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ABSTRACT

Natural language processing systems often rely on the idea that language is composi-
tional, that is, the meaning of a linguistic entity can be inferred from the meaning of its
parts. This expectation fails in the case of multiword expressions (MWEs). For example,
a person who is a sitting duck is neither a duck nor necessarily sitting. Modern computa-
tional techniques for inferring word meaning based on the distribution of words in the text
have been quite successful at multiple tasks, especially since the rise of word embedding
approaches. However, the representation of MWEs still remains an open problem in the
field. In particular, it is unclear how one could predict from corpora whether a given
MWE should be treated as an indivisible unit (e.g. nut case) or as some combination of
the meaning of its parts (e.g. engine room). This thesis proposes a framework of MWE
compositionality prediction based on representations of distributional semantics, which
we instantiate under a variety of parameters. We present a thorough evaluation of the
impact of these parameters on three new datasets of MWE compositionality, encompass-
ing English, French and Portuguese MWEs. Finally, we present an extrinsic evaluation
of the predicted levels of MWE compositionality on the task of MWE identification. Our
results suggest that the proper choice of distributional model and corpus parameters can

produce compositionality predictions that are comparable to the state of the art.

Keywords: Distributional semantics. Multiword expressions. Compositionality. Id-

iomaticity.



Modelos distribucionais para a predicao

de composicionalidade de expressoes multipalavras

RESUMO

Sistemas de processamento de linguagem natural baseiam-se com frequéncia na hipotese
de que a linguagem humana é composicional, ou seja, que o significado de uma entidade
linguistica pode ser inferido a partir do significado de suas partes. Essa expectativa falha
no caso de expressoes multipalavras (EMPs). Por exemplo, uma pessoa caracterizada
como pao-duro nao é literalmente um pao, e também nao tem uma consisténcia molecular
mais dura que a de outras pessoas. Técnicas computacionais modernas para inferir o
significado das palavras com base na sua distribui¢do no texto vém obtendo um consi-
deravel sucesso em miiltiplas tarefas, especialmente apds o surgimento de abordagens de
word embeddings. No entanto, a representacao de EMPs continua a ser um problema em
aberto na area. Em particular, nao existe um método consolidado que prediga, com base
em corpora, se uma determinada EMP deveria ser tratada como unidade indivisivel (por
exemplo olho gordo) ou como alguma combinagao do significado de suas partes (por exem-
plo tartaruga marinha). Esta tese propoe um modelo de predi¢do de composicionalidade
de EMPs com base em representagoes de semantica distribucional, que sao instanciadas
no contexto de uma variedade de parametros. Também é apresentada uma avaliagao mi-
nuciosa do impacto desses parametros em trés novos conjuntos de dados que modelam
a composicionalidade de EMP, abrangendo EMPs em inglés, francés e portugués. Por
fim, é apresentada uma avaliagdo extrinseca dos niveis previstos de composicionalidade
de EMPs, através da tarefa de identificacdo de EMPs. Os resultados obtidos sugerem que
a escolha adequada do modelo distribucional e de parametros de corpus pode produzir

predicoes de composicionalidade que sao comparaveis as observadas no estado da arte.

Palavras-chave: Semantica distribucional. Expressoes multipalavras. Composicionali-

dade. Idiomaticidade..
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1 INTRODUCTION

The ever-growing presence of computers in our society has put forward an increas-
ing demand for new ways of dealing with human-generated content. The field of Natural
Language Processing (NLP) has the goal of mediating this interaction between computers
and human language, ranging from the interpretation of written texts on the web to the
interaction with spoken commands on hand-held devices. A common theme to many of
the NLP tasks is the requirement of semantic interpretation (i.e. determining the meaning
of the text).

One of the most fundamental assumptions in the field of semantics is that the
meaning of a phrase, expression or sentence can be determined from the meanings of its
parts. Part of the appeal of this principle of compositionality' is that it implies that a
meaning can be assigned by humans even to sentences that have never been seen before,
through the combination of the meaning of familiar words (GOLDBERG, 2015). In the
case of NLP, semantic composition can also be an attractive way of deriving the meaning
of larger units from their smaller parts. By employing the principle of compositionality,
one could design generic NLP systems, able to perform the semantic interpretation of any
text.

The representation of the meaning of individual words and their combinations
in computational systems has often been addressed by distributional semantic models
(DSMs). DSMs are based on Harris’ distributional hypothesis that the meaning of a
word can be inferred from the context in which it occurs (HARRIS, 1954; FIRTH, 1957).
In these models, words are usually represented as vectors that, to some extent, cap-
ture cooccurrence patterns in corpora. These vectors are assumed to be good proxies
for meaning representations. Traditionally, a vector can be built for a target word by
explicitly counting all its cooccurrences with context words (LIN, 1998; LANDAUER,;
FOLTZ; LAHAM, 1998). These models, also known as count-based models (BARONTI;
DINU; KRUSZEWSKI, 2014), result in sparse vectors that are often projected into a low-
dimensionality space using a statistical technique such as singular value decomposition.
The more recent neural-network models, often referred to as word embeddings, also rep-
resent words as real-valued vectors projected onto some low-dimensional space, but these
are obtained as a by-product of training a neural network to learn a function between

words and their contexts (MIKOLOV et al., 2013).

L Attributed to Frege (1892/1960).
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Evaluation of DSMs has focused on obtaining accurate semantic representations
for single words, and it is on this basis that many optimizations have been proposed (LIN,
1999: ERK; PADO, 2010; BARONI; LENCI, 2010). For instance, state-of-the-art models
are already capable of obtaining a high level of agreement with human judgments for pre-
dicting synonymy or similarity between single words (FREITAG et al., 2005; CAMACHO-
COLLADOS; PILEHVAR; NAVIGLI, 2015; LAPESA; EVERT, 2017). Although there
seems to be a reasonable understanding of the strengths and weaknesses of vector rep-
resentations for single words, the same is not true for larger units such as sentences.
There exist some proposals for modeling the composition of individual words to cre-
ate representations for larger units such as phrases, sentences and even whole documents
(MITCHELL; LAPATA, 2010; MCCARTHY; KELLER; CARROLL, 2003; REDDY; MC-
CARTHY; MANANDHAR, 2011; MIKOLOV et al., 2013; FERRET, 2014). They include
the use of simple additive and multiplicative vector operations (MITCHELL; LAPATA,
2010), syntax-based lexical functions (SOCHER et al., 2012), and the application of ma-
trices and tensors as word-vector modifiers (BARONI; LENCI, 2010; BRIDE; CRUYS;
ASHER, 2015). These operations usually assume the principle of compositionality when
building representations for larger units.

However, this assumption is challenged in the case of idiomatic expressions, whose
meanings may not be straightforwardly related to their parts (SAG et al., 2002). In
fact multiword expressions (MWESs) display a wide spectrum of idiomaticity, from more
compositional to more idiomatic cases (BALDWIN; KIM, 2010). For instance, although
the meaning of olive oil can be derived from its parts (as oil extracted from olives),
this is not the case for snake oil, which is used to refer to any product of questionable
benefit (not necessarily oil and certainly not extracted from snakes). Such constructions
are notoriously challenging for semantically-focused systems, as they are very numerous
in a speaker’s lexicon (JACKENDOFF, 1997), but they are often not compositional.
For example, a non-compositional expression such as dead end should not be literally
translated into French as *fin morte, as it would lose its intended meaning. It is therefore
crucial to determine to what degree the principle of compositionality applies to a specific
expression to ensure its correct semantic interpretation.

The task of compositionality prediction consists in assigning a numerical score to
a word combination indicating to what extent the meaning of the whole combination can
be directly computed from the meanings of its component words. This score can then

be used to decide how the combination should be represented in downstream tasks and
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applications. Given that idiomatic expressions are quite frequent in human languages,
compositionality prediction is relevant to any NLP task and application that performs
some form of semantic processing. For instance, in machine translation, idiomatic ex-
pressions must be translated as an indivisible whole (CAP et al., 2015; SALEHI et al.,
2015; CARPUAT; DIAB, 2010; REN et al., 2009). In semantic parsing, one needs to
identify complex predicates and their arguments to avoid erroneous analyses (JAGFELD;
PLAS, 2015; HWANG et al., 2010). For word-sense disambiguation, no sense should be
ascribed to the individual words pertaining to an idiomatic expression (SCHNEIDER et
al., 2016a; KULKARNI; FINLAYSON, 2011). In all of these cases, there is a need for the
preprocessing task of MWE token identification in running text, and this operation may
benefit from the availability of compositionality scores.

In this thesis, we discuss approaches for automatically predicting the composition-
ality of MWESs on the basis of their semantic representation and those of their component
words represented using DSMs. To determine to what extent these models are adequate
cross-lingually, we evaluate them in three languages, English, French and Portuguese.
Since MWEs encompass a large amount of related but distinct phenomena, we focus ex-
clusively on a sub-category of MWEs: nominal compounds (NCs).? Nominal compounds
(such as nut case or milk tooth) represent an ideal case study for the work in this thesis,
thanks to their relatively homogeneous syntax (as opposed to e.g. verbal idioms such as
take into account, which may take internal arguments and modifiers), as well as their per-
vasiveness in the languages under consideration. We assume that, in the future, models
able to predict the compositionality of nominal compounds could be generalized to include
other categories of MWEs by addressing their morphological and syntactical variability.

By using DSM instances to predict the compositionality of nominal compounds,
we are also indirectly evaluating those instances themselves. While evaluations of DSMs
based on single words abound, their evaluation on tasks involving MWEs are currently
lacking. Some notable exceptions include the works of Reddy, McCarthy and Manandhar
(2011), who compare additive and multiplicative combinations of traditional DSMs, and
of Salehi, Cook and Baldwin (2015) who look at addition-based models for compositional-
ity prediction using both traditional and neural-network DSMs (see Section 4.1 for more
details). However, these works do not explore the vast landscape of existing DSM config-
urations, and may be unable to draw conclusions that are generalizable across languages,

DSMs, their parameters and the corpora they are learned on.

2A generalization over compound nouns, see Section 2.3.1.
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The main goal of this thesis is to bridge this gap by presenting a framework for
MWE compositionality prediction along with a broad cross-lingual evaluation. We eval-
uate both intrinsically and extrinsically to what extent DSMs can accurately model the
semantics of NCs with various levels of compositionality compared to human judgments.

The following section details the contributions that allow us to reach this goal.

1.1 Contributions

The main contributions of this thesis are the following:

Compositionality dataset We construct and evaluate three datasets containing NCs rang-

ing from fully compositional to fully idiomatic. These NCs were manually annotated based
on their degree of compositionality. The datasets span multiple languages (English, French
and Portuguese), and can be useful in the evaluation of MWE compositionality prediction
techniques. Section 3.1 presents a detailed account of the data collection process. The

dataset has also been described in a publication (RAMISCH et al., 2016).

Dataset analysis We report the results of a thorough analysis of the three constructed

datasets, studying the correlation between compositionality and related linguistic vari-
ables. Part of these results has been published in Ramisch et al. (2016) (focusing on the
distribution of annotations) and in Cordeiro, Ramisch and Villavicencio (2016a) (focus-
ing on inter-annotator agreement). Section 3.2 expands on these results by analyzing the

correlation between human-rated scores and distributional characteristics of the NCs.

Compositionality prediction framework We propose a language-independent framework

for the prediction of the degree of compositionality in MWE expressions. As part of this
framework, we also systematize a set of parameters that can be evaluated across different
DSMs, allowing a sound comparison of multiple DSMs under a variety of settings. In
Chapter 4, we extend the underlying model with the possibility of six compositionality
prediction strategies — two of which are original strategies (mazsim and geom), proposed
in the scope of this thesis. The implementation of this framework is freely available as

part of the mwetoolkit. The predictive framework has been described in a publication

(CORDEIRO; RAMISCH; VILLAVICENCIO, 2016b).

Intrinsic evaluation We evaluate the proposed compositionality prediction model un-

der a variety of settings: different DSMs, different DSM parameters, different corpora
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parameters, different prediction strategies. Chapter 5 of the thesis extends these results
with predictions for Portuguese datasets, including previously unpublished results for one
DSM (lexvec) and multiple prediction strategies. We additionally evaluate corpus-specific
parameters such as corpus size and a new technique of parallel predictions. Furthermore,
we consolidate the interpretation of these results through a large set of previously un-
published sanity checks and detailed error analyses. The results have been published in

Cordeiro et al. (2016).

Extrinsic evaluation We perform an extrinsic evaluation of the proposed composition-

ality prediction model by using predicted scores as features in the task of MWE identifi-
cation. Chapter 6 presents the implementation of an MWE identifier based on syntactic
patterns (CORDEIRO; RAMISCH; VILLAVICENCIO, 2016¢), and compare its accuracy
with the one achieved by a technique of sequence modeling, with and without the help of

the predicted scores (SCHOLIVET; RAMISCH; CORDEIRO, 2017).

1.2 Investigated hypotheses

This thesis investigates a series of hypotheses concerning MWEs and their compo-
sitionality, both in relation to the human perception of compositionality and in relation
with DSM-based representations. The hypotheses described in this section guide our work
— whose main goal is to propose, implement and evaluate distributional methods for the

compositionality prediction of MWEs.

Central to this thesis is a framework of compositionality prediction based on DSM
representations of semantics. The main assumption behind this framework is that, when
the semantics of a compositional MWE can be derived from a combination of its parts,
this should be reflected in DSMs. In particular, the vector for the compositional MWE
should be similar to the combination of the vectors of its parts. Conversely we can use
the lack of similarity between the MWE vector representation and a combination of its
parts to detect non-compositionality. We formulate this assumption in the form of the
general hypothesis hyred-comp ~ comp: MWLE compositionality as assessed by human
annotators is correlated with compositionality predictions, where the predictions

are based on the distributional representation of MWE elements and MWESs themselves.

We begin our work with the construction of three datasets of nominal compounds
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with human-annotated compositionality scores. This dataset is analyzed so as to evaluate
the hypothesis higiom ~ qistr: idiomaticity is correlated with distributional charac-

teristics of MWEs. In particular, we consider the following sub-hypotheses:

* DNidiom ~ distr.freq L he level of idiomaticity of an MWE is positively correlated with
its frequency. The intuition is that exceptional constructions (such as idiomatic
MWESs) need to be frequent to ensure their survival in the language (PINKER,
1995).

e Nidiom ~ distr.convent ~ Lhe level of idiomaticity of an MWE is positively correlated
with its level of conventionalization. This follows from the literature on MWE type
extraction, which uses estimators of conventionalization to identify the idiomatic
expressions among a list of MWE candidates (FAZLY; STEVENSON, 2006; BU;
ZHU; LI, 2010; GURRUTXAGA; ALEGRIA, 2013; MAAROUF; OAKES, 2015).

For each dataset, we instantiate DSMs under a variety of configurations, gener-
ating a total of more than 8 thousand sets of compositionality predictions. We then
evaluate what kinds of variables may influence the accuracy of the highest-ranking config-
urations. We consider the general hypothesis haceur < Mwe: the accuracy of the model
depends on MWE-specific properties, and we formulate four non—mutually-exclusive

sub-hypotheses:

o hiccur « MWE.diom  The accuracy of predicted scores is higher for MWESs that were
classified by humans as more compositional (i.e. less idiomatic). The intuition is
that DSM representations should be more faithful to the reality for compositional
MWEs, which follow the regularities that are normally exploited in other works in

the literature (MITCHELL; LAPATA, 2010; MIKOLOV et al., 2013).

o Naccur « MwEdiie  The accuracy of predicted scores is lower for MWEs that are
more difficult to annotate for humans, as measured through the level of agreement
among annotators. The intuition is that one would expect the predictive model to
have difficulty in the same MWEs that posed a problem for humans, either due to
some inherent difficulty in the MWE or due to less reliability of the data.

e haccur « MWEfreq ~ The accuracy of predicted scores is positively correlated with
the frequency of the MWE in the corpus. The intuition is that low-frequency

expressions should have a less trustworthy representation inside DSMs.
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o Naccur « MWE.comvent  Lhe accuracy of predicted scores is positively correlated with
the conventionalization of the MWE. The intuition is that the elements of highly
conventionalized MWEs are more likely to share contexts, and thus have a more

compatible vector representation.

In addition to these MWE-centric hypotheses, we consider the specific choice of
DSMs and internal parameters in the task of compositionality prediction. The hypothesis
haceur « Dsum is that the accuracy of the model depends on DSM-specific parame-

ters. In particular, we consider two sub-hypotheses:

e Naccur  DSM.window  Lhe accuracy of compositionality prediction depends on the
amount of content that is taken into account at each occurrence of a word (i.e.
the size of the context window). More context should lead to a more precise

representation and thus result in better predictions.

o Naceur < DSM.dims The accuracy of compositionality prediction depends on the
number of dimensions in each vector generated by the DSM. A higher number of

dimensions should allow for a more fine-grained representation of the data.

Along with an influence from DSM-specific parameters, we also consider the impact
of different corpus-specific configurations. The hypothesis we evaluate is haceur « corpus:
accuracy of the model depends on corpus-specific parameters. We evaluate the

following sub-hypotheses:

e haccur « corpus.wordform Higher-quality compositionality predictions are obtained
when the corpus is preprocessed so as to reduce the sparseness of the word oc-
currences (e.g. through lemmatization). The intuition is that the reduction in
sparseness should allow DSMs to generate vectors from a more varied number of
contexts, and that these vectors would thus be more robust than the ones generated

without preprocessing.

e Naccur « corpussize  DSM representations built from larger corpora outperform rep-
resentations built from smaller corpora. The intuition is that more varied oc-
currences of each word allow the construction of DSM representations that more

faithfully correspond to the actual semantics.

e haccur « corpus.parallel Multiple parallel DSM representations built from different
parts of the corpora can be combined to achieve equivalent compositionality predic-

tions. The intuition is that these representations could still provide a high-quality
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description of the underlying semantics, while allowing for the final predictions
to be calculated through a combination of multiple computational resources (e.g.

computer clusters).

Regarding the compositionality prediction model, we consider six different predic-
tive strategies (defined in Section 5.4). The hypothesis hg¢ is that the accuracy of the
model depends on the predictive strategy. In particular, we consider these three

sub-hypotheses:

o Dgprat partialinfo  Predictions derived only from parts of an MWE (i.e. its syntactic
head) will be less accurate than predictions that consider all words in the MWE.
The intuition is that, by using only part of the available distributional information,
these strategies are limited in their ability of predicting the compositionality of the

MWE as a whole.

o Ngiratmaxsim e can improve the score prediction of compositional MWESs through
a strategy that favors compositional interpretations. More specifically, we can im-
prove predictions if we assign weights to the vector representation of each member
word of an MWE so as to maximize its compositionality score. The maxsim strat-

egy proposed in this thesis models this assignment of weights favoring composition.

e DNgtratgeom  We can improve the score prediction of idiomatic MWEs through a
strategy that favors idiomatic interpretations. More specifically, we propose the
geom strategy that multiplies individual predictions of compositionality for all
words in an MWE. If any word has been identified as idiomatic (i.e. having a small
level of compositionality), the compositionality score of the MWE as a whole will

be reduced.

One final hypothesis we consider is related to the use of predicted composition-
ality scores in an extrinsic evaluation. Here, we consider the task of MWE token iden-
tification, which can be seen as an important preprocessing step to semantic applica-
tions (such as machine translation or text simplification). The relevant hypothesis is
hpred-comp — ident-accur: Predicted compositionality scores are useful in the task of
MWE identification. This hypothesis is evaluated by a comparison of the accuracy of

the MWE identification with and without the use of predicted compositionality scores.



19

1.3 Context of the thesis

The work in this thesis has been produced as part of a joint supervision (cotutelle)
between two universities: Universidade Federal do Rio Grande do Sul (UFRGS, Brazil)
and the Aix-Marseille Université (AMU, France). I have spent part of my research time
in each university, and most of the publications derive from this cooperation.

This thesis is centered on the topic of multiword expressions (MWEs) and distribu-
tional semantic models (DSMs), which are two areas of research that have been growing
in the latest decade. The increasing interest in MWE research has been the main motiva-
tion behind the formation of the PARSEME network of researchers (ICT COST Action
IC1207). Some of the work done in conjunction with PARSEME researchers, notably the
shared task on verbal MWE identification (SAVARY et al., 2017b), falls out of the scope
of this thesis, but has been paramount to a broadening of my view of the field. Moreover,
part of the work described in this thesis was carried out in the context of PARSEME-FR
(ANR-14-CERA-0001), a French-language spin-off of PARSEME.

This thesis is also closely related to a software called mwetoolkit (RAMISCH,
2015), which was both used and extended during this thesis. The mwetoolkit is one of the
major resources published by the research group in the side of UFRGS, and it is currently
being maintained in joint work with Carlos Ramisch in AMU. The contributions from

this thesis are integrated and freely available as part of the mwetoolkit.?

1.4 Publications

I present below a list of papers that have been published or accepted for publication
during the period of my PhD studies. The papers that are directly relevant to the topic

of this thesis are the following ones:

o Cordeiro, Ramisch, Idiart, Villavicencio. Predicting the Compositionality of Nom-

inal Compounds: Giving Word Embeddings a Hard Time. In: ACL 2016.

o Ramisch, Cordeiro, Zilio, Idiart, Villavicencio, Wilkens. How Naked is the Naked
Truth? A Multilingual Lexicon of Nominal Compound Compositionality. In: ACL
2016.

3<http:/ /mwetoolkit.sf.net >


http://mwetoolkit.sf.net

20

Cordeiro, Ramisch, Villavicencio. mwetoolkit+sem: Integrating Word Embeddings

in the mwetoolkit for Semantic MWE Processing. In: LREC 2016.

Cordeiro, Ramisch, Villavicencio. Filtering and Measuring the Intrinsic Quality of

Human Compositionality Judgments. In: MWE 2016.

Cordeiro, Ramisch, Villavicencio. UFRGSE&LIF: Rule-Based MWE Identification

and Predominant-Supersense Tagging. In: SemEval 2016.

Scholivet, Ramisch, Cordeiro. Sequence Models and Lexical Resources for MWE
Identification in French. In: PMWE 2017. Submitted for review.

Wilkens, Zilio, Cordeiro, Paula, Ramisch, Idiart, Villavicencio. LexSubNC: A
Dataset of Lexical Substitution for Nominal Compounds. In: TWCS 2017.

Cordeiro, Ramisch, Villavicencio. Token-based MWE Identification Strategies in

the mwetoolkit. In: PARSEME 2015.

Cordeiro, Ramisch, Villavicencio. Nominal Compound Compositionality: A Multi-

lingual Lexicon and Predictive Model. In: PARSEME 2016.

Cordeiro, Ramisch, Villavicencio. MWE-aware corpus processing with the mwe-

toolkit and word embeddings. In: W-PROPOR 2016.

Other papers published (or submitted for review) during this period are not directly

implicated in the present thesis. Nevertheless, they all have in common the topic of MWE

processing and semantic representation:

o Savary, Ramisch, Cordeiro, Sangati, Vincze, QasemiZadeh, Candito, Cap, Giouli,

Stoyanova, Stoyanova, Doucet. The PARSEME Shared Task on Automatic Iden-
tification of Verbal Multiword Ezpressions. In. MWE 2017.

Zilio, Wilkens, Mollmann, Wehrli, Cordeiro, Villavicencio. Joining forces for mul-

tiword expression identification. In: PROPOR 2016.

Savary, Ramisch, Cordeiro, Candito, Vincze, Sangati, QuasemiZadeh, Giouli, Cap,
Stoyanova, Stoyanova, Doucet. The PARSEME shared task on automatic identifi-

cation of verbal multiword expressions. In: PMWE 2017. Submitted for review.
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« Savary, Candito, Mititelu, Bejéek, Cap, Céplo, Cordeiro, Eryigit, Giouli, Gompel,
Hacohen-Kerner, Kovalevskaite, Krek, Liebeskind, Monti, Escartin, Plas, Qasem-
izadeh, Ramisch, Sangati, Stoyanova, Vincze. PARSEME multilingual corpus of
verbal multiword expressions. In: PMWE 2017. Submitted for review.

1.5 Thesis structure

The remainder of this thesis is structured as follows:

o Chapter 2 presents the terminology and necessary background in the statistical
representation of languages. It also presents a literature review on MWE research,

as well as related work on the semantic representation of words and MWEs.

o Chapter 3 describes the methodology used in the construction of three new datasets
of nominal compounds annotated with compositionality scores. It also presents
an analysis of the score distribution and difficult of annotation, as well as the
correlation between the annotated score and distributional characteristics of the

MWEs.

o Chapter 4 presents our framework of MWE compositionality prediction, with a
detailed description of the experimental setup that will be used in the following

Chapter.

o Chapter 5 presents a large-scale intrinsic evaluation of our model of composition-
ality prediction against datasets of human-rated compositionality scores, focusing

on nominal compounds as a specific category of MWE.

o Chapter 6 presents an extrinsic evaluation of our model of compositionality pre-

diction, in the form of its application in the task of MWE identification.

o Chapter 7 presents some conclusions and perspectives of future work.
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2 BACKGROUND

This chapter describes the background information that is essential for the remain-
der of the thesis. Section 2.1 defines the basic terminology that will be used in the rest
of the thesis. Section 2.2 presents the use of statistics in NLP, going from co-occurrence
measures to evaluation methods. Section 2.3 then presents the motivation and challenges
associated with the research on MWESs. Finally, Sections 2.4 and 2.5 present an overview
of lexical semantic representations in NLP, on the level of single words and MWEs. Since
it constitutes the core of this thesis, the state of the art on compositionality prediction
will be presented later, in Section 4.1, along with the definition of the model that we

propose and evaluate.

2.1 Basic terminology

The work in this thesis focuses on the interpretation of written texts. Linguists
often classify the interpretation of texts into different layers of abstraction. For example,
consider the sentence “this student published a paper”. These are some of the levels in

which this sentence can be analyzed:

o Morphology: A word can change its base form to express a change of grammatical
category (derivational morphology; e.g. “publish” — “publisher”) or to represent a
variation such as gender, number or tense (inflectional morphology; e.g. “publish”

— “published”).

o Syntax: Just like morphology works on the level of words and their internal struc-
ture, syntax can be used to analyze sentences based on their internal structure
(word order). Such analysis, when applied to the above sentence, could inform
us that “published” is the main verb, and that “this student” and “a paper” are

respectively the subject and direct object of this verb.

« Semantics: The field of semantics looks at the meaning of words and phrases. For
example, although the word “paper” is often used as reference to the material that
is created from cellulose, in this particular context it should be interpreted as a

scientific document (e.g. it can be in electronic format).

o Pragmatics: While one may be able to build an accurate abstract mental model for
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a word such as “student” given only the surrounding words, the specific reference in
“this student” can only be resolved by taking the underlying context into account.
If this sentence is uttered by a person who is pointing at someone else, for example,

one may conclude through pragmatics who is the referent of “this student”.

In the area of NLP, the operations that can be performed on texts are usually
conceptually organized in tasks. Many of these tasks may take as an input a collection of
sentences and have as an output the same sentences with an added layer of information
(JURAFSKY; MARTIN, 2008). Tasks are often performed in succession as a pipeline,
where the output of a task is the input for the next one. These are some of the tasks that

are often performed in any end-to-end application in NLP involving text analysis:

o Tokenization: The goal of tokenization is to break a written text into tokens,
which correspond somewhat to the linguistic notion of words. While the precise
definition of word depends on language-specific semantics, a token is a pragmatic
concept used in NLP, and its definition will often vary depending on the tokenizer

at hand. For example, the sentence

Mr. Smith doesn’t eat bananas with a fork.
could be tokenized as such:

Mr. Smith does n’t eat bananas with a fork .

The punctuation associated with the abbreviations (e.g. “Mr.”) is often tokenized
along with the preceding characters, while the period at the end of the sentence
is considered a token apart. Also note that the contraction “doesn’t” may be
separated in two tokens, indicating the two underlying words “do+mnot”. The
use of tokens allows a trade-off between linguistic accuracy and practicality of

implementation.

o POS tagging: In a given context, every word can be associated with a grammatical
class, known as its Part-of-Speech (POS). The task of POS tagging consists in
identifying the POS of each token in the text according to a tagset. A list of POS

tags for the sentence above could be the following one:

PROPN PROPN AUX PART VERB NOUN ADP DET NOUN PUNCT
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These tags follow the Universal POS tagset, which standardizes a common set of

tags across a variety of languages (PETROV; DAS; MCDONALD, 2011).

Lemmatization: The goal of lemmatization is to identify a canonical form for the
tokens in the text. For each token in its surface form, the lemmatizer will produce
the corresponding lemma. For the example above, these could be the resulting

lemmas:
Mr. Smith do not eat banana with a fork .

Lemmatization is usually applied to neutralize distinctions caused by morphologi-

cal inflection (e.g. “publish/publishes/published/publishing” — “publish™).

Parsing: In the goal of understanding a sentence, it is often useful to have a
representation of how words are grouped to form larger structures. This syntactic
information can be encoded in different ways, and it usually corresponds to one of

two classes of grammar theories: phrase structure and dependency grammar.

Figure 2.1 presents a syntax tree for the sentence “this man eats bananas with a
fork” according to the phrase structure grammar. In this representation, words
that behave syntactically as a single unit are grouped as phrases (also known as
constituents). For example, the phrase “this man” behaves as a single noun, and

is thus grouped under a single node of the tree, known as a noun phrase (NP).

Figure 2.1: Representing syntax: constituency tree.

S
NP VP
/\
Det Noun
| |
this man Verb Noun PP
| |
eats bananas Prep NP

| P
with Det Noun

| |
a  fork
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In a dependency tree representation, words are connected by labeled edges, in
what is known as a dependency relation (see Figure 2.2). This relation connects
heads (e.g. a verb) to their dependents (e.g. a verb’s subject). The root of the tree
is usually the main verb (in the example, the verb eats), and everything else is

connected to this verb through a chain of dependency relations.

Figure 2.2: Representing syntax: dependency tree.

o |(@ ()

this man eats bananas with a  fork

Many works in NLP are centered around the idea of a corpus. A corpus is a
large body of (written or spoken) text that can be considered representative of a human
language (MITKOV, 2005). In NLP, this is often taken to mean that corpora should be
as large as possible. The construction of a corpus is often performed automatically (e.g.
by crawling the web), digitally storing the data according to some file format for further
processing. In the case of written corpora, the preprocessing pipeline may include tasks
such as the aforementioned tokenization, POS tagging and lemmatization.

One important distinction that must be made in NLP is the one between types and
tokens. While a given corpus may have many concrete instances of a given word (tokens),
it is often useful to talk about the unique concept that instantiated those tokens (the type).
In the same manner that tokens can be assembled in sentences to form corpora, types can
be assembled in dictionary entries. Such dictionaries are also known as lexicons, or more
generally as lexical resources. The set of all types instantiated in a corpus is known as its
vocabulary, which we will denote in this thesis as V.

Finally, most applications in NLP involve some kind of prediction, where the com-
putational system attempts to replicate the outcome that a human would have produced.
This prediction is then compared against a blind test set. Test sets are often handcrafted
based on direct human knowledge, which forms an authoritative sample of test cases and
their solutions (in which case it is also known as a gold standard). Some systems are de-

signed so as to perform their predictions solely based on a programmed algorithm. Others,
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known as supervised approaches, require a training set with examples from which the sys-
tem may learn to perform the predictions (MANNING; SCHUTZE, 1999; JURAFSKY;
MARTIN, 2008)

2.2 Language and statistics

Now that we have defined the basic terminology, we turn to a statistical view of the
properties of human language. We start with with some background on the occurrence
counts of isolated words (Section 2.2.1) and of word pairs in the same context (Sec-
tion 2.2.2). We then present measures of association between word pairs (Section 2.2.3).
We also consider the creation of human-rated datasets, focusing on measures of inter-rater
agreement (Section 2.2.4). Finally, we consider different ways of measuring the accuracy
of computational predictions of human annotation, both in the case of continuous data

(Section 2.2.5) and in the case of categorical data (Section 2.2.6).

2.2.1 Occurrence counts

Many properties of words can be inferred from their statistical behavior with re-
gards to human language. One of the simplest statistical measures that can be considered
is the number of occurrences of each word in a corpus. For example, consider the follow-
ing three toy corpora: English-language (EN) Wikipedia entry “U.S.A” French-language
(FR) Wikipedia entry “France” and Portuguese-language (PT) Wikipedia entry “Brasil”
(Brazil).! Table 2.1 presents the tokens with highest number of occurrences (#occur) in

each of these toy corpora.

Two notable categories of words can be seen in the table:

« Words that have been biased by the input corpus (e.g. States). These words are an
artifact of the chosen corpora, and would have a notably lower ranking in a more

general corpus.

"Wikipedia entries collected on 2017-08-10.
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Table 2.1: Most frequent words in toy corpus.

Rank #occur EN word #occur FR word #occur PT word
1 1256 the 1340 de (of) 770 de (of)
2 742 of 912 la (the) 460 e (and)
3 701 and 799 et (and) 401 do (of+the)
4 473 in 533 le (the) 349 a (the/to)
5 268 The 480 des (the/of+the) 323 o (the)
6 245 United 423 en (in) 233 em (in)
7 235 to 392 les (the) 204 da (of+the)
8 206 a 379 du (of the) 151 Brasil (Brazil)
9 191 States 365 a (to) 144 no (in+the)
10 186 is 286 est (is) 136 que (that)

« Words that only convey a general meaning (e.g. prepositions, articles), serving
mainly to connect other words according to the underlying grammar. These words
are known as function words, and contrast with the more semantically distinguished
content words (e.g. nouns, verbs). In NLP, a similar concept to function words is
the one of stopwords. When dealing with semantic tasks, one very common step
of corpus preprocessing involves the removal of stopwords from the text. The defi-
nition of stopwords may be based on their POS tag (e.g. removing all prepositions
from the text) or based on a list of e.g. the 50 or 100 words with the highest number

of occurrences in the corpus.

When looking at the number of occurrences per word, we can also see a clear
pattern: the number of occurrences of each word decreases proportionally to its ranking.
This pattern, known as Zipf’s Law, can more easily be seen in a graph, as in Figure 2.3,
which shows the number of occurrences of the top 50 most frequent words in the three
Wikipedia pages. If we consider the number of occurrences for the English word at rank
5, we see that it is about 5 times smaller than the number of occurrences for the word at

rank 1. Similarly, the word at rank 10 appears about 10 times less often in the corpus.

The above effects can be observed in all human languages, even in these severely
small corpora (e.g. the English toy corpus has less than 20 thousand tokens). When
comparing across different languages, one might be tempted to consider the number of

occurrences itself, but this number presents a pitfall: it is directly dependent on the size
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Figure 2.3: Most frequent words in toy corpus.
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of the corpus. An alternative solution is the use of frequency, defined as the ratio between

the number of occurrences and the size of the underlying corpus:

#occur(w)
f = —.
req(w) corpus size

Frequency values range between 0.0 and 1.0 regardless of corpus size, and can be thus

regarded as a normalized version of the number of occurrences.

2.2.2 Co-occurrence counts

Similarly to how one may derive statistical information from the occurrences of
isolated words, one may consider the statistical properties of pairs of words that co-occur
(i.e. that occur in the same context). Co-occurrence may be calculated based on syntactic
information (i.e. two words co-occur if they are connected in a dependency tree), or on a
sliding window of adjacent words (i.e. two words are considered to co-occur if there are
at most k other words in between). For example, Table 2.2 presents the top 10 most
frequent co-occurrences of the pattern “federal <moun>7” in the toy corpus, along with
their co-occurrence counts (#co-occur).? In this thesis, we will refer to every word of
interest (e.g. “federal”) as a target word. The words that co-occur with a target word will
be called context words (e.g. “government”, “courts”, etc).

This type of word-pair information is often structured as a co-occurrence matrix.

2Extracted using the sliding window method with k = 0 (i.e. only adjacent word pairs were considered)
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For a vocabulary V' of size |V, a co-occurrence matrix of dimension |V| x |V/| contains the
number of occurrences of each (target, context) pair as seen in the corpus. One can think
of these matrices as big square tables of numbers, with M, ; representing the value at row
i and column j. Words are mapped to row/column indexes (e.g. “government” could be
wordss), so that both row; and column; refer to word;. The co-occurrence between word;
and word, can then be obtained at the matrix position M;;. Due to the symmetry of

this statistical relation, the matrix position M ; yields the same result.

Table 2.2: Most frequent word pairs involving “federal”.

#co-occur  word pair

federal government
federal courts
federal district
federal level
federal taxes
federal debt
federal law

federal outlays
federal republic

DO NN N RO

According to the distributional hypothesis, the meaning of words is associated with
the context that they share. For the example in Table 2.2, all of these nouns have the
word “federal” as a context in common, from which we can infer that they have related
meaning. Moreover, the co-occurrence of two words can be seen as an evidence that
they are semantically “close” in a sense — e.g. these nouns are closer in meaning to the
word “federal” than other nouns not shown here. The underlying idea is that semantically
related words tend to be used together, and hence words that often appear together can be
assumed to be semantically related. For example, when talking about a “government”, one
will often use the word “federal”. Similarly, among all things “federal”, the “government”
is a notable example that will come to a speaker’s mind. Co-occurrence counts can also

be used to build vector models of word semantics (as presented in Section 2.4.2).
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2.2.3 Association measures

Lexical co-occurrence can be considered a rudimentary way of estimating the level
of association between a pair of words. Word association is a statistical property that
can indicate the predictability of a specific combination of words. For example, the word
“population” appears 41 times in the text, but since none of these is paired up with
the word “federal”, it is not taken into account when representing its semantics through
co-occurrence, suggested that these two words are not associated.

There is a downside to the use of co-occurrence counts as measures of association:
some word pairs may co-occur with high frequency solely due to the fact that one of the
words in the pair is frequent itself. For example, even in a syntactically restricted word-
pair pattern such as “federal <word>", the toy corpus contains 2 occurrences of “federal
and”, in the coordinations “federal and state” and “federal and military”. The word “and”
is not particularly meaningful to the definition of “federal”, and its co-occurrence with
“federal” is due to its high overall frequency (788 occurrences in the toy corpus).

Other measures can better capture the association between word-pairs by reducing
the effect of words that have high isolated corpus occurrence counts. One such measure

is the pointwise mutual information (PMI), which can be defined as

f
PMI(w;, ws) = log ( req(wiws) > .

freq(wi) - freq(w,)

PMI considers the co-occurrence frequency as well as the individual frequencies of the
words. Its value can range from negative infinity to positive infinity. In an extreme case,
if the word w, always appears alongside the word wy in the corpus, freq(w;) = freq(w;ws),
and thus PMI = log (W) = log (%), which can reach high values for moderate
numbers of occurrence of words. On the other hand, if word; appears too often by itself
and not as often in conjunction with wordsy, the denominator will be considerably high,
and thus the PMI between the two words will be the logarithm of a low number — i.e. a
low number itself (CHURCH; HANKS, 1990).

Table 2.3 presents the number of individual occurrences, word-pair occurrence and
PMI for the word pairs mentioned in Table 2.2. Note how the PMI is close to zero for the
non-associated word pair “federal and”, but is much higher when calculated between the

word “federal” and highly associated nouns (e.g. “government”). Moreover, even among

these associated pairs, we can see a distinction in the strength of PMI: the highest score



31

belongs to “federal outlays”, reflecting the fact that “outlays” only appears in the corpus
in conjunction with the word “federal”. A significantly lower score is obtained by “federal
law”; as the word “law” often appears in other contexts inside the corpus (with only 2

out of the 19 occurrences being the expression “federal law”).

Table 2.3: PMI between “federal” and associated nouns.

word;  wordsy #occur(wy) #occur(wy)  #co-occur PMI
federal government o4 38 9 4.4
federal courts 54 7 4 5.3
federal district 54 10 4 4.9
federal level 54 16 4 4.4
federal taxes 54 15 4 4.5
federal debt 54 9 2 4.3
federal law 54 19 2 3.6
federal outlays 54 2 2 5.8
federal republic 54 5 2 4.9
federal and 54 788 2 -0.1

The frequency value freq(wy) can be interpreted as the probability of a random
word being precisely wy. As a consequence of this, negative PMI values imply that the
word-pair is occurring less often than would be predicted by chance (through the multipli-
cation freq(wy) - freq(wy), which estimates the expected probability of two independent
words co-occurring). However, such negative scores are often deemed unreliable (JU-
RAFSKY; MARTIN, 2008). A common solution is to use Positive PMI (PPMI), which

eliminates the negative scores:

PPMI(wy, wy) = max{0, PMI(w;, ws)}.

Association measures are often used for the estimation of the level of convention-
alization of expressions. Conventionalization refers to the degree to which the specific
choice of words and word order can be seen as fixed in the language, when referring to a
particular concept. For example, while one may talk about the “forecast of the weather”,
there is a distinctive markedness to this choice of words, and native speakers are more
likely to refer to this concept as “weather forecast” instead. Constructions such as the
latter are thus said to be more conventionalized. They have also be described as colloca-
tions, i.e. statistically idiosyncratic word combinations (FARAHMAND; SMITH; NIVRE,
2015; BALDWIN; KIM, 2010).
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Other association scores include the Dice coefficient, Student’s t-test, x? tests, the
log-likelihood ratio test (DUNNING, 1993) and NPMI (BOUMA, 2009). A thorough
description of commonly used association measures, along with their evaluation in the

context of collocation extraction, can be found in Pecina (2010).

2.2.4 Inter-rater agreement measures

One of the goals of NLP is to be able to replicate human-like processing of natural
language. To this end, datasets containing human annotation of some linguistic phe-
nomenon are often useful in the tuning and evaluation of NLP systems. The construction
of these datasets may be performed by experts (with appropriate linguistic background),
or may be framed in such a way that the task may be performed by laypeople. In both
cases, there must be a set of guidelines, which instruct the annotator on what must be
annotated and provide a solution to common corner cases.

Human language can be often ambiguous (especially when it comes to semantics),
and this ambiguity may cause disagreement of annotation even among highly well-trained
experts. One indicator of the quality and objectivity of both the annotation guidelines
and the resulting dataset could be the fraction of annotations in which all annotators

agree:
cases of agreement

Pagree = N
& all annotations

In the case of two annotators, another solution would be to calculate the linear correlation
and categorical evaluation measures (see Section 2.2.5).

However, these measures do not take into account the probability of chance agree-
ment among annotators. For example, consider a POS-tag annotation task with an in-
ventory of 17 possible POS tags. Even if two annotators decide to assign POS tags
randomly to every word in the corpus, they will still be in agreement in around pepance =
1

7= = 0.058 = 5.8% of the cases. An alternative measure that does take this probability of

chance agreement into account is Cohen’s kappa coefficient (ARTSTEIN; POESIO, 2008):

Kk = Pagree — Pchance

1- Pchance

Kappa scores are usually lower-bounded by 0.0 (which indicates pure chance agreement),
and are always upper-bounded by 1.0 (which indicates perfect agreement). The kappa

score can be generalized for more than two annotators by using an appropriate estimate



33

of Pehance-

One downside of the kappa coefficient is the fact that it is restricted to categorical
data, with the same weight applied to all disagreements. An alternative measure that cal-
culates multi-annotator agreement while taking into account the distance between ordinal

ratings is Krippendorft’s alpha score (ARTSTEIN; POESIO, 2008):

D disagreement

a=1-— ,

D chance disagreement

in which the measure of disagreement D is an average of the variance in the distance

between ordinal ratings for all paired-up annotators.

2.2.5 Evaluation measures for continuous data

When dealing with large amounts of data, it is useful to have a way of summarizing
results. In particular, one often needs to measure how similar are two sets of numerical
scores. For example, consider Table 2.4, in which each word pair has been manually
annotated by a human rater based on the perceived level of association between the
words. While the human and PMI scores of each word pair can be individually compared
with ease, it is not immediately obvious whether the PMI values are a good estimation
of the human ratings. The similarity of these two variables can be calculated through

correlation measures.

Table 2.4: Human-rated association scores vs PMI.

word;  words Human score PMI score
federal government 6.0 4.4
federal courts 8.8 5.3
federal district 3.0 4.9
federal level 0.7 4.4
federal taxes 5.0 4.5
federal debt 2.2 4.3
federal law 1.5 3.6
federal outlays 9.5 5.8
federal republic 8.0 4.9

federal and 0.0 -0.1
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One way of calculating the correlation between two paired datasets X and Y (each
with IV elements) is through the covariance:

Y (X — X)(Y; —Y)
N -1

cov(X,Y) =

The covariance between human and PMI scores in Table 2.4 is 3.86. Covariance values
close to zero serve as an evidence that the datasets are not correlated: a positive deviation
from the mean in the first dataset (X; —X) is equally likely to be paired up with a positive
and a negative deviation in the second dataset (¥; — Y). Covariance values distant from
zero (whether negative or positive) indicate a tendency of both datasets towards higher
deviations for the same data points. The covariance score is upper-bounded by the max
of the variances 0?(X) and ¢%(Y), and is similarly lower-bounded by the min of —o?(X)

and —o?(Y"). The variance itself is calculated as a special case of the covariance:
o?(X) = cov(X, X).

For the values in Table 2.4, the variance in human scores was 12.16, while the variance in
PMI was 2.64. Variance scores are either 0.0 or positive, with higher values representing
data that differs more heavily from the average.

Covariance scores are generally deemed hard to interpret, as they depend on how
the datasets themselves deviate from the mean. One way of dealing with this difficulty is
to normalize the covariance based on the variance of both datasets. This is what is done

in Pearson’s r coefficient:

cov(X,Y)
r(X,Y)= ,
) Vo2(X) -\ Jo(Y)

This normalization permits a more straightforward interpretation of the correlation, as
Pearson scores range from —1.0 (perfect negative correlation) to 1.0 (perfect positive
correlation). A neutral score of 0.0 represents no correlation, and values in between
represent partial levels of correlation. The Pearson coefficient between human and PMI
scores in Table 2.4 is 0.68, indicating that the values are highly correlated.

Pearson scores measure the linear correlation between paired-up values from two
datasets. Sometimes, it may be considered more appropriate to interpret these values
as an indicator of the ranking of two data items instead. In this case, the correlation

between the values themselves may not be as interesting as the ability of both sets of
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scores to rank the items in the same order. Thus, an alternative measure of correlation is
Spearman’s p rank coefficient, which represents the linear correlation between the ranks

from two datasets. Spearman’s p can be defined in terms of Pearson’s r:

p = r(rank(X), rank(Y")),

where the rank operation maps increasing values in the dataset to consecutive integer

ranks. For example, for the human scores in Table 2.4, rank(X') would map [0.0, 0.7, 1.5 ... 9.5]
[#1, #2, #3 ... #10]. Similarly, rank(Y") would map PMI scores as [-0.1, 3.6, 4.6 ... 5.8] —

[#1, #2, #3 ... #10]. As in the case of Pearson, Spearman scores range from —1.0 (per-

fect negative rank correlation) to 1.0 (perfect positive rank correlation).

Figure 2.4 presents a graphical visualization of these two approaches:

e On the left, we see the PMI values as a function of human ratings themselves.

We can visually confirm a tendency of PMI scores to be higher for higher values
of human rating. Pearson’s r calculates the level of this correlation between the
values themselves (visually: how much the points in this graph resemble a straight

line). The Pearson coefficient in this example is 7 = 0.68.

e On the right, we see the PMI score ranks as a function of the rank of the human

ratings. Values in the x-axis were ordered based on successive ranks (e.g. 0.0 —
#1, 0.7 — #2, and so on). Successive ranks in the y-axis are indicated in little
squares (e.g. 5.3 — #9).3 In both axes, we see that consecutive points are separated
by an equal amount of space, regardless of the actual value, as each point is plotted
based on the successive integer ranks. Spearman’s p calculates the linear correlation
between these ranks (visually: how much the points in this graph resemble a

straight line). The Spearman rank coefficient in this example is p = 0.87.

3Tie-breaking is not performed in this example for 4.4 and 4.9. In the remainder of the thesis, tie-
breaking is performed by assigning the average of all tied ranks (e.g. 4.9 — #7.5).
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Figure 2.4: Visual representation of Pearson’s r (left) and Spearman’s p (right) between
human-rated association scores and PMI.
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2.2.6 Evaluation measures for categorical data

Correlation measures are able to adequately compare two sets of items with quan-
titative (e.g. real-valued) scores. However, they are unfit for comparisons involving quali-
tative categorical scores. The need for comparing categorical scores arises, for example, in
the task of POS tagging (see Section 2.1). Consider this sample excerpt from the English
toy corpus: “The first inhabitants of North America migrated from Siberia by way of the
Bering land bridge”. Table 2.5 presents an example of automatic system prediction of

POS tags along with the corresponding human-annotated POS tags.

Table 2.5: Human-annotated and system-predicted POS tags.

Word Human POS System POS
The DET DET
first ADJ ADJ
inhabitants NOUN NOUN
of ADP ADP
North PROPN NOUN
America PROPN PROPN
migrated VERB VERB
from ADP ADP
Siberia PROPN PROPN
by ADP ADP
way NOUN ADV
of ADP ADP
the DET DET
Bering PROPN PROPN
land NOUN VERB

bridge NOUN NOUN
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Consider the human and system annotations of the NOUN tag. Humans annotated 4
occurrences ( “inhabitants”;, “way”, “land”, “bridge”), while the system predicted 3 occur-
rences ( “inhabitants”, “North”, “bridge”). Out of these, 2 occurrences were true positives,
i.e. system predictions that matched human annotations ( “inhabitants” and “bridge”).
One way of summarizing the predictive quality of this system for NOUN tags is by means

of precision and recall:

true positives true positives
recall =

total system predictions’ total human annotations

precision =

The precision measures how many of the predictions were correct, while the recall mea-
sures how many of the tags were correctly predicted. These two measures are often further

combined into a single score using the harmonic mean, yielding the F; score:

2 2 - precision - recall

precision recall

precision + recall

Table 2.6 present these statistics for all POS tags, comparing human and system annota-
tions. In particular, it can be seen how the scores for NOUN were obtained: the precision of
2/3 represents the fraction of correct system predictions, while the recall of 2/4 represents

the fraction of human-annotated NOUN tags that were correctly found by the system.?

Table 2.6: Binary evaluation measures for POS-tag prediction.

POS tag Total Total True Precision Recall F,
human system Positives (TP /system) (TP /human)
ADJ 1 1 1 1/1 =1.00 1/1 =1.00 1.00
ADP 4 4 4 4/4 = 1.00 4/4 = 1.00 1.00
ADV 0 1 0 0/1 =0.00 0/0 = 1.00 0.00
DET 2 2 2 2/2 = 1.00 2/2 = 1.00 1.00
NOUN 4 3 2 2/3 = 0.67 2/4 = 0.50 0.57
PROPN 4 3 3 3/3 =1.00 3/4 =10.75 0.86
VERB 1 2 1 1/2 = 0.50 1/1 =1.00 0.67

In this thesis, we will also consider a variant of the F; score known as the Best
F; score (BF;). This measure is useful when comparing continuous system predictions

to categorical judgments in a dataset. It is obtained by calculating the F; score for the

4To handle edge cases, we define 0/0 as 1.0.
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top k entries classified as positive (i.e. the k highest-scoring system predictions), for all

possible values of k. In other words, for a dataset X ordered by predicted scores:
BF1<X) = ml?x Fl(Xlk)

This measure will be used in Chapter 5 when comparing the continuous predictions from

our system with the categorical judgments from the Farahmand dataset.

2.3 Multiword expressions

Sentences in human languages are more than an unordered collection of words. In
order to convey a specific meaning, the words in a sentence must be structured, grouped
so as to create phrases, which themselves can be recursively grouped until the whole
sentence has been internally connected. The semantics of the whole sentence can then be
derived from the semantics of its individual components and from the way in which they
relate to each other.

In every known human language, there is a class of expressions that does not nec-
essarily behave in this compositional manner, known as multiword expressions (MWEs).
Examples of MWEs would be the English verb—particle construction give up, the French
NC carte bleue (‘bank card’, lit. blue card), and the Portuguese idiom bater as botas (‘kick
the bucket, die’, lit. hit the boots). The meaning of an MWE is not always formed by the
application of regular rules from the grammar. Rather, each MWE constitutes a semantic
unit that spans over multiple lexemes (SAG et al., 2002), and which often needs to be
analyzed as an indivisible entity. MWHEs may present lexical, morphological, syntactic, se-
mantic, pragmatic and statistical idiosyncrasies (BALDWIN; KIM, 2010), as exemplified

below:

o Lexical idiosyncrasy: MWEs may contain words that do not otherwise exist in the

language, and thus cannot appear by themselves®

. Examples include EN of yore;
PT no entanto ‘however’ (lit. in-the entanto); and FR au fur et a mesure ‘in keeping

with’ (lit. to-the fur and to-the measure).

o Morphological idiosyncrasy: MWEs may contain words that do not respect the

normal rules of inflection, as in EN spill the beans, where the word bean must always

5Often called cranberry words.
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be pluralized; PT azul-marinho ‘navy blue’ (lit. marine blue), where the marine
adjective does not inflect; and FR grand-meére ‘grandmother’ (lit. big mother), where

the adjective big does not inflect.

» Syntactic idiosyncrasy: MWEs may not conform to the regular syntactic rules of
the language. Examples include EN by and large, which behaves as an adverb;
PT faz de conta ‘make-believe’ (lit. makes of account), which behaves as a noun;
and FR bon marché ‘cheap’ (lit. good market), which behaves as an adjective. In
the case of by and large, the MWE comprises a sequence of elements (preposi-
tion+conjunction+adjective) that would otherwise not even be allowed by the

grammar of the English language.

o Semantic idiosyncrasy: the meaning of the whole expression may not come from
the combination of the meaning of its parts. This can be seen in the idiomatic
meaning of an MWE such as EN to kick the bucket, with the equivalent PT bater as
botas (lit. to hit the boots) and FR casser sa pipe (lit. to break one’s pipe).

« Pragmatic idiosyncrasy: MWEs may only occur in a particular extra-linguistic
context, as in the case of EN all aboard, PT bom dia ‘good morning’ (lit. good day),

FR au revoir ‘goodbye’ (lit. to see-again).

o Statistical idiosyncrasy: the expression may have been conventionalized in a spe-
cific form, even though a substitution by a synonym could happen in principle.
This is the case of EN many thanks (compare with *a lot of thanks), PT café preto
(‘black coffee’, compare with *café negro), FR noir et blanc (‘black and white’,

compare with *blanc et noir).

Note that the definition of MWESs in the literature may exclude purely statistically
idiosyncratic expressions (also known as collocations). In this thesis, an MWE is under-
stood as a more general term that encompasses all types of idiosyncratic units that cross
word boundaries (SAG et al., 2002; BALDWIN; KIM, 2010), as the main interest of our
research is the variation of these expressions in a continuum of idiomaticity.

The idiosyncratic behavior of MWESs might lead one to think that such expressions
constitute rare exceptions in the language. However, estimations on the number of MWEs

in a given speaker’s lexicon may reach at least the same order of magnitude as the num-

ber of single words (JACKENDOFF, 1997). In the context of specialized domains, this
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number is expected to be even higher, as they naturally favor the apparition of multiword
technical terms (SAG et al., 2002).

The abundance of MWEs, coupled with the fact that their occurrences are not
obvious and their meaning is not predictable, contributes to making this an essential
topic of research for NLP (SAVARY et al., 2015). A correct analysis of MWEs is essential
to any computer application that has the goal of somehow interpreting written texts, such

as machine translation and text simplification.

2.3.1 Nominal compounds

A category of MWE that is of particular interest in this thesis is the nominal
compound. A nominal compound (NC) is defined as a syntactically well-formed and con-
ventionalized noun phrase containing two or more content words, the head of which is a
noun.® Such compounds can express different levels of semantic idiosyncrasy: their inter-
pretation may come directly from the meaning of its components (e.g. climate change),
or be highly idiomatic (e.g. cloud nine), with partially idiomatic cases in-between (e.g.
spelling bee, middle school) (NAKOV, 2013).

The syntactic realization of NCs varies across languages. In English, they are
often expressed as a sequence of nouns, usually N; Ny (with the head noun Ny modified
by Ni). This is the most frequent annotated POS-tag pattern in the MWE-annotated
English corpus DIMSUM (SCHNEIDER et al., 2016a). In French and Portuguese, NCs
often assume the form of ADJ N or N ADJ, where ADJ is an adjective that modifies the
head noun N. Examples of these constructions include the French ADJ N compound petite
annonce (‘classified ad’, lit. small announcement) and the Portuguese N ADJ compound
buraco negro (‘black hole’; lit. hole black). Additionally, NCs in the three languages
may also include prepositions that provide a hint on the role of the modifier noun with
respect to the head (e.g. the N PREP N compound rule of thumb). Most prepositions are
highly polysemous, and it is not clear how they should be represented in the context of
distributional semantic models. In the remainder of this thesis, we will focus on 2-word
NCs that follow the form Ny Ny (in English), N ADJ (in Portuguese and French) and ADJ

N (in the three languages).

8The terms noun compound and compound noun are usually reserved to noun-noun compounds. These
are typical of Germanic languages, but not as common in Romance languages.
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2.3.2 Type discovery

The goal of MWE discovery is to automatically find new MWESs in corpora, collect-
ing these MWEs in a lexicon for future use (CONSTANT et al., 2017). The earliest works
toward MWE discovery and lexicon building involved attempts at extracting collocations.
These are expressions that present some level of statistical idiosyncrasy, regardless of other
levels of idiosyncrasy. By taking into account some statistical measures, pairs of collocated
words could be extracted from corpora with high accuracy (SMADJA, 1993).

Subsequent works have applied linguistic knowledge in order to target specific
categories of MWE, such as noun compounds (e.g. milk tooth), verb—particle constructions
(e.g. look up) and light-verb constructions (e.g. take a shower) (JUSTESON; KATZ,
1995; FRANTZI; ANANIADOU; MIMA, 2000; STEVENSON; FAZLY; NORTH, 2004;
EVERT; KRENN, 2005). More recent works also focus on more general type-independent
approaches to MWE discovery (SERETAN, 2011; AGRAWAL; AGGARWAL et al., 2013;
TSVETKOV; WINTNER, 2014).

MWE discovery techniques usually rely on word frequency and association mea-
sures, which are inexpensive language-independent methods of detecting the conventional-
ization of MWEs. The construction of such MWE lists can be greatly simplified by using
an MWE extractor, such as the mwetoolkit (RAMISCH, 2015). This toolkit includes
multiple tools for MWE discovery and manipulation, including an extraction algorithm
that builds upon the notion of regular-expression patterns to match token properties.
For example, given a noun compound pattern such as (Noun Noun™) and a POS-tagged
corpus, the extraction yields all occurrences of at least two subsequent nouns in the text.
The mwetoolkit can then be used to calculate association measures and to filter out MWE
candidates.

A major downside of such commonly used extraction techniques is that they do
not take semantic information into account when filtering MWE candidates. One of the
contributions of this thesis is an extension of the mwetoolkit that calculates whether an
extracted expression can be treated as a combination of its parts or whether it should be

treated as a standalone semantic unit (see Chapter 4 for more details).
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2.3.3 Token identification

While MWE type discovery focuses on building lexicons of new MWE types, token
identification has the goal of automatically annotating the tokens that correspond to an
MWE occurrence in running text (CONSTANT et al., 2017). The accurate identification
of MWE tokens is a fundamental task in the pipeline of many NLP applications. For
example, MT systems need to know when a group of words must be translated as a unit,
and parsers need to recognize the cases where a seemingly unrelated group of words should
be joined as a single lexeme or constituent.

Identification of MWE tokens in corpora usually requires an MWE lexicon as input,
and can be seen as a tagging process, akin to POS tagging. The goal is to look for
occurrences of MWEs in a corpus and to output an augmented version of the corpus
that explicitly indicates where each expression occurs. This indication can range from
simply joining the MWE components as a single word (using a special “MWE separator”
character) to more complex metadata representations, such as indicating each MWE by
the index of its component tokens (SCHNEIDER et al., 2016a; SAVARY et al., 2017c).

MWE identification tools such as jMWE (KULKARNI; FINLAYSON, 2011) are of-
ten used to annotate sentences based on preexisting lexicons. Finite-state transducers
can also be used to take into account the internal morphology of component words and
perform efficient tokenization based on MWE dictionaries (SAVARY, 2009). The prob-
lem of MWE identification has also been modeled using supervised machine learning,
where the data is encoded in a begin-inside-outside scheme, from which one can learn se-
quence taggers such as CRFs (CONSTANT; SIGOGNE, 2011; SCHNEIDER et al., 2014;
SCHOLIVET; RAMISCH; CORDEIRO, 2017).

These solutions have some shortcomings. One of the problems is that MWEs do
not always appear contiguously in the text. For example, they may contain internally
inserted modifiers or arguments, as in the expressions to give [something] up and to take
[a very long] shower. In such cases, contiguous identifiers will fail to detect these MWEs.
One way of dealing with this problem would be the use of parsing-based approaches
(CONSTANT; NIVRE, 2016), but these require the existence of annotated treebanks for
training, which are not available for most languages.

Another shortcoming of using separate tools for type discovery and token identifi-
cation is that one misses the opportunity of sharing information. This has negative results

both in terms of CPU time and in the inability to guarantee that all MWE candidates
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extracted by one tool have been projected back onto the source corpus by the other tool.
One of the contributions of this thesis is an extension of the mwetoolkit that identifies
MWE occurrences in text. The implementation addresses the latter by allowing the inte-
gration of type and token identification in the same pipeline, and the former by enabling
non-contiguous matches (e.g. eat [food] up, as in eat that wonderful chocolate cake up) and
optional and variable elements in MWEs (e.g. throw [person] to the lions/wolves). See
Section 6.1.1 for more details.

MWE token identification is also closely related to the problem of disambiguation
in lexical semantics (SCHNEIDER et al., 2016a). For example, a machine translation
system would need to decide whether an expression such as a piece of cake should be
interpreted as a single unit (e.g. the test was a piece of cake) or as a composition of
its parts (e.g. he just ate a piece of cake), so that it may translate it into an equivalent
meaning in the target language. Semantically-aware MWE token identification is a current
topic of research (CONSTANT et al., 2017).

In this thesis, we will focus on MWE type-level compositionality prediction. The
work on token-level identification is seen as a means to an end: collecting candidate MWE

tokens so as to be able to calculate type-level semantics.

2.4 Word semantics

In the past years, NLP work on lexical semantics has been shifting from a focus on
symbolic representations (often in the form of handcrafted resources) to more numerical
techniques that can automatically extract word representations from large bodies of text.

We present below an overview of both approaches.

2.4.1 Symbolic representations

One of the earliest formal representation of semantics was the one promoted by
Montague during the 1960s and 1970s. This approach relied on the use of formal logic
to treat natural language semantics in the same rigorous way as Chomskian grammar
would deal with syntax. The resulting Montague Grammar is still today an active area of
research in the field of Linguistics (PARTEE, 2014). Words are defined as sets of elements:

the noun house stands for the set of everything that could be considered a house, while the
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adjective yellow would be seen as the set of all things yellow. A yellow house would then
be anything in this intersection (BARONI; ZAMPARELLI, 2010). This representation is
somewhat limited, as can be seen in the expressions red watermelon (inside) versus green
watermelon (outside).

The meaning of individual words may also be approximated through a set of se-
mantic labels. This is the approach used in SemCor, one of the earliest sense-annotated
corpus for the English language. SemCor was constructed by tagging the content words
in the Brown corpus based on a set of semantic sense labels” (LANDES; LEACOCK;
TENGI, 1998). More recently, the STREUSLE corpus of web reviews has been annotated
in terms of on noun, verb and preposition supersenses. Supersense tags (such as person,
location, and event) are a more coarse-grained way of representing the semantics that
allows some level of comparability between different words (CIARAMITA; JOHNSON,
2003; SCHNEIDER et al., 2016b).

Another way of representing semantics is through a graph, where each node repre-
sents a different meaning®, and edges represent some kind of relation between those mean-
ings. For example, a graph of hypernymy relations (i.e. word generalizations) could con-
tain nodes such as DOG, MAMMAL and ANIMAL, with edges connecting DOG—MAMMAL as
well as MAMMAL—ANIMAL. Lexical databases have been constructed for some languages,
with the most prominent example being the hand-crafted WordNet (FELLBAUM, 1998),
which includes relations such as hypernymy, meronymy (i.e. part—whole), and antonymy
(i.e. words with opposite polarity) for the English language. Such databases require ded-
icated human work for each word in the language, requiring periodic updates to keep in
line with the lexical evolution of the language over time.

Automatically-created databases are a current topic of research, and may be a more
feasible alternative to manual annotation (especially for languages that dispose of fewer
financial resources), at the expense of accuracy (NAVIGLI; PONZETTO, 2012). Such
resources may be created from parallel texts, determining the semantics of each word
based on its possible translations (GANITKEVITCH; DURME; CALLISON-BURCH,
2013). However, this approach is inherently reliant on the alignment of large amounts of

parallel data, which is a scarce resource for most languages.

"The sense labels correspond to WordNet synsets.
8Words that may refer to the same meaning are grouped in what is known as a synset, so e.g. the
words dog and hound could be part of a synset called DOG.
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2.4.2 Numerical representations

While symbolic approaches often require an impractical amount of high-quality
data for a given language or domain, numerical solutions such as distributional semantic
models (DSMs) tend to be more malleable in their requirements. DSMs use context
information (such as the co-occurrence matrix, described in Section 2.2) to represent the
meaning of lexical units in the form of numerical vectors. The central idea is that the
meaning of a word is naturally learned by human beings based on the contexts where it
appears — or, as popularized by Firth (1957), “you shall know a word by the company
it keeps”. Distributional models can be built from any large-enough corpus, and do not
particularly require any level of data preprocessing.

Consider the target—context matrix in Table 2.7. Each row corresponds to a target
word (fish, dog, cat) followed by its context vector. Each dimension in the context vector
represents a measure of co-occurrence between the target (e.g. dog) and a context that
was seen close to this target in a corpus (e.g. swim). For example, the target fish has a
co-occurrence of 1 in the dimension labeled leg and a co-occurrence of 8 in the dimension

labeled swim.

Table 2.7: Matrix with targets (rows) X contexts (columns)

vocabulary leg swim

w; fish 1 8
wy dog 7 3
wsg cat 9 2

The essence of DSMs consists in treating each of these rows as a numerical D-
dimensional representation of its target word (with D = 2 in this toy example). The
assumption is that the meaning of a word can be derived from this vector. For example,
the word cat would be represented as the vector v(ws) = [9,2]. Figure 2.5 presents a
visual representation of these vectors. The results exemplify something that is often seen
in DSMs: because both words dog and cat have a numerical representation that is strongly
associated with leg and weakly associated with swim, their vectors are closer to each other,

from which we can infer that dog is overall more similar to cat than it is to fish.
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Figure 2.5: DSM vectors of the target words “fish”, “dog” and “cat”, considering the
contexts “lex” and “swim”.

(1, 8) fish

(7, 3) dog

swim

' (9, 2) cat

Y

leg

The similarity between the vector representation of two words can be mathemati-
cally measured through the use of a function such as the cosine, which can be defined for
two n-dimensional vectors as their normalized dot product:

( ) V- W
cos(V,w) = ————
’ v - wl”
where |v| represents the norm of the vector v. This definition can be further expanded

as:

cos(v,w) = Zima Vi Wi ,

\/Z?:l vi o \/Z;'Ll w}
The cosine has a value closer to 1 for vectors that are closer to each other and closer
to 0 for vectors that are perpendicular in most dimensions.” In the case of DSMs, this
perpendicularity indicates that those vectors do not share many distributional features,
and might suggest that they are not semantically related. Other measures could be used
for measuring word vector similarity, in particular the euclidean distance. One of the
advantages of the cosine is the fact that it is invariant with regards to vector length
(which is not usually considered meaningful in a DSM representation).

Formally, distributional semantic models attempt to encode the representation
of each word in a vocabulary V as a vector of real numbers RIY!. Traditionally, this
representation is built by weighting the level of co-occurrence of all pairs of words. This
weighting can either be done by counting the number of co-occurrences (BARONI; DINU;
KRUSZEWSKI, 2014) or by calculating some measure of the association between target

9The cosine can also be negative, e.g. the vectors point to opposite directions in most dimensions.
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and context, such as the PPMI (LEVY; GOLDBERG; DAGAN, 2015). Words are usually
deemed to co-occur if they appear in the text under a small fixed-size window of words.
Alternatively, some works define co-occurrence based on whether the two words share
a syntactic dependency relation (LIN, 1998; PADO; LAPATA, 2007). In all cases, the
result is a target—contexts mapping M = V x RVl where many of the context weights
are zero (as most word pairs in V' x V' will almost never co-occur), and it is thus often
implemented as a sparse matrix. A threshold on the number of word pair co-occurrences
is often applied to discard low weights.

An alternative to working on a sparse representation is the use of word embed-
dings, in which the vectors are transformed so as to have a significantly smaller number
of dimensions.'® Two solutions are commonly employed in the literature: global contexts
and dimensionality reduction. In the case of global contexts, only the top k most fre-
quent words are considered as contexts, producing a |V| x k matrix (SALEHI; COOK;
BALDWIN, 2014; PADRO et al., 2014). A second alternative is the use of dimensionality
reduction techniques. Assuming that all vectors represent data points on a space whose
mean is g = 0, a technique known as single value decomposition (SVD) may be used to
transform the matrix rows M;..M,, in such a way that the largest variance now occurs
on M;; (i.e. maximizing the variance o?(M; 1)), the second largest variance on M; 5, and
so on. Only the first £ components of each vector are then kept; the rest is discarded.
The rationale is that higher variances represent actual structure, while lower variances
represent noise in the data.

SVD achieves its results through a matrix factorization technique (SHLENS, 2014).

Formally, it decomposes the matrix M,,y, into three other matrices:
M = Ume ’ men ’ annu

where U and V' specify rotations and ¥ is a diagonal matrix which specifies a scaling
operation. The product UY has the aforementioned property in which lower indexes
correspond to higher variances. It can be truncated into an m x k matrix for smaller
values of k, effectively obtaining a version of M that has a reduced number of dimensions.
Similar methods have also been published focusing on factorizing the logarithm of the
co-occurrence matrix (PENNINGTON; SOCHER; MANNING, 2014) and factorizing a
matrix of PPMI values (SALLE; VILLAVICENCIO; IDIART, 2016).

0Fach of these smaller vectors is then called a word embedding.
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Another word embedding technique is the one adopted by word2vec, which trains
a neural network in a task that involves predicting target—context relationships. Two
approaches have been proposed: training a network to predict a target word given a
window of surrounding contexts, known as the Continuous Bag-of-Words (CBOW) model;
and training a network to predict likely contexts for a given target, known as the skip-
gram model (MIKOLOV et al., 2013). Figure 2.6 presents the general architecture of both
approaches, for a window of 2+2 words around each target. In both cases, input words are
represented as a one-hot vector in {0,1}Vl. Each entry in the input vector is connected
to a hidden layer of d neurons, which learns to generate an RVl output that predicts'! the
one-hot vector of w; (for CBOW) or its contexts (for skipgram). After training, the input
weights from the hidden layer are then taken as the set of d-dimensional word embeddings.
In both word2vec approaches, the network automatically adapts itself to encode useful

semantic information as a side effect of trying to solve its prediction task.

Figure 2.6: Architecture of word2vec (CBOW and skipgram).
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When building a distributional semantic model, there are some common parame-
ters that must be considered, but that are orthogonal to the choice of DSM technique.
One of the main considerations is the type of information that will be provided for each
word in the corpus: using the word’s surface form may generate a sparser model (due to
inflections), while using the lemma may merge unrelated occurrences, ignoring relevant
morphological distinctions. The use of POS tags may also contribute to disambiguate
polysemous words (e.g. compare the circle with we circle), but it risks the introduction
of tagging errors. Another consideration is the removal of stopwords: common function
words (such as the, of, and for) do not contribute much to the semantics of the text,

and their removal may allow DSM techniques to better capture relevant co-occurrence

HUDuring training, the output layer is followed by a softmax layer, which generates the probability for
each element in V' (and which is compared to the one-hot in the output).
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patterns in the text. In Chapter 5, we present some contributions to the understanding

of how these parameters affect different DSMs.

2.5 MWE semantics

Human language is often modeled as though it were compositional, i.e. assuming
that the meaning of the whole can be built from the meaning of its parts. However, MWEs
may display a wide range of idiomaticity, ranging from compositional cases (e.g. tennis
championship) to idiomatic non-compositional cases (e.g. gravy train). For the latter, the
meaning of the expression cannot be understood directly from the meaning of its parts
(e.g. a gravy train refers to a low-effort lucrative endeavor). Even when there is a level of
compositionality in the expression, the contribution of each word may vary considerably,
independently from its status as a syntactic head or modifier, as tears (head) in crocodile
tears versus cash (modifier) in cash cow. In this section, we present the state-of-the-art
approaches towards the representation of compositional and idiomatic MWE semantics,

using symbolic as well as numerical representations.

2.5.1 Symbolic representation

In the case of compositional MWEs, Lauer (1995) argues that prepositions (such
as from, for, in) can be used to classify the role of each component (e.g. olive oil is oil
from olives). These prepositions are explicitly part of some NCs in Romance languages
(e.g. FR huile d’olive and PT azeite de oliva). More generally, Girju et al. (2005) present
and compare several inventories of semantic relations between nouns inside NCs, ranging
from fine-grained to coarse senses. These relations include syntactic and semantic classes
such as subject, instrument and location.

Free paraphrases have also been used to model compositional MWE semantics
based on the meaning of the components. Nakov (2008) suggests using unsupervised
generation of paraphrases combined with web search engines to classify NCs. This was
further extended in SemEval 2013, in a task where free paraphrases were ranked accord-
ing to their relevance for explicitly describing the underlying semantic relations in the
compounds (HENDRICKX et al., 2013). For instance, with respect to the expression flu

virus, the paraphrases at the top of the rank contained verbs such as cause, spread and
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create (i.e. virus that causes/spreads/creates the flu).

Regarding the representation of idiomatic MWEs, lexical resources such as the
aforementioned WordNet (FELLBAUM, 1998) will often include them alongside single
words. However, the drawbacks from single-word lexical resources still hold true for
MWEs. In particular, for automatically constructed lexicons, the relatively lower fre-
quency and high syntactic variability of MWEs may exacerbate the discrepancy between
single-word and MWE coverage even further.

Regarding the representation of idiomatic MWEs, some works extend the super-
sense approach used for single words to identify every MWE as an indivisible unit pertain-
ing to a semantic class. Recent versions of the SemCor corpus (LANDES; LEACOCK;
TENGI, 1998) annotate MWEs as well as single-word units based on a set of supersenses
derived from top-level WordNet hypernym senses. A similar approach is adopted by
the STREUSLE corpus, which contains supersense labels for nouns, verbs and preposi-
tions, both when acting as single words and as part of an MWE (SCHNEIDER et al.,
2014a; SCHNEIDER et al., 2016b). This latter corpus was also extended in the DIMSUM
shared task, with the joint goal of token-based MWE identification and sense disambigua-
tion (SCHNEIDER et al., 2016a).

2.5.2 Numerical representation

Numerical approaches to MWE semantic representation usually focus on a contin-
uum of compositionality ranging from very compositional expressions to very idiomatic
ones. The meaning of an MWE is then expressed through a numerical compositionality
score. A low score indicates a completely idiomatic meaning, while a high composition-
ality score indicates that the meaning of the MWE comes directly from its parts. For
example, using a range from 0 to 1, the idiomatic expression sitting duck could be asso-
ciated with the compositionality score 0.2, while the compositional expression swimming
pool could be assigned a high score such as 0.9.

Separate scores can also be used to represent the literality associated with each
individual word (REDDY; MCCARTHY; MANANDHAR, 2011). For example, the ex-
pression spelling bee could be 80% literal with regards to spelling and 0% literal with
regards to bee, while milk tooth could be 20% literally related to milk and 100% related
to tooth.

The meaning of an MWE can also be specified in terms of its conventionalization
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(FARAHMAND; SMITH; NIVRE, 2015). Just like compositionality scores can distinguish
MWE:s in a continuum of idiomaticity, conventionalization scores can be used to identify
the level of perceived statistical idiosyncrasy in an expression. For example, the expression
tap water could be considered 20% conventionalized, while spelling bee could be judged
as 100% conventionalized. Note that conventionalization does not imply idiomaticity
(e.g. time machine is highly conventionalized while being fairly compositional), and both
measures could be used in a single dataset to more precisely specify the semantics of an
expression.

Annotating the semantics of MWESs is a considerably hard task, and annotators
may disagree on the exact compositionality score. Therefore, scores are often average
among multiple annotators. One source of divergence that may be found among an-
notators is that some datasets do not take polysemy into account, as the authors ask
annotators to think about the most common sense of an MWE without providing any
context. Some of these datasets address this issue by providing example sentences to
attenuate this problem.

Numerical scores can sometimes be considered a more flexible alternative to sym-
bolic representations of semantics. For one, they allow the interpretation of composition-
ality in a continuum, which is in line with the perception that the meaning of some MWHEs
can be more easily guessed than the meaning of the others. Numerical representations
can be more readily applied in other numerical contexts, such as DSM representations of
semantics.

Numerical representations also allow for fine-grained distinctions that are not pos-
sible in a strictly categorical setting. For example, while one may stipulate the categories
idiomatic and compositional, any further attempts at representing partial levels of com-
positionality would rely on an (implicit) ranking among the categories, tending towards
the numerical representations. The possibility of fine-grained distinctions can also be seen
as one of the major downsides of numerical scores, as it may introduce uncertainty into
the dataset due the subtle differences with which different people see the MWEs. Sym-
bolic representations may also be preferable in the case of highly polysemous MWEs, as
the distinction between the multiple senses may not be feasible with bases on commonly

studied dimensions such as compositionality or conventionalization.
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2.5.3 Compositionality datasets in the literature

We present below a list of relevant datasets representing MWHEs alongside human-

rated compositionality scores:

Baldwin and Villavicencio (2002) collected binary type-level judgments for 3078
English phrasal verbs. Each entry is classified by two experts as either composi-
tional (e.g. give back) or idiomatic (e.g. pull over), with 14% of the MWEs in the

dataset being judged as idiomatic.

McCarthy, Keller and Carroll (2003) present a dataset of 116 English verb—particle
constructions, annotated with type-level compositionality scores by three native
speakers, on a scale ranging from 0 (idiomatic) to 10 (compositional). Five of
these were unknown to at least one judge, and were removed from the dataset for

their experiments.

Bannard (2006) collected binary judgments for 160 English verb—particle construc-
tions. In this work, compositionality judgments for each expression were collected

from multiple annotators, allowing more fine-grained distinctions in idiomaticity.

Reddy, McCarthy and Manandhar (2011) collected judgments for a set of 90
English noun—noun and adjective—noun compounds, in terms of three numerical
scores: the compositionality of the compound as a whole and the literal contri-
bution of each of its parts individually, using a scale from 0 to 5. Compounds
included in the dataset were selected to balance frequency range and degree of
compositionality (low, middle and high). The dataset was built through crowd-
sourcing, and the final scores are the average of 30 judgments per compound. This
dataset will be used in our intrinsic evaluation experiments in Chapter 5, where it

will be referred to simply as Reddy.

Gurrutxaga and Alegria (2013) had three experts classify 1200 Basque noun—verb
expressions according to one of three possibilities: idiomatic, compositional collo-

cation, or free combination.

Roller, Walde and Scheible (2013) collected judgments for a set of 244 German
noun-noun compounds, each compound with an average of around 30 judgments

on a compositionality scale from 1 to 7, obtained through crowdsourcing. The

resource was later enriched with feature norms (ROLLER; WALDE, 2014).
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o Farahmand, Smith and Nivre (2015) had 4 experts annotate 1042 English noun—
noun compounds. Each annotator provided binary judgments for every MWE re-
garding idiomaticity (non-compositionality) and conventionalization (when a par-
ticular choice of words has been crystallized as part of the language, even if syn-
onyms would have been understandable). A hard threshold can be applied so that
compounds are considered as non-compositional if at least two annotators say so
(YAZDANI; FARAHMAND; HENDERSON;, 2015), and the total compositionality
score is given by the sum of the 4 binary judgments. This dataset will be used in

our intrinsic evaluation experiments in Chapter 5, where it will be referred to as .

« Walde et al. (2016) collected judgments for a set of 868 German noun-noun com-
pounds, with human judgments of compositionality ranging on a scale of 1 to 7.
The dataset is also annotated for in-corpus frequency, productivity and ambiguity,
and a subset of 180 compounds has been selected so as to be balanced with respect
to these variables. The different annotations were performed by the paper au-
thors, linguists, and through crowdsourcing. A similar dataset has been collected

for verb—particle constructions (BOTT et al., 2016).

Some of these datasets were constructed with binary judgments, while others were
constructed with a more malleable representation of idiomaticity, requesting human raters
to specify their judgment over a range of possible values. Note, however, that even
binary judgments could constitute a numerical dataset. As long as there are enough
annotators, the average of the judgments can be taken as a numerical estimate of its
perceived idiomaticity.

While the compositionality judgments from the datasets above could be used by
themselves as features to semantic tasks such as MWE token identification (described in
Section 2.3.3), the size of these datasets may be a limiting factor in the results obtained.
On the other hand, these datasets are particularly useful as a way of evaluating the quality
of automatic models of compositionality prediction (which themselves may then be used
to predict the compositionality of a much larger set of MWESs). In Chapter 3, we present
three new datasets with human annotation of compositionality scores. Chapter 5 then
evaluates a framework of compositionality prediction on these new datasets, alongside

with the Reddy and Farahmand presented above.
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3 COMPOSITIONALITY DATASETS

As we have seen in Chapter 2, MWE compositionality can be modeled in terms
of the contribution of meaning of each element toward the meaning of the whole. Some
numerical datasets have been proposed in the literature, but they are restricted to English
and German MWEs. Moreover, in the former language, only one relatively small dataset
contains non-categorical compositionality scores.

In this chapter, we describe the construction of three new datasets of human-
annotated compositionality scores for nominal compounds (NCs). These datasets are
necessary for our evaluations of compositionality prediction models (reported in Chap-
ter 5). The resources encompass: 180 French nominal compounds (FR-comp); 180 Brazil-
ian Portuguese nominal compounds (PT-comp); an extension of the English-language
Reddy dataset with 90 additional compounds (EN-compg), for a total of 180 English
compounds (Reddy*™).

The work presented in this chapter has also been described in three published
papers (RAMISCH et al., 2016; CORDEIRO; RAMISCH; VILLAVICENCIO, 2016a;
WILKENS et al., 2017). For French and Portuguese, this is the first human-rated dataset

of nominal compound compositionality.

3.1 Data collection

For each of the 3 target languages (English, French and Portuguese), quantitative
measures for the level of compositionality of the nominal compounds in the dataset were
collected through crowdsourcing. Non-expert participants were asked to judge each com-
pound in the context of three sentences where the compound displayed the same sense,
followed by an evaluation of the degree to which the meaning of the compound is related
to the meaning of its individual parts. This follows from the assumption that a fully com-
positional expression will have an interpretation whose meaning comes from both words
(e.g. lime tree, which is effectively a tree of limes), while a fully idiomatic compound
will have a meaning that is unrelated to its components (e.g. nut case, which refers to
an eccentric person and is not related to nuts or cases). This work follows the protocol
from Reddy, McCarthy and Manandhar (2011), where the compositionality is explained
in terms of the literality of the individual parts. This type of indirect annotation of com-

positionality is less specialized, and does not require expert linguistic knowledge, while
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still providing reliable data, as will be shown later.
For each language, data collection involved the following four steps: compound

selection; sentence selection; questionnaire design; and questionnaire application.

3.1.1 Compound selection

The initial set of idiomatic and partially compositional candidates was constructed
by introspection, independently for each language. This list of compounds was com-
plemented by selecting entries from lists of frequent adjective+noun and noun+noun
pairs. These were automatically extracted through POS-sequence queries using the mwe-
toolkit (RAMISCH, 2015). The source corpora were ukWaC (BARONI et al., 2009),
frWaC and brWaC (BOOS; PRESTES; VILLAVICENCIO, 2014), each containing be-
tween 1.5 and 2.5 billion tokens.

We avoided selecting compounds in which the head was not necessarily a noun (e.g.
FR aller simple ‘one-way ticket’ (lit. going simple), as aller doubles as the noun going and
the infinitive of the verb to go). We also avoided selecting compounds whose literal
sense was very common in the corpus (e.g. EN low blow). For PT and FR, we additionally
discarded the compounds in which the complement was not an adjective (e.g. PT noun—
noun abelha-rainha ‘queen bee’ (lit. bee-queen)), as these constructions are often seen as
exocentric (no head/modifier distinction can be made between the compound elements).

For each language, a balanced set of 60 idiomatic, 60 partially compositional and
60 fully compositional compounds was selected by means of a coarse-grained manual pre-
annotation.We eschewed any attempts at selecting equivalent compounds for all three
languages. A compound in a given language may correspond to a single word in the other
languages, and even when it does translate as another compound, its pattern of POS-tags

and its level of compositionality may be widely different.

3.1.2 Sentence selection

For each compound, we selected 3 sentences from the WaC corpus where the com-
pound is used with the same meaning. We sorted them by sentence length, in order to

favor shorter sentences, and manually selected 3 examples that satisfy these criteria:

e The occurrence of the compound must have the same meaning in all three sen-
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tences.

» Each sentence must contain enough context to enable a clear disambiguation of

the compound.

o There must be enough inter-sentence variability, so as to provide a higher amount

of disambiguating contexts.

The goal of these sentences was to be used as disambiguating context for the
annotators. For example, for the compound benign tumour, we present the following
disambiguating sentences: (1) “Prince came onboard to have a large benign tumor removed
from his head”; (2) “We were told at that time it was a slow growing benign tumor and
to watch and wait”; (3) “Completely benign tumor is oncocytoma (it represents about 5

% of all kidney tumors)”.

3.1.3 Questionnaire design

The questionnaires were presented as online webpages, and followed the same struc-
ture for each compound. The questionnaire starts with a set of instructions that briefly
describe the task and direct participants to fill an external identification form. This form
collects demographics about the annotators, and ensures that they are native speakers of
the target language, following Reddy, McCarthy and Manandhar (2011). This form also
presents some example questions with annotated answers for training. After filling in the
identification form, users could start working on the task itself. The questionnaire was

structured in 5 subtasks, presented to the annotators through these instructions:

1. Read the compound itself.
2. Read 3 sentences containing the compound.

3. Provide 2 to 3 synonym expressions for the target compound seen in the sentences,
preferably involving one of the words in the compound. We ask annotators to
prioritize short expressions, with 1 to 3 words each, and to try to include the

words from the nominal compound in their reply (eliciting a paraphrase).

4. Using a Likert scale from 0 (completely disagree) to 5 (completely agree), judge how

much of the meaning of the compound comes from modifier and head separately.
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Figure 3.1 shows an example for the judgment of the literality of the head (benign)

in the compound benign tumor.

5. Using a Likert scale from 0 (completely disagree) to 5 (completely agree), judge how
much of the meaning of the compound comes from both of its components (head
and modifier). This judgment is requested through a question that paraphrases
the compound: “would you say that a benign tumor is always literally a tumor

that is benign?”.

We have been consciously careful about requiring answers in an even-numbered
scale (0-5 makes for 6 reply categories), as otherwise, undecided annotators could be
biased towards the middle score. As an additional help for the annotators, when the
mouse hovers over a reply to a multiple-choice question, we present a guiding tooltip, as

in Figure 3.1. We avoid incomplete replies by making Subtasks 3-5 mandatory.

Figure 3.1: Excerpt from the questionnaire of the compound benign tumor, evaluating
compositionality regarding the head of the compound.

4. In your opinion, is a benign tumor always literally a fumor?

NO YES

[f No — I see only a vague relation between a benign tumor and a tumor

The order of subtasks has also been taken into account. During a pilot test,
we found that presenting the multiple-choice questions (Subtasks 4-5) before asking for
synonyms (Subtask 3) yielded lower agreement, as users were often less self-consistent
in the multiple-choice questions (e.g. replying that “benign tumor is not a tumor” in
Subtask 4 while replying that “benign tumor is a tumor that is benign” in Subtask 5). This
behavior was observed even when they later carefully selected their synonyms. Asking
for synonyms in Subtask 3, prior to the multiple-choice questions, prompts the user focus
on the target meaning for the compound and also have more examples (the synonyms)
when considering the semantic contribution of each element of the compound. In this
work, the synonyms were only used to motivate annotators to think about the meaning
of the compound. In the future, this information could be exploited for compositionality

prediction, but also for lexical substitution tasks (WILKENS et al., 2017).
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3.1.4 Judgment collection

Annotators participated via online questionnaires, with one webpage per com-
pound. For EN and FR, annotators were recruited and paid through Amazon Mechanical
Turk (AMT). For PT, we developed a standalone web interface that simulates AMT, as
Portuguese speakers were rare in that platform. Annotators for PT were undergradu-
ate and graduate students of Computer Science, Linguistics and Psychology. For each
compound, we have collected judgments from around 15 annotators.!

For each compound, the response from all annotators were gathered up into an

average compound score. We obtained the following variables:

o cg: The contribution of the head to the meaning of the compound (e.g. is a busy

bee literally a bee?), with standard deviation oy.

o om: The contribution of the modifier to the meaning of the compound (e.g. is a

busy bee literally busy?), with standard deviation opy.

e cwc: The degree to which the whole compound can be interpreted as a combination

of its parts (e.g. is a busy bee a bee that is busy?), with standard deviation owc.

The average ¢ scores provide absolute judgments on the compositionality of a
compound, ranging from 0 (non-literal or idiomatic) to 5 (literal or compositional). All
datasets are freely available online.? For a complete list of all compounds, along with
their translation, glosses and collected compositionality scores, we refer to Appendix A.

(EN-compgy), Appendix B. (FR-comp), and Appendix C. (PT-comp).

3.2 Dataset analysis

In this section, we analyze some properties of the datasets. These are performed
on the 180 compounds of each language. We also present some graphics focusing on the
90 compounds collected in EN-compgg, for comparison against the whole dataset of 180
compounds in Reddy™™. In some cases, in order to perform a cross-language analysis of
the data, we group the compositionality scores of the three datasets into a single dataset

ALL-comp with all 3 x 180 compounds.

LEN includes the 90 compounds from Reddy, McCarthy and Manandhar (2011), which are compatible
with the other 90 compounds collected for the dataset.
2<http://pageperso.lif. univ-mrs.fr /~carlos.ramisch /?page=downloads /compounds >
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3.2.1 Score distribution

Figure 3.2 presents the average scores for the 180 compounds for each language.
Each of the 4 graphs is ordered in the x-axis based on the whole-compound composi-
tionality scores (rank-based cwe). Values in the y-axis then present the average score of
each compound (value-based cg, ey and cwe). The average human judgments confirm
that the three datasets are balanced in terms of compound idiomaticity, with the whole-
compound scores growing at a mostly linear rate (the correlation between cwc and the
list of numbers 1..180 is statistically significant, with Pearson r > 0.99 for all four graphs).

Moreover, there seems to be a greater agreement between the score for the compound and

Figure 3.2: Average compositionality (cg, epm and ewce) per compound.
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that of its head /modifier for the two extremes (totally idiomatic and fully compositional),

with a greater dispersion of head/modifier scores for partially idiomatic compounds.
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3.2.2 Difficulty of annotation

For each compound, the difficulty of annotation can be estimated as the standard
deviation (o) among the compositionality scores provided by multiple human raters. Ide-
ally, if all annotators agreed on a compositionality score, o should be low. Following
Reddy, McCarthy and Manandhar (2011), we calculated for each language the number
of compounds that had standard deviation greater than 1.5. The results are shown in

Table 3.1. The largest deviations happened for modifiers, which suggests that adjectives

Table 3.1: Number of cases of high standard-deviation o.

EN FR PT
Compounds with owe > 1.5 22 41 30
Compounds with og > 1.5 23 44 33
Compounds with op > 1.5 35 55 34

may be harder for humans to judge than nouns. Indeed, if we consider the average of all
standard deviations in Reddy't™, we obtain g = 0.97 and noun-based onv—noun = 0.97
(with 132 cases), but adjective-based oni—aq; = 1.30 (with 48 cases). This is in line with
the average standard deviation found for the other two languages, where every modifier in
the dataset is an adjective. For FR-comp, g = 1.01 and o = 1.18; while for PT-comp,
oa = 0.84 and o = 0.98.

Figure 3.3 presents the standard deviation scores of every compound as a function
of its average compositionality score. Just as the head/modifier-only scores were closer
in value to the whole-compound score in the extremities (e.g. highly idiomatic cases with
compositionality cwe < 20 and highly compositional cases with cwe > 160), so are all
standard deviations lower in these extremes. This phenomenon may be related to purely
statistical effects of extremity values, or may indicate that more extreme judgments are
easier for humans to produce. One consistent property seen among all datasets is that
the peak of standard deviation occurs in the left side of the graphs (in particular for oy
and oy ), suggesting that idiomatic compounds are slightly harder for humans to judge

consistently.

The difficulty of annotation can also be measured through inter-rater agreement
measures (described in Section 2.2.4). For the English and French datasets, most partici-
pants only provided a small amount of annotations, making these measures unfeasible. For

the Portuguese dataset, 3 of the participants annotated a large subset of 119 compounds.
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Figure 3.3: Standard deviation (og, op and owe) per compound.
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For this subset, the pairwise kappa values range from x = .28 to x = .58 depending on
the question (head-only, modifier-only or whole-compound) and on the annotator pair. In
the case of «, there was an agreement of o = .52 for head-only, o = .36 for modifier-only
and o = .42 for whole-compound compositionality scores. We also calculated the a be-
tween an expert annotator and himself some weeks later. The agreement rate ranges from
a = .59 for whole-compound and modifier-only, to a = .69 for head-only compositionality

scores.

3.2.3 Estimating whole-compound from head/modifier

A careful analysis of the plot presented in Figure 3.2 suggests that the whole-
compound score is lower-bounded by the head-only and modifier-only scores, i.e. cwe =~
min(cg, cp). This would mean that the whole-compound compositionality scores is es-
timated by human raters based on the literality of its elements. We thus evaluated if it
was possible to predict the compositionality score of the whole compound from the scores
of its parts. To quantify this relation, we used two models: the arithmetic and geometric
mean of the head-only and modifier-only scores for that compound.

Figure 3.4 shows the linear regression for both measures in the Reddy™™ and FR-
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comp datasets. The goodness of fit results for Reddy*™ were r2,, = .90 for the arithmetic

mean, and 2., = .96 for the geometric mean, with the latter being a better predic-

tor of the whole-compound compositionality. Similar results were achieved for FR-comp

(2 = 93, Toeom = -96), for PT-comp (ri, = 91, recom = -96) and for EN-compg
(r?sm = .90, réeom = .96). This means that, whenever annotators judged an element of

the compound as highly non-literal, they have also rated the whole compound as highly
idiomatic. Estimating based on the min operation itself yields similar R* values as 12,
for PT-comp and FR-comp. For Reddy*™™, r2. = .90, indicating that the geometric mean
is actually a better estimator than the min function itself. The results of this analy-
sis inspired the proposal of the geom compositionality prediction strategy, described in

Chapter 4.

Figure 3.4: Distribution of cg ® ¢y according to ewce of each compound.
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3.2.4 Correlation with distributional variables

The hypothesis higiom ~ distr.freq SUggests that idiomatic MWEs should occur more
frequently than compositional ones in general human communication. As a result, there
should be a negative correlation between the compositionality score and the frequency of
each compound in a sufficiently general corpus. We thus calculate the correlation between
the compositionality score cywe of each compound and its frequency in the WaC corpora3.
The result is a statistically significant Spearman correlation of p = .46 for Reddy™t and
p = .60 for FR-comp (with p-value p < 107'% in both cases). In the case of PT-comp,

no significant correlation was found (p-value p > 0.1). Figure 3.5 presents each dataset

3We used the same WaC corpora as in Section 3.1.1.
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where compounds were ordered by frequency and grouped into 18 bins of 10 compounds
each. The height of each bar indicates the average of the cwc score assigned by humans
to the 10 compounds in the bin. We can see that, in the case of FR-comp and Reddy™™,
the compounds that are more frequent tend to be assigned higher compositionality scores
by humans. These results go against the hypothesis higiom ~ distr.freq, Which proposed that
idiomatic compounds should be overall rather frequent, so as to permit the assimilation
of their meaning (PINKER, 1995)

Figure 3.5 also presents a graph where the three datasets were combined so as to
form a single set of 3 x 180 compounds. The height of each bin indicates the average score
assigned by humans to the 30 compounds therein. As in the case of English and French
data above, this combined dataset presents a statistically significant positive correlation
of p = .41 (with p < 1072%) between compositionality scores and corpus frequency. This
correlation does not mean that all of these idiomatic compounds are rare in an absolute
sense, but it does mean that, among the most frequent compounds in the datasets, the

majority of entries is more compositional than the average.

Figure 3.5: Compositionality for compounds under different frequency bins.
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We have similarly analyzed the correlation between the compositionality score
of each expression and the level of conventionalization (estimated through the PMI).
According to the higiom ~ distr.convent Nypothesis, the level of idiomaticity of an MWE should
be positively correlated with the PMI. Figure 3.6 presents all 3 x 180 compounds ordered
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by PMI and grouped under 18 bins of 30 compounds each. The height of each bin indicates
the average score assigned by humans to the 30 compounds therein. As can be seen, there
is no clear pattern of correlation between the two variables. Indeed, differently from
the case of the frequency, we found no statistically significant correlation between the
compositionality scores and the PMI (this holds true for each dataset by itself, as well
as when the 3 datasets are combined). This stands in contrast with the fact that many
works in the literature rely on association measures as estimators for compositionality
(e.g. using PMI in the discovery of idioms) (FAZLY; STEVENSON, 2006; BU; ZHU; LI,
2010; GURRUTXAGA; ALEGRIA, 2013; MAAROUF; OAKES, 2015). Given the lack
of correlation between these two variables, we do not recommend the use of PMI as an

estimator of compositionality.*

Figure 3.6: Compositionality for noun compounds under different PMI bins.
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3.3 Summary

In this chapter, we have presented a multilingual group of datasets containing
human judgments about the compositionality of nominal compounds. It contains 180
compounds for each of the 3 target languages: English, French and Portuguese. Anno-
tations were collected through crowdsourcing. Since the task was performed by native
speakers who may not have a background in linguistics, it needs to be appropriately con-
strained not to require expert knowledge, and this section has described the methodology

that were employed towards that goal.

4We leave the investigation of other association measures for future work.
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An analysis of the resulting resource confirmed that the compounds are uniformly
distributed across different ranges of compositionality scores. The 3 datasets are compa-
rable regarding their difficulty of annotation, with partially compositional and adjective-
based compounds consistently posing a higher level of difficulty for the human raters.
Head-only and modifier-only judgments have also been compared to whole-compound
compositionality judgments, with the latter scores behaving as the geometric mean of
the former two. Compositionality scores showed no correlation with a measure of con-
ventionalization, differently from what was predicted by the higiom ~ distr.convent Nypothesis.
Finally, compositionality scores consistently showed a positive correlation with compound
frequency in a corpus, refuting the common intuition that the most frequent compounds
tend to be idiomatic (hypothesis higiom ~ distr.freq)-

The datasets presented in this chapter can be used to evaluate applications and
tasks requiring some degree of semantic processing, such as lexical substitution and text
simplification. For the cases where the numerical judgments alone are not enough for a
given task, the datasets also provide sets of paraphrases, which serve as a symbolic coun-
terpart to those scores. These datasets have also been described and analysed in dedi-
cated publications (RAMISCH et al., 2016; CORDEIRO; RAMISCH; VILLAVICENCIO,
2016a; WILKENS et al., 2017). The complete resource is freely available online.’

5 <http://pageperso.lif. univ-mrs.fr /~carlos.ramisch /?page=downloads /compounds>
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4 COMPOSITIONALITY PREDICTION

Multiword expressions exist in a wide spectrum of idiomaticity, ranging from mere
statistically-idiosyncratic compositional combinations of words (such as beach towel, which
refers to an actual towel), to completely opaque idioms (such as eager beaver, which refers
to an enthusiastic person). Precision-oriented NLP systems must distinguish between the
different levels of compositionality in order to appropriately handle these different kinds
of MWESs. The level of MWE compositionality has been measured through a numerical
representation in multiple datasets. However, the coverage of these datasets is limited by
the availability of human resources.

This chapter focuses on the task of compositionality prediction, which consists in
automatically identifying the level of compositionality of MWEs without the input of
human raters. The core of this thesis consists in the evaluation of a compositionality
prediction model under multiple DSMs and with a variety of parameters. Section 4.1
presents the related work on compositionality prediction. Section 4.2 then presents the
compositionality prediction model that was proposed and implemented for this thesis.
The remainder of this chapter describes the organization of the experiments for the eval-
uation of this model: corpus preprocessing (Section 4.3), DSMs (Section 4.4), parameters
(Section 4.5), and the evaluation setup (Section 4.6). The evaluation of compositionality

prediction models can be performed intrinsically or extrinsically:

o Intrinsic evaluation requires the existence of a dataset in which each MWE is
associated with a compositionality score (e.g. the datasets presented in Section 2.5,
as well as the resources developed in Section 3), serving as a gold standard. The
compositionality prediction model is used to predict those scores, which are then
directly compared to the gold standard using a correlation measure (such as those
described in Section 2.2.5). This is the approach followed in Chapter 5, which
analyses the results of compositionality prediction for nominal compounds under

thousands of experimental setups.

o In extrinsic evaluation, predicted compositionality scores can be used to decide
how an MWE should be treated in NLP systems. For example, in an application
such as machine translation, idiomatic MWESs should be identified and translated
as an atomic unit. As a consequence, an evaluation of machine translation quality
focusing on MWESs would indirectly reflect the ability of the system to predict com-
positionality (CAP et al., 2015; STYMNE; CANCEDDA; AHRENBERG, 2013;
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SALEHI et al., 2015). A less application-focused alternative would be the evalua-
tion of the usefulness of predicted compositionality scores in a task of identifying
idiomatic MWE occurrences in a corpus. The predicted compositionality scores
would then be used as a feature in the underlying MWE identification system. The
evaluation of this system would then compare the automatically identified MWESs
with a gold standard corpus, resulting in an indirect evaluation of the composi-

tionality prediction scores. This is the approach followed in Chapter 6.

4.1 Related work

Compositionality prediction techniques usually involve measuring the extent to
which the meaning of an expression is constructed from a combination of the meaning of
its parts. One of the most common setups requires three ingredients: (1) vector repre-
sentations of single word meanings, such as those built using DSMs; (2) a mathematical
model of how the compositional meaning of a phrase should be calculated, as a com-
bination of the single-word meaning of its parts; and (3) a measure of similarity, used
to compare the compositionally-constructed meaning of a phrase and its own meaning
derived from corpora.! Figure 4.1 presents this compositionality prediction architecture,

along with the three main ingredients. For each MWE (e.g. flea market), the DSM vec-

Figure 4.1: Common compositionality prediction architecture
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!These setups often assume that each word corresponds to a single meaning (i.e. no ambiguity is taken
into account).
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tors of its elements are combined into a single vector, which is then compared against
the vector for the MWE built from its occurrences in the corpus. For each of the three
ingredients, there are a number of different alternatives that can be seen employed in the
literature. Throughout this thesis, we will refer to a specific choice of the three ingredients

as a compositionality prediction model.

The 1% ingredient applies to any kind of numerical representation of word seman-
tics. All of the representations discussed in Section 2.4.2 can be equivalently used in this
architecture, and different works in the literature will focus on different representations
(e.g. Reddy, McCarthy and Manandhar (2011) use a co-occurrence matrix with a limited
vocabulary V' comprising |V| = 10000 words, while Yazdani, Farahmand and Henderson
(2015) use word embeddings with a reduced number of dimensions). In most works, only
a single DSM system is evaluated, under a limited set of parameters. This thesis will

consider multiple DSMs under a variety of corpus and DSM parameters.

The 2" ingredient concerns the mathematical model of meaning combination. One
of the most natural choices is the additive model, in which the compositional meaning
of an MWE wqws ... wy is predicted as a linear combination of the word vectors of its
components: Y., f;v(w;), where the § coefficients assign different weights for the rep-
resentation of each word, and v(w;) is a D-dimensional word vector for word w;, with
D < |V| (REDDY; MCCARTHY; MANANDHAR, 2011; WALDE; MiLLER; ROLLER,
2013; SALEHI; COOK; BALDWIN, 2015). These different weights can capture asymmet-
ric contributions by each of the components (BANNARD; BALDWIN; LASCARIDES,
2003; REDDY; MCCARTHY; MANANDHAR, 2011). For example, in the expression
couch potato (which refers to a stereotypical person who spends a lot of time sitting down
and watching television), it is the first word that has a clear contribution to the word
meaning, and the highest weight should be in ;. In the MWE flea market; it is the
second word that contributes the most, and the highest weight should thus be in ;.

The additive model of composition can be generalized so as to use a matrix of
multiplicative coefficients, which can be estimated through linear regression (GUEVARA,
2011). This model can be further modified so as to learn polynomial projections of higher
degree, with quadratic projections yielding particularly promising results (YAZDANT,;
FARAHMAND; HENDERSON, 2015). These models come with the caveat of being
supervised approaches, thus requiring some amount of pre-annotated data in the target

language. Due to these requirements, most works focus on unsupervised compositionality
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prediction methods only, based exclusively on large monolingual unannotated corpora.
The latter is also the approach adopted in this thesis.

Alternatives to the linear models include the multiplicative model and its vari-
ants (MITCHELL; LAPATA, 2008). However, results suggest that this representation
yields inferior results when compared to the predictions obtained through the additive
model (REDDY; MCCARTHY; MANANDHAR, 2011; SALEHI; COOK; BALDWIN,
2015). Recent work on predicting intra-MWE semantics also supports the hypothesis
that additive models tend to yield better results (HARTUNG et al., 2017). This the-
sis evaluates different variants of compositionality prediction models (see the prediction

strategies in Section 4.2).

The 3'¢ ingredient is a measure of similarity, used to compare the MWE with the
sum of its parts. Most works in the literature rely on cosine similarity (SCHONE; JURAF-
SKY, 2001; MITCHELL; LAPATA, 2008; FARAHMAND; SMITH; NIVRE, 2015) but it
also can be calculated in terms of the overlap between the profiles of word distribution
(MCCARTHY; KELLER; CARROLL, 2003), assuming that compositional expressions
are more similar or share more semantic neighbors with their components than idiomatic

ones. In this thesis, the cosine similarity will be used for all evaluations.

Compositionality prediction can also be achieved through an estimation of the
likelihood of an MWE (e.g. red-blood cell) being replaced by single-word terms in a cor-
pus (e.g. erythrocyte). MWEs that can be replaced by many single-word terms are then
deemed idiomatic (RIEDL; BIEMANN, 2015). An alternative method would be to com-
pare an MWE and its constituents across multiple translations of a text. If the MWE
is translated literally, it is predicted as compositional, while non-literal translations are
interpreted as an indication of idiomaticity (SALEHI; COOK; BALDWIN, 2014). The
number of possible translations has also been used as an indicator of idiomaticity (CAP,
2017).

The level of compositionality of MWEs may also be predicted in the context of
MWE-annotated sentences. This is particularly beneficial in the presence of ambiguous
MWESs, whose degree of compositionality depends on the context (SPORLEDER; LI,
2009). One such type of ambiguity arises from the possibility of literal and non-literal
interpretations for the same lexical unit (e.g. in the expression spill the beans). For in-
stance, Koper and Walde (2016) evaluate the impact of different features on the prediction

of the literality of German verb-particle constructions. Their features range from the use
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of a bag-of-words model to distributional statistical scores. The experiments in this the-
sis focus on non-ambiguous MWESs, so we do not present results for context-dependent

compositionality prediction.

4.2 Proposed model

The compositionality principle assumes that the meaning of phrases and sentences
can be derived from a combination of the meaning of their components. While this may
hold for compositional MWEs, for idiomatic cases we expect the opposite to be true:
by combining the semantic representations of the parts of an MWE, we should obtain
a representation that is different from the representation of the MWE derived directly
from corpora. This behavior can be exploited in the construction of the compositionality
prediction model that was implemented for this thesis and which we evaluate in Chapters 5
and 6.

For each MWE (e.g. flea market), let the unitized representation v, be the vector

representation built for the MWE as a whole, as seen in the corpus®:
vo(wiws ... wy) = v(wi_wa_ . .. _wy).

Define the combined vector vz as a function of the individual meaning of the MWE
elements (e.g. flea and market). This vector is calculated through an additive operation

of vector composition®:

(w2)

Vv V(wN)
[V (w2)]]

[v(wn)ll

v(w;)

v(wi)|

v5(w1w2...wN):51H + By 4+ By

where (; € [0, 1] is a parameter that controls the relative importance of each word for the
combined representation, with >, 3; = 1. The compositionality prediction model may
then calculate the compositionality score CS as the cosine similarity between the unitized

representation v, and the combined representation vg:

CSs(wiws ... wy) = cos(vy(wiws ... wy), va(wiws ... wy)).

2In the corpus preprocessing stage, the components of the target MWEs are linked by “_” to be treated
as a single token; e.g. wi_wy = flea_market (see Section 4.3).

3DSM vector length is usually not considered meaningful, and is implicitly normalized during the
calculation of the cosine. We do explicitly normalize vector length for the computation of v to properly
apply the 8 weights.
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The above definition of the compositionality score leaves the precise values of 3

unspecified. In this thesis, we will consider the following composition strategies:

o Uniform, which defines §; = % (e.g. 1 = [y = 0.5 for a 2-word MWE). Equal
weights are assigned to every word in the MWE, assuming that they all contribute
equally to the meaning of the MWE (as in the MWE access road). This is the
most commonly used prediction strategy in the literature (MITCHELL; LAPATA,
2010), and most of the results in this thesis will focus on the scores obtained

through this weighting strategy.

o Head, for 2-word MWEs, which defines fheaqa = 1 and Br0q = 0, i.e. the modifier is
considered to make no contribution to the semantics of the MWE, and the meaning

comes from the head alone (as in crocodile tears).

e Mod, for 2-word MWEs, which defines Speaq = 0 and (04 = 1, i.e. the meaning
of the MWE is assumed to come from the modifier, while the head is assumed to
make no contribution towards the meaning of the whole (as in the expression night

owl).

o Maxsim, where the set of weights [3; in the construction of v is defined so as to

maximize the value of CS; i.e.:
B = argmax CSp_x(w ws ... wy).
X

As a consequence, mazsim is capable of expressing the 3 previous prediction strate-
gies as a combination of weights. This model has been developed for the purpose of
this thesis. The underlying hypothesis (hggatmaxsim) 1S that this model is a better
predictor of compositionality scores for compositional MWEs, as it constructs a

vector with weights that are optimal for a compositional reading.

Note that, in the case of N = 2, a closed formula can be derived for the calculation
of B values, which avoids an exhaustive search of the parameter space (and is what
we used for the experiments in Chapter 5). Let 8, = 1 — 1. We want to perform
the following maximization:

B1 = argmax cos <Vu(w1w2), yHV(wl) + (1 —y)——

y v(wi)]
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This can be achieved by differentiating the right side of the equation:

A v(wn) gy Vws)
5 €0 (volumea), B+ (1= B ) = o

Replacing the cosine by the definition based on the dot product (see page 46) and

solving for 31, we obtain the closed-form solution:

cos(v(wn), vy(wiws)) — cos(v(wy), v(ws)) « cos(v(ws), vy(wiws))

"7

1 — cos(v(wy), V(U)g))) : (cos(v(wl), Vi (wiws)) + cos(v(ws), Vu(wlwg))) .

We additionally consider two variations on the compositionality score that do not
rely on the construction of a combined representation vz. They compare v, directly to

the individual word vectors instead. The two relevant composition strategies are:

o Arith, which calculates the cosine between the MWE and each component individ-
ually, and yields the arithmetic mean of the cosines as the compositionality score;
ie.:

1

CSa(wws ... wyx) = N(gcos (Vu<w1’U)2 CLWN), v(wl)))

While some works in the literature seem to favor the wuniform model, some re-
sults have been published for arith (REDDY; MCCARTHY; MANANDHAR, 2011;
WALDE; MiLLER; ROLLER, 2013; SALEHI; COOK; BALDWIN, 2015). To
date, no work has compared the behavior of these two models. Given that both
strategies represent an additive interpretation of the vectors, our hypothesis (hsgrat.arith ~ strat.un
is that the highest-ranking configurations of both models should obtain similar

scores.

o Geom, which calculates the cosine between the MWE and each component individ-
ually, and yields the geometric mean of the cosines as the compositionality score;
ie.

CSq(wywy ... wy) = (ﬂ cos (Vu(UJlU)Q .. wy), V(w2>)> %.

i=1
This model is inspired by results found in Section 3.2, which suggest that humans
interpret whole-MWE composition as the geometric mean of the composition of its
parts. While mazsim optimizes for higher scores of compositionality, and should
thus yield better results for compositional MWESs, we hypothesize (hstrat.geom) that

geom should obtain higher scores for idiomatic MWESs, due to its tendency to
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predict lower scores if either of the components is judged as non-compositional

regarding the whole.

Other optimized functions such as the ones proposed by Yazdani, Farahmand and
Henderson (2015) could also be verified, but are out of the scope of this thesis, as they are
based on supervised learning. A multiplicative version of uniform has also been considered
in early experiments, but it did not present promising results, in particular in the case
of sparse representations such as PPMI -thresh, in which the product of any two vectors
tends to have an impractical number of non-zero dimensions.

The compositionality prediction model proposed in this thesis was implemented as
part of the mwetoolkit?. The code is publicly available, and contains an internal module
for the interpretation of multiple DSM formats, including sparse-context representations
(such as the output of minimantics®) and dense representations (such as the output of
word2vec®). Internally, the set of word vectors is represented as a sparse mapping from
(target, context) word-form pairs to a real number; i.e. (V,V) — R. In the case of dense
(fixed-length) input vectors, where there is no clear semantics attached to each dimension,
we generate artificial identifiers for the context (co, ¢1, ¢o ...cp_1). This allows a unified
view of all types of vector representations.

In the implementation of the model, the sparse mapping from target—context pairs
to a numerical representation is instantiated as a hash-table. Only non-zero mappings are
explicitly represented, and thus all missing (target, context) pairs are assumed to map to
0. When launching the module, a parameter can be specified to chose from among the
aforementioned composition strategies. The compositionality scores are then predicted
according to the model. Several types of output format can be specified, including a
comprehensive XML format and a more lightweight CSV output. A full description of the
compositionality prediction model and the associated tool has been published as Cordeiro,

Ramisch and Villavicencio (2016b).

4.3 Corpus preprocessing

Experiments in this thesis are based on distributional models built for English,

French and Portuguese. The construction of these models uses the lemmatized and POS-

4 <http:/ /mwetoolkit.sf.net >
5<https://github.com/ceramisch/minimantics>
6 <https://code.google.com /archive/p/word2vec>
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tagged versions of the following corpora:

o For English, the ukWaC (BARONI et al., 2009), with 2.25 billion tokens, parsed
with MaltParser (NIVRE; HALL; NILSSON, 2006).

o For French, the frWaC, with 1.61 billion tokens preprocessed with TreeTagger
(SCHMID, 1995).

 For Portuguese, a combination of brWaC (BOOS; PRESTES; VILLAVICENCIO,
2014), Corpus Brasileiro” and all Wikipedia articles®, with a total of 1.91 billion
tokens. This corpus was obtained in raw form, and parsed with PALAVRAS
(BICK, 2000) for the specific purpose of this thesis.

Target MWEs in these corpora are re-tokenized so as to be represented by a single
token, with its components joined by an underscore character (e.g. the surface form EN
monkey business — monkey_business and FR belle-mére — belle_meére).

During initial experiments, we noticed an inconsistency in the POS tags of MWE
occurrences (e.g. the joined token sitting duck had most of its occurrences tagged as
VERB_NOUN instead of ADJ_NOUN). To handle such errors, we also re-tag every annotated
occurrence of an MWE with a global manually selected POS tag.’

All forms are then lowercased (surface forms, lemmas and POS tags); and noisy
tokens, with special characters, numbers or punctuation, are removed. Additionally, liga-
tures are normalized for French (e.g. & — oe) and a spellchecker!? is applied to normalize
words across English spelling variants (e.g. color — colour). Additionally, proper nouns
are replaced by a placeholder to reduce data sparsity.

To evaluate the influence of preprocessing in model accuracy (see Section 5.3.1),
we generated four versions of each corpus, with decreasing levels of specificity in the

informational content of each token:

1. surface®: the surface-level forms of every word in the original corpus, with only

the preprocessing described above. Example:

she is not interested in your fake crocodile_tears !

T<http://corpusbrasileiro.pucsp.br/cb/Inicial.html>

8Wikipedia articles downloaded on June 2016.

9For simplicity, our work assumes that every annotated occurrence is an instance of an MWE. We do
not account for literal readings, such as cases of sitting duck that refer to an actual duck that is sitting.

10 <https://hunspell.github.io>
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111.

2. surface: stopword removal''; generating a corpus of surface forms for content words

only (i.e. nouns, adjectives, adverbs and verbs). Example:
is not interested fake crocodile_tears

3. lemmap,s: stopword removal, lemmatization'? and POS tagging; generating a cor-
pus of content words distinguished by POS tags, encoded in the format lemma/tag.
This conflates the multiple inflectional forms of a word while maintaining the in-

formation of its grammatical category. Example:
be/VERB not/ADV interested/ADJ fake/ADJ crocodile_tear/N_N

4. lemma: stopword removal and lemmatization without POS tagging; generating a
corpus containing only lemmas of content words. This conflates identically-spelled

words of different grammatical categories. Example:

be not interested fake crocodile tear

4.4 DSMs

One of the goals of this thesis is to evaluate the proposed model of compositionality
prediction under a variety of distributional settings. In particular, we verify the impact
of different types of DSMs (previously described in Section 2.4) in the predictive abilities
of the model. For reproducibility, we present below the fixed parameters that were used

in the DSM instantiations:'3

PPMI  We consider three DSMs based on positive pointwise mutual information (PPMI).
In all cases, the representation of a target word is a vector containing the PPMI association
scores between the target and its contexts. The contexts are nouns and verbs, selected in
a symmetric sliding window of w words to the left /right and weighted linearly according
to their distance d to the target (LEVY; GOLDBERG; DAGAN, 2015). We consider

three models that differ in how the contexts are selected:

1 Stopword removal reduces the size of the corpus. Given that only nouns and verbs are used as
contexts, the resulting co-occurrence matrices for surface will be less sparse than the matrices for surface®,
for a given window size.

12In the lemmatized corpora, the lemmas of proper names are replaced by placeholders.

13These parameters were selected with the goal of homogenizing the configurations across DSMs, and
to follow the original paper’s recommendations in the cases where the default differs.
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o PPMI~thresh, where the vectors are |V |-dimensional but only the top § local con-
texts with highest PPMI for each target word have non-zero values (PADRO et
al., 2014).

o PPMI-TopK, where the vectors are k-dimensional, with a fixed global list of k
words to be considered as context. We have defined k as the 1000 most frequent

words in the corpus after removing the top 50 most frequent words, replicating the

setup from Salehi, Cook and Baldwin (2015).

o PPMI-SVD, where SVD is used to factorize the PPMI matrix and reduce its
dimensionality from |V| to D."* We use a Context Distribution Smoothing of 0.75
and negative sampling of 5 for the SVD (LEVY; GOLDBERG; DAGAN, 2015).

w2v  We perform experiments on both variants of word2vec (MIKOLOV et al., 2013):
continuous bag-of-words (w2v-cbow) and skip-gram (w2v-sg). The models are built with
default configurations, except for the following: no hierarchical softmax; negative sampling
of 25; frequent-word downsampling weight of 107%; execution of 15 training iterations. We

use the default minimum word count threshold of 5.

glove GloVe implements a factorization of the co-occurrence count matrix (PENNING-
TON; SOCHER; MANNING, 2014). We use its default configurations, except for the
following: internal cutoff parameter x,,,, = 75; co-occurrence matrix is built in 15 itera-
tions. For lemma-based models, we use the minimum word count threshold of 5. Due to

the large vocabulary size, we use a threshold!® of 15 for surface and 20 for surface®.

lezvec  The lexvec model (SALLE; VILLAVICENCIO; IDIART, 2016) factorizes the

PPMI matrices, strongly penalizing prediction errors on frequent words. We use default
configurations, except for the following: negative sampling of 25; subsampling threshold
of 107%; processes the corpus for 15 iterations. Due to the large vocabulary size, we use
a minimum word count threshold of 10 for lemma-based models and 100 for surface and

surfacet .16

1We use the hyperwords toolkit: <https://bitbucket.org/omerlevy/hyperwords>

5Thresholds were selected so as to not use more than 128 GB of RAM during the construction of a
DSM instance.

16This is in line with the authors’ threshold suggestion in their paper.


https://bitbucket.org/omerlevy/hyperwords

77

4.5 Parameters

For every DSM, we construct multiple distributional models under different sets
of configurations. In particular, we exhaustively evaluate the influence of the following

variables:

e WORDFORM: One of the four word-form and stopword removal variants when
representing a corpus: surfacet, surface, lemma, and lemmap,s (see Section 4.3).
These variants were selected so as to represent different levels of specificity in the

informational content of the tokens.

o« WINDOWSIZE: Indicates the number of context words that will be considered to
the left /right of the target word when searching for target-context co-occurrence
pairs. We evaluate the behavior of compositionality prediction when the underlying

DSM model is built with context window sizes of 141, 4+4, and 8+8.17

o DIMENSION: We generate models with 250, 500 and 750 dimensions. The under-
lying hypothesis is that, the higher the number of dimensions, the more accurate

the representation of the context is going to be.

Table 4.1 presents the set of all possible parameter configurations. These combina-
tions produce a total of 228 models per language (12 models for PPMI-TopK , 36 models
for each of the other 6 DSMs). Throughout the thesis, when referring to a particular model
configuration, an abbreviated notation will be used. For example, WORDFORM=Ilemma,

with WINDOWSI1ZE=4+4 and DIMENSION=250 will be represented as lemma.w.ds5q.

Table 4.1: 228 parameter combinations across all DSMs.

DSM DIMENSION WORDFORM | WINDOWSIZE
PPMI-TopK D = 1000
PPMI —thresh | D = |V, 8 € {250, 500, 750} N
PPMI-SVD surface™, 1+1,

w2v—cbow ;’urf e 4+4,

w2v-sg D € {250,500, 750} z cmma, 8+8

glove EMMApos

lexvec

"Most works in the literature choose a window of size between the extremes 1+1 and 10+10, with a
few works considering higher window sizes such as 16+16 or 20420 (KIELA; CLARK, 2014; LAPESA;
EVERT, 2014).
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4.6 Evaluation setup

For the intrinsic evaluation of the compositionality prediction model in Chapter 5,
we calculate the compositionality scores for every MWE in a dataset and compare them

to the human-rated scores. The following datasets are evaluated:
o For English: Reddy, Reddy™™, EN-compyy and Farahmand;
o For French: FR-comp;
o For Portuguese: PT-comp.

The datasets Reddy and Farahmand were described in Section 2.5.3. The other datasets
were constructed as part of this thesis, and were described in Chapter 3.

For most datasets, we report Spearman’s p correlation between the ranking pro-
vided by humans and those calculated from the models (as explained in Section 2.2.5).
Exceptionally for the Farahmand dataset, due to the binary nature of its compositionality
scores, we follow Yazdani, Farahmand and Henderson (2015) and report the best F; score
(BF1), obtained by calculating the Fy score for the top & MWEs classified as positive
(non-compositional), for all possible values of k (described in Section 2.2.6).

Evaluation metrics were calculated for a total of more than 8 thousand models
(see Figure 4.2). Given the high number of experiments performed, we report the best
performance of each model parameter. For instance, the performances reported for w2v—
cbow using different values of WINDOWSIZE are the best configurations across all possible
values of other parameters (i.e. DIMENSION and WORDFORM). This avoids reporting
local maxima that can arise if one fixes all other parameters when evaluating a given one

(LAPESA; EVERT, 2014).

For English datasets, we distinguish between strict and fallback evaluation. Strict
evaluation corresponds to the performance of the model only on those MWEs that have
a vector representation in all underlying DSMs: 89 (out of 90) for Reddy, 86 (out of
90) for EN-compgy, 175 (out of 180) for Reddy™™, and 913 (out of 1042) for Farahmand.
Fallback evaluation considers the full dataset, using a fallback strategy for the imputation
of missing values, assigning the average of other compositionality scores to MWEs in which
one of the vectors v(wy), v(w;) or v, has not been built due to a lack of occurrences in the

corpus (SALEHI; COOK; BALDWIN, 2015). This distinction is particularly important
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Figure 4.2: Number of compositionality prediction models evaluated: 6 x 228 x 6 = 8 208.
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in the case of Farahmand, which contains more rare MWEs!® such as universe human and

mankind instruction, so that 129 MWEs do not occur often enough in the English corpus.

Strict evaluation allows us to properly evaluate the quality of the predictive method itself,

while fallback evaluation allows us to evaluate the quality of corpus + method, and is the

better alternative when comparing to state-of-the-art results (as it considers the whole

dataset). Only strict evaluation is reported for FR-comp and PT-comp, as all MWEs are

frequent enough in their respective corpora.

To determine whether the results for different DSM configurations are statisti-

cally different from each other, we present results from Wilcoxon’s sign-rank test (REY;

NEUHAUSER, 2011).

18Partly due to Wikipedia tokenization errors.
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5 INTRINSIC EVALUATION OF COMPOSITIONALITY PREDICTION

This chapter presents an extensive intrinsic evaluation of the compositionality pre-
diction framework presented in Chapter 4, using the three datasets whose construction was
presented in Chapter 3. We construct DSM instances under multiple configurations for
the three target languages. For each configuration, we generate compositionality predic-
tions for all nominal compounds (NCs), which we then compare with the compositionality
scores provided by humans.

This chapter is organized as follows: Section 5.1 presents our findings on the accu-
racy of compositionality prediction models using state-of-the-art DSMs for the represen-
tation of word semantics. Section 5.2 investigates the impact of DSM-specific parameters
related to the size of the context window and the number of dimensions used to represent
context. Section 5.3 examines the impact of corpus parameters related to corpus size
and to the degree of corpus preprocessing adopted. Section 5.4 extends the evaluations
performed on uniform prediction so as to encompass five other prediction strategies. Sec-
tion 5.5 performs a variety of sanity checks involving other model-specific parameters.
Section 5.6 presents an error analysis comparing predicted compositionality and different
variables associated with the compounds. Finally, Section 5.7 summarizes the results

from this chapter.

5.1 Overall highest results per DSM

This first evaluation aims at verifying whether some DSMs, independently of their
specific parameters, are more suitable for a given dataset/language than others. We per-
form a language-based analysis, evaluating the highest-scoring parameter combination of
each DSM. All evaluations reported here use the uniform composition strategy (described

in Section 4.2).

5.1.1 English

Figure 5.1 presents the best scores achieved under each DSM for the English
datasets. The predictions for the Reddyt™ dataset were evaluated through Spearman

p, while Farahmand predictions were evaluated with BF; (both described in Section 2.2).
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Each of the wide bars in these graphs represents the highest score obtained from the set
of 36 different configurations!, using different combinations of WORDFORM, WINDOW-
Si1zE, and DIMENSION. Similarly, each of the narrow inner bar represents the highest
score among 36 configurations using fallback evaluation. While the fallback evaluation is
responsible for slightly higher results in Reddy™ ™, its pessimistic approach is detrimental
when evaluating the predictive model on the Farahmand dataset, which contains a con-
siderable number of NCs that do not appear in the corpus. In both cases, these two types
of evaluation produce similar rankings among the different DSMs, and we will henceforth

focus on the highest results of strict evaluation (outer bars).

Figure 5.1: Overall highest results per DSM on English datasets.
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For the Reddy™™ dataset, the highest results are found for the word-embedding
models of w2v: the highest-Spearman w2v-sg model has a p = .741, while the best w2v-
chbow has a p = .730. These results are followed by PPMI-thresh, with p = .704. Other
models offer progressively inferior results: PPMI-SVD (p = .666), lezvec (p = .658),
glove (p = .651) and PPMI-TopK (p = .632). We performed Wilcoxon’s sign-rank
test between all possible pairs of highest-Spearman configurations. The distributions of
w2v-cbow, w2v-sg and glove were not deemed to be different from one another pair-
wise. Moreover, glove was not deemed different from lexvec or from PPMI-SVD. This
is somewhat surprising, given the difference in scores between glove and the other DSMs
(especially w2v). All other model pairs were deemed statistically different from each other
(p < 0.05).

The Reddy*t dataset combines all NCs from Reddy and EN-compgg. If the Reddy

dataset is considered by itself, we see the same trends as in Reddy™ ™. The overall best

1Only 12 configurations for PPMI-TopK, as the number of dimensions is fixed at 1000.
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performance is found for w2v-sg (p = .812). The performance of the models PPMI-
thresh (p = .803) and w2v—cbow (p = .796) closely follow the first place. If we isolate
the EN-compgy NCs, a similar pattern emerges: the highest performance is achieved by
w2v-sg (p = .669) and w2v—cbow (p = .665). Note that the highest results for EN-compy
are inferior to the ones obtained for Reddy. As we will see later, the best results for the
French and Portuguese datasets are also in the same range as EN-compgg. This difference
in performance might be caused by the fact that these 3 datasets contain a higher amount
of adjective4noun pairs than Reddy. As suggested in Section 3.2.2, humans had more
difficultly judging the compositionality of adjectives than judging the compositionality of
nouns. This could imply that noun+adjective scores are less reliable than noun+noun
scores, and thus automatic methods should also obtain lower scores when predicting the
compositionality of adjectives.

Similarly to the Reddy™™ dataset, evaluation on Farahmand yields the best results
for the models w2v-sg (strict BF; = .498, fallback BF} = .455) and w2v—cbow (strict
BF, = .501, fallback BF} = .471). The highest results are comparable to the BF} =
A87 reported by Yazdani, Farahmand and Henderson (2015), while avoiding their use of
functions whose parameters must be tuned through supervised learning for the prediction

of compositionality.

5.1.2 French

As shown in Figure 5.2(a), overall FR-comp results in terms of Spearman corre-
lation are reasonably different from Reddy*™ results. One of the most striking differ-
ences is the fact that the w2v models have lower quality. They are notably surpassed
by PPMI~thresh, which rises to the first place with p = .702. This result is followed
by word-embedding models: glove has p = .680 and lexzvec has p = .677. Only then do
we see the neural-network w2v models: w2v-sg (p = .653) and wl2v—cbow (p = .652).
Other PPMI-based models have a lower quality, dropping to the lowest p = .550 for
PPMI-TopK.

As in the case of Reddy'™™, we performed Wilcoxon’s sign-rank test between all
model pairs (p < 0.05), and both w2v models were deemed equivalent (i.e. we could not
reject the hypothesis that they followed the same distribution). The glove model, however,
was deemed different from both w2v configurations. The PPMI-SVD model was deemed

equivalent to all other models except for lezvec. All other model pairs were deemed
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different from each other. Particularly in the case of the highest-Spearman DSM, PPMI -

thresh, these results confirm that its best configuration is responsible for compositionality

predictions that are statistically different form the predictions of other models.

Figure 5.2: Overall highest results per DSM on French and Portuguese datasets.
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5.1.3 Portuguese

Figure 5.2(b) presents the overall highest Spearman correlations for the PT-comp
dataset. As in the case of FR-comp, the PPMI—thresh model leads with the highest score
(p = .602). This result is followed closely by word-embedding models: w2v—-cbow has
p = .h88 and w2v-sg has p = .586. They are followed by lexvec with p = .570 and glove
with p = .555. As with the French dataset, the other PPMI methods had the lowest
scores: PPMI-SVD has p = .530 and PPMI-TopK has p = .519.

We performed Wilcoxon’s sign-rank test between all model pairs (p < 0.05). Just
like for Reddy™ ™, the distributions of w2v—cbow, w2v-sg and glove were deemed equivalent
to each other pairwise. The PPMI-SVD and glove models were also deemed equivalent.
Moreover, PPMI-TopK was deemed equivalent to all other models except glove and
PPMI-SVD. Other model pairs were deemed different from each other (p < 0.05). As
in the case of French results, PPMI-thresh had the highest scores, and Wilcoxon’s test
has confirmed that its predictions are statistically different form the predictions of other

models.



84

5.1.4 Cross-language analysis

Table 5.1 presents, for each dataset, the Spearman correlation score of the highest-
Spearman configuration for every DSM (in strict/fallback format for English datasets),
with the top strict score highlighted in bold. In most of the cases, the best score obtained
under fallback evaluation is comparable to the best strict score. Fallback results are
considerably lower in the case of Farahmand. This reflects the fact that this dataset is
not balanced with regards to compositionality: most of its NCs are compositional, leading
to a higher average compositionality score that may not be suitable for the missing NCs,

as these tend to be idiomatic.

Table 5.1: Highest Spearman p for all datasets (strict/fallback format for English
datasets). The Farahmand dataset uses the highest BF; instead.

Dataset PPMI-SVD PPMI-TopK PPMI-thresh glove lexvec  w2v—cbow  w2v-sg
FR-comp .58 .55 .70 .68 .68 .65 .65
PT-comp .53 .52 .60 .55 Y .59 .99

EN-compeo  .59/.60  .56/.56  .59/.60  .52/.54 .55/.57 .65/.67 .65/.67
Reddy**  .66/.67  .62/.63  .69/.70  .64/.65 .65/.66 .72/.73  .73/.74
Reddy 74/74  71)72 79/80  .75).76  .77/.77  .80/.80  .81/.81
Farahmand ~ 49/.42  43/.38  47/40  .40/.36 .45/.43  51/47 .51/.47

Focusing on strict evaluation results, some interesting patterns can be observed in
a comparison of the three languages. In all of the collected datasets, the predictions from
w2v—cbow and w2v-sg follow the same distribution (as per a Wilcoxon sign-rank test),
which is reflected in the fact that their scores are almost identical. Concerning the highest
Spearman score out of all DSMs, the w2v models yield the best results for the two English
datasets, while the highest scores for the two Romance languages were attained instead
by PPMI—thresh. On the other side of this scale, the PPMI—-TopK model is consistently
ranked among the worst results. The best PPMI-SVD configuration presents a similar

behavior, with consistently low results for all datasets but Farahmand.
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5.2 DSM parameters

In this section, we investigate the hypothesis h,ccur « psm, Which affirms that the
accuracy of the model depends on DSM-specific parameters. We consider two parameters
that can be independently tuned in every DSM: context-window size and number of

dimensions in the output vectors.

5.2.1 Context-window size

DSMs build the representation of every word based on the frequency of other words
that appear in its context. A very simple way of defining such a context is through a
window, whereby the context of a word with e.g. WINDOWSI1ZE=4+4 would consist in
the previous four words and the following four words in the text. Most works in the
literature construct DSMs with window sizes between the extremes 1+1 and 10410, with
a few works considering larger window sizes such as 16+16 or 20+20 (KIELA; CLARK,
2014; LAPESA; EVERT, 2014). We evaluate the behavior of compositionality prediction
when the underlying DSM model is built with the commonly-used context-window sizes
of 141, 4+4, and 84+8.2 Our hypothesis (Daceur + DSM.window) 1S that the highest scores
should be obtained by window sizes of 848, as the extra amount of data would lead to a
better representation of the word-level semantics.

As can be seen in Figure 5.3, the performance with different context-window sizes

is mostly DSM-dependent. In the case of PPMI-SVD, a window of size 141 yields better

results for all datasets, with the exception of Farahmand evaluations. The glove model
exhibits the opposite behavior: windows of size 1+1 are consistently worse than the win-
dows of size 4+4 or 8+8. These results seem to be related to the manner with which the
weights decay for different models. In the case of PPMI-SVD with WINDOWSIZE=8+-8,
a context word at distance d from its target word is weighted as %. In the case of glove,
the decay happens much faster, with a weight of S, which allows the model to look farther
away without being affected by the extra noise associated with the more distant contexts.
For the other DSMs, window size is not a visible predictor of performance. In the ex-
ceptional case of PPMI—thresh, the results were language-dependent instead: French and

Portuguese data can be better approximated through smaller windows, while English data

2Section 5.5.3 also performs some sanity checks for windows of size 2+2.
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Figure 5.3: Best Spearman’s p per DSM and WINDOWSIZE.
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(including Reddy and Reddy"™ ™) displays a weaker preference for larger window sizes. The
appropriate choice of window size has been shown to be task-specific (LAPESA; EVERT,
2017), and the results above suggest that, in the task of compositionality prediction, even

the choice of DSM may interact with this parameter.

5.2.2 Number of dimensions

When instantiating a DSM, there is a trade-off in the number of vector dimensions.
Models that have lower amount of dimensions will correspondingly have a smaller mem-
ory footprint?, while models that have a larger number of dimensions eschew any memory
concerns so as to be able to represent more fine-grained patterns of co-occurrence. The
question is whether these extra dimensions can be put to good use by state-of-the-art
DSMs. Most works in the literature build distributional models whose vectors contain
between 200 and 900 dimensions (BARONT; DINU; KRUSZEWSKI, 2014; LAPESA; EV-
ERT, 2014). We evaluate different DSMs by using DIMENSION=250, which approximates

the common value used in the literature. We additionally present results for two of its

3Memory usage grows linearly with the number of dimensions.
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multiples: 500 and 750 dimensions. Our hypothesis (haccur « DSM.dims) 18 that the high-
est scores should be obtained by DSMs where the vectors contain a higher number of
dimensions.

As Figure 5.4 shows, for most DSMs, an increase in the number of dimensions
causes a moderate increase in the quality of the predictive model, reflecting the addi-
tional information that can be used to perform the compositionality predictions. This is
particularly true in the case of the DSMs that obtain the highest Spearman scores. This
behavior is however inverted for PPMI-SVD, in which the highest results can be ob-
tained by building lower-dimension models. Moreover, two DSMs seem to be particularly
unaffected by the number of dimensions: glove and lexvec models seem to have around
the same predictive power regardless of the number of dimensions. Overall, these results
suggest that, across all DSMs, the best scores can be obtained by configurations involving

a higher number of dimensions, as hypothesized.

Figure 5.4: Best Spearman’s p per DSM and DIMENSION.
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5.3 Corpus parameters

According to the hypothesis huceur « corpus, the accuracy of the semantic represen-
tation in a DSM is dependent on the quality of the input representation. In this section,
we analyze the impact of different types of corpus preprocessing, corpus size variation, as

well as the use of parallel sub-corpora in the prediction of NC compositionality.

5.3.1 Type of preprocessing

Most works in the literature on distributional models focus on the analysis and
tuning of different statistical parameters, reducing the preprocessing to tokenization,
along with simple procedures such as lower-casing and rare word removal (MIKOLOV
et al., 2013; PENNINGTON; SOCHER; MANNING, 2014; LEVY; GOLDBERG; DA-
GAN, 2015; SALLE; VILLAVICENCIO; IDIART, 2016). Works that rely on DSMs in
semantic tasks tend to consider other preprocessing techniques, such as lemmatization,
stemming, POS tagging, and stopword removal (BULLINARIA; LEVY, 2012; KIELA;
CLARK, 2014). The goal of such procedures is to increase the quality of the word repre-
sentations, by conflating different uses of the same word into a single canonical form, by
allowing the disambiguation of homonyms based on their syntactic function, and through
the elimination of random noise from the corpora.

As described in Section 4.3, we consider four different levels of corpus preprocessing:
WORDFORM=surface™, surface, lemmap,s and lemma. Under each of these configura-
tions, there is a difference in how much information is condensed into each token in the
corpus, with surface™ being the most specific (every word in the corpus is considered
verbatim) and lemma being the most general (where only the lemmas of content words
are used in the representation of each token). Our hypothesis (haccur « corpus.wordform) 1S
that the less specific configurations present a less sparse view of the data, contributing to
higher-quality DSM representations and thus achieving higher scores.

Figure 5.5 presents the impact of different types of corpus preprocessing on the
quality of the compositionality prediction model. The results seem to be language-
dependent: The results for the English-language datasets are quite heterogeneous, while
for the other two languages, the lemma-based word representations consistently allow a
better prediction of compositionality scores. This phenomenon may be explained by the

fact that French and Portuguese are morphologically richer than English. For the for-



89

mer languages, lemma-based representations reduce the sparsity in the data and allow
more information to be gathered from the same amount of data. In the case of English,
lemmatization has a reduced effect, and in particular for PPMI-SVD, it visibly reduces

the quality of predictions.

Figure 5.5: Best Spearman’s p per DSM and WORDFORM
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The results for lemmap,s represent the addition of POS tags to every word in
the corpus. This extra information does not show any improvement over lemma. This
suggests that words that share the same lemma are semantically close enough that any
gains from disambiguation are compensated by the sparsity of a higher vocabulary size.

The results obtained with surface™ are surprisingly similar to surface, which con-
firms previous suggestions that stopword removal does not significantly affect the data
(BULLINARIA; LEVY, 2012). These results are achieved even though surfacet contains
stopwords, which one might expect would dilute the DSM representation (due to their
low level of association with most other words), which might then reduce the accuracy
of predictions. A possible explanation could be that the stopwords in surface™ effectively

contribute to a reduced window size of content words*, which is shown in Section 5.2.1 to

4This could be investigated in future work with a WORDFORM that only uses the content words inside
a content+stopword window.
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consistently yield better results. Indeed, when looking at the highest surface™ scores across
all models and datasets, the majority of the configurations involve WINDOWSIZE=1+1,

further highlighting the role of the context-window size in the best-performing models.

5.3.2 Corpus size

In this thesis, we have presented results for compositionality prediction based on
three similarly-sized corpora. The general intuition gathered from the literature is that
predictions based on larger corpora should obtain higher scores, as rarer contexts would
also be taken into account, thus improving the quality of the vector representation of these
words. We express this intuition through the hypothesis haccur « corpus.size, Which predicts
higher scores for DSMs instantiated for larger-sized corpora.

This section performs a quantitative analysis of the impact of different corpus sizes
on the quality of the predictions. For each of the Reddy, FR-comp and PT-comp datasets,
we consider the highest-Spearman PPMI ~thresh and w2v—-sg configuration obtained thus
far for the full-size corpus.® We then build new models under the same configuration, but
using corpus fragments of size varying from 1% to 100% of the whole corpus, increasing
by steps of 1/100 at a time.

Figure 5.6(a) presents three graphs of the scores obtained by building models for
the best PPMI—thresh configuration of each dataset. The 100 positions in the x-axis
correspond to the corpus sizes (1% to 100%). Eight different samplings of corpus fragments
were performed (for a total of 800 models per language), with each y-axis data point
presenting the average of the 8 Spearman scores obtained from those samplings. Each
data point also presents the sample standard deviation for those 8 executions. Points
to the left of the vertical bar have at least one sampling with missing compounds, while

points to the right have 100% of the compounds in all 8 samplings. The results suggest

that, for the three languages, a corpus size of around 800 million to 1 billion tokens (40%
of the whole corpus size) is large enough to obtain the best results, with further increases
in the amount of data available only contributing marginally to the overall quality of the

predictions.

5Results for corpus size do not consider variations in the configurations, as the best configuration for
the full-size corpus is used for every corpus size.
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Figure 5.6: Spearman’s p for different corpus sizes, running PPMI —thresh (left) and w2v—
sg (right).
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Figure 5.6(b) presents three graphs with the scores obtained by the best w2v—
sg configuration for each dataset. Due to the fact that w2v—sg is much more time-
consuming than PPMI -thresh, a single sampling was used, and thus only one execution
was performed for each datapoint (for a total of 100 vector models per language). Similarly
to PPMI~thresh, a corpus fragment of around 40% size (800 million to 1 billion tokens)
was already large enough for the results to stabilize close to the score obtained by the
fragment of size 100%. This suggests that corpus size does strongly affect the quality
of the underlying DSM representation, but that it reaches a plateau around a billion
tokens. Even higher corpus sizes would presumably only offer a minor improvement in

DSM representation quality. Future work should investigate whether a similar plateau
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can also be observed for other methods of compositionality prediction.

5.3.3 Parallel predictions

One idea that has been employed in the literature is that of ensemble methods,
in which the predictions from multiple methods (e.g. multiple DSM instances built from
the same data) are combined into a single prediction that outperforms all other methods
(ZHOU, 2012). We leave ensemble experiments for future work, but we focus on an
approach that is inspired by its success: parallel predictions.

The results obtained for different corpus sizes above imply that a subset of the
corpus can lead to results that are equivalent to the ones obtained for the whole corpus.
In fact, even when a smaller fraction of the corpus is considered, such as 20% of the
total corpus size, the resulting model can still yield reasonably good predictions of com-
positionality. We hypothesize (haccur < corpus.parallel) that, just as an ensemble of methods
instantiated from a single corpus may complement each other and achieve higher scores,
so can a single DSM method instantiated multiple times in parallel from an ensemble of
corpora be combined so as to achieve accurate DSM representations.

We thus propose a technique in which the whole corpus is divided in M parallel
fragments (ci1, ca, ...cpr). We then instantiate the same DSM M times in parallel, each
one based on a different corpus fragment. These DSMs can then be used to produce a
set of M compositionality predictions per compound, using the uniform strategy (CSgn),
CSg(2), ---CSpry). The M parallel predictions for each compound are then combined
through the arithmetic average into a single compositionality score CSp. We can then
evaluate the set of CSp for every compound by comparing them with the reference dataset.

In order to verify the hypothesis that the parallel predictions can yield results that
are comparable to the ones obtained on the whole corpus, we ran an experiment in which
the whole corpus was divided in M = 5 fragments of equal size, each corresponding to
20% of the whole corpus. Table 5.2 presents the Spearman scores of whole-corpus (p100%)
and parallel prediction (psx20%) for two models: PPMI—thresh and w2v—sg. For the latter,
we have considered smaller subsampling sizes rates of 1072 and 107#, to account for the
smaller corpus sizes. The results suggest that the parallel prediction on smaller corpus

fragments can be as effective as a single prediction generated from the whole corpus.
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Table 5.2: Results for whole-corpus and parallel predictions.

Model (Reddy*™) P100% Psx20% Difference (%) Worst pagy,  Best page

PPMI thresh 699 680 (—1.9) 626 678
w2v-sg (1073) 731 719 (—1.2) .668 708
w2v-sg (107%) 731 717 (—1.4) 667 707
Model (FR-comp) P100% Psx20% Difference (%) Worst pagy,  Best pagy,
PPMT thresh 702 709 (+0.7) 636 714
w2v-sg (1073 672 .685 (+1.3) 654 688
w2v-sg (1074 672 .688 (+1.6) 671 693
Model (PT-comp) P100%  Psx20% Difference (%) Worst pagy,  Best pagy,
PPMI ~thresh .602 D72 (=3.1) .496 .549
w2v-—sg (1073 586 581 (—0.5) 528 569
w2v-sg (1074 586 581 (—0.6) 520 566

Table 5.2 also indicates the Spearman scores obtained for the highest and lowest-
ranking corpus fragments (Worst pagy; and Best page, each using only 20% of the corpus).
In the case of Reddy™™ and PT-comp, in all configurations, we can see that the average
score obtained from the 5 fragments (psx20%) is slightly higher than the score obtained by
the best fragment. This suggests that the technique of parallel predictions is actually able
to combine the results from the different fragments, confirming the underlying hypothesis.
We leave it for future work the investigation of different ways of combining the parallel
predictions into a single score.

One of the greatest advantages of parallel prediction is its potential for scalability.
While a standard DSM-based predictive model requires the whole corpus to be processed
at once, a parallel model allows the computation of such predictions in a distributed fash-
ion. This reduces the total execution time, allows the better utilization of distributed
resources (such as computer clusters), and bypasses memory limitations of a single ma-

chine.

5.4 Prediction strategy

Now that we have evaluated the impact of DSM and corpus parameters on the
predicted compositionality scores, we turn to the underlying prediction strategy itself. As
we have seen in Chapter 3, the elements of an MWE may vary in terms of the semantic
contribution of each element to the MWE as a whole, and this may have an impact on the
success of the composition model adopted for deriving the vector space representation of

the MWE (hypothesis hga¢). For instance, adopting a uniform (50%:50%) composition



94

for the elements of a compound might not accurately capture a faithful representation of
compounds whose meaning is more semantically related to one of the components than
to the other (as in the case of the compound crocodile tears, regarding its head, and night
owl, regarding its modifier).

We compare below six different compositionality prediction strategies (all described
in Section 4.2). Some of these strategies consider different variations of weights on the
compound elements themselves: uniform uses a 50%:50% scheme, while two other strate-
gies (head and mod) use a 0%:100% scheme We also evaluate a proposed new model of
additive composition, mazsim, which dynamically determines weights so as to assign an
optimal proximity of the compound to each of its single-word elements. Additionally,
we consider the arith and geom prediction strategies, in which the representation of the
compound is independently compared to the representation of each component, and with
the resulting score being the (arithmetic or geometric) mean of the comparison scores.

Table 5.3 presents the scores obtained for all strategies on the configurations in
which uniform obtains its highest scores (i.e. using the best configuration for each DSM
as reported up to now). In most of the cases, the score obtained for the uniform prediction
is higher than both the head and mod scores when taken separately, which is in line with
the hypothesis hgtrat partial-info that these two strategies are somewhat limited due to the
fact that they only consider half of the available distributional information.® However,
this difference is only moderate, with mod predictions in particular attaining results that
are quite close to uniform.

Results for other strategies are slightly worse than uniform, suggesting that these
approaches are either subpar, or that they improve in configurations that differ from the

best uniform configurations.

Table 5.3: Spearman scores for best uniform model of each dataset, using different pre-
diction strategies. The Farahmand dataset uses BF.

Dataset  DSM configuration  uniform mazxsim geom arith head mod
Reddy w2v-sg surface.wy.d750 812 802 756 .805 .635 .75H2
EN-compgg w2v—cbow  lemma.w4.dsoo 653 651 .600 .647 463 .613

Reddy™  w2v-sg surface™.wi.drsg 726 730 657 718 .24 677
FR-comp  PPMI-thresh lemmapos.wi.d7sg .702 688 .668 .698 .605 .603
PT-comp  PPMI-thresh lemmapos.wi.d7se 602 577 524 .595 .524 .413
Farahmand w2v-cbow  lemmapog.wg.dosg  .D01  .484 523 517 .402 .534

SFuture work should investigate why the BF; scores of Farahmand are higher for mod than for all
other strategies.
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To verify whether the other prediction strategies improve models that differ from
the highest-Spearman uniform configurations, we have evaluated every strategy on all
DSM instances. Table 5.4 presents a summary of the highest scores obtainable for each
prediction strategy individually (i.e. each score represents the best configuration for a
given strategy evaluated on a given dataset). Every best score is statistically different
from all other scores in its row (p < 0.05). Similarly to the above results, the score
obtained for the uniform prediction is higher than the one obtained for both head and mod
strategies (hypothesis Dgyat partial-info), Which further suggests that the quality of uniform
predictions is derived from the combination of the vector representation of the two words
(in particular from mod).

The arith strategy obtains performance results that are very similar to the ones of
uniform, reflecting the fact that both methods rely on an additive model of composition.
Indeed, if we consider the average (across the 7 DSMs) of the Pearson correlation between
the 180 predictions for the highest-Spearman configuration of arith and wuniform, we
obtain r = .972 for Reddy™, .991 for FR-comp and .969 for PT-comp, confirming that
these models produce very similar predictions. Moreover, these two strategies behave very
similarly when we consider the Spearman scores obtained for the 228 DSM instances in
each language: if we consider the Pearson correlation between the 228 pairs of Spearman
scores associated with both strategies, we obtain r = .981 for Reddy™™, .985 for FR-comp
and .944 PT-comp.

Table 5.4: Highest Spearman score for each prediction strategy individually. Farahmand
uses BF;.

Dataset uniform  mazsim geom arith head mod
Reddy 812 814 797 805 .654 .776
EN-compy 653 .659 .600 .647 483 .615
Reddy*™ 726 2730 677 718 .B55  .677
FR-comp 702 693  .699 .703 617 .645
PT-comp .602 D90 B8O 598 .558 486
Farahmand 501 A87 529 518 422 528

When one considers the highest-Spearman configuration for each strategy, results
for maxsim are competitive with the results for uniform. While maxsim fares slightly
better on English continuous-score datasets, uniform obtains slightly higher scores on the
other two languages. Implicit to the calculation of maxsim is the assignment of weights

for the components of every NC, and we have considered whether the assigned weights
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actually differ from the 50:50 assignment of uniform. This does seem to be the case, as
some NCs have a weight prediction that is much closer to human head-only and modifier-
only scores than a 50:50 prediction. For example, in the w2v-sg prediction for Reddy™™,
some NCs were weighted more heavily in favor of the head (e.g. silver screen had weight
11:89), while others had more weight in the modifier (e.g. spelling bee with weight 94:06),
and with many intermediary NCs in between (e.g. dirty word with weight 47:53).

One of the side effects of calculating these weights is that they also reveal any bias
in the semantic influence of the head or the modifier of each compound, and we consider
whether this bias may be affecting the results on each dataset. Table 5.5 presents the
highest-Spearman maxsim model for each dataset, along with the average of the weights
assigned to head and modifier for every NC in the dataset. The results are extremely
stable: while the weights that optimize for compositionality are fairly similar for the
English datasets, they are highly discrepant for both FR-comp and PT-comp, in which
the weight of the head is disproportionately higher than the weight of the modifier.

The fact that FR-comp and PT-comp compounds have the potential for higher
compositional interpretation in the head than in the modifier could be elucidated by the
consideration that all of the modifiers in these datasets are adjectives, while English-
language modifiers may also be nouns. Therefore, the contribution of adjectives to the
overall meaning could be lower due to some linguistic phenomenon. For example, some
of the adjectives used in these compounds are highly polysemous, and could be seen
contributing to some specific meaning is not found on isolated occurrences of the adjective
itself (e.g. FR beau (lit. beautiful) is used in the translation of most in-law family members,

such as beau-frére ‘brother-in-law’ (lit. beautiful-brother)).

Table 5.5: Average weight of highest-Spearman mazsim model for each dataset.

Dataset DSM configuration maxsim  weightpe.q weightoq
Reddy w2v-sg surfacet . wy.drsg 814 53 47
EN-compyg  w2v—cbow lemma.wg.d75 .659 54 46
Reddy™ w2v—-sg surfacet . wy.drsg 730 55 45
FR-comp PPMI—thresh lemma.wy.d750 .693 68 32
PT-comp w2v-sq lemma.wg.d7s0 .590 68 32

Up to this point, it is still unclear whether it is true that the mazsim strategy is able
to more aptly capture the semantics of compositional MWEs (hypothesis hgrat maxsim ). 11

order to better understand the behavior of mazsim with regards to uniform, we rank the
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compounds in ALL-comp according to three possible sets of scores: (a) the composition-
ality score assigned by human annotators; (b) the highest-Spearman mazsim prediction;
and (c) the highest-Spearman uniform prediction. Each compound is then assigned three
corresponding ranks (positive integers): rkpuman, TKmazsims TKuniform. We then calculate

the improvement score of each compound as:

improvmaxgim = ‘rkum‘form - rkhuman' — |rkmaxsim — rkhuman|-

Figure 5.7 presents the distribution of rank improvement scores for the highest-scoring
PPMI ~thresh and w2v-sg configurations.” Each graph presents the improvement score
for NCs from the three languages, ranked according to rkpuman- It can be seen that, for
most NCs, there is only a light variation in the rank compositionality of maxsim. For
the NCs that have a more drastic variation in rank, positive improvements are associated
with higher human-ranked compositionality (right side of the graph), while negative im-
provement scores are associated with idiomatic NCs. This confirms the hypothesis that
mazsim can better capture the semantics of compositional MWEs, albeit this only applies

to some outlier cases.

Figure 5.7: Distribution of improv as a function of human judgments.
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Figure 5.8 presents the distribution of rank improvements for all NCs, ranked
according to rkyniform instead. Differently from above, NCs with the highest variation in
rank are found on the left side of the graph, indicating that they were all initially judged
as idiomatic. This indicates that maxsim tends to improve the score of NCs that humans
considered more compositional, but that the uniform system considered more idiomatic.

On the other hand, NCs that are correctly classified as idiomatic by the uniform prediction

"We focus on one representative of PPMI-based DSMs and one representative of word-embedding
ones. Similar results were observed for the highest-Spearman configuration of other DSMs.
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are somewhat under-estimated by mazsim. The positive and negative improvements are

somewhat balanced, which explains why maxsim predictions fare as well as uniform.

Figure 5.8: Distribution of improv as a function of uniform scores.
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Figures 5.7 and 5.8 also indicate the outlier NCs with highest most improvement
(numbers from 1 to 8), as well as the NCs with lowest improvement scores (letters from
A to H). Table 5.6 presents these outlier NCs along with their improvement scores (see
the Appendices A., B. and C. for the translation, glosses and human scores associated
with these compounds). We can see that there is a disproportionate amount of outlier
NCs for Portuguese and French (particularly the former), suggesting that mazsim has a
stronger impact on those languages than on English. It is also noticeable that some NCs
had a similar improvement score under both DSMs, with e.g. high improvement for PT
caiza forte and low improvement scores for PT coracdo partido. 1t is further remarkable
that equivalent NCs in different languages are similarly impacted by maxsim, as in the
case of PT caiza forte and FR coffre fort. Nevertheless, mazsim does not present a consid-
erable overall impact on the rank of the predictions, obtaining an average improvement

of improv = +0.41.

maxsim

As in the case of mazsim, we also consider the rank improvement of geom predic-
tions over uniform. We rank the compounds in ALL-comp according to three possible
sets of scores: (a) the compositionality score assigned by human annotators; (b) the
highest-Spearman geom prediction; and (c¢) the highest-Spearman wuniform prediction.
Each compound is then assigned three corresponding ranks (positive integers): rKpuman,

K geom, TKuniform- We then calculate the improvement score of each compound as:

improvgeom == ‘rkuniform - I'khumcml - ‘rkgeom - I‘khuman‘-
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Table 5.6: Outliers regarding positive/negative mazsim improvement.

ID improv PPMI-thresh improv  w2v-sg

1 (+90) FR premier plan (+138) PT cerca viva

2 (4+88) FR matiére premiére (+126) FR coffre fort

3 (+86) PT amigo oculto (+116) PT caiza forte

4 (+67) FR premiére dame (+107) PT golpe baizo

5 (+63) PT caiza forte (+100) PT primeira necessidade
6  (+58) PT prato feito (+95) EN role model

7 (+53) FR idée regue (+79) FR bonne pratique
8 (+48) FR marée noire (+69) PT carta aberta

H (—42) PT alta costura (—68) FR bras droit

G (—44) EN half sister (=70) PT alta costura

F (—44) EN melting pot (=71) PT carne vermelha
E  (—46) FR berger allemand (—82) PT alto mar

D  (=52) PT mar aberto (—85) PT mesa redonda
C  (—55) PT febre amarela (—86) EN half sister

B (—=81) PT livro aberto (—109) PT febre amarela
A (—83) PT coragio partido  (—128) PT coragio partido

The hypothesis (hgtrat.geom) 1S that geom should more accurately represent the semantics
of idiomatic NCs, and this would be reflected in the improvement scores. Figure 5.9
presents the distribution of rank improvements for NCs in ALL-comp, ranked according
t0 rKpuman- It can be seen that, for most NCs, there is only a slight variation in the rank
compositionality of geom. For the NCs that have a more drastic variation in rank, positive
improvements are slightly more associated with lower human-ranked compositionality (left
side of the graph), while negative improvement scores are visibly associated with com-
positional NCs (right side of the graph). This is the opposite of what was observed for
maxsim, and confirms the interpretation that these models optimize for opposite extremes
of compositionality (with geom focusing on idiomatic NCs at the expense of more com-
positional ones). As in the case of mazsim, this behavior is only observed for the outlier

cases.

Figure 5.10 presents the distribution of rank improvements for all NCs in the
highest-Spearman configuration, ranked according to rky;form instead. Here again, the
behavior of the geom strategy is the opposite of what was observed for maxsim: NCs
with the highest variation in rank are found on the right side of the graph, indicating that
they were all initially judged as compositional. This indicates that geom tends to improve
the score of NCs that humans considered more idiomatic, but that the uniform system
considered more compositional. On the other hand, NCs that are correctly classified as

compositional by the uniform prediction are somewhat pessimized by geom.
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Improvement from uniform to geom

Improvement from uniform to geom
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Figures 5.9 and 5.10 also indicate the outlier NCs with the highest and lowest
improvement scores (numbers and letters, respectively). Table 5.7 presents these outlier
NCs along with their improvement scores. As in the case of maxsim, the majority of the
outliers belong to the Portuguese dataset. Some of the NCs that were found as outliers in
mazsim re-appear as outliers for geom with inverted polarity in the improvement score,
e.g. FR bras droit scores predicted by PPMI—thresh (improv = +58, improv =

maxsim geom

—234) and PT prato feito as predicted by w2v-sg (improv,, .., = —68, improv,,,, =

+228). This suggests that future work should consider combining both approaches into
a single prediction strategy that decides which sub-strategy to use as a function of the
uniform prediction for each NC. As it stands, however, the geom strategy has a mild
negative influence on the rank of the predictions, obtaining an average improvement score

of improv = —7.87.

geom

Table 5.7: Outliers regarding positive /negative geom improvement.

ID improv PPMI—thresh improv w2v-sg

1 (+157) EN snail mail (+228) FR bras droit

2 (+110) FR guerre civile (+158) PT lua nova

3  (4+109) FR disque dur (+127) PT alto mar

4 (4+104) PT alto mar (+104) PT pé direito

5 (+93) PT onibus executivo (+89) EN carpet bombing
6 (+85) EN search engine (+75) PT lista negra

7 (4+82) PT carro forte (+73) PT arma branca
8 (+79) EN noble gas (+72) EN search engine
H (—-190) PT ar condicionado  (—151) PT disco rigido

G (—202) FR coffre fort (—169) EN subway system
F  (—202) FR bon sens (—190) PT carro forte

E (—234) PT prato feito (—238) FR disque dur

D (—292) FR baie vitrée (—256) EN half sister

C (—=327) PT carta aberta (—260) PT carta aberta

B (—=370) PT vinho tinto (—266) FR bonne pratique
A (=376) PT circuito integrado (—370) EN end user
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5.5 Sanity checks

The number of possible DSM configurations grows exponentially with the number
of internal variables in a DSM, forestalling the possibility of an exhaustive search for
every possible parameter. We have evaluated above the set of variables that are most
often manually tuned in the literature, but a reasonable question would be whether these
results can be further improved through the modification of some other often-ignored
model-specific parameters. We thus perform some sanity checks through a local search of
such parameters around the highest-Spearman configuration of each DSM.

Section 5.5.1 evaluates the number of DSM iterations. Section 5.5.2 evaluates
the minimum word-count threshold in the DSM. Section 5.5.3 considers a WINDOW-
S1zE=2+2. Section 5.5.4 considers higher numbers of DSM vector dimensions. Sec-
tion 5.5.5 evaluates the non-determinism of DSMs through multiple random initializa-
tions. Finally, Section 5.5.6 considers whether the filtering of dataset annotations could

improve its quality as well as the accuracy of predictions.

5.5.1 Number of iterations

Some of the DSMs in consideration on this chapter are iterative: they re-read and
re-process the same corpus multiple times. For those DSMs, we present the results of
running their best configuration, but using a higher number of iterations. This higher
number of iterations is inspired by the models found in parts of the literature, where e.g.
the number of glove iterations can be as high as 50 (SALLE; VILLAVICENCIO; IDIART,
2016) or even 100 (PENNINGTON; SOCHER; MANNING, 2014). The intuition is that
most models will lose some information (due to their probabilistic sampling), which could
be regained at the cost of a higher number of iterations.

Table 5.8 presents a comparison between the baseline p for 15 iterations and the p
obtained when 100 iterations are performed. For all DSMs, we see that the increase in the
number of iterations does not improve the quality of the vectors, with the relatively small
number of 15 iterations yielding better results. This may suggest that a small number of
iterations can already sample enough distributional information, with further iterations
accruing additional noise from low-frequency words. The extra number of iterations could
also be responsible for overfitting of the DSM to represent particularities of the corpus,

which would reduce the quality of the underlying vectors. Given the extra cost of running
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more iterations®, we refrain from building further models with as many iterations in this

thesis.

Table 5.8: Results using a higher number of iterations.

Model (FR-comp) prase Piter=100 Difference (%)
w2v—cbow .660  .640 (—2.0)
w2v-sg 672 636 (=3.7)
glove .680 677 (—0.3)
lexvec 677 671 (—0.6)
Model (Reddy) Phase  Piter=100 Difference (%)
w2v—cbow .809  .766 (—4.3)
w2v-sg 821 777 (—4.4)
glove 764 746 (—1.8)
lezvec JT4 757 (—1.7)
Model (PT-comp) poase Piter=100 Difference (%)
w2v—cbow .588  .558 (—3.0)
w2v-sg .586  .551 (—3.6)
glove 555 464 (—9.1)
lezvec 570 561 (—0.9)

5.5.2 Minimum count threshold

Minimum-count thresholds are often neglected in the literature, where a default
configuration of 0, 1 or 5 being presumably used by most authors. An exception to this
trend is the threshold of 100 occurrences used by Levy, Goldberg and Dagan (2015),
whose toolkit we use in PPMI-SVD. No explicit justification has been found for this
higher word-count threshold. A reasonable hypothesis would be that higher thresholds
improve the quality of the data, as it filters rare words more aggressively.

Table 5.9 presents the result from the highest-Spearman configurations alongside
the results for an identical configuration with a higher occurrence threshold of 50. The
results unanimously agree that a higher threshold does not contribute to the removal
of any extra noise. In particular, for PPMI-SVD, it seems to discard enough useful
information to considerably reduce the quality of the compositionality prediction measure.
The results strongly contradict the default configuration used for PPMI-SVD, suggesting
that a lower word-count threshold might yield better results for this task.

8The running time grows linearly with the number of iterations.
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Table 5.9: Results for a higher minimum threshold of word count.

Model (FR-comp) prase  Pmincount=s0 Difference (%

)
w2v—chow .660 610 (—5.0)
w2v-sqg 672 613 (—5.9)
glove .680 673 (—0.7)
PPMI-SVD 584 258 (—32.6)
lezvec 677 653 (—2.4)
Model (Reddy) Phase  Pmincount=50 Difference (%)
w2v—cbow .809 778 (—3.1)
w2v-sq .821 776 (—4.5)
glove 764 672 (—9.2)
PPMI-SVD 743 515 (—22.8)
lexvec 174 738 (—3.6)
Model (PT-comp)  prase  Pmincount—s0  Difference (%)
w2v—cbow .588 580 (—0.8)
w2v-sg .586 575 (—1.1)
glove .555 .540 (—1.5)
PPMI-SVD 530 418 (—11.1)
lezvec 570 .566 (—0.4)

5.5.3 Windows of size 2+2

For many models, the best window size found was either WINDOWSIZE=1+1 or
WINDOWSIZE=4+4 (see Section 5.2.1). It is possible that a higher score could obtained
by a configuration in between. While a full exhaustive search would be the ideal solution,
a useful approximation of the best 242 configuration could be obtained by running the
experiments on the highest-Spearman configurations, with the window size replaced by
242,

Results in Table 5.10 for a window size of 242 are consistently worse than the base
model, indicating that the optimal configuration is likely the one that was obtained with
window size of 141 or 44+4. This is further confirmed by the fact that most DSMs had
the best configuration with window size of 141 or 848, with few cases of 444 as best
model, which suggests that the quality of most configurations in the space of models is
either monotonically increasing or decreasing with regards to these window sizes, favoring

thus the configurations with more extreme WINDOWSIZE parameters.
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Table 5.10: Results using a window of size 2+2.

Model (FR-comp) prase Pwin—ai2 Difference (%)
PPMI _SVD 584 307 (—18.7)
PPMI ~thresh 702 678 (—2.4)
glove .680 .657 (—2.3)
lezvec 677 671 (—0.6)
w2v—cbow .660 .644 (—1.6)
w2v—sg 672 639 (—3.3)
Model (Reddy) Phase  Pwin=2i2 Difference (%)
PPMI SVD 743 533 (~16.0)
lezvec 174 757 (—1.7)
w2v—cbow 809 777 (—3.2)
w2v-sg .821 784 (—3.7)
Model (PT-comp) poase Pwin=2+2 Difference (%)
PPMI SVD 530 446 (—8.4)
PPMI ~thresh .602 561 (—4.1)
lexvec 570 .564 (—0.6)

5.5.4 Higher number of dimensions

As seen in Section 5.2.2, some DSMs obtain better results when moving from
250 to 500 dimensions, and this trend continues when moving to 750 dimensions. This
behavior is notably stronger for PPMI —-thresh, which suggests that an even higher number
of dimensions could have better predictive power.

Table 5.11 presents the result of running PPMI—thresh for increasing values of of
the DIMENSION parameter. The baseline configuration (indicated as * in Table 5.11) was
the highest-scoring configuration found in Section 5.2.2: lemmap,s.w1.d759 for PT-comp
and FR-comp, and surface.wg.d7s9 for Reddy. As seen in Section 5.2.2, results for 250 and
500 dimensions have lower scores than the results for 750 dimensions. Results for 1000
dimensions were mixed: they are slightly worse for FR-comp and Reddy™ ™, and slightly
better for PT-comp. Increasing the number of dimensions generates models that are
progressively worse. These results suggests that the maximum vector quality is achieved

between 750 and 1000 dimensions.
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Table 5.11: Results for higher numbers of dimensions (PPMI -thresh).

Model (FR-comp) paim=x Difference (%)
dim = 250 671 (—3.1)
dim = 500 695 (—0.7)
dim = 750 702+ (0.0)
dim = 1000 694 (~0.8)
dim = 2000 645 (—5.8)
dim = 5000 636 (=6.7)
dim = 30000 552 (—15.1)
dim = 999999 539 (~16.3)
Model (Reddy) paim=x Difference (%)
dim = 250 764 (—2.7)
dim = 500 782 (~1.0)
dim = 750 791+ (0.0)
dim = 1000 784 (—0.7)
dim = 2000 760 (=3.1)
dim = 5000 744 (—4.7)
dim = 30000 700 (—9.1)
dim = 999999 566 (—22.5)
Model (PT-comp) paim=x Difference (%)
dim = 250 543 (=5.9)
dim = 500 546 (=5.6)
dim = 750 602 (0.0)
dim = 1000 609 (+0.7)
dim = 2000 601 (~0.1)
dim = 5000 505 (—9.7)
dim = 30000 532 (=7.0)
dim = 999999 500 (—10.2)

5.5.5 Random initialization

The word vectors generated by the glove and w2v models have some level of non-
determinism caused by random initialization and random sampling techniques. A rea-
sonable concern would be whether the results presented for different parameter variations
are close enough to the scores obtained by an average model. To assess the variability
of these models, we evaluated 3 different runs of every DSM configuration (the original
execution py, used elsewhere in this thesis, along with two other executions py and ps3) for
glove, w2v—cbow and w2v-sg. We then calculate the average p,yg of these 3 executions for
every model.

Table 5.12 reports the highest-Spearman configurations of p,y for the Reddy and
Reddy*™ datasets. When comparing p,, to the results of the original execution p;, we

see that the variability in the different executions of the same configuration is minimal.
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This is further confirmed by the low sample standard deviation® obtained from the scores
of the 3 executions. Given the high stability of these models, results in the rest of the

thesis were calculated and reported as p; for all datasets.

Table 5.12: Configurations with highest p,ys for non-deterministic models.

Dataset DSM configuration p1 P2 P3  Pavg stddev
glove lemmapy,g.wg.dosg 759 760 .753 .757  .004

Reddy w2v—cbow  surface.wq.dsgg 796 .807 .799 .801 .006
w2v-sg surface.wy.drsg 812 788 812 804 .014
glove lemmapy,g.wg.dsgg 651 .646 .650 .649  .003

Reddy™  w2v—cbow surfacet . wy.dme 730 732 728 730  .002
w2v-sq surface™.wy.drsg Jr41 732 721 731 010

5.5.6 Data filtering

Along with the verification of parameters, we also evaluate whether dataset varia-
tions could yield better results. In particular, we consider the use of filtering techniques,
which are used in the literature as a method of guaranteeing dataset quality. As per Roller,
Walde and Scheible (2013), we consider two strategies of data removal: (1) removing in-
dividual outlier compositionality judgments through z-score filtering; and (2) removing
all annotations from outlier human judges. A compositionality judgment is considered
an outlier if it stands at more than z standard deviations away from the mean; a human
judge is deemed an outlier if its Spearman correlation to the average of the others pon
is lower than a given threshold R!°. These methods allow us to remove accidentally er-
roneous annotations, as well as annotators whose response deviated too much form the
mean (in particular spammers and non-native speakers).

Table 5.13 presents the evaluation of raw and filtered datasets regarding two quality
measures: the average of the standard deviations for all NCs (ewc); and the proportion
of NCs in the dataset whose standard deviation is higher than 1.5 (P,~15), as per Reddy,
McCarthy and Manandhar (2011). The results suggest that filtering techniques can im-
prove the overall quality of the datasets, as seen in the reduction of the proportion of

NCs with high standard deviation, as well as in the reduction of the average standard

9The low standard deviation is not a unique property of high-ranking configurations: The average of
deviations for all models was .004 for Reddy*+ and .006 for Reddy.

10The judgment threshold we adopted was z = 2.2 for EN-compgg, z = 2.2 for PT-comp and z = 2.5
for FR-comp. The human judge threshold was R = 0.5.
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deviation itself. We additionally present the data retention rate (DRR), which is the pro-
portion of NCs that remained in the dataset after filtering. While the DRR does indicate
a reduction in the amount of data, this reduction may be considered acceptable in light

of the improvement suggested by the quality measures.

Table 5.13: Intrinsic quality measures for the raw and filtered datasets

OwWC P<7>1.5
Dataset raw filtered raw filtered DRR
FR-comp 1.15 0.94 22.78% 13.89% 87.34%
PT-comp 1.22 1.00 14.44%  6.11% 87.81%
EN-compyg 1.17 0.87 18.89%  3.33% 83.61%
Reddy 0.99 — 5.56% — —

On a more detailed analysis, we have verified that the improvement in these quality
measures is heavily tied to the use of z-score filtering, with similar results obtained when
it is considered alone. The application of R-filtering by itself, on the other hand, did not
show any noticeable improvement in the quality measures for reasonable amounts of DRR.
This is the opposite from what was found by Roller, Walde and Scheible (2013) on their
German dataset, where only R-filtering was found to improve results under these quality
measures. We present our findings in more detail in Cordeiro, Ramisch and Villavicencio
(2016a).

We then consider whether filtering can have an impact on on the performance of
predicted compositionality scores. As z-score filtering was responsible for improvement
in quality measures above, we consider For each of the 228 model configurations that
were constructed for each language, we launched an evaluation on the filtered EN-compqgy,
FR-comp and PT-comp datasets (use use z-score filtering only, as it was responsible for
most of the improvement in quality measures). Overall, no improvement was observed in
the results of the prediction (values of Spearman p) when we compare raw and filtered
datasets. Looking more specifically at the best configurations for each DSM (Table 5.14),
we can see that most results do not significantly change when the evaluation is performed
on the raw or filtered datasets. This suggests that the amount of judgments collected
for each compound greatly offsets any irregularity caused by outliers, making the use of

filtering techniques superfluous.
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Table 5.14: Extrinsic quality measures for the raw and filtered datasets

EN-compyg FR-comp PT-comp
Dataset raw filtered raw filtered raw filtered
PPMI-SVD .604 .601 584 579 530 .526
PPMI-TopK .564 571 .550 .545 519 516
PPMI ~thresh .602 .607 702 .700 .602 .601
glove 538 .544 .680 676 .555 .52
lexvec 567 572 677 .676 570 .68
w2v—cbow .669 .665 .651 .651 .588 .H87
w2v—sg .665 .661 .653 .654 .586 .b84

5.6 Error analysis

In the previous sections, we have studied the performance of the compositionality
prediction framework in terms of the correlation between system predictions and human
judgments. We now investigate the system output with regards to other variables that
may have an impact on results, such as corpus frequency and conventionalization. We also
compare the predicted compositionality scores with some patterns we previously found in

human scores (see Section 3.2).

5.6.1 Frequency and compositionality prediction

Results from an evaluation of the hypothesis higiom ~ distr.freq i Section 3.2.4 show
that the frequency of NCs in large corpora is somewhat associated with the composition-
ality scores assigned by humans. We investigate whether this correlation also holds true
to system predictions: are the most frequent NCs being predicted as more compositional?

In this experiment, we focus on a cross-language analysis with the ALL-comp
dataset, which combines the 3 x 180 = 540 NCs from the three datasets presented in
Chapter 3. Figure 5.11 presents the 540 NCs, ordered according to corpus frequency and
grouped into 18 bins of 30 NCs each.!! The height of each bin indicates the average of the
scores predicted (using the uniform strategy) by a given system to the 30 NCs therein.
There is a high variability in the level of correlation between the corpus frequency of
compounds and the prediction of the models. The level of correlation ranged from p = .28
for PPMI-TopK (not shown here) to p = .68 for glove, with the intermediate results of
p = .36 for PPMI-SVD, p = .46 for PPMI—thresh, p = .50 for w2v-sg, p = .51 for w2v—

1YWe use binning so as to smooth over the outliers.
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cbow and p = .54 for lexvec. For every system, the correlation was significant (p < 0.05).

This is in line with human judgments of compositionality, which also had a positive

correlation with the frequency of the NCs.

Figure 5.11: Compositionality prediction under different frequency bins.
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Another hypothesis (haccur « MWE.freq) We test is whether higher-frequency NCs are
easier to predict. A first intuition would be that this hypothesis is true, as a higher
number of occurrences is also associated with a larger amount of data, from which more
representative vectors could be built. To test this hypothesis, we calculated the correlation
between NC frequency and the human-system difference |h — s|, where h is the human
score and s is the system’s predicted score for a given compound. Higher values of human—
system difference indicate that an NC’s compositionality is harder to predict. We found a
weak (though statistically significant) correlation for some of the systems: PPMI-TopK
had p = .15, PPMI-SVD had p = .17, and PPMI—thresh had p = .22 (all with p < 0.05).
This correlation is positive, which means that the frequency is correlated with difficulty.
This implies that the compositionality of rarer NCs was mildly easier to predict for these
systems, suggesting that the hypothesis above is false. On the other hand, glove had
an easier time predicting frequent NC, with negative correlation of p = —.19, favoring
the aforementioned hypothesis. Moreover, the correlation was not statistically significant

for lexvec and w2v models. These results are mixed, and either point to an overall lack
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of correlation between frequency and difficulty, or indicate mild DSM-specific behaviors,

which should be investigated in further research.

5.6.2 Conventionalization and compositionality prediction

Section 2.2.3 has described the PMI as one well-known estimator of the level of
MWE conventionalization. Many of the DSMs investigated on this thesis also rely on PMI
as a way to estimate the strength of association between two words. This measure is then
directly applied to target—context word pairs during the construction of the DSM, and the
result becomes an internal matrix that is further processed to build the real-valued output
vectors. In light of the results from the previous section, and given the reliance of most
DSMs on the PMI for the construction of their word representation, one might expect
similarly high correlations between compositionality and the PMI of compound elements.
On the other hand, given the lack of correlation found between the conventionalization
and human judgments of compositionality, good system predictions should ideally not
correlate with measures of conventionalization such as the PMI. We thus evaluate whether

our model really is predicting something different from conventionalization.

Figure 5.12: Compositionality prediction under different PMI bins.
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Figure 5.12 presents the 540 NCs of ALL-comp, ordered according to PMI and
grouped under 18 bins of 30 NCs each. The height of each bin indicates the average of
the scores predicted (using the uniform strategy) by a given system to the 30 NCs therein.
The effects are milder than the ones seen for the frequency (in Section 5.6.1). Statistically
significant correlations are p = .13 for PPMI ~thresh, p = .17 for w2v—cbow and w2v-sg,
p = .26 for glove and lexvec, and p = .28 for PPMI-SVD. No correlation was found
for PPMI-TopK . Overall, these results suggest that the vector representations generated
by these models preserve some level of information regarding the strength of association
between words. Given that there was no correlation between PMI and human-rated
compositionality when testing hypothesis higiom ~ distr.convent i1 Section 3.2.4, the systems
that do keep this information are at a disadvantage. Particularly in the case of w2v models,
this result is surprising, as it suggests that its high scores could be further improved by a
method that did not keep as much of a correlation with the PMI in the word-embedding
representation.

We also calculated the correlation between the PMI and the human-system dif-
ference, calculated as |h — s|, where h is the human score and s is the predicted system
score for a given NC. The hypothesis (haccur < MWE.convent) i that the DSMs should have
lower accuracy when dealing with less conventionalized NCs (and whose elements are not
strongly associated through PMI), due to a lower amount of shared contexts. However,
for almost all DSMs, the results obtained do not show a statistically significant correla-
tion, suggesting that this hypothesis is not true. For lexvec, there was a minor negative
correlation of p = —.12 (p < 0.05) between the PMI and the difficulty, indicating that
NCs with higher PMI do have slightly more accurate internal representation than the
others in this particular DSM. This differs from the results obtained when comparing
the human-system difference with NC frequency (Section 5.6.1), in which lezvec did not
show any statistically significant correlation, but most other models did. As in the case
of frequency, the w2v models showed no correlation between difficulty of prediction and

the PMI.

5.6.3 Human—system comparison

The general hypothesis hpred-comp ~ comp Predicted a correlation between human-
rated NC compositionality and model predictions, and this has been extensively verified

in the highest-Spearman predictions (e.g. in Section 5.1). In this section, we present a
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visual validation of this hypothesis, by considering the highest-Spearman predictions of 4
DSMs, with all datasets combined.

Figure 5.13 presents 4 graphs (one per DSM), with the predicted compositionality
of the NCs in ALL-comp for the best configuration of each language. The NCs were
ranked by human compositionality scores, and grouped under 18 bins of 30 NCs each.
The height of each bin indicates the average of the scores predicted (using the uniform
strategy) by a given system to the 30 NCs therein. The four systems present a behavior
that is consistent with their Spearman scores (see Section 5.1), where system predictions

grow along with the corresponding human ratings.

Figure 5.13: Compositionality prediction as a function of human judgments.
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For all systems but PPMI—thresh, the pattern of predicted compositionality grows
mostly linearly with respect to the human scores (and this includes PPMI-TopK and
PPMI-SVD, not shown here). The PPMI—thresh system ratings behave unusually, with
overall lower predicted scores and a super-linear pattern of predictions, suggesting that
the model is quite capable of capturing different levels of compositionality for the most
compositional NCs, but fails at capturing the compositionality on the idiomatic side of
the spectrum. This pattern may be explained by the fact that PPMI—thresh uses a sparse
context representation (without any kind of dimensionality reduction other than context
filtering), which means that the intersection of two vectors is often a vector with zero in

many dimensions, yielding overall lower scores, especially for more idiomatic cases.
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5.6.4 Range-based analyses

The Spearman score assesses the performance of a given model by providing a
single numerical value. This facilitates the comparison between different models, but it
hides the internal behavior of the predictions. By splitting the datasets into different
ranges, we obtain a more fine-grained view of the pattern that governs the prediction of
each model.*

Figure 5.14 presents the highest-Spearman models (seen in Section 5.1), evaluated
separately on 3 different sub-datasets of 60 NCs, split according to the standard devia-
tion among human annotators (low, mid-range, and high values of owc)'. High values
of standard deviation indicate disagreement among annotators, which can be regarded as
an indicator that the annotation was difficult for humans. We can see that low-deviation
NCs obtained considerably better system scores than the NCs for which humans dis-
agreed among themselves. This can be taken as an evidence in favor of the hypothesis
haceur « MWE.qific that higher scores are achieved for NCs that were easier for humans to
annotate (i.e. that had lower standard deviation of human ratings), and suggests that part
of the difficulty of this task is related to the inability of humans to determine a consensual

interpretation for each NC.

We have similarly evaluated the datasets based on three ranges of compositionality
scores (low, mid-range and high values of cwc). The underlying hypothesis (haceur + MWE.idiom )
was that compositional NCs would be more precisely classified by the model than idiomatic
NCs, as the former have been more extensively considered in the literature (MITCHELL;
LAPATA, 2010; MIKOLOV et al., 2013). Here, we consider the 540 NCs of ALL-comp,
divided in three sub-datasets based on the level of human-rated compositionality, with
180 NCs in each sub-dataset!*. Table 5.15 presents the Spearman score obtained on each
sub-dataset for the highest-Spearman configuration of each DSM.'® The results suggest
that distinctions on the level of compositionality are easier to perform for compositional
compounds than they are for idiomatic compounds. In all cases, however, the result for

sub-datasets was far lower than the score obtained for the full dataset. This might be

12The experiments in this section involve Reddyt™, FR-comp and PT-comp, but not Farahmand, as
the latter dataset has binary judgments and thus cannot be easily split in ranges.

13 All Spearman scores for sub-datasets had p < 0.05.

1Scores from compounds in different languages are mixed together in each sub-dataset.

15 A1l Spearman scores for datasets and sub-datasets had p < 0.05.
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Figure 5.14: Spearman of best uniform models, separated by owc ranges.
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explained by the fact that it is harder to make fine-grained distinctions of composition-
ality, while inter-range distinctions are more straightforward. In other words, it is easier
to distinguish between a idiomatic compound (such as fwory tower) and a compositional
one (such as access road) than it is to distinguish between two compositional compounds

(such as access road and subway system).

Table 5.15: Spearman of best uniform models, separated by cwc ranges.

Model full dataset low mid high
PPMI —thresh 0.66 0.29 024 0.37
glove 0.63 0.27 0.26 0.35
lezvec 0.64 0.18 0.20 0.37
w2v-S¢ 0.66 0.16 0.24 0.32

The results above suggest that higher scores could be obtained by considering only
the compounds with scores in the two extremities: lowest and highest compositionality.
We evaluate this hypothesis for a given DSM by merging the predictions of its highest-
Spearman configurations for Reddy™, FR-comp and PT-comp (creating a single set of
540 compositionality predictions). We then consider different subsets of NC predictions

in the extremities. In particular, for every window w from 1 to 270 = 540/2, we consider
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the subset of w NC with lowest score prediction along with the subset of w NCs with
the highest score prediction. We then calculate the Spearman p for this subset of 2w
NCs, for different values of w. Figure 5.15 presents such results. As can be seen, for all 4
DSMs considered, low values of w consistently result in high Spearman scores, suggesting
that the DSMs encode enough semantic information to make coarse-grained distinctions
of compositionality. As we consider increasingly more cases of partially-compositional
NCs (with higher values of w), we obtain increasingly lower results, until we arrive at the

whole dataset of 540 NCs, where we get the lowest Spearman scores in every DSMs.

Figure 5.15: Compositionality sliding windows, evaluating top w 4+ bottom w compounds,
for different values of w.
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We have additionally performed both standard-deviation and compositionality-
range analyses for other prediction strategies than wuniform. In the case of arith, the
Spearman score for different sub-datasets followed very closely the results of uniform. In
the case of maxsim, we hypothesized that its favoring of a compositional reading of every
compound would optimize results for the compositional sub-dataset when compared to
uniform. Nevertheless, the results fluctuated around the uniform scores, with no clear
pattern of improvement for this model. As for geom, we previously hypothesized that their
tendency to lowering the compositionality score would optimize the quality of prediction
for idiomatic compounds. The results refuted this hypothesis. Most scores were similar

to uniform scores, with improvements seen more often in the compositional range than
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in the idiomatic range. However, even then the differences were small and the pattern of

improvement unclear.

5.7 Summary and discussion

In this chapter, we have described the results of a large-scale evaluation of param-
eter choices in a DSM-based framework of compositionality prediction. Evaluations were
performed on six datasets, spanning across three languages. We have built 228 DSMs
for each language, and evaluated more than 8 thousand prediction model configurations,
examining the impact of DSM choice and various types of parameters.

The compositionality prediction model proposed in this thesis was implemented
as part of the mwetoolkit, and is freely available online.'® Given the large amount of
experiments performed in this thesis, and in order to guarantee the reproducibility of
results, we defined our experiments through a system of file dependencies. Every step of
preprocessing (e.g. re-tokenization of compounds as a single unit, removal of stopwords)
was defined in term of these dependencies, so that any modification in the code (e.g. bug
fixes) would automatically invalidate experiment results. The results presented in this
chapter were obtained under this system of dependencies.

Considering the experimental results in terms of DSMs, the w2v models performed
better than PPMI for Reddy™™, both were in a tie for Farahmand, and w2v was outper-
formed by PPMI ~thresh for FR-comp and PT-comp. The performance of glove on English
datasets was underwhelming, and might be related to the lack of tuning of model-specific
parameters. As previously argued by Salehi, Cook and Baldwin (2015), PPMI-TopK is
not an appropriate DSM for this task, as it does not model relevant co-occurrence very
well.

When comparing DIMENSION across languages and datasets, larger values often
bring better performance, likely due to the possibility of representing more fine-grained
semantic distinctions (in agreement with the hypothesis huceur « DSM.dims)- An upper limit
of around 1000 dimensions has been verified, however, with even higher numbers of di-
mensions obtaining lower scores.

The most effective WINDOWSIZE depends on the model and language, but for the
best models in all datasets, a window of 14-1 outperforms the others (which suggests that

Naceur « DSM.window 18 false). This may be a consequence of the fact that higher window

16 <http:/ /mwetoolkit.sf.net>
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sizes are more likely to consider unrelated words as part of a target’s context.

Regarding the WORDFORM, the lemma (i.e. stopword removal + lemmatization)
seems to be the overall best type of preprocessing across languages (as predicted by
Naceur « corpus.wordform)- L he use of POS tags does not seem to improve on the results, which
could indicate that the higher precision of grammatical category does not compensate for
the added sparsity. In the case of English, the effects of both stopword removal and
lemmatization are questionable, with plain surface-level word-forms producing slightly
better models in some cases.

Corpus size seems to play a fundamental role in the quality of the constructed
distributional models, as corpora with less than a billion tokens result in considerably
weaker predictions (Naceur < corpussize). HoOwever, the improvement in prediction quality
seems to be capped at around a threshold of one billion tokens: larger corpora do not
result in better predictions of compositionality for nominal compounds. This threshold
may be related to the minimum frequency necessary for rarer NCs so as to permit the
calculation of cosine similarity with its components.

The technique of parallel predictions was shown to perform equivalently to whole-
corpus predictions (haceur « corpus.paranie). While the use of this technique does not improve
on the results obtained through whole-corpus models, it does permit a more flexible
utilization of computational resources (e.g. clusters) in the construction of the underlying
semantic representations.

Regarding the different compositionality prediction strategies, the uniform strategy
produces predictions that are consistently among the best ones. The maxsim strategy
does improve the prediction of compositional NCs, but only for outlier cases, contributing
to random variation in most cases (hgrat.maxsim)- While this does not improve on the
results from uniform, it does consistently produce similarly good results. The head and
mod strategies perform surprisingly well for all top models of every dataset, in spite
of their reliance on incomplete information (hsyat partialinfo)- 1he performance of arith
is quite similar to uniform, reflecting the fact that both rely on an additive model of
compositionality (hgtrat.arith ~ strat.uniform)- Lhe geom strategy did optimize the scores of
idiomatic NCs, but at the expense of a pessimization of scores for some compositional
cases (Dgtrat.geom). A combination of the geom and mazsim strategies is left for future
work.

Concerning the sanity checks, we found no advantage in the use of a higher number

of iterations for the construction of DSMs. The minimum word-count has similarly been
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found to be a small value, with higher thresholds removing too much information. An
evaluation of the random initialization used in some DSMs found no difference in the final
results across multiple executions. Regarding the dataset scores, filtering techniques were
also considered, but the results were comparable to the ones obtained on the unfiltered
datasets.

This chapter has also performed an error analysis of the predicted compositional-
ity scores. As in the case of human-rated scores, frequency was found to be positively
correlated with compositionality (higiom ~ distr.freq)- This result disputes the hypothesis
that idiomatic expressions are more frequent. In the case of PMI, while it was not cor-
related to human-rated scores, it did show a mild correlation with some system scores,
suggesting that these systems could be improved by reducing their reliance on that mea-
sure (higiom ~ distr.convent)- 1ntra-NC standard deviation on human ratings has also been
shown to be related to system scores: systems have difficulty on NCs that humans also
find difficult (haceur « MwE.dific). Moreover, system predictions were found to have higher
quality in the case of compositional expressions (haccur « MWE.idiom ). Further work would
be required to improve score predictions of idiomatic NCs.

An overall recommendation for future work would be the use of large dimensions
and small window sizes. Moreover, investing in preprocessing provides a good balance of a
small vocabulary (of lemmas) and good accuracy. The underlying corpus size should con-
tain at least 1 billion tokens. As for the underlying model, the simple uniform prediction
strategy can achieve the highest-quality predictions.

Regarding the choice of DSM, the average Spearman’s p for Reddy over all tested
parameter configurations was 0.71 for both w2v models and 0.67 for PPMI—thresh, sug-
gesting that both types of models can obtain good results. While PPMI-thresh is a
simple, fast and inexpensive model to build, w2v has a free and push-button implemen-
tation, and requires less hyper-parameter tuning, as is it seems more robust to parameter
variation.

More generally, the best results obtained are comparable and even outperform the
state of the art. Table 5.16 compares the highest results in the literature for the Reddy
dataset against the highest-Spearman and highest-Pearson configuration obtained for each
DSM.'" Reddy, McCarthy and Manandhar (2011) use a compositionality prediction model
with a global set of contexts that resembles PPMI-TopK , and the results are correspond-
ingly similar to the ones obtained for this DSM. Salehi, Cook and Baldwin (2014) also

"Due to space constraints, only the highest-Spearman configuration is shown.
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use global contexts, but augment it with information obtained from translations, which
improves the results (they are somewhat comparable to our highest-Pearson PPMI-SVD
configuration). Salehi, Cook and Baldwin (2015) use a configuration that is similar to
our highest-Pearson w2v-cbow. We obtain slightly better results due to our exploration

of the space of DSM and corpus configurations.'®

Table 5.16: Comparison of our best models with state-of-the-art results for Reddy. Results
in parentheses for fallback evaluation.

Model & Parameters Spearman p Pearson r
Reddy, McCarthy and Manandhar (2011) 714 —

Salehi, Cook and Baldwin (2014) — 744
Salehi, Cook and Baldwin (2015) — .796

Best w2v-sg [Spearman: surface.wy.d750] .812 (.812)  .814 (.814)
Best PPMI-thresh  [Spearman: surface.ws.dzso) 791 (.803)  .762 (.768)
Best w2v—cbow  [Spearman: surface™.w;.dsgo) 796 (.796)  .803 (.798)
Best lezvec  [Spearman: surface®.wy.ds) 74 (.773) 78T (.787)
Best glove [Spearman: lemmap,s.wg.daso] 754 (.759) 783 (.787)
Best PPMI-SVD  [Spearman: surface®.wy.dsn] 743 (.743) 738 (.726)
Best PPMI-TopK  [Spearman: lemmap,s.Ws.dipoo] 706 (.716)  .732 (.717)

Our results are also comparable to the state of the art regarding the Farahmand
dataset, particularly when the fallback evaluation is adopted, as shown in Table 5.17.
The predictive model of Yazdani, Farahmand and Henderson (2015) generalizes the linear
combination of word representations (such as the one used on the uniform strategy) so
as to allow for other polynomial projections, with quadratic projections on w2v—cbow
obtaining the highest BF; score of .487. We show that a DSM and corpus parameter
tuning can beat the use of these more complex functions, as our best configuration for
w2v—cbow obtains a BF; of .512. Future work should investigate the joint use of quadratic

projections and the recommended DSM configurations from this thesis.

8Note that the main goal was not to beat the state of the art, but to explore the space of configurations.
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Table 5.17: Comparison of our best models with state-of-the-art BF1 for Farahmand.
Results in parentheses for fallback evaluation.

Model & Parameters BF,
Yazdani, Farahmand and Henderson (2015) .487

Best w2v—cbow  [lemma.wy.d7s50] 512 (.471)
Best w2v-sg  [lemma.wy.ds50] 507 (.468)
Best lexvec  [surface.wy.d7s0) 449 (.431)
Best PPMI-SVD  [lemma.wy.d7s0) A8T (.424)
Best PPMI—thresh  [lemma.wy.d7s50] AT72 (.404)
Best PPMI-TopK  [lemma.wg.d1000] 435 (.376)

(.358)

Best glove  [lemmap,s.wg.d750] .400 (.
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6 EXTRINSIC EVALUATION OF COMPOSITIONALITY PREDICTION

The accurate identification of MWEs in running text is a major challenge in the
general pipeline of NLP applications. The set of all possible categories of MWEs in a
language can be quite diverse (SCHNEIDER et al., 2014b; CONSTANT et al., 2017), and
the often-employed method of identifying such expressions from a predetermined lexicon
may not yield satisfactory results for productive MWE patterns (such as nominal com-
pounds). MWE identification has notably been one of the goals of the SemEval 2016 task
10: DIMSUM (Detecting Minimal Semantic Units and their Meanings) (SCHNEIDER et
al., 2016a). In this shared task, participants were expected to present a system that was
able to detect and group MWEs, and to assign supersense tags to each semantic unit
(MWE or single word).

In this chapter, we consider an extrinsic evaluation of predicted compositionality
scores, which are adopted as features in a system of MWE identification. The hypoth-
esis we want to evaluate is Npred-comp — ident-accur; Which predicts that the task of MWE
token identification should benefit from the use of compositionality scores. We focus on
the identification of noun-based compounds (i.e. nominal compounds, including proper
names and nominal compounds with prepositions, such as chamber of commerce). For
the identification of other categories of MWEs (as well as our work on supersense tag-
ging), we refer to the paper that describes our submission for the DIMSUM shared task
(CORDEIRO; RAMISCH; VILLAVICENCIO, 2016¢), as well as the paper on CRF-based
detection of MWEs (SCHOLIVET; RAMISCH; CORDEIRO, 2017). Section 6.1 presents
two methods of MWE identification. Section 6.2 describes the experimental setup for
the extrinsic evaluation. Section 6.3 then presents the results obtained with and without
compositionality scores. Finally, Section 6.4 concludes with the summary of the main

findings from this chapter.

6.1 Proposed models of MWE identification

In the interest of validating the compositionality prediction model proposed in
this thesis, we consider two methods of MWE token identification, both of which can
be applied with or without the feature of compositionality scores. The task of MWE

identification consists in taking a tokenized corpus as input and generating an extra layer
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in which every occurrence of an MWE is explicitly indicated.! We consider two techniques

of MWE identification: a rule-based method and a probabilistic method.

6.1.1 Rule-based identification model

Rule-based methods identify MWE occurrences by projecting type-level represen-
tations from a lexicon onto a layer of MWE occurrences in a corpus (see Section 2.3.3
on MWE token identification). We propose a baseline model of rule-based MWE iden-
tification which identifies words in the corpus that correspond to MWE entries in the
lexicon. This identification is based on lemmas and POS tags, and may be done on a
preexisting lexicon or on a list of MWE candidates extracted through techniques of MWE
type discovery (described in Section 2.3.2).

We perform MWE token identification using an augmented version of the mwe-
toolkit, including support for both type-level discovery and token-level identification of
contiguous and non-contiguous MWEs based on some degree of customization (CORDEIRO;
RAMISCH; VILLAVICENCIO, 2015). MWE type-level candidates are extracted from a
training corpus through syntactic patterns, without losing track of their token-level oc-
currences, to guarantee that all the MWE occurrences learned from the training data
can be projected onto the test corpus. These candidates can then be filtered based on
a variety of conditions (in particular, whether their occurrences are always annotated in
the training corpus). The resulting set of candidates can then be automatically projected
onto a layer of corpus MWE occurrences. We will use this as a baseline model, and as
such, the identification will be context-independent (identifying every possible occurrence
as an MWE regardless of any contextual clues).

These are the main functionalities that we have developed and integrated into the

mwetoolkit for experiments on MWE identification:
1. Different match distances:

o Longest: Matches the longest possible candidate. Useful e.g. for nominal

compounds, where we want to match the whole compound.

o Shortest: Matches the shortest possible candidate. Useful e.g. for phrasal

verbs, where we want to find only the closest particle.

TA full review of MWE identification methods is out of the scope of this work. We refer to the
MWE Identification section of Constant et al. (2017) for a thorough survey of other methods of MWE
identification.
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o All: Matches all possible candidates. Useful as a fallback when shortest and

longest are too strict (post-processing is then required).
2. Different match modes:

« Non-overlapping: Matches at most one MWE per word in the corpus.

o Overlapping: Allows words to be part of more than one MWE. This can be
used to find MWEs that occur inside the gap of another MWE, or MWE

occurrences that share a token.

3. Source-based identification: When information is retrieved in MWE type discovery,
we keep a detailed description of the source corpus and sentence. The identification
step can then be quickly performed by projecting the MWESs back on the source

corpus.

As an example, consider the following two MWE patterns described by regular

expressions over POS tags:
o NounCompound — Noun Noun™
e PhrasalVerb — Verb (Ignored*) Particle

Figure 6.1 presents the results of applying different matching combinations to these pat-
terns. Consider an input such as the one in Figure 6.1(a). By applying a non-overlapping
contiguous approach to the noun compound identification and a gappy approach to the
verb-particle construction, we may automatically identify two MWE candidates in the
sentence. If we use the longest match distance for both patterns, we capture the whole
nominal compound, but we go too far for the verb-particle construction (Figure 6.1(b)).
The opposite happens if we use shortest match distance for both patterns, which works
well for the verb-particle construction but does not capture the whole nominal compound
(Figure 6.1(c)). By using different configurations for each type of MWE, we are able to

identify the correct occurrences in the text (Figure 6.1(d)).
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Figure 6.1: MWE-annotated output with different match distances.

(a) You threw those lab rat tissue samples out without thinking
(b) You threw those lab rat tissue samples out without thinking
(c) You threw those lab rat tissue samples out without thinking
(d) You threw those lab rat tissue samples out without thinking

<
o o o s

6.1.2 Probabilistic identification model

In addition to the rule-based approach of MWE identification, we also consider a
probabilistic model, in the form of linear-chain conditional random fields (CRFs) (LAF-
FERTY; MCCALLUM; PEREIRA, 2001). Under this approach, we construct a classifier
that tags each input token based on whether it is independent or a part of an MWE.?
The CRF is trained based on a set of observations T' = Tj ...T,,, in which each observed
input token T; is paired up with a tag y;. When performing predictions, the probability
of a given output tag y; for an input token 7; depends on the tag of its neighbor token
(yi—1), and on a set of features of the input ¢(7T"). The feature values can come from any
position of the input sequence, including the current token T;.

We represent MWE identification as a tagging problem through the use of the
Begin-Inside-Outside (BIO) encoding (RAMSHAW; MARCUS, 1995). In a BIO repre-
sentation, each token T; in the training corpus is annotated with a corresponding tag B
(beginning of the MWE), I (inside MWE) or 0 (independent token, outside any MWE).

In this scheme, MWEs must all be contiguous, and overlaps cannot be represented.?

6.2 Experimental setup

We instantiate multiple variants of the rule-based and probabilistic methods of
MWE identification. We present below the configuration that we use for each method,
as well as the annotated corpora on which they are evaluated. For both methods, we
consider the task identification with and without a compositionality feature, derived from

a lexicon of predicted compositionality scores, which we also describe below.

2The CRF tagger was trained with CRFSuite (OKAZAKI, 2007).
3Note however that more complex schemes could account for some level of discontinuity and overlap,
such as the two-layer BBIIOO representation of Schneider (2014).
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6.2.1 Reference corpora

We perform the evaluation of the MWE identification models on two MWE-

annotated corpora.

o For the English language: training, development and test data are the ones pro-
vided for the DIMSUM shared task (SCHNEIDER et al., 2016a). The sentences
originally come from multiple English corpora: a corpus of online reviews (STREUSLE),
two corpora containing Twitter data (Ritter and Lowlands), and a corpus built
from TED Talks transcripts®. The resulting training corpus contains 4800 sen-
tences, and the test corpus contains 1000 sentences. Every MWE annotation was

reviewed by at least two annotators. The authors do not report the annotator

agreement (SCHNEIDER et al., 2014b; SCHNEIDER et al., 2016a).

o For the French language: training, development and test data come from an adap-
tation of the French Treebank (FTB) (ABEILLé; CLEMENT; TOUSSENEL, 2003)
from the SPMRL shared task on Statistical Parsing of Morphologically-Rich Lan-
guages (SEDDAH et al., 2013). The corpus consists of a collection of newspaper
entries (Le Monde) from multiple domains, with a total of around 1 million tokens.
It contains manually-validated lemmas, POS-tag annotations, syntactic informa-

tion (ignored in this work) and a layer of MWE occurrence annotations.

In both corpora, we keep only MWEs representing nominal compounds. This is
done through a pattern-based filtering on the MWE layer, using the mwetoolkit. The
goal of this step is to filter out all MWESs that do not contain a noun (e.g. by and large),
as well as MWEs that contain verbs (e.g. give birth). The resulting English test corpus
has 254 MWEs, and the resulting French test corpus has 849 MWEs.

6.2.2 Compositionality lexicons

In both rule-based and probabilistic methods, we consider the use of a composi-
tionality feature, which we derive from a lexicon of predicted compositionality scores.
The lexicon itself was constructed through a type-based extraction of MWE candidates

from the reference corpora. The extraction used a language-specific pattern. For English,

4The train/dev corpora did not contain sentences from TED. Only the blind test data did.
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we allow adjective-+noun pairs (e.g. red wine) as well as noun+preposition+noun (e.g.
cup of tea), and combinations thereof (e.g. president of the United States). For French,
we consider noun+adjective pairs (e.g. vin blanc (lit. wine white)), adjective+noun pairs
(e.g. longue durée, ‘long-term’ (lit. long duration)), as well as noun+preposition+noun
expressions (e.g. mise d jour ‘update’ (lit. put to day)), including combinations of these
(e.g. Journal officiel de la République Frangaise ‘Official gazette of the French Republic’
(lit. Newspaper official of the Republic French)).

For each language, we projected the extracted MWE candidates onto WaC cor-
pora®, and then constructed two DSMs instances (w2v-sg and PPMI~thresh), with the
same setup as in Section 4.4, using lemma.w;.d759. For each DSM, we calculated the
predicted compositionality score for each MWE candidate under the uniform strategy.
This resulted in a total of four lexicons of compositionality (varying between two DSMs

and two languages).

6.2.3 Rule-based identification

For each language, our baseline rule-based MWE identification algorithm considers
7 different rule configurations. Two of these rules are directly based on data from the
training corpus, two are based on an approach of MWE identification based on POS-
tag patterns, and two are based on the previously described compositionality lexicons
(described in Section 6.2.2).

For the rules based on training data, annotated MWEs are extracted from the
training corpus and then filtered. We keep MWE candidates whose proportion of anno-
tated instances with respect to all occurrences in the training corpus is above a threshold
7, discarding the rest. For the selection of thresholds, we refer to Cordeiro, Ramisch and
Villavicencio (2016¢), where we considered thresholds 7 € {0%, 10%,20%, ..., 100%},
obtaining the best results for 7 = 40% (contiguous MWEs) and 7 = 70% (gappy MWEs).

The last step of rule-based identification consists in projecting the filtered list of
MWE candidates on the test data, that is, we segment as MWEs the test token sequences
that are contained in the lexicon extracted from the training data. These configurations

are:

e TRAINgonmig: Contiguous MWESs annotated in the training corpus at least once are

5We use the same corpora as in Section 4.3.
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extracted and filtered with a threshold of 7 = 40%. That is, we create a lexicon
containing all contiguous lemma+POS sequences for which at least 40% of the
occurrences in the training corpus were annotated (e.g. we keep the expression last
minute, as it was annotated in 5/6 = 83% of its occurrences in the training data).
The resulting lexicon is projected on the test corpus using this rule: an MWE is

deemed to occur if its component words appear contiguously in a sentence.

TRAINGAppy: Non-contiguous MWEs are extracted from the training corpus and
filtered with a threshold of 7 = 70%. The resulting MWEs are projected on the
test corpus using the following rule: an MWE is deemed to occur if its component
words appear sequentially with at most a total of 3 gap words in between them.
This method is not used for French, as only contiguous MWEs were annotated in

the corpus.
We also identify MWEs in the test corpus based on POS-tag patterns:

PATTERNyouy: We collect candidate nominal compounds from the test corpus that
never appear in the training corpus, and project them back on the test corpus. For
English, we focus on contiguous noun+noun sequences (e.g. car wash), as they are
the most prevalent in the DiIMSUM corpus. For French, we consider contiguous
noun-+adjective pairs.® As the French corpus does not distinguish common nouns

from proper nouns, both are included as part of this method.

PATTERNpgopn: The English corpus distinguishes common nouns and proper nouns
through their POS tag. In this method, we annotate sequences of two or more
tokens POS tagged as proper nouns (PROPN), in an effort to identify named entities
such as New York City. We do not consider any thresholds, as named entities are

sparse and most occurrences from training do not appear in test.

For each language, we also consider two methods of MWE identification based

on compositionality lexicons (Section 6.2.2). We annotate as MWE every contiguous

occurrence of an entry in the compositionality lexicon, as long as its compositionality

score is under a given threshold (CSz < threshold). We consider thresholds between 0

(most restrictive, eliminates almost all MWESs from the lexicon) and 1 (most permissive,

keeps almost all MWESs in the lexicon).

6Syntactic structures involving combinations of nouns, adjectives and prepositions are rarely annotated
in this corpus.
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e COMPys9y: Uses the compositionality lexicon built from w2v—sg.

e COMPppy;: Uses the compositionality lexicon built from PPMI—thresh.

6.2.4 Probabilistic identification

We consider the following sets of features ¢(7'):

o cTX: This is a set of contextual features which corresponds to the BEST, set
from Scholivet, Ramisch and Cordeiro (2017), without the association measures.
The feature set contains 21 single-token, 2-gram and 3-gram features (involving
surface-form, lemma and POS tag of tokens). It also includes features indicating:
whether the current token has a hyphen, whether it has a digit, and whether it is
in upper-case form. We refer to the paper for an in-depth feature analysis, as well
as a broader evaluation of this model for all categories of MWEs in the French

corpus.

o AM: This set of features contains four association measures: PMI, MLE, Student’s
t and log-likelihood (see Section 2.2.3). These are the association measures that
were found to be the most impactful in Scholivet, Ramisch and Cordeiro (2017),

when evaluating corpora with multiple categories of MWEs.

o CcOMP: This set of features is based on the MWE scores from the compositionality
lexicons. We designate the set of features derived from w2v-sg as COMPysy, and

the one derived from PPMI ~thresh as COMPppy.

Different methods of CRF modeling may or may not be able to accurately represent
continuous features. In this work, we circumvent possible limitations by quantizing every
numerical score (obtained in AM and COMP) using a uniform distribution; i.e. we assign
an equal number of MWEs to 5 different bins based on their numerical scores. We leave

the evaluation of continuous CRF models for future work (HUANG; XU; YU, 2015).

6.3 Results

For each reference corpus, we evaluate the MWE identification models on the
development part under a variety of setups, as described in Section 6.2. We present the

results below.



130

6.3.1 Rule-based identification: baseline

We start with an analysis of the baseline results obtained by the rule-based MWE
identifier for the English corpus. Table 6.1 presents the individual score obtained by each
rule. At a first glance, the most promising rules seem to be TRAIN¢onric and PATTERNpropy,
both of which obtain a high level of precision. The rule TRAINg ppy also obtains a high

precision, but it does not capture many occurrences of MWESs, obtaining low recall.

Table 6.1: Baseline results for rule-based MWE identifier (English dataset).

Rules Precision Recall Fy

TRAINonTIG .843 232 364
TRAINGAppy .750 012 .023
PATTERNpgropN 750 272 .399
PATTERNyoun 315 181 .230

We then consider the accuracy of MWE identification when multiple rules are
combined. In particular, we fix the highest-ranking rule TRAIN oxre, and we consider
combinations involving the other rules. Table 6.2 presents the new results. The addition
of the rule TRAING,ppy does manage to slightly improve the recall of TRAINonriq, but at the
expense of a considerable decrease in the precision. The addition of the rule PATTERNpgropy
improves both precision and recall, reflecting the fact that named entities are sparse,
and most occurrences were not seen in training data. Similarly, the addition of the
rule PATTERNouy does improve recall, suggesting that many occurrences of noun+noun
compounds were not seen in the training data. However, many of these predictions are
spurious (i.e. they refer to productive combinations of nouns, such as dinner plate, which
were not annotated), and thus the precision of these 2 combined rules is sub-par. The
same behavior can be seen in the last line, where we consider all rules but TRAINgppy.
The combination achieves a considerably higher recall, but at the expense of a reduction

in the precision.

Table 6.2: Combined baselines for rule-based MWE identifier (English dataset).

Rules Precision Recall Fy
TRAINgontic + TRAINGAppY 831 232 .363
TRAINcontic + PATTERNpRopN 783 484 599
TRAINgontic + PATTERNyoun 491 413 .449

TRAINgontic + PATTERNpgropy +— PATTERNyoun .561 .665 .609




131

We similarly consider the baseline results obtained by the rule-based MWE identi-
fier for the French corpus. Table 6.3 presents the individual score obtained by each rule.
Differently from the English corpus, many of the MWEs in the French development set
had a counterpart in the training set, which contributed to a TRAIN¢oyrc recall of more
than 60% of the occurrences. The pattern-based rule PATTERNyoyy does find a modest
amount of new MWESs, but at the cost of a very low precision. Therefore, when both
rules are combined, the result is quite a bit lower than the one obtained for TRAINcoxTic

alone.

Table 6.3: Baseline results for rule-based MWE identifier (French dataset).

Rules Precision Recall Fy

TRAINonTIG .862 684  .763
PATTERNyouN .081 107 0 .092
TRAINgontic + PATTERNyoun 381 792 515

6.3.2 Rule-based identification: compositionality scores

The rule-based method can also be applied with an external lexicon of MWEs.
We consider the two lexicons described in Section 6.2.2: COMPyw9y and COMPpp,;. These
lexicons associate MWE candidates with an automatically-calculated compositionality
score. We consider multiple variants of the MWE identification model by applying dif-
ferent thresholds on what score constitutes an idiomatic MWE. Lower thresholds should
improve precision (as they only allow annotation of highly non-compositional cases), while
reducing the recall due to their restrictiveness.

Table 6.4 presents the results obtained for the rule-based system with different
thresholds of compositionality scores in COMPyso,. As expected, lower thresholds are
associated with a lower recall in both languages. The precision, on the other hand,
presents an unexpected behavior: the lowest precision (indicated through T on the table)
is not associated with the more permissive threshold of CSz < 1.000. In fact, in the case
of the French corpus, the precision falls monotonically as we consider stricter thresholds.
In the case of the English corpus, the lowest precision is associated with a middle-range
threshold of CSg < 0.200, but note that other more restrictive thresholds (indicated
through * on the table) are much less reliable, as the number of MWEs predicted by the
system is very low (CSz < 0.100 has 37 predictions, CSg < 0.050 has 10 predictions, and
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CSp < 0.000 has 4 predictions). In the case of French, the lowest threshold of CSz < 0.000

produces 85 predictions.

Table 6.4: Results for rule-based MWE identifier using COMPyyoy.

English corpus French corpus

Threshold Precision Recall F; Precision Recall Fy
CSs < 1.000 152 185  .167 .245 482 .325
CSp < 0.500 149 181 164 .245 482 .325
CSp < 0.200 098% 055  .070 176 239 203
CSp < 0.100 2167  .031  .055 132 A11 120
CS; < 0.050 2007 .008 .015 128 029 .048
CS; < 0.000 2507 .004 .008 0127 001 .002

We then consider whether a similar behavior can be observed when using composi-
tionality scores from COMP;py;. Table 6.5 presents the results obtained for the rule-based
system under these scores. As seen in Section 5.6.3, PPMI —thresh scores tend to be lower
than in other DSMs, which explains why the scores obtained for high thresholds are al-
most identical. As in the case of COMPy», above, lower thresholds are associated with a
lower recall in both languages. Moreover, the lowest values of precision are once again
associated with lower thresholds, suggesting that this is a consistent property of both
datasets. These precision scores are more reliable than the ones from COMPy», (for En-
glish, CSz < 0.000 has 77 predictions, CSg < 0.005 has 177 predictions and CSg < 0.010
has 261 predictions; while for French, CSg < 0.000 has 513 predictions, CSg < 0.005 has
1648 predictions and CSz < 0.010 has 2155 predictions).”

Table 6.5: Results for rule-based MWE identifier using COMPppy;.

English corpus French corpus
Threshold Precision Recall Fy Precision Recall Fy
CSp < 1.000 118 .240  .158 .136 522 215
CSp < 0.500 118 .240 .158 .136 022 215
CSz < 0.200 118 .240  .158 135 519 215
CSs < 0.100 118 236 .158 134 bl4 213
CSp < 0.050 .100 185 1130 124 461 196
CSp < 0.020 .094 138 112 .090 284 137
CSp <0.010 077t 079  .078 .060 153 .087
CSp < 0.005 .090 063  .074 0537 104 .070
CSp < 0.000 104 031 .048 .066 .040  .050

"Note that, due to the nature of PPMI vs PMI, CSp < 0 is equivalent to CSg = 0 for COMPppy;.
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A possible explanation to the behavior observed above would be that these datasets
also annotate collocations along with idiomatic MWEs. We investigate this hypothesis
through a manual annotation of all 309 MWE candidates identified by COMPys9,. We

classify each MWE occurrence in one of these 4 categories:

o Productive expression: when the words are combined in a fully productive manner
(e.g. nice car). In a productive expression, any of the elements can be replaced by
a similar word without any loss of meaning or increased markedness (e.g. nice car

— nice airplane, cool car).

o Collocation: when the choice of words is conventionalized, but is still compositional
(e.g. test results). In these cases, changes in word order and replacement by similar
words or synonyms is possible, but has a distinctive markedness (e.g. the expression
results from the tests still refers to a similar concept, but is not the preferred way

of referring to test results).

o Idiomatic expression: when the whole expression is idiomatic, with at least one of
the words not contributing to a literal sense. This includes crystallized metaphors

(e.g. extra mile) and proper names (e.g. New Jersey).

 Other: for all other cases. This includes errors of POS tag (e.g. wind blows classified
as NOUN+NQOUN), adjacent sequences of words that do not form a phrase (e.g. home
from work), and cases in which the intended meaning was considered hard to judge

even in the context of the original sentence (e.g. an occurrence of good sport).

For the first three categories, we consider the fraction of their occurrences for
each threshold of predicted compositionality score (Table 6.6). In particular, we consider
the lines with CSs < 0.5 and CSpg < 0.2. In the case of productive MWESs, for these
two thresholds, we can see that they present a similar rate of occurrence among the
different levels of compositionality score (around 55%). The rate of occurrence of idiomatic
expressions has a slight variation, with a higher rate for CSs < 0.2, as expected. Note
however the case of collocations: they present a difference of more than 7% between the
two thresholds.® This suggests that the difference between annotations is related to the
fact that the dataset includes many collocations, which is precisely what we filter out

when we use the compositionality scores.

8Note that the scores for CSp < 0.1 and for lower thresholds are less trustworthy due to the smaller
amount of predicted MWEs.
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Table 6.6: Classification of MWE candidates identified by COMPyoy.

Threshold Productive Collocation Idiomatic

CSp < 1.000 170/309 = 55.0% 61/309 = 19.7% 28/309 =  9.1%
CSp < 0.500 170/308 = 55.2% 60/308 19.5% 28/308 9.1%
CSp < 0.200 78/143 = 54.5% 17/143 11.9% 17/143 = 11.9%

CS < 0.100 17/37 = 45.9% 6/37 = 16.2% 8/37 = 21.6%
CS5 < 0.050 1/10 = 10.0% 3/10 = 30.0% 4/10 = 40.0%
CS; < 0.000 0/4 = 0.0% 1/4 = 25.0% 3/4 = 75.0%

6.3.3 Probabilistic identification

The previous section has considered the use of predicted compositionality scores as
part of a rule-based system of MWE identification. We considered different thresholds on
these scores, and we showed that higher thresholds produced better results. An analysis
of the data suggested that higher scores may also be associated with higher rates of
annotation (as they may indicate the presence of collocations). Rather than pursuing the
rule-based approach under different ranges of threshold, we consider a different approach:
using a probabilistic classifier which considers these scores as features for the prediction
of MWE occurrences.

We construct a CRF classifier based on different kinds of features. The features,
described in Section 6.2.4 can be purely contextual (CTX), or involve statistical association
measures (AM), or come from the previously defined lexicon of compositionality scores
(COMPy9y and COMPyppy; ).

Table 6.7 presents the results obtained for the evaluation against the English ref-
erence corpus. Overall, there is a notable improvement in both precision and recall when
additional features are considered beyond CcTX. Concerning the recall, it can be seen
that the use of association measures is redundant with the scores from COMPy9, (as the
recall in the second and third lines are identical, and the one in the fourth line is only
slightly higher). The scores from COMPppy;, on the other hand, contribute to a higher im-
provement in the recall than the association measures. Moreover, this feature completely
subsumes AM, as can be seen from the fact that the recall in the last two lines is the same.
Regarding the precision, COMP scores are considerably higher than ¢TX alone, and to a
certain extent CTX + AM as well. The highest F; score of .710 is better than the baseline

.609 from Section 6.3.1 by +10.1 percentage points.
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Table 6.7: Results for probability-based MWE identifier (English dataset).

Features Precision Recall Fy

CTX 758 D67 .649
CTX + AM 789 602 .683
CTX + COMPyay 797 602  .686
CTX 4+ COMPyay + AM .798 606  .689
CTX 4+ COMPppy; 811 .626 .707
CTX 4+ COMPppy; + AM .820 .626 .710

Table 6.8 presents the results obtained for the evaluation against the French refer-
ence corpus. As in the case of the English data above, the probabilistic method improves
both precision and recall when we consider features beyond cTX. However, the improve-
ment for the French corpus is much less pronounced. For recall, the greatest improvement
happens with the addition of association measures (with +2.2 percentage points), with
coMP providing a smaller effect. In the case of the precision, only the addition of both
AM and COMPppy; provided an improvement, and it was considerably smaller than the one
seen for English. Differently from what was observed for English, we see that the highest
F; score obtained for the probabilistic method for French (.736) is unable to surpass the
rule-based baseline of .763 obtained through TRAIN owr¢ in Section 6.3.1. Further work

should investigate this behavior through an analysis of the French corpus annotations.

Table 6.8: Results for probability-based MWE identifier (French dataset).

Features Precision Recall Fy

CTX 817 636 715
CTX + AM 818 658  .730
CTX + COMPyoy .802 649 717
CTX 4+ COMPyay + AM 812 664 731
CTX 4+ COMPppyy 817 650 .724
CTX + COMPppy; + AM .826 664 .736

6.4 Summary

This chapter evaluated the use of automatically predicted compositionality scores
as features in the task of MWE identification in two corpora. We started with a rule-
based baseline, where a contiguous identification of lemmas seen in the training corpus

was found to obtain high precision (higher than .8) for both languages. In the case of the
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English data, the recall from this method alone was weak (.23), while the recall obtained
for French was considerably higher (.68), making this a particularly hard baseline to beat
in the latter language. Indeed, while overall English results could be improved with the
addition of a pattern for matching proper nouns (and the precision score could further
be improved through noun—noun patterns), no F; improvement was found for the French
corpus. The highest-scoring set of rules in this baseline obtained an F; = .609 for English
and F; = .763 for French.

We then considered the application of compositionality scores directly as part of
the rule-based method of MWE identification. We collected a lexicon of potential MWHEs
(based on NC syntactic patterns) and calculated their compositionality scores. Different
thresholds were then applied on the compositionality scores, with the least-compositional
MWEs being automatically annotated in the corpus according to the rule-based method.
The results we obtained were consistent across the two languages and the two lexicons of
compositionality: an overall low precision of identification, which surprisingly drops more
harshly when stricter thresholds of idiomaticity are considered. We presume that this
effect is caused by a high rate of annotation of collocations, which tend to have higher
compositionality scores.

Another method of identifying MWEs would be through a probabilistic approach
considering multiple features. We evaluate the performance of a CRF trained on different
sets of features, grouped as: lexical features, association measures, and compositionality
scores. The results were highly corpus-dependent: while both association measures and
compositionality scores contributed to higher values of F; for English, the improvement
in French results was considerably weaker. Moreover, while the highest CRF scores for
English (.710) convincingly beat the baseline above (by 410.1 percentage points), the
highest scores for French (.736) are actually lower than the baseline of purely identifying
all MWEs seen in training data (by —2.7 points). Further analysis would be required to
understand this discrepancy.

Concerning the hypothesis hpred-comp — ident-accur that compositionality scores can
have a positive effect on the accuracy of MWE identification, we have obtained mixed
results. In the case of rule-based methods, we found no improvement in prediction with
more restrictive scores of compositionality (i.e. with a lower threshold). In fact, results
suggest that the English corpus contains a high amount of annotated collocations, which
would explain why a more strict threshold does not improve on the results. However, when

we considered a CRF, the F; score for MWE identification for the English and French
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corpus did present an increase (in particular for the former language). In order to evaluate
this hypothesis in a more favorable setting, future work should consider corpora that have
been annotated particularly with idiomatic MWEs in mind. For example, the corpus for
the PARSEME shared task contains an MWE category called wverbal idiom, which is
guaranteed to refer to expressions that humans have judged as idiosyncratic (SAVARY et
al., 2017b), and could be a more close fit for the evaluation of this hypothesis.

One question that can be raised from the results in this chapter is whether asso-
ciation measures can be helpful in the identification of MWEs. While we did not find
any correlation between human judgments of compositionality and a measure of conven-
tionalization (see hjgiom ~ distr.convent ON Page 63), note that the distinction being done on
the task of compositionality prediction is between compositional and idiomatic MWEs,
while the annotations on these corpora might tend toward a distinction between fully
productive expressions and any kind of conventionalized expressions (i.e. any kind of
MWZEs, in the broadest sense). In this case, we hypothesize that the improvements in
MWE identification caused by association measures is related to their ability of capturing
conventionalization. Future analysis is still needed to verify whether this interpretation
is correct. In particular, if only the idiomatic MWEs in the corpora are taken into ac-
count (i.e. compositional cases are filtered out), we do not expect association measures to
contribute with an improvement of MWE detection scores.

The MWE identification techniques presented in this chapter were implemented
and are currently available as part of the mwetoolkit. A description of the implementation
as well as further results can have been published as Cordeiro, Ramisch and Villavicencio

(2016¢), Scholivet, Ramisch and Cordeiro (2017).
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7 CONCLUSIONS

This thesis has proposed a framework of multiword expression compositionality
prediction, and has investigated the impact of several variables in the accuracy of the
predictions. The predictive model is based on the manipulation of distributional semantic
models, i.e. vectorial representations of the meaning of words and MWEs. We have
presented three new datasets of human-rated compositionality scores, in three different
languages, and evaluate the developed framework using these resources. Finally, we also
consider the use of predicted compositionality scores as features in the task of MWE
identification.

Both the construction of the datasets and the subsequent evaluations of the predic-
tive model are associated with a set of hypotheses. Table 7.1 summarizes these hypotheses
and provides a reference to the page in which they have been evaluated.

In the following section, we present the main contributions from this thesis, in-
cluding an overview of our findings for the evaluated hypotheses. We then present some

perspectives of future work.

7.1 Contributions

The contributions of this thesis can be summarized as follows:

o Three new human-rated datasets of compositionality scores.

e An analysis of the new datasets with regards to score distribution and correlation

with human variables.

o A new framework of compositionality prediction, which relies on a systematization

of DSMs and parameters.

o A large-scale multilingual evaluation of the compositionality prediction framework

under a variety of settings.

o An extrinsic evaluation of predicted compositionality scores in the task of MWE

identification.
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Table 7.1: Hypotheses evaluated in this thesis.

Hypothesis Sub-hypothesis Evaluation

h hidiom = distr.convent Pages 637 112
idiom = distr

hidiom ~ distr.freq Pages 63, 109
haccur < MWE.diffic Pa’ge 114
Dycous . MWE haccur + MWE.idiom Page 114
haccur < MWE.convent Page 112
haccur <+ MWE.freq Page 110
haccur « DSM haccur < DSM.window Page 85
haccur < DSM.dims Page 87
haccur < corpus.wordform Page 88
haccur <— corpus haccur <— corpus.size Page 90
haccur <— corpus.parallel Page 92
hstrat.partial—info Page 95
hstrat hstrat.maxsim Page 96
hstrat.geom Page 99
hpred—comp ~ comp hpred—comp ~ comp Chapter 5

hpred—comp — ident-accur hpred—comp — ident-accur Chapter 6

Many of the results presented in this thesis have also been presented in peer-
reviewed publications. We refer back to Section 1.4 (page 19) for the complete list of
publications. As for the contributions that have been presented in this thesis, we described
them in more detail below.

Chapter 3 presented the construction of three datasets of human-rated MWE com-
positionality scores. The datasets encompass three languages (English, French and Por-
tuguese), and is the first dataset of MWE compositionality for two of these languages.
This resource is freely available, and can be used for evaluating and training techniques
that involve some type of semantic processing, such as lexical substitution and text sim-
plification.

We also analyzed the constructed datasets, whose scores were found to follow a
uniform distribution. Moreover, the three datasets were found to have comparable levels
of difficulty of annotation. We have evaluated the hypothesis that MWE idiomaticity
was correlated with distributional characteristics (higiom ~ distr)- In particular, we consid-
ered the correlation with an estimator of conventionalization (higiom ~ distr.convent), Which
was shown not to be statistically significant. We also considered the correlation with
the frequency (hidiom ~ distr.freq), Which turned out to be the opposite of what one would
expect: higher-frequency MWEs are actually more likely to be compositional, with lower-

frequency ones being more likely to be idiomatic. Some of these results were also presented

in publications (CORDEIRO; RAMISCH; VILLAVICENCIO, 2016a; WILKENS et al.,
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2017; RAMISCH et al., 2016).

Chapter 4 presents a systematization of different DSMs and their parameters along
a common set of axes, which can be used to compare multiple distributional representa-
tions in a multilingual setting. This chapter also proposes a framework of compositionality
prediction that can take into account all of these configurations. The framework has also
been described in a publication (CORDEIRO; RAMISCH; VILLAVICENCIO, 2016b).

The framework above was then used in a large-scale intrinsic evaluation of multiple
combinations of DSM and corpus parameters (Chapter 5). Here too we investigate the
correlation between MWE idiomaticity and distributional characteristics (higiom ~ distr)-
As in the case of human judgments above, a correlation with corpus frequency was also
observed for model predictions. Moreover, while human judgments did not correlate with
a measure of conventionalization, we did find a mild correlation in some system scores.

One of the goals of the large-scale evaluation was to determine the factors that influ-
ence the accuracy of model predictions. One of the hypothesis we considered was that the
accuracy should be influenced by MWE-specific characteristics (haceur + mwr). We found
that both idiomaticity (haceur « MWE.idiom) and difficulty in human judgments of compo-
sitionality (haceur « MWE.dific) are associated with lower-quality predictions. On the other
hand, MWE frequency (haccur « MWE.freq) and conventionalization (haceur + MWE.convent) did
not show clear signs of correlation with model accuracy.

We also evaluate different variations of DSMs. Our hypothesis is that DSM-specific
configuration should play a crucial role in the accuracy of the results (haceur + psm). While
we do find a high variety in the accuracy across different DSMs, the results for the
two DSM parameters we considered were somewhat underwhelming. We found that a
higher number of dimensions would consistently contribute to a mild improvement in the
accuracy (Naceur « DSM.dims), but no cross-lingual and unified recommendations could be
attained regarding the variation in context-window sizes (haccur « DSM.window)-

Along with the impact from DSM-specific parameters, we also hypothesized an
influence of corpus-specific parameters in the accuracy of results (haceur « corpus)- Indeed,
the results confirm that stopword removal and lemmatization are both important steps
of corpus preprocessing for this task, especially in the case of languages that are mor-
phologically richer than English. Moreover, the use of POS tags does not contribute to a
higher quality in the representation of word vectors for this task, possibly due to the fact
that it increases the sparsity in co-occurrence counts (haccur « corpus.wordform). An analysis

of different corpus sizes also showed that these may have a direct impact in the accuracy



141

of results (Naccur « corpussize)- Moreover, a proposed technique of parallel predictions was
shown to perform equivalently to whole-corpus predictions, while allowing for the better
utilization of computational resources (haccur « corpus.parallel)-

Concerning the predictive model itself, we have considered six different strategies
for deriving the compositionality scores. Our hypothesis is that different strategies would
provide a different view into the data, with some strategies being more accurate than
others (hgat). We evaluated two additive strategies that are commonly used in the liter-
ature, but that had never been compared, and we concluded that their results are mostly
equivalent to each other. Two other strategies considered only one of the words in the NCs
(head or modifier). As expected, their accuracy suffered due to the limited information
(Dstrat.partial-info) - We then evaluated two proposed strategies. We confirmed the hypothe-
ses that the mazsim strategy is better suited for compositional MWES (hggrat maxsim ), While
the geom strategy optimizes towards idiomatic cases (hstrat.geom). However, in both cases,
results were quite similar to the standard additive strategies, suggesting that the impact
of strategy choice is not as strong as previously thought.

All of the experiments presented in Chapter 5 revolve around a common hy-
pothesis: model predictions are correlated with human-rated MWE compositionality
(hpred-comp ~ comp)- Indeed, the variety of results obtained in this thesis all suggest that this
hypothesis is true. While the correlation obtained for predictions using the worst DSM
and corpus configurations may be considered weak, we have shown that the appropriate
configurations are able to consistently produce predictions of compositionality that highly
correlate with human judgments for a variety of datasets across multiple languages. The
identification of patterns in the large space of more than 8 thousand configurations is
one of the most salient contributions of this thesis. Some of the results on the evaluation
of compositionality prediction were also published in an ACL paper (CORDEIRO et al.,
2016), and we are currently working on another paper to be submitted to a journal.

Finally, one of the contributions of this thesis is the application of predicted compo-
sitionality scores to the task of MWE identification (Chapter 6). The goal was to evaluate
the hypothesis hpred-comp — ident-accur; Which predicts an improvement of MWE identifica-
tion with the use of predicted compositionality scores as internal features. In a rule-based
algorithm, compositionality scores were not found to be a good feature for the identifi-
cation of annotated MWE occurrences, likely due to the presence of collocations along
with idiomatic MWEs in the annotation. We then considered a probabilistic model of

identification, in which the results were mixed: while compositionality scores significantly
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improved the results over rule-based and probabilistic baselines for the English corpus, no
such improvement was found for the French corpus. Further analysis of this phenomenon
is left for future work. Intermediary results for this task have been published in Cordeiro,
Ramisch and Villavicencio (2016¢), and sent for publication in Scholivet, Ramisch and

Cordeiro (2017).

7.2 Future work

Concerning the research on compositionality datasets, we envisage the extension of
the dataset for each of the languages to allow better inter-language comparability (e.g.
EN red wine and its translations FR vin rouge and PT vinho tinto). We also consider the
collection of compositionality judgments for MWEs in additional languages, ideally from
different language families for a broader generalization of results.

A different direction is to augment the dataset with judgments of similarity between
compounds sharing the same head. For example, we can ask people to judge the similarity
of the word case in the expression nut case against the word case in similar expressions
with high PMI, such as criminal case, special case, exceptional case, upper case and
business case. This judgment could also be extended to all pairs of expressions, which
would allow for semantic clusters (and where clusters of a single expression could be
taken as evidence of idiomaticity). This approach could steer some of the research on
compositionality in the direction of lexical similarity, which is commonly used for the
evaluation of DSMs in the case of single words. It would also allow further investigation
of polysemy in the case of collocations sharing the same head (MOLDOVAN et al., 2004;
KIM; BALDWIN, 2013). Crucially, it would allow us to peek into the DSM representation
of similarly-looking compounds and to identify the ways in which the vectors of these
expressions denote their difference in idiomaticity:.

This thesis presents an extensive evaluation of an additive model of compositional-
ity prediction using the constructed datasets. Similar evaluations could be done for other
predictive techniques in the state of the art, such as the work of Salehi, Cook and Baldwin
(2015). The examination of these works in the context of our multilingual datasets would
provide a more solid indication of their accuracy. Moreover, outstanding cross-language
differences between such results and the results found in this thesis would provide further
directions of investigation.

Regarding the results obtained in our compositionality prediction methods, the
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highest-scoring configurations in this thesis achieved reasonably high correlation with hu-
man predictions. Nevertheless, some of the predicted MWE scores were diametrically
opposite to the average of human judgments. A cross-DSM analysis of vector representa-
tions for these MWEs could reveal whether this behavior stems from deficiencies in the
underlying DSM vector representation (e.g. the fact that all DSMs considered could only
represent a single meaning per word). If this is the case, modifications in the DSM could
be investigated so as to prevent the occurrence of such discrepant score predictions. The
construction of a dataset of compound head similarity such as the one suggested above
could facilitate the discovery of these DSM weak points.

As for the compositionality prediction methods themselves, we plan on examining
the use of a voting scheme for combining the output of complementary DSMs. Moreover,
we also plan on combining additional sources of information for building the models,
such as multilingual lexicons or translation data (SALEHI; COOK; BALDWIN, 2014),
to improve even further the compositionality prediction. We would also like to propose
and evaluate more sophisticated compositionality functions that take into account the
unbalanced contribution of individual words to the global meaning of a compound. This
could be done e.g. through a combination of the maxsim and geom strategies proposed in
this thesis (either on the level of the strategy itself, or in the form of an ensemble method
that combines the predictions of multiple strategies).

This thesis has employed predicted compositionality scores in an application of
MWE identification. We considered a rule-based and a probabilistic model, both of
which we evaluated under a base configuration as well as in two configurations involving
compositionality scores. For the probabilistic model, technical considerations required
the quantization of the predicted scores for a categorical interpretation. The specific
quantization used may have greatly limited the results, and future works should consider
different schemes of quantization. Alternatively, this problem could be solved through the
use of neural networks, which can appropriately deal with real-valued data.

Considering the results obtained by the application of MWE identification, we see
that compositionality scores significantly contribute to better accuracy in the case of the
English corpus, but has a less pronounced effect on the French corpus. Crucially, the
probabilistic method fares worse than the baseline which identifies only MWEs seen in
the training data for the French language. Future work would be needed to investigate
this difference between the results for the two languages.

Finally, we also consider other applications of compositionality scores. In particu-
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lar, we would like to incorporate the collected scores into a machine translation system, as
an indication of whether an expression should be translated as a single indivisible unit. We
also envisage the application of predicted MWE compositionality scores in MWE-aware
parsers, extending the approach used in previous work on multiword prepositions (NASR
et al., 2015; CONSTANT; NIVRE, 2016; WASZCZUK; SAVARY; PARMENTIER, 2016).

For the task of MWE identification, we would like to explore context-based def-
initions of compositionality scores. We would also like to evaluate our framework on
verbal MWEs, such as the ones annotated for the PARSEME shared task (SAVARY et
al., 2017b). Verbal MWEs are an understudied topic in the literature, and present some
challenges that were not present in the case of the nominal compounds we used in this
thesis. In particular, verbal MWEs can have extremely rigid or flexible morphosyntactic
characteristics', and can often present discontinuities (e.g. take [something] into account).

Work on verbal MWEs could be pursued in the context long-term research projects.

IFor example, compare the rigid expression bite me/, which does not even allow the inflection of the
verb, with the expression pay a visit, which even allows a change in word order in the passive voice.
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APPENDIX
A. List of English Compounds
We present below the 90 nominal compounds in EN-compgy, along with their

human-rated compositionality scores. We refer to Reddy, McCarthy and Manandhar
(2011) for the other 90 compounds.

Compounds cwe Compounds cwe
ancient history 1.95 high life 1.67
armchair critic 1.33 inner circle 1.56
baby buggy 3.94 inner product 3.00
bad hat 0.62 insane asylum 3.95
benign tumour 4.69 insurance company 5.00
big fish 0.85 insurance policy 4.15
birth rate 4.60 iron collar 3.88
black cherry 3.11 labour union 4.76
bow tie 4.25 life belt 2.84
brain teaser 2.65 life vest 3.44
busy bee 0.88 lime tree 4.61
carpet bombing 1.24 loan shark 1.00
cellular phone 3.78 loose woman 2.53
close call 1.59 mail service 4.69
closed book 0.68 market place 3.00
computer program 4.50 mental disorder 4.89
con artist 2.10 middle school 3.84
cooking stove 4.68 milk tooth 1.43
cotton candy 1.79 mother tongue 0.59
critical review 4.06 narrow escape 1.75
dead end 1.32 net income 2.94
dirty money 2.21 news agency 4.39
dirty word 2.48 noble gas 1.18
disc jockey 1.25 nut case 0.44
divine service 3.11 old flame 0.58
dry land 3.95 old hat 0.35
dry wall 3.33 old timer 0.89
dust storm 3.85 phone book 4.25
eager beaver 0.36 pillow slip 3.70
economic aid 4.33 pocket book 1.42
elbow grease 0.56 prison guard 4.89
elbow room 0.61 prison term 4.79
entrance hall 4.17 private eye 0.82
eternal rest 3.25 record book 3.70
fish story 1.68 research lab 4.75
flower child 0.50 sex bomb 0.53
food market 3.82 silver lining 0.35
foot soldier 1.95 sound judgement 3.39
front man 1.64 sparkling water 3.14
goose egg 0.48 street girl 3.16
grey matter 2.39 subway system 4.63
guinea pig 0.45 tennis elbow 2.50
half sister 2.84 top dog 1.05
half wit 1.16 wet blanket 0.21

health check 4.17 word painting 1.62
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B. List of French Compounds

We present below the 180 nominal compounds in FR-comp, along with their

human-rated compositionality scores.

Compounds cwe  Gloss

activité physique 4.93 ‘physical activity’ (lit. activity physical)
année scolaire 3.60  ‘school year’ (lit. year scholar)

art contemporain 4.60 ‘contemporary art’ (lit. art contemporary)
baie vitrée 3.64  ‘open glass window’ (lit. opening glassy)
bas coté 1.31  ‘aisle’ (lit. low side)

beau frére 0.67  ‘brother-in-law’ (lit. beautiful brother)
beau pére 1.18  ‘father-in-law’ (lit. beautiful father)

belle meére 0.80  ‘mother-in-law’ (lit. beautiful mother)
berger allemand 1.29  ‘German shepherd’ (lit. shepherd German)
bon sens 3.57  ‘common sense’ (lit. good sense)

bon vent 0.87  ‘good luck’ (lit. good/fair wind)

bon vivant 2.57  ‘bon vivant’ (lit. good "liver")

bonne humeur 4.53  ‘good mood’ (lit. good humor)

bonne poire 0.42  ‘sucker, soft touch’ (lit. good pear)

bonne pratique 4.47  ‘good practice’ (lit. good practice)

bouc émissaire 0.23 ‘scapegoat’ (lit. goat emissary)

bras cassé 0.57  ‘lame duck’ (lit. arm broken)

bras droit 0.40  ‘right arm’ (lit. arm right)

brebis galeuse 0.55  ‘black sheep’ (lit. sheep scabby)

carte blanche 0.20  ‘carte blanche’ (lit. card white)

carte bleue 1.94  ‘bank card’ (lit. card blue)

carte grise 3.08 ‘vehicle registration’ (lit. card grey)

carte vitale 1.70  ‘healthcare card’ (lit. card vital)

carton plein 0.78  ‘clean sweep’ (lit. cardboard full)

casque bleu 1.85  ‘UN peacekeeper’ (lit. helmet blue)

centre commercial 3.93  ‘shopping center’ (lit. center commercial)
cercle vicieux 2.15  ‘vicious circle’ (lit. circle vicious)

cerf volant 0.64  ‘kite’ (lit. deer flying)

chambre froide 4.27  ‘cold chamber’ (lit. chamber cold)
changement climatique 4.79 ‘climate change’ (lit. change climatic)
chapeau bas 0.64  ‘bravo’ (lit. hat low)

charge sociale 3.00 ‘social security contribution’ (lit. charge social)
chauve souris 0.33  ‘bat’ (lit. bald mouse)

chute libre 3.64  ‘free fall’ (lit. fall free)

club privé 4.58  ‘private club’ (lit. club private)

coffre fort 3.67  ‘safe, vault’ (lit. chest/box strong)
communauté urbaine 4.57  ‘urban community’ (lit. community urban)
conseil municipal 4.00 ‘city council’ (lit. council municipal)

coup dur 2.40  ‘hard blow’ (lit. blow hard)

coup franc 1.71  ‘free kick (soccer)’ (lit. blow free/frank)
courrier électronique 457  ‘e-mail’ (lit. mail electronic)

court circuit 1.69  ‘short circuit’ (lit. short circuit)

court métrage 2.36  ‘short film’ (lit. short length/footage)
créme fraiche 3.73  ‘French sour cream’ (lit. cream fresh)
créme glacée 4.75  ‘ice cream’ (lit. cream icy)

dernier cri 0.67  ‘latest, trendy’ (lit. last cry)

dernier mot 3.09  ‘“final say’ (lit. last word)

directeur général 3.87  ‘chief executive officer’ (lit. director general)
disque dur 2.83  ‘hard drive’ (lit. disk hard)

douche froide 1.18  ‘damper’ (lit. cold shower)

droit fondamental 4.27  ‘fundamental right’ (lit. right fundamental)
développement économique  4.46 ‘economic development’ (lit. development economic)
eau chaude 5.00  ‘hot water’ (lit. water hot)

eau douce 2.33  ‘fresh water’ (lit. water sweet)

eau minérale 4.00  ‘mineral water’ (lit. water mineral)




Compounds cwe  Gloss

eau potable 5.00  ‘drinking water’ (lit. water potable)

eau vive 344 ‘jellyfish’ (lit. water living)

eau forte 0.90  ‘etching’ (lit. water strong)

eaux usées 4.54  ‘sewage’ (lit. waters used)

effet spécial 3.67  ‘special effect’ (lit. effect special)
expérience professionnelle  4.86 ‘professional experience’ (lit. experience professional)
fait divers 3.69  ‘news story’ (lit. fact diverse)

famille nombreuse 4.90  ‘large family’ (lit. family numerous)

faux ami 1.25  ‘false friend’ (lit. false friend)

faux cul 0.31  ‘hypocrite’ (lit. false arse)

faux pas 1.82  ‘blunder’ (lit. false step)

faux semblant 3.57  ‘false pretence’ (lit. false appearance)

feu rouge 2.60  ‘red traffic light’ (lit. fire red)

feu vert 0.71 ‘green light, permission’ (lit. fire green)
fil conducteur 1.25 ‘underlying theme’ (lit. thread conducting)
fleur bleue 0.45  ‘sentimental’ (lit. flower blue)

foie gras 4.54  ‘foie gras’ (lit. liver fatty)

fou rire 2.33  ‘giggle’ (lit. crazy laughter)

grand air 1.33  ‘outdoors’ (lit. big air)

grand jour 1.07  ‘broad daylight’ (lit. big day)

grand saut 2.17  ‘move forward’ (lit. big leap)

grand écran 3.14  ‘silver screen’ (lit. big screen)

grande entreprise 4.54  ‘big company’ (lit. big company)

grande surface 3.14 ‘department store’ (lit. big surface)
grippe aviaire 3.58  ‘avian flw’ (lit. flu avian)

gros mot 1.40  ‘swearword’ (lit. large word)

gros plan 1.87  ‘close-up’ (lit. large plan)

guerre civile 3.43  ‘civil war’ (lit. war civil)

haut parleur 1.83  ‘loudspeaker’ (lit. loud/high speaker)
haute mer 2.54  ‘high seas’ (lit. high sea)

haute montagne 4.13  ‘high mountains’ (lit. high mountain)
heure supplémentaire 4.00  ‘overtime hour’ (lit. hour extra)

huile essentielle 2.25  ‘essential oil’ (lit. oil essential)

idée recue 2.90  ‘popular belief’ (lit. idea received)
insertion professionnelle 4.27  ‘professional insertion’ (lit. insertion professional)
intérét général 4.36  ‘general interest’ (lit. interest general)
jeune fille 4.64  ‘young girl, maiden’ (lit. young girl)
journal officiel 4.50  ‘official gazette’ (lit. newspaper official)
langue frangaise 4.85  ‘French language’ (lit. language French)
marée noire 3.00  ‘oil spill’ (lit. tide black)

match nul 2.46  ‘draw, stalemate’ (lit. match null)
matiere grasse 5.00 ‘fat’ (lit. matter greasy)

matiere grise 2.15  ‘grey matter’ (lit. material grey)

matiére premiére 2.90  ‘raw material’ (lit. material primary)
mauvaise foi 2.38  ‘bad faith’ (lit. bad faith)

mauvaise langue 2.21  ‘gossip’ (lit. bad tongue)

montagnes russes 1.08  ‘roller coaster’ (lit. mountains Russian)
monument historique 4.79  ‘historical monument’ (lit. monument historical)
mort né 3.23  ‘stillborn’ (lit. dead born)

nouveau monde 2.73  ‘New World, Americas’ (lit. new world)
nuit blanche 1.07  ‘sleepless night’ (lit. night white)

numéro vert 1.50  ‘toll-free number’ (lit. number green)
ordure ménagere 4.20  ‘household waste’ (lit. garbage household)
organisation syndicale 4.90  ‘trade union’ (lit. organisation of-trade-union)
pages jaunes 3.00 ‘yellow pages’ (lit. pages yellow)
parachute doré 0.50 ‘golden parachute’ (lit. parachute golden)
parc naturel 4.33  ‘nature park’ (lit. park natural)

parti politique 4.88  ‘political party’ (lit. party political)

parti pris 2.69  ‘bias’ (lit. party taken)

partie fine 0.80  ‘orgy’ (lit. party fine/delicate)

petit ami 0.86  ‘boyfriend’ (lit. small friend)

petit beurre 1.64  ‘butter biscuit’ (lit. small butter)
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Compounds cwe  Gloss

petit déjeuner 2.27  ‘breakfast’ (lit. small lunch)

petit joueur 1.00  ‘amateur’ (lit. small player)

petit pois 4.14  ‘pea’ (lit. small pea)

petit salé 1.15  ‘salted pork’ (lit. small salty)

petit écran 2.50  ‘television’ (lit. small screen)

petit enfant 2.79  ‘grandchild’ (lit. small child)

petit four 0.92 ‘type of dessert’ (lit. small oven)

petit negre 0.50  ‘pidgin French’ (lit. little black-man)
petite annonce 2.69  ‘classified ad’ (lit. small announcement)
petite nature 0.47  ‘squeamish’ (lit. small nature)

pied noir 0.13  ‘French expats from Algeria’ (lit. foot black)
piéce montée 247  ‘tiered cake’ (lit. piece assembled)

pleine lune 3.54  ‘full moon’ (lit. full moon)

poids lourd 2.08  ‘truck’ (lit. weight heavy)

point faible 2.46  ‘weak point’ (lit. point weak)

point mort 1.00  ‘standstill’ (lit. point dead)

pot pourri 0.40  ‘medley’ (lit. pot/jar rotten)

poule mouillée 0.00 ‘coward’ (lit. chicken wet)

poupée russe 3.75 ‘Russian nesting doll’ (lit. doll Russian)
premier ministre 3.67  ‘first minister’ (lit. first minister)
premier plan 2.82  ‘foreground’ (lit. first plan)

premiere dame 1.92  ‘first lady’ (lit. first lady)

prince charmant 2.00  ‘Prince Charming’ (lit. prince charming)
prévision météorologique 4.70 ‘weather forecast’ (lit. forecast meteorological)
recherche scientifique 4.92  ‘scientific research’ (lit. research scientific)
ressources humaines 3.91  ‘human resources’ (lit. resources human)
rond point 3.18  ‘roundabout’ (lit. round point)

roulette russe 0.87  ‘Russian roulette’ (lit. roulette Russian)
réchauffement climatique  4.40 ‘global warming’ (lit. warming climatic)
région parisienne 4.43  ‘Paris region’ (lit. region Parisian)
réseau social 4.09  ‘social network’ (lit. network social)
sang froid 0.47  ‘self-control’ (lit. blood cold)

second degré 1.40 ‘tongue-in-cheek’ (lit. second degree)
second role 3.64  ‘supporting role’ (lit. second role)
septiéme ciel 0.21  ‘cloud nine’ (lit. seventh heaven)

service public 4.71  ‘public service’ (lit. service public)

site officiel 4.85  ‘official website’ (lit. website official)
soirée privée 4.53 ‘private party’ (lit. party private)

sucre roux 4.31 ‘brown sugar’ (lit. sugar ginger-colored)
sécurité routiere 4.55  ‘road safety’ (lit. safety of-road)

sécurité sociale 3.67  ‘social security’ (lit. security social)
table basse 4.79  ‘coffee table’ (lit. table low)

table ronde 1.46  ‘round table’ (lit. table round)

tapis rouge 3.31 ‘red carpet’ (lit. carpet red)

temps fort 1.87  ‘key moment, highlight’ (lit. time strong)
temps mort 2.07  ‘wasted time, idleness’ (lit. time dead)
temps partiel 3.62  ‘part-time (work)’ (lit. time partial)
temps plein 3.08  ‘“full-time (work)’ (lit. time full)

temps réel 3.00  ‘real time’ (lit. téme real)

travaux publics 4.09  ‘public works’ (lit. works public)

trou noir 2.58  ‘black hole’ (lit. hole black)

trou normand 0.78  ‘palate cleanser’ (lit. hole Norman)
téléphone arabe 0.23  ‘Chinese whispers’ (lit. telephone Arabic)
téléphone portable 5.00 ‘cellphone’ (lit. telephone portable)
valeur siire 3.64  ‘safe bet’ (lit. value safe/sure)

vie associative 4.00  ‘community life’ (lit. life associative)

vie quotidienne 4.31  ‘everyday life’ (lit. life daily)

vieille fille 2.42  ‘spinster’ (lit. old girl/maid)

vin blanc 3.80  ‘white wine’ (lit. wine white)

vin rouge 4.69  ‘red wine’ (lit. wine red)

yeux rouges 4.36  ‘red eyes’ (lit. eyes red)

école primaire 3.92  ‘primary school’ (lit. school primary)
étoile filante 3.20  ‘shooting star’ (lit. star slipping)
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C. List of Portuguese Compounds

We present below the 180 nominal compounds in PT-comp, along with their

human-rated compositionality scores.

Compounds cwe  Gloss

abalo sismico 4.42  ‘earthquake’ (lit. shock seismic)
acampamento militar  4.82 ‘military camp’ (lit. camp military)
agente secreto 4.58  ‘secret agent’ (lit. agent secret)

alarme falso 3.24  ‘“false alarm’ (lit. alarm false)

algoddo doce 1.28  ‘cotton candy’ (lit. cotton sweet)

alta temporada 2.04  ‘high season’ (lit. high season)

alta costura 1.52  ‘haute couture’ (lit. high sewing)

alto mar 1.35  ‘high seas’ (lit. high sea)

alto falante 0.88  ‘loudspeaker’ (lit. loud/high speaker)
amigo oculto 2.89  ‘secret Santa’ (lit. friend hidden)
amigo secreto 3.11  ‘secret Santa’ (lit. friend secret)

amor préprio 391  ‘self-esteem’ (lit. love own)

ano novo 4.29  ‘new year’ (lit. year new)

ar condicionado 2.44  ‘air conditioning’ (lit. air conditioned)
ar livre 1.95  ‘open air’ (lit. air free)

arma branca 0.65  ‘cold weapon’ (lit. weapon white)

ato falho 3.50  ‘Freudian slip’ (lit. act faulty)

banho turco 2.19  ‘Turkish bath’ (lit. bath Turkish)
batata doce 4.24  ‘sweet potato’ (lit. potato sweet)
bebida alcodlica 5.00  ‘alcoholic drink’ (lit. drink alcoholic)
bode expiatério 0.47  ‘scapegoat’ (lit. goat expiatory)

brago direito 0.57  ‘right arm’ (lit. arm right)

buraco negro 2.88  ‘black hole’ (lit. hole black/dark)

café colonial 2.70  ‘afternoon tea’ (lit. breakfast colonial)
caixa forte 3.19  ‘safe, vault’ (lit. box strong)

caixa preta 0.94  ‘black box’ (lit. box black)

caixeiro viajante 3.43  ‘traveling salesman’ (lit. clerk traveling)
carne branca 2.85  ‘white meat’ (lit. meat white)

carne vermelha 3.66  ‘red meat’ (lit. meat red)

carro forte 2.62  ‘armored car’ (lit. car strong)

carta aberta 3.64  ‘open letter’ (lit. letter open)

centro comercial 3.68  ‘shopping mall’ (lit. center commercial)
centro espirita 3.43  ‘Spiritualist center’ (lit. center spiritualist)
cerca viva 3.58  ‘hedge’ (lit. fence living)

cheiro verde 0.67  ‘parsley’ (lit. smell green)

circuito integrado 4.52 ‘integrated circuit’ (lit. circuit integrated)
classe executiva 2.67  ‘business class’ (lit. class executive)
coluna social 2.45  ‘gossip column’ (lit. column social)
colégio militar 4.88  ‘military high-school’ (lit. high-school military)
comida caseira 4.11  ‘homemade food’ (lit. food homemade)
companhia aérea 3.11  ‘airline’ (lit. company aerial)

conta corrente 2.71  ‘checking account’ (lit. account current)
coragdo partido 1.06  ‘broken heart’ (lit. heart broken)

corda bamba 1.31 ‘tightrope, bad situation’ (lit. rope wobbly)
cordas vocais 2.32  ‘vocal chords’ (lit. chords vocal)

curto circuito 1.96  ‘short circuit’ (lit. short circuit)
camara fria 4.65  ‘cold chamber’ (lit. chamber cold)

céu aberto 1.68  ‘outdoors, open air’ (lit. sky open)
circulo vicioso 2.17  ‘vicious circle’ (lit. circle vicious)
circulo virtuoso 2.39  ‘virtuous circle’ (lit. circle virtuous)
deputado federal 4.92  ‘federal deputy’ (lit. deputy federal)
desfile militar 4.93  ‘military parade’ (lit. parade military)
direitos humanos 3.86  ‘human rights’ (lit. rights human)

disco rigido 2.76  ‘hard drive’ (lit. disk rigid)
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Compounds cewe  Gloss

disco voador 2.94  ‘flying saucer’ (lit. disk flying)

efeitos especiais 3.37  ‘special effects’ (lit. effects special)
elefante branco 0.16  ‘white elephant’ (lit. elephant white)
escada rolante 3.85  ‘escalator’ (lit. stair rolling)

estrela cadente 2.52  ‘shooting star’ (lit. star falling)

exame clinico 4.75  ‘clinical examination’ (lit. ezamination clinical)
exames laboratoriais  4.90  ‘laboratory tests’ (lit. ezaminations laboratory)
farinha integral 4.72  ‘wholemeal flour’ (lit. flour integral)
febre amarela 1.43  ‘yellow fever’ (lit. fever yellow)

ficha limpa 2.97  ‘clean criminal records’ (lit. file clean)
fila indiana 1.17  ‘single file’ (lit. queue Indian)

fio condutor 1.58  ‘underlying theme’ (lit. thread conductor)
forca bruta 3.33  ‘brute force’ (lit. force brute)

gatos pingados 0.00 ‘a few people’ (lit. cats dropped)

gelo seco 2.33  ‘dry ice’ (lit. ice dry)

golpe baixo 2.03  ‘low blow’ (lit. punch low)

governo federal 4.97  ‘federal government’ (lit. government federal)
gripe avidria 3.11  ‘avian flw’ (lit. flu avian)

gripe suina 2.48  ‘swine flu’ (lit. flu swine)

guarda florestal 4.16  ‘forest ranger’ (lit. guard forest)

jogo duro 1.13  ‘rough play’ (lit. game hard)

juizo final 3.60 ‘doomsday’ (lit. judgement final)

leite integral 4.67  ‘whole milk’ (lit. milk integral)

lista negra 1.60  ‘black list’ (lit. list black)
livre-docente 2.63  ‘professor’ (lit. free lecturer)

livro aberto 0.79  ‘open book’ (lit. book open)

longa data 1.63  ‘longtime’ (lit. date long)
longa-metragem 0.96  ‘feature film’ (lit. long length/footage)
lua cheia 3.52  ‘full moon’ (lit. moon full)

lua nova 1.40  ‘new moon’ (lit. moon new)

lugar comum 1.52  ‘cliché’ (lit. place common)

magia negra 1.72  ‘black magic’ (lit. magic black)

mar aberto 2.87  ‘open sea’ (lit. sea open)

maré alta 4.03  ‘high tide’ (lit. tide high)

maré baixa 4.18  ‘low tide’ (lit. tide low)

massa cinzenta 1.69  ‘grey matter’ (lit. mass grey)

mau contato 2.84  ‘faulty contact’ (lit. bad contact)

mau humor 4.29  ‘bad mood’ (lit. bad humour)

mau olhado 1.97  ‘evil eye’ (lit. bad glance)

mercado negro 1.06  ‘black market’ (lit. black market)
mesa redonda 1.10  ‘round table’ (lit. table round)
montanha russa 0.31  ‘roller coaster’ (lit. mountain Russian)
m4 fé 1.62  ‘bad faith’ (lit. bad faith)

maéquina virtual 3.76  ‘virtual machine’ (lit. machine virtual)
maéo fechada 1.06  ‘stingy’ (lit. hand closed)

navio negreiro 3.52  ‘slave ship’ (lit. ship black-slave)

novo mundo 2.29  ‘new world’ (lit. new world)

novo rico 3.62  ‘new rich, new money’ (lit. new rich)
né cego 0.74  ‘difficult situation’ (lit. knot blind)
nicleo atémico 4.93  ‘atomic nucleus’ (lit. nucleus atomic)
olho gordo 0.28  ‘evil eye’ (lit. eye fat)

olho mégico 0.27  ‘peephole’ (lit. eye magic)

olho nu 2.15  ‘naked eye’ (lit. eye naked)

ovelha negra 0.45  ‘black sheep’ (lit. sheep black)

papel higiénico 4.27  ‘toilet paper’ (lit. paper hygienic)
paraiso fiscal 1.47  ‘tax haven’ (lit. paradise fiscal)

pastor aleméo 0.90  ‘German shepherd’ (lit. shepherd German)
pau mandado 0.30  ‘subservient, stooge’ (lit. stick ordered)
pavio curto 0.80  ‘short-tempered’ (lit. fuse short)
pente fino 0.53  ‘careful research’ (lit. comb thin)

peso morto 0.90  ‘dead weight’ (lit. weight dead)

planta baixa 0.74  ‘floor plan’ (lit. plant short)

ponto cego 1.92  ‘blind spot’ (lit. point blind)
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ponto forte 1.51  ‘strong point’ (lit. point strong)

ponto fraco 2.27  ‘weak point’ (lit. point weak)

pogao magica 3.29  ‘magic potion’ (lit. potion magic)

prato feito 3.14  ‘blue-plate special’ (lit. plate ready-made)
primeira infancia 3.70  ‘early childhood’ (lit. first infancy)
primeira-méo 0.71  ‘first hand’ (lit. first hand)

primeira necessidade  3.97  ‘first necessity’ (lit. first necessity)
primeira-dama 1.52  ‘first lady’ (lit. first dame)
primeiro-ministro 2.87  ‘first minister’ (lit. first minister)
primeiro plano 2.00  ‘forefront’ (lit. first plan)

processo seletivo 4.78  ‘selection process’ (lit. process selective)
pronto socorro 2.76  ‘first-aid posts’ (lit. ready aid)

principe encantado 1.72  ‘prince charming’ (lit. prince enchanted)
puro sangue 1.55  ‘pure blood’ (lit. pure blood)

pao-duro 0.12  ‘stingy’ (lit. bread hard)

pé quente 0.09  ‘lucky’ (lit. foot hot)

pé-direito 0.10  ‘ceiling height’ (lit. foot right)

pé frio 0.23  ‘unlucky’ (lit. foot cold)

pélo aquético 2.87  ‘water polo’ (lit. aquatic pole/polo)
quadro negro 2.94  ‘blackboard’ (lit. board black)

queda livre 3.48  ‘free fall’ (lit. fall free)

quinta categoria 1.00  ‘second-rate’ (lit. fifth category)

rede social 3.27  ‘social network’ (lit. network social)
regime politico 4.00  ‘political system’ (lit. regime political)
rel6gio analégico 4.92  ‘analog clock’ (lit. clock analog)

rel6gio biolégico 2.12  ‘biological clock’ (lit. clock biological)
reta final 1.12  ‘final stretch’ (lit. straight line final)
roda gigante 4.20  ‘Ferris wheel’ (lit. wheel giant)

roleta russa 0.29  ‘Russian roulette’ (lit. roulette Russian)
saia justa 0.37  ‘tight spot’ (lit. skirt tight)

sala cirdrgica 4.47  ‘operating room’ (lit. room surgical)
saldo paroquial 4.52  ‘parish hall’ (lit. hall parish)

sangue azul 0.15  ‘blue-blooded’ (lit. blood blue)

sangue frio 0.52  ‘cold-blooded’ (lit. blood cold)

sangue quente 0.87  ‘hot-blooded’ (lit. blood hot)

secretdria eletronica 2.52  ‘answering machine’ (lit. secretary electronic)
segundas intengoes 2.11  ‘ulterior motives’ (lit. second intentions)
segundo plano 1.55  ‘aside, in the background’ (lit. second plan)
sentenga judicial 4.67  ‘court ruling’ (lit. sentence judicial)
sexto sentido 1.40  ‘sixth sense’ (lit. sizth sense)

sinal verde 1.39  ‘green lights’ (lit. signal green)

sistema politico 4.36 ‘political system’ (lit. system political)
sétima arte 2.19  ‘seventh art’ (lit. seventh art)

tapete vermelho 3.76  ‘red carpet’ (lit. carpet red)

tartaruga marinha 5.00 ‘sea turtle’ (lit. turtle marine)

tela plana 4.96  ‘flat screen TV’ (lit. screen flat)

tempo real 2.81  ‘real time’ (lit. time real)

terceira idade 1.70  ‘elder’ (lit. third age)

terceira pessoa 2.00 ‘third person’ (lit. third person)

tiro livre 1.58  ‘free kick (soccer)’ (lit. shot free)
trabalho bracal 3.55  ‘manual labor’ (lit. work arm)

trabalho escravo 4.24  ‘slave work’ (lit. work slave)

vaca louca 1.23  ‘mad cow’ (lit. cow crazy/mad)

vinho branco 3.40  ‘white wine’ (lit. wine white)

vinho tinto 4.08  ‘red wine’ (lit. wine dark-red)

vista grossa 0.50  ‘turn a blind eye’ (lit. vision thick)

viva voz 1.70  ‘aloud’ (lit. live voice)

voto secreto 4.82  ‘secret ballot’ (lit. vote secret)

voo doméstico 3.41 ‘domestic flight’ (lit. flight domestic)
vOo internacional 4.96 ‘international flight’ (lit. flight international)
agua doce 1.45  ‘fresh water’ (lit. water sweet)

4dgua mineral 4.21  ‘mineral water’ (lit. water mineral)
6nibus executivo 2.63  ‘minibus’ (lit. bus executive)
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