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RESUMO 

 

  

O objetivo deste estudo foi avaliar a influência da adição de dois tipos de vidros 
bioativos nas propriedades de uma resina adesiva experimental. Foram produzidos 
dois vidros bioativos pelo método sol-gel, sendo um deles convencional e o outro 
com a incorporação de 2%, em peso, de Nb2O5. Foram formuladas três resinas 
adesivas com 66,6% de BisGMA e 33,3% de HEMA: GC- Grupo Controle (resina 
sem vidro bioativo); BAG – resina contendo 2% em peso de vidro bioativo 
convencional; e BAGNb - resina contendo 2% em peso de vidro bioativo com 
nióbio. Avaliou-se radiopacidade (n=3), degradação em solvente (n=3), grau de 
conversão (n=3), resistência à flexão (n=5), resistência de união imediata e 
longitudinal de 1 ano (n=12) e deposição mineral das resinas adesivas. A análise 
estatística foi realizada utilizando ANOVA 1-via e Tukey para radiopacidade, 
degradação em solvente, grau de conversão e resistência à flexão; ANOVA 2-vias 
para resistência de união e teste t pareado para os valores de dureza inicial e final. 
Foi adotado um nível de significância de 5%. Não houve diferença estatisticamente 
significativa entre os grupos na análise de radiopacidade e grau de conversão. BAG 
teve maior degradação em solvente do que BAGNb, que, por sua vez não mostrou 
diferença em relação ao GC. A adição de vidro bioativo causou diminuição da 
resistência à flexão dos grupos BAG e BAGNb sem diferença entre ambos. BAG 
apresentou menor resistência de união imediata comparado ao BAGNb, que, por 
sua vez não mostrou diferença em relação ao GC. Após 1 ano, os grupos não 
apresentaram diferença estatisticamente significativa na resistência de união. 
BAGNb apresentou maior deposição mineral do que os grupos GC e BAG. Pode-
se concluir que foi possível a produção de uma resina adesiva com a adição de 
vidro bioativo. A adição de um vidro bioativo com nióbio na resina adesiva mostrou 
melhores resultados que a incorporação do vidro bioativo Sol-gel convencional, 
como melhor resistência de união imediata e maior deposição mineral.  

Palavras-chave: Adesivos dentinários. Materiais biocompatíveis. Vidros bioativos.  

Nióbio. 
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ABSTRACT 

 

The aim of this study was to evaluate the influence of the addition of two types of 
bioactive glasses in an experimental dental adhesive resin. Two bioactive glasses 
were produced by the sol-gel method (conventional and 2wt% of Nb2O5). Three 
adhesive resins were formulated with 66.6wt% BisGMA and 33.3wt% HEMA: CG-
Control (resin without bioactive glass); BAG - with 2wt% bioactive glass; and 
BAGNb - with 2wt% bioactive glass with niobium. Radiopacity (n=3), softening in 
solvent (n=3), degree of conversion (n=3), flexural strength (n=5), immediate and 
longitudinal microtensile bond strength (n = 12) and mineral deposition were 
evaluated. Statistical analysis was performed using one-way ANOVA and Tukey for 
radiopacity, softening in solvent, degree of conversion and flexural strength; two-
way ANOVA for bond strength and Paired t-test for hardness values before and after 
immersion, with a significance level of 5%. There was no statistical significant 
difference in the radiopacity and degree of conversion analysis. BAG had more 
softening in solvent compared to CG, which does not occur with BAGNb. The 
addition of both types of bioactive glasses caused a decrease in flexural strength, 
without difference between BAG and BAGNb. BAGNb presented higher immediate 
bond strength compared to BAG. There was no statistically significant difference 
between BAGNb and CG. After 1 year storage, groups presented no statistically 
significant difference in bond strength. BAGNb showed higher mineral deposition 
than CG and BAG. In conclusion, it was possible to produce an adhesive resin 
containing bioactive glass. The addition of bioactive glass with niobium showed 
better results compared to the addition of a conventional sol-gel bioactive glass, as 
better immediate bond strength and more mineral deposition. 
 
Keywords: Dental adhesives. Biocompatible materials. Bioactive glasses. Niobium. 
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1 INTRODUÇÃO  

 

Os avanços na Odontologia adesiva vêm possibilitando a adoção de 

estratégias cada vez mais conservadoras. O desenvolvimento de materiais de uso 

odontológico com melhores propriedades físicas e mecânicas ao longo do tempo e 

com características clínicas melhores vem sendo objeto de diversos estudos 

(PASHLEY et al., 2004; FERRACANE, 2006; TAY; PASHLEY, 2009; COLLARES et 

al., 2010). Recentemente os materiais com potencial de interação com os tecidos 

adjacentes vêm ganhando espaço (DOROZHKIN, 2013).  

A longevidade das restaurações dentárias está relacionada com o sucesso 

na formação do polímero (FERRACANE et al., 2006). Muitas pesquisas visam 

produzir adesivos com menor degradação (COLLARES et al., 2011), inibição da 

enzimas que degradam colágeno (PASHLEY et al., 2004), adição de carga (VAN 

LANDUYT et al., 2007) (KALACHANDRA, 1989) (KIM et al., 2005) e bioatividade 

(DEGRAZIA et al., 2017) (LEITUNE et al., 2013a) (LEITUNE et al., 2013b). A 

remineralização de dentina pode substituir e preencher áreas com água ou 

colágeno exposto na camada híbrida (TAY et al., 2008), além do fato de que a 

remineralização da dentina é importante para o controle de cáries dentinárias, 

melhoria da estabilidade da ligação adesiva à dentina (DEGRAZIA et al., 2016) 

(IMAZATO et al., 2014) (SAURO et al., 2015). A remineralização da interface 

adesiva pode até funcionar como proteção contra ácidos produzidos por bactérias 

orais (DEGRAZIA et al., 2017). Os vidros bioativos podem induzir a formação de 

apatita na dentina (FERNANDO et al., 2017), mesmo em dentina completamente 

desmineralizada (WANG et al., 2011), indicando que o processo não é dependente 

de pontos de cristalização na dentina. Além disso, os vidros bioativos podem ser 

eficientes para a oclusão dos túbulos dentinários (CURTIS et al., 2010). 

Os vidros bioativos são compostos cerâmicos capazes de liberar íons em 

meio aquoso, interagindo com os tecidos circundantes. Esses íons são capazes de 

favorecer o processo de remineralização de tecidos duros. O vidro bioativo 

conhecido como 45S5® foi um dos primeiros vidros bioativos desenvolvidos na 

segunda metade do século 20, apresentando ótimos resultados para a 

remineralização (HENCH, 2006).  

A bioatividade desses materiais depende de suas composições químicas e 

microestruturas, sendo o método de produção do vidro, determinante para o 
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estabelecimento das suas propriedades. A fundição é o método de produção dos 

vidros bioativos comerciais disponíveis atualmente, como o 45S5® (um vidro 

bioativo do sistema quaternário SiO2-Na2O-CaO-P2O5). Como alternativa, se tem o 

método sol-gel que também pode ser utilizado na produção desses vidros, gerando 

materiais com maior solubilidade devido à sua menor cristalinidade e com maior 

porosidade e área superficial, favorecendo assim a interação do material com o 

meio (GROH; DÖHLER; BRAUER, 2014; JONES, 2013).  

Além de um processo de produção mais fácil, vidros bioativos produzidos 

pelo método sol-gel permitem a incorporação de componentes a fim de melhorar as 

propriedades do material (JONES, 2013; PIRAYESH; NYCHKA, 2013; SIQUEIRA; 

PEITL; ZANOTTO, 2011), assim como outros métodos de produção (MIGUEZ-

PACHECO et al., 2018).  Dentre os componentes com potencial para utilização com 

esse fim está o Pentóxido de Nióbio (Nb2O5), que apresenta excelente 

biocompatibilidade (FOOLADI et al., 2013; LEITUNE et al., 2013) e está associado 

à redução da citotoxicidade, à indução de calcificação quando em contato com 

células humanas, e ao aumento da atividade da fosfatase alcalina (KUSHWAHA et 

al., 2012; LOPES et al., 2014). 

Considerando que a interface adesiva fica exposta ao meio oral, ocorrendo 

ali grande parte das falhas restauradoras (SPENCER et al., 2010; BOHATY et al., 

2013) e que muitas vezes, principalmente em lesões profundas de cárie há a 

presença de tecido desmineralizado no fundo da cavidade (SCHWENDICKE; 

GÖSTEMEYER, 2016), um material que favoreça a mineralização é desejável. Não 

foram encontrados na literatura estudos avaliando a adição de vidros bioativos com 

adição de nióbio a resinas adesivas, portanto, a incorporação desse vidro bioativo 

com nióbio a uma resina adesiva experimental merece ser estudada, podendo ser 

uma opção para promover avanços e melhorias ao material. Sendo assim, o 

objetivo deste trabalho foi desenvolver um adesivo experimental com a adição de 

dois tipos de vidros bioativos e avaliar suas propriedades. 

 

 

 

 

 

 



8 
 

2 ARTIGO CIENTÍFICO 

 

EXPERIMENTAL ADHESIVE RESIN WITH ADDICTION OF BIOACTIVE 

GLASSES 

HERPICH, T.L.*1; BALBINOT, G.S.1; COLLARES, F.M.1; LEITUNE, V.C.B.1; 

SAMUEL S.M.W.1 

1 Dental Materials Laboratory. School of Dentistry. Federal University of Rio Grande 

do Sul, Porto Alegre, RS, Brazil. 

 

ABSTRACT 

The aim of this study was to evaluate the influence of the addition of two types of 
bioactive glasses in an experimental dental adhesive resin. Two bioactive glasses 
were produced by the sol-gel method (conventional and 2wt% of Nb2O5). Three 
adhesive resins were formulated with 66.6wt% BisGMA and 33.3wt% HEMA: CG-
Control (resin without bioactive glass); BAG - with 2wt% bioactive glass; and 
BAGNb - with 2wt% bioactive glass with niobium. Radiopacity (n=3), softening in 
solvent (n=3), degree of conversion (n=3), flexural strength (n=5), immediate and 
longitudinal microtensile bond strength (n = 12) and mineral deposition were 
evaluated. Statistical analysis was performed using one-way ANOVA and Tukey for 
radiopacity, softening in solvent, degree of conversion and flexural strength; two-
way ANOVA for bond strength and Paired t-test for hardness values before and after 
immersion, with a significance level of 5%. There was no statistical significant 
difference in the radiopacity and degree of conversion analysis. BAG had more 
softening in solvent compared to CG, which does not occur with BAGNb. The 
addition of both types of bioactive glasses caused a decrease in flexural strength, 
without difference between BAG and BAGNb. BAGNb presented higher immediate 
bond strength compared to BAG. There was no statistically significant difference 
between BAGNb and CG. After 1 year storage, groups presented no statistically 
significant difference in bond strength. BAGNb showed higher mineral deposition 
than CG and BAG. In conclusion, it was possible to produce an adhesive resin 
containing bioactive glass. The addition of bioactive glass with niobium showed 
better results compared to the addition of a conventional sol-gel bioactive glass, as 
better immediate bond strength and more mineral deposition. 
 
 
Keywords: Dental adhesives. Biocompatible materials. Bioactive glasses. Niobium. 
 

INTRODUCTION 

Advances in adhesive dentistry promoted the increase of conservative 

strategies. The development of materials for dental use with better physical and 

mechanical properties over time and with better clinical characteristics has been the 

subject of several studies (PASHLEY et al. 2004; FERRACANE, 2006; TAY, 
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PASHLEY, 2009; COLLARES et al., 2010). Recently materials with potential for 

interaction with adjacent tissues have been more studied (DOROZHKIN 2013). 

Dental restorations longevity is related with a successfully polymer formation 

(FERRACANE et al., 2006). Many researches aim to produce adhesives with lower 

degradation (COLLARES et al., 2011), inhibition of enzyme collagen degradation 

(PASHLEY et al., 2004), filler addition (VAN LANDUYT et al., 2007) 

(KALACHANDRA S., 1989) (KIM et al., 2005) and bioactivity (DEGRAZIA et al., 

2017) (LEITUNE et al., 2013a) (LEITUNE et al., 2013b). Dentin mineralization can 

replace and fill up areas with water or exposed collagen on hybrid layer (TAY et al., 

2008), besides the fact that dentin remineralization is important to dentinal caries 

control, improvement of dentin bonding stability (DEGRAZIA et al., 2016) (IMAZATO 

et al., 2014) (SAURO et al., 2015). Resin-dentin interface mineralization can even 

work as protection from acids produced by oral bacteria (DEGRAZIA et al., 2017). 

Bioactive glasses can induce apatite formation in dentin (FERNANDO et al., 2017), 

even in completely demineralized dentin (WANG et al., 2011), indicating that the 

process is not dependent on seed crystalites in dentin. Furthermore, BAGs can be 

efficient for tubule occlusion, with the formation of plugs in those or apatite layer in 

its surface (CURTIS et al., 2010). 

Bioactive glasses are ceramic compounds capable of releasing ions in 

aqueous medium, interacting with the surrounding tissues. These ions are capable 

of favoring the process of remineralization of hard tissues. The bioactive glass 

known as 45S5® was one of the first bioactive glasses developed in the second half 

of the 20th century, presenting excellent results for remineralization (HENCH, 2006). 

The bioactivity of these materials depends on their chemical compositions 

and microstructures, being the method of production of the glass determinant for the 

establishment of its properties. Melt-quench is the production method of 

commercially available bioactive glasses, such as 45S5® (a bioactive glass of the 

SiO2-Na2O-CaO-P2O5 quaternary system). As an alternative, there is the sol-gel 

method that can also be used for the production of these glasses, generating 

materials with greater solubility due to their lower crystallinity and with greater 

porosity and surface area, favoring the interaction of the material with the medium 

(GROH; DÖHLER; BRAUER, 2014; JONES, 2013).  

Besides an easier production process, bioactive glasses produced by sol-gel 

method allow the incorporation of components in order to improve the properties of 
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the material (JONES, 2013, PIRAYESH; NYCHKA, 2013; SIQUEIRA; PEITL; 

ZANOTTO, 2011), as well as other methods (MIGUEZ-PACHECO et al., 2018). 

Among the components with potential for this purpose are niobium compounds, as 

niobium pentoxide (Nb2O5), which has excellent biocompatibility (FOOLADI et al., 

2013) and is associated with the reduction of cytotoxicity, the induction of 

calcification and the increase of alkaline phosphatase activity (KUSHWAHA et al., 

2012; LOPES et al., 2014).  

Most of the restorative failures occur in the adhesive interface (tooth-

restoration interface), an area exposed to the oral medium (SPENCER et al., 2010; 

BOHATY et al., 2013). Besides, often there is the presence of demineralized tissue 

at the bottom of the cavity, especially in deep caries lesions (SCHWENDICKE; 

GÖSTEMEYER, 2016). Considering those facts, a material favoring mineralization 

is desirable, and the incorporation of bioactive glasses with niobium to an 

experimental adhesive resin should be studied. The aim of this study was to develop 

an experimental dental adhesive resin with the addition of two types of bioactive 

glasses and evaluate its properties. 

 

 

MATERIAL AND METHODS 

In this study were used the monomers bisphenol A glycol dimethacrylate 

(BisGMA) and hydroxyl-2-ethyl methacrylate (HEMA), purchased from Sigma-

Aldrich (St. Louis, MO, USA). The photo-initiators camphorquinone (CQ), ethyl 

dimethyl-4-aminobenzoate (EDAB) and hydroxytoluene butylated (BHT) were 

purchased from Aldrich Chemical (Milwaukee, MI, USA). Niobium chloride (NbCl5 - 

CBMM, Araxá, MG, Brazil), nitric acid (HNO3 – Merck, Darmstadt, Germany), 

tetraethyl orthosilicate (TEOS– Sigma Aldrich, St. Louis, Missouri, EUA), triethyl 

phosphate (TEP Sigma Aldrich, St. Louis, Missouri, EUA), calcium nitrate (Ca(NO3)2 

- Química Moderna, Barueri, São Paulo, Brazil)  and sodium nitrate (NaNO3 – 

Química Moderna, Barueri, São Paulo, Brazil)  were used in the synthesis of 

bioactive glasses. 

 

PRODUCTION OF BIOACTIVE GLASSES 

https://en.wikipedia.org/wiki/Tetraethyl_orthosilicate
https://en.wikipedia.org/wiki/Triethyl_phosphate
https://en.wikipedia.org/wiki/Triethyl_phosphate
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Glasses are result of a mixture of precursors and mineral modifiers. TEOS 

[Si(OCH2H5)4] and TEP [C2H5)3PO4] were used as precursor while calcium nitrate 

[Ca(NO3)2] and sodium nitrate [NaNO3]  were the mineral modifiers. Precursors were 

hydrolyzed in 250ml of HNO3 1M solution under stirring for 20min. Thereafter, 0.015 

mol of TEOS were mixed during 60min and the other reagents were sequentially 

added in 45min intervals as following: 0.017mol of TEP, 0.085 mol of Ca(NO3)2 and 

0.16 mol of NaNO3. The obtained sol was stored during 5 days in room temperature. 

Gel was submitted to ageing in 70ºC/24 hours, drying in 120ºC/24 hour and 

calcinated in 700ºC/24h.  

For bioactive glasses with niobium (BAGNb) synthesis, 0.4g of niobium 

chloride (NbCl5) was mixed to 8.3ml ethanol and 0.17ml distilled water. Niobium was 

added to bioactive glasses during mixture of precursors. 

 

FORMULATION OF EXPERIMENTAL ADHESIVE RESINS 

Experimental adhesive resins were obtained by mixing 66.6 wt% BisGMA and 

33.3 wt% HEMA. CQ and EDAB were added at 1 mol% as photoinitiator system, 

according to the mols of used monomers. There was also added 0.1 wt% of BHT to 

the resin. Three experimental adhesive resins were formulated: CG (Control group, 

without addition of bioactive glasses), BAG (with 2 wt% of conventional bioactive 

glass) and BAGNb (with 2 wt% of bioactive glass with niobium). Reagents were 

handmixed and sonicated for 180 s. The light source device used for photoactivation 

for all tests was Radii Cal (1200 mW/ cm2, SDI, Bayswater, Victoria, Australia). 

 

RADIOPACITY 

For radiopacity (RP) assay, three specimens for group (n=3), 6mm in 

diameter and 1mm thickness, were produced. X-ray images were taken with 

phosphorous plates Digital System (VistaScan, Dürr Dental GmbH & Co. KG, 

Bietigheim- Bissingen, Germany) using an exposure time of 0.4 s and a focus-film 

distance of 400 mm. The X-ray source (DabiAtlante model Spectro 70X) was 

operated with a tungsten anode at 70 kV and 8 mA. Each of the three films 

contained one specimen of each of the three experimental groups. An aluminium 

step-wedge was exposed with the specimens in all images. The aluminium step-

wedge thickness ranged from 0.5 mm to 5.0 mm in increments of 0.5 mm. Images 

obtained were analysed with software Image J. 
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DEGREE OF CONVERSION 

The degree of conversion (DC) was evaluated by Fourier transform infrared 

spectroscopy FTIR) with a Vertex 70 (Bruker Optics, Ettlingen, Germany) 

spectrometer equipped with an attenuated total reflectance device (Platinum ATR-

QL; Bruker Optics) composed of a horizontal Diamond crystal with a 45° mirror 

angle. A support was used for leaving a 1mm distance between Light curing unit and 

samples. The Opus software (Bruker Optics, Ettlingen, Germany) used a Blackman-

Harris 3-Term apodization function in a range of 4000 to 400 cm-1 and 64 scans with 

a 4cm-1 resolution. Samples (n=3) were directly dispensed onto the diamond crystal 

into a polyvinylsiloxane matrix for standardization (5 mm in diameter and 1 mm in 

height) and one spectrum was obtained prior photoactivation and another one 

immediately after photoactivation for 20 s. DC was calculated according to a 

previous study (LEITUNE et al., 2013a).  

 

MICROHARDNESS AND SOFTENING IN SOLVENT 

Specimens as used for radiopacity assay were used for Knoop 

microhardness (KHN) and softening in solvent (n=3). Those resin specimens were 

embedded in acrylic resin and polished with carbide sandpapers (# 600, 1000, 1200, 

2000, under distilled water irrigation) and felt discs with alumina suspension 

(Alumina 1.0 mm, Arotec, Cotia, SP, Brazil). The specimens were dried and stored 

at 37ºC for 24h and then subjected to a initial microhardness test (KHN1) with three 

indentations (10g/5s) using a digital microhardness tester (HMV 2, Shimadzu, 

Tokyo, Japan). Specimens were then subjected to softening in absolute ethanol for 

2 h at 37 °C and the microhardness values were measured again (KHN2). The 

percent difference was calculed as a preview study (LEITUNE et al. 2013b). 

 

FLEXURAL STRENGTH 

Five samples of each group measuring 10 mm long, 2 mm wide, 2 mm thick 

were subjected to flexural strength test. The adhesive resins were inserted into a 

metallic matrix and a polyester strip was placed on them before 30s light curing at 

the bottom and at the top of the specimens. The samples were stored for 24h at 

37°C and submitted to flexural strength test using a mechanical testing machine 
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(Shimadzu EZ-SX,Shimadzu Corp., Kyoto, Japan) at a crosshead speed of 0.5 

mm/min until rupture of the specimen. 

 

MICROTENSILE BOND STRENGTH 

 Seventy-two bovine incisors, free of cracks and caries, were obtained at a 

slaughterhouse and stored for a maximum period of 3 months. Buccal surface of the 

teeth was worn out until dentin was exposed. Lingual face was worn out too in order 

to let both faces plane. Before restauration, buccal face was polished with a #600 

carbide sandpaper to simulate the smear layer. Dentin surface was etched with acid 

gel for 15s and rinsed with water for 30s. A thin film of ScothbondTM Primer (Primer 

Scotch bond multi-purpose, 3 M ESPE, St Paul, MN, USA) was applied for 20s. 

Then, experimental adhesive resin was applied, light cured for 30s and two layers of 

composite (FILTEKTM Z350) were applied, one by one, and light cured for 30s. After 

24 h of storage in distilled water at 37 ° C, teeth were sectioned by a precision cutter 

(IsoMet; Buehler, Lake Bluff, IL, USA), under constant irrigation of distilled water, to 

obtain sticks with 0.7 mm2 of cross-section. For immediate bond strength (n = 12), 

restored teeth were stored in distilled water for 24h and analyzed using a mechanical 

testing machine (Shimadzu EZ-SX, Shimadzu Corp., Kyoto, Japan) at a crosshead 

speed of 1mm/min until fracture of the specimen. For longitudinal analysis, restored 

teeth were stored in distilled water, at 37ºC, for 1 year and then were analyzed. 

 

MINERAL DEPOSITION 

Specimens as used for degree of conversion were used for mineral 

deposition. Samples were polished using a #1200 grit silicon-carbide paper under 

constant irrigation. Then, 3 samples of each group were immersed in 15ml of 

simulated body fluid (SBF) prepared according to Kokubo et al.(2006) for 7, 14 and 

28 days. A sample that was not immersed in SBF was also analyzed (0 days).  

One different sample per time (n=1) was analyzed with Raman spectroscopy 

(Senterra, Bruker Optics, Ettlingen, Germany) to check the amount of mineral phase 

precipitated on the specimens after different periods of storage in SBF. 

A standard area was analyzed (100 equidistant points) for each specimen. 

The integral of the 962 cm-1 peak absorbance was calculated using the 

spectroscopy software (Opus 7.5, Bruker Optics, Ettlingen, Germany). Absorbance 

increase of the peaks at 962 cm-1 indicated the deposition of phosphate on the 
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sample surfaces, and the results were processed to obtain digitalized images of the 

phosphate deposition using Sigma Plot version 12.0 for Windows (Systat Software 

Inc, San Jose, CA, USA). 

 

STATISTICAL ANALYSIS 

  Statistical analysis was performed using one-way ANOVA and Tukey for 

radiopacity, softening in solvent, degree of conversion and flexural strength; two-

way ANOVA for bond strength and Paired t-test for hardness values before and after 

immersion, with a significance level of 5%. Decritive analisys was used for mineral 

deposition. 

 

RESULTS 

Radiopacity results are shown in Table 1, in pixel density. There was no 

statistical significant difference between the groups tested (p>0.05). Radiopacity 

values were lower than 1mm aluminium (55.09) (p<0.05).  There was no statistical 

significant difference in degree of conversion among the groups, but all groups 

presented results higher than 55%.  

 

 

 

 

Table 1- Mean and standard deviation of the radiopacity values, in pixel density 

and Degree of conversion 

Groups  Radiopacity Degree of conversion (%) 

Control 26.66 (2.41) A 56.89 (1.35)A 

BAG 28.38 (2.90) A 56.05 (0.51)A 

BAGNb 28.54 (2.74) A 56.77 (1.11)A 

Different capital letters in the same column indicate statistical difference (p<0.05). 

 

Control group presented higher inicial hardness than BAG, and there was no 

statistical significant difference between the other groups. BAG and BAGNb 

decreased hardness after immersion in ethanol. BAG presented higher softening in 

solvent than CG and BAGNb. (Table 2). 



15 
 

 

Table 2 - Mean and standard deviation of Knoop hardness values and 

percentage of degradation (%). 

Groups Inicial  
hardness 

Final  
hardness 

Softening in  
solvent (%) 

Control 24.83 (0.42)Aa 21.22 (2.62)Aa 14.20 (1.72)A 

BAG 19.29 (0.45)Ba 14.68 (0.40)Bb 23.85 (2.78)B 

BAGNb 22.41 (0.97)ABa 19.55 (0.28)Ab 12.53 (4.25)A 

Different capital letters in the same column indicate statistical difference (p<0.05). Different  
lower-case letters indicate statistical difference in the same row (p<0.05). 

 

Flexural and bond strength results are presented in Table 3. The addition of 

both types of bioactive glasses decreased the flexural strength values, compared to 

CG (p<0.05). Regarding to bond strength, BAGNb presented higher immediate 

values compared to BAG (p<0.05). There was no statistically significant difference 

between the other groups (p>0.05). BAG and BAGNb presented decreased bond 

strength along 1 year, compared to immediate. However, after 1 year, the three 

groups showed no statistically significant difference in bond strength. 

Table 3 - Mean and standard deviation of Flexural Strength and Bond Strength 

Groups  Flexural 
strength (Mpa) 

Bond strength 
(Mpa) 

Bond strength (1 year) 
(Mpa) 

Control 138.63 (9.65) A 56.77 (11.89)ABa 46.68 (11.45)Aa 

BAG 104.61 (22.55)B 53.16 (14.48)Ba 41.54 (10.63)Ab 

BAGNb 101.37 (23.71)B 66.68 (15.49)Aa 40.40 (10.24)Ab 

Different capital letters in the same column indicate statistical difference (p<0.05). Different  
lower-case letters indicate statistical difference in the same row (p<0.05). 

  

  Figure 1 shows the Raman map of phosphate deposition. Red areas indicate 

more phosphate content. After 7 days BAG and BAGNb present very low amount of 

phosphate in its surface. After 14 and 28 days the intensity of the phosphate peaks 

increased in BAG and BAGNb. BAGNb at 28 days showed higher phosphate peaks 

than other samples tested.   
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DISCUSSION 

Bioactive glasses and niobium pentoxide have been studied in dental 

adhesives because of the potential to enhance these materials properties, such as 

bring bioactivity to promote mineral deposition (FERNANDO et al., 2017) (SAURO 

et al., 2012) (COLLARES et al., 2014) (LEITUNE et al., 2013a). Bioactive glasses 

can induce mineral formation on dentin, reduce nanoleakage in the hybrid layer 

(FERNANDO et al., 2017) (SAURO et al., 2012). As well as bioactive glasses, 

niobium pentoxide can induce mineral formation (COLLARES et al., 2014), infiltrate 

on hybrid layer, and increase hardness and radiopacity (LEITUNE et al., 2013a). In 

this study, two kinds of bioactive glasses, one conventional and one with Nb2O5, 

were produced by sol-gel method and were successfully incorporated as fillers into a 

BISGMA/HEMA adhesive resin. The bioactive glasses produced present high 

porosity, superficial area and predominance of amorphous phase (BALBINOT et al., 

2015), what favor the interaction of these materials with the medium, with a more 

reactive bioactive glass, and can promote even more bioactivity to the adhesive 

resin. As far as we know, this is the first study about incorporation of bioactive 

glasses with niobium (BAGNb) in an adhesive resin, and the addition of BAGNb 

Figure 1 - Raman map of phosphate deposition. The intensity is given 
by the integration of 960 cm-1 peaks. 
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presented good results as a filler into an adhesive resin and showing higher mineral 

deposition in 28 days than other groups. 

 After 7 days of immersion in SBF, BAG and BAGNb did not present mineral 

deposition, what is probably because the high solubility of phosphate in these 

glasses. After 14 and 28 days of immersion, therefore, BAG and BAGNb 

demonstrated bioactivity by mineral deposition in BAG, what corroborate with 

bioactive glasses capability of apatite formation described in literature (FERNANDO 

et al., 2017) (SAURO et al., 2012). BAGNb, after 28 of immersion, presented higher 

mineral deposition than BAG and CG, probably allying bioactive glasses 

(FERNANDO et al., 2017) (SAURO et al., 2012) and niobium (COLLARES et al., 

2014) capability of mineral formation described and presenting the best results. 

Continuous influx of calcium and phosphate may induce remineralization and 

even mechanical recovery of mineral deficient dentin, due to association of minerals 

and organic matrix (FERNANDO et al., 2017). Bioactive glasses are been widely 

studied aiming to promote remineralization of dentin (FERNANDO et al., 2017) 

(SAURO et al., 2012). This mineralization occurs due to the constant influx of these 

ions, leached from the bioactive glasses, what supersaturate the medium and 

promote the formation of apatite content (FERNANDO et al., 2017).  Reseaches 

show increase in mineral content of dentin after use of bioactive glasses, but without 

match the mechanical properties of normal dentin, due to the lack of intrafibrillar 

collagen remineralization (FERNANDO et al., 2017). Sauro et al. (2012), for 

example, show decrease in bond strength of adhesives with bioactive glasses after 

3 months of storage compared to control. In this study BAGNb showed higher 

immediate values than BAG. After 1 year, BAG and BAGNb presented decrease in 

bond strength compared to its immediate results, in agreement with those obtained 

by Sauro et al. (2012) and probably are due to bioactive glasses leach, whereas this 

is a soluble material. But, after 1 year storage, BAG and BAGNb presented no 

statistical difference to CG for bond strength, instead other results in literature 

(SAURO et al., 2012) showing the stability of these adhesives. Also, in this study, 

the addition of BAG and BAGNb did not influence the degree of conversion and 

BAGNb did not influence hardness and softening in solvent. Therefore, there was a 

successfully polymer formation and stability in its formation, what is related in 

literature with a durable restorative treatment (VAN LANDUYT et al., 2010)  
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  An important characteristic a filler could bring to an adhesive resin is the 

radiopacity, due to the possibility of decreasing failure of diagnosis of recurrent 

caries and overhang restorations (MURCHISON, CHARLTON, MOORE, 1999) 

(GOSHIMA, GOSHIMA, 1990). This clinical aplication is because of possible false-

positives diagnosis of demineralized tissue caused by adhesives with no radiopaque 

characteristics (KREJCI et al., 1991). In this study, nor the addition of BAG or 

BAGNb were able to promote radiopacity properties to the experimental adhesive 

resin, although Nb2O5 radiopacity capability described in literature (LEITUNE et al., 

2013a), probably because of the low content of niobium in the adhesive.  Flexural 

strength was decreased in both bioactive glasses groups, probably because of the 

creation of concentration points. However, values presented are higher than what 

literature considers suitable for this analysis (YAP; TEOH, 2003).  

  Adhesive resins degradate over time and fillers can be leached with this 

process (SODERHOLM; YANG; GARCEA, 2000). So, it is important to the filler the 

absence of cytotoxicity effects. Hench L.L., 2006 has already described bioactive 

glasses high biocompatibility properties in the early 60’s years. Niobium pentoxide 

also is described as having excellent biocompatibility (FOOLADI et al., 2013). 

Furthermore, bioactive glasses seems to be a promising filler for adhesive resins 

because of the material charachteristics, such as bioactivity, the fact that can be in 

close proximity to the pulp tissue and the possibility to enhance dentin apatite 

content. In this study, the addition of niobium to the bioactive glass to an adhesive 

resin showed better results than a conventional BAG. 

 

CONCLUSIONS 

The incorporation of 2% of  bioactive glass with niobium (BAGNb) into an 

adhesive resin presented favorable results. The addition of BAGNb to the 

experimental adhesive increased immediate bond strength compared to BAG and 

mineral deposition, without prejudice mechanical properties of the adhesive. 

Therefore, BAGNb may be a promising filler for adhesive resin.  
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3 CONCLUSÃO 

Os resultados deste estudo permitem concluir que é possível a produção de 

uma resina adesiva com a adição de vidro bioativo. A adição de 2% de um vidro 

bioativo com nióbio (BAGNb) apresentou resultados favoráveis, como o aumento da 

resistência de união imediata comparado com BAG e deposição mineral, sem 

prejudicar as propriedades mecânicas do adesivo. Sendo assim, BAGNb pode ser 

uma carga promissora para uma resina adesiva. 
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