
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM MICROELETRÔNICA

THIAGO DE OLIVEIRA SILVA

Elastic Circuits in FPGA

Dissertação apresentada como requisito parcial
para a obtenção do grau de Mestre em
Microeletrônica.

Orientador: Prof. Dr. André Inácio Reis

Porto Alegre
2017

CIP – CATALOGAÇÃO NA PUBLICAÇÃO

Silva, Thiago de Oliveira

Elastic Circuits in FPGA / Thiago de Oliveira Silva. -- 2017.
65 f.
Orientador: André Inácio Reis.

Dissertação (Mestrado) -- Universidade Federal do Rio

Grande do Sul, Instituto de Informática, Programa de Pós-
Graduação em Microeletrônica, Porto Alegre, BR-RS, 2017.

1. Elastic Circuits . 2. Digital IC . 3. IC Design Methodology .
4. FPGA . 5. Asynchronous Circuits. I. Reis, Andre Inácio,
orient.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Rui Vicente Oppermann
Vice-Reitor: Profª. Jane Fraga Tutikian
Pró-Reitor de Pós-Graduação: Prof. Celso Giannetti Loureiro Chaves
Diretor do Instituto de Informática: Profª. Carla Maria Dal Sasso Freitas
Coordenador do PGMICRO: Profª. Fernanda Lima Kastensmidt
Bibliotecária-Chefe do Instituto de Informática: Beatriz Regina Bastos Haro

ACKNOWLEDGEMENTS

This work is dedicated to all who have supported me during the graduation

period, helping me get through the task of dedicating time to study and develop the

experiments in parallel with a full time job.

My parents Jose and Sonia, who have always dedicated their attention and

support, never letting me drop the ball with their encouraging words and advises.

They are the reason of any success I may have in my lifetime, my role models.

My girlfriend Danielle, who has been by my side during this work development,

always pushing me forward. I was able to complete this effort because of all her

support and love.

My advisor, for the support on the things I did not know how to do and for

helping me to develop the research skills needed

My friends and colleagues, who have patiently supported me by backing me

up when needed.

All the professors, who have shared their knowledge with me and

strengthened to my technical and academic background.

RESUMO

O avanço da microeletrônica nas últimas décadas trouxe maior densidade aos

circuitos integrados, possibilitando a implementação de funções de alta

complexidade em uma menor área de silício. Como efeito desta integração em larga

escala, as latências dos fios passaram a representar uma maior fração do atraso de

propagação de dados em um design, tornando a tarefa de “timing closure” mais

desafiadora e demandando mais iterações entre etapas do design.

Por meio de uma revisão na teoria dos circuitos insensíveis a latência

(Latency-Insensitive theory), este trabalho explora a metodologia de designs

elásticos (Elastic Design methodology) em circuitos síncronos, com o objetivo de

solucionar o impacto que a latência adicional dos fios insere no fluxo de design de

circuitos integrados, sem demandar uma grande mudança de paradigma por parte

dos designers.

A fim de exemplificar o processo de “elasticização”, foi implementada uma

versão síncrona da arquitetura do microprocessador Neander que posteriormente foi

convertida a um Circuito Elástico utilizando um protocolo insensível a latência nas

transferências de dados entre os processos computacionais do design. Ambas as

versões do Neander foram validadas em uma plataforma FPGA utilizando

ferramentas e fluxo de design síncrono bem estabelecidos.

A comparação das características de timing e área entre os designs

demonstra que a versão Elástica pode apresentar ganhos de performance para

sistemas complexos ao custo de um aumento da área necessária.

Estes resultados mostram que a metodologia de designs elásticos é uma boa

candidata para projetar circuitos integrados complexos sem demandar custosas

iterações entre fases de design e reutilizando as já estabelecidas ferramentas de

design síncrono, resultando em uma alternativa economicamente vantajosa para os

designers.

Palavras-chave: Elastic Circuits. Digital IC. IC Design Methodology. FPGA. ASIC.

Synchronous Circuits. Asynchronous Circuits.

ABSTRACT

The advance of microelectronics brought increased density to integrated

circuits, allowing high complexity functions to be implemented in smaller silicon

areas. As a side effect of this large-scale integration, the wire latencies became a

higher fraction of a design’s data propagation latency, turning timing closure into a

challenging task that often demand several iterations among design phases.

By reviewing the Latency-Insensitive theory, this work presents the exploration

of the Elastic Design methodology in synchronous circuits, with the objective of

solving the increased wire latency impact on integrated circuits design flow without

requiring a big paradigm change for designers.

To exemplify the elasticization process, the educational Neander

microprocessor architecture is synchronously implemented and turned into an Elastic

Circuit by using a latency-insensitive protocol in the design’s computational

processes data transfers. Both designs are validated in an FPGA platform, using well

known synchronous design tools and flow.

The timing and area comparison between the designs demonstrates that the

Elastic version can present performance advantages for more complex systems at

the price of increased area.

These results show that the Elastic Design methodology is a good candidate

for designing complex integrated circuits without costly iterations between design

phases. This methodology also leverages the reuse of the mostly adopted

synchronous design tools, resulting in a cost-effective alternative for designers.

Keywords: Elastic Circuits. Digital IC. IC Design Methodology. FPGA. ASIC.

Synchronous Circuits. Asynchronous Circuits.

LIST OF FIGURES

Figure 1 – Patient Process composition ... 13

Figure 2 – Relay Station in a latency-insensitive channel 14

Figure 3 – Specification for the W2R1 EB .. 15

Figure 4 – Elastic Buffer base structure.. 16

Figure 5 – Synchronous elastic module with multiple inputs and outputs. 17

Figure 6 – Neander organization .. 21

Figure 7 – Neander control unit FSM ... 22

Figure 8 – Neander instruction fetch phase .. 23

Figure 9 – Sum program... 24

Figure 10 – Sum program execution .. 24

Figure 11 – Patient Process interfaces ... 26

Figure 12 – Patient Process B stall and execution periods 27

Figure 13 – Patient Process A stall and execution periods 27

Figure 14 – Elastic Neander Project phases .. 29

Figure 15 – Neander Program Counter .. 31

Figure 16 – Memory data write backpressure .. 34

Figure 17 – Elastic Neander ... 37

Figure 18 – Elastic buffer datapath organizations .. 38

Figure 19 – Elastic Buffer design .. 39

Figure 21 – Patient memory elastic interfaces .. 39

Figure 22 – Patient memory elastic interfaces .. 40

Figure 23 – IR<->Control elastic interfaces .. 42

Figure 24 – Elastic Neander dataflow in ST0 ... 43

Figure 25 – Instruction fetch phase FSM .. 43

Figure 26 – FSM outputs and transitions from ST3 - STA, LDA, ADD, OR, AND, JMP,

JN (n=1), JZ (z=1) .. 44

Figure 27 – FSM outputs and transitions from ST3 - JN (n=0), JZ (z=0) 45

Figure 28 – FSM outputs and transitions from ST3 - NOT 45

Figure 29 – FSM outputs and transitions from ST4 - STA, LDA, ADD, OR, AND45

Figure 30 – FSM outputs and transitions from ST4 - JMP, JN (n=1), JZ (z=1) . 46

Figure 31 – FSM outputs and transitions from ST5 - STA, LDA, ADD, OR, AND46

Figure 32 – FSM outputs and transitions from ST5 - JMP, JN (n=1), JZ (z=1) . 46

Figure 33 – FSM outputs and transitions from ST6 – STA 47

Figure 34 – FSM outputs and transitions from ST6 - LDA, ADD, OR, AND 47

Figure 35 – Counter Program ... 49

Figure 36 – Latency equivalent behavior of Neander designs 50

Figure 37 – Neander designs demonstration platform 51

Figure 38 - Synchronous vs Elastic instruction execution time 54

Figure 39 - Elastic Neander with Elastic ALU ... 59

LIST OF TABLES

Table 1 – Neander processor instruction set .. 19

Table 2 – Control signals during STA, LDA, ADD, OR, AND and NOT 32

Table 3 – Control signals during JMP, JN, JZ, NOP and HLT 32

Table 4 – SDC commands used in Neander designs synthesis 52

Table 5 – Neander designs timing results evaluated .. 53

Table 6 – Clock cycles per instruction execution .. 55

Table 7 – 8 bits counter vs 20 bits counter run time ... 55

Table 8 - 8bits Synchronous and Elastic Neander Area results........................ 56

Table 9 - 8bits Synchronous and Elastic Neander Timing results 56

Table 10 - 8bits Synchronous and Elastic Neander Trun(ns) comparison 57

Table 11 - 64bits Neander Fmax .. 59

Table 12 - 64bits Synchronous and Elastic Neander Trun(ns) comparison 60

Table 13 - 128bits Synchronous and Elastic Neander comparison 60

Table 14 – Full Synchronous and Elastic Neander designs results 61

LIST OF ACRONYMS

AC Accumulator

ADDR Address

ALU Arithmetic Logic Unit

DSM Deep Submicrometer

DUT Design Under Test

EB Elastic Buffer

EB Elastic Buffer

EDA Electronic Design Automation

FF Flip Flop

FPGA Field Programmable Gate Array

FSM Finite State Machine

HLT Halt

IC Integrated Circuit

IP Intellectual Property

IR Instruction Register

JMP Jump

LDA Load Accumulator

MAR Memory Address Register

MDR Memory Data Register

MEM Memory

MUX Multiplexer

PC Program Counter

PCTRL Patient Control Unit

RTL Register Transfer Level

SDC Synopsis Design Constraint

SELF Synchronous Elastic Flow

STA Store Accumulator

SUMMARY

ACKNOWLEDGEMENTS ... 3

RESUMO .. 4

ABSTRACT .. 5

LIST OF FIGURES ... 6

LIST OF TABLES ... 7

LIST OF ACRONYMS .. 8

1 INTRODUCTION ... 10

2 ELASTIC CIRCUITS.. 12

2.1 ADVANTAGES AND LIABILITIES ... 15

2.2 ELASTICIZATION PROCESS .. 16

3 NEANDER PROCESSOR ... 19

4 ELASTIC NEANDER IN FPGA .. 26

5 ELASTIC NEANDER PROJECT ... 30

5.1 NEANDER DESIGN .. 30

5.2 STALLABLE PROCESSES ... 33

5.3 DATA FLOWS ... 34

5.4 ELASTIC NEANDER ... 35

5.5 ELASTIC BUFFER ORGANIZATIONS ... 37

5.6 ELASTIC BUFFER DESIGN .. 38

5.7 PATIENT MEMORY .. 39

5.8 PATIENT CONTROL UNIT ... 41

5.9 FUNCTIONAL VERIFICATION ... 48

5.10 FPGA DEMO ... 50

5.11 DESIGN SYNTHESIS.. 51

5.12 TIMING ANALYSIS ... 53

6 RESULTS ANALYSIS ... 54

7 CONCLUSIONS AND FUTURE WORK .. 63

REFERENCES ... 65

10

1 INTRODUCTION

Over the past decades, the use of electronic components by industries like

automotive, aerospace and personal systems has rapidly increased. This expansion

brought a big electronics technology leap in a short time, as mapped by the Moore

Law for the integrated circuits (ICs), which have to perform really complex functions

in the smallest area, power consumption and time possible.

The development of IC design methodologies and tools was a key factor to

enable the advance of chips capabilities, exploring the semiconductor fabrication

processes enhancements. As a well stablished concept, the Synchronous IC Design

has been the main methodology adopted by the semiconductor industry in its

development.

However, with the process nodes shrinking, IC designers face more

challenges to keep increasing their clock based designs’ performance due to issues

not perceived in previous technologies, like increased wire-latencies.

Aiming at solving such problems, alternative designs methodologies have

been researched and proposed. The Asynchronous Design methodology claims to

brake the synchronous circuits’ fixed clock period dependency to compute data, what

would bring more flexibility to designs and avoid data propagation time impact on

functionality.

Representing a big paradigm change to the IC design community and having

few Electronic Design Automation (EDA) tools support, the asynchronous circuits are

not largely adopted. With the intent of reusing several aspects of the synchronous

design concepts, the Latency Insensitive and Elastic Design methodologies arise as

alternatives that are not so disruptive and solve the technology advance related

issues without leaving behind all the synchronous knowledge developed, at the cost

of increased area.

Even with the advances of synchronous based tools, the real circuit latencies

uncertainty in the early stages of development is a key factor that leads to timing

closure problems in current designs, resulting in cost increase due to reiterations

between design steps. An example is the accurate physical synthesis delay

estimation identifying timing problems and requiring rework in the Register Transfer

Level (RTL) design.

11

A key aspect to sustain the advance of complex ICs in a cost-effective fashion

is the exploration of new design methodologies, like the Elastic design. Such

methodologies leverage the well stablished ground to solve the technology advance

issues and avoid the drawbacks of the synchronous flow in timing closure process,

without impacting the performance of synchronous designs.

This work exercises the Elastic Design methodology by converting a

synchronous implementation of the Neander processor developed on top of well-

known synchronous design practices and tools to demonstrate the impacts and

requirements of the new methodology adoption. The Elastic Circuit is deployed in a

Field Programmable Gate Array (FPGA) platform and the resulting functionality, area

and performance are analyzed against the expected outcomes.

A review of the Latency insensitive and Elastic design methodology is done in

section 2. The Neander architecture background is explained in section 3 to review

the processor’s functionality and characteristics. Section 4 brings an overview of this

works’ target, an Elastic version of the Neander processor evaluated in an FPGA

platform. The whole design flow is explained in Section 5, detailing each design

phase performed to generate the Elastic circuit, which have its results analyzed in

section 6. Section 7 concludes this work with the key aspects and remarks, opening

room for future work.

12

2 ELASTIC CIRCUITS

Given the advance of deep submicrometer technologies (DSM) with process

nodes from 0.1um to tens of nanometers, complex Integrated Circuit designs have to

overcome new challenges.

As the logic cells become smaller and faster, the distance between those cells

increases, and that makes wire latencies more significant in the overall design timing

challenge. Other factors that contribute to the wire latency problem are the increase

in operating frequencies and die size, which make even smaller the time available for

a signal to travel from one logic unit to another.

Although there are process related techniques that try to solve the metal lines

latency impact increase, like copper metallization and low-k dielectric insulators,

these workaround solutions are not sufficient to completely solve the interconnect

delay problem (BOHR, 1998), (FLYNN, 1999).

Asynchronous circuits paradigm is an alternative to overcome the wire latency

ratio increase effect, since it is not based on a clock cycle and execution occurs

when data is ready to be consumed. However, the lack of EDA tools compatible with

an asynchronous design flow and the higher complexity of such designs, when

compared to synchronous circuits, prevent the asynchronous circuits adoption by the

larger part of the IC design community.

The Latency-Insensitive theory (CARLONI, 2001) was proposed as a

conciliatory solution between the asynchronous world and the traditional

synchronous design methodology.

The principle of separating computation from communication in a design is the

basis of the Latency-Insensitive theory. The design parts responsible for data

computing are designated as computational processes, while the communication

channels are responsible for exchanging the processed data.

By decoupling communication from computation, Latency-Insensitive design

suggests that the computational processes in a system exchange data over

communication channels which implement an abstract latency-insensitive protocol

(CARLONI, 1999). The latency-insensitive protocol ensures that computational

processes’ data exchanges are completed despite of channel latency variations.

13

For a computational process to be compliant with the latency-insensitive

protocol, it has to be stallable, meaning that it can maintain its current state if a

stalling condition is applied. For instance, a Finite State Machine (FSM) can be

stallable if its state transitions can be stalled by a stop input. The latency-insensitive

version of a computational process is a Patient Process, which is obtained by making

a stallable process implement a latency-insensitive protocol, as shown in the Figure 1

below.

Figure 1 – Patient Process composition

Reference: Carmona (2001).

Hence, a latency-insensitive design is composed by Patient Processes that

communicate with each other through a latency-insensitive protocol. The protocol

makes a data source Patient Process wait for the availability of the data recipient

Patient Process.

Once the design is adapted to be latency-insensitive, a lengthy communication

channel that does not meet the timing constraints of the system’s clock can be

segmented by the insertion of Relay Stations. These components do not have any

computation purpose, only serving the purpose of partitioning a long communication

channels while maintaining a functional equivalency in the data flow, meaning that

the Relay Stations do not interfere in the data sequence generated by the Patient

Process, as shown in the Figure 2 below.

14

Figure 2 – Relay Station in a latency-insensitive channel

Based on Elastic Buffers (EB), that use control signals to manage valid data

transfers, the SELF (Synchronous Elastic Flow) (CORTADELLA, 2006) is a latency-

insensitive protocol. Its specification provides an abstract model for elastic channels

and buffers. Its main features are the efficient implementation of elastic

communication channels and an automatable design methodology enablement.

An elastic channel has three possible states: Transfer, Idle and Retry. The first

state occurs when both master and slave pieces of the system are able to

transmit/receive data. An Idle state happens when the sender is not providing valid

data to the receiver. When the master is generating valid data but the receiver is not

able to process it, the system is in Retry state.

An elastic buffer is divided in datapath and control. The datapath is where its

data storage elements are present, while the control logic determines the system

state based on its master/slave interfaces’ control signals.

The Elastic Buffers purpose is similar to the Relay Stations, with the

advantage of not inserting additional latency when replacing a synchronous

component of the original design. This is achieved through optimizations in the

Elastic Buffers organization. Several implementations of elastic buffers are possible.

The variations include, for instance, the use of registers or latches, storage capacity,

datapath and control organization optimizations and double-pumping, which ensures

two data moves within the same system clock cycle.

This work uses the W2R1 elastic buffer control and datapath definition, which

uses registers and a simple FSM controlling the system in its three possible states.

Figure 3 below shows the control and datapath specification for the chosen Elastic

Buffer organization.

15

Figure 3 – Specification for the W2R1 EB

Reference: Cortadella (2005).

The Latency-Insensitive Theory and the SELF maintain the simplicity of

synchronous circuits by applying design methodology changes on top of the existing

and well established synchronous design methodology and toolset turns these

approaches more attractive to the IC design community.

2.1 Advantages and Liabilities

The main advantage of the elastic paradigm is its communication latency

insensitivity. This provides robustness to the circuits, as the process and/or operating

conditions variations and its associated timing variation is managed by the latency-

insensitive protocol.

Since the latency-insensitive protocol makes computational processes

dependent on data validity, power optimizations can be performed making the

system active only upon the presence of data to be processed.

Beside the intrinsic advantages of the elastic designs, another positive

characteristic is that elasticity enables performance optimizations by applying

transformations like bubble insertion, variable-latency units, speculative and out-of-

order executions, as mentioned in (CORTADELLA, 2010). These correct-by-

construction transformations preserve the behavior of the circuit while boosting its

performance.

Among all the advantages mentioned, the “elasticization process” brings some

disadvantages as well. One of the main drawbacks is the additional latency that this

methodology inserts in communication channels when compared to traditional

synchronous circuits that have no buffers between computational processes. This

16

added latency is mainly perceived when the communication channel bandwidth

utilization is low. The optimization transformations previously mentioned also help

reducing the impacts of the increased latency.

Another important overhead of the elastic paradigm is the higher area inherent

to its control and storage logic (Elastic Buffers). If the original circuit's area and/or

complexity isn't high enough to justify the elastic infrastructure, the elasticization

process will probably not bring significant advantages.

2.2 Elasticization Process

The elasticization process targets at converting a traditional synchronous

design into an elastic one. This process involves turning the original design units into

latency-insensitive protocol compliant ones.

An Elastic Buffer (EB) is responsible for implementing the elastic protocol,

having storage units used to keep data when the following Patient Process is busy.

Different EB implementations are possible, like using registers and/or transparent

latches, as explained in (CORTADELLA, 2006). Regardless of the different

organizations, the basic structure of an Elastic Buffer is composed of a control and a

datapath, as shown in Figure 4 below.

Figure 4 – Elastic Buffer base structure

Reference: Cortadella (2005).

The elasticization process can be applied in different granularities, depending

on the design characteristics, target application and area budget. For SoC designs,

17

where the reuse of IP is a strong demand, Elastic Buffers can be inserted in between

the design’s black boxes, as long as these boxes are Patient Processes, as

explained in (CARLONI, 2002). Finer grain elastic circuits can be obtained by

replacing every register in the design by an EB, at the expense of highly increased

area, presented in (JACOBSON, 2002).

Depending on the number of channels communicating to one module, the fork

or join of data from different sources might be needed. This requires a special control

in the involved Elastic Buffers, because the target logic availability and the data sent

to/from it have to be synchronized across all involved modules/channels in the

communication. An example of join/fork Elastic Buffers can be seen in Figure 5, from

(CARMONA, 2009).

Figure 5 – Synchronous elastic module with multiple inputs and outputs.

Reference: Carmona (2009).

By having the ability to tolerate latency changes, the elastic systems enable

performance boost by making communication timing constraints more flexible and

making optimization techniques possible. This tolerance helps to reduce the

increased latency of the elastic protocol when the elastic channel bandwidth capacity

18

is not being fully used, for example. Some of the techniques, such as Recycling,

Early Evaluation, Anti-token Insertion, Variable-latency units and Speculative

Execution are presented in (CORTADELLA, 2010). For example, Variable Latency

units introduce the concept of logic module tuned for the most common case of its

computation, while adding latency to the least common case.

19

3 NEANDER PROCESSOR

The Neander processor is a hypothetic machine conceived for education

purposes. Since it is a simple machine, it facilitates the introduction of concepts such

as computer organization and architecture. In summary, the main characteristics of

the Neander processor are (WEBER, 2009):

 Addressing and data width of 8 bits

 Data represented in two complement

 One accumulator of 8 bits (AC)

 One program counter of 8 bits (PC)

 One state register with two condition codes: Negative (N) and Zero (Z)

The instruction set that the Neander implements is composed by data

movement (LDA, STA), arithmetic (ADD), logic (AND, OR, NOT) and branch (JMP,

JN, JZ) instructions, besides the HLT and NOP instructions that do not perform data

operations. Each instruction is coded in 4 bits, what defines the minimum size of the

Instruction Register (IR) that will hold the instructions read from memory.

The 8 bits addressing width allows the Neander to address a maximum of 256

positions. Since the processor works with 8 bits words, this gives a total amount of

256 bytes of addressable memory. The Neander addressing scheme is direct, so

every address used by a program is directly mapped to the position in the memory.

The memory address for the current state of the execution is held in the Memory

Address Register (MAR).

Some of the Neander instructions are followed by an extra byte that carries an

operand address (ADDR). This address can represent the memory position that

contains the data to be used in the current operation or be the actual memory

address to which the PC has to be pointed, as shown in the Table 1 below.

Table 1 – Neander processor instruction set

Instruction

code
Instruction Description

0000 NOP No operation.

0001 STA ADDR Stores the data of AC into MEM(addr).

0010 LDA ADDR Loads the data of MEM(addr) into AC.

20

Instruction

code
Instruction Description

0011 ADD ADDR
Sums the data of MEM(addr) with AC and

stores the result in AC.

0100 OR ADDR
Logic “OR” of the data of MEM(addr) with AC

and stores the result in AC.

0101 AND ADDR
Logic “AND” of the data of MEM(addr) with AC

and stores the result in AC.

0110 NOT
Inverts the data of AC and stores the result in

AC.

1000 JMP ADDR
Branches the execution to the addr position in

memory.

1001 JN ADDR
Branches the execution to the addr position in

memory if the NZ indicates a negative value.

1010 JZ ADDR
Branches the execution to the addr position in

memory if the NZ indicates a zero value.

1111 HLT Halts the processor execution.

Reference: Weber (2006).

For STA operations, the Neander uses a Memory Data Register (MDR) to

keep the data that will be stored in the memory address indicated by MAR. This

register completes the list of registers needed by the Neander’s datapath:

 AC – Accumulator

 IR – Instruction Register

 MAR – Memory Address Register

 MDR – Memory Data Register

 NZ – Negative / Zero condition codes

 PC – Program Counter

The Control unit is responsible for controlling the data flow in the Neander

datapath. The unit does this by arbitrating when each register needs to store the data

in its input, through the load_ control signals; by controlling the memory read and

write accesses; and by selecting if the MAR uses the PC or the operand address

(ADDR) read from memory to point to a determined memory position. All these

21

control actions are dependent on the instruction being executed and the execution

time of the instruction cycle, which will be explained below.

The Control unit is also responsible for selecting the appropriate operation to

be executed by the Arithmetic Logic Unit (ALU) based on the current instruction and

execution step. Along with the datapath, the control unit composes the Neander

organization, as shown in the Figure 6 below.

Figure 6 – Neander organization

Reference: Weber (2006).

Based on the data movements between the datapath elements defined by

each Neander instruction, the Control unit can be represented by an FSM with eight

states, as shown in Figure 7 below. Each state represents one execution step and

the control actions performed in each state are instruction dependent, as well as the

transitions. For simplicity, the conditions for each transition and the control actions of

each state are omitted. The only conditions shown are the ones that make the

execution flow go back to state 0 or halt the processor.

22

Figure 7 – Neander control unit FSM

An instruction cycle is the group of data movements and control actions that

compose an instruction execution steps. In the Neander architecture, this instruction

cycle is divided in two phases: instruction fetch phase and execution phase.

The instruction fetch phase is the first phase of an instruction cycle and does

not depend on the instruction being executed. In fact, the instruction that will be

executed subsequently is fetched from memory in this phase, as shown in Figure 8

below. From state 0 to state 2, the control unit accesses the memory to fetch the

instruction to be stored into IR and increments the PC to point to the instruction’s

operand address or the next instruction.

After the instruction is fetched from memory, the Neander processor goes to

the next phase of the instruction cycle, the execution phase. Depending on the

instruction to be executed, this phase’s actions can take from 1 (i.e.: NOP) to 5 (i.e.:

STA) execution steps.

23

Figure 8 – Neander instruction fetch phase

As an example, Neander can execute a simple program that sums the values

of three subsequent memory positions (WEBER, 2009). The program’s instruction

section goes from positions 0 to 127 of the memory and the data section goes from

position 128 to 255.

The program will sum the data in the positions 128, 129 and 130, and finally

will store the result in the position 131. The initial state of the memory is shown in the

Figure 9 below. The memory data, addresses and the instructions operands are

represented in hexadecimal base.

Excluding the instruction fetch phases, the program execution is represented

in the Figure 10, along with the memory state at the end of the program execution.

Note that the control unit has issued one load_ir pulse for each instruction executed.

24

Figure 9 – Sum program

Figure 10 – Sum program execution

The LDA instruction moves the data from MEM(0x80) to the AC. This

instruction’s execution phase takes until state 7 and requires two memory read

accesses: one for reading the operand’s address and another for reading the

operand’s data in the position indicated by the operand’s address (in this case,

position 0x80).

25

The ADD instructions make the ALU sum the data currently in the AC with the

operand’s data indicated in the instruction (in this case, position 0x81 and,

subsequently, position 0x82). This instruction also requires the same two memory

read accesses as the LDA instruction.

Finally, the STA instruction moves the data from AC to MEM(0x83). This

instruction requires one memory read access, for reading the operand address, and

one memory write access, for storing the data. After the STA instruction, the Neander

processor is halted by the HLT instruction.

By using the base concepts of computer organization and architecture, the

Neander processor serves as a great platform for organizational concepts

exploration, such as the application of the latency-insensitive design methodology on

top of the regular synchronous design.

26

4 ELASTIC NEANDER IN FPGA

The main purpose of this work is to exercise the elastic design methodology

(SELF), converting an existing system into an elastic one, which is capable of dealing

with latency variations without having its functionality compromised. Both the original

and the converted systems are evaluated in a FPGA platform to demonstrate that the

proposed methodology does not interfere with the original system’s functionality and

to enable the performance and area evaluation after the design and synthesis flows.

The elastic design methodology enables circuit designs to be more robust to

process and environment variations by implementing an abstract latency-insensitive

protocol between all computational processes in the system. This characteristic

makes the data flow in the design not fully dependent on one clock cycle period,

since a Patient Process that is receiving data only starts computation upon the

presence of valid data on its input channel, leaving the stall caused by the protocol.

Each Patient Process in the system has at least two elastic inferfaces: the ms_

interface and the sl_ interface. The ms_ signals compose the interface with the

process generating the data (process A in Figure 11) that will be consumed by the

current process (process B in Figure 11). The sl_ signals interface the current

process (process B in Figure 11) with the next process in the data flow (process C in

Figure 11), which consumes data from the current process.

Figure 11 – Patient Process interfaces

The Figure 12 below shows a Patient Process in its stalled period (shaded in

red), when there is no valid data to be consumed. The blue shaded area shows its

executing period, from valid input data arrival to a valid data output.

27

Figure 12 – Patient Process B stall and execution periods

The SELF protocol also defines that a process is stalled when the consuming

process (i.e.: process B in Figure 11) is not able to receive new data, signaling this

condition to the source process (i.e.: process A in Figure 11) through the stop signal,

as shown in Figure 13 below. This event is called backpressure, and is another key

characteristic that enables the latency-insensitivity in elastic systems.

Figure 13 – Patient Process A stall and execution periods

By implementing the characteristics presented above, the application of the

elastic design methodology in an existing system breaks the dependence on a rigid

amount of clock cycles between the system’s processes. For instance, a data

transfer can take N amount of clock cycles in a determined process technology and

N*2 in another process technology, and the elastic system will still work correctly,

being latency-equivalent to the original synchronous circuit.

28

Having simple organization and architecture, the Neander processor is a good

candidate for testing the elastic design methodology to convert a strict synchronous

system (CARLONI, 2001) into an Elastic one. The components in its organization

enable the application of Elastic concepts like conversion of Stallable Processes into

Patient Processes and the insertion of EBs in a timing critical communication

channel, to segment the delay and support timing-closure.

The FPGA platform is used in this work as an evaluation environment tool to

prove that, after the elasticization process, the Neander design can still normally

perform its functions in a real device. A simple demonstration is built in the Terasic

DE-0 Cyclone III evaluation board, to observe the functional behavior of the Neander

processor across synchronous and elastic designs.

Other important aspect of the use of the FPGA platform in this work is to

benchmark how these devices perform when implementing new architectural design

approaches such as the elastic design methodology.

The full flow of this project is represented in Figure 14 below, which shows an

overview of the necessary steps for the completion of the Elastic Neander, starting

from a synchronous Neander implementation until its demonstration on the FPGA

development board:

 Design Neander – Implementation of a synchronous Neander design.

 Identify Stallable Processes – Identification of Neander Computational

Processes that can be stalled.

 Identify Data Flows – Identification of data movement paths in the

Neander design.

 Elastic Neander – Overall Elastic Neander organization.

 Evaluate EB organizations – Evaluation and definition of an adequate

Elastic Buffer organization.

 Design EB – Implementation of the chosen EB organization.

 Design Patient Control Unit – Adapt Neander control unit to be a Patient

Process.

 Design Patient Memory – Adapt Memory module to be a Patient Process.

 Functional Verification – Verification of the design’s functionality in

simulation environment.

 Design FPGA demo – Integration of the demonstration required modules.

29

 Design Synthesis – Synthesis of the design to the target FPGA device.

 Timing Analysis – Timing closure analysis of the synthesized circuit.

Figure 14 – Elastic Neander Project phases

30

5 ELASTIC NEANDER PROJECT

This section describes the sequence of steps performed to design, verify and

validate the Elastic Neander design, starting from the Synchronous Neander

implementation. After presenting the design steps, a comparison between the original

Neander and the Elastic Neander circuits is done.

The design units are coded in RTL level Verilog, using the Altera Quartus 13.1

suite as the Logic and Physical synthesis tools, and the Mentor Graphics ModelSim

Altera 10.1d as the simulation tool.

5.1 Neander Design

The Neander design is based on the specification from (WEBER, 2009), which

is briefly explained in section 3. This design is a strict synchronous system, meaning

that the data transfers between the Computational Processes in the system are

purely dependent on the system clock period, being specified as a multiple of the

clock cycles.

 This design is composed by registers as the storage elements of the datapath,

a control unit and combinational elements:

 5 registers (AC, IR, MAR, MDR, and NZ)

 1 special register with integrated counter (PC)

 1 ALU

 1 Control unit

 1 Multiplexer for selecting MAR input

The PC is implemented as a regular register with the addition of an integrated

counter, as shown in the Figure 15 below. The PC has two control inputs: Load and

Incr, used to load the output register either with the data in its input or with the

counter value, respectively.

31

Figure 15 – Neander Program Counter

The ALU is a purely combinational logic module that is responsible for

executing the following operations with its X and Y inputs of 1 byte each and for

generating the N and Z condition codes, stored in the NZ register:

 ADD – Adds the X and Y inputs

 AND – Logic AND between X and Y bits

 NOT – Inverts all X bits

 OR – Logic OR between X and Y bits

 Y – Outputs the Y input

The Control unit is the responsible for controlling the data flow between the

Neander datapath registers, selecting the ALU operation and operating the Memory.

The control signals depend both on the execution state and the instruction, as

specified in the Table 2 and Table 3 below, where sel is the selection for the MUX in

the MAR input, ld is a load signal to the registers, incr is the PC increment sgnal and

rd/wr are the memory control signals.

32

Table 2 – Control signals during STA, LDA, ADD, OR, AND and NOT

Execution

State
STA LDA ADD OR AND NOT

st0 sel=0,

ld MAR

sel=0,

ld MAR

sel=0,

ld MAR

sel=0,

ld MAR

sel=0,

ld MAR

sel=0,

ld MAR

st1 rd,

incr PC

rd,

incr PC

rd,

incr PC

rd,

incr PC

rd,

incr PC

rd,

incr PC

st2 ld IR ld IR ld IR ld IR ld IR ld IR

st3 sel=0,

ld MAR

sel=0,

ld MAR

sel=0,

ld MAR

sel=0,

ld MAR

sel=0,

ld MAR

UAL(NOT),

ld AC,

ld NZ,

goto st0

st4 rd,

incr PC

rd,

incr PC

rd,

incr PC

rd,

incr PC

rd,

incr PC

st5 sel=1,

ld MAR

sel=1,

ld MAR

sel=1,

ld MAR

sel=1,

ld MAR

sel=1,

ld MAR

st6 ld MDR rd rd rd rd

st7 wr,

goto st0

UAL(Y),

ld AC,

ld NZ,

goto st0

UAL(ADD),

ld AC,

ld NZ,

goto st0

UAL(OR),

ld AC,

ld NZ,

goto st0

UAL(AND),

ld AC,

ld NZ,

goto st0

Reference: Weber (2006).

Table 3 – Control signals during JMP, JN, JZ, NOP and HLT

Exec

State
JMP JN, N=1 JN, N=0 JZ, Z=1 JZ, Z=0 NOP HLT

st0 sel=0,

ld MAR

sel=0,

ld MAR

sel=0,

ld MAR

sel=0,

ld MAR

sel=0,

ld MAR

sel=0,

ld MAR

sel=0,

ld MAR

st1 rd,

incr PC

rd,

incr PC

rd,

incr PC

rd,

incr PC

rd,

incr PC

rd,

incr PC

rd,

incr PC

33

Exec

State
JMP JN, N=1 JN, N=0 JZ, Z=1 JZ, Z=0 NOP HLT

st2 ld IR ld IR ld IR ld IR ld IR ld IR ld IR

st3 sel=0,

ld MAR

sel=0,

ld MAR

incr PC,

goto st0

sel=0,

ld MAR

incr PC,

goto st0

goto st0 halt

st4 rd rd rd

st5 ld PC,

goto st0

ld PC,

goto st0

 ld PC,

goto st0

st6

st7

Reference: Weber (2006).

5.2 Stallable Processes

The first step towards converting the Synchronous Neander into the Elastic

Neander is to identify the stallable Computational Processes in the processor’s

organization, to enable the implementation of a latency-insensitive protocol.

The Control unit, being an FSM, is stallable upon the inclusion of extra control

signals to prevent its next state logic from moving to a next execution state if the

register that will receive data in is not ready to do so, for example. This leads to the

definition that the Neander registers should also be able to be stalled, achieving a

finer granularity Elastic circuit (CORTADELLA, 2006).

Being clock driven storage elements, the registers in the Neander organization

are also Stallable Processes, since they can have its clock input gated and

dependent on a control signal to store new data (CARLONI, 2001).

As the main storage element in the Neander system, the memory should also

be possible to stall, otherwise the Control unit would lose data read from memory.

Since the 256 bytes memory is a passive storage element activated by rd and wr

signals managed by the Control unit and synchronously driven by the system clock, it

is also a Stallable Process.

Some parts of the Neander organization are purely combinational pieces: the

MUX in MAR’s input; and the ALU. Initially, this work will consider the delay added by

34

those parts of the system as negligible, but there are techniques to better map this

type of Computational Processes’ delay, as presented in section 6.

5.3 Data flows

To identify the elastic protocol interfaces needed and how they relate with

each other, the Neander data flows had to be analyzed. The data flows are the

possible paths through which data can travel in the Neander organization. In this

particular design the data flow is variable, since a different destination is possible for

each data read from memory, depending on the instruction and execution state.

A data flow identifies a backpressure path. In the Figure 16 below, the

backpressure emitted by the memory data interface in a write event is highlighted.

The arrows in the beginning and end of the data flow indicate the backpressure

direction. Hence, the parts of the design that are affected by this backpressure path

are: MDR -> AC -> MEM.

Figure 16 – Memory data write backpressure

Since AC’s inability to receive new data does not necessarily mean that the IR,

for instance, cannot receive new data from the memory, this backpressure path is

actually dependent on the execution state. Hence, the Control unit is the responsible

35

for receiving all the elastic protocol signals and managing which backpressure signal

demands a stall of the processor’s execution at each execution state.

5.4 Elastic Neander

Having identified the Stallable Processes and the possible data flows that the

Control unit has to consider to stall the processor execution, the Elastic Neander

interconnections between the system’s Patient Processes can be defined as in the

Figure 17 below.

The Neander registers are replaced by Elastic Buffers, which are storage

elements capable of supporting latency variations by implementing the elastic

protocol.

The memory of the Elastic Neander also implements the elastic protocol in

three interfaces, as listed below.

 addr_ – Address interface, used when Neander reads from or writes data

into memory. The memory is the Slave of this interface.

 data_in_ – Data input interface, used when Neander writes data into

memory. The memory is the Slave of this interface.

 data_out – Data output interface, used when Neander reads data from

memory. The memory is the Master of this interface.

Since the data flows depend on the Neander execution state, the Control unit

implements several elastic interfaces, with all the registers (EBs) and with the

memory. All the elastic protocol control inputs to the EBs and Memory are generated

by the Control unit.

By receiving all the EBs and Memory stop_out signals, the Control unit has

visibility of all possible backpressures in the system and is able to stall the execution

if needed.

36

Figure 17 – Elastic Neander

37

Moreover, the Control unit receives all the valid_out signals from the other

Patient Processes in the system. This allows the unit to continue the execution flow

upon the presence of valid data from the process that generates data that will be

consumed in the next execution state, for instance when the IR outputs data that will

be used by the own Control unit in the execution phase.

In the Neander design, the data read from the memory is consumed by

several processes, what could characterize a fork in the elastic protocol

(CORTADELLA, 2006). However, this type of control is applicable when all the

consuming processes use the data from the source process at the same time, what

is not the case in the Neander processor. Hence, the control is the responsible for

identifying which process consumes data from memory at each execution state and

operate the elastic protocol accordingly.

5.5 Elastic Buffer organizations

An elastic buffer’s base organization is divided in a datapath – in which the

data in the elastic channels is stored and output from the buffer – and a control part –

which is responsible for controlling the data flow in the datapath storage elements

and also implementing the master and the slave elastic interfaces of the buffer, as

shown in Figure 4, in section 2.

As described in (CORTADELLA, 2006), the minimum depth of an elastic buffer

is the sum of the forward latency and the backward latency in clock cycles. In this

work, targeting the minimal latency possible added by the elastic buffers, both

forward and backward latencies are equal to 1. This definition implies in the minimum

buffer depth of 2 storage positions.

An elastic buffer can have different datapath organizations, what requires

different control logic. Considering that the depth of the elastic buffers used in this

work is equal to 2, the datapath organizations shown in Figure 18 were analyzed,

where W stands for the number of write ports, while R stands for the number of read

ports.

Since the forward and backward latencies are equal to 1, the W1R1 elastic

buffer cannot be implemented using regular flip flops in a same frequency clock

edge, what would result in a latency of 2. Hence, this implementation requires the

38

use of techniques to enable the propagation latency to be equal to 1, such as making

each flop active to different clock edges, using double frequency clock on the right-

hand flop or replacing the flops with transparent latches of different polarity.

Figure 18 – Elastic buffer datapath organizations

Reference: Cortadella (2005).

The options W2R2 and W1R2 do not have to overcome this W1R1

characteristic, but make both flops active at all times, what leads to higher toggle

rates. Considering the best balance between implementation simplicity and

performance and also EB power consumption, this work makes use of the W2R1

option. This organization leaves the flop next to the master elastic interface as a

backup to the slave elastic interface flop, only activating the left-hand side flop when

there is backpressure coming from the slave interface.

5.6 Elastic Buffer design

Having defined the W2R1 organization as the elastic buffer datapath, the

correspondent elastic buffer control module is implemented. The datapath consists in

2 registers and a MUX to select the input of the slave side register depending on the

state of the EB’s control logic (EMPTY, HALF or FULL). The control coordinates the

storage elements in the datapath and implements the master and slave elastic

interfaces of the elastic buffer, as shown in Figure 19 below.

The W2R1 control specification defines enable signals to the registers in the

datapath. These enable signals could be used directly in the registers’ clock enable

port, if available. However, to enable portability between different tools and

39

components libraries, the Elastic Buffer used in the Elastic Neander is implemented

with pulse generators, that bypass the system clock in the presence of an enable

input.

Figure 19 – Elastic Buffer design

5.7 Patient Memory

As well as the registers are replaced by equivalent elastic elements, the main

storage piece of the Neander organization is also turned into a Patient Process, the

Patient Memory, that is composed of three elastic interfaces, as shown in Figure 20

below: ADDR, DATA_IN and DATA_OUT.

Figure 20 – Patient memory elastic interfaces

40

The ADDR elastic interface is used by the Neander on both read and write

requests to memory. Hence, this interface shall accept valid addresses if the memory

is available to perform a read or a write operation. The ADDR is a slave elastic

interface since it receives data (address) from a master, in this case, MAR.

During memory write operations, the DATA_IN interface is used after a valid

address has been provided to the memory. The data input is a slave interface that

can generate a backpressure to the Neander organization while the memory is not

able to receive a data write.

In read operations, after issuing a valid data in the ADDR interface, the Control

Unit uses the DATA_OUT interface to get the data from memory. The latter is a

master interface, since it outputs data to be consumed by another elastic interface.

Hence, the DATA_OUT can receive backpressure from the other elements in the

Neander organization.

To implement the elastic interfaces and be a Patient Process, the memory

needs to be stallable. Therefore, the DATA_OUT interface must keep its state upon

the presence of backpressure coming from the Neander elements.

The backpressure received in the DATA_OUT interface is propagated to the

ADDR interface, which becomes unable to receive new valid addresses since the

previous address read is still pending by the Neander, as shown in the Figure 21

below.

Figure 21 – Patient memory elastic interfaces

41

The 1st read is concluded normally, with the ADDR interface receiving a valid

data and this generating a valid data on the DATA_OUT elastic interface. When the

data from the 2nd valid read address is read to be output, a backpressure is present

on the DATA_OUT interface, what causes the memory to keep the output data until it

can be consumed by the Neander datapath. This backpressure is propagated to the

ADDR interface, which becomes unable to receive addr3 as a valid data. After the

backpressure is off, the 2nd read is concluded and the 3rd read is performed, with the

acceptance of addr3 as a valid data, followed by the output of data3.

By implementing the elastic protocol, the Patient Memory can have variable

latency and maintain the system latency-equivalent behavior. This characteristic is a

key advantage when changing the core memory block in technology process

exchanges. Hence, an IP with 1-cycle latency can be replaced by a 2-cycle memory

Intellectual Property (IP) block without redesign on other parts of the system.

5.8 Patient Control Unit

As the central control unit of the microprocessor design, the Neander Control

unit is the responsible for coordinating the data flow among the datapath registers,

ensuring that the right data is moved to the right units in the right time to complete an

instruction cycle.

Since the data related units implement the elastic protocol in the Elastic

Neander, the Control unit needs to be modified to be compatible with the elastic

behavior of the data. With the Elastic Buffers replacing the synchronous registers and

with the memory implementing the elastic protocol, the Elastic Neander control unit

implements an elastic interface with each of the datapath components: AC, IR, MAR,

MDR, NZ, PC and MEM. In the Control perspective, the input elastic signals are

correspondent to the EB’s outputs and the Control’s output elastic signals correspond

to the EB’s inputs, as exemplified in Figure 22 below.

To make the Elastic Neander Control Unit a Patient Process, the FSM has to

maintain the current state in case of a stall caused by the elastic protocol. Hence, the

transitions between states of the Patient Control Unit (PCTRL) have to be sensitive to

the datapath elastic signals relevant to the instruction being executed.

42

Figure 22 – IR<->Control elastic interfaces

In summary, the Patient Control Unit’s FSM was defined based on the

following general rules for each state and instruction, considering the previous and

the current datapath elements’ state:

1- Registers’ load input is replaced by the correspondent EB’s valid input;

2- Elastic signals from a previous datapath element are connected to the

current datapath element;

3- Transitions to a next state wait until the current datapath element is ready

to receive data (current state’s EB stop = 0);

4- Transitions to a next state wait until the previous datapath element data is

ready (previous state’s EB valid = 1);

As an example, Figure 23 shows the dataflow in ST0, when MAR receives a

valid data as the address of the next position to read from memory. Since the data

that the address register stores in ST0 comes from PC, which has been loaded in a

previous instruction cycle, the PCTRL connects the elastic control signals of the

involved EBs. To keep the program counter’s data output unchanged until MAR

consumes it, PC’s stop is kept asserted until ST0.

43

Figure 23 – Elastic Neander dataflow in ST0

Since the instruction fetch phase is the same for all the instructions of the

Neander architecture, the Figure 24 below shows the transitions of the FSM from

ST0 to ST2 in any instruction cycle.

Figure 24 – Instruction fetch phase FSM

During ST0, the MAR EB receives a valid data provided by the PC EB

(MAR_valid_out = PC_valid_in / sel = 0). Since the data being output by PC is ready

44

to be consumed by MAR, the stop signal of the PC slave interface is deasserted. The

transition to from ST0 to ST1 is sensitive to the MAR’s stop output and the PC’s valid

output. By considering these two signals as transition condition, the Control Unit

ensures that in ST1 all the data needed to that state’s computation is ready.

In ST1, the Control Unit deasserts PC’s stop input, since the incremented PC

output will be used in a next instruction cycle time. Also in ST1, the MEM address

interface receives a valid data, the address of the data to be read from memory. As

the IR will receive the data read from memory in ST2, the FSM connects the IR stop

output with the MEM data read interface stop input, to avoid reading a data that the

IR will not be able to receive. The transition from ST1 to ST2 is conditioned to the

state of MEM’s address stop output signal, which indicates the hability of the memory

to receive a new address and read/write data from/to it. Also, the MAR’s valid output

and PC’s stop input are considered to guarantee that the FSM leaves ST1 with all

data needed to the next states ready.

The ST2 is the state where the IR is loaded with the instruction read from the

memory, so the IR valid input is connected to the MEM data valid output. Hence, the

FSM will only transition from ST2 to ST3 when IR has received and propagated a

valid data to its output. The presence of a valid data in IR’s output is crucial, since

starting from ST3 the FSM is in instruction execution phase.

Starting from ST3, the FSM executes the instruction fetch from memory in the

previous phase, from ST0 to ST2. Since the execution phase is dependent on the

instruction, from Figure 25 to Figure 33 below shows each FSM’s state outputs and

transition conditions considering the current instruction.

Figure 25 – FSM outputs and transitions from ST3 - STA, LDA, ADD, OR, AND, JMP,
JN (n=1), JZ (z=1)

45

Figure 26 – FSM outputs and transitions from ST3 - JN (n=0), JZ (z=0)

Figure 27 – FSM outputs and transitions from ST3 - NOT

Figure 28 – FSM outputs and transitions from ST4 - STA, LDA, ADD, OR, AND

46

Figure 29 – FSM outputs and transitions from ST4 - JMP, JN (n=1), JZ (z=1)

Figure 30 – FSM outputs and transitions from ST5 - STA, LDA, ADD, OR, AND

Figure 31 – FSM outputs and transitions from ST5 - JMP, JN (n=1), JZ (z=1)

47

Figure 32 – FSM outputs and transitions from ST6 – STA

Figure 33 – FSM outputs and transitions from ST6 - LDA, ADD, OR, AND

In the new organization, the FSM can stay in a state for several cycles until the

elastic channels involved in the dataflow indicate that all involved datapath elements

are ready for the next state. Since the PC value should be incremented only once per

Control increment command, the PC_incr_out signal is high during only one clock

cycle where PC is able to receive data. Similarly, since the AC input is connected to

its output after the ALU operation, the AC_load_out signal is high during only one

clock cycle where AC is able to receive data. Otherwise, the PCTRL would corrupt

the execution flow by pointing to a wrong memory address or performing multiple

operations in the same data instead of only one.

The resulting FSM is robust to the insertion of EBs in any of the Elastic

Neander’s elastic channels, giving that the elastic signals on the last storage stage in

the channel are connected to the PCTRL as the elastic signals for a given channel.

As an example, an EB could be inserted between MAR and the MEM and the FSM

48

would still behave correctly if the EB output elastic control signals were connected to

the PCTRL instead of MAR’s output elastic control signals.

States ST2, ST6 and ST7 take at least 2 clock cycles, given that the FSM

waits until that the data being input in the current datapath element are output by this

same element and can be used in the next state. This restriction applies to these

states because there is a strong dependence by the FSM on the current states data.

For instance, in ST3 the PCTRL uses the IR output data to perform the execution

phase of the instruction cycle, hence the instruction needs to be valid in the Control’s

input.

5.9 Functional Verification

The functional behavior of the Synchronous and Elastic Neander designs was

tested using the ModelSim Altera v10.1d simulation tool. A simple test environment –

comprised of a Verilog testbench, a simulation tool compilation script and a memory

initialization file – was built.

The Neander testbench consists in a stimulus generation entity that exercises

the Neander Design Under Test (DUT) by generating clock and reset signals.

Since the Neander execution relies on the data stored in the Memory, the

memory initialization file contains the image that represents the test program that the

DUT will execute.

The Counter Program shown in Figure 34 was defined to test the Neander

designs functionalities. This program reads the memory position 128 (0x80), adds the

increment defined in memory position 129 (0x81) and stores the result back in

position 128. The JMP instruction makes the program restart its execution after

completing the addition cycle. Hence, the Counter Program executes in a loop until

there is clock being fed to the DUT.

49

Figure 34 – Counter Program

Since the memory design target is an Altera Cyclone III FPGA, which has M9K

type embedded memory blocks, the simulation libraries for such device components

needed to be loaded in the simulation.

The Neander design’s memory is implemented using a single port M9K Altera

memory block, which has 2 clock cycles of delay between receiving an address and

outputting the corresponding data.

Given the target memory 2 cycles read latency characteristic, the

Synchronous Neander design had to be slightly modified to accommodate this

behavior. Hence, the FSM needs to wait 2 cycles on memory reading states before

continuing execution.

Since the Elastic FSM is designed to tolerate variable latencies, no changes

were needed regardless of the memory delay.

After running the simulation, the correctness of the program execution was

performed by analyzing the waveform signals, which show that the Neander designs’

FSMs behavior is correct according the definition on section 3. Also, the Modelsim

memory contents inspection tool shows that the value in the memory position 128

was incremented, as expected.

The latency equivalence principle can be observed when comparing the

Synchronous and the Elastic Neander waveforms, as shown in Figure 35 below.

Hence, despite the added delay of the Elastic protocol, both Neander designs have

50

the same behavior, confirming that the Elasticization process did not modify the

system functionality.

Figure 35 – Latency equivalent behavior of Neander designs

5.10 FPGA demo

The demonstration platform used to validate the designs’ behavior,

performance and area characteristics is the Terasic DE-0 Cyclone III evaluation

board. This platform has the input and output devices necessary to make the design

run on a real device. The board features used in the demo are:

 50 MHz differential clock

 Slide switches

 Seven segment displays

 LEDs

The demonstration purpose is to show the Neander execution flow on the

FPGA. Therefore, the seven segment displays were used to present key Neander’s

organization components data during the Counter Program execution, as shown in

the Figure 36 below.

51

Figure 36 – Neander designs demonstration platform

The PC value displayed is incremented as the Neander goes through the

counter loop, while the IR value displays the current instruction being executed. The

MDR data shows the current counter value being stored in 128 memory position. All

the register values are displayed in hexadecimal base. A simple binary to seven

segment converter was implemented to drive the DE0 displays properly.

To make the demonstration observable, a clock divider was implemented to

generate a 2Hz clock based on the board’s 50MHz clock. This slow clock drives the

Neander components, making its results be displayed for at least 0.5 seconds.

5.11 Design Synthesis

Having verified the Neander designs’ functionality and defined the demo

components, the Quartus II v13.1 tool was used to synthesize the whole design,

mapping its modules to the DE0 board components.

The Quartus II Pin Assignment tool was used to map the designs’ components

inputs and outputs to the Cyclone III FPGA’s pins, following the definition for each

board’s component on the DE0 user manual (TERASIC, 2011).

52

The synthesis flow configurations used were the tool’s defaults. The defaults

include optimizations to the design, such as FSM states auto encoding, register

packing and automatic gated clock conversion, which allows the tool to map clock

gating logic – part of the Elastic design – to clock enable inputs of the FPGA

registers.

A main synthesis directive used is the Timing-Driven Synthesis, which makes

the Quartus II tool take design timing constraints into account to generate the most

optimized version of the design. This configuration depends on a Synopsys Design

Constraint (SDC) file with the proper commands to identify the design’s timing

requirements, as shown in Table 4 below.

Table 4 – SDC commands used in Neander designs synthesis

Design Constraint Description

create_clock Specify the clock used by the system, in terms

of frequency and design’s port assigned as clock

input.

derive_pll_clocks Automatically constrain PLL and other

generated clocks.

derive_clock_uncertainty Automatically calculate clock uncertainty to jitter

and other effects.

set_input_delay Constrain the input I/O path based on the board

characteristics.

set_false_path -to [all_outputs] Ignore the timing of clock to output paths due to

low frequency characteristic of the seven

segment displays.

The SDC file defined is used by Quartus II on the Analysis & Synthesis to

perform a timing driven netlist generation; on the Fitter (Place & Route) to enforce

placement and routing that meet the timing constraints; and lastly on the TimeQuest

Timing Analysis step, to verify the generated post-synthesis design timing behavior.

53

5.12 Timing Analysis

The designs’ timing analysis was performed using the TimeQuest Timing

Analyzer tool of Quartus II. This tool analyzes the timing characteristics of the post-

synthesis design using the same SDC as the prior synthesis steps, which defines the

system’s clock period as 7,5ns.

Using three different operating condition models the TimeQuest performs a

multi-corner timing analysis. The operating conditions differ from each other in terms

of voltage, process, and temperature, aiding the tool to determine the timing behavior

of the design under such conditions.

For the Synchronous and Elastic Neander analysis, the TimeQuest report’s

main results evaluated were the Setup and Hold slacks and maximum achievable

frequency (Fmax) on each operating condition, as shown in Table 5 below.

Table 5 – Neander designs timing results evaluated

Evaluated result
Operating

Condition Model

Synchronous

Neander

Elastic

Neander

Worst setup slack

Slow 1200mV 85C 1,924 ns 1,048

Slow 1200mV 0C 2,148 ns 1,657

Fast 1200mV 0C 2,749 ns 2,506

Worst hold slack

Slow 1200mV 85C 0,280 ns 0,320

Slow 1200mV 0C 0,281 ns 0,309

Fast 1200mV 0C 0,134 ns 0,153

Fmax

Slow 1200mV 85C 179,34 MHz 154,99 MHz

Slow 1200mV 0C 186,85 MHz 171,14 MHz

Fast 1200mV 0C 210,48 MHz 200,24 MHz

54

6 RESULTS ANALYSIS

Both Synchronous and Elastic Neander designs have the same functionality,

as demonstrated in section 5.9 with the designs functional verification step of the

design flow. However, due to the organization differences, each system differs from

each other in several aspects, like data computation latency, circuit timing and area.

By making the Elastic Neander’s FSM a patient process, sensitive to the

elastic protocol, this version of the system has added latency when compared to the

synchronous version. As an example, Figure 37 below shows a comparison between

Elastic and Synchronous Neander execution time for the LDA or ADD (a), STA (b)

and JMP (c) instructions.

Figure 37 - Synchronous vs Elastic instruction execution time

The Elastic FSM takes more clock cycles to execute the Neander architecture

instructions when compared to the Synchronous system, as exemplified in the Table

6 below. This added latency can be even higher if the elastic channels get stalled.

55

Table 6 – Clock cycles per instruction execution

Execution time per instruction

(clock cycles)

Design STA LDA ADD JMP

Synchronous 10 11 11 8

Elastic 11 14 14 9

Since a Counter Program can be implemented as a LDA, ADD, STA and JMP

instructions sequence loop, the total run time of this program is determined by the

sum of each instruction execution time. Hence, the Synchronous organization takes

40 clock cycles to increment the counter by 1, while the Elastic organization takes 48

clock cycles to do the same. Therefore, the added delay of the Elastic organization is

8 clock cycles per unitary increment of the Counter Program.

When counting from 0 to 255, the Elastic Neander takes 12.240 clock cycles

to complete execution, while the Synchronous Neander takes 10.200 clock cycles.

By analyzing the 2.040 clock cycles difference between the organizations, it is noted

that on higher run times, the Elastic organization added latency is more evident.

To enable to analysis of the latency difference on higher run times, an auxiliary

20 bits counter was added in the Neander test bench. This extra counter measures

the amount of clock cycles that the 8 bits Neander takes to count until 2^20

(20’hFFFFF). The comparison with the counter until 255 (8’hFF) can be seen in the

Table 7 and Chart 1 below.

Table 7 – 8 bits counter vs 20 bits counter run time

Stop condition Design Clock cycles Difference

8’hFF
Synchronous 10200

2040
Elastic 12240

20’hFFFFF
Synchronous 41943000

8388600
Elastic 50331600

56

Chart 1 – Run time difference increase with higher run times

After going through the synthesis process described in section 5.11, where

both Synchronous and Elastic 8bits Neander were subject to the same timing

constraints and synthesis tool configuration, the area and timing results are as shown

in Table 8 and Table 9 below.

The Area results are specified by the amount of FPGA logic and FFs (Flip

Flops) used to implement each design. Due to optimizations done by the synthesis

tool, like automatic FSM codification, the resulting number of FFs is not the same as

the one originally specified in the design.

Table 8 - 8bits Synchronous and Elastic Neander Area results

 Area

Design FPGA % FFs

Synchronous 0,82 42

Elastic 2 75

As expected, the Elastic Neander area is higher than the Synchronous

Neander’s. This is explained by the additional storage elements and control logic of

the Elastic Buffers that have replaced the simple registers of the Synchronous

design.

The Timing results are composed of the worst Setup and Hold slacks of each

circuit version, what impacts the maximum achievable frequency (Fmax) determined

by the tool to each design.

57

Table 9 - 8bits Synchronous and Elastic Neander Timing results

 Timing

Design
Setup

slack

Hold

slack

Fmax

(MHz)

Synchronous 1,92 ns 0,28 ns 179,34

Elastic 1,04 ns 0,32 ns 154,99

Since the 8 bits Neander is a simple design, the additional logic of the Elastic

version did not represent a performance advantage over the Synchronous system.

This is due to the increased placing and routing complexity of the Elastic design,

what makes the synthesis tool achieve worse timing results.

Given the Fmax of each circuit, the time to count until 20’hFFFFF can be

calculated as the multiplication of the clock period by the amount of clock cycles

taken to complete the task. Hence, the time taken to run (Trun) in ns is shown in

Table 10 below.

Table 10 - 8bits Synchronous and Elastic Neander Trun(ns) comparison

Stop condition Design Trun (ns) Difference (ns)

20’hFFFFF
Synchronous 233.874,15

90.866,73
Elastic 324.740,88

In accordance to the performance difference of the two designs, the Elastic

Neander presents a higher run time when compared to the Synchronous counterpart.

This Trun disadvantage reinforces that turning simple synchronous circuits into

elastic ones does not necessarily means performance improvements. Hence, the

area overhead imposed by the elasticization process becomes does not bring

significant advantages in such cases.

However, the elastic behavior of a circuit can be an advantage when critical

computation paths start to increase the clock to clock transfers required times,

lowering the Fmax achievable by a circuit. To demonstrate this property, the Neander

datapath was slightly modified to support higher data widths. By making the Memory

58

word size, the AC, the MDR and the ALU data widths configurable, it was possible to

create 64 bits and 128 bits versions of the Neander.

The 64 bits Synchronous Neander synthesis process determines that the

design’s critical paths are the ones going through the ALU, resulting in a Fmax of

124,44 MHz – a drop of around 55 MHz compared to the 8bits version. The 64 bits

Elastic Neander had a reported Fmax of 115.02 MHz – a drop of around 40 MHz.

These results are expected, due to the increased logic and arithmetic complexity of

64bits operations when compared to 8bits operations.

Since the Elastic Neander is tolerant to variable latencies on the computational

processes composing the system (CORTADELLA, 2006), the ALU operations in the

Elastic version of the design can take more than one clock cycle without impacting

the processor’s execution flow.

Therefore, the ALU needs to implement the elastic protocol to make its latency

accountable by the other patient processes in the system. This is done by mapping

the ALU delay behavior with a Delay Model, which influences the variable latency

unit – in this case the ALU – elastic control. This control implements the elastic

protocol as a result of the Delay Model signals and the elastic signals themselves.

The Figure 38 below shows the Elastic ALU in the Elastic Neander organization. The

ALU elastic interface follows the same principle of the other elastic interfaces on the

design, communicating with the Control Unit.

Based on the Fmax drop caused by the ALU combinational logic chains on the

64 bits Neander, the ALU delay was set to 2 clock cycles instead of one. This is done

by implementing a Delay Model accordingly, which will set its done flag after 2 clock

cycles, resulting in the assertion of the elastic valid output. The design’s functionality

was re-verified and confirmed to be correct, despite the additional 2,1K clock cycles

to count until 20’hFFFFF due to the increased delay of the Elastic ALU.

To make the synthesis tool aware of the delay behavior of the Elastic ALU, the

timing constraints map this multi-cycle data transfer with a set_multicycle_path

command. This command sets the tool to consider all transfers going through the

ALU to have a 2 clock cycles delay.

59

Figure 38 - Elastic Neander with Elastic ALU

Having an extra clock cycle to perform the ALU dependent data transfers, the

synthesis tool has more flexibility to place and route the design, leading to better

performance results, as shown in Table 11 below.

Table 11 - 64bits Neander Fmax

Design

(64 bits)

ALU delay

(clock cycles)

Fmax

(MHz)

Synchronous 1 124,44

Elastic 1 115,02

Elastic 2 153,92

With an Elastic ALU of 2 cycles delay, the 64 bits Elastic design’s Fmax is

around 23% higher than the Synchronous design’s Fmax. This operating frequency

difference results in similar run times between the two designs, reducing the

Synchronous design run time advantage, as shown in Table 12 below.

60

Table 12 - 64bits Synchronous and Elastic Neander Trun(ns) comparison

Stop condition Design Trun (ns) Difference (ns)

20’hFFFFF
Synchronous 337.053,92

3.569,38
Elastic 340.623,30

This experiment was repeated with 128 bits data width Neander designs,

resulting in the achieving of a lower Trun by the Elastic design over the Synchronous,

as shown in Table 13 below.

Table 13 - 128bits Synchronous and Elastic Neander comparison

Stop condition
Design

(128 bits)

ALU delay

(clock cycles)

Fmax

(MHz)

Trun

(ns)

20’hFFFFF
Synchronous 1 86,61 484,274.22

Elastic 2 148,26 353,627.00

By analyzing the results of Synchronous and the Elastic Neander designs over

the three data width variants, it is clear that as the circuit gets denser and the logic

more complex, the elastic behavior brings more performance advantages at the price

of increased area, as shown in Chart 2 (a) and (b) below.

Chart 2 (b) shows that with a 128 bits data width, the FPGA percentage

allocation is the same for both designs, despite the use of 282 FFs by the

Synchronous design and 317 by the Elastic design. Hence, the combinational units

are the main contributors for the use of Logic Elements by the synthesis tool.

The Table 14 below presents the full results for all design variants among

Synchronous, Elastic, data widths and ALU delays discussed in this section. A 128

bits Elastic Neander variant with ALU delay of 3 clock cycles is part of the results,

demonstrating an even higher performance advantage for Elastic system at the price

of one additional FF.

61

Chart 2 – Results overview

Table 14 – Full Synchronous and Elastic Neander designs results

Data
width

Design ALU
delay
(clock
cycles)

FPGA
%

FFs F
Max
(MHz)

Stop
condition

Clock
cycles

T run
(ns)

8 bits
Sync 1 0,82 42 179,34 20'hFFFFF 41.942.990 233.874,15

Elastic 1 2 75 154,99 20'hFFFFF 50.331.589 324.740,88

64 bits

Sync 1 3 154 124,44 20'hFFFFF 41.942.990 337.053,92

Elastic
1 4 188 115,02 20'hFFFFF 50.331.589 437.589,89

2 4 189 153,92 20'hFFFFF 52.428.739 340.623,30

62

Data
width

Design ALU
delay
(clock
cycles)

FPGA
%

FFs F
Max
(MHz)

Stop
condition

Clock
cycles

T run
(ns)

128 bits

Sync 1 6 282 86,61 20'hFFFFF 41.942.990 484.274,22

Elastic
2 6 317 148,26 20'hFFFFF 52.428.739 353.627,00

3 6 318 161,21 20'hFFFFF 54.525.889 338.228,95

63

7 CONCLUSIONS AND FUTURE WORK

As an alternative towards solving the challenges imposed by the increased

wire-latency ratio in recent integrated circuit production technologies, the Elastic

Circuits paradigm enables complex designs to become more robust to such impacts

and even offers performance advantages over traditional synchronous systems, at

the cost of area overhead. However, this paradigm maintains the designers’ ability to

use synchronous EDA tools and flow instead of imposing drastic infrastructure

changes like the asynchronous methodology does.

A review of the state of the art literature on Latency Insensitive and Elastic

systems highlights the principles of this type of design methodology and brings the

key factors that must be taken into account when planning to apply the Elastic

Design flow into a Synchronous Design. One of those factors is the ability of the

original system’s Computational Processes to be stalled, a major requirement to turn

them into Patient Processes that are able to retain its state while other processes are

not able to receive new valid data.

The simple multi-cycle 8 bits Neander processor architecture was explored as

an experimental platform to exercise the principles of the Elastic design, since it has

a well-known behavior, easily implemented and verified. A synchronous version of

Neander organization was developed to enable the application of the elasticization

process and evaluation of such procedure’s effects in terms of timing and area.

By using the same synchronous design tools, an Elastic version of the

Neander was implemented as a variant of the original organization. The Elastic

Neander functional verification proves that both designs are latency equivalent,

meaning that both versions have the same functionality despite the latencies added

by the elasticization process.

The synthesis process of both designs demonstrates that, as expected, the

Elastic system’s area is higher than the Synchronous version, due to the replace of

single storage elements by Elastic Buffers, which are dual storage elements capable

of retaining data in the presence of backpressures.

Being a simple design, the 8 bits Neander does not have critical computation

paths in the technology used, what results in timing slack loss by the Elastic system

due to the extra logic added to control the elastic protocol.

64

However, on increased complexity designs like 64 and 128 bits Neander

variations, the few combinational elements of the design start to suffer timing closure

problems. In such expanded width datapaths, the elastic behavior enables

functionally correct transformations that make the Elastic design’s timing constraints

more flexible, resulting in overall performance advantages of around 30% over the

Synchronous system.

The design flow is closed with the deployment of both designs in a real FPGA

evaluation platform, making use of the board components to validate that the Elastic

transformations preserve the behavior of the original Synchronous Neander.

Besides the area and timing aspects evaluated, the Elastic Circuits tend to

offer power advantages over the Synchronous systems due to the fact that the elastic

computation units and its channels are sensitive to the presence of valid data,

enabling power saving when the system is idle. This analysis is open to be explored

in future works.

With demonstrated timing advantages over the traditional Synchronous

designs, the Elastic Circuits paradigm also offers good flexibility in its components,

which could lead to even higher performance gain. Simple modifications to the

presented design, like different Elastic Buffer organizations, and bigger architectural

changes like Recycling, Early Evaluation and Speculative Execution are possibilities

that can be explored to tune the Elastic Circuits results, as future work that can be

developed in even higher complexity systems.

65

REFERENCES

[1] Bohr M. T. Silicon trends and limits for advanced microprocessors. Commun.

ACM, v. 41, n. 3, p. 80–87, Mar. 1998.

[2] Flynn M. J.; Hung P.; Rudd K. W. Deep-submicron microprocessor design issues.

IEEE Micro, v. 19, p. 11–13, July 1999.

[3] Carloni L.; McMillan K.L.; Sangiovanni-Vincentelli A.L. Theory of latency-

insensitive design. IEEE Transactions on Computer-Aided Design, v. 20, n. 9, p.

1059–1076, September 2001.

[4] Carloni L.; McMillan K.L.; Sangiovanni-Vincentelli A.L. Latency insensitive

protocols. Proceedings of the 11th International Conference on Computer-

Aided Verification, New York: Springer-Verlag, 1999.

[5] Cortadella J.; Kishinevsky M.; Grundmann B. SELF: Specification and design of a

synchronous elastic architecture for DSM systems. TAU-2006: International

Workshop on Timing Issues in the Specification and Synthesis of Digital

Systems, 2006. Available:

http://www.cs.upc.edu/~jordicf/gavina/BIB/files/self_tau06.pdf. Accessed on: 20 Jun.

2016.

[6] Cortadella J.; Galceran-Oms M.; Kishinevsky M. Elastic systems. Proc. 8th

ACM/IEEE Int. Conf. on Formal Methods and Models for Codesign (MEMOCODE

2010), p. 149-158, July 2010. Available:

http://www.cs.upc.edu/~jordicf/gavina/BIB/files/memocode2010.pdf. Accessed on: 20

Jun. 2016.

[7] Carloni L.; Sangiovanni-Vincentelli A. Coping with latency in SoC design. IEEE

Micro, Special Issue on Systems on Chip, v. 22, n. 5, p. 12, October 2002.

[8] Jacobson H. M.; Kudva P. N.; Bose P.; Cook P. W.; Schuster S. E.; Mercer E. G.;

Myers C. J. Synchronous interlocked pipelines. Proc. International Symposium on

Advanced Research in Asynchronous Circuits and Systems, pp. 3–12, Apr.

2002.

[9] Carmona J.; Cortadella J.; Kishinevsky M.; Taubin A. Elastic circuits. IEEE

Transactions on Computer-Aided Design, v. 28 n.10, p. 1437-1455, October 2009.

[10] Weber R. Fundamentos de Arquitetura de Computadores. 4th ed. Porto

Alegre: BOOKMAN, 2012.

[11] Terasic. DE0 User Manual. March 2011. Available:

http://www.terasic.com.tw/cgi-

bin/page/archive.pl?Language=English&CategoryNo=165&No=364&PartNo=4.

Accessed on: 28 Oct. 2016.

[12] Cortadella J.; Kishinevsky M.; Grundmann B. Synthesis of Synchronous

Elastic Architectures. Design Automation Conference, 2006 43rd ACM/IEEE.

http://www.cs.upc.edu/~jordicf/gavina/BIB/files/self_tau06.pdf
http://www.cs.upc.edu/~jordicf/gavina/BIB/files/memocode2010.pdf
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=165&No=364&PartNo=4A
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=165&No=364&PartNo=4A

