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The Generalized Gauss Map and Applications

Jaime B. Ripoll Marcos Sebastiani

0. Introduction.

In his work on the theory of surfaces Gauss introduced what is called
today the (normal) Gauss map of an orientable hypersurface in Euclidean
space E"*1, Formerly, the Gauss map was used to compute the intrinsic
curvature of a surface of E®. However, this map became one of the most
important tools in Euclidean Geometry, being used to prove results in many
of its different branches.

The Gauss map in E"*! is determined by the (linear) translations of
Er+!. Since translations make sense in a parallelisable manifold (see §1),
it 1s possible to define a similar map in a Riemannian parallelisable mani-
fold. Our aim here is first to make this construction, defining a Gauss map
for hypersurfaces in a Riemannian parallelisable manifold and studying its
general properties. We then apply these results generalizing some classical
results on Differential Geometry. In particular, we obtain a generalization
of the Gauss-Bonnet Formula and a generalization of a result of R. Langevin
about curvature and complex singularities. We also obtain an application
to the study of convexity of hypersurfaces. We also consider here the case
of immersed manifolds of arbitrary codimension.

Translations in a Riemannian manifold can be obtained, for instance, by
fixing a point of the space and taking the parallel translation of the tangent
vectors at that point along geodesics. Other natural examples can also be
obtained from families of concentric geodesic spheres. Translations also ap-

pear in a Lie group with an invariant metric by taking invariant vector fields.



L. General definitions and results.
We recall that a (n + 1)-dimensional differentiable manifold N is called
parallelisable if its tangent bundle is trivial, that is, if there exists a differ-

entiable map I' : TN — N x R"*! which makes commutative the diagram:

TN -5 N xR
m | | 7o
N L N
and such that, given p € N, the map ', := I'(p,.) : T,(N) — R"+! is an
isomorphism between vector spaces. 7, and 7, are the usual projections and
I the identity map on N.

The folowing notations and definitions will be used through part I: N will
be a {n+1)-dimensional Riemannian parallelisable manifold together with a
map I': TN — N x R™*! as above and such that T, : T,(N) — R+ s
an tsometry, for any p € N, considering in R**! the usual Euclidean inner
product. T will be called a trenslation in N.

Given p € N and X € T,(N), we define a vector field X in N by
setting X(q) := I7HTp(X)). Such vector fields will be called fnwariant (or
['-tnvariant) vector fields.

M will be an m-dimensional Riemannian manifold, m < n, isometri-
cally immersed in N. Denote by N(M) the normal bundle of M and by
S N(M) the correspondent sphere bundle. Let p € M.

1. The Invariant (or -invariant) Second Fundamental Form.
We first recall that the Second Fundamental Form B of M is given by

By(m)(X,Y) =< Vx¥V ,n>

where <, > is the Riemannian metric of N and V its associated connection,
X, Y € T,(M), n € Ny(M) and Y any extension of ¥ tangent to M. By



setting  Ay(n) : T,(M) — T,(M), A,(n)(X) = —(Vxn)F, where ()F
denotes the orthogonal projection on T,(M) we have B,(n}{(X,Y)=
< A,(n)(X),Y >. _
The Invariant (or T-invariant) Second Fundamental Form B of M is
given by
By(n)(X,Y) =< VxV,n>

where Y is the invariant vector field such that f’[p) =Y. By setting

A (n) : To(M) — T,(M), A,(n)(X) = =(Vx#)F, where 7 is the invariant
vector field such that 7(p) = 5, we obtain

By(X,Y) =< A,(n)(X),Y >.

Let us define K, (5) = det(A,(n) — A,(n)). Assuming that the N(M) is
orientable, we define

. 1 .
o K (n)d
p ]:GN;:(M) p(ﬂ) a(n)

Ck~1

where do is the volume form of S N,(M) and c;_, the volume of the (k —1)-
dimensional unit sphere, k = n — m.

This definition is completely similar to the usual definition of Lipschitz-
Killing curvature for immersed Riemannian manifolds (see [L1]). K will be
called the tnvariant curvature of M.
2. The “Gauss” map determined by a translation.

We define

v:SN(M) — S
by
7(n) = Ly(n)

where  S"! is the wunit sphere in R*.  We have dy(n) :
T (SN(M)) — Tym(5™71).

The canonical projection of SN(M) induces a surjective linear map

T, (S N(M)) — T,(M).



3. Theorem.

<IFHd)(X),Y >= =B, (n)(X,Y) + By(n)(X,Y)
where 1 € SNy(M), X, Y € T,(M) and X is any lift of X to T, (SN(M)).

Proof.

We observe that any two lifts of X differ by a vector Z € T,(S N(M)).
We see that I';!(dv(5)(Z)) is orthogonal to T,(M), so that the first member
of the above equality independs on the lift X of X.

We choose a lift of X in the following way. Let n € T,(M) and let
f :(=¢,¢) — M such that f(0) = p and f'(0) = X. Let n; be the parallel
transport of n along f. Then define X := Dr,/dt(0), where D/dt denotes

the Covariant Derivative. Therefore, we have

I (@1(n)(%) = 2057 o Tyqo)(n)(0).

Let Xi, ..., Xi» be an orthonormal basis of T, (M) and set X1, = 7. We
extend this basis to a orthonormal basis X1, ..., Xm, ..., Xa of Tp(N). Let X;
be the invariant vector field such that X;(p) = X; and let X;(¢) the parallel
transport of X; along f (1 < 7 < n). Then

7 = 1 (1) X1 (1) + oo + e (t) X (2)

with
c1{0) = ... = cm(0) =0, cpya(0) =1.
Therefore
i m+1
D () (%)) = Y- (00X, + 25 0 Do) K (1)(0)
thus
. m41
<I7(BE)Y >= 'Y e0) < X, ¥ > +2 (< (170l 0) Kmsa (9)(0), ¥ )



But 4,(n)(X,Y) = —22(0) = - 4! ¢4(0)X;, so that
_Bp(??](X: }f) =K AF(”)(*X]:Y >= - ZC;(O) < XJ',Y i

By another hand, we can write

KX | Eb 7 } = 5;',m+1
Applying [';1 o T'y(gy in both sides of this equality, we obtain
K1 = Zlb L7 o Tyn)(X5(1))

Taking the derivative "

0= Y500+ I3 o Tyo) (Knaa (O

so that -

Ay()(x) = %(f“’l[ 0) =~ Y0,

Therefore,

< 205 0T yg) X (0)(0). Y >=< A(X),¥ >= By (m)(X, V)

and the theorem results from these formulae.

4. Corollary. Assume that M and N are orientable and m even. Let dv
be the volume form of S*~' and du the volume form of M. Then, ffpdp(p),
p € M, 13 the tntegral along the fibres (see [3]) of SN(M) — M of v*(dv)

divided by ¢, .
Proof.
We have the following diagram, exact and commutative:

0 — T, (SN, (M)) — T,(SN(M)) — T,(M) — 0

ig | d~(n) | —Ay(n) + Ay(n)

0 — Ty(n)(S*71) — Ty(n)(S"") — Tp(M) — 0
pely

S



The second rectangle is comuttative, according to Theorem 3.1 and §2,
and ¢ is an isomorphism preserving the metric. We recall that P is the
orthogonal projection.

Let Zi,..., Za—1 be a basis of T,(SN(M)) such that Z,, ..., Zx_, is an
orthonormal basis of T,(SN,(M)) and the image Z[,..,Z._, is an or-
thonormal basis of T,(M). Then, there exists an orthonormal basis
2(Z1), -2 Zk=1), Yie, o, Yacr of Ty (S™1) such that (P o L7INY;) = Z,
k<j<n-—1. Then

Y (do(n)) (21, Zaa) = det(=Ap(n) + Ap(n))

since m is even.
We conclude that the integral of v*(dv) on the fibres of SN(M) — M
is a form A such that

Mp)(Zhy s Bhy) = j Ky(n)dv(n)

SNp(M)

Hence, A\ = ck_ifi’,,du(p).
II. Applications.

1. The Gauss-Bonnet Theorem.
We obtain here a generalisation of the well known Gauss-Bonnet for-
mula. This generalisation depends on the following result:

1.1 Lemma. Let M, N be differentiable manifolds with boundary, com-
pact, oriented, with the same dimension, N connected. Let f : (M,0M) —
(N,0N) be a continuous map which admitts a lift to a morphism of oriented
vector bundles T(M) — T(N) preserving the direction posnting outwards
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the boundary. Then, the degree of the map flopy : M — N s equal to
X(M)/x(N).

Proof.

Let cps and cy be the respective obstructions to extend to the manifold
a vector field without critical points pointing outwards at the boundary.
Then, f*(cx) = cp. By another hand,

(CMa[ﬂ’{!a‘m{]) = X(M] and (chthaN]) = X(N)

(where the bracket means fundamental class in homology and (, ) the
duality between homology and cohomology), as we can see by taking a Morse
function with is constant at the boundary. Therefore

x(M) = (f*(ew), [M,0M]) = (en, fu[M,0M]).
Since N is connected, fi([M,0M]) = m[N,dN], m € Z. Then
X(M) = (cn, fu[M,0M]) = my(N)
and m = x(M)/x(N). But f([M,0M]) = m[N,8N] implies f,[0M] =

m[@N], and the lemma results from this.

1.2 Theorem. With the same hypothesis and notations of Corollary 1.5,

and assuming M compact, we have

[, Bodulp) = 2=2y(na)

B Cr—1
Proof.
From Fubini’s Theorem and Corollary 1.4, we have
- 1 deg(7) Cn—1
Kydp(p) = —— *d=-—[ y = Sl goa().
Mot pt[p) Ck—1 SN(M}T ( v) Ck~1 JSn—1 dv Ck—1 deg(";)

In order to compute deg(~y), we observe that ~ can be extended to a map

7:BN(M) — B"

7



where BN(M) is the bundle of balls of N(M) and B" is the unit ball on
R". We have an isomorphism

T(BN(M)) =~ 7(T(M)) ® 7*(N(M))

where 7 : BN(M) — M is the canonical projection.
We define a morphism above 7

(T(M)) & (N(M)) — T(B") = B" x R"

by
(X,Y) — (Tp(n), Tp(X +Y))

where p € M, 1 € BN,(M), X € T,(M) and Y € N,(M).

Therefore, one can apply Lemma 4.1 to obtain

deg() = x(BN(M))/x(B") = x(M)

and this proves the theorem.

2. Invariant curvature and complex singularities.

We assume in this section that N is a (n + 1)-dimensional complex man-
ifold with an hermitian metric < , >,. Similarly to the real case, a complex
translation is determined by a map I'* : TN — N xC**! which makes com-
mutative the corresponding complex diagram of p. 2 and such that, given
p € N, I'¢ : Ty(N) — C™*! is an isomorphism between hermitian vector
spaces. Let us denote by C'P" the complex projective space of complex lines
of Cn¥1,

Let M be a complex submanifold of N. Then, the Gauss map v, : M —
CP" of M determined by I'® is defined by

Telp) = T (Tp(M)™).



Let f/: N — C be an analytic map with an isolated singularity at
po € N such that f(p,) = 0. Given H € CP*, H determines a polar curve
Py by the condition:

P E Py = T,(f7'(t) = (T3)~* (H)*

where ¢ € C is such that f(p) = ¢.

We can define from < , >, a Riemannian metric < , > in N by
setting < , >:=re(<, >,). The complex translation I'* determines a real
translation I' by setting I' := I'* + 1T (s? = —1).

We prove here the following generalisation of the Theorem of [L2]:

2.1 Theorem. Let f : N — C be an analytic map with an fsolated
stngularity at po with f(po) = 0. Then, the following formula holds:

ok 7 - ndl _ 0
lim i [ Eyulp) = ea 441 - )

where My = f=1(t), B is the geodesic ball centered at py with radius ¢, K
ts the invariant curvature of M; determined by T' (see 1.1), w the volume
Jorm of My in the induced metric, u"*' the Milnor number of { at po, and
p* the Milnor number of f restricied to a generic complez codimension 1
submanifold of N through py at po.

Proof.

Let v : SN(M;) — S$" be the Gauss map of M; determined by T
(see I.1) and 7, : M; — CP* the Gauss map determined by I'¢. It is not
difficult to prove that the following diagram is commutative:

SN(M), = gon
P| | =
M, 2 ¢pr



where 7 is the projection of the Hopf fibration. Hence
P 1 .
[\msc Kywlp) = Gln SN(M:B,) 7o) = e SN(MNB,) 70
where A is the volume form of CP*.

We prove now that the last integral above is the intersection index
I(Py, Mo) between Mo and the polar curve Py determined by a generic
complex hyperplane H of C"+1, The Theorem follows then from a result of
Teissier ([?]).

As in the Lemma of [L2], and according to the notations of [L2], one has:

e ¥ = [, 700 B )

where

T(Mg n BQH) = E I(Mg,PH)F

PEB,
so that in order to compute the limit for t — 0 and ¢ — 0 as in [L2] we have
Just to assure that the function t — 7(M, N B,, H) is bounded.

Clearly, 7(M; N B, H) is finite for ¢ # 0 and, since ¢ goes to 0, we
just have to prove that lim_, 7(M, N B, H) is finite. To do this, let us
consider the Nash Transformation Ny C B. x CP™ of f restricted to B,.
Let m: Ny — B, and v: Ny — CP"! be the projections (z,H) — =
and (z, H) — H*, respectively. Therefore, it is easy to see that

(M, 0 B, H) = card(n_, (M) Ny (HY)) ¢ £0

so that
Ei_]}}} 7(M,nB,H) = card(7 1 (My) N Yy HHY)) .

(™ (Mo Ny (HY)) = {p € Myn Blp # 0and T,(M,) = H} U {0}

is analytic and compact and hence finite.
It follows that 7= (M) Ny~ (HL) is finite since

min (M) Ny (HY) — n(r= (M) Ny (HY))
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is bijetive. ¢

In [L] Langevin reobtains a result due to Linda Ness about the curvature
of algebraic curves of C'P? converging to an algebraic curve with an isolated
singularity (see Theorem in §III of [L]). We obtain here the following gener-

alization:

2.2 Corollary. Let N be a complez n-dimensional manifold with an her-
mitsan metric. Let M be o complez hypersurface of N with an 1solated sin-
gularsty at p. Let My be a family of complez hypersurfaces of N converging
to M ast goes to snfinity. Then

lim inf K; = -0
{—oo

where K denotes the tnirinsic sectional curvature of M;.
Proof.

Let p: € M; be such that lim ps = po. Then, it follows from Theorem 2.1
and from the definition of & that

IIm¢ — o)y, =00

where A; = max{X | X is an eigenvalue of A,,(n) for some 5 € T}, (M;)*,
[Inll =1 }. If X, is an eigenvector associated to ), then —), is an eigenvalue
with eigenvector 1.X.

Denote by K(P,) and K(P,) the sectional curvatures of M; and N, re-
spectively, at p;, determined by the plane P, generated by X; and :X,.
Without loss of generality, we may assume that P, converges to P as t tends
to infinity. Then, from the Gauss Equation of an isometric immersion, one
has

K(P)=E(R)- X

hence
Jim, K(P) =R(P) - Jim 3 = ~co.

11



3. Convexity of hypersurfaces.

A classical result on Differential Geometry, known as Hadamard Theo-
rem, establishes that a compact hypersurface of an Euclidean space whose
Gauss-Kronecker curvature (as it is called the Lipschitz-Killing curvature in
codimension 1) is everywhere positive is a convex hypersurface. In partic-
ular, the hypersurface is diffeomorphic to a sphere. This result is not true
for hypersurfaces in an arbitrary Riemannian manifold. A simple counter-
example is the natural isometric embedding of the Riemannian product
5% x 5% in §%. As we remark below, if we consider the curvature K in-
stead of the usual Gauss-Kronecker curvature, Hadamard Theorem remains
partially true. To see this, let us consider again a real differentiable (n +1)-
dimensional Riemannian manifold N and let M be a hypersurface of N. Let
' be a translation in N.

In this case, the Gauss map y of M can be considered as a map from M to
the sphere 5" of same dimension. By this identification, we have I'; od~y(p) :
Tp(M) — Ty(M) and Rp = det(Ap(n) — 4, (1)) = det(T;* o dvy(p)). There-
fore, if the invariant curvature K is everywhere different from zero then + is
a local diffeomorphism. Hence, if M is compact and K # 0 everywhere, v is
a covering map and, since it goes into the sphere which is simply connected,
7 is a global diffeomorphism. In particular, M is difleomorphic to a sphere.
We have proved:

3.1 Proposition.  Let M be an immersed compact hypersurface of N
such that K # 0 everywhere. Then M s diffeomorphic to a sphere.

In the Euclidean spaces, the fact that the Gauss map is a diffemorphism
implies that the hypersurface is embedded. This is not true in the general
situation of this paper. A counter-example is given in the remark after
Theorem 9 of [R2].
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In [E}, J. Eschenburg introduced a stronger condition than the positive-
ness of the Gauss-Kronecker curvature for a hypersurface in a Riemannian
manifold: a hypersurface M of a Riemannian manifold N is called e-convex
if all of its principal curvatures have the same sign and absolute value greater
than €. If a hypersurface is e-convex for some € > 0 then its Gauss-Kronecker
curvature is necessarly positive (perhaps after a reorientation of M). The
converse is clearly false (the same example above). With this notion, Es-
chenburg proves: a compact e-convez hypersurface, for some € > 0, of a
Riemannian space with non negaitve sectional curvature 15 the boundary of
an tmmersed disk in the space. In particular, the hypersurface is diffeomor-
phic to a sphere. Asis pointed out in [E}, this result is false in a Riemmanian
space with negative curvature. Counter-examples are given by the boundary
of tubular neighbourhoods around closed geodesics. Using Proposition 3.1,
we prove here the following result. We first introduce some notations.

As before, let N be a Riemannian (n + 1)-dimensional manifold and I :
TN — N x R™*! a translation in N. Given p € N, denote by O the set of
orthonormal basis of T,(N). Given an orthonormal basis 8 = {, Xi, ..., X, }
of Ty(N), denote by U the (n x n)-matrix (an) = (< Vx5, X; >.
Given 1 <1 < ..t; < n, we denote by Ii,,...i;(p, B) the determinant of
the submatrix U;, i, of U obtained from U by taking out the it* row and
the #§* column, 1 <k < 7, of U. Set

Liy.iy(p) = max{Ts,_ . (p,B) | B €0}

and denote
Liyiy = sup{ly,,..q,(p) [ pE N}.
We have

3.2 Theorem. Let M be a compact hypersurface of N. Assume that
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the principal curvatures Ay, ..., A, of M sattsfy
Negn sy 30Ty,

Jor any chotce of 1 <4; < ... < 1; < n, where C := ($ ¥+ + (). Then
M s diffeomorphic to a sphere. In particular, ff M s a e-convezr with
e > C Ty, .., for any chofce of 1 < 4} < ... < t; < n, then M 15
diffeomorphic to a sphere.
Proof.

Diagonalising the matrix of A,(n) and using elementary Linear Algebra,
we see that K(p) = det(A4,(y) — Ay(n)) is positive for any p € M. The

Theorem results then from Proposition 3.1. ¢

An extension of Hadamard Theorem for immersions of arbitrary codi-
mension is obtained in [R1]. By using Theorem II 1.2 for the case of Lie
groups, one can obtain the following:

Proposition 3.3. Let M be a compact, connected, oriented surface im-
mersed in a Lie Group G with a bi-invariant metric. Assume that the
Lipschitz-Killing curvature of M is everywhere posstive. Then M is dif-
feomorphic to S2.

Proof. Let us consider the curvature K of M determined by the left trans-
lation in G. Since the metric is bi-invariant, we have VyV = (1/2){X,Y]
where [ , | denotes the Lie bracket and X and Y are left invariant vector

1

fields. It follows that the invariant second fundamental form B is skew-
symmetric. Since dim(M) = 2, we have

Ky(n) > Kp(n) > 0

Hence by Theorem 111.2, x(M) > 0 and M is diffeomorphic to a sphere.
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The Gauss map and invariant second fundamental form associated to a
left translation in a Lie group are studied in [R2] for the case of hypersur-

faces.
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