Ec−Ev is the silicon band gap; and ft is the trap

occupancy function. This function, ft , is given by

ft =
[

1+ exp
(

E−EFn

kT

)]−1

, (4.24)

where EFn is the electron quasi Fermi level.

In order to evaluate the integral in (4.23), the following suppositions are made: a)

the distribution of the traps is uniform close to the interface, thus Ntr(E,x,y,z) = Ntr(E);

b) the probability of an electron penetrating into the oxide decreases exponentially with

the distance from the interface; as a result, the trapping time constant is given by

τ = τo(E)·exp(γz) , (4.25)

where τo(E) is the time constant at the interface and γ is the wave function attenuation

factor given by the WKB theory for carrier tunnelling in the Si-SiO2 system (HUNG et al.,

1990b). Notice that, while the McWhorter model traditionally employs direct tunnelling,
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thermal activation, given by

τ = τo·exp(EB/kT ) , (4.26)

where EB is an activation energy, has been suggested by Surya and Hsiang (1988). The

temperature dependence of the characteristic time constant is further explored in chapter

5 of this work.

Figure 4.2 illustrates the ft(1− ft) term of equation (4.23), which behaves like a

delta function around the quasi Fermi level. Thus, the main contribution for the integral

is for traps close to the quasi Fermi level, hence one can approximate Ntr(E) = Ntr(EFn),

removing Ntr(EFn) from the integral. The spread of the curve around the quasi Fermi

level is related to the temperature of the system, as shown in figure 4.3. The area below

the curve can be shown to increase with kT , meaning a larger number of traps are active

at higher temperatures.

Figure 4.2: Behaviour of the ft(1− ft) term for different electron quasi Fermi levels, EFn.
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Figure 4.3: Behaviour of the ft(1− ft) term as a function of trap energy for different
temperatures and EF = 0.6 eV.
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Thus, replacing ft(1− ft) =−kT d ft
dE in equation (4.23) and solving the integration,

results in

S∆Nt (x, f ) = Ntr(EFn) ·
kTW∆x

γ f
. (4.27)
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Hence, the total drain current noise power spectral density can be calculated using

SID =
1
L2

∫ L

0
S∆ID(x, f ) ·∆xdx , (4.28)

where L is the channel length.

Finally, replacing (4.27) in (4.22) and then (4.22) in (4.28), results in

SID =
kT ID

2

γ fWL2

∫ L

0
Ntr(EFn)·

[
R

N(x)

]2

dx , (4.29)

which provides a description of the 1/ f noise in terms of bias, temperature and geometry.

4.2.2 Mobility Fluctuation Model - Hooge Model

The work of Hooge (1969) demonstrated, based on 1/ f noise measurements of

homogeneous samples, that surfaces effects were not primarily responsible for the 1/ f

noise, indicating that the noise was essentially a bulk effect. This observation naturally

contradicts the explanation given by McWhorter (1957), that attributes the 1/ f to surface

effects (traps).

The bulk mobility fluctuation model proposed by Hooge (1969), and Hooge and

Vandamme (1978) is given by the empirical formula

SID( f ) =
qαHI2

D
fWL2

L∫
0

dx
Qinv(x)

(4.30)

where αHand Qinv(x) are the Hooge parameter and inversion layer charge, respectively.

These bulk mobility fluctuations were attributed to phonon scattering (HOOGE; VAN-

DAMME, 1978). Since mobility in the channel depends not only on technology but also

on the electric field, the Hooge parameter depends both on technology and bias condi-

tions.

The works of Handel (1980) and Ngai (1980) attempted to explain the bulk mobil-

ity fluctuations through quantum beats between elastically scattered and weakly inelas-

tically scattered carriers, respectively, being the distinct inelastic scattering mechanism

the difference between both theories. These hypothesis, however, require unrealistic as-

sumptions, as stated by Weissman (1988). The work of Jindal and van der Ziel (1981)

proposed an explanation based on the fluctuation in the mean free path of the carriers; this
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explanation is also insufficient according to Weissman (1988), as the characteristic times

would be too short to produce low-frequency fluctuations.

For deeply-scaled devices (sub-1µm2 area), the Lorentzian-like profiles of single

traps become more prominent than the typical 1/ f spectra, which indicates that trapping

is, at least for small-area devices, the dominant noise mechanism. According to Van-

damme and Hooge (2008), this is not evidence that the 1/ f spectra of large-area devices

is caused by the superposition of these Lorentzians, reinforcing the importance of bulk

mobility fluctuations.

4.2.3 Correlated Fluctuations Model - Hung Model

The 1/ f noise model implemented in the BSIM3, BSIM4 and PSP models was

developed by Hung et al. (1990b) and Hung et al. (1990c). This model is considered an

’unified’ model due to the fact that it accounts for both carrier number fluctuations and

mobility fluctuations in the channel of the device. Notice that this unified model is not a

combination of both models, as pointed out by Scholten et al. (2003). The mobility fluc-

tuations are a consequence of the Coulombic scattering due to trap occupation. Therefore,

these mobilities fluctuations are not a bulk effect, rather sharing the same surface origin

as number fluctuations. Hence, these fluctuations are correlated.

The derivation of the model, is similar to that of the McWhorter model. Variations

in trap occupancy, however, result not only in fluctuations in carrier number, but also

in correlated fluctuations in carrier mobility in the channel (HUNG et al., 1990b). The

normalized drain current fluctuation is similar to that of (4.17), but has an added mobility

factor, and is given by

∂ ID

ID
=−

[
1

∆N
∂∆N
∂∆Nt

± 1
µ

∂ µ

∂∆Nt

]
∂∆Nt . (4.31)

The signal ahead of the mobility term in equation (4.31) is chosen according to the trap

charge (if the trap is neutral or charged when occupied). The ratio ∂ µ/∂∆Nt is the cou-

pling coefficient between the carrier mobility fluctuation and the trap occupancy. Accord-

ing to Hung et al. (1990b), it can be demonstrated, through Mathiessen rule, that

∂ µ

∂Nt
=

αµ2

W∆x
, (4.32)
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where α is the scattering coefficient.

Given that the relation ∂∆N/∂∆Nt = R from the McWhorter model is still valid,

then (4.31) can be rewritten as

∂ ID

ID
=−

(
R
N
±αµ

)
· ∂∆Nt

W∆x
. (4.33)

Consequently, the power spectral density of the local drain current fluctuation is given by

S∆ID(x, f ) =
(

ID

W∆x

)2

·
(

R
N
±αµ

)2

·S∆Nt (x, f ) (4.34)

where S∆Nt (x, f ) is the PSD of the mean-square fluctuations in the number of occupied

traps in the area W∆x, given by (4.23).

Following the same steps of the McWhorter model derivation — including the

assumption that direct tunnelling is responsible for the distribution of characteristic time

constants —, the 1/ f noise PSD is found to be

SID =
kT ID

2

γ fWL2

∫ L

0
Ntr(EFn) ·

[
R

N(x)
±αµ

]2

dx. (4.35)

From (4.35), the works of Hung et al. (1990b), Hung et al. (1990c) derived a

compact model that has been widely employed in MOSFET models, such as BSIM and

PSP. Substituting dx =−dV/E and obtaining E from the drain current equation

ID =W µqNEx (4.36)

results in

SID =
kT qIDµ

γ f L2

∫ VD

0
Ntr(EFn) ·

(
1±αµNR−1)2 · R

2

N
dV . (4.37)

In order to solve (4.37) the bias dependence of parameters α , µ and Nt(EFn) is

required. Since α and µ are a function of the carrier concentration, N, which, in turn, is a

function of the carrier quasi Fermi level, (4.37) can be rewritten as

SID =
kT qIDµ

λ f L2

∫ VD

0
N∗tr(EFn) ·

R2

N
dV (4.38)

where

N∗tr = Nt(EFn) · (1±αµNR−1)2. (4.39)

In this form, N∗tr(EFn) is the apparent oxide trap density that produces the same
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noise power as if there were no contribution from the mobility fluctuation (HUNG et

al., 1990b). The model proposed by Hung et al. (1990b) provides an empirical parametric

function which is sufficiently simple to provide an analytical expression for SID , but robust

enough to be applicable for MOSFETs fabricated by different technological processes.

The proposed model, equation (4.40), has three parameters — NOIA, NOIB and NOIC

— and is a function of the carrier concentration, N.

N∗tr = NOIA+NOIB·N +NOIC·N2 (4.40)

Parameters NOIA, NOIB and NOIC are technology-dependent parameters. As-

suming that the trap density, Nt , is independent of energy, then

NOIA = Nt (4.41)

NOIB =±2αµe f f R−1Nt (4.42)

NOIC = (αµe f f R−1)2Nt . (4.43)

Substituting (4.40) in (4.38) an analytical expression can be derived for the 1/ f

noise PSD for different device operating regions, as presented by Hung et al. (1990b). In

strong inversion, the 1/ f noise PSD is given by

SID,inv( f ) =
kT q2µID

aλ f L2Cox
·[NOIA·log(

N0 +N∗

Nl +N∗
)+NOIB·(N0−Nl)+

NOIC
2

(N0
2−Nl

2)]

+∆L
kT ID

2

λ fWL2 ·[
NOIA+NOIB·Nl +NOIC·Nl

2

(Nl +N∗)2 ],

(4.44)

where

N0 = N(0) =
Cox

q
· (VGS−Vth0) , (4.45)

Nl = N(L) =
Cox

q
· (VGS−Vth0−aVDS), (4.46)

being a, Vth0, VDS and VGS a bulk charge effect modelling parameter, threshold voltage of

the long channel device at zero substrate bias, gate-to-source voltage, and drain-to-source

voltage (in the case of saturation, the saturation voltage, VDSsat ), respectively (DUNGA et
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al., 2006). For subthreshold region, SID( f ) is given by

SID,subVt( f ) =
NOIA·kT ID

2

WLλ f N∗2·
. (4.47)

The parameters of equations (4.44) and (4.47) are presented in Table 4.1.

Table 4.1: BSIM4 Noise Simulation Parameters

Symbol Definition

k Boltzmann Constant
T Temperature
q Elementary Charge
µ Effective Carrier Mobility
ID Drain Current

Cox Oxide Capacitance
L Effective Channel Length
W Effective Channel Width
a Bulk charge effect modelling parameter
γ Attenuation coefficient given by WKB theory

NOIA Noise modelling parameter A
NOIB Noise modelling parameter B
NOIC Noise modelling parameter C

N0 Carrier density at source terminal
Nl Carrier density at drain terminal
∆L Channel length modulation parameter

The 1/f noise PSD at any operating point is then given by

SID( f ) =
SID,inv( f )·SID,subVt( f )
SID,inv( f )+SID,subVt( f )

. (4.48)

Despite its popularity, the correlated fluctuations model has been criticized by

Vandamme and Hooge (2008), arguing that the correlated mobility parameters is but a

mere curve fitting parameter, with unrealistic values.

4.2.4 RTS-Based Statistical Model

RTS-based models are fundamentally similar to number fluctuation models, as

capture and emission of carriers by traps is also assumed, and the LFN PSD is a result
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of the summation of Lorentzians. In opposition to the McWhorter model, however, these

models attribute statistical distribution to specific noise parameters — such as number

of traps in a device and individual trap impact —, which allow the estimation of the

noise variability, for instance. Among the models that propose a RTS-based LFN are the

works of Wirth et al. (2005); Wirth, da Silva and Brederlow (2007); da Silva, Wirth and

Brusamarello (2008); Banaszeski da Silva et al. (2014); Banaszeski da Silva et al. (2016).

The model proposed by Banaszeski da Silva et al. (2014) provides an analytical

expression for the noise variance. The following assumptions are taken for the derivation

of the model:

(i) the total number of traps in a device (N) is a Poisson distributed random variable;

(ii) τ is a log-uniformly distributed random variable;

(iii) β/(1+β )2 and β 2/(1+β )4 are approximated by delta functions multiplied by kT

and kT/6, respectively;

(iv) ∆ID, N and τ are independent.

4.2.4.1 Expected Value

The work of Banaszeski da Silva et al. (2014) demonstrated that, from the RTS

framework, the expected value of the LFN in MOS devices is given by

E [SID( f )] =
kT I2

D
WL2 f

L∫
0

E
[
∆ĨD

2|Xtr = x
]
· Ntr(EFn)

γ ′
dx , (4.49)

where the trap position along the channel, Xtr, is assumed to be a uniformly distributed

random variable; ∆ĨD is the normalized current deviation, given by

∆ĨD =
WL∆ID

ID
; (4.50)

and Ntr(EFn)/γ gives the trap density in the area, energy and in the log-domain of time

constants (cm−2eV−1 per neper). It is important to notice that γ ′ in the model is the

parameter of the log-uniform distribution of time constants.

For the particular case in which the channel is uniformly charged, if the drain

current fluctuations are assumed to be exponentially distributed, (4.49) can be simplified

to

E [SID( f )] = 2
kT I2

D
WL f

· Ntr(EFn)

γ ′
·E
[
∆ĨD

]2
. (4.51)
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Incorporating number fluctuation and correlated mobility fluctuations, the average

drain current fluctuation, E
[
∆ĨD

]
, is given by

E
[
∆ĨD

]
=

(
R
N
+αµ

)
, (4.52)

and R is given by (4.20).

4.2.4.2 Variance

Similarly to the expected value, the variance of the LFN PSD can be derived from

the RTS-based framework, as shown by Banaszeski da Silva et al. (2014). The variance

is given by

Var [SID( f )] =
kT I4

D
3π2 f 2W 3L4

L∫
0

E
[
∆ĨD

4|XT = x
]
· Ntr(EFn)

γ ′
dx . (4.53)

For the particular case in which the channel is uniformly charged, if the drain

current fluctuations are assumed to be exponentially distributed, and carrier number fluc-

tuations and correlated mobility fluctuations are considered, (4.53) can be simplified to

Var [SID( f )] = 24
kT I4

D
3π2 f 2W 3L3 ·

Ntr(EFn)

γ ′
·
(

R
N
+αµ

)4

. (4.54)

The aforementioned work has also shown that it is possible to relate the expected

value and variance of the LFN PSD to the standard deviation of ln(SID) using

σ [ln(SID)] =

√√√√ln

(
1+

Var [SID]

E [SID ]
2

)
, (4.55)

which can be rewritten as

σ [ln(SID)] =

√
ln
(

1+
K

WL

)
, (4.56)

for K = WL ·Var [SID ]/E [SID]
2. For the uniformly inverted channel condition, the K pa-

rameter is easily obtained analytically through

K =
2

π2kT
· γ ′

Ntr(EFn)
. (4.57)
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Notice that K is geometry independent and, thus, is a technology parameter, suit-

able for comparing noise variability in different technology nodes.

4.2.4.3 Correlation Coefficient

For upcoming analyses presented in this work, the correlation coefficient between

two LFN PSD populations is pivotal. Thus, it is necessary estimate the correlation coeffi-

cient using the same RTS-based framework employed for the expected value and variance

expressions. The Pearson product-moment correlation coefficient, R, of two random vari-

ables, X and Y, is given by the covariance of the two variables divided by the square root

of the product of their variance, so that

R [X,Y] =
Cov [X,Y]√

Var[X] ·Var[Y]
, (4.58)

where Cov is the covariance operator. In the context of this work, X and Y are the PSDs

of the LFN and are treated as stochastic processes in respect to a given system variable

– such as frequency, temperature and biasing. Since the same stochastic process is been

compared to itself under different conditions, these analyses are called autocorrelation

analyses.

From the RTS-based framework presented in section 4.1, the LFN PSD of a MOS-

FET is given by the sum of the contribution of individual traps, thus

E [SID ] = E

[
N

∑
i=1

Lx,i

]
, (4.59)

in which N and Lx,i( f ) are the number of traps in the device (which, itself is a random

variable) and the Lorentzian PSD of the individual trap i at a given condition x, respec-

tively.

Using the Law of Total Variance gives

Var

[
N

∑
i=1

Lx,i

]
= E

[
Var

[
N

∑
i=1

Lx,i

∣∣∣∣N
]]

+Var

[
E

[
N

∑
i=1

Lx,i

∣∣∣∣N
]]

. (4.60)

For N and Lx,i independent yields

E

[
Var

[
N

∑
i=1

Lx,i

∣∣∣∣N
]]

= E [N] ·Var [Lx] (4.61)
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and

Var

[
E

[
N

∑
i=1

Lx,i

∣∣∣∣N
]]

= Var [N] ·E [Lx]
2 . (4.62)

Assuming that N is Poisson distributed and, thus

E[N] = Var[N] , (4.63)

and writing the variance as

Var [X] = E
[
X2]−E [X]2 , (4.64)

it is possible to simplify (4.60) to

Var

[
N

∑
i=1

Lx,i

]
= E [N] ·E

[
L2

x
]
. (4.65)

Similarly, using the Law of Total Covariance

Cov

[
N

∑
i=1

Lx,i,
N

∑
i=1

Ly,i

]

= E

[
Cov

[
N

∑
i=1

Lx,i,
N

∑
i=1

Ly,i

∣∣∣∣N
]]

+Cov

[
E

[
N

∑
i=1

Lx,i

∣∣∣∣N
]
,E

[
N

∑
i=1

Ly,i

∣∣∣∣N
]]

. (4.66)

For N independent of Li,x and Li,y, (4.66) reduces to

Cov

[
N

∑
i=1

Lx,i,
N

∑
i=1

Ly,i

]
= E[N] ·Cov [Lx,Ly]+Cov [N,N] ·E [Lx] ·E [Ly] . (4.67)

Naturally, Cov[N,N] = Var [N]. If N is again assumed to be Poisson distributed,

then (4.67) can be further simplified to

Cov

[
N

∑
i=1

Lx,i,
N

∑
i=1

Ly,i

]
= E[N] · (Cov [Lx,Ly]+E [Lx] ·E [Ly]) . (4.68)

Finally, using the definition of covariance

Cov [X,Y] = E [X ·Y]−E [X] ·E [Y] (4.69)
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simplifies (4.68) to

Cov

[
N

∑
i=1

Lx,i,
N

∑
i=1

Ly,i

]
= E [N] ·E [Lx ·Ly] . (4.70)

Substituting (4.65) and (4.70) into (4.58) results in

R [SID,x,SID,y] =
E [Lx ·Ly]√

E [L2
x ] ·E

[
L2

y
] . (4.71)

Equation (4.71) will be used in Chapter 7 of this work to analytically and nu-

merically calculate the correlation coefficient between two LFN PSD populations under

different conditions using the RTS framework. These predictions can be compared to

measured data in order to verify whether the models properly describe the behaviour of

the fundamental noise sources.

4.3 Summary and Discussion

Random telegraph noise and 1/ f noise are the primary contributors to CMOS LFN

power. While bulk-mobility fluctuation models (more prominently the Hooge model)

support that RTS and 1/ f noise have distinguished origins, number fluctuation models

(including the correlated mobility fluctuations) not only attribute both RTS and 1/ f noise

to the trapping and de-trapping of charge carrier, but also support the view that they are,

essentially, the same process.

Vandamme and Hooge (2008) questioned this unified view, stating that “the typical

bumpy spectra in small MOSTs do not represent a conclusive proof that the 1/ f noise in

large devices result from the superposition of many elementary RTS fluctuations.” Using

the methodology proposed in this work, it is demonstrated in section 7.2 that there is

strong evidence to support the claim that 1/ f noise in large-area MOS transistors is indeed

a product of RTS fluctuations, even if no bumps are visible in the spectrum.

In the context of charge trapping, the assumption that the characteristic time con-

stant of traps is governed by direct tunnelling has been employed not only in noise models

(MCWHORTER, 1957; HUNG et al., 1990b; HUNG et al., 1990c), but also in works

where the position of the trap within the oxide is extracted, such as Lukyanchikova et al.

(2009) and Ding, Misra and Srinivasan (2016), despite observations of a thermally acti-

vated process being reported in several works, such as Surya and Hsiang (1988), Kirton
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and Uren (1989), Xiong et al. (2002) and Wei, Xiong and Zhou (2009).

Notice that in section 7.3, the methodology proposed in this work is applied to

experimental data and the results support the view direct tunnelling is not sufficient to

describe the behaviour of the LFN with the temperature; a thermally activated model, in

the likes of that proposed by Dutta and Horn (1981); Surya and Hsiang (1988); and Kirton

and Uren (1989), is required to fully explain the observed LFN behaviour. Consequently,

it should be accounted for in the aforementioned LFN models.

The following chapter addresses this important discussion on the temperature de-

pendence of MOSFET LFN.
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5 LOW-FREQUENCY NOISE TEMPERATURE DEPENDENCE

The temperature dependence of the 1/f noise has been an important aspect for the

modelling of 1/ f noise and the understanding of its dynamics. Among the first studies

of the 1/ f noise in semiconductor devices is the work by McWhorter (1957), which ob-

served a weak dependence of the 1/ f noise magnitude on temperature. This behaviour

led to proposition of a noise model based on electron tunnelling, which is inherently a

temperature independent process, stating that the time constant distribution is related to

the spatial distribution of traps depth-wise. Recent works, however, have shown mod-

ern oxides are simply too thin to support the elastic tunnelling model (CAMPBELL et

al., 2009) and capture and emission times are uncorrelated to the trap distance from the

interface (NAGUMO et al., 2010).

In contradiction to the model proposed by McWhorter (1957), the work of Surya

and Hsiang (1988) observed that the 1/ f noise of commercial p-channel MOSFETs varied

significantly, not only in magnitude, but also in form, when operated from 60 K up to 290

K. Based on these experimental results, Surya and Hsiang (1988) proposed a different

approach to the calculation of the times constants, based on the thermal activated model

for 1/ f noise in semiconductors by Dutta and Horn (1981)1.

Figure 5.1a displays experimental data for the noise PSD at 200 Hz as a function

of the absolute temperature. The result indicates that the magnitude of the 1/ f noise PSD

is, in fact, temperature dependent. Additionally, Figure 5.1b displays extracted frequency

exponent, γ , of the 1/ f noise spectrum at 200 Hz as a function of temperature, indicating

that the shape of noise spectrum is strongly dependent on the temperature and that this

relation is non-linear.

Figure 5.1: a) Noise PSD and b) measured frequency exponent as a function of tempera-
ture for a p-channel device in linear region.
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1If the reader is not familiarised with the Dutta and Horn identity, please refer to section 5.1 of this work.



62

According to Surya and Hsiang (1988), the simplistic spatial distribution of traps

is insufficient to fully account for the temperature dependence of the noise magnitude,

thus questioning the validity of the elastic tunnelling model. Conversely, the work claims

that using the thermal activation model it is possible to account for both the magnitude

and the functional form of the 1/ f noise PSD.

The work of Wong and Cheng (1990) delves further into the temperature depen-

dence of the 1/ f noise by analysing n-channel MOS devices with different gate insulators.

Figure 5.2 displays the frequency exponent as a function of the temperature for different

devices. According to their work, there is a correlation of the peak locations in the plots

and the major trapping centres in the Si-SiO2 interface.

Figure 5.2: Frequency exponent as a function of absolute temperature for n-channel de-
vices with different insulators.
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A comparison between commercially available CMOS transistors from subthresh-

old to strong inversion was performed by Chang, Abidi and Viswanathan (1994). For

NFETs in strong inversion, no significant magnitude variation was observed in the input-

referred noise spectrum at different temperatures, and only a slope change was verified,

as shown in Figure 5.3a. These results, associated to the weak bias dependence observed,

gave credence to the tunnelling model proposed by McWhorter (1957).
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The PFETs, on the other hand, showed strong bias dependence on the input-

referred noise spectra at all temperatures. Figure 5.3b displays the input referred noise

for the p-channel device in strong inversion for different temperatures; a significant 1/ f

noise spectra variation with temperature can be observed, in contrast to that of the NFET.

According to Chang, Abidi and Viswanathan (1994), the behaviour of the p-channel tran-

sistor can be modelled using mobility fluctuations. Therefore, it concludes that noise in

the n-channel device is more conveniently modelled using a number fluctuation model,

whereas the p-channel device is more conveniently modelled using a bulk mobility fluc-

tuation model.

Figure 5.3: Noise PSD for a) p-channel transistor and b) n-channel transistor at different
temperatures in the linear region of operation.

Source: Adapted from Chang, Abidi and Viswanathan (1994)

A study regarding the impact of total ionizing dose (TID) on the 1/ f noise spectra

of NFETs at different temperatures was performed by Xiong et al. (2002). The noise

magnitude variation with temperature of an NFET device before and after irradiation, and

after annealing, are shown in figure 5.4a. Their findings reinforce the idea that the 1/ f

noise in n-channel devices is a thermally activated process, in accordance to Surya and

Hsiang (1988), agreeing that the relation presented by Dutta and Horn (1981) provides a

very reasonable quantitative description of the noise, as shown in figure 5.4b. The success

of the Dutta and Horn relation in describing the correlated temperatures and frequency

dependence of the noise allows the energy distribution of the defect responsible for the

noise to be estimated from noise measurements as a function of temperature (XIONG et

al., 2002).
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Figure 5.4: a) Noise PSD of an NFET at 1 Hz as a function of temperature prior and
after irradiation. b) Measured and calculated frequency exponent for the pre-irradiated
condition.
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Lee et al. (2006) studied the 1/ f noise in sub-100 nm MOSFETs. Figure 5.5 shows

the 1/ f noise PSD for NFETs and PFETs at different temperatures. For the p-channel

device, a small noise magnitude reduction from 27 ºC to 70 ºC is observed, but little

variation is observed from 70 ºC to 150 ºC. For the n-channel device, the result is similar

to the one presented in figure 5.3, as there is little noise power variation with temperature.

Here, however, the Lorentzian-like lumps are clearly visible in the n-channel 1/ f noise

spectra due to the small device area (W=150 nm and L=50 nm). Interestingly, the lumps

of the Lorentzian curves seem to shift with temperature, giving a complex relation with

temperature. Also, due to these shifts, the frequency exponent varies significantly with

temperature.

Figure 5.5: 1/ f noise spectra of N- and PFETs at different temperatures.

Source: Lee et al. (2006)

Regarding the temperature dependence of the 1/ f noise in FINFETs, the work of

Wei, Xiong and Zhou (2009) provided experimental data on the issue, concluding that

the noise characteristics of FINFETs are comparable to their bulk-CMOS counterparts.
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Figure 5.6 displays the temperature dependence of the 1/ f noise of two FINFETs, device

1 and device 2, in the linear region of operation.

Figure 5.6: Measured drain-voltage noise spectral density at 10 Hz versus temperature for
two FINFETs in linear region of operation.
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Their results indicate that for the thermal activation model is more convincing

for FINFETs than the elastic tunnelling model. Figure 5.7 displays the measured and

calculated frequency exponent using the Dutta and Horn relation, presented in equation

(5.10) of the following section.

Figure 5.7: Frequency exponent as a function of temperature at 10 Hz for a) device 1 and
b) device 2.
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In the context of AlGaN/GaN HEMTs (high-electron-mobility transistors), Wang

et al. (2017) demonstrated that, while bulk-mobility fluctuations are commonly applied

to analyse 1/ f noise in such devices, they do not properly describe the temperature, bias

and frequency dependence of the noise. In addition, it was also reported that there is close

agreement between experimental data and the Dutta-Horn model. The findings reinforce

that the noise is well-described by number fluctuations and that the capture and emission

process is thermally activated.
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5.1 The Dutta-Horn Identity

The work of Dutta and Horn (1981) provides an important relation between the

slope of the PSD spectrum (derivative of the noise spectrum in terms of frequency) and

the derivative of the noise spectrum in terms of temperature. If the Dutta-Horn identity is

satisfied, it is a strong indication that underlying mechanisms of trapping and de-trapping

of carriers is thermally activated (DUTTA; HORN, 1981; SURYA; HSIANG, 1988; WEI;

XIONG; ZHOU, 2009).

From Chapter 4, equation (4.23), if number fluctuations are assumed as the pri-

mary responsible for the 1/ f noise in MOS devices, then the noise PSD follows

SID(ω,T ) ∝

∫
∞

−∞

τ(E,x,y,z)

1+ω2τ(E,x,y,z)2 · fτdτ . (5.1)

If thermal activation and position independence is assumed for τ , then (5.1) can

be rewritten as

SID(ω,T ) ∝

∫
∞

−∞

τo · eEB/kT

1+(ωτo·eEB/kT )2
·D(EB)dEB , (5.2)

where D(EB) is the probability density function of the activation energies distribution. If

D(EB) is constant within the window of interest, i.e. the activation energies are uniformly

distributed, then S(ω,T ) follows a 1/ω behaviour. If D(EB) is not constant, however, the

solution is not simple, though a solution is possible after expanding D(EB) in a Taylor

series (DUTTA; HORN, 1981). When D(EB) varies slowly over the range of ∆EB ≈ kT

then (5.2) reduces to

SID(ω,T ) ∝
kT
ω
·D(EB) , (5.3)

where EB is the activation energy at which the function

h(ω,T ) =
τo · eEB/kT

1+(ωτo·eEB/kT )2
(5.4)

peaks. This energy can be obtained by calculating the maximum of (5.4) through

∂h
∂EB

= 0 , (5.5)

resulting in

EB =−kT · ln(ωτo) . (5.6)
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Rewriting (5.3) as

D(EB) ∝
ω

kT
·SID(ω,T ) , (5.7)

it becomes clear that if ω and T are varied in order to keep EB unchanged in (5.6), then

(ω/kT )·SID must also remain unchanged, since D(EB) is constant. The conclusion is that

there must be a ratio ∆ω/∆T that satisfy(
∆ω · ∂

∂ω
+∆T

∂

∂T

)
· [−kT · ln(ωτo)] = 0 (5.8)

and (
∆ω · ∂

∂ω
+∆T

∂

∂T

)
·
[

ω

kT
·SID(ω,T )

]
= 0 . (5.9)

Equations (5.8) and (5.9) essentially translate the previous ideas into their math-

ematical form. There should be a combination of ∆ω and ∆T values that cause EB to

remain constant and, consequently, also D(EB). Solving these equations results in the

Dutta and Horn identity, given by

∂ ln [SID(ω,T )]
∂ ln(ω)

=
1

ln(ωτo)
·
[

∂SID(ω,T )
∂ ln(T )

−1
]
. (5.10)

Though the relation may seem surprising at first, relating the slope of the noise

PSD (i.e. the derivative of the noise in terms of frequency) to the derivative of the noise

PSD in terms of temperature, one should keep in mind that the characteristic time con-

stant of the traps is exponentially dependent on temperature when thermal activation is

assumed. Therefore, temperature increments cause the characteristic time constants to

decrease, shifting the noise PSD towards higher frequencies. It is important to notice that

the sum of finite individual traps do not produce perfect 1/f noise and, thus, small bumps

are always present in the noise PSD. This means that increasing the temperature, these

bumps “slide” towards higher frequencies.

The Dutta-Horn identity thus assumes that, at different temperatures, the shape of

the PSD is preserved but shifted in frequency, so that the same slope of the PSD is found

at different frequencies for different temperatures. This idea will be further explored in

upcoming chapters of this work.

This relation has been used in a multitude of works (SURYA; HSIANG, 1988;

XIONG et al., 2002; WEI; XIONG; ZHOU, 2009) to provide strong evidence that the

1/ f noise originates from a thermally activated process. The drawback of this method is

that it requires several noise measurements of a single transistor at different temperatures.
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5.2 Summary and Discussion

While several works in the literature exist on the temperature dependence of the

LFN, they do not necessarily converge to a single theory. While the Dutta-Horn iden-

tity provides a strong case for a thermally activated process, conventionally used com-

pact models (such as BSIM, PSP, ACM and EKV) still employ elastic tunnelling to ac-

count for the distribution of time constants (HUNG et al., 1990b, 1990b; ARNAUD;

GALUP-MONTORO, 2003; ARNAUD; GALUP-MONTORO, 2004; MAVREDAKIS et

al., 2016). Moreover, statistical studies on the temperature dependence of the 1/ f are

lacking, as most results shown in this chapter are for individual devices.

Identifying these gaps, this work provides a methodology to study, statistically, the

temperature dependence of the LFN. Based on the work of Dutta and Horn (1981) it is

clear that a thorough statistical analysis of the frequency dependence of the fundamental

LFN sources is also necessary, given its intimate relation to the temperature.
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6 NOISE MEASUREMENTS

The DC and LFN measurements were performed on large populations (from 43

up to 320 devices) using the EDGETM system from Cascade Microtech, depicted in Fig-

ure 6.1, at NXP Semiconductors, Eindhoven, The Netherlands. The measurements were

supervised and conducted by Dr. Hans Tuinhout and technician Adrie Zegers-van Duijn-

hoven. Three different CMOS technologies from different foundries1 — 140-nm, 65-nm

and 40-nm — were analysed under several bias conditions. All devices were measured

over a frequency range from 10 Hz to 100 kHz. Averaging was set to 20 times for the low-

est band (10-100 Hz) and 80 times for the highest bands (TUINHOUT; DUIJNHOVEN,

2013). Unless stated otherwise, the measurements were conducted at 25 ºC.

Figure 6.1: EDGETM low-frequency noise measurement system.

Source: Tuinhout and Duijnhoven (2013)

The schematic for the low-frequency noise measurement is shown in Figure 6.2.

The source and load resistors, Rs and Rload, respectively, set the impedance conditions for

the device-under test (DUT) during noise measurements and can be adjusted to accom-

modate different devices. The low noise amplifier (LNA) amplifies the noise signals from

the DUT without significantly adding noise of its own. Its performance is determinant for

the system noise floor. The filter units (low-pass filters) block the noise generated from

the SMUs. The dynamic signal analyser (DSA) conditions and converts the signal to a

digital format so that it can be processed by a computer, where the Fast Fourier Transform

(FFT) is determined (HANSEN, 2009).

The frequency at which the frequency response of the system dominates the be-

1 Undisclosed for contractual reasons.
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Figure 6.2: Schematic of low-frequency noise test setup.
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haviour of the noise PSD is called roll-off frequency. It can be calculated as

frollo f f =
1

2πRC
, (6.1)

where R is the Thevenin equivalent of the resistive loads and C is the capacitance of the

measuring system and cables. The load resistor can be optimized in order to increase the

roll-off frequency.

Notice that the estimation of the PSD is performed using a non-parametric method

and, therefore, is inherently noisy, particularly for low frequencies, where the averaging is

lower (20 times instead of 80 times). Therefore, additional smoothing of the spectra was

performed via MATLAB. Figure 6.3 illustrate the data before and after the smoothing.

Figure 6.3: LFN spectra of a) four small-area NFETs and b) three large-area NFETs and
their respective smoothed spectra (red line).
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For all measurements presented in this work, the statistical uncertainty is displayed

through error bars obtained using bootstrapping, which is a technique to estimate the

sample distribution that relies on random sampling with replacement. In this work, the

size of the bootstrapping samples are the same as that of the original sample, as proposed

by Efron (1979). Unless stated otherwise, the number of bootstrapping samples is equal

to 5,000.
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This chapter presents the measured data from a statistical standpoint. First, the

distribution of the LFN PSD at a given frequency is analysed, followed by its expected

value and variance. Then, the reproducibility of the measurements are verified, in order to

ascertain that the LFN PSD is unchanged with time (i.e. the noise process is wide-sense

stationary). The average power integrated over a bandwidth is also discussed. Finally, an

analysis of the spectra of small-area devices as a function of temperature is presented.

6.1 Distribution

Based on the works of Yu et al. (2012) and Banaszeski da Silva et al. (2014), as

well as experimental data obtained from several populations from three different tech-

nology nodes (140-nm, 65-nm and 40-nm), the LFN at a given frequency is found to be

approximately log-normally distributed. By definition, a log-normal distribution is nor-

mally distributed in log-scale, i.e. if X is a log-normally distributed random variable, then

Y = ln(X) is normally distributed.

By establishing that LFN PSD at a given frequency is, approximately, log-normally

distributed, it is possible to estimate the expected value and variance of the distribution

using the maximum likelihood estimators of the log-normal distribution, as performed by

Banaszeski da Silva et al. (2014) and Banaszeski da Silva et al. (2016). These parameters

are

µ = E [ln(X)] , (6.2)

σ = SD [ln(X)] , (6.3)

where SD is the standard deviation operator. Using these parameters, the expected value

and variance of a log-normal distributed population can be estimated from the sampled

data using

E [X] = eµ+ 1
2 σ2

, (6.4)

Var [X] =
(

eσ2
−1
)

e2µ+σ2
. (6.5)

Figures 6.4 to 6.6 display the quantile-quantile plot (QQ-Plot) of several LFN

measurements from different populations. The natural logarithm of the noise quantity

(data quantiles) is displayed on the y-axis. Using standard normal quantiles on the x-axis,
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if the data falls on a straight line, it indicates that the data is normally distributed. Though

small deviations are observed, it is clear that the measured data follow a straight line,

indicating a normal behaviour, meaning the SID of both N- and PFETs are well-described

by a log-normal distribution.

Figure 6.4: Quantile plot of the LFN PSD at 20 Hz for six 43-DUT a) NFET and b) PFET
populations (140-nm). Bias conditions are VGS = 1.8 V and VDS = 0.1 V.
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Figure 6.5: Quantile plot of the LFN PSD at 20 Hz for six 60-DUT a) NFET and b) PFET
populations (40-nm node). Bias conditions are VGS = 0.9 V and VDS = 50 mV.
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Figure 6.6: Quantile plot of the LFN PSD at 20 Hz for three 282-DUT NFET populations
(65-nm node). Bias conditions are VGS = 1.2 V and VDS = 0.5 V.
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While measurements under low drain bias (uniformly charged channel conditions)

usually display approximately log-normal behaviour, as shown in figures 6.4 to 6.6, de-

viations may appear under high drain bias, particularly for long-channel devices. Figure

6.7a illustrates the deviation observed in a 160-DUT 1 µm long NFET population. Bias

conditions are VGS = 0.7 V and VDS = 0.5 V. From the quantile plot, it is clear that the

left-side tail is lighter than the normal distribution, whereas the right-side tail is heavier.

To put the length dependence into perspective, figure 6.7b displays the quantile plot of a

0.04 µm long NFET population under the same bias conditions. While the left-side tail

is also lighter than the normal distribution, only a slight deviation on the right-side tail

is observed. It should be noted that these deviations on the right-side tail are particularly

important when considering transistor yield, as outliers (devices with large noise) will

appear more often than expected if normality is assumed.

Figure 6.7: Quantile plots of the LFN PSD at 20 Hz for two 160-DUT NFET population
(40-nm node): a) long-channel devices and b) short-channel device. Bias conditions are
VGS = 0.7 V and VDS = 0.5 V.
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An explanation for this phenomenon was given by Banaszeski da Silva et al.

(2016). Under high drain bias (non-uniformly charged channel condition), the trap im-

pact depends heavily on the trap position along the channel. For long-channel devices in

saturation regime, traps located near the pocket implants, particularly at the drain side,

have their impact amplified. This trap-impact enhancement due to trap position along

the channel is important because it may increase the LFN variability of long-channel de-

vices. Accurately modelling this effect is, therefore, crucial for proper noise simulation

in electronic circuits.

In order to verify whether the RTS-based model discussed in Section 4.2.4 pro-

duce log-normal distribution, Monte Carlo simulations were performed. These simu-

lations, which employed the assumptions discussed in Section 4.2.4, reinforce that the
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Figure 6.8: Quantile plots of the LFN PSD at 20 Hz for a) Monte Carlo sim-
ulated 500,000-device 0.3×0.04µm2 NFET population and b) measured 320-DUT
0.3×0.04µm2 NFET population. Parameters Ntr/γ ′ and δ ID extracted from b) were
4.9×1012 m−1eV−1 and 5.6×10−17 m2, respectively.

LFN distribution is indeed approximately log-normal for most devices under uniformly

inverted channel condition. The predicted behaviour for small-area devices (less than

1µm2), however, deviates from log-normality. For these devices, the Monte Carlo simu-

lation predicts a different distribution, as shown in figure 6.8a. Measured LFN PSD for

smallest area devices available (0.3× 0.04 µm2), however, do follow the approximately

log-normal behaviour, as seen in figure 6.8b. Notice that the Monte Carlo simulation was

performed using the same transistor size and the parameters extracted from figure 6.8b

using equations (4.51), (4.54) and (4.57).

While no conclusive explanation for this distinct behaviour between simulation

and measurement has been reached, the log-normal behaviour is approached when the

average number of traps per device increases. If that is the case, then it would implicate

that the exponential distribution of trap impacts is incorrectly assumed. There are several

works that attempt to estimate or simulate the distribution of trap impacts (ASENOV et

al., 2003; TEGA et al., 2009; TAKEUCHI et al., 2009), being the exponential and log-

normal distributions the most prominent ones. Notice that for the Monte Carlo simulations

performed, using the exponential distribution of trap impacts resulted the average number

of traps to be sufficiently small so that approximately 1% of the simulated devices had no

traps whatsoever.
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6.2 Expected Value and Variability

In this section the bias dependence of the expected value and variance of the mea-

sured data is presented. For low drain bias (i.e. uniformly charged channel condition) the

extracted values of K, described in eq. (4.57), are also presented. The experimental results

are in agreement with typical 1/ f noise behaviour of MOSFETs found in other works

(SIMOEN; CLAEYS, 1999; MAVREDAKIS; ANTONOPOULOS; BUCHER, 2010).

6.2.1 140-nm Technology

The 140-nm technology devices measured consist of 24 populations (12 NFET

and 12 PFET) composed of 43 devices each. Three drain voltages were applied (0.1 V,

0.5 V and 1.8 V) for several different gate biases, from weak inversion to strong inversion.

The threshold voltage of the devices is around 0.4 V.

Figure 6.9: Expected value of the normalized LFN PSD at 20 Hz as a function of gate
and drain bias for two 43-DUT NFET populations (140-nm technology). Both device
populations have the same width (8 µm), but different lengths (a) 0.336 µm and b) 8 µm).
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Figure 6.10: Expected value of the normalized LFN PSD at 20 Hz as a function of gate
and drain bias for two 43-device NFET populations. Both device populations have the
same length (0.16 µm), but different widths (a) 0.232 µm and b) 8 µm).
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Figure 6.11: Expected value of the normalized LFN PSD at 20 Hz as a function of gate
and drain bias for two 43-device PFET populations. Both device populations have the
same width (8 µm), but different lengths (a) 0.336 µm and b) 8 µm).
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Figure 6.12: Expected value of the normalized LFN PSD at 20 Hz as a function of gate
and drain bias for two 43-device PFET populations. Both device populations have the
same length (0.16 µm), but different widths (a) 0.232 µm and b) 8 µm).
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The expected value of the LFN PSD as a function of gate voltage for four different

geometries is presented in Figures 6.9 to 6.12. From moderate to strong inversion, the

expected value of SID/I2
D shows a stronger bias dependence for NFET than for PFETs.

The standard deviation of ln
[
SID/I2

D
]

as a function of area, Figure 6.13, did not

follow a 1/
√

WL dependence, but rather one that follows equation (4.56) (BANASZESKI

DA SILVA et al., 2014).

Figure 6.13: Standard deviation of ln(SID/I2
D) as a function of a) 1/

√
WL and b) WL for

ten 43-device NFET populations. Bias conditions are VDS = 0.1 V and VGS = 1.4 V.
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Under uniformly charged channel conditions, a constant K parameter — i.e. the

normalized variance multiplied by the area, discussed in section 4.2.4.2 — is able to de-

scribe the LFN variability for all geometries, following (4.56) (BANASZESKI DA SILVA

et al., 2014). The K parameter extracted from ten 43-device NFET populations, each with

a different geometry, is shown in Figure 6.14.

Figure 6.14: Extracted and fitted K parameter as a function of area WL for ten 43-device
NFET populations. Bias conditions are VDS = 0.1 V and VGS = 1.4 V.
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Under high drain bias, however, the enhancement of trap impacts near the drain

region causes long channel devices to exhibit larger-than-predicted variability. Figure

6.15 displays the standard deviation of ln
[
SID/I2

D
]

as a function of area under high drain

bias, in which it is visible that the variability in long-channel devices deviates from the

behaviour predicted under uniformly inverted channel condition.

Figure 6.15: Standard deviation of ln
[
SID/I2

D
]

as a function of area for two 43-device
NFET populations. Bias conditions are a) VDS = 0.5 V and VGS = 1.4 V and b) VDS = 1.8
V and VGS = 1.4 V. Deviations from the predicted behaviour are observed for long channel
devices when VDS >VGS−VT
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6.2.2 65-nm Technology

For the 65-nm technology, devices from two different foundries (A and B) were

measured. From foundry A, two 68-device NFET populations were measured at 4 differ-

ent bias conditions. From foundry B, three 282-device NFET populations were measured,

also at 4 different bias. The expected value of the normalized LFN PSD as a function of

the ID ·L/W is shown in Figure 6.16. Note that for comparing two different technology

process, using the normalized drain current instead of the gate voltage is more convenient.

Notice that the noise levels are similar for both technologies (devices from foundry

B show slightly lower noise levels). Additionally, both technology processes display

similar K parameter (normalized variability), as shown in Figure 6.17), indicating that

Ntr/γ ′ is similar for both technology processes. The increased variability observed for the

10×10µm2 at lower gate biases is attributed to the increased impact of the halo implants

in this region of operation (BANASZESKI DA SILVA et al., 2016).

Figure 6.16: Expected value of the normalized LFN PSD at 20 Hz as a function of the
normalized drain current (ID ·L/W ) for two 68-device NFET populations from foundry A
and three 282-device NFET populations from foundry B (VT ≈ 0.4 V).
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Figure 6.17: K parameter at 20 Hz as a function of the normalized drain current (ID ·
L/W ) for two 68-device NFET populations from foundry A and two 282-device NFET
populations from foundry B (65-nm node).
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6.2.3 40-nm Technology

The 40-nm technology devices measured consist of 10 populations (5 NFET and

5 PFET) composed of 60 devices each. These populations were measured at three drain

voltages (50 mV, 0.55 V and 1.1 V) for several different gate biases, from weak to strong

inversion. Additionally, two 180-device NFET populations were also measured under

VDS = 0.5 V. The threshold voltage of these devices is approximately 0.4 V.

The expected value of the LFN PSD as a function of gate voltage for two different

geometries is presented in Figures 6.18 and 6.19. As previously observed for the 140-

nm technology, from moderate to strong inversion, the expected value of SID/I2
D shows a

stronger bias dependence for NFET than for PFETs.

Figure 6.18: Expected value of the normalized LFN PSD at 20 Hz as a function of gate
and drain bias for two 60-DUT NFET populations. Both device populations have the
same width (1 µm), but different lengths a) 1 µm and b) 0.2 µm).
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Figure 6.19: Expected value of the normalized LFN PSD at 20 Hz as a function of gate
and drain bias for two 60-DUT PFET populations. Both device populations have the same
width (1 µm), but different lengths a) 1 µm and b) 0.2 µm).
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In figure 6.20, the expected value of the normalized LFN PSD at 20 Hz as a func-

tion of drain current and temperature is shown. The advantage of plotting versus drain
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current in this case is the fact that the threshold voltage shifts with temperature and, thus,

the bias condition VGS−VT is modified. Notice that the expected value of the LFN is

weakly temperature dependent, specially in strong inversion.

Figure 6.20: Expected value of the normalized LFN PSD at 20 Hz as a function of drain
current and temperature for two 80-DUT NFET populations.
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Following the behaviour observed for the 140-nm technology, the standard devia-

tion of ln
[
SID/I2

D
]

as a function of area, Figure 6.21, did not follow a 1/
√

WL dependence,

but rather one that predicted by the log-normal model. Notice that the normalized vari-

ability parameter (K) extracted for PFET devices is smaller than that of NFET devices.

From equation 4.57, reproduced here for simplicity, it is possible to conclude that the trap

density in the area, energy and in the log-domain of time constants (cm−2eV−1 per neper),

Ntr(EFn)/γ , is larger in PFET devices than in NFET devices for this particular technology

at the given bias condition.

K =
2

π2kT
γ ′

Ntr(EFn)
. (6.6)

Figure 6.21: Standard deviation of the natural logarithm of SID/I2
D for five NFET and

PFET devices populations as a function of 1/
√

WL for VDS = 50 mV and VGS = 1.1 V.
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Figure 6.22: Scatter plot of the normalized LFN PSD (SID/I2
D) versus the drain current for

two 180-DUT NFET populations. Different colours indicate different gate bias applied.
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It is important to observe that the normalized LFN PSD (SID/I2
D) is not correlated

to the drain current, as shown in Figure 6.22 for two 180-DUT NFET populations. It is

also possible to confirm that drain current variability is not the primary source of LFN

variability, as the drain current variability is several orders magnitude lower than that of

LFN.

6.3 Reproducibility

For the analyses presented in chapter 7 of this work, it is critical that the measured

LFN PSD of each device remains the same if the experiment is reproduced after a few

hours or days (under the same bias conditions). Particularly for the correlation coefficient

analyses presented in Chapter 7 of this work, it is critical to ascertain that defects are not

created or annealed during device measurement or wafer storage, i.e. the PSD of the LFN

remains roughly unchanged over time.

To verify the reproducibility of the PSD measurements within the desired band-

width, a population of 282 65-nm technology devices (W = 1 µm and L = 0.06 µm)

was measured twice with seven weeks of interval between experiments. The average and

variance of f ·SID/I2
D at different bias conditions is shown in Figures 6.23 and 6.24. The

multiplication of SID/I2
D by the frequency is for compactness of the figures. The corre-

lation coefficient as a function of frequency are shown in Figure 6.25. Notice that drain

bias is kept low in order to avoid defect creation due to hot carrier injection during mea-

surement.

The near-identical behaviour of the expected value and variance, as well as the

high value of correlation coefficient (above 0.95) between experimental results indicate
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that the measurement set-up is stable and that the LFN PSD of the population at a given

frequency can be considered a stationary random process, i.e. the average and variance

do not change over time.

Figure 6.23: Average value of f ·SID/I2
D for different frequencies and biases. Blue and red

lines indicate the first and second measurements, respectively. Despite the time interval
between experiments, the average value falls within the statistical uncertainty obtained
using bootstrapping. Drain voltage is 0.5 V.
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Figure 6.24: Variance of f · SID/I2
D for different frequencies and biases. Blue and red

lines indicate the first and second measurements, respectively. Despite the time interval
between experiments, the average value falls within the statistical uncertainty obtained
using bootstrapping. Drain voltage is 0.5 V.
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Figure 6.25: Correlation coefficient of SID/I2
D between experiments 1 and 2 as a function

of frequency for different bias. Drain voltage is 0.5 V.
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6.4 Noise Power Integrated over a Bandwidth

The noise power of a given device integrated over a bandwidth [ fL, fH ] is given by

Wp =

fH∫
fL

SID( f )d f . (6.7)

The work of Silva, Wirth and Brederlow (2006) demonstrated that for any fre-

quency range region the mean noise as well as the relative error are invariant under a

scale transformation fH → c fH and fL → c fL, where c is a constant. Following the as-

sumptions from Section 4.2.4, under the premise that fL > 1/2πτmax and fH < 1/2πτmin

(i.e. the observation window is within the log-uniform distribution of time constants), it

can be demonstrated that

E [Wp] = 2E [∆ID]
2 · kTWL·Ntr(EFn)

γ
· ln
(

fH

fL

)
, (6.8)

where Ntr(EFn)/γ ′ is the trap density in the area, energy and in the log-domain of time

constants (cm−2eV−1 per neper).

Experimental results from two different technologies (40-nm and 65-nm) shown in

Figures 6.26 and 6.27 corroborate this finding, given that the quantity E [Wp]/ln( fH/ fL)

is approximately constant, regardless of the bandwidth. Notice that, in Figure 6.26, the

same population was measured twice, at different drain bias conditions, whereas two

different populations (i.e. different geometries) were measured at the same bias conditions

in Figure 6.27.

Figure 6.26: Expected value of the integrated noise normalized by I2
D and log( fH/ fL) over

different bandwidths for a 78-DUT 40-nm technology NFET population (W = 1 µm and
L = 1 µm) under two different drain biases. Dashed red line is a guide for the eye.
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Figure 6.27: Expected value of the integrated noise normalized by I2
D and log( fH/ fL)

over different bandwidths for two 282-DUT 65-nm technology NFET population under
VGS = 1.2 V and VDS = 1.2 V. Dashed red line is a guide for the eye.
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Notice, however, that if the noise is not exactly 1/ f (i.e. when the distribution of

time constants is not exactly uniform in log-scale), the relation is not valid. One example

is shown in Figure 6.28 for a 140-nm technology PFET population, in which the frequency

exponent is larger than 1.

Figure 6.28: Expected value of the integrated noise normalized by I2
D and log( fH/ fL)

over different bandwidths for two 43-DUT 140-nm technology PFET population under
VGS = 1.8 V and VDS = 1.8 V. Dashed red line in a) represents an ideal 1/ f .
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6.5 Analysis of Individual Lorentzians

The identification and analysis of individual Lorentzian spectra enables the verifi-

cation of basic assumptions, such as the log-uniform distribution of time constants. Each

clearly visible Lorentzian spectrum is attributed to the RTS of a single trap, enabling
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the extraction of the characteristic time constant of such trap. By multiplying SID/I2
D by

the frequency, the cut off frequency of the trap ( fc) is found at the peaks of f ·SID/I2
D.

The characteristic time constant can then be estimated through τ = 1/(2π f ). There are

drawbacks to such method though — e.g. Lorentzian are only clearly identifiable in

small-area devices and traps that have similar characteristic time constant can be difficult

to distinguish —, which are further discussed in this section. For this reason, in chap-

ter 7 a methodology is proposed to extract important information from the LFN spectra

without the need of identifying individual Lorentzians; the methodology not only enables

analysing large-area devices, but also for small-area devices without visible Lorentzians.

From a 320-DUT NFET population (W = 0.3µm and L= 0.04µm), several bumpy,

Lorentzian-like, spectra were identified from the LFN PSD at two different temperatures

(25 ºC and 50 ºC). The window of observation was set between 20 Hz and 20 kHz. This

is due to the fact that at lower frequencies the number of samples is small and, thus, un-

certainty is large; at higher frequencies, on the other hand, the noise level approaches the

noise floor of the measurement set-up. In Figure 6.29, the LFN PSD of devices with pro-

nounced Lorentzians at both temperatures are shown. Notice that the cut off frequencies

of the Lorentzian is increased with increasing temperature, meaning that the characteristic

time constant decreased, following a thermally activated process.

Figure 6.29: LFN spectra of two NFET devices at the same bias conditions and at two
different temperatures.
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On the other hand, while a Lorentzian spectrum is visible at both temperatures in

Figure 6.30, there is little observable shift in the cut-off. This temperature independent

behaviour is in line with that expected for direct tunnelling. Overall, however, the majority

of the identified Lorentzian spectra seemed to follow a thermally activated behaviour,

which is explored further in this section.
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Figure 6.30: LFN spectra of an NFET device at the same bias conditions and at two
different temperatures.
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Analysing the behaviour of these Lorentzians individually from an ensemble, how-

ever, is not simple. Even in small-area devices, these Lorentzians are not always easily

identifiable. Their spectra may be less prominent due to, for example, the presence of

other Lorentzians with τ near or within the observation window. Figure 6.31 illustrates

two devices with less pronounced, yet identifiable, profiles.

Figure 6.31: LFN spectra of two NFET devices at the same bias conditions and at two
different temperatures.
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A significant share of devices exhibited no Lorentzians at all at either temper-

atures. Such devices displayed a approximately 1/ f noise spectrum, as illustrated in

Figure 6.32. Finally, in order to illustrate the difficulty of identifying these individual

Lorentzians, Figure 6.33 displays the LFN spectra of a device at 25 ºC and 50 ºC in which

the lumps that are not visible to the naked eye may have been incorrectly identified by the

algorithm.

From the 320-DUT population, 187 and 193 individual Lorentzians were identi-

fied at 25 ºC and 50 ºC, respectively. Figure 6.34 displays the cumulative probability plot

of log10τ extracted from the measured PSD at 25 ºC and 50 ºC. The linear behaviour indi-

cates the characteristic time constant is approximately uniformly distributed in log scale

within the window of observation. From the frequency range defined (20 Hz to 20 kHz),

the uniform distribution of log10τ spans from τmin = 1/(2π fmax) to τmax = 1/(2π fmin).
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Figure 6.32: LFN spectra of a device at the same bias conditions at two different temper-
atures. No visible Lorentzians.
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Figure 6.33: LFN spectra of a device at the same bias conditions at two different temper-
atures. No visible Lorentzians.
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The observed log-uniform distribution of τ reinforce the relation between 1/ f

noise and trap activity, since such distribution produces a 1/ f spectrum when multiple

Lorentzians are present within the observation window (SURDIN, 1939; MCWHORTER,

1957). It is important to observe that, by identifying prominent Lorentzians, only infor-

mation about traps that contribute significantly to noise power is obtained; thus, it is not

possible to ascertain, from this analysis, that the 1/ f noise in devices in which no Lo-

rentzian profile was identified is also produced by trap activity.

Figure 6.34: Cumulative probability plot compared to the expected uniform distribution
of log10τ . The observation window is defined between 20 Hz and 20 kHz.
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Figure 6.35: Scatter plot of log10τ at 25 ºC and 50 ºC for the condition when τ(25 ºC)>
τ(50 ºC), meaning that the Lorentzian is shifter towards higher frequencies with increas-
ing temperature (indicating thermal activation). The number of Lorentzians that satisfy
the restriction is 131.
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Figure 6.35 displays the scatter plot of τ(25ºC) versus τ(50 ºC), aiming to identify

whether the characteristic time constants extracted at 25 ºC and 50 ºC are correlated. As-

suming thermal activation, then τ(25 ºC) > τ(50 ºC); thus, only Lorentzians that satisfy

this constraint were included in the analysis (a total of 131 spectra). While the correla-

tion is strong (ρ = 0.94), the fact that only Lorentzians that satisfied the constraint were

included in the analysis shuns any attempts to generalize the behaviour observed for the

LFN as a whole. Nevertheless, there is strong indication that thermal activation governs

the activity of the observed traps.

Conversely, if τ is assumed to originate from a thermally activated process, then

the activation energy can be estimated using

EB = ln
(

τ(T1)

τ(T2)

)
· kT1T2

(T2−T1)
. (6.9)

If equation (6.9) is applied to data from 6.35, the resulting distribution is not uni-

form (as shown in figure 6.36). This result indicates that simple thermal activation may

not be enough to account for the temperature dependence of τ .

Figure 6.36: Cumulative probability plot of the activation energy extracted from (6.9).
The distribution is clearly not uniform.
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6.6 Summary and Discussion

This chapter provided a discussion on the measured LFN spectra from three dif-

ferent technology nodes (40-nm, 65-nm and 140-nm). The noise distribution at a given

frequency, expected value and variance were evaluated, as well the integrated power over

a bandwidth. The results were consistent with other works in the literature. Additionally,

noise measurements were shown to remain stable when measured after the span of a few

weeks.

The analysis of individual Lorentzians from the LFN spectra measured reinforces

the view that thermal activation governs the capture and emission process. However, it

is insufficient for determining whether trapping/de-trapping is the dominant LFN mecha-

nism; whether thermal activation is primarily responsible for the log-uniform distribution

of time constants; or whether the conclusions hold true when no Lorentzians are visible

(1/ f spectrum). In order to provide a more robust analysis, a statistical methodology is

developed and presented in the following chapter of this work.
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7 CORRELATION COEFFICIENT ANALYSES

In this chapter, a novel noise analysis technique which is extremely sensitive to the

physical mechanisms assumed for the interpretation and modelling of the LFN in MOS-

FETs is proposed. This technique is based on the analysis of the autocorrelation of the

LFN PSD, meaning the analysis is performed entirely in frequency domain. Using this

methodology it is possible to draw valuable conclusions about the frequency, tempera-

ture and bias dependence of the fundamental noise sources underlying the 1/ f noise in

MOSFETs, as well as the origin of the trapping mechanism.

Notice that the term autocorrelation here refers to the fact that the technique es-

timates the correlation between the noise power density of a given population at a given

condition (bias, temperature, frequency), with the same population at a different condition

— e.g. SID( f ) and SID( f +∆ f ). While, in principle, such autocorrelation could be de-

fined as autocorrelation functions (in frequency domain), the author refrains from using

the term in order to avoid misinterpretation given the classic usage of the term for time

functions 1.

7.1 Correlation Coefficient Extraction

As discussed in section 6.1, the LFN PSD follows a log-normal distribution. There-

fore, the extraction of the correlation coefficient from experimental data was performed

using the maximum likelihood estimators from the log-normal distribution. From (4.58),

rewritten for convenience, the correlation coefficient between two random variables, X

and Y, is given by

R [X,Y] =
Cov [X,Y]√

Var[X] ·Var[Y]
. (7.1)

Using the definition of Covariance, (4.69), and the properties of the log-normal

distribution

E [X] = eµx+
1
2 σ2

, (7.2)

Var [X] =
(

eσ2
x −1

)
e2µx+σ2

, (7.3)

1 See section 2.2.
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E [XY] = eµx+µy+
1
2(σ2

x +2ρσxσy+σ2
y ) , (7.4)

where µx and µy are the expected value of the logarithm of the random variables X and

Y, respectively (notice that ln(X) and ln(Y) are normally distributed); σx and σy are the

standard deviations of ln(X) and ln(Y), respectively; and ρ is the correlation coefficient

between ln(X) and ln(Y), (7.1) can be rewritten as

R [X,Y] =
eρσxσy−1√(

eσ2
x −1

)
·
(

eσ2
y −1

) (7.5)

for log-normal distributions. This expression will be used throughout this chapter to ex-

tract the correlation coefficient between measured LFN PSD populations.

7.2 Frequency Autocorrelation

The frequency autocorrelation analysis provide valuable information on the fre-

quency dependence of the fundamental noise sources underlying the 1/ f noise. In order

to verify whether the assumption that the 1/ f spectrum observed in large-area devices is

indeed composed of a superposition of Lorentzians, an analytical expression for the cor-

relation coefficient in terms of ∆ f is derived from the RTS framework and compared to

the data.

7.2.1 Model Derivation

The correlation coefficient of the LFN PSD in terms of ∆ f when the LFN is as-

sumed to result from multiple switching traps — i.e. multiple superimposed Lorentzian

spectra, L( f ) — can be calculated theoretically using (4.71) as

R
[
SID( fre f ),SID( fre f +∆ f )

]
=

E
[
L( fre f ) ·L( fre f +∆ f )

]√
E
[
L( fre f )2

]
·E
[
L( fre f +∆ f )2

] , (7.6)

where L( f ) is given in the context of RTS by (4.14), rewritten here for convenience

L( f ) = 4∆ID
2 · β

(1+β )2 ·
τ

1+(2π f τ)2 , (7.7)
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where ∆ID, β , and τ are the current fluctuation caused by a trap, the ratio between the

emission and capture time constants (τe/τc) of a trap and the characteristic time constant

of a trap (1/τ = 1/τc+1/τe), respectively. The ratio between emission and capture times

is given by β = exp [(EF −ET )/kT ], where ET , EF , k, and T are the trap energy, Fermi

energy, Boltzmann’s constant, and temperature, respectively. For simplicity, fre f and

fre f +∆ f are substituted for f1 and f2, respectively.

The problem is thus reduced to the solution of E [L( f1) ·L( f2)] and E
[
L( f1)

2].
Using

E [g(X)] =
∫

∞

−∞

g(x) · fXdx , (7.8)

yields

E
[
L( f1)

2]= 16 ·
∞∫
−∞

∞∫
−∞

∞∫
−∞

∆ID
4 · β 2

(1+β )4 ·
τ2

[1+(2π f1τ)2]2
f∆ID fβ fτd∆IDdβdτ , (7.9)

and

E [L( f1) ·L( f2)]

= 4 ·
∞∫
−∞

∞∫
−∞

∞∫
−∞

∆ID
4 · β 2

(1+β )4 ·
τ2

[1+(2π f1τ)2] · [1+(2π f2τ)2]
f∆ID fβ fτd∆IDdβdτ .

(7.10)

If the random variables ∆ID, β and τ of any given trap are assumed to be frequency

independent (meaning they remain constant at all frequencies), τ to be log-uniformly

distributed between τmin and τmax, and the channel to be uniformly inverted (no position

dependence of the traps), (7.6) simplifies to

R [S( f1),S( f2)] =

∞∫
−∞

τ2

[1+(2π f1τ)2]·[1+(2π f2τ)2]
fτdτ√

∞∫
−∞

τ2

[1+(2π f1τ)2]2
fτdτ ·

∞∫
−∞

τ2

[1+(2π f2τ)2]2
fτdτ

, (7.11)

which can be solved to

R [S( f1),S( f2)] = 2 ·
ln
(

f1
f2

)
( f 2

1 − f 2
2 )

f1 f2 . (7.12)

This result is particularly noteworthy because it is free of parameters; the shape of
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R only depends on the spectra of the fundamental noise sources and their superposition. If,

for instance, the observed 1/ f noise would be the sum of microscopic 1/ f noise sources

with a perfect slope of -1, R would be equal to 1 for all ∆ f . Therefore, this correlation

coefficient is a signature of the frequency dependence of the fundamental noise sources

constituting the 1/ f noise.

Equation (7.12) can be written in terms of ∆ f ′, which is the ratio between f1 and

f2, i.e. ∆ f ′ = f1/ f2. In this case, (7.12) simplifies to

R [S( f1),S( f2)] = 2 · ln(∆ f ′)(
1−∆ f ′2

) ·∆ f ′ , (7.13)

highlighting the fact that the shape of the correlation coefficient curve is independent of

the reference frequency, fre f when analysed in log-scale. Figure 7.1 depicts the correla-

tion coefficient as a function of ∆ f ′.

Figure 7.1: Correlation coefficient as a function of ∆ f ′.
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The correlation coefficient decreases as ∆ f increases. This means that for small

frequency increments (small ∆ f ), devices that have the higher noise levels at fre f are

more likely to have the higher noise levels at fre f +∆ f . Conversely, for large frequency

increments (large ∆ f ), as the correlation coefficient approaches zero, it is not possible to

predict which devices have the higher noise levels at fre f +∆ f based on their levels at

fre f .

The bell-like shape of the correlation coefficient curve is directly related to the

frequency dependence of the fundamental noise sources underlying the LFN.
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7.2.2 Experimental Results

Using equation (7.5), the correlation coefficient as a function of frequency was

extracted for several N- and PFET populations from different technology nodes. In this

section, the extracted correlation coefficient is compared to that obtained analytically,

(7.12), and the results are discussed.

For small-area devices, the impact of individual traps is more significant, resulting

in prominent lumps in the spectrum due to the Lorentzian-like PSD of a single trap. For

these devices, however, telegraphic signals are usually visible in time domain measure-

ments; therefore, there is usually consensus that RTS is the dominant noise mechanism in

small-area devices. Figure 7.2 displays the LFN PSD of several small-area NFETs, high-

lighting Lorentzian-like spectra. For large-area devices as well as for PFETs, on the other

hand, the primary mechanism underlying the LFN is debated (HAARTMAN; ÖSTLING,

2007; VANDAMME; HOOGE, 2008). While Lorentzian-like spectra may not be clearly

visible, in the previous section it was shown that, if RTS is the primary mechanism under-

lying the LFN in MOSFETs, then experimental data should satisfy (7.12). The findings

for 40-nm, 65-nm and 140-nm technologies are reported.

Following (7.12), the correlation coefficient is independent of the trap impact

(∆ID). One should note, however, that the LFN distribution deviates from the log-normal

distribution under high drain bias, as shown in section 6.1. Thus, in order to avoid dis-

tortions due to these deviations, comparisons are made, preferably, under low drain bias

(uniformly charge channel condition).

Figure 7.2: LFN spectra of 320 small-area devices and highlighted Lorentzian-like spec-
tra.
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Figure 7.3: a) LFN spectra of a 320-DUT small-area NFET population (40-nm technol-
ogy); and b) extracted (blue markers) versus theoretically calculated (red line) correlation
coefficients. Transistor dimensions are W=0.3 µm and L=0.04 µm; bias conditions are
VGS = 1.1 V and VDS = 0.1 V.
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7.2.2.1 40-nm Technology

The population presented in Figure 7.2 has prominent Lorentzian-like spectra, in-

dicating that RTS is indeed the primary cause of LFN. The comparison between extracted

and calculated correlation coefficient is shown in Figure 7.3. As expected, (7.12) provides

an accurate prediction of the dependence of the correlation coefficient with frequency, in-

dicating, from an statistical perspective, that the RTS is the dominating noise mechanism

in this population. For a similar small-area NFET population (albeit fewer samples),

shown in Figure 7.4, the theoretically calculated correlation coefficient also gives a rea-

sonable prediction of the measured correlation coefficient.

Figure 7.4: a) LFN spectra of a 60-DUT small-area NFET population (40-nm technol-
ogy); and b) extracted (blue markers) versus theoretically calculated (red line) correlation
coefficients. Transistor dimensions are W=1 µm and L=0.04 µm; bias conditions are VGS
= 0.9 V and VDS = 0.05 V.
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Figure 7.5: a) LFN spectra of a 60-DUT small-area PFET population (40-nm technol-
ogy); and b) extracted (blue markers) versus theoretically calculated (red line) correlation
coefficients. Transistor dimensions are W=0.3 µm and L=0.04 µm; bias conditions are
VGS = 0.7 V and VDS = 0.05 V.
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Interestingly, when a PFET population is analysed (Figure 7.5), Lorentzian-like

spectra are also visible. Despite the reduced number of prominent lumps, the measured

correlation coefficient is also well predicted by the model. This is a strong indication that

the primary LFN mechanism in PFETs is the capture and emission of charge carriers.

Figure 7.6: a) LFN spectra of a 60-DUT large-area NFET population (40-nm technol-
ogy); and b) extracted (blue markers) versus theoretically calculated (red line) correlation
coefficients. Transistor dimensions are W=16 µm and L=0.2 µm; bias conditions are VGS
= 1.1 V and VDS = 0.05 V.

Frequency (Hz)
101 102 103 104 105

S
I D

/I
D2

 (
H

z-1
)

10-15

10-14

10-13

10-12

10-11

10-10

10-9

Frequency (Hz)
101 102 103 104 105

C
or

re
la

tio
n 

C
oe

ff
ic

ie
nt

0

0.2

0.4

0.6

0.8

1

Measurement
RTS-Based Model

a) b)

For large-area devices (Figures 7.6 and 7.7), Lorentzian-like spectra are hardly

visible for both N- and PFET populations. The correlation coefficient, however, follows

the RTS-predicted behaviour. This is a strong indication that the 1/ f noise in large-area

devices is composed by a superposition of Lorentzians, similarly to small-area devices.

Notice that the de-correlation with increasing ∆ f means that the spectra do not have a

constant slope; they intertwine at a certain rate which is well described by the RTS model.
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Figure 7.7: a) LFN spectra of a 60-DUT large-area PFET population (40-nm technology);
and b) extracted (blue markers) versus theoretically calculated (red line) correlation coef-
ficients. Transistor dimensions are W=16 µm and L=0.2 µm; bias conditions are VGS =
1.1 V and VDS = 0.05 V.
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7.2.2.2 65-nm Technology

Since the correlation coefficient is independent of transistors parameters and tech-

nology process, different technology processes should yield similar results. For the small-

area NFET population shown in Figure 7.8, Lorentzian-like spectra are clearly visible. As

expected, the correlation coefficient is accurately predicted by the RTS-based model, de-

spite the larger drain voltage when compared to that used for the 40-nm technology.

Figure 7.8: a) LFN spectra of a 282-DUT small-area NFET population (65-nm technol-
ogy); and b) extracted (blue markers) versus theoretically calculated (red line) correlation
coefficients. Transistor dimensions are W=1 µm and L=0.06 µm; bias conditions are VGS
= 1.2 V and VDS = 0.5 V.
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For a large-area NFET population (Figure 7.9), the extracted correlation coeffi-

cient also indicates that a superposition of Lorentzians is the primary source of LFN,

despite the small number of visible lumps. Notice that, for this population, measurements
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above 10 kHz are unreliable due to the noise level being close or below the measurement

noise floor.

Figure 7.9: a) LFN spectra of a 282-DUT large-area NFET population (65-nm technol-
ogy); and b) extracted (blue markers) versus theoretically calculated (red line) correlation
coefficients. Transistor dimensions are W=10 µm and L=10 µm; bias conditions are VGS
= 1.2 V and VDS = 0.5 V.

Frequency (Hz)
101 102 103 104 105

S
I D

/I
D2

 (
H

z-1
)

10-17

10-16

10-15

10-14

10-13

10-12

10-11

Frequency (Hz)
101 102 103 104 105

C
or

re
la

tio
n 

C
oe

ff
ic

ie
nt

-0,2

0

0,2

0,4

0,6

0,8

1

Measurement
RTS-Based Model

a) b)

7.2.2.3 140-nm Technology

Similarly to the results obtained for the previous technologies, both small-area N-

and PFET populations display Lorentzian-like spectra (Figures 7.10 and 7.11), indicating

RTS-based LFN.

Figure 7.10: a) LFN spectra of a 43-DUT small-area NFET population (140-nm technol-
ogy); and b) extracted (blue markers) versus theoretically calculated (red line) correlation
coefficients. Transistor dimensions are W=0.232 µm and L=0.336 µm; bias conditions
are VGS = 1.0 V and VDS = 0.1 V.
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For the large-area devices (7.12 and 7.13), while the spectra are approximately

1/ f , i.e. lumps are not visible in the spectra, the correlation coefficient follows the be-
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Figure 7.11: a) LFN spectra of a 43-DUT small-area PFET population (140-nm technol-
ogy); and b) extracted (blue markers) versus theoretically calculated (red line) correlation
coefficients. Transistor dimensions are W=0.232 µm and L=0.336 µm; bias conditions
are VGS = 1.8 V and VDS = 0.1 V.
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haviour predicted by the RTS-based model. This trend was observed for all measured

technologies, reinforcing the idea that the 1/ f noise is composed by a summation of

Lorentzian-like spectra, regardless of device type and area.

Figure 7.12: a) LFN spectra of a 43-DUT large-area NFET population (140-nm technol-
ogy); and b) extracted (blue markers) versus theoretically calculated (red line) correlation
coefficients. Transistor dimensions are W=8 µm and L=1 µm; bias conditions are VGS =
1.0 V and VDS = 0.1 V.
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These results reinforce the validity of LFN models based on the summation of

individual telegraphic signals resulting in a 1/ f spectra. If there is a fundamental 1/ f

noise source underlying the LFN — from bulk mobility fluctuations, for instance —, its

effects are overshadowed by the Lorentzian-like PSD of the multiple RTS, as observed by

the autocorrelation coefficient analysis.
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Figure 7.13: a) LFN spectra of a 43-DUT large-area PFET population (140-nm technol-
ogy); and b) extracted (blue markers) versus theoretically calculated (red line) correlation
coefficients. Transistor dimensions are W=8 µm and L=0.16 µm; bias conditions are VGS
= 1.8 V and VDS = 0.1 V.
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7.3 Temperature Autocorrelation

The autocorrelation can also be analysed in terms of temperature shifts. Even

though 1/ f noise is known for being weakly temperature dependent, the sensitivity of the

autocorrelation technique proves useful to draw conclusions regarding the temperature

dependence of the characteristic time constant of the traps.

Three different trapping models were considered for comparison. The first is the

direct-tunnelling model (MCWHORTER, 1957), in which

τ = τo · exp(γz) , (7.14)

with z and γ being the trap depth in the oxide, and the wave function attenuation factor,

respectively. In this model, τ is unaffected by temperature shifts, causing the PSD dis-

tribution to be strongly correlated to itself, regardless of ∆T . This assumptions hold true

if the Fermi energy is weakly affected by the temperature shifts, which is reasonable for

strong inversion.

The second model introduces thermal activation (DUTTA; HORN, 1981; SURYA;

HSIANG, 1988) using

τ = τo · exp
(

EB

kT

)
, (7.15)

where EB is an activation energy. In this model, increasing temperature reduces τ , shifting

the entire LFN PSD towards higher frequencies, causing de-correlation at fre f . Notice that

for a wide spread of activation energies, this shift means the number of traps in a given
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interval of time constants increases.

The third model is the Kirton and Uren model (KIRTON; UREN, 1989). It com-

bines tunnelling and thermal activation, and is given by

τ =
1

nvthσ0
· exp

(
γz+

EB

kT

)
· β

1+β
, (7.16)

where n, vth, and σ0 are the carrier concentration, thermal velocity and capture cross-

section pre-factor, respectively. For all models, z and EB were assumed uniformly dis-

tributed. As observed by (KIRTON; UREN, 1989; VANDAMME; HOOGE, 2008), (7.16)

does not produce a log-uniformly distributed random variable for EB and z uniform,

though the resulting PSD is approximately 1/ f .

Figure 7.14 shows the measured correlation coefficient between different temper-

atures for two NFET populations. The theoretical correlation coefficient was calculated

numerically using the three models introduced above.

Figure 7.14: Correlation coefficient as a function of temperature (Tre f = 25 °C) at 100 Hz
for a) two independent 80-DUT NFET populations (1× 0.04 µm2) and b) two indepen-
dent 78-DUT NFET populations (1×1 µm2). The first population of each geometry was
measured at -25 °C, 0 °C, and 25 °C; whereas the second was measured at 25 °C, 50 °C
and, 75 °C. All populations were measured on the same wafer.
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The decorrelation observed in Figure 7.14 with increasing ∆T indicates that, at the

reference frequency (100 Hz), different traps are responsible for the LFN PSD at different

temperatures. Two explanations are possible for the observed behaviour, however. The

first, previously discussed, is that the characteristic time constant of the traps is tempera-

ture dependent; in this case, with increasing temperature traps become faster, causing the

entire noise PSD to shift towards higher frequencies. The second is the case in which dif-

ferent traps are active altogether when temperature is modified, causing the LFN spectrum
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to change its shape entirely with temperature.

While the analysis in Figure 7.14 is not sufficient to clarify on the matter, a com-

bined temperature and frequency correlation analysis, presented in the following section,

provides an answer to this question.

7.4 Temperature and Frequency Correlation

In the previous section it was established that temperature shifts cause the de-

correlation of the LFN PSD at a given frequency, even though it was not possible to

determine whether the temperature affects the occupation probability of the traps (i.e. the

β parameter) or the characteristic time constant of the traps (τ). If the first assumption

is true — that is the β parameters is responsible for the observed de-correlation with

∆T — then different traps are responsible for the noise PSD at different temperatures,

meaning the correlation would drop at all frequencies with increasing temperature. On

the other hand, if the second assumption is true — τ is thermally activated — then the

same traps would be responsible for the noise PSD at a different temperature; however,

their influence would be shifted in frequency.

While the findings of Dutta and Horn (1981) as well as the analysis of individual

Lorentzians presented in Section 6.5 point towards a thermally activated τ , these tech-

niques are inadequate for a statistical analysis. The first — the Dutta and Horn identity

— requires several temperature measurements (thus, is suitable for individual devices),

while the second — the analysis of individual Lorentzians — requires identification of

PSD profiles that are not present in large area devices. Conveniently, if the correlation

technique presented in this work is applied to the measured data, combining both tem-

perature and frequency correlations. (R
[
SID( fre f ,Tre f ),SID( fre f +∆ f ,Tre f +∆T )

]
), it is

possible to statistically demonstrate that the time constants of the traps are thermally acti-

vated, for both small-area (in which Lorentzian profiles are visible) and large-area devices

(in which the LFN PSD is approximately 1/ f ).

Figures 7.15 and 7.16 display the extracted correlation coefficient as a function of

frequency and temperature for a reference frequency of 1 kHz and a reference tempera-

ture of 25 ºC for two NFET populations from the same wafer (symbols). The prediction

given by the theoretical model, calculated numerically using the Kirton and Uren model,

is also presented (solid line). At ∆T = 0 ºC the analysis is reduced to the frequency auto-

correlation. Notice, however, that as ∆T increases the peak of the correlation coefficient
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Figure 7.15: Correlation coefficient extracted from measured data (symbols) from two
80-DUT NFET, 40-nm technology, populations (A and B) from the same wafer. Each
population was measured at three temperatures as shown in the legend. Device geometry
is W = 1µm and L = 0.04µm; Tre f = 25 ºC and fre f = 1 Hz; bias conditions were a)
VGS = 1.1 V, VDS = 0.1 V and b) VGS = 0.7 V, VDS = 0.5 V. Solid lines indicate theoretical
prediction.
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is shifted in frequency. This provides strong indication that the "shape" of the PSD is

unaltered with temperature, but shifted in frequency; in other words, it is an indication

that the same traps are active at different temperatures (i.e. their occupation probability,

β is primarily unaffected with temperature), but their characteristic time, τ , is strongly

temperature dependent. This is in line with the concept that τ decreases with increasing

T. This is a well-known observation for RTS, but is now also revealed in the context of

1/ f noise.

Despite the fact that the frequency-temperature autocorrelation follows the now-

familiar bell shape, it does not fully reach 1 when ∆T > 0, which indicates that the

stochastic process underlying the LFN contains at least two independent stochastic com-

ponents as is, e.g., the case for the Kirton and Uren model. Figure 7.17 illustrates the

difference between the correlation coefficient estimation using thermal activation and us-

ing Kirton and Uren model.

Due to the complexity of measuring the same device several times (e.g. degrada-

tion of the pads), each population was split into two groups. The first, named group A,



105

was measured at -25 ºC, 0 ºC and 25 ºC; while the second, group B, was measured at

25 ºC, 50 ºC and 75 ºC.

Figure 7.16: Correlation coefficient extracted from measured data (symbols) from two
78-DUT NFET, 40-nm technology, populations (A and B) from the same wafer. Each
population was measured at three temperatures as shown in the legend. Device geometry
is W = 1µm and L = 1µm; Tre f = 25 ºC and fre f = 1 Hz; bias conditions were a) VGS =
1.1 V, VDS = 0.1 V and b) VGS = 0.7 V, VDS = 0.5 V. Solid lines indicate theoretical
prediction.
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Figure 7.17: Estimated correlation coefficient using thermal activation (dashed lines) and
the Kirton and Uren model (solid lines).
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7.5 Gate Voltage Autocorrelation

The proposed technique can also be applied to study the gate voltage depen-

dence of the LFN PSD. From the RTS and bias temperature instability (BTI) framework,

the capture and emission time constants are expected to be strongly gate bias depen-

dent. Therefore, the β parameter (the ratio between capture and emission time con-

stants), which describes how much a given trap contributes to noise power (maximum

contribution when τc = τe), should also be gate bias dependent. Simply put, given that

β = τe/τc = exp[(ET −EF)/kT ], if the trap energy, ET , is close to the Fermi energy, EF ,

then τc ≈ τe, causing the trap to switch often, in which case the trap contributes signifi-

cantly to noise power. Thus, since EF varies with gate bias, different traps are expected

to contribute to noise power at different gate biases. In order to demonstrate that shifts in

gate bias indeed have a profound effect on the contribution of a single trap to noise power,

as predicted by the RTS model, the frequency and gate bias autocorrelations are analysed

in tandem (R[SID( fre f ,VGS,re f ),SID( fre f +∆ f ,VGS,re f +∆VGS)]).

In figures 7.18 and 7.19, the correlation coefficient as a function of frequency

and gate bias was extracted for two NFET and two PFET 60-DUT, 40-nm technology,

populations, respectively. The significant drop in the correlation with increasing ∆VGS

demonstrates that there is a strong dependence of β with VGS. It is important to notice

that, contrary to the temperature and frequency autocorrelation, there is no clear shift in

the peak of the correlation coefficient, indicating the β parameter was more significantly

affected than τ (i.e. traps did not become overall faster of slower with increasing ∆VGS;

their overall contribution to noise power was modified with increasing ∆VGS).

Figure 7.18: Extracted correlation coefficient as a function of frequency and gate bias for
two 60-DUT NFET populations (40-nm technology). The reference gate bias is 0.9 V and
drain bias is 50 mV.
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Figure 7.19: Extracted correlation coefficient as a function of frequency and gate bias for
two 60-DUT PFET populations (40-nm technology). The reference gate bias is 0.9 V and
drain bias is 50 mV.
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Notice, however, the observed de-correlation with ∆VGS may be attributed to ET

or EF ; that is, not only may EF depend on gate voltage, but also ET . Typically, if traps

are assumed to be located at the oxide/semiconductor interface, then ET is constant, with

only EF bias dependent. If, on the other hand, the trap is assumed to be at a certain depth

within the oxide, then ET and EF are both bias dependent. The dependence of ET on the

electric field across the oxide is given by

ET = ET 0 +qztrEox (7.17)

where ET 0 and ztr are the trap energy in flat band conditions and trap depth, respectively;

and the electric field, Eox, is given by

Eox =
1

Tox
(VGB−VFB−φs) (7.18)

where VGB, VFB, φs and Tox are the gate to substrate voltage, flat band voltage, surface

potential and gate oxide thickness, respectively. The impact of trap depth on the bias

dependence of the trap energy is illustrated in Figure 7.20, in which the transition from

weak to strong inversion (∆VGS,1) and the application of an additional voltage in strong

inversion (∆VGS,2) are shown.

In the first case, notice that both EF−Ev and Eox increase with ∆VGB,1, causing the

trap to shift from well above EF to slightly below EF . In the second case, however, fur-

ther increases in VGB barely affect EF , primarily increasing Eox. If the trap were located

at the semiconductor/oxide interface, then ∆ET would be equal to zero. Due to the trap

depth however, ∆VGB,2 causes the trap to shift from slightly below EF to deeply below EF .
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Figure 7.20: MOS capacitor energy band diagram for three different gate bias conditions
(Vblue <Vred <Vgreen).
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Consequently, if traps are located inside the oxide and not at the semiconductor/oxide in-

terface, increasing ∆VGS may cause significant de-correlation even if EF remains roughly

constant.

Figure 7.21 displays the estimated correlation coefficient from a generic device

(VT ≈ 0.65V ), using the Monte Carlo simulation tool, assuming traps are located at the

interface and 0.5 nm inside the gate oxide. The comparison between measured and sim-

ulated results indicate that, on average, traps are not located at the interface, but rather

inside the oxide, so that ET is also bias dependent. One should be aware, however, that

Figure 7.21: Estimated correlation coefficient versus frequency for different gate voltages
applied using Monte Carlo simulation. Solid black line is the frequency correlation at
the reference gate voltage (0.9 V). Solid lines (blue and red) are the estimated correlation
coefficient assuming traps are located at the interface for 0.7 V and 1.1 V, respectively;
dashed lines (blue and red) are assuming traps are located approximately 0.5 nm inside
the gate oxide for 0.7 and 1.1 V, respectively.
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the estimation of the Fermi energy through basic semiconductor equations may not be

adequate for sub-micrometer devices. Therefore, in order to properly estimate the aver-

age trap depth using the proposed technique, additional analyses, supported by TCAD

simulations, are required for future studies.

7.6 Drain and Source Swap

Another interesting analysis is presented in Figure 7.22, in which the LFN PSD of

a population of thick gate oxide PFETs is measured twice, swapping the drain and source

terminals. Due to the symmetry of the MOSFET, the average value and the variance

of the noise are similar regardless of which terminal is taken as drain or source. The

correlation coefficient, however, is strongly dependent on the region of operation of the

device. This is a consequence of the trap impact dependence on the position along the

channel. Following number fluctuation solely,

E
[
∆ĨD(xtr)

]
=

1
N(xtr)+(kBT/q2)(Cox +CD +Cit)

, (7.19)

where N(xt) is the surface carrier density at position xtr.

Figure 7.22: Correlation coefficient of the LFN PSD at 20 Hz as a function of gate voltage
for a 68-DUT PFET population measured swapping the drain and source terminals (solid
blue dots). Black dashed line obtained through Monte Carlo simulation of 5,000 devices.
The threshold voltage of the devices is approximately 0.5 V.
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In weak inversion, the channel is not yet formed; due to the low surface carrier den-

sity, the trap impact is dominated by the oxide capacitance, which is position independent.

Therefore, correlation coefficient is high, given that the impact of a trap is independent of

its position along the channel.

As gate voltage increases, the channel is formed; however, given that VDS >VGS−



110

VT the device operates in saturation region. In this region, the surface carrier concentration

varies along the channel, thus the trap impact becomes position dependent. Traps near

the pinch-off region become more prominent due to the lower surface carrier density, a

effect which is enhanced by the pocket (halo) implants, availing to the observed drop in

correlation.

Further increasing the gate voltage causes the device to operate in linear region

(VDS < VGS −VT ), causing the surface carrier concentration to become approximately

constant along the channel for sufficiently high gate voltages. The trap impact becomes

again position independent, and, therefore the correlation coefficient increases.

For the Monte Carlo simulation presented in Figure 7.22, the surface carrier den-

sity, required in (7.19), was obtained through numerical solution of the 1-d Poisson equa-

tion of the MOSFET. The trap impact as a function of position for three different gate

voltages are presented in Figure 7.23. As expected, in subthreshold and linear region,

VGS = 0.45 V and VGS = 2.4 V, respectively, E
[
∆ĨD(xtr)

]
is approximately constant, and

can be approximated by q2/(kBTCox) and 1/N, respectively. On the other hand, when

VGS −VT ≈ VDS, E
[
∆ĨD(xtr)

]
is strongly position dependent, since the surface carrier

concentration, N, is also position dependent. It is important to observe that the purpose

of the Monte Carlo simulation is to provide the qualitative behaviour of the correlation

coefficient across multiple gate voltages for a generic device population. This means that

the simulation was not parametrized to represent the measured 65-nm technology (with

the exception of the threshold voltage).

Figure 7.23: Average trap impact as a function of trap position for three different gate
voltages.
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The trap impact as a function of channel position for different device geometries

and biases was more deeply explored through TCAD simulation by Banaszeski da Silva

et al. (2016), accounting for non-uniform channel doping.
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7.7 Summary and Discussions

The correlation coefficient methodology developed and presented in this chapter

provided strong indication that the low-frequency noise in the analysed CMOS technolo-

gies is primarily composed by a superposition of Lorentzians, reinforcing trapping/de-

trapping noise models. No evidence was found to support bulk mobility fluctuations in

these devices. Moreover, it was demonstrated that the characteristic time constant of these

Lorentzians is temperature dependent, in line with a thermally activated process, as pro-

posed by Dutta and Horn (1981), Surya and Hsiang (1988), and Kirton and Uren (1989).

Additionally, the results indicate that the gate bias primarily affects the occupation

probability of the traps — i.e. the ratio between capture and emission time constants —,

but not necessarily their characteristic time constants. Also, the observed de-correlation

when gate bias is varied in strong inversion indicates that traps are located within the

oxide rather than at the oxide/semiconductor interface.

Finally, by swapping the source and drain terminals, it was demonstrated that trap

impact is strongly position dependent when the device is operated in saturation, which

must be accounted for in LFN models. This is particularly important for modern CMOS

technologies due to channel engineering. Pocket implants, for instance, may enhance

trap impact, causing both the expected value and the variance of the LFN to significantly

increase, as demonstrated by Banaszeski da Silva et al. (2016).
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8 FINAL REMARKS

In this work, a new technique for low-frequency noise analysis has been pro-

posed, in which autocorrelations between LFN spectra at different frequencies, biases,

and temperatures are investigated. The strength of the method lies in the fact that dif-

ferent physical models yield significantly different predictions for these autocorrelations.

Additionally, being a statistical method, it captures the dominant behaviour of the entire

population, despite the subtleties of individual devices.

An analytical model for the correlation coefficient as a function of frequency was

derived from the RTS-based framework and compared to extracted correlation coeffi-

cient from measured data from three different CMOS mixed-signal technologies. The

comparison reinforced that the 1/ f noise in MOSFETs is composed by a summation of

Lorentzians.

The temperature dependence of the LFN was also evaluated using the autocorrela-

tion technique; the extracted correlation coefficient as a function of frequency and temper-

ature was compared to a RTS-based numerical model. The results provided a strong case

for predominantly thermally activated time constants for the trapping process, in accor-

dance with the temperature dependence observed by Surya and Hsiang (1988) and Kirton

and Uren (1989), which should be accounted for in compact LFN models.

A similar analysis was conducted in terms of the gate bias, which indicated that,

while gate bias has no noticeable impact on the characteristic time constant, it significantly

affects trap occupancy, i.e. which traps contribute more significantly to noise at a given

condition. Monte Carlo simulations were employed to evaluate the impact of trap depth

within the oxide on the correlation coefficient, suggesting that traps might not be located

at the interface.

Also, by swapping the drain and source contacts it was possible to observe that trap

impact is significantly affected by trap position. Therefore, for accurate LFN modelling it

is imperative to account for the non-uniform channel doping of modern MOSFET devices.

Overall, the measured data from three different commercial CMOS mixed-signal

technologies provide strong support for an LFN model based on the sum of thermally

activated random telegraph signals for all measured N-and PFETs, regardless of device

area. No evidence supporting bulk mobility fluctuations was found.

The methodology presented in this work can be applied to study LFN in advanced

CMOS technologies (such as FinFETs) and in other device structures (such as bipolar
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junction transistors). These analysis avail the understanding and quantification of the

physical mechanisms underlying LFN in new devices and materials.
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