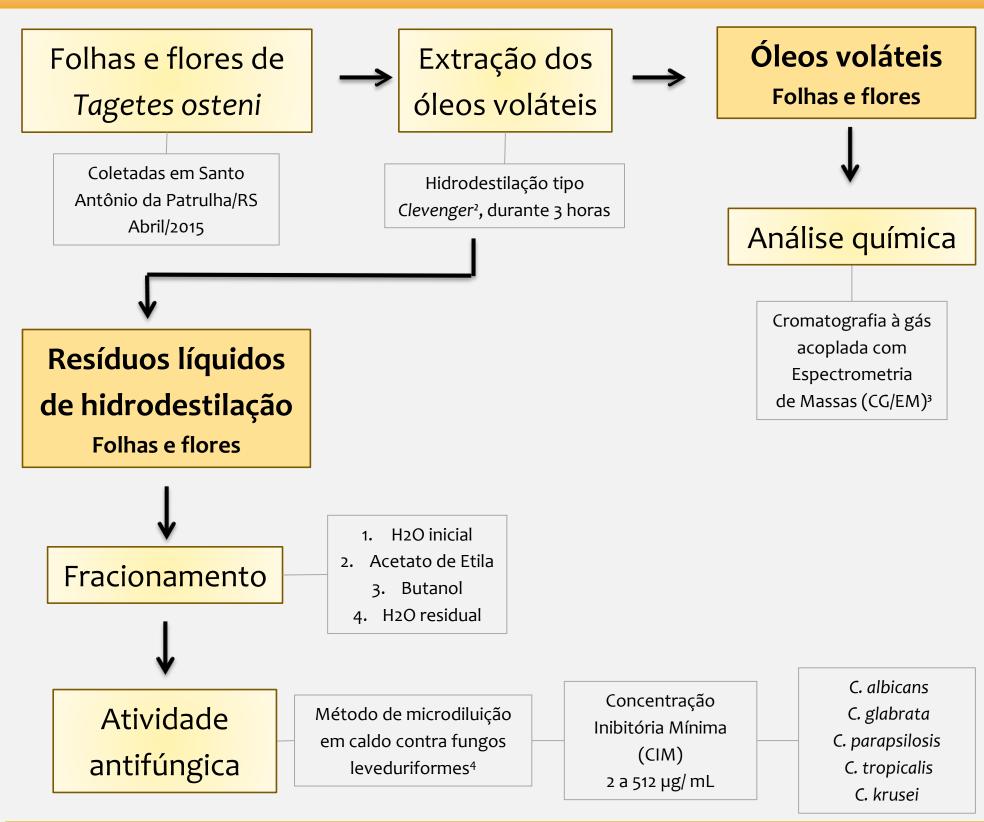
Análise química e atividade antifúngica in vitro do óleo volátil e resíduo líquido da hidrodestilação de flores e folhas de Tagetes osteni Hicken

Caroline P. Lacerda, Miriam A. Apel

Laboratório de Farmacognosia, Faculdade de Farmácia – UFRGS – Porto Alegre, RS, Brasil

INTRODUÇÃO

O uso indiscriminado de antimicrobianos vem trazendo um aumento crescente no número de cepas resistentes ao tratamento convencional, fato este que tem levado ao desenvolvimento de inúmeras pesquisas em busca de alternativas de tratamento e profilaxia, destacando-se a investigação de atividade farmacológica em substâncias isoladas de plantas¹.


Figura 1. Tagetes osteni Hicken (Foto: Sergio Bordignon, 2011)

Apesar da investigação do gênero *Tagetes* como agente antifúngico, tanto de extratos como do óleo volátil, ainda não há relatos na literatura relacionados à fitoquímica e atividades biológicas da espécie *Tagetes osteni* Hicken., nativa do sul do Brasil.

OBJETIVOS

Analisar a composição química do óleo volátil de folhas e flores de *Tagetes osteni*, quantitativa e qualitativamente, e investigar a atividade antifúngica dos óleos voláteis obtidos, bem como das frações dos resíduos líquidos de hidrodestilação.

MATERIAIS E MÉTODOS

RESULTADOS E DISCUSSÃO

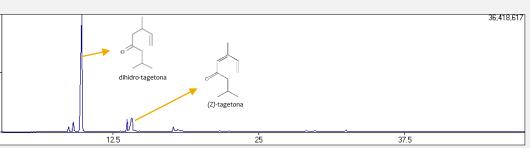
Rendimento dos processos

Os óleos voláteis e frações obtidas apresentaram rendimento conforme tabelas abaixo (Tabelas 1 e 2).

Tabela 1. Rendimento dos óleos voláteis obtidos de folhas e flores de T. osteni.

Extração	Total de óleo (mL)	Rendimento (%)	Aspecto do óleo
Folhas	0,8	1,29	amarelo claro e fluido
Flores	0,8	0,98	amarelo e fluido

Tabela 2. Rendimento do fracionamento dos resíduos líquidos de hidrodestilação obtidos.


rabela 2. Mendimento do macionamento dos residuos liquidos de marodestilação obtidos.					
Frações de Tagetes osteni	Rendimento (%)	Frações de Tagetes osteni	Rendimento (%)		
H2O inicial – folhas	12,74	Extrato BuOH - folhas	7,16		
H2O inicial - flores	8,83	Extrato BuOH - flores	6,13		
Extrato AcOEt - folhas	37,22	H2O final - folhas	5,86		
Extrato AcOEt - flores	3,07	H2O final - flores	10,43		

Análise química dos óleos voláteis

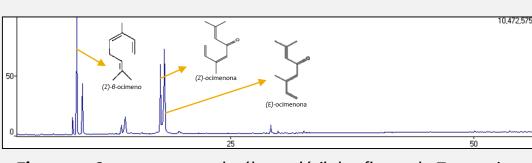

Os resultados da análise química demonstram que o óleo volátil de folhas apresenta como compostos majoritários dihidro-tagetona (77,3%) e (Z)-tagetona (12,5%), enquanto que para as flores (Z)-B-ocimeno (22,2%), (Z)-ocimenona (18,5%) e (E)-ocimenona (36,9%) foram os principais componentes identificados. A Tabela 3 apresenta a composição química detalhada de cada um dos óleos intestigados.

Tabela 3. Composição percentual do óleo volátil obtido das folhas e flores de *T. osteni.*

			% Total			
Tempo de Retenção	IR	Composto Folhas F		Flores		
Monoterpenos hidrocarbonetos						
8,752	1026	limoneno	1.28	3.05		
9,147	1036	(Ζ)-β-ocimeno	3.26	22.19		
Monoterpenos oxigenados						
9,779	1051	dihidrotagetona	77.31	9.04		
13,770	1144	(E)-tagetona	4.26	1.68		
14,132	1152	(Z)-tagetona	12.52	7.15		
17,715	1229	(Z)-ocimenona	1.37	18.47		
18,117	1238	(E)-ocimenona	tr*	36.91		
Sesquiterpenos oxigenados						
29,127	1472	biciclogermacreno		1.51		
				*traços		

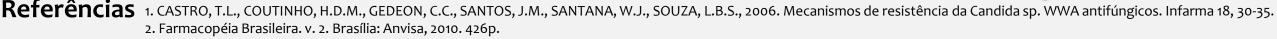
Figura 2. Cromatograma do óleo volátil das folhas de *T. osteni* e a estrutura de seus compostos majoritários.

Figura 3. Cromatograma do óleo volátil das flores de *T. osteni* e a estrutura de seus compostos majoritários.

Atividade antifúngica

Com relação ao ensaio de atividade antifúngica, os óleos voláteis de *T. osteni* não demonstraram efeito frente às espécies de *Candida* testadas, entretanto, as frações acetato de etila – tanto para folhas quanto para flores – demonstraram importante inibição no crescimento dos fungos (Tabela 4).

Tabela 4. Concentração Inibitória Mínima (μg/ mL) das frações do resíduo líquido de hidrodestilação de folhas e flores de *T. osteni* frente a fungos leveduriformes.


follas e notes de 1. Osterii frente a fungos levedumornies.								
Frações de Tagetes osteni	C. tropicalis		C. krusei		C. parapsilosis		C. glabrata	C. albicans
	RL16	CT56	CK02	ATCC6258	RL20	RL01	RL24	CA01
H2O inicial – folhas	>512	>512	128	64	128	256	>512	8
H2O inicial - flores	>512	>512	>512	256	256	512	>512	>512
Extrato AcOEt - folhas	>512	16	16	8	16	16	32	<2
Extrato AcOEt - flores	>512	128	16	8	32	<2	32	4
Extrato BuOH - folhas	>512	512	64	128	32	<2	64	2
Extrato BuOH - flores	>512	>512	64	32	>512	<2	64	16
H2O final - folhas	>512	>512	256	64	512	<2	>512	16
H2O final - flores	>512	>512	512	256	512	<2	>512	32

CONCLUSÕES

- Observa-se a presença de grandes concentrações de monoterpenos oxigenados no óleo volátil obtido das folhas de *T. osteni* e a presença de monoterpenos hidrocarbonetos e monoterpenos oxigenados majoritariamente no óleo volátil obtido das flores.
- Os óleos voláteis obtidos não apresentaram atividade antifúngica, entretanto, as frações acetato de etila, tanto de folhas quanto de flores, apresentaram-se potencialmente ativas frente à grande parte dos isolados testados, principalmente à *C. krusei* e *C. albicans*.
- Os resultados obtidos demonstram a importância de estudos mais aprofundados as frações dos resíduos líquidos de hidrodestilação, ampliando a quantidade de cepas testadas destas duas espécies.
- A identificação dos compostos responsáveis pela ação será realizada nas etapas seguintes, seguindo os métodos de isolamento bioguiado e Cromatografia Líquida de Alta Eficiência (CLAE).

CB

3. ADAMS, R. P. Identification of essential oil components by gas chromatography mass spectrometry. [4. ed.] Carol Stream, III.: Allured Pub. Corp., 2009. 804 p.
4. CLSI. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi: approved standard, M38-A2. Clinical and Laboratory Standards Institute, Wayne, PA, 2008b.