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RESUMO 

  

O avanço da microeletrônica nas últimas décadas trouxe maior densidade aos 

circuitos integrados, possibilitando a implementação de funções de alta 

complexidade em uma menor área de silício. Como efeito desta integração em larga 

escala, as latências dos fios passaram a representar uma maior fração do atraso de 

propagação de dados em um design, tornando a tarefa de “timing closure” mais 

desafiadora e demandando mais iterações entre etapas do design. 

Por meio de uma revisão na teoria dos circuitos insensíveis a latência 

(Latency-Insensitive theory), este trabalho explora a metodologia de designs 

elásticos (Elastic Design methodology) em circuitos síncronos, com o objetivo de 

solucionar o impacto que a latência adicional dos fios insere no fluxo de design de 

circuitos integrados, sem demandar uma grande mudança de paradigma por parte 

dos designers. 

A fim de exemplificar o processo de “elasticização”, foi implementada uma 

versão síncrona da arquitetura do microprocessador Neander que posteriormente foi 

convertida a um Circuito Elástico utilizando um protocolo insensível a latência nas 

transferências de dados entre os processos computacionais do design. Ambas as 

versões do Neander foram validadas em uma plataforma FPGA utilizando 

ferramentas e fluxo de design síncrono bem estabelecidos. 

A comparação das características de timing e área entre os designs 

demonstra que a versão Elástica pode apresentar ganhos de performance para 

sistemas complexos ao custo de um aumento da área necessária. 

Estes resultados mostram que a metodologia de designs elásticos é uma boa 

candidata para projetar circuitos integrados complexos sem demandar custosas 

iterações entre fases de design e reutilizando as já estabelecidas ferramentas de 

design síncrono, resultando em uma alternativa economicamente vantajosa para os 

designers. 

 
Palavras-chave: Elastic Circuits. Digital IC. IC Design Methodology. FPGA. ASIC. 

Synchronous Circuits. Asynchronous Circuits. 

  



ABSTRACT 

  

The advance of microelectronics brought increased density to integrated 

circuits, allowing high complexity functions to be implemented in smaller silicon 

areas. As a side effect of this large-scale integration, the wire latencies became a 

higher fraction of a design’s data propagation latency, turning timing closure into a 

challenging task that often demand several iterations among design phases.  

By reviewing the Latency-Insensitive theory, this work presents the exploration 

of the Elastic Design methodology in synchronous circuits, with the objective of 

solving the increased wire latency impact on integrated circuits design flow without 

requiring a big paradigm change for designers. 

To exemplify the elasticization process, the educational Neander 

microprocessor architecture is synchronously implemented and turned into an Elastic 

Circuit by using a latency-insensitive protocol in the design’s computational 

processes data transfers. Both designs are validated in an FPGA platform, using well 

known synchronous design tools and flow. 

The timing and area comparison between the designs demonstrates that the 

Elastic version can present performance advantages for more complex systems at 

the price of increased area.  

These results show that the Elastic Design methodology is a good candidate 

for designing complex integrated circuits without costly iterations between design 

phases. This methodology also leverages the reuse of the mostly adopted 

synchronous design tools, resulting in a cost-effective alternative for designers. 

 

Keywords: Elastic Circuits. Digital IC. IC Design Methodology. FPGA. ASIC. 

Synchronous Circuits. Asynchronous Circuits. 
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1 INTRODUCTION 

 

Over the past decades, the use of electronic components by industries like 

automotive, aerospace and personal systems has rapidly increased. This expansion 

brought a big electronics technology leap in a short time, as mapped by the Moore 

Law for the integrated circuits (ICs), which have to perform really complex functions 

in the smallest area, power consumption and time possible. 

The development of IC design methodologies and tools was a key factor to 

enable the advance of chips capabilities, exploring the semiconductor fabrication 

processes enhancements. As a well stablished concept, the Synchronous IC Design 

has been the main methodology adopted by the semiconductor industry in its 

development.  

However, with the process nodes shrinking, IC designers face more 

challenges to keep increasing their clock based designs’ performance due to issues 

not perceived in previous technologies, like increased wire-latencies. 

Aiming at solving such problems, alternative designs methodologies have 

been researched and proposed. The Asynchronous Design methodology claims to 

brake the synchronous circuits’ fixed clock period dependency to compute data, what 

would bring more flexibility to designs and avoid data propagation time impact on 

functionality. 

Representing a big paradigm change to the IC design community and having 

few Electronic Design Automation (EDA) tools support, the asynchronous circuits are 

not largely adopted. With the intent of reusing several aspects of the synchronous 

design concepts, the Latency Insensitive and Elastic Design methodologies arise as 

alternatives that are not so disruptive and solve the technology advance related 

issues without leaving behind all the synchronous knowledge developed, at the cost 

of increased area. 

Even with the advances of synchronous based tools, the real circuit latencies 

uncertainty in the early stages of development is a key factor that leads to timing 

closure problems in current designs, resulting in cost increase due to reiterations 

between design steps. An example is the accurate physical synthesis delay 

estimation identifying timing problems and requiring rework in the Register Transfer 

Level (RTL) design. 



 
 

 
11 

 

A key aspect to sustain the advance of complex ICs in a cost-effective fashion 

is the exploration of new design methodologies, like the Elastic design. Such 

methodologies leverage the well stablished ground to solve the technology advance 

issues and avoid the drawbacks of the synchronous flow in timing closure process, 

without impacting the performance of synchronous designs. 

This work exercises the Elastic Design methodology by converting a 

synchronous implementation of the Neander processor developed on top of well-

known synchronous design practices and tools to demonstrate the impacts and 

requirements of the new methodology adoption. The Elastic Circuit is deployed in a 

Field Programmable Gate Array (FPGA) platform and the resulting functionality, area 

and performance are analyzed against the expected outcomes. 

A review of the Latency insensitive and Elastic design methodology is done in 

section 2. The Neander architecture background is explained in section 3 to review 

the processor’s functionality and characteristics. Section 4 brings an overview of this 

works’ target, an Elastic version of the Neander processor evaluated in an FPGA 

platform. The whole design flow is explained in Section 5, detailing each design 

phase performed to generate the Elastic circuit, which have its results analyzed in 

section 6. Section 7 concludes this work with the key aspects and remarks, opening 

room for future work. 
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2 ELASTIC CIRCUITS 

 

Given the advance of deep submicrometer technologies (DSM) with process 

nodes from 0.1um to tens of nanometers, complex Integrated Circuit designs have to 

overcome new challenges.  

As the logic cells become smaller and faster, the distance between those cells 

increases, and that makes wire latencies more significant in the overall design timing 

challenge. Other factors that contribute to the wire latency problem are the increase 

in operating frequencies and die size, which make even smaller the time available for 

a signal to travel from one logic unit to another. 

Although there are process related techniques that try to solve the metal lines 

latency impact increase, like copper metallization and low-k dielectric insulators, 

these workaround solutions are not sufficient to completely solve the interconnect 

delay problem (BOHR, 1998), (FLYNN, 1999). 

Asynchronous circuits paradigm is an alternative to overcome the wire latency 

ratio increase effect, since it is not based on a clock cycle and execution occurs 

when data is ready to be consumed. However, the lack of EDA tools compatible with 

an asynchronous design flow and the higher complexity of such designs, when 

compared to synchronous circuits, prevent the asynchronous circuits adoption by the 

larger part of the IC design community. 

The Latency-Insensitive theory (CARLONI, 2001) was proposed as a 

conciliatory solution between the asynchronous world and the traditional 

synchronous design methodology.  

The principle of separating computation from communication in a design is the 

basis of the Latency-Insensitive theory. The design parts responsible for data 

computing are designated as computational processes, while the communication 

channels are responsible for exchanging the processed data. 

By decoupling communication from computation, Latency-Insensitive design 

suggests that the computational processes in a system exchange data over 

communication channels which implement an abstract latency-insensitive protocol 

(CARLONI, 1999). The latency-insensitive protocol ensures that computational 

processes’ data exchanges are completed despite of channel latency variations.  
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For a computational process to be compliant with the latency-insensitive 

protocol, it has to be stallable, meaning that it can maintain its current state if a 

stalling condition is applied. For instance, a Finite State Machine (FSM) can be 

stallable if its state transitions can be stalled by a stop input. The latency-insensitive 

version of a computational process is a Patient Process, which is obtained by making 

a stallable process implement a latency-insensitive protocol, as shown in the Figure 1 

below. 

Figure 1 – Patient Process composition 

 

Reference: Carmona (2001). 

Hence, a latency-insensitive design is composed by Patient Processes that 

communicate with each other through a latency-insensitive protocol. The protocol 

makes a data source Patient Process wait for the availability of the data recipient 

Patient Process. 

Once the design is adapted to be latency-insensitive, a lengthy communication 

channel that does not meet the timing constraints of the system’s clock can be 

segmented by the insertion of Relay Stations. These components do not have any 

computation purpose, only serving the purpose of partitioning a long communication 

channels while maintaining a functional equivalency in the data flow, meaning that 

the Relay Stations do not interfere in the data sequence generated by the Patient 

Process, as shown in the Figure 2 below. 
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Figure 2 – Relay Station in a latency-insensitive channel 

  

Based on Elastic Buffers (EB), that use control signals to manage valid data 

transfers, the SELF (Synchronous Elastic Flow) (CORTADELLA, 2006) is a latency-

insensitive protocol. Its specification provides an abstract model for elastic channels 

and buffers. Its main features are the efficient implementation of elastic 

communication channels and an automatable design methodology enablement. 

An elastic channel has three possible states: Transfer, Idle and Retry. The first 

state occurs when both master and slave pieces of the system are able to 

transmit/receive data. An Idle state happens when the sender is not providing valid 

data to the receiver. When the master is generating valid data but the receiver is not 

able to process it, the system is in Retry state. 

An elastic buffer is divided in datapath and control. The datapath is where its 

data storage elements are present, while the control logic determines the system 

state based on its master/slave interfaces’ control signals.  

The Elastic Buffers purpose is similar to the Relay Stations, with the 

advantage of not inserting additional latency when replacing a synchronous 

component of the original design. This is achieved through optimizations in the 

Elastic Buffers organization. Several implementations of elastic buffers are possible. 

The variations include, for instance, the use of registers or latches, storage capacity, 

datapath and control organization optimizations and double-pumping, which ensures 

two data moves within the same system clock cycle.  

This work uses the W2R1 elastic buffer control and datapath definition, which 

uses registers and a simple FSM controlling the system in its three possible states. 

Figure 3 below shows the control and datapath specification for the chosen Elastic 

Buffer organization. 
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Figure 3 – Specification for the W2R1 EB 

 

Reference: Cortadella (2005). 

The Latency-Insensitive Theory and the SELF maintain the simplicity of 

synchronous circuits by applying design methodology changes on top of the existing 

and well established synchronous design methodology and toolset turns these 

approaches more attractive to the IC design community. 

 

2.1 Advantages and Liabilities 

 

The main advantage of the elastic paradigm is its communication latency 

insensitivity. This provides robustness to the circuits, as the process and/or operating 

conditions variations and its associated timing variation is managed by the latency-

insensitive protocol. 

Since the latency-insensitive protocol makes computational processes 

dependent on data validity, power optimizations can be performed making the 

system active only upon the presence of data to be processed. 

Beside the intrinsic advantages of the elastic designs, another positive 

characteristic is that elasticity enables performance optimizations by applying 

transformations like bubble insertion, variable-latency units, speculative and out-of-

order executions, as mentioned in (CORTADELLA, 2010). These correct-by-

construction transformations preserve the behavior of the circuit while boosting its 

performance. 

Among all the advantages mentioned, the “elasticization process” brings some 

disadvantages as well. One of the main drawbacks is the additional latency that this 

methodology inserts in communication channels when compared to traditional 

synchronous circuits that have no buffers between computational processes. This 



 
 
 

16 
 

added latency is mainly perceived when the communication channel bandwidth 

utilization is low. The optimization transformations previously mentioned also help 

reducing the impacts of the increased latency. 

Another important overhead of the elastic paradigm is the higher area inherent 

to its control and storage logic (Elastic Buffers). If the original circuit's area and/or 

complexity isn't high enough to justify the elastic infrastructure, the elasticization 

process will probably not bring significant advantages.  

 

2.2 Elasticization Process 

 

The elasticization process targets at converting a traditional synchronous 

design into an elastic one. This process involves turning the original design units into 

latency-insensitive protocol compliant ones. 

An Elastic Buffer (EB) is responsible for implementing the elastic protocol, 

having storage units used to keep data when the following Patient Process is busy. 

Different EB implementations are possible, like using registers and/or transparent 

latches, as explained in (CORTADELLA, 2006). Regardless of the different 

organizations, the basic structure of an Elastic Buffer is composed of a control and a 

datapath, as shown in Figure 4 below. 

Figure 4 – Elastic Buffer base structure 

 

Reference: Cortadella (2005). 

The elasticization process can be applied in different granularities, depending 

on the design characteristics, target application and area budget. For SoC designs, 
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where the reuse of IP is a strong demand, Elastic Buffers can be inserted in between 

the design’s black boxes, as long as these boxes are Patient Processes, as 

explained in (CARLONI, 2002). Finer grain elastic circuits can be obtained by 

replacing every register in the design by an EB, at the expense of highly increased 

area, presented in (JACOBSON, 2002). 

Depending on the number of channels communicating to one module, the fork 

or join of data from different sources might be needed. This requires a special control 

in the involved Elastic Buffers, because the target logic availability and the data sent 

to/from it have to be synchronized across all involved modules/channels in the 

communication. An example of join/fork Elastic Buffers can be seen in Figure 5, from 

(CARMONA, 2009). 

Figure 5 – Synchronous elastic module with multiple inputs and outputs. 

 

Reference: Carmona (2009). 

By having the ability to tolerate latency changes, the elastic systems enable 

performance boost by making communication timing constraints more flexible and 

making optimization techniques possible. This tolerance helps to reduce the 

increased latency of the elastic protocol when the elastic channel bandwidth capacity 
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is not being fully used, for example. Some of the techniques, such as Recycling, 

Early Evaluation, Anti-token Insertion, Variable-latency units and Speculative 

Execution are presented in (CORTADELLA, 2010). For example, Variable Latency 

units introduce the concept of logic module tuned for the most common case of its 

computation, while adding latency to the least common case.  
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3 NEANDER PROCESSOR 

 

The Neander processor is a hypothetic machine conceived for education 

purposes. Since it is a simple machine, it facilitates the introduction of concepts such 

as computer organization and architecture. In summary, the main characteristics of 

the Neander processor are (WEBER, 2009): 

 Addressing and data width of 8 bits 

 Data represented in two complement 

 One accumulator of 8 bits (AC) 

 One program counter of 8 bits (PC) 

 One state register with two condition codes: Negative (N) and Zero (Z) 

The instruction set that the Neander implements is composed by data 

movement (LDA, STA), arithmetic (ADD), logic (AND, OR, NOT) and branch (JMP, 

JN, JZ) instructions, besides the HLT and NOP instructions that do not perform data 

operations. Each instruction is coded in 4 bits, what defines the minimum size of the 

Instruction Register (IR) that will hold the instructions read from memory. 

The 8 bits addressing width allows the Neander to address a maximum of 256 

positions. Since the processor works with 8 bits words, this gives a total amount of 

256 bytes of addressable memory. The Neander addressing scheme is direct, so 

every address used by a program is directly mapped to the position in the memory. 

The memory address for the current state of the execution is held in the Memory 

Address Register (MAR). 

Some of the Neander instructions are followed by an extra byte that carries an 

operand address (ADDR). This address can represent the memory position that 

contains the data to be used in the current operation or be the actual memory 

address to which the PC has to be pointed, as shown in the Table 1 below. 

Table 1 – Neander processor instruction set 

Instruction 

code 
Instruction Description 

0000 NOP No operation. 

0001 STA   ADDR Stores the data of AC into MEM(addr). 

0010 LDA   ADDR Loads the data of MEM(addr) into AC. 
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Instruction 

code 
Instruction Description 

0011 ADD  ADDR 
Sums the data of MEM(addr) with AC and 

stores the result in AC. 

0100 OR    ADDR 
Logic “OR” of the data of MEM(addr) with AC 

and stores the result in AC. 

0101 AND  ADDR 
Logic “AND” of the data of MEM(addr) with AC 

and stores the result in AC. 

0110 NOT 
Inverts the data of AC and stores the result in 

AC. 

1000 JMP  ADDR 
Branches the execution to the addr position in 

memory. 

1001 JN     ADDR 
Branches the execution to the addr position in 

memory if the NZ indicates a negative value. 

1010 JZ     ADDR 
Branches the execution to the addr position in 

memory if the NZ indicates a zero value. 

1111 HLT Halts the processor execution. 

Reference: Weber (2006). 

For STA operations, the Neander uses a Memory Data Register (MDR) to 

keep the data that will be stored in the memory address indicated by MAR. This 

register completes the list of registers needed by the Neander’s datapath: 

 AC – Accumulator 

 IR – Instruction Register 

 MAR – Memory Address Register 

 MDR – Memory Data Register 

 NZ – Negative / Zero condition codes 

 PC – Program Counter 

The Control unit is responsible for controlling the data flow in the Neander 

datapath. The unit does this by arbitrating when each register needs to store the data 

in its input, through the load_ control signals; by controlling the memory read and 

write accesses; and by selecting if the MAR uses the PC or the operand address 

(ADDR) read from memory to point to a determined memory position. All these 
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control actions are dependent on the instruction being executed and the execution 

time of the instruction cycle, which will be explained below.  

The Control unit is also responsible for selecting the appropriate operation to 

be executed by the Arithmetic Logic Unit (ALU) based on the current instruction and 

execution step. Along with the datapath, the control unit composes the Neander 

organization, as shown in the Figure 6 below. 

Figure 6 – Neander organization 

 

Reference: Weber (2006). 

Based on the data movements between the datapath elements defined by 

each Neander instruction, the Control unit can be represented by an FSM with eight 

states, as shown in Figure 7 below. Each state represents one execution step and 

the control actions performed in each state are instruction dependent, as well as the 

transitions. For simplicity, the conditions for each transition and the control actions of 

each state are omitted. The only conditions shown are the ones that make the 

execution flow go back to state 0 or halt the processor. 
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Figure 7 – Neander control unit FSM 

 

An instruction cycle is the group of data movements and control actions that 

compose an instruction execution steps. In the Neander architecture, this instruction 

cycle is divided in two phases: instruction fetch phase and execution phase. 

The instruction fetch phase is the first phase of an instruction cycle and does 

not depend on the instruction being executed. In fact, the instruction that will be 

executed subsequently is fetched from memory in this phase, as shown in Figure 8 

below. From state 0 to state 2, the control unit accesses the memory to fetch the 

instruction to be stored into IR and increments the PC to point to the instruction’s 

operand address or the next instruction. 

After the instruction is fetched from memory, the Neander processor goes to 

the next phase of the instruction cycle, the execution phase. Depending on the 

instruction to be executed, this phase’s actions can take from 1 (i.e.: NOP) to 5 (i.e.: 

STA) execution steps. 
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Figure 8 – Neander instruction fetch phase 

 

As an example, Neander can execute a simple program that sums the values 

of three subsequent memory positions (WEBER, 2009). The program’s instruction 

section goes from positions 0 to 127 of the memory and the data section goes from 

position 128 to 255.  

The program will sum the data in the positions 128, 129 and 130, and finally 

will store the result in the position 131. The initial state of the memory is shown in the 

Figure 9 below. The memory data, addresses and the instructions operands are 

represented in hexadecimal base. 

Excluding the instruction fetch phases, the program execution is represented 

in the Figure 10, along with the memory state at the end of the program execution. 

Note that the control unit has issued one load_ir pulse for each instruction executed. 
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Figure 9 – Sum program 

 

 

Figure 10 – Sum program execution 

 

 

The LDA instruction moves the data from MEM(0x80) to the AC. This 

instruction’s execution phase takes until state 7 and requires two memory read 

accesses: one for reading the operand’s address and another for reading the 

operand’s data in the position indicated by the operand’s address (in this case, 

position 0x80). 
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The ADD instructions make the ALU sum the data currently in the AC with the 

operand’s data indicated in the instruction (in this case, position 0x81 and, 

subsequently, position 0x82). This instruction also requires the same two memory 

read accesses as the LDA instruction. 

Finally, the STA instruction moves the data from AC to MEM(0x83). This 

instruction requires one memory read access, for reading the operand address, and 

one memory write access, for storing the data. After the STA instruction, the Neander 

processor is halted by the HLT instruction. 

By using the base concepts of computer organization and architecture, the 

Neander processor serves as a great platform for organizational concepts 

exploration, such as the application of the latency-insensitive design methodology on 

top of the regular synchronous design. 
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4 ELASTIC NEANDER IN FPGA 

 

The main purpose of this work is to exercise the elastic design methodology 

(SELF), converting an existing system into an elastic one, which is capable of dealing 

with latency variations without having its functionality compromised. Both the original 

and the converted systems are evaluated in a FPGA platform to demonstrate that the 

proposed methodology does not interfere with the original system’s functionality and 

to enable the performance and area evaluation after the design and synthesis flows.  

The elastic design methodology enables circuit designs to be more robust to 

process and environment variations by implementing an abstract latency-insensitive 

protocol between all computational processes in the system. This characteristic 

makes the data flow in the design not fully dependent on one clock cycle period, 

since a Patient Process that is receiving data only starts computation upon the 

presence of valid data on its input channel, leaving the stall caused by the protocol.  

Each Patient Process in the system has at least two elastic inferfaces: the ms_ 

interface and the sl_ interface. The ms_ signals compose the interface with the 

process generating the data (process A in Figure 11) that will be consumed by the 

current process (process B in Figure 11). The sl_ signals interface the current 

process (process B in Figure 11) with the next process in the data flow (process C in 

Figure 11), which consumes data from the current process. 

Figure 11 – Patient Process interfaces 

 

The Figure 12 below shows a Patient Process in its stalled period (shaded in 

red), when there is no valid data to be consumed. The blue shaded area shows its 

executing period, from valid input data arrival to a valid data output.  
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Figure 12 – Patient Process B stall and execution periods 

 

The SELF protocol also defines that a process is stalled when the consuming 

process (i.e.: process B in Figure 11) is not able to receive new data, signaling this 

condition to the source process (i.e.: process A in Figure 11) through the stop signal, 

as shown in Figure 13 below. This event is called backpressure, and is another key 

characteristic that enables the latency-insensitivity in elastic systems. 

Figure 13 – Patient Process A stall and execution periods 

 

By implementing the characteristics presented above, the application of the 

elastic design methodology in an existing system breaks the dependence on a rigid 

amount of clock cycles between the system’s processes. For instance, a data 

transfer can take N amount of clock cycles in a determined process technology and 

N*2 in another process technology, and the elastic system will still work correctly, 

being latency-equivalent to the original synchronous circuit.  
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Having simple organization and architecture, the Neander processor is a good 

candidate for testing the elastic design methodology to convert a strict synchronous 

system (CARLONI, 2001) into an Elastic one. The components in its organization 

enable the application of Elastic concepts like conversion of Stallable Processes into 

Patient Processes and the insertion of EBs in a timing critical communication 

channel, to segment the delay and support timing-closure. 

The FPGA platform is used in this work as an evaluation environment tool to 

prove that, after the elasticization process, the Neander design can still normally 

perform its functions in a real device. A simple demonstration is built in the Terasic 

DE-0 Cyclone III evaluation board, to observe the functional behavior of the Neander 

processor across synchronous and elastic designs. 

Other important aspect of the use of the FPGA platform in this work is to 

benchmark how these devices perform when implementing new architectural design 

approaches such as the elastic design methodology. 

The full flow of this project is represented in Figure 14 below, which shows an 

overview of the necessary steps for the completion of the Elastic Neander, starting 

from a synchronous Neander implementation until its demonstration on the FPGA 

development board: 

 Design Neander – Implementation of a synchronous Neander design. 

 Identify Stallable Processes – Identification of Neander Computational 

Processes that can be stalled. 

 Identify Data Flows – Identification of data movement paths in the 

Neander design. 

 Elastic Neander – Overall Elastic Neander organization. 

 Evaluate EB organizations – Evaluation and definition of an adequate 

Elastic Buffer organization. 

 Design EB – Implementation of the chosen EB organization. 

 Design Patient Control Unit – Adapt Neander control unit to be a Patient 

Process. 

 Design Patient Memory – Adapt Memory module to be a Patient Process. 

 Functional Verification – Verification of the design’s functionality in 

simulation environment. 

 Design FPGA demo – Integration of the demonstration required modules. 
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 Design Synthesis – Synthesis of the design to the target FPGA device.  

 Timing Analysis – Timing closure analysis of the synthesized circuit. 

Figure 14 – Elastic Neander Project phases 
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5 ELASTIC NEANDER PROJECT 

 

This section describes the sequence of steps performed to design, verify and 

validate the Elastic Neander design, starting from the Synchronous Neander 

implementation. After presenting the design steps, a comparison between the original 

Neander and the Elastic Neander circuits is done. 

The design units are coded in RTL level Verilog, using the Altera Quartus 13.1 

suite as the Logic and Physical synthesis tools, and the Mentor Graphics ModelSim 

Altera 10.1d as the simulation tool. 

 

5.1 Neander Design 

 

The Neander design is based on the specification from (WEBER, 2009), which 

is briefly explained in section 3. This design is a strict synchronous system, meaning 

that the data transfers between the Computational Processes in the system are 

purely dependent on the system clock period, being specified as a multiple of the 

clock cycles. 

 This design is composed by registers as the storage elements of the datapath, 

a control unit and combinational elements: 

 5 registers (AC, IR, MAR, MDR, and NZ) 

 1 special register with integrated counter (PC) 

 1 ALU 

 1 Control unit 

 1 Multiplexer for selecting MAR input 

The PC is implemented as a regular register with the addition of an integrated 

counter, as shown in the Figure 15 below. The PC has two control inputs: Load and 

Incr, used to load the output register either with the data in its input or with the 

counter value, respectively. 
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Figure 15 – Neander Program Counter 

 

The ALU is a purely combinational logic module that is responsible for 

executing the following operations with its X and Y inputs of 1 byte each and for 

generating the N and Z condition codes, stored in the NZ register: 

 ADD – Adds the X and Y inputs 

 AND – Logic AND between X and Y bits 

 NOT – Inverts all X bits 

 OR – Logic OR between X and Y bits 

 Y – Outputs the Y input 

The Control unit is the responsible for controlling the data flow between the 

Neander datapath registers, selecting the ALU operation and operating the Memory. 

The control signals depend both on the execution state and the instruction, as 

specified in the Table 2 and Table 3 below, where sel is the selection for the MUX in 

the MAR input, ld is a load signal to the registers, incr is the PC increment sgnal and 

rd/wr are the memory control signals. 
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Table 2 – Control signals during STA, LDA, ADD, OR, AND and NOT 

Execution 

State 
STA LDA ADD OR AND NOT 

st0 sel=0,  

ld MAR 

sel=0,  

ld MAR 

sel=0,  

ld MAR 

sel=0,  

ld MAR 

sel=0,  

ld MAR 

sel=0,  

ld MAR 

st1 rd, 

incr PC 

rd, 

incr PC 

rd, 

incr PC 

rd, 

incr PC 

rd, 

incr PC 

rd, 

incr PC 

st2 ld IR ld IR ld IR ld IR ld IR ld IR 

st3 sel=0,  

ld MAR 

sel=0,  

ld MAR 

sel=0,  

ld MAR 

sel=0,  

ld MAR 

sel=0,  

ld MAR 

UAL(NOT), 

ld AC, 

ld NZ, 

goto st0 

st4 rd, 

incr PC 

rd, 

incr PC 

rd, 

incr PC 

rd, 

incr PC 

rd, 

incr PC 

 

st5 sel=1,  

ld MAR 

sel=1,  

ld MAR 

sel=1,  

ld MAR 

sel=1,  

ld MAR 

sel=1,  

ld MAR 

 

st6 ld MDR rd rd rd rd  

st7 wr, 

goto st0 

UAL(Y), 

ld AC, 

ld NZ, 

goto st0 

UAL(ADD), 

ld AC, 

ld NZ, 

goto st0 

UAL(OR), 

ld AC, 

ld NZ, 

goto st0 

UAL(AND), 

ld AC, 

ld NZ, 

goto st0 

 

Reference: Weber (2006). 

Table 3 – Control signals during JMP, JN, JZ, NOP and HLT 

Exec 

State 
JMP JN, N=1 JN, N=0 JZ, Z=1 JZ, Z=0 NOP HLT 

st0 sel=0,  

ld MAR 

sel=0,  

ld MAR 

sel=0,  

ld MAR 

sel=0,  

ld MAR 

sel=0,  

ld MAR 

sel=0,  

ld MAR 

sel=0,  

ld MAR 

st1 rd, 

incr PC 

rd, 

incr PC 

rd, 

incr PC 

rd, 

incr PC 

rd, 

incr PC 

rd, 

incr PC 

rd, 

incr PC 
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Exec 

State 
JMP JN, N=1 JN, N=0 JZ, Z=1 JZ, Z=0 NOP HLT 

st2 ld IR ld IR ld IR ld IR ld IR ld IR ld IR 

st3 sel=0,  

ld MAR 

sel=0,  

ld MAR 

incr PC, 

goto st0 

sel=0,  

ld MAR 

incr PC, 

goto st0 

goto st0 halt 

st4 rd rd  rd    

st5 ld PC, 

goto st0 

ld PC, 

goto st0 

 ld PC, 

goto st0 

   

st6        

st7        

Reference: Weber (2006). 

5.2 Stallable Processes 

 

The first step towards converting the Synchronous Neander into the Elastic 

Neander is to identify the stallable Computational Processes in the processor’s 

organization, to enable the implementation of a latency-insensitive protocol.  

The Control unit, being an FSM, is stallable upon the inclusion of extra control 

signals to prevent its next state logic from moving to a next execution state if the 

register that will receive data in is not ready to do so, for example. This leads to the 

definition that the Neander registers should also be able to be stalled, achieving a 

finer granularity Elastic circuit (CORTADELLA, 2006).  

Being clock driven storage elements, the registers in the Neander organization 

are also Stallable Processes, since they can have its clock input gated and 

dependent on a control signal to store new data (CARLONI, 2001). 

As the main storage element in the Neander system, the memory should also 

be possible to stall, otherwise the Control unit would lose data read from memory. 

Since the 256 bytes memory is a passive storage element activated by rd and wr 

signals managed by the Control unit and synchronously driven by the system clock, it 

is also a Stallable Process. 

Some parts of the Neander organization are purely combinational pieces: the 

MUX in MAR’s input; and the ALU. Initially, this work will consider the delay added by 
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those parts of the system as negligible, but there are techniques to better map this 

type of Computational Processes’ delay, as presented in section 6. 

 

5.3 Data flows 

 

To identify the elastic protocol interfaces needed and how they relate with 

each other, the Neander data flows had to be analyzed. The data flows are the 

possible paths through which data can travel in the Neander organization. In this 

particular design the data flow is variable, since a different destination is possible for 

each data read from memory, depending on the instruction and execution state.  

A data flow identifies a backpressure path. In the Figure 16 below, the 

backpressure emitted by the memory data interface in a write event is highlighted. 

The arrows in the beginning and end of the data flow indicate the backpressure 

direction. Hence, the parts of the design that are affected by this backpressure path 

are: MDR -> AC -> MEM. 

Figure 16 – Memory data write backpressure 

 

 

Since AC’s inability to receive new data does not necessarily mean that the IR, 

for instance, cannot receive new data from the memory, this backpressure path is 

actually dependent on the execution state. Hence, the Control unit is the responsible 
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for receiving all the elastic protocol signals and managing which backpressure signal 

demands a stall of the processor’s execution at each execution state. 

 

5.4 Elastic Neander 

 

Having identified the Stallable Processes and the possible data flows that the 

Control unit has to consider to stall the processor execution, the Elastic Neander 

interconnections between the system’s Patient Processes can be defined as in the 

Figure 17 below.  

The Neander registers are replaced by Elastic Buffers, which are storage 

elements capable of supporting latency variations by implementing the elastic 

protocol.  

The memory of the Elastic Neander also implements the elastic protocol in 

three interfaces, as listed below.  

 addr_ – Address interface, used when Neander reads from or writes data 

into memory. The memory is the Slave of this interface. 

 data_in_ – Data input interface, used when Neander writes data into 

memory. The memory is the Slave of this interface. 

 data_out – Data output interface, used when Neander reads data from 

memory. The memory is the Master of this interface. 

Since the data flows depend on the Neander execution state, the Control unit 

implements several elastic interfaces, with all the registers (EBs) and with the 

memory. All the elastic protocol control inputs to the EBs and Memory are generated 

by the Control unit. 

By receiving all the EBs and Memory stop_out signals, the Control unit has 

visibility of all possible backpressures in the system and is able to stall the execution 

if needed.  
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Figure 17 – Elastic Neander 

 

 



 
 

 
37 

 

Moreover, the Control unit receives all the valid_out signals from the other 

Patient Processes in the system. This allows the unit to continue the execution flow 

upon the presence of valid data from the process that generates data that will be 

consumed in the next execution state, for instance when the IR outputs data that will 

be used by the own Control unit in the execution phase. 

In the Neander design, the data read from the memory is consumed by 

several processes, what could characterize a fork in the elastic protocol 

(CORTADELLA, 2006). However, this type of control is applicable when all the 

consuming processes use the data from the source process at the same time, what 

is not the case in the Neander processor. Hence, the control is the responsible for 

identifying which process consumes data from memory at each execution state and 

operate the elastic protocol accordingly. 

 

5.5 Elastic Buffer organizations 

 

An elastic buffer’s base organization is divided in a datapath – in which the 

data in the elastic channels is stored and output from the buffer – and a control part – 

which is responsible for controlling the data flow in the datapath storage elements 

and also implementing the master and the slave elastic interfaces of the buffer, as 

shown in Figure 4, in section 2. 

As described in (CORTADELLA, 2006), the minimum depth of an elastic buffer 

is the sum of the forward latency and the backward latency in clock cycles. In this 

work, targeting the minimal latency possible added by the elastic buffers, both 

forward and backward latencies are equal to 1. This definition implies in the minimum 

buffer depth of 2 storage positions.  

An elastic buffer can have different datapath organizations, what requires 

different control logic. Considering that the depth of the elastic buffers used in this 

work is equal to 2, the datapath organizations shown in Figure 18 were analyzed, 

where W stands for the number of write ports, while R stands for the number of read 

ports.  

Since the forward and backward latencies are equal to 1, the W1R1 elastic 

buffer cannot be implemented using regular flip flops in a same frequency clock 

edge, what would result in a latency of 2. Hence, this implementation requires the 
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use of techniques to enable the propagation latency to be equal to 1, such as making 

each flop active to different clock edges, using double frequency clock on the right-

hand flop or replacing the flops with transparent latches of different polarity. 

Figure 18 – Elastic buffer datapath organizations 

 

Reference: Cortadella (2005). 

The options W2R2 and W1R2 do not have to overcome this W1R1 

characteristic, but make both flops active at all times, what leads to higher toggle 

rates. Considering the best balance between implementation simplicity and 

performance and also EB power consumption, this work makes use of the W2R1 

option. This organization leaves the flop next to the master elastic interface as a 

backup to the slave elastic interface flop, only activating the left-hand side flop when 

there is backpressure coming from the slave interface. 

 

5.6 Elastic Buffer design 

 

Having defined the W2R1 organization as the elastic buffer datapath, the 

correspondent elastic buffer control module is implemented. The datapath consists in 

2 registers and a MUX to select the input of the slave side register depending on the 

state of the EB’s control logic (EMPTY, HALF or FULL). The control coordinates the 

storage elements in the datapath and implements the master and slave elastic 

interfaces of the elastic buffer, as shown in Figure 19 below. 

The W2R1 control specification defines enable signals to the registers in the 

datapath. These enable signals could be used directly in the registers’ clock enable 

port, if available. However, to enable portability between different tools and 
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components libraries, the Elastic Buffer used in the Elastic Neander is implemented 

with pulse generators, that bypass the system clock in the presence of an enable 

input. 

Figure 19 – Elastic Buffer design 

 

 

5.7 Patient Memory 

 

As well as the registers are replaced by equivalent elastic elements, the main 

storage piece of the Neander organization is also turned into a Patient Process, the 

Patient Memory, that is composed of three elastic interfaces, as shown in Figure 20 

below:  ADDR, DATA_IN and DATA_OUT.  

Figure 20 – Patient memory elastic interfaces 
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The ADDR elastic interface is used by the Neander on both read and write 

requests to memory. Hence, this interface shall accept valid addresses if the memory 

is available to perform a read or a write operation. The ADDR is a slave elastic 

interface since it receives data (address) from a master, in this case, MAR.  

During memory write operations, the DATA_IN interface is used after a valid 

address has been provided to the memory. The data input is a slave interface that 

can generate a backpressure to the Neander organization while the memory is not 

able to receive a data write. 

In read operations, after issuing a valid data in the ADDR interface, the Control 

Unit uses the DATA_OUT interface to get the data from memory. The latter is a 

master interface, since it outputs data to be consumed by another elastic interface. 

Hence, the DATA_OUT can receive backpressure from the other elements in the 

Neander organization. 

To implement the elastic interfaces and be a Patient Process, the memory 

needs to be stallable. Therefore, the DATA_OUT interface must keep its state upon 

the presence of backpressure coming from the Neander elements.  

The backpressure received in the DATA_OUT interface is propagated to the 

ADDR interface, which becomes unable to receive new valid addresses since the 

previous address read is still pending by the Neander, as shown in the Figure 21 

below. 

Figure 21 – Patient memory elastic interfaces 
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The 1st read is concluded normally, with the ADDR interface receiving a valid 

data and this generating a valid data on the DATA_OUT elastic interface. When the 

data from the 2nd valid read address is read to be output, a backpressure is present 

on the DATA_OUT interface, what causes the memory to keep the output data until it 

can be consumed by the Neander datapath. This backpressure is propagated to the 

ADDR interface, which becomes unable to receive addr3 as a valid data. After the 

backpressure is off, the 2nd read is concluded and the 3rd read is performed, with the 

acceptance of addr3 as a valid data, followed by the output of data3. 

By implementing the elastic protocol, the Patient Memory can have variable 

latency and maintain the system latency-equivalent behavior. This characteristic is a 

key advantage when changing the core memory block in technology process 

exchanges. Hence, an IP with 1-cycle latency can be replaced by a 2-cycle memory 

Intellectual Property (IP) block without redesign on other parts of the system. 

5.8 Patient Control Unit 

 

As the central control unit of the microprocessor design, the Neander Control 

unit is the responsible for coordinating the data flow among the datapath registers, 

ensuring that the right data is moved to the right units in the right time to complete an 

instruction cycle.  

Since the data related units implement the elastic protocol in the Elastic 

Neander, the Control unit needs to be modified to be compatible with the elastic 

behavior of the data. With the Elastic Buffers replacing the synchronous registers and 

with the memory implementing the elastic protocol, the Elastic Neander control unit 

implements an elastic interface with each of the datapath components: AC, IR, MAR, 

MDR, NZ, PC and MEM. In the Control perspective, the input elastic signals are 

correspondent to the EB’s outputs and the Control’s output elastic signals correspond 

to the EB’s inputs, as exemplified in Figure 22 below. 

To make the Elastic Neander Control Unit a Patient Process, the FSM has to 

maintain the current state in case of a stall caused by the elastic protocol. Hence, the 

transitions between states of the Patient Control Unit (PCTRL) have to be sensitive to 

the datapath elastic signals relevant to the instruction being executed. 
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Figure 22 – IR<->Control elastic interfaces 

 

 

In summary, the Patient Control Unit’s FSM was defined based on the 

following general rules for each state and instruction, considering the previous and 

the current datapath elements’ state: 

1- Registers’ load input is replaced by the correspondent EB’s valid input; 

2- Elastic signals from a previous datapath element are connected to the 

current datapath element; 

3- Transitions to a next state wait until the current datapath element is ready 

to receive data (current state’s EB stop = 0); 

4- Transitions to a next state wait until the previous datapath element data is 

ready (previous state’s EB valid = 1); 

As an example, Figure 23 shows the dataflow in ST0, when MAR receives a 

valid data as the address of the next position to read from memory. Since the data 

that the address register stores in ST0 comes from PC, which has been loaded in a 

previous instruction cycle, the PCTRL connects the elastic control signals of the 

involved EBs. To keep the program counter’s data output unchanged until MAR 

consumes it, PC’s stop is kept asserted until ST0.  
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Figure 23 – Elastic Neander dataflow in ST0 

 

 

Since the instruction fetch phase is the same for all the instructions of the 

Neander architecture, the Figure 24 below shows the transitions of the FSM from 

ST0 to ST2 in any instruction cycle.  

 

Figure 24 – Instruction fetch phase FSM 

  

During ST0, the MAR EB receives a valid data provided by the PC EB 

(MAR_valid_out = PC_valid_in / sel = 0). Since the data being output by PC is ready 
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to be consumed by MAR, the stop signal of the PC slave interface is deasserted. The 

transition to from ST0 to ST1 is sensitive to the MAR’s stop output and the PC’s valid 

output. By considering these two signals as transition condition, the Control Unit 

ensures that in ST1 all the data needed to that state’s computation is ready. 

In ST1, the Control Unit deasserts PC’s stop input, since the incremented PC 

output will be used in a next instruction cycle time. Also in ST1, the MEM address 

interface receives a valid data, the address of the data to be read from memory. As 

the IR will receive the data read from memory in ST2, the FSM connects the IR stop 

output with the MEM data read interface stop input, to avoid reading a data that the 

IR will not be able to receive. The transition from ST1 to ST2 is conditioned to the 

state of MEM’s address stop output signal, which indicates the hability of the memory 

to receive a new address and read/write data from/to it. Also, the MAR’s valid output 

and PC’s stop input are considered to guarantee that the FSM leaves ST1 with all 

data needed to the next states ready. 

The ST2 is the state where the IR is loaded with the instruction read from the 

memory, so the IR valid input is connected to the MEM data valid output. Hence, the 

FSM will only transition from ST2 to ST3 when IR has received and propagated a 

valid data to its output. The presence of a valid data in IR’s output is crucial, since 

starting from ST3 the FSM is in instruction execution phase.   

Starting from ST3, the FSM executes the instruction fetch from memory in the 

previous phase, from ST0 to ST2. Since the execution phase is dependent on the 

instruction, from Figure 25 to Figure 33 below shows each FSM’s state outputs and 

transition conditions considering the current instruction. 

Figure 25 – FSM outputs and transitions from ST3 - STA, LDA, ADD, OR, AND, JMP, 
JN (n=1), JZ (z=1) 
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Figure 26 – FSM outputs and transitions from ST3 - JN (n=0), JZ (z=0) 

 

Figure 27 – FSM outputs and transitions from ST3 - NOT 

 

Figure 28 – FSM outputs and transitions from ST4 - STA, LDA, ADD, OR, AND 
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Figure 29 – FSM outputs and transitions from ST4 - JMP, JN (n=1), JZ (z=1) 

 

Figure 30 – FSM outputs and transitions from ST5 - STA, LDA, ADD, OR, AND 

 

Figure 31 – FSM outputs and transitions from ST5 - JMP, JN (n=1), JZ (z=1) 
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Figure 32 – FSM outputs and transitions from ST6 – STA 

 

Figure 33 – FSM outputs and transitions from ST6 - LDA, ADD, OR, AND 

 

 

In the new organization, the FSM can stay in a state for several cycles until the 

elastic channels involved in the dataflow indicate that all involved datapath elements 

are ready for the next state. Since the PC value should be incremented only once per 

Control increment command, the PC_incr_out signal is high during only one clock 

cycle where PC is able to receive data. Similarly, since the AC input is connected to 

its output after the ALU operation, the AC_load_out signal is high during only one 

clock cycle where AC is able to receive data. Otherwise, the PCTRL would corrupt 

the execution flow by pointing to a wrong memory address or performing multiple 

operations in the same data instead of only one. 

The resulting FSM is robust to the insertion of EBs in any of the Elastic 

Neander’s elastic channels, giving that the elastic signals on the last storage stage in 

the channel are connected to the PCTRL as the elastic signals for a given channel. 

As an example, an EB could be inserted between MAR and the MEM and the FSM 
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would still behave correctly if the EB output elastic control signals were connected to 

the PCTRL instead of MAR’s output elastic control signals. 

States ST2, ST6 and ST7 take at least 2 clock cycles, given that the FSM 

waits until that the data being input in the current datapath element are output by this 

same element and can be used in the next state. This restriction applies to these 

states because there is a strong dependence by the FSM on the current states data. 

For instance, in ST3 the PCTRL uses the IR output data to perform the execution 

phase of the instruction cycle, hence the instruction needs to be valid in the Control’s 

input. 

 

5.9 Functional Verification 

 

The functional behavior of the Synchronous and Elastic Neander designs was 

tested using the ModelSim Altera v10.1d simulation tool. A simple test environment – 

comprised of a Verilog testbench, a simulation tool compilation script and a memory 

initialization file – was built. 

The Neander testbench consists in a stimulus generation entity that exercises 

the Neander Design Under Test (DUT) by generating clock and reset signals. 

Since the Neander execution relies on the data stored in the Memory, the 

memory initialization file contains the image that represents the test program that the 

DUT will execute. 

The Counter Program shown in Figure 34 was defined to test the Neander 

designs functionalities. This program reads the memory position 128 (0x80), adds the 

increment defined in memory position 129 (0x81) and stores the result back in 

position 128. The JMP instruction makes the program restart its execution after 

completing the addition cycle. Hence, the Counter Program executes in a loop until 

there is clock being fed to the DUT. 
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Figure 34 – Counter Program 

 

 

Since the memory design target is an Altera Cyclone III FPGA, which has M9K 

type embedded memory blocks, the simulation libraries for such device components 

needed to be loaded in the simulation.  

The Neander design’s memory is implemented using a single port M9K Altera 

memory block, which has 2 clock cycles of delay between receiving an address and 

outputting the corresponding data. 

Given the target memory 2 cycles read latency characteristic, the 

Synchronous Neander design had to be slightly modified to accommodate this 

behavior. Hence, the FSM needs to wait 2 cycles on memory reading states before 

continuing execution. 

Since the Elastic FSM is designed to tolerate variable latencies, no changes 

were needed regardless of the memory delay.  

After running the simulation, the correctness of the program execution was 

performed by analyzing the waveform signals, which show that the Neander designs’ 

FSMs behavior is correct according the definition on section 3. Also, the Modelsim 

memory contents inspection tool shows that the value in the memory position 128 

was incremented, as expected. 

The latency equivalence principle can be observed when comparing the 

Synchronous and the Elastic Neander waveforms, as shown in Figure 35 below. 

Hence, despite the added delay of the Elastic protocol, both Neander designs have 
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the same behavior, confirming that the Elasticization process did not modify the 

system functionality. 

Figure 35 – Latency equivalent behavior of Neander designs 

 

 
 

5.10 FPGA demo  

 

The demonstration platform used to validate the designs’ behavior, 

performance and area characteristics is the Terasic DE-0 Cyclone III evaluation 

board. This platform has the input and output devices necessary to make the design 

run on a real device. The board features used in the demo are: 

 50 MHz differential clock 

 Slide switches 

 Seven segment displays 

 LEDs 

 

The demonstration purpose is to show the Neander execution flow on the 

FPGA. Therefore, the seven segment displays were used to present key Neander’s 

organization components data during the Counter Program execution, as shown in 

the Figure 36 below. 
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Figure 36 – Neander designs demonstration platform 

 

The PC value displayed is incremented as the Neander goes through the 

counter loop, while the IR value displays the current instruction being executed. The 

MDR data shows the current counter value being stored in 128 memory position. All 

the register values are displayed in hexadecimal base. A simple binary to seven 

segment converter was implemented to drive the DE0 displays properly. 

To make the demonstration observable, a clock divider was implemented to 

generate a 2Hz clock based on the board’s 50MHz clock. This slow clock drives the 

Neander components, making its results be displayed for at least 0.5 seconds. 

 

5.11 Design Synthesis 

 

Having verified the Neander designs’ functionality and defined the demo 

components, the Quartus II v13.1 tool was used to synthesize the whole design, 

mapping its modules to the DE0 board components. 

The Quartus II Pin Assignment tool was used to map the designs’ components 

inputs and outputs to the Cyclone III FPGA’s pins, following the definition for each 

board’s component on the DE0 user manual (TERASIC, 2011). 
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The synthesis flow configurations used were the tool’s defaults. The defaults 

include optimizations to the design, such as FSM states auto encoding, register 

packing and automatic gated clock conversion, which allows the tool to map clock 

gating logic – part of the Elastic design – to clock enable inputs of the FPGA 

registers. 

A main synthesis directive used is the Timing-Driven Synthesis, which makes 

the Quartus II tool take design timing constraints into account to generate the most 

optimized version of the design. This configuration depends on a Synopsys Design 

Constraint (SDC) file with the proper commands to identify the design’s timing 

requirements, as shown in Table 4 below. 

Table 4 – SDC commands used in Neander designs synthesis 

Design Constraint Description 

create_clock Specify the clock used by the system, in terms 

of frequency and design’s port assigned as clock 

input. 

derive_pll_clocks Automatically constrain PLL and other 

generated clocks. 

derive_clock_uncertainty Automatically calculate clock uncertainty to jitter 

and other effects. 

set_input_delay Constrain the input I/O path based on the board 

characteristics. 

set_false_path -to [all_outputs] Ignore the timing of clock to output paths due to 

low frequency characteristic of the seven 

segment displays. 

 

The SDC file defined is used by Quartus II on the Analysis & Synthesis  to 

perform a timing driven netlist generation; on the Fitter (Place & Route) to enforce 

placement and routing that meet the timing constraints; and lastly on the TimeQuest 

Timing Analysis step, to verify the generated post-synthesis design timing behavior. 
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5.12 Timing Analysis 

 

The designs’ timing analysis was performed using the TimeQuest Timing 

Analyzer tool of Quartus II. This tool analyzes the timing characteristics of the post-

synthesis design using the same SDC as the prior synthesis steps, which defines the 

system’s clock period as 7,5ns.  

Using three different operating condition models the TimeQuest performs a 

multi-corner timing analysis. The operating conditions differ from each other in terms 

of voltage, process, and temperature, aiding the tool to determine the timing behavior 

of the design under such conditions. 

For the Synchronous and Elastic Neander analysis, the TimeQuest report’s 

main results evaluated were the Setup and Hold slacks and maximum achievable 

frequency (Fmax) on each operating condition, as shown in Table 5 below. 

Table 5 – Neander designs timing results evaluated 

Evaluated result 
Operating 

Condition Model 

Synchronous 

Neander 

Elastic 

Neander 

Worst setup slack 

Slow 1200mV 85C 1,924 ns 1,048 

Slow 1200mV 0C 2,148 ns 1,657 

Fast 1200mV 0C 2,749 ns 2,506 

Worst hold slack 

Slow 1200mV 85C 0,280 ns 0,320 

Slow 1200mV 0C 0,281 ns 0,309 

Fast 1200mV 0C 0,134 ns 0,153 

Fmax 

Slow 1200mV 85C 179,34 MHz 154,99 MHz 

Slow 1200mV 0C 186,85 MHz 171,14 MHz 

Fast 1200mV 0C 210,48 MHz 200,24 MHz 

 
  



 
 
 

54 
 

6 RESULTS ANALYSIS 

 

Both Synchronous and Elastic Neander designs have the same functionality, 

as demonstrated in section 5.9 with the designs functional verification step of the 

design flow. However, due to the organization differences, each system differs from 

each other in several aspects, like data computation latency, circuit timing and area. 

By making the Elastic Neander’s FSM a patient process, sensitive to the 

elastic protocol, this version of the system has added latency when compared to the 

synchronous version. As an example, Figure 37 below shows a comparison between 

Elastic and Synchronous Neander execution time for the LDA or ADD (a), STA (b) 

and JMP (c) instructions. 

Figure 37 - Synchronous vs Elastic instruction execution time 

 

The Elastic FSM takes more clock cycles to execute the Neander architecture 

instructions when compared to the Synchronous system, as exemplified in the Table 

6 below. This added latency can be even higher if the elastic channels get stalled. 
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Table 6 – Clock cycles per instruction execution 

 
Execution time per instruction 

(clock cycles) 

Design STA LDA ADD JMP 

Synchronous 10 11 11 8 

Elastic 11 14 14 9 

 

Since a Counter Program can be implemented as a LDA, ADD, STA and JMP 

instructions sequence loop, the total run time of this program is determined by the 

sum of each instruction execution time. Hence, the Synchronous organization takes 

40 clock cycles to increment the counter by 1, while the Elastic organization takes 48 

clock cycles to do the same. Therefore, the added delay of the Elastic organization is 

8 clock cycles per unitary increment of the Counter Program.  

When counting from 0 to 255, the Elastic Neander takes 12.240 clock cycles 

to complete execution, while the Synchronous Neander takes 10.200 clock cycles. 

By analyzing the 2.040 clock cycles difference between the organizations, it is noted 

that on higher run times, the Elastic organization added latency is more evident. 

To enable to analysis of the latency difference on higher run times, an auxiliary 

20 bits counter was added in the Neander test bench. This extra counter measures 

the amount of clock cycles that the 8 bits Neander takes to count until 2^20 

(20’hFFFFF). The comparison with the counter until 255 (8’hFF) can be seen in the 

Table 7 and Chart 1 below. 

 

Table 7 – 8 bits counter vs 20 bits counter run time 

Stop condition Design Clock cycles Difference 

8’hFF 
Synchronous 10200 

2040 
Elastic 12240 

20’hFFFFF 
Synchronous 41943000 

8388600 
Elastic 50331600 
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Chart 1 – Run time difference increase with higher run times 

 

After going through the synthesis process described in section 5.11, where 

both Synchronous and Elastic 8bits Neander were subject to the same timing 

constraints and synthesis tool configuration, the area and timing results are as shown 

in Table 8 and Table 9 below.  

The Area results are specified by the amount of FPGA logic and FFs (Flip 

Flops) used to implement each design. Due to optimizations done by the synthesis 

tool, like automatic FSM codification, the resulting number of FFs is not the same as 

the one originally specified in the design. 

Table 8 - 8bits Synchronous and Elastic Neander Area results 

 Area 

Design FPGA % FFs 

Synchronous 0,82 42 

Elastic 2 75 

 

As expected, the Elastic Neander area is higher than the Synchronous 

Neander’s. This is explained by the additional storage elements and control logic of 

the Elastic Buffers that have replaced the simple registers of the Synchronous 

design. 

The Timing results are composed of the worst Setup and Hold slacks of each 

circuit version, what impacts the maximum achievable frequency (Fmax) determined 

by the tool to each design.  
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Table 9 - 8bits Synchronous and Elastic Neander Timing results 

 Timing 

Design 
Setup 

slack 

Hold 

slack 

Fmax 

(MHz) 

Synchronous 1,92 ns 0,28 ns 179,34 

Elastic 1,04 ns 0,32 ns 154,99 

 

Since the 8 bits Neander is a simple design, the additional logic of the Elastic 

version did not represent a performance advantage over the Synchronous system. 

This is due to the increased placing and routing complexity of the Elastic design, 

what makes the synthesis tool achieve worse timing results. 

Given the Fmax of each circuit, the time to count until 20’hFFFFF can be 

calculated as the multiplication of the clock period by the amount of clock cycles 

taken to complete the task. Hence, the time taken to run (Trun) in ns is shown in 

Table 10 below. 

Table 10 - 8bits Synchronous and Elastic Neander Trun(ns) comparison 

Stop condition Design Trun (ns) Difference (ns) 

20’hFFFFF 
Synchronous 233.874,15 

90.866,73 
Elastic 324.740,88 

 

In accordance to the performance difference of the two designs, the Elastic 

Neander presents a higher run time when compared to the Synchronous counterpart. 

This Trun disadvantage reinforces that turning simple synchronous circuits into 

elastic ones does not necessarily means performance improvements. Hence, the 

area overhead imposed by the elasticization process becomes does not bring 

significant advantages in such cases. 

However, the elastic behavior of a circuit can be an advantage when critical 

computation paths start to increase the clock to clock transfers required times, 

lowering the Fmax achievable by a circuit. To demonstrate this property, the Neander 

datapath was slightly modified to support higher data widths. By making the Memory 
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word size, the AC, the MDR and the ALU data widths configurable, it was possible to 

create 64 bits and 128 bits versions of the Neander. 

The 64 bits Synchronous Neander synthesis process determines that the 

design’s critical paths are the ones going through the ALU, resulting in a Fmax of 

124,44 MHz – a drop of around 55 MHz compared to the 8bits version. The 64 bits 

Elastic Neander had a reported Fmax of 115.02 MHz – a drop of around 40 MHz. 

These results are expected, due to the increased logic and arithmetic complexity of 

64bits operations when compared to 8bits operations. 

Since the Elastic Neander is tolerant to variable latencies on the computational 

processes composing the system (CORTADELLA, 2006), the ALU operations in the 

Elastic version of the design can take more than one clock cycle without impacting 

the processor’s execution flow. 

Therefore, the ALU needs to implement the elastic protocol to make its latency 

accountable by the other patient processes in the system. This is done by mapping 

the ALU delay behavior with a Delay Model, which influences the variable latency 

unit – in this case the ALU – elastic control. This control implements the elastic 

protocol as a result of the Delay Model signals and the elastic signals themselves. 

The Figure 38 below shows the Elastic ALU in the Elastic Neander organization. The 

ALU elastic interface follows the same principle of the other elastic interfaces on the 

design, communicating with the Control Unit. 

Based on the Fmax drop caused by the ALU combinational logic chains on the 

64 bits Neander, the ALU delay was set to 2 clock cycles instead of one. This is done 

by implementing a Delay Model accordingly, which will set its done flag after 2 clock 

cycles, resulting in the assertion of the elastic valid output. The design’s functionality 

was re-verified and confirmed to be correct, despite the additional 2,1K clock cycles 

to count until 20’hFFFFF due to the increased delay of the Elastic ALU. 

To make the synthesis tool aware of the delay behavior of the Elastic ALU, the 

timing constraints map this multi-cycle data transfer with a set_multicycle_path 

command. This command sets the tool to consider all transfers going through the 

ALU to have a 2 clock cycles delay. 
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Figure 38 - Elastic Neander with Elastic ALU 

 

Having an extra clock cycle to perform the ALU dependent data transfers, the 

synthesis tool has more flexibility to place and route the design, leading to better 

performance results, as shown in Table 11 below. 

Table 11 - 64bits Neander Fmax 

Design  

(64 bits) 

ALU delay 

(clock cycles) 

Fmax 

(MHz) 

Synchronous 1 124,44 

Elastic 1 115,02 

Elastic 2 153,92 

 

With an Elastic ALU of 2 cycles delay, the 64 bits Elastic design’s Fmax is 

around 23% higher than the Synchronous design’s Fmax. This operating frequency 

difference results in similar run times between the two designs, reducing the 

Synchronous design run time advantage, as shown in Table 12 below. 
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Table 12 - 64bits Synchronous and Elastic Neander Trun(ns) comparison 

Stop condition Design Trun (ns) Difference (ns) 

20’hFFFFF 
Synchronous 337.053,92 

3.569,38 
Elastic 340.623,30 

 

This experiment was repeated with 128 bits data width Neander designs, 

resulting in the achieving of a lower Trun by the Elastic design over the Synchronous, 

as shown in Table 13 below. 

Table 13 - 128bits Synchronous and Elastic Neander comparison 

Stop condition 
Design 

(128 bits) 

ALU delay 

(clock cycles) 

Fmax 

(MHz) 

Trun  

(ns) 

20’hFFFFF 
Synchronous 1 86,61 484,274.22 

Elastic 2 148,26 353,627.00 

 

By analyzing the results of Synchronous and the Elastic Neander designs over 

the three data width variants, it is clear that as the circuit gets denser and the logic 

more complex, the elastic behavior brings more performance advantages at the price 

of increased area, as shown in Chart 2 (a) and (b) below.  

Chart 2 (b) shows that with a 128 bits data width, the FPGA percentage 

allocation is the same for both designs, despite the use of 282 FFs by the 

Synchronous design and 317 by the Elastic design. Hence, the combinational units 

are the main contributors for the use of Logic Elements by the synthesis tool. 

The Table 14 below presents the full results for all design variants among 

Synchronous, Elastic, data widths and ALU delays discussed in this section. A 128 

bits Elastic Neander variant with ALU delay of 3 clock cycles is part of the results, 

demonstrating an even higher performance advantage for Elastic system at the price 

of one additional FF. 
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Chart 2 – Results overview 

 

 
Table 14 – Full Synchronous and Elastic Neander designs results 

Data 
width 

Design ALU 
delay 
(clock 
cycles) 

FPGA 
% 

FFs F 
Max 
(MHz) 

Stop 
condition 

Clock 
cycles 

T run  
(ns) 

8 bits 
Sync 1 0,82 42 179,34 20'hFFFFF 41.942.990 233.874,15 

Elastic 1 2 75 154,99 20'hFFFFF 50.331.589 324.740,88 

64 bits 

Sync 1 3 154 124,44 20'hFFFFF 41.942.990 337.053,92 

Elastic 
1 4 188 115,02 20'hFFFFF 50.331.589 437.589,89 

2 4 189 153,92 20'hFFFFF 52.428.739 340.623,30 



 
 
 

62 
 

Data 
width 

Design ALU 
delay 
(clock 
cycles) 

FPGA 
% 

FFs F 
Max 
(MHz) 

Stop 
condition 

Clock 
cycles 

T run  
(ns) 

128 bits 

Sync 1 6 282 86,61 20'hFFFFF 41.942.990 484.274,22 

Elastic 
2 6 317 148,26 20'hFFFFF 52.428.739 353.627,00 

3 6 318 161,21 20'hFFFFF 54.525.889 338.228,95 
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7 CONCLUSIONS AND FUTURE WORK 

 

As an alternative towards solving the challenges imposed by the increased 

wire-latency ratio in recent integrated circuit production technologies, the Elastic 

Circuits paradigm enables complex designs to become more robust to such impacts 

and even offers performance advantages over traditional synchronous systems, at 

the cost of area overhead. However, this paradigm maintains the designers’ ability to 

use synchronous EDA tools and flow instead of imposing drastic infrastructure 

changes like the asynchronous methodology does. 

A review of the state of the art literature on Latency Insensitive and Elastic 

systems highlights the principles of this type of design methodology and brings the 

key factors that must be taken into account when planning to apply the Elastic 

Design flow into a Synchronous Design. One of those factors is the ability of the 

original system’s Computational Processes to be stalled, a major requirement to turn 

them into Patient Processes that are able to retain its state while other processes are 

not able to receive new valid data. 

The simple multi-cycle 8 bits Neander processor architecture was explored as 

an experimental platform to exercise the principles of the Elastic design, since it has 

a well-known behavior, easily implemented and verified. A synchronous version of 

Neander organization was developed to enable the application of the elasticization 

process and evaluation of such procedure’s effects in terms of timing and area. 

By using the same synchronous design tools, an Elastic version of the 

Neander was implemented as a variant of the original organization. The Elastic 

Neander functional verification proves that both designs are latency equivalent, 

meaning that both versions have the same functionality despite the latencies added 

by the elasticization process. 

The synthesis process of both designs demonstrates that, as expected, the 

Elastic system’s area is higher than the Synchronous version, due to the replace of 

single storage elements by Elastic Buffers, which are dual storage elements capable 

of retaining data in the presence of backpressures. 

Being a simple design, the 8 bits Neander does not have critical computation 

paths in the technology used, what results in timing slack loss by the Elastic system 

due to the extra logic added to control the elastic protocol. 
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However, on increased complexity designs like 64 and 128 bits Neander 

variations, the few combinational elements of the design start to suffer timing closure 

problems. In such expanded width datapaths, the elastic behavior enables 

functionally correct transformations that make the Elastic design’s timing constraints 

more flexible, resulting in overall performance advantages of around 30% over the 

Synchronous system. 

The design flow is closed with the deployment of both designs in a real FPGA 

evaluation platform, making use of the board components to validate that the Elastic 

transformations preserve the behavior of the original Synchronous Neander. 

Besides the area and timing aspects evaluated, the Elastic Circuits tend to 

offer power advantages over the Synchronous systems due to the fact that the elastic 

computation units and its channels are sensitive to the presence of valid data, 

enabling power saving when the system is idle. This analysis is open to be explored 

in future works. 

With demonstrated timing advantages over the traditional Synchronous 

designs, the Elastic Circuits paradigm also offers good flexibility in its components, 

which could lead to even higher performance gain. Simple modifications to the 

presented design, like different Elastic Buffer organizations, and bigger architectural 

changes like Recycling, Early Evaluation and Speculative Execution are possibilities 

that can be explored to tune the Elastic Circuits results, as future work that can be 

developed in even higher complexity systems. 
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