
Universidade Federal do Rio Grande do Sul 

Instituto de Ciências Básicas da Saúde 

Programa de Pós-Graduação em Neurociência 

PAPEL DA OSCILAÇÃO DA FREQÜÊNCIA GAMA NA 

SELEÇÃO DE NEURÔNIOS E NA FORMAÇÃO DE 

CÉLULAS DE LUGAR NO GIRO DENTEADO 

Licurgo Benemann de Almeida 

Orientador: 

Prof. Dr. Marco Aurélio P. Idiart 

Co-orientador: 

Prof. Dr. Jorge Alberto Quillfeldt 

Tese apresentada ao Programa de Pós-graduação em Neurociências como pré-
requisito parcial para a obtenção do grau de doutor 

Porto Alegre, 2009 



 II 

AGRADECIMENTOS 

Aos professores Marco Idiart, Jorge Quillfeldt e John Lisman por me 

orientarem ao curso dessa tese de doutorado, pelos constantes incentivos e sugestões, 

sempre indicando a direção a ser tomada para o desenvolvimento deste trabalho. 

À minha mulher, Gabriela, minha família e meus amigos pelo apoio em todas 

as decisões da minha caminhada até aqui. 

A todos que de uma forma ou outra contribuíram para que este trabalho se 

tornasse realidade. 

Ao CNPq e à Capes pelo financiamento da minha tese. 



 III 

ÍNDICE 

LISTA DE FIGURAS !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! "#!

ABREVIATURAS !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!#!

RESUMO !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! #"!

ABSTRACT !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!#""!

1! INTRODUÇÃO !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! $!
"#"! $%&'()*+,%!-).)################################################################################################################################ "!
"#/! -).)!&$.$!0.!12$&,%%$!3,!%,(,*4$!3$%!5,6&,3$2,% ########################################################## 7!
"#7! 2,()*4$!,682,!%'68$6')!3,!3'%1)2$!,!,9&'8)*4$!6$!5" ###################################################### :!
"#:! ;$2.)*4$!3,!&<(0()%!3,!1$%'*4$!6$!-'2$!3,68,)3$ ############################################################ =!

2! OBJETIVOS !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!$%!
/#"! $>?,8'5$!-,2)( ##################################################################################################################################"@!
/#/! $>?,8'5$%!,%1,&A;'&$% #####################################################################################################################"@!

3! UMA SEGUNDA FUNÇÃO PARA AS OSCILAÇÕES NA FREQÜÊNCIA GAMA: 
O MECANISMO DO E%-MAX WINNER-TAKE-ALL SELECIONA QUE CÉLULAS 
DISPARAM!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!$$!
7#"! .)8,2')(!%01(,.,68)2 #################################################################################################################"B!

4! A TRANSFORMAÇÃO DE ENTRADAS EM SAÍDAS NAS CÉLULAS 
GRANULARES DO GIRO DENTEADO: DAS CÉLULAS DE GRADE AOS CAMPOS 
RECEPTIVOS ESPACIAIS!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!&&!

5! DISCUSSÃO E CONCLUSÕES !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'&!

6! REFERÊNCIAS !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'(!

APÊNDICE 1 – RECUPERAÇÃO E CAPACIDADE DE MEMÓRIA DA REGIÃO 
CA3 DO HIPOCAMPO: O PAPEL DAS OSCILAÇÕES NA FREQÜÊNCIA GAMA.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!)'!

APÊNDICE 2 – UM MODELO DE MAPAS ACOPLADOS PARA O 
PROCESSAMENTO ESPAÇO-TEMPORAL NO BULBO OLFATÓRIO. !!!!!!!!!!!!!!!!!!!!*%!
!



 IV 

!

Lista de Figuras 

FIGURA 1.1 – A FREQÜÊNCIA GAMA SÃO OSCILAÇÕES EM TORNO DE 40 A 80HZ. A) EXEMPLO DE UM 

POTENCIAL OSCILAÇÕES EM FREQÜÊNCIA GAMA REGISTRADAS NUM POTENCIAL DE CAMPO. B) O 
HISTOGRAMA MOSTRA QUE GAMA NÃO É A OSCILAÇÃO DE UM NEURÔNIO ESPECÍFICO (OS 

NEURÔNIOS DISPARAM DE FORMA IRREGULAR), MAS SIM O POTENCIAL DE CAMPO RESULTANTE DE 

VÁRIOS NEURÔNIOS DISPARANDO EM SINCRONIA. """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" #!
FIGURA 1.2 – LOCALIZAÇÃO DO CÓRTEX VISUAL PRIMÁRIO (V1) NO ENCÉFALO HUMANO (IMAGEM 

OBTIDA EM HTTP://PINE.PSYCH.CORNELL.EDU/EDUCATIONAL/BRAIN_AREAS.HTML). """""""""""""""""""""""""" $!
FIGURA 1.3 – A ATIVIDADE DE UMA DADA CÉLULA DO V1 DEPENDE DO GRAU DE INCLINAÇÃO !  E DO 

CONTRASTE DE UM ESTÍMULO. OS NEURÔNIOS DO V1 SÃO ATIVADOS NUM DADO ESPECTRO DE 

ORIENTAÇÃO DAS BARRAS. """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" %!
FIGURA 1.4 – A SINTONIA DE DISPARO NÃO É AFETADA POR MUDANÇAS NO CONTRASTE DE UM 

DETERMINADO ESTÍMULO. A) A SINTONIA DE ENTRADAS EXCITATÓRIAS EM FUNÇÃO DE 

ORIENTAÇÃO COM DOIS NÍVEIS DE CONTRASTE (NÍVEIS DE EXCITAÇÃO). B) A SINTONIA DE 

DISPARO PERMANECE IDÊNTICA PARA OS DOIS NÍVEIS DE CONTRASTE (ADAPTADO DE ANDERSON 

ET AL. 2000). """"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" &!
FIGURA 1.5 – LOCALIZAÇÃO DO CÓRTEX ENTORRINAL E DO GIRO DENTEADO DO HIPOCAMPO DORSAL NO 

ENCÉFALO DE RATO EM CORTE CORONAL (IMAGEM OBTIDA EM HTTP://BRAINMAPS.ORG/). """"""""""""""" '!
FIGURA 1.6 – GXEMPLO DE CÉLULAS DE POSIÇÃO (A E B) E CÉLULAS DE GRADE (C E D). AS LINHAS 

CINZAS NAS FIGURAS A E C MOSTRAM O CAMINHO PERCORRIDO PELO RATO DURANTE O 

EXPERIMENTO, DENTRO DE UMA CAIXA QUADRADA; JÁ OS PONTOS VERMELHOS MOSTRAM AS 

POSIÇÕES ONDE O NEURÔNIO REGISTRADO EM CADA UM DOS ESPERIMENTOS ESTÁ ATIVO. É 
IMPORTANTE RESSALTAR QUE OS MAPAS A E C REGISTRAM A ATIVIDADE DE APENAS UM 

NEURÔNIO NO GIRO DENTEADO (A) E UM NEURÔNIO NO CÓRTEX ENTORRINAL (C). B E D 
MOSTRAM A PROBABILIDADE DE DISPARO DE UM DADO NEURÔNIO DO GIRO DENTEADO E DO 

CÓRTEX ENTORRINAL, RESPECTIVAMENTE, EM TODO O AMBIENTE. NESTES EXEMPLOS, VERMELHO 

ESCURO REPRESENTA PROBABILIDADE MÁXIMA DE DISPARO E AZUL ESCURO REPRESENTA 

PROBABILIDADE MÍNIMA. AS FIGURAS A E C SÃO RESULTADOS DE EXPERIMENTOS (LEUTGEB ET 

AL, 2007), ENQUANTO B E D SÃO RESULTADO DE SIMULAÇÕES E NÃO REPRESENTAM EXATAMENTE 

O MESMO EXPERIMENTO. """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" (!
!

!



 V 

!

Abreviaturas 

CA3 Cornu Ammonis 3 

DG Giro Denteado (do inglês, Dentate Gyrus) 

EC Córtex Entorrinal (do inglês, Entorhinal Cortex) 

LTP Potencial de longa duração 

NMDA N-metil-D-aspartato 

V1 Córtex visual primário 

WTA Winner-Take-All 

 



 VI 

!

Resumo 

Esta tese defende a noção de que as oscilações gama não são apenas responsáveis pela 

atividade sincronizada de neurônios, mas também apresentam uma segunda função: 

selecionar qual célula principal vai disparar. Este processo de seleção ocorreria 

através da interação entre excitação e retroalimentação inibitória na freqüência gama. 

É observado aqui que este processo de seleção não está relacionado com a fração de 

células disparando a cada ciclo gama, mas sim com a excitação supralimiar (E) dentro 

de uma percentagem da excitação máxima (E%-max). Este processo é chamado aqui 

de E%-max winner-take-all (“vencedor-leva-tudo”). Visando testar a utilidade deste 

modelo, o E%-max é aplicado a duas redes diferentes: no primeiro trabalho é 

analisado o papel das oscilações no córtex visual primário (V1), um dos poucos 

sistemas onde tanto a taxa de disparos quando a excitação intracelular foram medidas 

diretamente. O primeiro trabalho apresentado aqui mostra que um processo de seleção 

do tipo E%-max winner-take-all fornece uma explicação simples de por que a sintonia 

de orientação dos disparos é mais estreita que a sintonia de excitação, e por que esta 

diferença não é alterada com o aumento da excitação. O segundo trabalho investiga 

como o processo E%-max influencia a formação de células de lugar (place cells) no 

giro denteado a partir de células de grade (grid cells) corticais. Os resultados mostram 

que as células granulares simuladas possuem mapas de disparos com um ou mais 

“campos receptivos espaciais” (place fields) cujo tamanho e número se aproxima dos 

resultados observados experimentalmente. A conclusão aqui é que esta transformação 

de entradas e saídas de células granulares no giro denteado não depende fortemente 

das modificações sinápticas, e que a formação de “campos de lugar” pode ser 

entendida em termos de simples somatórios de entradas excitatórias escolhidas 

aleatoriamente juntamente com um mecanismo do tipo E%-max winner-take-all. 
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Abstract 

This work argues that gamma oscillations are not only responsible for synchronized 

activity but also have a second function: they select which principal cells fire. This 

selection process occurs through the interaction of excitation with gamma frequency 

feedback inhibition. Here is observed that this selection process is not related to the 

fraction of cells firing at each gamma cycle, but rather related to the suprathreshold 

excitation (E) within E% of the cell that has maximum excitation. The process is 

called here E%-max winner-take-all. To test the utility of this framework, the E%-

max is applied to two different networks: the first work analyzes the role of 

oscillations in V1, one of the few systems where both spiking and intracellular 

excitation have been directly measured. This work shows that an E%-max winner-

take-all process provides a simple explanation for why the orientation tuning of firing 

is narrower than that of the excitatory input and why this difference is not affected by 

increasing excitation. The second work investigates how the E%-max process 

influences the formation of place cells in dentate gyrus from cortical grid cells. The 

results show that simulated granule cells have firing maps that have one or more place 

fields whose size and number approximates those observed experimentally. The 

conclusion here is that the input-output transformation of dentate granule does not 

depend strongly on synaptic modification; place field formation can be understood in 

terms of simple summation of randomly chosen excitatory inputs, in conjunction with 

a winner-take-all network mechanism. 
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1 Introdução 

Hoje em dia restam poucas dúvidas de que o mecanismo mais plausível para 

uma integração em larga escala de diversos conjuntos de neurônios depende da 

formação de correlações dinâmicas de atividades em múltiplas bandas de freqüências 

(revisado em Jensen et al., 2007). Um conjunto de neurônios pode exibir uma 

variedade de freqüências de oscilação para o potencial de campo extra-celular, mesmo 

que individualmente eles não disparem com estas freqüências. Estas oscilações no 

potencial de campo também podem ser chamadas de ritmos (Varela et al., 2001). 

Apesar de não dispararem na mesma freqüência de um ritmo, neurônios individuais 

podem entrar em sincronia precisa com estas oscilações num período muito curto de 

tempo (na escala de milissegundos). Ou seja, se o neurônio disparar ele dispara em 

sincronia com o ritmo. As freqüências de oscilação costumam ser! classificadas em 

diferentes categorias. Existem as chamadas freqüências lentas, como as freqüências 

delta (1-3Hz), teta (4-8Hz) e alfa (8-12Hz); as freqüências rápidas, como a beta (15-

40Hz) e a gama (40-80Hz). Acima disso existem as chamadas freqüências ultra-

rápidas, mas essas não recebem nenhuma espécie de subdivisão (Varela et al., 2001). 

O objeto de estudo dos trabalhos apresentados nesta tese são as oscilações na 

freqüência gama - o ritmo gama -, e como essas oscilações atuam na codificação 

neuronal. 

!"! #$%&'()*+$,-(.(,

As oscilações gama foram originalmente descobertas como potenciais de 

campo do córtex visual e foram, subseqüentemente, observadas na maioria das 

regiões cerebrais (Eckhorn et al., 1988; Gray & Singer, 1989). Até então, as análises 
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da função das oscilações gama têm se focado no papel dessas oscilações na 

sincronização de células disparando (Singer & Gray, 1995): ao invés de disparar com 

uma probabilidade uniforme com o passar do tempo, redes que manifestam ritmo 

gama mostram disparos de células principais agrupados numa determinada fase de 

cada oscilação (Bragin et al., 1995; Csicsvari et al., 2003; Penttonen et al., 1998). Tal 

sincronização parece ser funcionalmente importante pois possibilita a identificação de 

grupos através da coincidência de disparos numa determinada célula-alvo (Konig et 

al., 1996). Oscilações gama são, possivelmente, um importante aspecto do 

processamento neural que fornecem uma maneira de um grupo neuronal que 

representa uma determinada percepção ou memória a distinto de outros grupos. 

!

Figura 1.1 – A freqüência gama são oscilações em torno de 40 a 80Hz. A) Exemplo de oscilações em 
freqüência gama registradas num potencial de campo. B) O histograma mostra que gama não é a 
oscilação de um neurônio específico (os neurônios disparam de forma irregular), mas sim o potencial 
de campo resultante de vários neurônios disparando em sincronia. 

Ainda que os neurônios estejam sincronizados em oscilações gama, eles não 

costumam disparar a cada ciclo, como mostra a Figura 1.1. Por exemplo, no 

hipocampo, neurônios principais disparam em somente 2-5% dos ciclos gama (Senior 

et al., 2008). É, portanto, importante entender como se dá a seleção de quais 
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neurônios disparam a cada ciclo de oscilação. É importante ressaltar que a inibição 

por si só se dá por inibição modulada na freqüência gama (Soltesz & Deschenes, 

1993); de fato, as próprias oscilações gama parecem surgir de um processo de 

retroalimentação onde células principais excitam interneurônios inibitórios que, 

conseqüentemente, inibem estas mesmas células principais (Fisahn et al., 1998; 

Miles, 1990; Bartos et al., 2007; Fries et al., 2007; Mann and Paulsen, 2007). Esta 

inibição dinâmica não apenas sincronizaria as células, mas, através da interação com a 

excitação, selecionaria quais células disparariam. 

!"/ -(.(,%0.0,1.,230%+$$0,4+,$+'+)50,40$,6+7%+403+$,

Este trabalho propõe que as oscilações gama não seriam responsáveis apenas 

pela sincronização dos disparos, mas também pela seleção de quais neurônios 

disparariam a cada ciclo de oscilação. A seleção dos neurônios ocorre através da 

interação entre a excitação e uma retroalimentação inibitória. O objetivo aqui é 

entender as regras que governam este processo, ou seja, que fração de células vai 

disparar a cada ciclo de gama. 

Existe um consenso geral de que a inibição seleciona quem vai disparar 

através de um processo do tipo vencedor-leva-tudo (winner-take-all). Na teoria de 

redes neurais artificiais, o processo de seleção winner take all (WTA) é um tipo de 

aprendizado competitivo onde elementos da rede neuronal inibem-se (direta ou 

indiretamente) de forma que apenas um elemento desta rede permaneça ativo, ou que 

um número fixo k de elementos permaneça ativo (neste caso o processo é denominado 

k-winner-take-all), ou ainda que um fração fixa dos elementos da rede permaneçam 

em atividade (chamado k%-winner-take-all). Nosso trabalho aqui sugere que está 

fração de neurônios ativos a cada ciclo não é fixa, mas depende diretamente da 

distribuição de excitações das células. Este processo de seleção foi denominado E%-
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max winner-take-all ou E%-max. Esse processo de seleção é então aplicado a dois 

modelos de redes neuronais com funções e características diferentes: um modelo de 

córtex visual primário (V1), onde se mostra que o E%-max WTA apresenta uma 

explicação simples para a relação entre sintonia de disparo e de excitação; e um 

modelo que utiliza o processo de seleção E%-max WTA para a formação de células de 

lugar (place cells) no giro denteado a partir de células de grade (grid cells) do córtex 

entorrinal. 

!"8 9+'()50,+7:3+,$&7:07&(,4+,4&$2(30,+,+;%&:()50,70,<!,

O córtex visual primário (V1) é a área mais estudada do sistema visual. Nos 

mamíferos, o V1 está localizado no pólo posterior do córtex occipital, como mostrado 

na Figura 1.2 (o córtex occipital é responsável pelo processamento dos estímulos 

visuais), altamente especializado no processamento de informações sobre objetos 

móveis e estáticos, particularmente movimentação, orientação e contraste. 

!

Figura 1.2 – Localização do córtex visual primário (V1) no encéfalo humano (imagem obtida em 
http://pine.psych.cornell.edu/educational/brain_areas.html). 

Células no V1 possuem uma campo receptivo alongado e conseqüentemente 

respondem melhor a estímulos alongados, como barras e lâminas. Essas células de 

acordo com a complexidade de suas respostas, dividindo-as em dois grupos: células 

simples e complexas (Hubel & Wiesel, 1962). A principal diferença entre elas está 
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relacionada com a precisão de resposta; enquanto as células complexas respondem 

mais precisamente a uma dada orientação, células simples apresentam uma resposta 

mais difusa. Também observou-se que uma boa parte das células complexas também 

são “sensíveis à direção”, ou seja, respondem quando um objeto se movimenta numa 

dada direção (ou orientação) mas não em outra (Hubel & Wiesel, 1962). 

A sintonia disparo de uma célula do V1 é ilustrado na Figura 1.3. Cada célula 

responde maximamente a um certo grau de orientação, mas a mesma célula apresenta 

algum nível de excitação para um determinado espectro de orientações (Carandini & 

Ferster, 2000). 

!

Figura 1.3 – A atividade de uma dada célula do V1 depende do grau de inclinação ! e do contraste de 

um estímulo. Os neurônios do V1 são ativados num dado espectro de orientação das barras. 

Anderson et al. (2000) também demonstraram que a sintonia de disparo é mais 

estreita que a sintonia de excitação (comparar Figura 1.4A e B) e que a sintonia de 

disparo é praticamente invariável, ou seja, ainda que os neurônios recebam estímulos 

num amplo espectro de orientações, sua sintonia de disparo permanece a mesma. 
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Figura 1.4 – A sintonia de disparo não é afetada por mudanças no contraste de um determinado 
estímulo. A) A sintonia de entradas excitatórias em função de orientação com dois níveis de contraste 
(níveis de excitação). B) A sintonia de disparo permanece idêntica para os dois níveis de contraste 
(adaptado de Anderson et al., 2000). 

No exemplo da Figura 1.4A, os neurônios recebem estímulos em orientações 

que variam de 45o até 225o, por outro lado na Figura 1.4B varia entre os ângulos 90 e 

180o. Ainda mais importante é o fato que este estreitamento na sintonia de disparo 

permanece constante mesmo quando o nível de contraste é alterado (o nível de 

contraste está diretamente relacionado com o nível de excitação das entradas), como 

mostra a Figura 1.4B. Como discutido em, modelos do tipo feedforward com limiar 

de disparo fixo são incapazes de reproduzir esta independência de contraste 

(Carandini and Ferster, 2000); nesses modelos, a sintonia de disparo pode ser 

estreitada pelo efeito do limiar, um fenômeno chamado “efeito iceberg”. No entanto, 
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este estreitamento é modificado por uma alteração da excitação, ou seja, a sintonia de 

disparo não é independente ao contraste. 

!"= >03.()50,4+,%?'1'($,4+,20$&)50,70,@&30,4+7:+(40,

Como já foi dito anteriormente, o modelo de seleção E%-max WTA também é 

utilizado para a formação de células de lugar (place cells) no giro denteado a partir de 

células de grade (grid cells) do córtex entorrinal. Nosso modelo procura adotar 

parâmetros similares às medidas experimentais no que diz respeito ao número de 

células, às conexões e aos diferentes padrões de atividade, e conclui que a 

transformação entre a entrada e a saída das células granulares do giro denteado não 

depende fortemente da modificação sináptica. 

Acredita-se que células de grade e células de posição sejam a base neural para  

a representação do espaço no cérebro de roedores (O'Keefe, 1976). É possível, 

portanto, decodificarmos a posição de um animal, ou onde o animal pensa que está, 

simplesmente a partir da análise da estatística de disparos destes neurônios. 

As células de posição encontram-se na região do hipocampo, enquanto que as 

células de grade localizam-se na região do córtex entorrinal, a principal fonte de 

entradas ao do hipocampo (Johnston and Amaral, 1998). A Figura 1.5 mostra a 

localização geral dessas duas regiões no encéfalo do rato. Estes tipos de células são 

identificados eletrofisiologicamente, ou seja, registrando-se sua atividade elétrica 

extracelular mediante eletrodos cronicamente implantados em animais (ratos) livres 

para explorar um determinado ambiente (Figura 1.6 A e C). Funcionalmente, o que 

diferencia uma célula de posição de uma célula de grade, além de sua localização 

anatômica, é a forma e o número de seus campos receptivos espaciais. As células de 

posição apresentam basicamente um campo receptivo relativo a uma única região do 
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espaço (Figura 1.6 A e B). Já uma célula de grade possui múltiplos campos receptivos 

ordenados em uma rede hexagonal (Figura 1.6 C e D). Quando ela está ativa, o animal 

está próximo de um dos nodos de uma determinada grade que é específica para esta 

célula. Como as células de grade não dão mais informação do que isto, sua atividade é 

informacionalmente mais ambígua, pois numa grade existem muitos nodos (Hafting et 

al., 2005).  

!

Figura 1.5 – Localização do córtex entorrinal e do giro denteado do hipocampo dorsal no encéfalo de 
rato em corte coronal (imagem obtida em http://brainmaps.org/). 

Os fatos de as células de grade serem menos informativas e de estarem 

localizadas numa região (o córtex entorrinal) que manda eferentes para as regiões que 

possuem células de posição (o hipocampo), resultam na principal hipótese da segunda 

metade deste trabalho: as células de grade constituiriam um passo anterior no 

processamento espacial que geraria, ao cabo, as células de posição. Ou seja, o código 

espacial representado no córtex entorrinal pelas células de grade seria um código 

“mais grosseiro” que acabaria sendo refinado no hipocampo dando origem às células 

de posição, que representaram um código mais informativo. A tentativa de  explicar 

como se daria este refinamento é outro dos objetivos deste trabalho. 
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Figura 1.6 – Exemplo de células de posição (A e B) e células de grade (C e D). As linhas cinzas nas 
figuras A e C mostram o caminho percorrido pelo rato durante o experimento, dentro de uma caixa 
quadrada; já os pontos vermelhos mostram as posições onde o neurônio registrado em cada um dos 
esperimentos está ativo. É importante ressaltar que os mapas A e C registram a atividade de apenas um 
neurônio no giro denteado (A) e um neurônio no córtex entorrinal (C). B e D mostram a probabilidade 
de disparo de um dado neurônio do giro denteado e do córtex entorrinal, respectivamente, em todo o 
ambiente. Nestes exemplos, vermelho escuro representa probabilidade máxima de disparo e azul escuro 
representa probabilidade mínima. As figuras A e C são resultados de experimentos (Leutgeb et al, 
2007), enquanto B e D são resultado de simulações e não representam exatamente o mesmo 
experimento. 
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2 Objetivos 

/"! #AB+:&60,@+3(',

Esta tese tem como objetivo geral argumentar que as oscilações na freqüência 

gama são responsáveis não apenas pela sincronização dos disparos de um conjunto de 

neurônios pertencentes a uma mesma memória ou percepção, mas também pela 

seleção de quais neurônios disparariam a cada ciclo de oscilação. A seleção dos 

neurônios ocorre através da interação entre a excitação e uma retroalimentação 

inibitória chamada aqui de E%-max WTA. 

/"/ #AB+:&60$,+$2+%CD&%0$,

1. Entender as regras que governam o processo de seleção baseado em gama, ou 

seja, que fração de células vai disparar a cada ciclo de gama (Capítulo 3); 

2. Demonstrar que o método de seleção dinâmica E%-max WTA é capaz de 

explicar fenômenos peculiares de alguns circuitos encefálicos: 

a. A diferença entre a sintonia de excitação e disparo no córtex visual 

primário (Capítulo 3); 

b. A formação da atividade das células de posição no giro denteado a 

partir das células de grade do córtex entorrinal (Capítulo 4). 
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3 Uma Segunda função para as oscilações na 
freqüência gama: O mecanismo do E%-max 
winner-take-all seleciona que células disparam 
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A Second Function of Gamma Frequency Oscillations:
An E%-Max Winner-Take-All Mechanism Selects
Which Cells Fire
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1Neuroscience Program and 2Physics Institute, Universidade Federal do Rio Grande do Sul, CEP 90040-060, Porto Alegre, Brazil, and 3Department of
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The role of gamma oscillations in producing synchronized firing of groups of principal cells is well known. Here, we argue that gamma
oscillations have a second function: they select which principal cells fire. This selection process occurs through the interaction of
excitation with gamma frequency feedback inhibition. We sought to understand the rules that govern this process. One possibility is that
a constant fraction of cells fire. Our analysis shows, however, that the fraction is not robust because it depends on the distribution of
excitation to different cells. A robust description is termed E%-max: cells fire if they have suprathreshold excitation (E) within E% of the
cell that has maximum excitation. The value of E%-max is approximated by the ratio of the delay of feedback inhibition to the membrane
time constant. From measured values, we estimate that E%-max is 5–15%. Thus, an E%-max winner-take-all process can discriminate
between groups of cells that have only small differences in excitation. To test the utility of this framework, we analyzed the role of
oscillations in V1, one of the few systems in which both spiking and intracellular excitation have been directly measured. We show that an
E%-max winner-take-all process provides a simple explanation for why the orientation tuning of firing is narrower than that of the
excitatory input and why this difference is not affected by increasing excitation. Because gamma oscillations occur in many brain regions,
the framework we have developed for understanding the second function of gamma is likely to have wide applicability.

Introduction
Gamma frequency oscillations were originally discovered in the
field potential of visual cortex (Eckhorn et al., 1988; Gray and
Singer, 1989) and have subsequently been observed in most brain
regions (for review, see Jensen et al., 2007). Such oscillations are
thus likely to be a fundamental aspect of neural processing. Anal-
ysis of the function of gamma oscillations has focused on the role
of oscillations in synchronizing cell firing (Singer and Gray,
1995): rather than firing with a uniform probability over time,
networks that display gamma oscillations show clustered firing of
principal cells that tends to occur at a particular phase of each
gamma cycle (Bragin et al., 1995; Penttonen et al., 1998; Csicsvari
et al., 2003). Such synchronization is likely to be functionally
important because it allows the detection of this group by coin-
cidence detection in target cells (König et al., 1996). Gamma
oscillations are thus thought to be an important aspect of neural
processing that provides a way for a group of cells that represents

a particular percept or memory to be distinguished from other
groups.

Although neurons are synchronized by gamma oscillations,
they do not generally fire on every gamma cycle. For instance, in
the hippocampus, principal neurons fire during only 2–5% of the
gamma cycles [Senior et al. (2008), their Fig. 6]. It is thus impor-
tant to understand how excitation and inhibition interact to pro-
duce this selectivity. Importantly, inhibition itself is modulated at
gamma frequency (Soltesz and Deschênes, 1993); indeed, gamma
oscillations appears to arise through a feedback process in which
principal cells excite interneurons, which then inhibit the princi-
pal cells (Miles, 1990; Fisahn et al., 1998; Bartos et al., 2007; Fries
et al., 2007; Mann and Paulsen, 2007). This dynamic inhibition
not only synchronizes cells but, through interaction with excita-
tion, selects which cells fire.

We have sought to determine whether there are any simple
rules that describe this process. It has generally been thought that
inhibition selects the most excited cells by performing a type of
winner-take-all process. There is clearly more than one winner,
and thus a commonly used assumption is that that there are k
winners. We have examined this possibility and found that it is
not robust. An alternative description (E%-max winner-take-all)
is more robust: cells fire in a given gamma cycle if they have
excitation (E) within E% of the cell that has maximal excitation.
We show that the value E% can be estimated from easily measur-
able properties. Given how widespread gamma oscillations are in
the nervous system, the role of these oscillations in determining
which cells fire is of fundamental importance. This E%-max pro-
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cess is not a single-cell process, but rather a
network process. In light of the present re-
sults, some standard ideas about what
causes cells to fire may need to be revised.

Materials and Methods
The network we simulate is shown in Figure 1
and involves a group of identical principal cells
that converge onto an interneuron. The inter-
neuron provides feedback inhibition to all prin-
cipal cells. This inhibition occurs with a delay
(d), relative to the spike in the principal cell. In
most of the simulations, we adopted a delay pe-
riod of 3 ms. This feedback inhibition is strong
enough to prevent firing; firing can again occur
after partial decline of the inhibition. This sim-
ple network creates gamma frequency inhibi-
tion.

Different excitatory cells receive different ex-
citation from an external source. Principal cells
are modeled as simple integrate-and-fire neu-
rons, which have excitatory input current (exc),
inhibitory input current (GABA), and an after-
hyperpolarization (AHP) current. The voltage Vj of neuron j is defined by
the following equation:

!m

dVj(t)

dt
!"Vj(t)#Vrest#Rm[Iexc(t)#IAHP(t)#IGABA(t)]. (1)

Here, we use as parameters the average input resistance of CA3 cells
($Rm ! 33 M%) (Turner and Schwartzkroin, 1983), the membrane time
constant (!m ! 30 ms), and the threshold for firing (T ! "50 mV). After
each spike, voltage is reset instantaneously to the resting potential (Vrest

! "65 mV). We use the following parameters: the steady excitatory
current Iexc is constant (Aexc ! 2 nA); the afterhyperpolarization current
(IAHP) has AAHP ! "2 nA and !AHP ! 17 ms (duration); the inhibitory
current IGABA has AGABA! "20 nA and !GABA ! 3 ms (duration).

For the simulation, we considered the excitatory input (Iexc) constant
over time (see Results for rationale), whereas the other currents are mod-
eled as an instantaneous rise followed by a linear decrease (for consider-
ation of the case in which a component of excitation is rapid, see supple-
mental material, available at www.jneurosci.org).

Icurrent(t)!Acurrent!H(t)[1"
t

!current
]# (2)

H(x) is the Heaviside function, where H(x) ! 1 if x & 0 and 0 otherwise,
and […]# ! xH(x) is the clipped linear function.

In the simulation of orientation selectivity, we consider that the exci-
tatory current to a V1 neuron is given by the following:

Iexc!Ibasal#Imax(G("0,",#)#$), (3)

where Ibasal is an excitatory current strong enough to produce a suprath-
reshold potential in all neurons; Imax is related to the image contrast, such
that the larger the contrast, the larger Imax; G("0,",#) is the orientation
selectivity function given by the following:

G("0,",#)!e"
("""02)

2#2 , (4)

where "0 is the angle with the maximum response and # is the width of
the selectivity function. Finally, $ is a Gaussian random variable with
SD ! 0.3 and clipped in the interval "1 and 1. This represents the noise
in the system.

For these simulations, the width of the tuning curves is # ! 32°, the
values of Imax are 5 and 10 nA (as displayed in Fig. 6 A), and Ibasal is 0.5 nA.
All simulations and analysis here were made using Matlab (Mathworks).

Results
Our overall goal is to understand how networks with gamma
frequency inhibition select which cells fire based on their varying
excitatory drive. The simplified circuit that we consider here is
shown in Figure 1A. Principal cells receive external input that is
purely excitatory. When these cells fire, they excite an interneu-
ron, which inhibits all the principal cells (feedback inhibition).
When this inhibition declines sufficiently, firing again occurs.
This process repeats indefinitely, thereby generating a gamma
frequency oscillation. Experimental results (Miles, 1990) show
that feedback inhibition is very rapid, as shown in Figure 1B (we
use the value of 3 ms). The use of a single interneuron in our
simulations is a reasonable approximation because of several
properties of interneuron networks: there is enormous conver-
gence of principal cells onto these interneurons, enormous diver-
gence of the feedback connections from interneurons to principal
cells and electrical coupling among the interneurons (Buhl et al.,
1994; Cobb et al., 1995; Galarreta and Hestrin, 1999; Tamás et al.,
2000; Meyer et al., 2002). Furthermore, interneurons are sensitive
enough to fire in response to input from only a single principal
cell (Miles, 1990; Gulyás et al., 1993; Marshall et al., 2002; Silber-
berg and Markram, 2007). The circuit of Figure 1A was simulated
as an integrate-and-fire network (see Materials and Methods).
The relevant currents are the excitatory input, the feedback inhi-
bition and a brief AHP after each action potential.

A common framework for describing networks with feedback
inhibition is as a winner-take-all process. Because it is clear that
there is more than one winner in biological networks, the term
k-winner-take-all is often used to denote that there are k winners.
Under a given set of conditions, this is certainly true, but to be a
robust description of the network computation, k should be in-
variant not only for multiple values of excitation and inhibition
but also for different distributions of input excitation (excitation
is considered here to be constant over time) (for a similar analysis
with time-varying excitation, see supplemental material, avail-
able at www.jneurosci.org). To examine whether this is the case,
we changed the ratio of excitation and inhibition in our integrate-
and-fire model; we also varied the distribution of inputs to dif-
ferent principal cells (Fig. 2A). We found that the number of
winners (k) is invariant over a large range of excitation but varies
strongly with the distribution of excitation (Fig. 2B). Thus, the

Figure 1. A, Network structure showing interconnections of principal cells and an interneuron. Principal cells (P1 to Pn) receive
external excitatory input. Principal cells excite an inhibitory interneuron (I) that provides feedback inhibition to all principal cells.
B, An action potential (top trace) in a pyramidal neuron in the CA3 region of the hippocampus produces rapid disynaptic feedback
inhibition in a nearby pyramidal neuron (bottom; several traces superposed). The entire process is very rapid: there is only a 2–3
ms delay between the action potential in the principal cell and the feedback inhibition of principal cells. Note: feedback inhibition
probably also occurred in the cell that fired the action potential but is hard to detect because of the potassium conductances (and
resulting hyperpolarization) activated by the action potential in that cell. Reprinted with permission from Miles (1990).
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concept that a network can robustly select
a fixed number of winners is not correct.

To identify a more robust description
of the selection process, we considered two
cells, N1 and N2, that have only slightly
different (10%) excitatory input. The
traces in Figure 3B start with the inhibition
initiated during the previous gamma cycle.
As the IPSP decays with the membrane
time constant, N1 reaches threshold first
and fires (resulting immediately in an
AHP in N1). However, because the IPSP
continues to decline, other cells may fire
during the brief “vulnerable period” be-
fore feedback inhibition arrives. In the ex-
ample shown in Figure 3, N2, which has
only 10% less excitation than N1, contin-
ues to depolarize because of decay of the
IPSP and almost reaches threshold. How-
ever, before it does so, feedback inhibition
arrives and prevents N2 from reaching
threshold. If feedback inhibition had not
arrived, N2 would have fired after a short
additional delay (Fig. 3C). However, if ex-
citation of N2 was only 5% less than N1,
the depolarization during the vulnerable
period reaches threshold, and thus both
cells fire (Fig. 3D). This simple example
shows that the network can select which
cells fire based on small (10%) differences
in excitation and that understanding the
events during the vulnerable period is
crucial.

To quantify the processes during the
vulnerable period, we define the effective
excitation (E) of a given cell as the excess
of voltage above threshold (E ! VE " T),
where VE is the sum of the excitatory input
and intrinsic afterpotentials that result
from previous firing. If E # 0, a cell will
never fire; if E $ 0, cells may fire if the
inhibition allows. The cell that fires first
during a gamma cycles has excitation Emax;
as inhibition declines during the gamma
cycle, the last neuron to fire during the vul-
nerable period has lower excitation, Emin.
E%-max is the percentage difference be-
tween this lower excitation and that of the
maximal excitation. To examine the ro-
bustness of E%-max in defining which
cells fire, we determined E%-max under
various conditions in our integrate-and-
fire network. Figure 2C shows that neither
scaling the excitation ($10-fold) nor
changing the distribution of excitation
strongly affected E%-max. Thus, the E%-
max description robustly captures a fun-
damental aspect of the computation.

Analytical estimation of E%-max and
its determinants
We next sought to determine what prop-
erties of the network determine E%-max.

Figure 2. Comparison of a k-winner-take-all description with an E%-max winner-take-all description. A, Graph of the input
excitation of 1000 different neurons in the network. The minimum excitation is always zero, and the values are relative to the cell
with maximal excitation (excitatory current). Neurons here are ranked in terms of increasing excitation. Several distributions are
plotted (same legend for A–C). B, The number of winners (k%) as excitation is scaled up. C, E%-max as excitation is scaled up. The
dotted line in C indicates the theoretical value derived in Results.

Figure 3. Events that govern the selection process in a network with feedback inhibition. One neuron (N2) receives 10% less
excitation than the other (N1). A, The component currents of N1 and N2 (solid/dashed lines). At the left, there is onset of inhibition
because of the previous gamma cycle (details not shown). B, As inhibition decays, threshold is reached in N1, causing an action
potential. This is followed by an AHP in N1 and feedback inhibition in both cells (with a delay of 3 ms). During this delay, the decline
of inhibition in N2 is not sufficient for that cell to reach threshold. C, If the feedback inhibition is prevented, N2 fires. D, If the
excitation of N2 is only 5% less than N1, N2 fires.
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As shown in Figure 1B, firing creates a
feedback IPSP in all principal cells of the
network. The fall of the IPSP occurs with
the membrane time constant, creating a
“ramp” in the membrane potential of the
principal cell that interacts with synaptic
excitation. As the ramp declines, the cell
with maximal excitation fires and triggers
feedback inhibition. At this moment (t*;
defined relative to the onset of inhibition),
the following condition is met relating the
voltage threshold (T; defined relative to
resting potential), the EPSP (VE

max ) of the
cell, and the IPSP (VGABA):

VE
max!VGABA(t*)"T. (5)

Therefore, the condition to fire can be
written as follows:

Emax"#VGABA(t*), (6)

where we define suprathreshold excitation “E” as the difference
between the EPSP and threshold as follows:

$E%VE#T).

Our goal is to determine the minimal excitation (E min) necessary
for a second cell to fire in the same gamma cycle. Consider that
the difference between excitations is

&E"Emax#Emin. (7)

Since the feedback inhibition takes d seconds to occur, the second
cell will fire if at most

Emin"#VGABA(t*!d). (8)

Considering that the firing period t* is much larger than the delay
(d), we can make a linear approximation as follows:

VGABA(t*!d)'VGABA(t*)!d!
dVGABA

dt
(t*). (9)

The inhibitory component of the potential is a consequence of
the integration of the fast IGABA current across the membrane. We
consider that IGABA(t) " 0 by the time the neurons are approach-
ing to their thresholds; therefore, VGABA is decaying exponen-
tially with the membrane time constant !m as follows:

dVGABA

dt
(t*)"#

1

!m
VGABA(t*). (10)

Combining Equation 6 with Equations 7, 9, and 10 results in the
following:

E%-max"
&E

Emax"
d

!m
. (11)

According to Equation 11, E%-max increases with d and de-
creases with the membrane time constant. Figure 2C, dotted line,
shows that Equation 11 correctly predicts the magnitude of E%-
max, as determined in our integrate-and-fire network. In Figure
4, the same network is used to verify that E% depends linearly on
the delay of feedback inhibition and inversely on the membrane
time constant, in accord with Equation 11.

E%-max rule: application to excitation and firing tuning
in V1
The process by which gamma oscillations perform an E%-max
computation means that the selection of which cells fire is inher-
ently a network process and implies that there is not a direct
relationship between the excitatory input and cell firing. Rather,
whether a cell fires will depend on the excitation to other cells in
the network. In most brain regions, input excitation has not been
measured and so the above ideas cannot be related to experimen-
tal data. However, in the case of orientation cells of V1, both the
orientation tuning of excitation (measured intracellularly) and
the orientation tuning of spiking have been measured (Anderson
et al., 2000; Carandini and Ferster, 2000; Monier et al., 2003). The
results show that the tuning of firing is considerably narrower
than the tuning of excitation and that this difference is contrast
invariant (unaffected by the increased excitation produced by
enhancing the contrast of the stimulus). There has been consid-
erable interest in understanding the mechanism of this invari-
ance, and many models have been proposed (for review, see Fer-
ster and Miller, 2000; Teich and Qian, 2006). However, although
both intracellular and field recordings indicate the presence of
gamma oscillations (Gray and Singer, 1989; König et al., 1996;
Singer and Gray, 1995; Volgushev et al., 2003; Fries et al., 2007) in
V1, the specific role of the dynamic inhibition provided by
gamma has not previously been considered. It was thus of interest
to ask whether an E%-max computation can account for the
observed differences in the tuning of excitation and firing.

The tuning of excitation in V1 cells was studied by Carandini
and Ferster (2000) and is illustrated in Figures 5 and 6A. Each cell
responds maximally to some degree of orientation (around 135°
for the graphs shown in Figs. 5, 6A), but the same cell also shows
some level of excitation for a range of other orientations (between
45 and 225° for the examples here). Anderson et al. (2000)
showed that the tuning of spiking is sharper than the tuning of
excitation; specifically, the half-width at half-height of the tuning
of spiking was around 23° compared with 38° for the EPSP. Im-
portantly, this narrow tuning of spiking was not changed when
the contrast of the visual stimuli was increased. As discussed by
Carandini and Ferster (2000), feedforward models with fixed
threshold are unable to reproduce this independence of contrast;
in such models (Fig. 5), tuning can be sharpened because of a
threshold for firing, a phenomenon termed the “iceberg” effect.
However, an important property of this iceberg effect is that the
sharpening is reduced by increasing the overall level of excitation
(by increasing contrast).

To examine how gamma frequency inhibition affects orienta-

Figure 4. The effect of the delay of feedback inhibition (A) and membrane time constant (B) on E%-max.
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tion selectivity, we modified our integrate-and-fire network to
have orientation-selective input to each principal cell. In these
simulations, the network was composed of 100 neurons, each
with slightly different optimal orientation (evenly spaced be-
tween 0 and 270°). E%-max was set at 10%. We ran the network
for many gamma cycles using two levels of contrast (Fig. 6A).
Figure 6B shows that the probability of spiking per gamma de-
pended on stimulus orientation (300 trials). Similar to the exper-

imental results (Anderson et al., 2000), the neurons in the simu-
lated network displayed a sharper orientation tuning for spikes
than for input excitation: the half-width at half-height of the
excitation tuning is 37° (Fig. 6A), whereas the same measure for
spike tuning is 16.5° (this value would be slightly higher if more
noise was assumed). Importantly, the tuning of spikes was prac-
tically unchanged when the excitatory input was doubled (Fig.
6B). A selection process based on gamma frequency inhibition
can thus account for the contrast invariance of orientation
tuning.

We emphasize that we have kept this model as simple as pos-
sible to isolate the computational capabilities of feedback inhibi-
tion. Other forms of synaptic input (feedforward inhibition from
both “on” and “off” cells; recurrent excitation) are necessary to
account for the full complexities of the response of V1 cells, in-
cluding the response to moving stimuli (Ferster and Miller,
2000).

Discussion
Almost all work to date on the functional role of gamma oscilla-
tions has focused on the production of synchronized firing (Bra-
gin et al., 1995; Singer and Gray, 1995; Penttonen et al., 1998;
Csicsvari et al., 2003). We argue that a second function of gamma,
the selection of which cells fire, is equally important. It has been
experimentally shown that only a fraction of cells fire on each
gamma cycle (Senior et al., 2008), but the mechanism that deter-
mines which cells fire has been unclear. Our work indicates that
this selection is a type of winner-take-all process that follows
directly from the properties of the feedback inhibition that un-
derlies gamma frequency oscillations.

We have sought to find a simple quantitative description of
this winner-take-all process and have found that several descrip-
tions are not correct. There is no single winner, and so the
winner-take-all concept cannot be taken literally. Nor will a net-
work determine a fixed number of winners, independent of the
input distribution. We find, however, that a simple rule approx-
imates the selection process: cells will fire if their suprathreshold
excitation (E) is within E% of the cell that receives maximal
excitation. We term this an E%-max winner-take-all-process. As
shown in Figure 2C, E%-max holds over a considerable range as
the excitatory inputs to the network are scaled relative to inhibi-
tion. Furthermore, E%-max is not altered by changing the distri-
bution of excitation in the different cells (relative to the cell with
maximal excitation). Thus, the E%-max computation is robust.
Because E%-max rule does not depend on the exact ratio of ex-
citation to inhibition, it can be applied to cases in which this ratio
is not known. The companion study (de Almeida et al., 2009)
applies the rule to calculate properties of hippocampal place
fields. In contrast to previous work (Rolls et al., 2006), in which
the percentage of cells with place fields was used as a way to
arbitrarily set inhibition, the E%-max rule allows the calculation
of this percentage from theoretical considerations (without
knowing the exact value of inhibition), which can then be com-
pared with the observed value.

Determinants of E%-max
We have shown by simulation and theory that E%-max is deter-
mined by the ratio of the delay of feedback inhibition (d) to the
membrane time constant (!m). This functional dependence can
be understood intuitively as follows (see also Fig. 3). When
gamma-mediated inhibition is maximal, cells will be below
threshold. The gradual decay of inhibition creates a ramp, which
can be view as “searching” for the neuron with maximal excita-

Figure 5. Tuning changes produced by the iceberg effect. The bottom curve shows orienta-
tion tuning of excitation relative to threshold (dashed line). As shown in the bottom curve, the
width of the tuning of firing (double arrow) can be quite narrow because only a few orientations
are above threshold (the iceberg effect). However, if the overall level of excitation is scaled up
(higher curve), as would occur if image contrast is enhanced, the tuning becomes broader,
contrary to experimental observations.

Figure 6. Orientation tuning of firing is unaffected by increasing excitation (contrast) in an
integrate-and-fire network with gamma frequency inhibition. A, Tuning of excitatory input as a
function or orientation (same as in Fig. 5) at two different levels of contrast. B, Orientation
tuning of firing in simulations. Curve fits to data show no effect of enhancing contrast on tuning.
The responses were fit by

F(x)!Ae"(
x"B

C )2,

where x is the degree of orientation. For the lower level of contrast (filled squares), A ! 0.19,
B ! 135, and C ! 20.4; for higher contrast (open squares), A ! 0.183, B ! 134.9, and C !
19.74. The value of E%-max was 10%, based on results from hippocampus. The fact that the
calculated tuning of spikes (16.5°) is narrower than observed experimentally (23°) could be
because E%-max is higher in V1 or because noise levels are higher than we assumed (see
Materials and Methods).
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tion; this will be the first cell to fire and trigger feedback inhibi-
tion (Miles, 1990; Gulyás et al., 1993; Marshall et al., 2002). This
inhibition occurs within 2–3 ms, and it is this delay that creates a
vulnerable period during which cells with less than maximal ex-
citation can fire. The more inhibition declines during the vulner-
able period, the more likely it is that cells with less inhibition will
fire: thus selectivity decreases as the delay increases. Selectivity is
also decreased if the decay of inhibition (membrane time con-
stant) becomes faster. Based on experimental values for d and !m

in the hippocampus, we estimate that E%-max is in the range of
5–15%. This is a small fraction of excitation and indicates that the
selection process can make fine discriminations.

We emphasize that the rules we have developed are meant
only as a first-order approximation and that the operation of
feedback networks will depend on additional factors that we have
not taken into consideration. These include the variability of de-
lays in feedback inhibition, the opening kinetics of inhibitory and
excitatory channels, and the limited spatial spread of feedback
inhibition in the network. Furthermore, the excitatory input to
inhibitory cells may often be enhanced by convergent inputs
from multiple principal cells, a summation process that we have
not modeled. In most of our calculations, we have assumed that
excitation varies slowly with respect to gamma. This assumption
may be valid when the stimulus is slowly changing, but may be in-
valid when a network receives a brief pulse of synchronized input. In
the supplemental material (available at www.jneurosci.org), we ex-
amine the case in which excitation has both steady and fast compo-
nents and show that the E%-max rule and Equation 11 still apply.
Another assumption in our calculations is the choice of a fast AHP.
Different cell types have different duration afterpotentials, often de-
pending on neuromodulatory state (Storm, 1987, 1989). Moreover,
in some cells, the afterpotential can be depolarizaing rather than
hyperpolarizing (Storm, 1989; Andrade, 1991; Araneda and An-
drade, 1991; Caeser et al., 1993). These afterpotentials will contribute
to the suprathreshold excitation of the cell. Under these conditions,
E%-max can still be usefully applied to determine which cells fire, so
long as it is understood that both internal and external processes
contribute to the effective excitation. Indeed, afterpotentials may
account for important properties of firing. For instance, a long AHP
would prevent a cell from firing on sequential gamma cycles, even if
the external excitatory drive stays constant. Alternatively, if there is
an afterdepolarization, a cell that fired once would be particularly
likely to fire again, a process that may underlie working memory
(Lisman and Idiart, 1995; Klink and Alonso, 1997).

Implications for neural computation
Because analysis of spiking in functional circuits is generally done
with extracellular recording, the tuning of the EPSP is usually not
known. However, in the case of orientation-selective cells of V1,
intracellular recordings have been achieved. Orientation selectiv-
ity appears to depend on two mechanisms: a process of connec-
tivity, which makes the input EPSP somewhat orientation selec-
tive (Reid and Alonso, 1995), and a second process dependent on
inhibition (Sillito, 1975; Troyer et al., 1998; Carandini and Fer-
ster, 2000). This second mechanism makes the orientation tuning
of spiking narrower than that of the EPSP. Moreover, this nar-
rowing is not affected by scaling up the excitation, a finding in-
consistent with models based on fixed inhibition. Consequently,
the narrowing of tuning cannot be explained by the iceberg effect
(Fig. 5). Intracellular recordings provide direct evidence for
gamma frequency inhibition in orientation-sensitive V1 cells
(Volgushev et al., 2003). We show here (Fig. 6) that an E%-max
computation produced by such oscillations can explain why the

orientation tuning of spiking is narrower than that of the EPSP
and why this difference is contrast invariant. Thus, there will be
orientations in which a cell receives substantial excitation (suffi-
cient to make the cell fire in the absence of inhibition) but in
which firing is suppressed by feedback inhibition triggered by
cells that that are slightly more excited by the stimulus.

A second system in which the E%-max winner-take-all com-
putation is likely to be important is the formation of place cells in
the hippocampus (de Almeida et al., 2009). The input to place
cells is from grid cells of the entorhinal cortex, which are active
(with spatial periodicity), over broad regions of the environment.
Nevertheless, hippocampal cells are active only in very restricted
regions of the environment. We show in a companion study (de
Almeida et al., 2009) that, despite the broad excitation, the E%-
max mechanism can select winners that are only slightly more
excited than other cells in the network and that cells are winners
in a relatively small region of the environment, thereby account-
ing for their place cell properties.

More generally, the winner-take-all function (and the specific
E%-max form considered here) requires a change in the concep-
tual understanding of how firing is controlled. According to text-
book accounts, firing can be understood as a single-cell property;
firing rate is determined by how far the net excitation is above
threshold. Based on this, if excitation x causes firing, excitation
2x in another context should also cause firing. However, this is
not necessarily correct in networks with feedback inhibition. If,
for example there are other cells in the second context that have
3x excitation, the cell with 2x excitation may not be among the
winners. This simple example demonstrates that firing in net-
works with winner-take-all gamma-frequency inhibition cannot
be derived from the excitation of a given cell, but is rather a result
of a competitive network computation in which all cells must be
considered.
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O material suplementar apresentado aqui procura complementar as simulações 

apresentadas no texto principal, levando em consideração tanto correntes rápidas 

quanto lentas, e verificando se o modelo de inibição dinâmica ainda ainda é capaz de 

selecionar as células corretamente. 
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For the sake of simplicity, the model presented in the main text deals with an 

excitatory current that is fixed over time. In the visual system, this would correspond 

to input from a visual stimulus that changes slowly relative the duration of a single 

gamma cycle. However, under other circumstances there may be both a fast 

synchronized input as well as an unsynchronized steady input (for justification of this 

point, see below). In the main text, we analyzed the role of gamma oscillations under 

conditions where there is only a steady component. Here we extend that analysis to 

the case where there is both a steady (Isteady) and a fast (Ifast) excitatory current. 

! )*+,!

Ifast is modeled as an instantaneous rise (Asteady) followed by a linear decrease (eq. 2). 

All other currents are modeled as in the main text. The circuit used here is the same 

shown in Figure 1. 

!

Figure 1 – Illustration of the selection process. A) Component currents. Neurons receive the same 
onset of inhibition, but both the fast and steady excitatory inputs of N2 (dashed line) are 10% smaller 
than N1 (solid line). B) N1 fires (at 19 ms), but N2 does not. 

These currents in two integrate-and-fire neurons are shown in Figure 1A. The 

excitation in N1 is slighty higher than in N2: both the peak fast current and the steady 
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currents are 10% smaller in N2 than N1. Figure 1B shows that N1 fires, but N2 is 

prevented from firing by feedback inhibition, similar to the results in Figure 3.  

We next tested if E%-max is stable for a large range of excitation and if 

different proportions of Ifast and Isteady could influence this number. In Figure 2 each 

curve represents a different proportion between Ifast and Isteady: for the red curve Ifast = 

Isteady, for the blue Ifast > Isteady and for the green Ifast < Isteady. E is defined by the sum 

and steady current and the peak fast current. As can be seen, E%-max is nearly 

constant over a wide excitation range and has the value defined by eq. 11 (10%) 

!

Figure 2 – E%-max is fairly constant over a wide range of excitations and with different proportions of 
fast and steady current. The current on the x-axis is defined as the steady current plus the peak of the 
fast current.  

In further analysis, we kept Isteady fixed and increased Ifast. (for two values of 

steady current, 5 and 15 nA). In both cases, E%-max is fairly fixed over a wide range 

of fast excitation (Figure 3). 

Parameters: For the simulations here, the following parameters (see definition 

in Methods of main text) were utilized: Asteady=4 nA; Afast=14 nA; !fast=2 ms; AAHP=-3 

nA; !AHP=17 ms; AGABA= -30 nA; !GABA=3 ms. 
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Figure 3 – Influence of fast current. If the peak of the fast current is excessively bigger than the steady 
current the value of E%-max tends to fall from the theoretical value. 

The basis for assuming that there is a steady component of excitatory input is 

now discussed. Neurons generally have between 10,000 and 100,000 excitatory 

synapses (we take the average as 50,000). Taking a low value of spontaneous activity 

of 0.1 Hz, then 500 of the inputs will be active within the integration time of the 

NMDAR (~0.1s for NR2A or NR2B, although longer for NR2C,D). About 50% of 

the synaptic charge at resting potential is generated by NMDARs (Keller et al, 1991). 

Thus, the background current generated by unsynchronized activity will be equivalent 

to the synchronized AMPA-mediated charge of 250 inputs. This is approximately the 

size of a neural ensemble that gives rise to the fast input (de Almeida et al., 2007). 

Thus, the fast and steady component are likely to be of the same order. 
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4 A transformação de entradas em saídas nas células 
granulares do Giro Denteado: das células de grade 
aos campos receptivos espaciais 



Cellular/Molecular

The Input–Output Transformation of the Hippocampal
Granule Cells: From Grid Cells to Place Fields

Licurgo de Almeida,1 Marco Idiart,1,2 and John E. Lisman3

1Neuroscience Program and 2Physics Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil, and 3Department of Biology and
Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454

Grid cells in the rat medial entorhinal cortex fire (periodically) over the entire environment. These cells provide input to hippocampal
granule cells whose output is characterized by one or more small place fields. We sought to understand how this input– output transfor-
mation occurs. Available information allows simulation of this process with no freely adjustable parameters. We first examined the
spatial distribution of excitation in granule cells produced by the convergence of excitatory inputs from randomly chosen grid cells.
Because the resulting summation depends on the number of inputs, it is necessary to use a realistic number (!1200) and to take into
consideration their 20-fold variation in strength. The resulting excitation maps have only modest peaks and valleys. To analyze how this
excitation interacts with inhibition, we used an E%-max (percentage of maximal suprathreshold excitation) winner-take-all rule that
describes how gamma-frequency inhibition affects firing. We found that simulated granule cells have firing maps that have one or more
place fields whose size and number approximates those observed experimentally. A substantial fraction of granule cells have no place
fields, as observed experimentally. Because the input firing rates and synaptic properties are known, the excitatory charge into granule
cells could be calculated (2–3 pC) and was found to be only somewhat larger than required to fire granule cells (1 pC). We conclude that
the input– output transformation of dentate granule does not depend strongly on synaptic modification; place field formation can be
understood in terms of simple summation of randomly chosen excitatory inputs, in conjunction with a winner-take-all network
mechanism.

Introduction
The process by which neurons transform their inputs into out-
puts is fundamental to understanding brain function but has
been difficult to study. Information must be available about the
number of excitatory synaptic inputs to target neurons, their
synaptic strength, and their receptive field properties. Informa-
tion must also be available about the inhibition that interacts with
excitation. These types of information are generally not available.

One brain region where there is sufficient information is the
monosynaptic connection of layer 2 cells of the medial entorhinal
cortex with the granule cells of the dentate gyrus, the main input
region of the hippocampus. Cells in this region of the brain fire in
a way that depends on the position of the animal. The input–
output transformation is remarkable. Entorhinal cells respond to
evenly spaced positions over the entire environment and have
therefore been termed grid cells (Hafting et al., 2005; Sargolini et
al., 2006). Different grid cells have different phase and spatial
frequency. In contrast, granule cells respond only to one or a few
positions and have therefore been termed “place cells” (O’Keefe,

1976; Leutgeb et al., 2007). Several fundamental questions may be
asked about this transformation: (1) Does this transformation
require learning or can it be accounted for by fixed properties of
the system? (2) Is the transformation done at the level of individ-
ual cells or are network processes involved? (3) Does the exact
number of synaptic inputs and their strength matter, or can the
transformation be analyzed in a simplified system? (4) Is the
absolute level of excitation much greater than threshold (and
balanced by a large inhibition), or is excitation on the same order
as threshold?

Fortuitously, extensive investigation of this brain region pro-
vides all the information necessary to analyze the input– output
transformation of dentate granule cells. First, the connections
between the entorhinal cortex and granule cells have been ana-
tomically analyzed and the number of inputs is known (Nafstad,
1967; Hama et al., 1989; Johnston and Amaral, 1998). Second, the
size, release probability, and quantal size of synapses of layer 2
entorhinal cells onto granules cells has been determined (Trom-
mald and Hulleberg, 1997; Bekkers and Clements, 1999), allow-
ing quantitative assessment of synaptic strength and its variabil-
ity. Third, properties of inhibition have been studied; notably, the
observation that cells fire phase locked to gamma oscillations
(Bragin et al., 1995; Csicsvari et al., 2003) indicates that gamma-
frequency inhibition is a major determinant of cell firing. Finally,
the firing threshold properties of the postsynaptic granule cells
have been determined (Geiger and Jonas, 2000). Together, this
data set provides the basis for analyzing the input– output trans-
formation in this system. This goal is aided by the development of
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a framework for describing the computational role of gamma
frequency inhibition (de Almeida et al., 2009). An important
aspect of this framework is that the winner-take-all process that is
performed by gamma oscillations does not depend strongly on
the exact magnitude of inhibition and can therefore be applied
when this magnitude is not known. We are thus able to analyze
the formation of place fields with no freely adjustable parameters.

Materials and Methods
Grid cells. Activity maps of simulated grid cells and place cells were rep-
resented by a square matrix of bins, each bin representing an area of 1
cm 2 in a 1 ! 1 m square environment. To simulate the activity of grid
cells, we used the expression developed by Blair et al. (2007) according to
which the rate at spatial location r " (x,y) is as follows:

G#r,!,",c$ # g!"
k"1

3

cos! 4$

#3!
u#"k % "$ ! #r & c$$$ , (1)

where u("k) " (cos("k),sin("k)) is the unitary vector pointing to the
direction “"k.” Each cosine in Equation 1 establishes a pattern of alter-
nating maxima and minima in the direction “"k.” The combined sum of
the three patterns at angles "1 " %30°, "2 " &30°, and "3 " &90° is a
honeycomb grid with intervertex spacing equal to !. The angle " is an
arbitrary rotation that we assume to be either " " 0°, 20°, or 40°. c " (x0,
y0) is the spatial phase of the grid. The resulting grid orientations are
illustrated in Figure 1 A–C. g is a monotonically increasing gain function
given by g(x) " exp[a(x % b)] % 1. The parameter b was set to %3/2 so
that the minimal firing rate is zero, since the summation of the three
cosine functions has a minimum value of %3/2. The parameter a was
chosen to be 0.3 to make the spatial decay from the center of each vertex
match the experimentally observed decay (Leutgeb et al., 2007), as dem-
onstrated in Figure 2.

Granule cells. In our model, granule cells receive excitatory input from
randomly chosen grid cells. The place cells that are active for a given
position in the environment are then determined according to the inter-
action of the summed excitation and inhibition using a rule based on the
percentage of maximal suprathreshold excitation (E%-max) winner-
take-all process (see below).

The excitatory input received by the ith place cell from the grid cells is
given by Equation 2:

Igrid
i #r$ # "

j%1

ngrid

WijGj#r$ , (2)

where Wij is the synaptic weight of each input. Wij can be either 0 (no
connection) or a positive random value distributed according to a func-
tion described below.

The activity of the ith place cell is given by the following:

Fplace
i #r$ # Igrid

i #r$ ! H#Igrid
i #r$ & #1 & k$ ! grid

max#r$$ , (3)

where the range of k (0.05– 0.15) was as estimated in our companion
paper (de Almeida et al., 2009). Specifically, k (referred to as E%-max)
determines which cells fire according to the following rule: cells fire if
their feedforward excitation is within E% of the cell receiving maximal
excitation. We assume here that E is very close to total excitation; this is a
reasonable approximation given the results computed at the end of the
Results section. Igrid

max(r) is the maximum input received by a place cell for
the position r. H(x) is the Heaviside function, where H(x) " 1 if x'0 and
is 0 otherwise.

Distribution of synaptic weights. We have used the measured size dis-
tribution of excitatory synapses onto granules cells (Trommald and Hul-
leberg, 1997) to a fit a function for this distribution:

P#s$ # A! 1 & e%! s
'1
$$ ! e%! s

'2
$ % B ! e%! s

'3
$$ , (4)

where s is the synaptic area (in square micrometers). s ranges from 0 to
0.2 (m 2 and A " 100.7, B " 0.02, '1 " 0.022 (m 2, '2 " 0.018 (m 2, and
'3 " 0.15 (m 2. Synaptic weight is related to synapse size through the
relationship:

W#s$ #
s

0.2! s

s % 0.0314$ . (5)

The first term expresses the linear dependence of quantal release proba-
bility on synapse area (for justification, see Results); the second term
shows how quantal size depends on synapse area. The area, which pro-
duces a quantal current that is half that at the largest synapses (0.2 (m 2),
is 0.0314 (m 2. This value was calculated according to the model of
Raghavachari and Lisman (2004), which correctly predicts the rise-time,
amplitude, and variance of the quantal response. We thank Sridhar
Raghavachari (Duke University, Durham, NC) for using this model to
systematically vary synapse size and thereby determine the 0.0314 value.

Analysis of place fields. To compare real data with the place fields pro-
duced by our model, two measures were adopted: number of place fields,
i.e., the number of regions in the recorded area that met the criterion for
a place field (see below), and the size of these place fields. The environ-

Figure 1. The receptive fields of grid cells have three different orientations. A–C, Three
examples show the possible orientation of grid cells in our simulations. D, An example of an
actual grid cell from Sargolini et al. (2006); dots are spikes; lines are the path of the rat.

Figure 2. Firing rate as a function of distance between the vertices of grid cells. We used
Equation 1 to define this spatial decay of activity from the vertices (maximum activity) and
matched this decay to that measured in (Leutgeb et al., 2007) (values here are normalized to the
intervertex distance). Firing rate falls to 50% at a distance that is 21% of the intervertex dis-
tance. This condition is met for a " 0.3. At the half point between vertices there is (8%
activity; the true minima is even lower, but not located along this line.
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ment for real and simulated data was 1 m by 1 m. Following the definition
of this (Muller and Kubie, 1989), a place field was defined as a continuous
region of at least 200 cm 2 consisting of bins that exceed a firing rate of
20% of the cell’s peak firing rate. The number of place fields and their
average area were calculated using simple image recognition programs
implemented specially for these simulations. The experimental data on
dentate place fields was obtained from (Leutgeb et al., 2007).

All computations were performed using the Matlab programming lan-
guage (MathWorks).

Results
Grid cells in layer 2 of the medial entorhinal cortex have widely
varying spatial frequency ranging from 30 cm to over 8 m (Fig. 3).
This variation in frequency is systematically mapped along the
dorsal ventral axis of the entorhinal cortex (Hafting et al., 2005).
Grid cells make monosynaptic connections onto granule cells of
the dentate gyrus (Fig. 4A). These cells do not have grid-like
receptive fields, but rather have one or a few place fields (Fig. 4B).
The overall question we address is how this transformation
occurs.

To determine the range of spatial frequencies that provide
input to a granule cell, it is necessary to account for the fact that
the region of dentate gyrus from which recordings are made re-
ceives input from only part of the dorsoventral axis of the medial
entorhinal cortex. The region of the dentate where recordings

have been made receives input from !1/4 of this axis (Witter,
2007) (M. Witter, personal communication). The region of the
largest recorded grid-cell spacing (8 m) is only 60% along the
entire axis. Based on these facts (and the assumption of logarith-
mic mapping), we estimate that the spatial frequency of inputs to
recorded granule cells varies from 35 cm to 1 m (Fig. 3, two-
headed arrow near bottom).

We next estimated the number of synapses made by grid cells
onto granule cells. The dendritic region of dentate granule cells is
divided into three layers. In the rat, it is the middle layer that
receives input from grid cells (for review, see Witter, 2007). Ac-
cording to Johnston and Amaral (1998), granule cells have
!3000 !m of dendrite and the spine density is 2.3 spines/micro-
meter. There are thus !6840 spines, each of which contains one
synaptic input. Approximately 30% of these are in the middle
molecular layer (Hama et al., 1989), where the layer 2 cells form
synapses. Of the synapses in this region, !85% receive input
from layer 2 of the entorhinal cortex (Nafstad, 1967). But not
every cell in layer 2 is a grid cell; Sargolini et al. (2006) indicate
that only 72% of the cells in this layer have well defined grid fields.
Taking all this information into consideration yields a total of
1200 –1300 spines on the granule cell that have synaptic inputs
from grid cells. The results of Min et al. (1998) indicate that the
fraction of silent synapses is small in this cell type; we therefore
take 1200 as the number of nonsilent synapses made by grid cells
onto granule cells.

Excitatory drive to granule cells
To determine the excitatory drive to a granule cells from grid
cells, we used a brute force procedure. We made a library of
10,000 grid cells, each with a different spatial frequency (varying
from 35 cm to 1 m), phase, and orientation (see Materials and
Methods). We then made 1200 random selections from the li-
brary and summed them, yielding an excitation map, one of
which is illustrated in Figure 5A. In these initial simulations, each
synapse was assumed to have the same synaptic strength. Figure
5B shows the excitation map if we summed a smaller number
(300) of grid cell inputs. It can be seen that the spatial modulation
of the normalized excitation map is much less with 1200 inputs
than with 300 inputs, as would be expected from an averaging
process. This comparison underscores the importance of quanti-
tatively accounting for the inputs to granule cells.

These considerations prompted us to consider not only the
number of input synapses, but also their differing synaptic
weights. Clearly if some synapses are almost silent, they will con-
tribute little, thus lowering the effective number of synaptic in-
puts. It is thus important to take into account the variability of
synaptic strengths of grid cell inputs. Morphological analysis in-
dicates that, as in most brain region, the size of synapses onto
dentate granule cells is highly variable (Trommald and Hulle-
berg, 1997). Recent physiological work strongly argues that syn-
aptic strength and size are related. Specifically, the number of
postsynaptic receptors (AMPAR) is proportional to synapse area
(Nusser et al., 1998) and therefore to spine size (Lisman and
Harris, 1993). Furthermore, the AMPA current evoked by local
two-photon uncaging of glutamate is proportional to spine size
(Matsuzaki et al., 2001). Finally, during long-term potentiation
(LTP), spine size and synapse size increase (Harris et al., 2003;
Matsuzaki et al., 2004), whereas during long-term depression,
spine size decreases (Zhou et al., 2004) (the effect on synapse size
has not been determined).

We base our estimate of the strength distribution of dentate
synapses on the size distribution of synapses (Fig. 6B), as deter-

Figure 3. The spatial frequency of grid cells as a function of distance along the dorsoventral
axis of the entorhinal cortex. According to Hafting et al. (2005), the intervertex distance varies
from "35 cm in the most dorsal region to "8 m in more ventral regions (the most ventral
region has not been recorded from). Granule cell recordings are from the dorsal hippocampus;
based on anatomical results showing that this region receives input from only part of the
entorhinal cortex, we estimate that the grid cells that provide input to granule cells have a
spacing that varies from 35 cm to 1 m (two-headed arrow near bottom) (see Results).

Figure 4. Morphology and receptive field properties of dentate granule cell. A, Camera
lucida drawing of a rat granule neuron adapted from Rahimi and Claiborne (2007). Scale bar, 5
!m. Inset shows magnified region on which spines can be seen. B, Activity (marked by #
signs) of a dentate granule cell in a 1 m by 1 m square box. Twisting lines indicate path of rat
through the box. There are several place fields; adapted from Leutgeb et al. (2007).
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mined by serial section electron microscopy (Trommald and
Hulleberg, 1997). These data show that synapse size varies over a
20-fold range. We developed an equation for calculating relative
synaptic strength from spine size, as follows. Synaptic strength is
the product of quantal size and quantal content. Quantal size is
relatively invariant with synapse size (Raghavachari and Lisman,
2004; Lisman et al., 2007); quantal size falls only if a synapse is
smaller than the 100 nm radius hotspot of AMPA channel acti-
vation produced by the glutamate released from a single vesicle,

as described by the second term in Equa-
tion 5. The probability of release has been
demonstrated to be proportional to the
readily releasable pool, which has been
identified as docked vesicles (Murthy et
al., 2001). The number of docked vesicles
is proportional to synapse area (Schikorski
and Stevens, 1997). Therefore, the number
of vesicles released is expected to be pro-
portional to synapse size. Taking this
size dependence of quantal size and
quantal release probability into consid-
eration, we derived Equation 5 for the
dependence of synaptic strength on syn-
apse size (Fig. 6 A).

In passing, we note that small synapses
are numerous (Fig. 6B) but weak, whereas
large synapses are few but strong; when the
“excitatory input contribution” (product
of number of synapses and their strength)
is plotted, it is nearly invariant with syn-
apse size (Fig. 6C). This is a surprising re-
sult and could reflect some unknown prin-
ciple that controls the distribution of
synaptic strength.

Given the development of an expression for the variation in
synaptic strength (Fig. 6A), we could calculate the effect of 1200
realistic inputs to granule cells. We computed excitation maps by
choosing 1200 grid cells at random, but also assigning synaptic
strength at random according to the measured distribution of
synapse size. This yielded excitation maps such as the two exam-
ples shown in Figure 5, C and D. By comparing these graphs to
Figure 5A, it can be seen that taking into consideration the vari-
ability of synaptic strength has as a major effect on excitation
maps (increases the spatial variation).

Interaction of excitation and inhibition
We next considered how excitation and inhibition interact to
produce place fields. Extracellular recordings from the dentate
gyrus show prominent gamma frequency oscillations (Bragin et
al., 1995; Csicsvari et al., 2003). Such oscillations arise at least in
part through excitation of interneurons by granule cells and feed-
back inhibition back onto the granule cells (Sik et al., 1997; Bartos
et al., 2002; Mann et al., 2005). To simulate the formation of place
fields in granule cells, it is therefore necessary to account for the
interaction of gamma frequency inhibition with the excitation
maps. We used a framework developed in a previous study (de
Almeida et al., 2009). According to this framework, as inhibition
declines during a gamma cycle, the most excited cell fires first.
This triggers rapid global feedback inhibition. However, because
there is a few millisecond delay in this feedback, other slightly less
excited cells will fire during this delay. In contrast, because there
remains significant inhibition during the delay, many cells with
substantial excitation will not reach threshold. The overall pro-
cess can be described as an E%-max winner-take-all process: at
each point in space, all cells that have excitation that is within E%
of the cell with maximal excitation will fire. The value of E%-max
is approximated by the ratio d/!, where d is the delay between the
time of a granule cell spike and the onset of the consequent feed-
back inhibition. Based on physiological studies in CA1, d is 2–3
ms (Miles, 1990) and appears to be similar in the dentate (Geiger
et al., 1997; Kraushaar and Jonas, 2000; Alle et al., 2001). ! is the
membrane time constant, which is !30 ms in granule cells

Figure 5. Excitation maps in granule cells normalized to the average excitation. The typical excitation maps for different input
configurations: A, Equal synaptic weights from 1200 grid cells. B, Equal synaptic weights from 300 grid cells. C, D, Two examples
with input from 1200 grid cells, but with synaptic weights varying according to the distribution in Figure 6 B.

Figure 6. Synaptic weight and contribution as a function of synpapse size. A, Relationship
between synaptic weight and synapse size (in square micrometers) according to Equation 5 (see
Materials and Methods and Results). B, Comparison between the analytical expression derived
to describe the size distribution of synapses (line) and the experimental data (bars) (Trommald
and Hulleberg, 1997). C, Input contribution (synaptic weight multiplied by the fraction of syn-
apses of that size) as a function of size.
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(Schmidt-Hieber et al., 2008). Thus, E%-max is !10%. The ratio
of inhibition to excitation in the dentate gyrus is not known; it is
therefore fortunate that E%-max does not depend on the exact
value of this ratio (de Almeida et al. 2009).

The E%-max computation involves competition between
granule cells, i.e., it is a network process. To calculate place fields,
it is therefore necessary to simulate the interaction of many gran-
ule cells. To do this, we constructed an excitation map for 10,000
granule cells and implemented the E%-max rule at each point in
space. This was done by finding the cell with maximal excitation,
as well as all cells with excitation at least 10% of this maximal
value. These cells were considered to fire at a rate proportional to
the degree of suprathreshold excitation. We then plotted the re-
ceptive fields of granule cells, with a color code representing firing
rate (dark red represents maximum activity; dark blue minimum
activity). The resulting place field properties were then compared
with experimental data. According to our analysis of the experi-
mental data (see Materials and Methods), the average granule
cells has 2.2 place fields and the average area of each place field "
667.3 cm 2 [n " 13 based on examples of place fields from (Leu-
tgeb et al., 2007)]. In our simulations, granule cells had an average
of 1.5 place fields and these had an average area of 627 cm 2 (Fig.
7B). Given the somewhat arbitrary criteria for defining place
fields and the small amount of experimental data available (13
place fields), the agreement between simulation and experiment
(Fig. 7A) is quite reasonable. Although the value of E%-max "
10% used in these simulation is supported experimentally (see
above), we have examined somewhat larger and smaller values. If
E%-max " 5%, the average number of place fields " 1.2 and their
average area " 367 cm 2; if E%-max " 15%, the average number
of place fields " 2.1 and their average area " 1311 cm 2.

Recent experimental work indicates that only a small fraction
(2– 8%) of dentate granule cells show c-Fos activation in a given
environment (Chawla et al., 2005; Ramirez-Amaya et al., 2006;

Tashiro et al., 2007). Although c-Fos activation reflects plasticity
processes rather than firing per se (and thus provides a lower
limit estimate of number of cells that have place fields), the low
fraction of cells showing c-Fos activation still suggests that many
granule cells do not have place fields. Consistent with this, we
found that with E%-max " 10%, only 25% of simulated granule
cells had place fields (for E%-max " 5%, 3% had place fields; for
E%-max " 15%, 74.5% had place fields). We conclude that the
competitive process is such that a substantial fraction of granule
cells will never be winners.

Recent experiments show that although only a small fraction
of granule cells have place fields, 85% of granule cells active in one
environment will also be active in another (Leutgeb et al., 2007)
[see related findings by Chawla et al. (2005) and Tashiro et al.
(2007)]. We wondered whether part or all of this effect might
simply result because, by chance, these cells had greater average
synaptic strength than others. To explore this hypothesis, we im-
plemented “different environments” by assuming that the
changes in the entorhinal cortex from one environment to an-
other randomly reshuffled (remapped) the properties of grid
cells. We simulated 4500 granule cells, each getting input from
1200 grid cells. If granule cells retained their synaptic strengths,
63.5% of granule cells had place fields in both environments. In
contrast, if we eliminated synaptic memory by using different
random weights in the two environments, the number fell to
22.1%. Thus, at least part of the effect observed by Leutgeb et al.
(2007) can be accounted for by the fact that some cells have
stronger synapses than others. To specifically test this explana-
tion of our simulations, we computed the average synaptic
strength and found that it was stronger in cells that were winners
in both environments (0.134) than in cells that were not (0.124).

In making all the simulations in our study, we considered a
realistic number of inputs to the granule cell, but simulated the
E%-max winner-take-all process using only small fraction of
granule cells (typically 4500 of a million). We investigated
whether this lack of realism affected our results. We quantified
the number of place fields as we varied the number of granule cell
from 500 to 5000 (Fig. 8). As can be seen, when the number of
granule cells was #3000, there was no further effect on the num-
ber of place fields. Thus, the 4500 granule cells we have used in
simulations are sufficient to accurately capture the competitive
process.

Figure 7. Comparison of computed granule cell place fields to experimentally observed
fields. A, Different examples of the computed spatial firing of different granule cells (E%-max"
10%). B, Granule cell place fields measured by Leutgeb et al. (2007).

Figure 8. Average number of computed place fields as function of the number of granule
cells used in the simulations. Each cell here is connected to 1200 grid cells with equal weights. As
the number of granule cells is increased, the average number of place fields reaches an asymp-
totic value.
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The size of the granule cell EPSC generated by grid cell inputs
It has not been previously possible to calculate the excitatory
input to a cell in vivo from the properties of the input. The great
deal of information that is known about the firing of grid cells and
their synaptic connection to dentate granule cells provides a
unique opportunity to do so. To achieve this goal, the first ques-
tion that had to be addressed is how many presynaptic axons are
active when the rat is in the place field of a granule cell. From the
spatial distribution of firing of grid cells (Fig. 1), one can define
the area around the vertex in which the majority (80%) of action
potentials occurs. We calculate that this region constitutes !38%
of the total area. Thus, at any one position, !460 of the 1200
inputs to granule cells will contribute.

The effectiveness of these 460 inputs in triggering the firing of
the postsynaptic cell requires that we consider their timing; only
inputs that are simultaneously active within the integration time
of the granule cell membrane are relevant. We take as the inte-
gration time the membrane time-constant [!30 ms; as deter-
mined using the whole-cell configuration of the patch-clamp
technique (Schmidt-Hieber et al., 2008)]. Given that the average
firing rate of grid cells is !10 Hz over the vertexes of grids (E.
Moser, personal communication), the average spike separation
(100 ms) is somewhat longer than the integration time. From this
we conclude that the probability of a spike within the integration
period is !0.4. It follows that !180 input axons will be active
during an integration period.

However, because the generation of a postsynaptic response at
individual synapses is probabilistic, not every action potential
will generate a postsynaptic response. The probability of trans-
mission varies dramatically from synapse to synapse (Malinow et
al., 1994) and is related to synapse size (Schikorski and Stevens,
1997; Murthy et al., 2001), which varies "20-fold (Fig. 6B). One
estimate of the average probability of transmission in dentate
granule cells comes from measurement of the probability of a
postsynaptic response in response to minimal stimulation (the
activation of a single axon). By this technique, the average prob-
ability of response is 0.45 in granule cells (Min et al., 1998). How-
ever, minimal stimulation may slightly overestimate the proba-
bility of response of a single synapse because axons can
sometimes make multiple synapses with their target. Indeed,
work on granule cells shows that the nonfailure response ampli-
tude evoked by minimal stimulation can be reduced slightly by
lowering response probability in low Ca 2# (Bekkers and Clem-
ents, 1999), a result that indicates that a small fraction of axons
indeed make multiple synapses with individual granule cells. A
method that avoids this problem is the measurement of the prob-
ability of a presynaptically evoked Ca 2# response within a single
spine, a method that in CA1 yields an average probability of
transmission of 0.3 (Emptage et al., 2003). Assuming this value
applies to granule cells, we conclude that of the 150 synapses at
which an action potential occurs within the integration period,
only !50 will release a synaptic vesicle and produce a postsynap-
tic response.

The current produced by these 50 synapses can be estimated
from the measured charge flow during the quantal response. In
voltage-clamped granule cells, the average miniature (mEPSC)
amplitude is !5 pA (Bekkers and Clements, 1999) and the AMPA
current falls with a time-constant of 5– 6 ms. Thus, !0.025 pC
enters through AMPA channels during a mEPSC. It follows that if
50 synapses release a vesicle, the integrated EPSC will be !1 pC.
In addition to this AMPA-mediated component, there will be
charge entry through the NMDA channel. These channels are
largely, but not completely blocked near resting potential; exper-

iments in dentate granule cells (Keller et al., 1991) indicate that
although the NMDAR current is small, it is long enough to pro-
duce a charge entry slightly larger than that through the faster
AMPAR. We thus estimate that the total charge generated by
AMPA and NMDA channels will be 2–3 pC. This value can be
compared with the amount of charge needed to bring the granule
cell to threshold, which can be derived from the current injection
[Geiger and Jonas (2000), their Fig. 2Db], and is !1 pC. We
conclude that the excitatory input from the medial entorhinal
cortex is somewhat larger, but not massively larger, than required
to reach the threshold of granule cells.

Discussion
We have used simulation methods to examine how the inputs
from entorhinal grid cells can result in the formation of place
fields in dentate granule cells. We have taken into consideration
the great deal of anatomical and physiological information about
the synaptic connections involved. Place fields were computed by
summing the input of 1200 synapses made by the grid cells onto
granule cells. The entorhinal input to each synapse was chosen
randomly from 10,000 grid cells of varying spatial frequency and
phase. The strength of synapses can be highly variable (20-fold),
and this was taken into consideration. Once the excitation maps
of granule cells were computed, they were subject to an E%-max
winner-take-all process governed by gamma frequency feedback
inhibition (de Almeida et al., 2009); at each position, the cells that
fire are those having excitation within 10% of the cell with max-
imum excitation. Using this procedure, which has no freely ad-
justable parameters, we found that computed place fields have
strong similarities to actual place fields. Specifically, the area of
computed place fields is in good agreement with experimental
data. Furthermore, granule cells can have multiple place fields
(!2) and our estimate of 1.5 is probably within experimental
error. We furthermore found that a large percentage (75%) of
simulated granule cells has no place fields at all; similarly, a large
fraction (possibly a larger fraction) of actual granule cells has no
place fields. Our main conclusion is that the place fields of gran-
ule cells can be largely accounted for by the summation of inputs
from randomly selected grid cells, the contribution of synapse
strength variability, and the interaction of excitation with gamma
frequency inhibition. Thus, to a first approximation, learning is
not required for the formation of place fields. This conclusion
stands in contrast to previous, less realistic simulations (see be-
low), which led to the conclusion that place field formation is
strongly dependent on synaptic plasticity. Our findings do not
exclude a minor role for plasticity; indeed, it is known that syn-
aptic plasticity is required to enhance the long-term stability of
place cells (McHugh et al., 1996; Cho et al., 1998; Kentros et al.,
1998), and some minor refinement of place cells properties dur-
ing this process might well occur.

The proposal that place fields do not depend strongly on
learning is consistent with several lines of other evidence: (1)
Place cells are evident as soon as firing occurs in a new environ-
ment rather than developing slowly, as would be expected if place
fields depended on plasticity (Hill, 1978; Wilson and McNaugh-
ton, 1993; Frank et al., 2004). (2) If place fields were learned, they
should not be present in a novel environment if synaptic plastic-
ity is blocked. Since the synapses of grid cells onto granule cells
have the NMDAR-dependent form of LTP (Hanse and Gustafs-
son, 1992; Colino and Malenka, 1993), mice lacking NMDARs in
the dentate should have relatively normal place fields. Such mice
exist (McHugh et al., 2007; Niewoehner et al., 2007), but their
place field properties have not yet been reported. However, ex-
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periments in which NMDARs are absent or nonfunctional have
been performed in CA1, a region where place fields are also
driven by grid cell input (Brun et al., 2008). It was found that CA1
place fields are nearly normal (McHugh et al., 1996; Kentros et al.,
1998) in the absence of NMDARs. It might be argued that the
existence of NMDARs in granule cell synapses is itself suggestive
of involvement in place field formation; however, there are other
potential functions of such receptors, notably to associate the
inputs from the lateral and medial entorhinal cortex that con-
verge onto granule cells (Lisman et al., 2007). (3) If, contrary to
our model, place fields are learned by modification of excitatory
synapses, then excitatory input should come to have a spatial
distribution that closely matches the place field itself. Therefore,
it should be difficult to make the cell fire outside of their place
fields. In contrast, if the excitatory input distribution is spatially
broad, and firing is focused by inhibition, then pharmacological
agents that decreased the ratio of inhibition to excitation could
potentially make firing maps broad. Perhaps consistent with this
latter possibility, there is at least one known perturbation (sco-
polamine) that can greatly broaden place fields (Brazhnik et al.,
2004). A more direct test of the properties of excitatory input
would be to measure it directly by intracellular recording. Re-
cently this kind of measurements has been done in CA1 in awake
behaving rats. It was found that the spatial tuning of subthreshold
depolarization in CA1 is very broadly tuned and that depolariza-
tion increases only modestly as the rat passes through the place
field of the cell (Lee et al., 2008). These results are consistent with
the idea that narrow place fields arise by a process that converts
small differences in excitatory drive into large differences in firing
rates. A related conclusion follows from analysis of orientation
selectivity (de Almeida et al., 2009).

According to the theory we have developed, excitation is not
only broadly tuned but, by itself, exceeds threshold over broad
spatial regions; what usually keeps the voltage below threshold is
gamma-frequency inhibition. As each cycle of inhibition wanes,
it creates a rising ramp in principal cells. As the ramp progresses,
the most excitable cells reach threshold and fire. These then set in
motion the feedback inhibition that terminates further firing and
initiates the next gamma cycle (de Almeida et al., 2009). Excita-
tory input to dentate granule cells has not yet been measured, but
the dentate granule cells provide a unique situation for accurately
calculating it. This is because the firing properties of the presyn-
aptic cells in the medial entorhinal cortex have been well charac-
terized, because the number of inputs from these cells to granule
cells is known, and because there is detailed physiological analysis
that allows estimation of the average postsynaptic charge pro-
duced by a presynaptic spike. Based on these data, we estimate
that the excitatory input charge from the medial entorhinal cor-
tex is 2–3 times greater than necessary to reach threshold. Two
testable predictions that follow from this conclusion are (1) that
spiking in the dentate gyrus would be enormously increased by
blocking inhibition and (2) that the medial entorhinal input is
sufficient to fire granule cells; thus, a depolarizing tone from the
other major input to dentate granule cells (from the lateral ento-
rhinal cortex) may occur, but is not required.

Our simulations provide insight into the factors required to
correctly analyze place field formation. There appears to be no
shortcut to account for the excitatory drive to granule cells; each
input must be considered. The reason for this is straightforward.
Place field formation depends on a compromise between two
factors. On the one hand, many cells must summate so that that
the receptive field of the granule cell does not display the spatially
broad and periodic properties of grid cells. On the other hand, if

too many inputs summate, the excitation map will be so flat (an
inevitable consequence of averaging) that all cells will satisfy the
E%-max requirement and do so at all positions; in this case firing
will occur over the entire environment, contrary to observation.
The existing number of inputs can be seen as a compromise be-
tween these extremes. It follows that to simulate place cell forma-
tion one must use the actual number of inputs. Moreover, since
many synapses are extremely weak, the effective number of in-
puts is less than the actual number. It is thus necessary to take into
consideration the large variability in synaptic strength.

Since the identification of grid cells (Fyhn et al., 2004; Haft-
ing et al., 2005), many computational models have addressed
their function. Some efforts have concentrated on the role of
grid and place fields in navigation (Gaussier et al., 2007;
Guanella and Vershure, 2007; Guanella et al., 2007). Other
models have focused, as we have done, on how place fields are
formed from grid cells (Rolls et al., 2006; Solstad et al., 2006;
Franzius et al., 2007; Hayman and Jeffery, 2008; Molter and
Yamaguchi, 2008). These studies have concluded that place
field formation relies strongly on synaptic plasticity, contrary
to our conclusions. This difference, we believe, occurs because
we have used a dynamic form of feedback inhibition (as occurs
in hippocampal neurons) and because we have realistically
modeled the actual number of synapses involved. An impor-
tant next step in the modeling of hippocampal place fields will
be to account for additional factors, notably the theta phase
precession of place cells (O’Keefe, 1976) and the nonspatial
input that comes from the lateral entorhinal cortex.

In summary, we argue that the input– output transformation
of dentate granule cells occurs largely by simple summation of
randomly chosen excitatory inputs from grid cells, in conjunc-
tion with a highly effective winner-take-all process mediated by
gamma-frequency feedback inhibition. Because this feedback
process depends on properties of the network, the formation of
place cells must be viewed not as a single cell process, but as a
network process. This is a very fundamental point, but can be
counterintuitive. It is tempting to view the hills and valleys of the
excitation landscape of individual cells (Fig. 5) and to think that
interaction with inhibition will make the highest peaks the loca-
tion of place fields. This, however, is not correct: there is no
process that compares excitation at different positions (to which
the rat comes at different times). Rather, our results suggest that
a cell has a place field when its excitation at that place (and time)
is greater than that of other cells in the network. We propose that
the required cross-cell comparison is a network process per-
formed by gamma-frequency inhibition. Given the occurrence of
these oscillations in many brain regions, receptive field formation
by this mechanism may be of general importance.
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5 Discussão e Conclusões 

Os trabalhos apresentados aqui defendem a idéia de que as oscilações na 

frequência gama não são apenas fundamentais para sincronizar neurônios 

pertencentes a um mesmo estímulo ou memória dentro de um mesmo ciclo, mas 

também para selecionar quais neurônios irão disparar nestes ciclos. Já foi 

demonstrado experimentalmente que apenas uma fração de células dispara em cada 

ciclo gama (Bragin et al., 1995; Csicsvari et al., 2003; Penttonen et al., 1998). No 

primeiro artigo argumenta-se que descrições quantitativas de processos de competição 

neural tipo WTA não estão corretas, pois não é fisiologicamente plausível que uma 

rede neuronal selecione um número fixo de vencedores, independente da distribuição 

dos  valores de   estímulos. Aqui se propõe uma regra onde uma célula pode ou não 

disparar dependendo da relação entre o valor de sua excitação supralimiar e o valor da 

célula de maior excitação num dado ciclo gama. Este processo foi denominado E%-

max WTA. A seleção via E%-max WTA é relativamente independente do nível de 

excitação das células e não se altera com diferentes distribuições de excitação. De 

fato, este trabalho propõe que o valor de E%-max permanece constante sobre um 

amplo espectro de entradas excitatórias. Esta robustez e independência permite que o 

processo seja aplicado até mesmo em casos onde a excitação e a inibição sejam 

desconhecidas. A razão para isso vem do fato de E%-max ser determinado pela razão 

entre o atraso da inibição proveniente de retroalimentação (d) e o tempo de integração 

da membrana dos neurônios principais (!m), ou seja, 



 
 

33 
!

! 

E% "max =
#E

E
max

=
d

$
m

!

Esta dependência funcional pode ser entendida intuitivamente: quando a 

inibição mediada por gama é máxima, todas as células estarão abaixo do limiar de 

disparo. O decaimento gradual da inibição pode ser visto como uma rampa capaz de 

procurar pelo neurônio mais excitado; esta vai ser a primeira célula ativada e vai 

disparar o processo de retroalimentação inibitória (Gulyas et al., 1993; Marshall et al., 

2002; Miles, 1990). Esta inibição ocorre dentro de uma janela de 2-3ms e este atraso 

cria um período vulnerável onde células com menos excitação são capazes de 

disparar; ou seja, a seletividade diminui com o aumento do atraso e/ou o aumento no 

decaimento da inibição (o tempo característico da membrana). Cabe enfatizar, 

entretanto, que esta expressão é apenas uma aproximação e que fatores adicionais 

possivelmente terão de ser levados em consideração, como diferentes tempos de 

atraso ou a cinética de canais excitatórios e inibitórios. Também é importante salientar 

que na maioria das simulações nós assumimos que a excitação varia lentamente em 

comparação com gama. Este fato pode ser válido quando o estimulo apresenta pouca 

variação, mas não quando a rede recebe pulsos excitatórios rápidos. Por isso, o 

material suplementar do primeiro artigo trata desse segundo caso, e demonstra que a 

regra se mantém robusta para um amplo espectro de excitações. 

Outra premissa nos nossos cálculos foi a escolha de potenciais de 

hiperpolarização rápidos. Diferentes tipos de células possuem duração de potenciais 

de hiperpolarização diferentes, freqüentemente dependendo do estado 

neuromodulatório do neurônio (Storm, 1987; 1989). Mais que isso, em algumas 

células este potencial pode ser despolarizante e não hiperpolarizante (Andrade, 1991; 

Araneda and Andrade, 1991; Caeser et al., 1993; Storm, 1989). Estes potenciais vão 
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contribuir para a excitação supralimiar da célula. Sobre essas condições, E%-max 

ainda pode ser útil para determinar quais células vão disparar, contanto que se entenda 

que tanto os processos internos quanto os externos contribuem para a excitação 

efetivemente resultante. De fato, essas potencializações podem ser responsáveis por 

uma importante propriedade do processo de disparo do neurônios. Por exemplo, um 

longo AHP poderia evitar que uma célula dispare numa sequência de ciclos gama, 

mesmo com a excitação externa constante. Alternativamente, se ocorre um potencial 

de despolarização, a célula que dispara uma vez estará particularmente propensa a 

disparar novamente. 

Com base em valores experimentais para d e !m, foi estimado que o valor de 

E%-max varia entre 5 e 15%. Esta pequena fração de excitação indica que o processo 

pode permitir pequenas discriminações. Afim de testar essa capacidade de 

discriminação, o processo de seleção foi aplicado a diferentes modelos de redes 

neurais. A idéia era verificar se uma rede utilizando E%-max WTA poderia explicar 

fenômenos característicos como a seletividade de orientação de células do V1 e a 

formação de células de posição no giro denteado. A escolha desse circuito deve-se ao 

fato do potencial aqui já ser conhecido tanto interna quanto externamente. A 

seletividade de orientação aqui parece ser dependente de dois mecanismos; um 

processo de conectividade, que faz com que a resposta das células do V1 sejam 

seletivos a uma dada orientação (Reid and Alonso, 1995) e um segundo processo 

dependente do tipo de inibição (Carandini and Ferster, 2000; Sillito, 1975; Troyer et 

al., 1998). Este segundo processo é que faz com que a sintonia de disparo seja mais 

estreita que a sintonia de orientação. Mais importante ainda é o fato desse 

estreitamento não mudar quando se aumenta o nível de excitação sobre os neurônios, 

um descoberta inconsistente com os modelos que utilizam inibição fixa. Em 
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conseqüência disso, o estreitamento da orientação de disparo não pode ser explicado 

pelo “efeito iceberg” (Figura 5 do primeiro artigo). Este trabalho mostra que uma 

seleção do tipo E%-max é capaz de explicar porque a sincronia de disparo é mais 

estreita que a de excitação no V1 e porque esta diferença entre as duas é independente 

de contraste (o efeito iceberg não se manifesta). 

Um segundo sistema onde o processo de seleção E%-max foi aplicado é o no 

de formação de células de posição no hipocampo a partir de células de grade do 

córtex entorrinal, no segundo artigo. Os resultados experimentais mostram que as 

células de grade possuem uma atividade periódica ao longo de todo ambiente (Figura 

1.6 C e D). No entanto, as células hipocampais apresentam atividade apenas em 

regiões bastante restritas do ambiente ((Figura 1.6 A e B). Na construção desse 

modelo foi levada em consideração uma grande quantidade de características 

fisiológicas e anatômicas das conexões sinápticas envolvidas. Os campos receptivos 

foram computados a partir de 1200 sinapses vindas de células de grade. A entrada de 

cada uma dessas sinapses foi escolhida aleatoriamente a partir de um conjunto de 

10.000 células de grade com frequências espaciais e fases distintas. Além disso, a 

grande variedade na força das sinapses foi levada em consideração. Uma vez que 

esses mapas excitatórios são computados, eles são submetidos a uma processo de 

seleção do tipo E%-max WTA. O resultado são células de posição bastante similares 

às observadas experimentalmente. 

Este trabalho mostra que o processo E%-max é capaz de selecionar 

vencedores que são apenas ligeiramente mais excitados que as outras células na rede e 

que os neurônios permanecem ativos numa região ligeiramente pequena do ambiente, 

perfeitamente de acordo com as propriedades das células de posição. Mais 

especificamente, a área dos campos receptivos espaciais é muito similar aos 
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resultados observados experimentalmente. Alem disso, as células granulares 

apresentam múltiplos campos (~2) enquanto nossas simulações apresentaram cerca de 

1.5 campos, o que provavelmente se encontra dentro da estimativa de erro dos dados 

experimentais. Nós também encontramos uma grande porcentagem (75%) de células 

sem campos receptivos definidos; o que é observado também experimentalmente. 

Desta forma, pode-se concluir aqui que a formação desses campos receptivos não 

depende fortemente do aprendizado, uma idéia consistente com observações 

experimentais já comentadas anteriormente e em outros modelos computacionais 

(Rolls et al., 2006; Solstad et al., 2006). Estas descobertas, no entanto, não excluem 

um papel menor para a plasticidade; de fato, é sabido que a plasticidade sináptica é 

necessária para melhorar a estabilidade a longo prazo das células de lugar (McHugh et 

al., 1996; Cho et al., 1998; Kentros et al., 1998), por isso alguns refinamentos nas 

características das células de lugar devam ocorrer ao longo desse processo. 

A proposta de que os campos receptivos espaciais não dependem fortemente 

do aprendizado é consistente com várias evidências: 1) as células de lugar surgem 

assim que o rato é apresentado ao um novo ambiente ao invés de surgir lentamente, 

como era de se esperar se os campos receptivos espaciais dependessem fortemente da 

plasticidade (Hill, 1978; Wilson and McNaughton, 1993; Frank et al., 2004); 2) se os 

campos receptivos espaciais fossem aprendidos, eles não deveriam estar presentes 

num ambiente novo para o animal se a plasticidade sináptica fosse bloqueada. Já que 

as sinapses de células de grade nas células granulares do giro denteado apresentam 

uma forma de LTP dependente de um receptor NMDA (Hanse and Gustafsson, 1992; 

Colino and Malenka, 1993), animais sem um receptor NMDA no giro denteado 

deveriam apresentar campos receptivos espaciais relativamente normais. Tais 

camundongos existem )-./012! !"# $%"3! #4456!789:;92<9=!!"# $%"3! #445,, mas suas 
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propriedades relacionais com os campos receptivos espaciais ainda não foram 

demonstradas. No entanto, experimentos onde receptores NMDA estão faltando ou 

não funcionando corretamente foram realizados no CA1, uma região onde os campos 

receptivos espaciais são também dependentes de conexões com células de grade. 

Estes experimentos mostram que os campos receptivos espaciais são praticamente 

normais (McHugh et al., 1996; Kentros et al., 1998) mesmo na ausência receptores 

NMDA. Pode se argumentar que a existência destes receptores em células granulares 

é, por si só, uma indicação do seu envolvimento na formação de campos receptivos 

espaciais; no entanto, há outras potenciais funções de tais receptores, como por 

exemplo para associar as entradas do córtex entorrinal medial e lateral que convergem 

para as células granulares (Lisman et al., 2007); 3) se, contrariando nosso modelo, os 

campos receptivos são criados por modificação das sinapses excitatórias, a entrada 

dessas excitações deve apresentar uma distribuição espacial muito similar ao do 

próprio campo receptivo espacial. Portanto, seria difícil fazer a célula disparar fora 

dos seus campos receptivos. Mas, se ao contrário, a distribuição dos inputs 

excitatórios é ampla, e o disparo é determinado pela inibição, então agentes 

farmacológicos que inibem a taxa de inibição poderiam criar mapas de disparo 

maiores. Talvez, consistente com esta última possibilidade, haja pelo menos uma 

perturbação conhecida (escopolamina) que possa aumentar os campos receptivos 

espaciais (Brazhnik et al., 2004). Um teste mais direto das propriedades dos inputs 

excitatórios seria o regitro intracelular direto. Recentemente este tipo de registro foi 

feito no CA1 em ratos acordados e se movimentando. Foi descoberto que a sintonia 

espacial de despolarização sublimiar no CA1 é bastante ampla e que a despolarização 

aumenta apenas modestamente quando os ratos passam através dos campos receptivos 

espaciais das células (Lee et al., 2008). Estes resultados são consistentes com a idéia 
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de que campos receptivos espaciais estreitos surgem por um processo que converte 

pequenas diferenças nas entradas excitatórias em grandes diferenças nas taxas de 

disparo, uma conclusão similar a observada na simulação do V1, presente neste 

trabalho. 

Nossas simulações apresentam idéias para os fatores necessários para a correta 

análise da formação de campos receptivos espaciais. Parece não haver atalhos para a 

criação dos inputs excitatórios das células granulares, ou seja, cada entrada deve ser 

levada em consideração. A razão para isso é bastante simples. A formação de campos 

receptivos espaciais depende da combinação de dois fatores. Por um lado, muitas 

células devem ser somadas afim de eliminar a freqüência de atividade periódica, 

característica das células de grade. Por outro, o número de eferentes não pode ser 

muito grande, pois o mapa excitatorio fruto da soma das atividades das células 

granulares seriam completamente plano (conseqüência inevitável da soma dos mapas 

aleatórios) e todas as células acabariam por satisfazer os requerimentos impostos por 

pelo processo de seleção E%-max em todas as posições do mapa; neste caso, os 

disparos ocorreriam ao longo de todo mapa, o que contraria as observações 

experimentais. 

O conceito de E%-max apresentado aqui implica em uma mudança na 

compreensão de como o processo de disparo ocorre. De acordo com a literatura 

tradicional, o disparo pode ser entendido como propriedade de uma célula isolada; e a 

taxa de disparo é determinada por quanto a excitação provinda da rede está acima do 

limiar de disparo desse neurônio. Contudo, isso não é necessariamente correto numa 

rede com inibição dinâmica, pois a atividade de uma célula não pode ser derivada 

somente de sua excitação, mas resulta de uma competição onde todas as células da 

rede são consideradas. 
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Apêndice 1 – Recuperação e capacidade de memória 
da região CA3 do hipocampo: o papel das oscilações 
na freqüência gama. 

Este artigo procura relacionar as conexões sinápticas recorrentes do CA3 com redes 

autoassociativas similares às redes de Hopfield e mostrar que é possível que uma rede 

oscilatória possa apresentar capacidades similares às redes associativas atratoras.



Memory retrieval time and memory capacity of the
CA3 network: Role of gamma frequency oscillations
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The existence of recurrent synaptic connections in CA3 led to the hypothesis that CA3 is an autoassociative network
similar to the Hopfield networks studied by theorists. CA3 undergoes gamma frequency periodic inhibition that
prevents a persistent attractor state. This argues against the analogy to Hopfield nets, in which an attractor state can
be used for working memory. However, we show that such periodic inhibition allows one cycle of recurrent
excitatory activity and that this is sufficient for memory retrieval (within milliseconds). Thus, gamma oscillations are
compatible with a long-term autoassociative memory function for CA3. A second goal of our work was to evaluate
previous methods for estimating the memory capacity (P) of CA3. We confirm the equation, P = c/a2, where c is the
probability that any two cells are recurrently connected and a is the fraction of cells representing a memory item. In
applying this to CA3, we focus on CA3a, the subregion where recurrent connections are most numerous (c = 0.2)
and approximate randomness. We estimate that a memory item is represented by ∼225 of the 70,000 neurons in
CA3a (a = 0.003) and that ∼20,000 memory items can be stored. Our general conclusion is that the physiological
and anatomical findings of CA3a are consistent with an autoassociative function. The nature of the information that
is associated in CA3a is discussed. We also discuss how the autoassociative properties of CA3 and the
heteroassociative properties of dentate synapses (linking sequential memories) form an integrated system for the
storage and recall of item sequences. The recall process generates the phase precession in dentate, CA3, and
entorhinal cortex.

The CA3 region of the hippocampus has been of major interest to
students of memory. This is because it is the only brain region
where theory and experiment appear to have converged on how
a network can store memories. The theoretical work of Hopfield
(1982) posited a network in which all the neurons are connected
to each other (these are termed recurrent connections). These
connections are made by modifiable synapses that obey a form of
the Hebb rule. According to this rule, synapses are strengthened
when there is correlated presynaptic and postsynaptic activity
and weakened when the activity is uncorrelated. The develop-
ment of formalisms to describe such “Hopfield nets” has pro-
vided tools for analyzing the properties of memory networks.
Notably, it has been possible to estimate how many memories
can be stored in a distributed way by the synapses of such net-
works (the memory capacity).

The CA3 region has properties similar to a Hopfield net.
Specifically, axons of CA3 pyramidal cells project to the dendritic
layer of CA3, where they make numerous recurrent connections
with other CA3 pyramidal cells. These axons innervate a substan-
tial fraction (but not all) of the CA3 region (Ishizuka et al. 1990;
Li et al. 1994). Moreover, the synapses that CA3 cells make on
other CA3 cells are modifiable by a Hebbian form of synaptic
modification (Bains et al. 1999; Pavlidis et al. 2000). These find-
ings are in accord with the assumptions underlying the Hopfield
formalism. There are thus good reasons to suspect that memory
storage in the CA3 region could operate according to principles
similar to those of a Hopfield net. It should perhaps be empha-
sized that this is not true of all hippocampal regions. For in-
stance, the CA1 region is almost entirely lacking in recurrent
connections.

Several key ideas have emerged from the theoretical analysis
of Hopfield nets, and these have strongly influenced how neu-
roscientists analyze memory networks. One important idea is
that an entire memory can be recalled using only a part of the
memory as a cue. A memory is represented by activity in a par-
ticular subset of cells in the network (i.e., a spatial pattern). Dur-
ing learning, this pattern is encoded in synapses by the learning
rule. Once this occurs, this memory and other stored memories
are stably encoded, even in the absence of activity. The memory
recall process occurs in the following way. A memory cue is a
subset of the cells that encode a memory. This cue is presented to
the network and excites the corresponding cells, thereby repro-
ducing a part of the memory. Then, through the recurrent excit-
atory connections, these cells excite all the cells that represent
the memory, notably those that did not receive direct input from
the cue. This process is called pattern completion and can be con-
sidered a memory recall process (Marr 1971). Such a process
could be an important aspect of human memory; for instance,
the smell of a food (the cue) may evoke the scene where it was
first tasted.

A second important property of Hopfield nets is that a
memory, when activated, will persist in its activity. This occurs
simply because the excited cells continue to excite each other.
This persistence is likely to be one mechanism of short-term
memory (often termed working memory); indeed, recordings
from various brain regions have revealed that reactivation of a
memory can cause persistent firing even after the stimulus is
removed (Wang 2001).

A third and critical aspect of Hopfield nets is their attractor
property. Once a memory becomes active, it can be perturbed by
external or internal factors that cause errors in firing. For in-
stance, some cells that are part of the memory may fall silent. In
some dynamical systems, such a perturbation would only get
worse over time. If such a progression were to occur in a memory
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system, the memory would eventually become unrecognizable
by other networks and thereby be lost. In the case of attractor
networks, however, a perturbation does not cause progressive
worsening; rather, the firing pattern is restored (attracted) to its
original state. This repair process is possible because the memory
is so redundantly encoded that the cells that remain active can
reactivate the cells that stopped firing. If, on the other hand, the
perturbation is strong enough, the firing pattern could poten-
tially change drastically to another memory pattern. This abrupt
(nonlinear) response is also a feature of attractor networks.

A fundamental property of any memory storage device is its
capacity. One might hope that the formalisms derived for calcu-
lating memory capacity in Hopfield nets could be directly ap-
plied to CA3. However, there are many reasons that this is not
straightforward. In the original Hopfield formulation, cells that
fire together have the connections between them strengthened,
and this is in accord with the experimental evidence for Hebbian
synaptic plasticity at hippocampal synapses. However, in the
Hopfield formulation and many of its extensions (Amit et al.
1987; Tsodyks and Feigel’man 1988; Treves and Rolls 1991; Curti
et al. 2004), the connections between neurons that do not fire
together become inhibitory. This would mean that some connec-
tions of a neuron are excitatory whereas other connections are
inhibitory, a property for which there is no experimental evidence.

This lack of realism is addressed in the work of Willshaw et
al. (1969) and others. In their models, synaptic connections can
change their strength between zero and some excitatory value.
Inhibition is present in the network, but in a separate group of
cells, and is not modifiable (Golomb et al. 1990). For Willshaw-
type models, equations have been derived for determining
memory capacity. However, there are two issues that must be
addressed before these can be applied to CA3.

The first issue concerns the fact that CA3 does not seem to
demonstrate persistent firing. This is generally considered a fun-
damental property of Hopfield nets (and of the model analyzed
by Willshaw). The experimental test for persistence is to present
a cue and to determine whether the evoked activity persists after
the cue is removed. Although many brain regions have such
“working memory” properties, there have been no reports of
clear persistent activity in the hippocampus. This has been most
extensively explored in the context of trace conditioning, a form
of learning for which the hippocampus is required. In this para-
digm, there is a few-second interval between the end of the con-
ditioned stimulus and the unconditioned stimulus, and so the
brain must somehow retain a memory trace of the conditioned
stimulus to form the needed association. It was suspected that
persistent firing in the hippocampus might form such a trace, but
experiments have not shown it to be there (for reviews, see Ro-
driguez and Levy 2001; Levy et al. 2005).

Indeed, from a biophysical standpoint, it is unlikely that
CA3 could demonstrate persistent activity. Analysis of the re-
quirements for persistent activity indicates that special mecha-
nisms must be in place to prevent synchronized inhibition or to
allow persistent activity even in the presence of synchronized
inhibition (Wang 1999). This is because synchronized inhibition
may cause such a large fraction of cells to stop firing that there is
insufficient residual activity to restore the memory after inhibi-
tion wanes. Studies of field potentials in CA3 show strong
gamma-frequency oscillations that are indicative of synchro-
nized inhibition (Csicsvari et al. 2003). One possible mechanism
for reinitiation is due to current through slow NMDA channels
that were activated on the previous gamma cycle. However, if the
intervening inhibition has hyperpolarized the neuron, the
NMDA channels are blocked by Mg2+, and could be reopened
only if some spontaneous depolarizing noise occurred. Such con-
ditions are not impossible, but unlikely.

An altogether different argument that CA3 might show per-
sistent activity is that it acts as an integrator network, a type of
network that relies on persistent activity. The notion that CA3
acts as an integrator derives from the study of CA3 place fields,
which indeed show integrator properties. However, it now seems
clear that these properties are not computed in the hippocampus
itself, but are derived from upstream cortical networks (Mc-
Naughton et al. 2006).

These findings raise the question of whether the ideas de-
veloped about Hopfield-type networks can be meaningfully ap-
plied to the CA3 network. Of specific interest to us is whether the
relationship between memory capacity and the effective network
connectivity derived by Willshaw is applicable to oscillatory net-
works like CA3. A second issue relates to the structure of CA3
connectivity itself. Of all the known brain networks, CA3 most
closely approximates the all-to-all architecture that Hopfield ana-
lyzed. However, it is clear that the all-to-all assumption is not
valid in CA3; rather, the connections are sparse. This has been
appreciated for some time and has been taken into consideration
by theoretical work that assumes the connections are sparse and
random. However, the assumption of randomness is not strictly
correct; there is a patterning of the recurrent axons such that from
any given part of CA3 they project more to some parts of CA3 than
to others (Ishizuka et al. 1990; Li et al. 1994). This non-randomness
of connectivity has not been taken into consideration in previous
theoretical work. It could mean that the entire analogy to Hopfield
networks is fundamentally flawed. We have analyzed this issue and
concluded that the analogy remains useful; a crude way of taking
the non-randomness into consideration is suggested.

A major goal of our work has been to estimate the memory
capacity of the CA3 network. Because we found the Willshaw
formula applicable, our task was reduced to estimating the two
key parameters in the formula, the sparseness of recurrent syn-
aptic connections and sparseness of memory representations.
Since the number of cells in the network is known, we could
calculate sparseness of representation by estimating the size of
the neuronal ensemble that represents a memory. We have used
several strategies to estimate this fundamental number.

In the Discussion, we review our previous theoretical work
concerning how CA3 and the dentate gyrus function together to
store memory sequences, a central requirement of episodic
memory. This class of models is capable of explaining how a
phenomenon called the phase precession (O’Keefe and Recce
1993) is generated through the interactions of dentate and CA3.
This phenomenon is of considerable importance because it is
likely to represent the recall of memory sequences. The autoasso-
ciative function of CA3 can thus be placed into a very specific
computational, anatomical, and physiological context. However,
recent work observing the phase precession in the entorhinal
cortex (Hafting et al. 2007) raises the possibility that the preces-
sion observed in dentate/CA3 is simply inherited from cortex.
We address this issue in the Discussion. Our analysis suggests
that the phase precession in the dentate/CA3 is likely to be dif-
ferent from that in the entorhinal cortex and is therefore likely to
be generated in dentate/CA3, as postulated in our models (Lis-
man and Talamini 2005).

Results

General operation of networks with recurrent excitation
and recurrent inhibition: Fast memory recall within a
gamma cycle
Gamma frequency oscillations are evident in the CA3 region
(Csicsvari et al. 2003) and thus must be taken into consideration
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when analyzing the region as a memory network. The mechanis-
tic framework for the generation of gamma oscillations has been
established through a broad range of experimental work. Accord-
ing to this framework, gamma is generated by synchronized fir-
ing in pyramidal cells (for review, see Bartos et al. 2007). This
provides convergent input to interneurons, which in turn pro-
vide rapid feedback inhibition to the pyramidal cells. This rapid
feedback inhibition insures that their firing occurs within a small
temporal window. As the inhibition slowly wanes, the most ex-
citable pyramidal cells reach threshold and fire, thereby initiat-
ing the next gamma cycle. In the hippocampus, the key inter-
neuron subtype involved in gamma oscillations is the basket cells
(Hájos et al. 2004). For a review of interneuron properties, see
Somogyi and Klausberger (2005).

Previous theoretical work has shown that presence of
gamma is not incompatible with memory function (Jensen and
Lisman 1996a,b,c; Jensen et al. 1996). In particular, the critical
recall process of pattern completion can be performed if recur-
rent excitatory connections are present. The reason for this com-
patibility stems from the fact that recurrent excitation is mono-
synaptic, whereas recurrent (feedback) inhibition is disynaptic,
and therefore slower. The differences in latency of feedback ex-
citation and feedback inhibition have been directly demon-
strated by paired recordings (Miles 1990). This difference creates
a short time window in which recurrent excitation can perform
pattern completion, as illustrated in Figure 1. What has been
simulated here is a simplified network of integrate-and-fire neu-
rons. They are presented with a cue (a partial memory). About 5
msec after the excited cells fire, the recurrent excitatory connec-
tions cause firing in the other cells of the same memory. Shortly
thereafter, inhibition builds up to a high level and firing ceases.
Thus, all cell firing occurs within a 5-msec window that is a
relatively small fraction of the overall gamma cycle (if there were
continued excitation, the next period of firing would occur after
∼20 msec because of the decay of inhibition). One can see from
this example that a network based on recurrent inhibition and

excitation (1) will generate gamma oscillations, (2) has synchro-
nized firing of pyramidal cells in a small fraction of the gamma
cycle, and (3) is capable, in a single feedback cycle, of performing
memory recall (pattern completion). For additional information
about the operation of such memory networks see Jensen et al.
(1996).

Estimating the memory capacity of CA3
The calculation of memory capacity of a network requires an
analytical framework. Several such frameworks for the study of
associative memory have been proposed. These differ in how
individual cell are represented (binary firing, firing-rate, inte-
grate-and-fire, or a more complex Hodgkin-Huxley), how the
synaptic plasticity that underlies learning is implemented, and
how the actual architecture of the network is implemented. De-
spite these differences, there is agreement (at least to a first ap-
proximation) that the parameters that determine memory capac-
ity are basically the size of the network, N, its connectivity, c (the
average fraction of the cells connected to any given neuron), the
range of the synaptic strength, and the sparseness ratio of neural
coding, a (the average fraction of active neurons in the network
during a single memory item).

In Hopfield-type models, the presynaptic and postsynaptic
activities are measured relative to the average activity of the net-
work, and the correlation rules lead to positive and negative syn-
apses. Another rather artificial feature is that synapses between
inactive neurons can be strengthened. For these models, a for-
mula for memory capacity, P, was derived (Tsodyks and
Feigel’man 1988; Buhmann et al. 1989) for binary neurons and
fully connected networks. An extension of this formula for
graded response neurons and arbitrary connectivity was pro-
posed by Treves and Rolls (1991) as

P =
kcmN

alog!1
a"

(1)

where cm is the connectivity of the modifiable synapses, N is the
size of the network, k is a constant between 0.2 and 0.3, and a is
a generalization of the sparseness ratio for firing rate neurons.
Even though different aspects of this equation were derived pre-
viously by a number of other investigators, we will refer to Equa-
tion 1 as Treves’ formula, since it is in Treves and Rolls (1991)
that this more general form is proposed.

In another class of models (Willshaw et al. 1969), the syn-
apses are considered to be only positive or null (silent): positive
in the case where neurons fire together in a pattern and null if
this never occurs. For Willshaw’s models, the estimated storage is
smaller and was derived in Golomb et al. (1990) for random
sparse patterns. The storage limits depend of the details of how
inhibition is done, but a very general expression can be found to
relate connectivity and the number of memories in the network.
This expression is

P =
c

a2 (2)

where c is the connectivity of the network due to the storage of
the patterns. Observe that c differs from cm. In the context of
Hopfield networks cm = 1 for an all-to-all network or could be less
for a low connectivity network, but cm will be an external pa-
rameter always independent of the memory storage. In a
Willshaw network, on the other hand, c reflects the memory
storage, in the sense that c increases as we store more memories
in the network. So Equation 2 does not, in fact, represent an
expression for a storage limit; rather, it represents a relationship
between connectivity and storage. If, however, we add the hy-

Figure 1. Memory recall in a single gamma cycle. At t = 10 msec, the
network is presented with a memory cue that excites six of the seven cells
that represent a memory. (A) Intracellular voltage and its component
parts: Trace 2 shows a cell directly excited by the cue. Trace 1 shows the
recall process in a cell that is part of the memory, but that was not directly
excited by the cue. It receives an EPSP from the cell that was excited by
the cue and fires. All cells are affected by the feedback inhibition (IC),
which is slightly delayed relative to feedback excitation. This inhibition
“resets” the network. Trace 3 shows the feedback excitation and inhibi-
tion in a cell that is not part of the memory and that does not receive
enough excitation to fire. (B) The activity of all neurons in the network (30
neurons). The memory is represented by seven neurons, but the external
input is incomplete, and only six neurons were excited (arrows at left).
The recurrent connections cause memory recall (pattern completion) by
firing the cell marked with the arrow at the right side.
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pothesis that what is experimentally observed in CA3 is already a
connectivity that reflects its maximal storage capacity, Equation
2 can be used to derive the number of memories stored there. We
will refer to Equation 2 as Willshaw’s formula, due to its broad
applicability to Willshaw-like models.

Numerically testing equations for memory capacity
Our goal in this section was to test for memory capacity under
conditions that approximate fast recall (i.e., within a single
gamma cycle). This may allow us to determine the validity of the
different analytical expressions for memory capacity (Equations
1, 2).

We selected each memory by randomly choosing A cells out
of the total of N cells. We selected a total of p memories. These
memories were incorporated into the synaptic matrix W using
the synaptic plasticity rules proposed by Jensen et al. (1996) (see
Appendix), which can be considered to be of Willshaw’s type.
Later, the synaptic matrix was tested for retrieval of all patterns.
In order to do that, we calculate the recurrent input to the net-
work upon presentation of the memorized binary pattern bµ,

Iµ = W ! bµ (3)

where the right side is the dot product between the synaptic
matrix and the activity vector, and I

µ
is the resulting vector of

recurrent inputs. The pattern µ is considered successfully stored
if the lowest input to any neuron that is part of the pattern is
larger than the maximal input to any neuron that is not part of
the pattern.

min!Iactive
! " > max!I inactive

! " (4)

If this is true, there exists a threshold, or a value for feedback
inhibition, that can successfully separate the neurons that are
active in a pattern (signal) from neurons that receive inputs but
should be silent in that pattern (noise or an overlapping
memory), and no false positives or false negatives are generated.
If any neuron in any of the p patterns failed to satisfy that con-
dition, we considered that the storage failed. We assumed that if
the synaptic matrix passed this requirement, it would pass a more
realistic test with integrate-and-fire neurons, as we show later.
We varied p until we found a value where the test failed. This
value of p was taken to approximate the maximal storage capac-
ity, P.

We used two different procedures for progressively adding
memories. In the first, we added random patterns to the synaptic
matrix and stopped when the limit was reached. In the second,
we followed more or less the same procedure, adding random
patterns, but when a pattern led to a failure in storage, we dis-
carded it and tried a new one. This is a slow procedure, and we
tried only a fraction of all possible patterns of A active among N
neurons before concluding that the limit was attained. Because
the selection process in the second procedure introduced a non-
random aspect, we repeated the whole process several times in
order to obtain a useful (average) characterization. With the sec-
ond procedure, we found memory capacity to be about three
times larger than with the first (see below).

Figure 2 displays the simulation results for several network
sizes as well as different activity fractions. The points are well
approximated by Willshaw’s formula. It is important to point out
that Equation 2 is exact for nonoverlapping memories, and it is
approximately correct for random overlapping memories
(Golomb et al. 1990). We show here that it is also correct for
selected patterns, indicating that this expression is quite general.

Treves’ expression is more difficult to apply to these data,
since it was derived for Hopfield-like models (where synapses
between inactive neurons can be strengthened), making the con-

nectivity not directly related with memory load, but rather to
some predefined architecture. If we replace cm by c, the resulting
plot (Fig. 3, left) is scattered, indicating that formula is not a good
predictor of storage. If, on the other hand, we consider cm = 1,
since in our numerical simulation in principle all synapses are
plastic, the resulting plot (Fig. 3, right) indicates that Treves’
formula can be used as an upper limit, but the effective connec-
tivity is no longer a parameter available for estimation of capac-
ity.

Use of an integrate-and-fire model to test the memory capacity predicted
by the Willshaw equation
We next sought to test the Willshaw-like learning rule in the
context of an actual simulated network. We constructed a net-
work of integrate-and-fire neurons connected by recurrent excit-
atory synapses and feedback inhibition. The details of the model
are presented in the Appendix. Figure 4 shows examples of re-
trieval of memory (pattern completion) in a network where 13
memories have been previously stored in the network. This ma-
trix was found by the procedure where patterns are selected for
maximal storage, leading to the matrix of synaptic weights
shown in Figure 4D. The question we sought to address is
whether a network of integrate-and-fire neurons loaded with
these memories could correctly recall them.

Figure 4A displays the network response to the stimulation
of a memory pattern (memory 1). Figure 4B displays the pattern
completion process after the network is presented with an in-
complete pattern (the cue). Figure 4C shows that a different
memory (memory 2), which overlaps with memory 1, also can be
completed when presented with an appropriate cue.

A concern in this analysis is the robustness of the param-
eters. If the inhibition parameter had to be fine-tuned, that
would indicate a lack of robustness. To study robustness, we
tested the same matrix for all stored memories, but varied the
inhibition delay (tdelayGABA) and its amplitude (AGABA). We pro-
vided the complete pattern and tested for incorrect responses,
defined by the firing of any neuron that was not part of the
memory or the firing of any memory neuron more than once.
Figure 5 shows the range of parameters tested and the response
for each configuration. The white area represents the range of
parameters where the network responds correctly to all memo-

Figure 2. Measurements of storage capacity. Calculations were made
for different network size (from N = 10 to 1000) and sparseness ratio
(from a = 0.01 to 0.3). (Filled circles) Random patterns, (empty squares)
selected patterns for maximal storage. On average, when patterns are
selected, it is possible to store three times more patterns for the same
sparseness ratio and network size. (Arrows) N = 500 and A = 15
(a = 0.03), (dashed line) predicted relationship for Willshaw’s network.
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ries, and the dark area represents the space of parameters where
the responses were incorrect for all memories. This figure shows
that the network works correctly over a substantial parameter
range. We conclude that the memory capacity, as estimated by
the Willshaw formula, can be achieved by realistic networks.

CA3 is not a uniform network with random recurrent connections
The recurrent connections of CA3 are not completely random.
Pyramidal cells closest to the dentate (CA3c) project strongly to
CA1 and have relatively few recurrent connections with CA3
cells. On the other hand, the CA3a section that is closest to CA1
has very strong recurrent connections with other cells in CA3a
and relatively few connections with CA1 (Ishizuka et al. 1990; Li
et al. 1994). The strong recurrents probably account for why the
CA3a/b region is the site of initiation of epileptiform activity
(Colom and Saggau 1994; Dzhala and Staley 2003). These spe-
cializations of CA3 subregions have been ignored in previous
computational studies. Dealing quantitatively with these special-
izations is complicated because the differences are tendencies
rather than being absolute. As a crude simplification, we will
assume that they are. Thus, we assume that CA3a is the best
model for a strongly interconnected associative network. As a
corollary, CA3c can be considered an output structure for CA3 to
CA1 (see Discussion) and CA3b as intermediate-type structure.
We will therefore analyze hippocampal memory capacity using
the approximation that the critical autoassociative function oc-
curs in CA3a.

Estimate of sparseness of connectivity
Recordings from cell pairs in CA3 (Miles 1990) in the acute slice
preparation indicate that cells have a rather low probability of
being connected (0.05). However, this must be considered a
lower limit because of the possibility that connections were sev-
ered by cutting the slice and because no tests were conducted
to detect silent synapses (depolarization might have a revealed
NMDAR-mediated component). Furthermore CA3a was not spe-
cifically tested.

A higher estimate of connectivity is derived from anatomi-
cal considerations. The CA3a subregion contains the highest
density of recurrent collateral axons (Li et al. 1994). Such axons
can have 40,000 varicosities (Wittner et al. 2006) and each can
potentially contact a pyramidal cell. All of CA3 contains 200,000
cells (Rapp and Gallagher 1996), ∼70,000 of which would be in
CA3a. Thus, from this perspective, if all varicosities were in CA3a
(an upper limit), it would be possible for a CA3a cell to send a
signal to ∼50% of CA3a cells.

Another perspective is to look at the capacity of CA3 cells to
be information receivers. We assume that there are ∼30,000
spines in the dendritic region that contains associative synapses
(this assumption is based on measurements in CA1; Bannister
and Larkman 1995). Thus, CA3 cells could potentially receive
input from about half of the cells in CA3a. This is again an upper
limit. Taking a midpoint between upper and lower limits de-
scribed above, we will assume that connectivity is on the order of
20% in CA3a.

Estimate of ensemble size (sparseness of coding)
An ensemble is a group of cells that fire together. In the context
of place fields, “together” means that they fire in the same posi-
tion in space and with the same theta phase. Work on place cell
ensembles has identified groups that fire together at a particular
phase of theta. Different ensembles, with slightly different posi-
tions of maximal firing, fire at slightly different phases. Such
analysis indicates that the minimal spatial separation that corre-
sponds to a detectable difference in theta phase is on the order of
few centimeters (Dragoi and Buzsáki 2006). A similar conclusion
is reached using a formal mathematical method for position re-
construction from multiple place fields, which indicates that the
rat’s position is definable with an accuracy of a few centimeters
(Jensen and Lisman 2000). Thus, if 100 cm (the size of typical
linear track) is uniformly represented by different ensembles with
2-cm precision, there will be ∼50 ensembles. Of the total cells, it
is generally estimated that about half the pyramidal cells encode
place in a given environment. Thus, if we restrict ourselves to the
dorsal half of CA3a (35,000 cells) where place cells are numerous,
there would be ∼17,000 place cells and the ensemble size would
be ∼300. The value of 0.5 for probability of a cell being a place cell
would be lower if there are cells that cannot be detected at all by
spike classification methods, as is probably the case (Henze et al.
2000).

An alternative way of estimating ensemble size is to ask
what is required to fire a neuron; for pattern completion, it must
be possible for the memory cells that did receive the cue (which
may be most of them and thus constitute an ensemble), to fire a
cell that did not receive the cue. The number of effective synaptic
inputs required to fire a spike in a hippocampal pyramidal cells
has been investigated in several studies. If the synaptic inputs are
clustered on a dendritic branch, Gasparini et al. (2004) and Gas-
parini and Magee (2006) estimate that 50 inputs are required. If
the active inputs are random in the dendritic field, as we will
assume, then Gasparini et al. (2004) estimate that 150 inputs are

Figure 3. Comparison of simulated memory capacity to Treves’ formulas. (Filled circles) Random patterns, (empty squares) selected patterns for
maximal storage. (Left) Here, the resulting connectivity (c) of the matrix is used in place of cm. The points for the different simulations appear scattered,
indicating that Equation 1 doesn’t predict the simulation data. (Right) For cm = 1, the points for random patterns separate from the ones of selected
patterns. Equation 1 seems to fit the results for random patterns (but only for low values of k but doesn’t fit the data for selected patterns. Treves’ formula
(line in both panels) with cm = 1 seems to be an upper bound for capacity in our simulations.
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required (these must be highly synchronized and there must be
no inhibition). However, another group has estimated a consid-
erably smaller number (15–30) under these conditions (Otmak-
hov et al. 1993). It is important to recall that synapses release
transmitter probabilistically. Taking the midpoint between the
estimates of needed release events and taking the average prob-
ability of release as 0.3 (Malinow et al. 1994; Oertner et al. 2002),
the number of presynaptic cells that would have to be active in
order to fire the postsynaptic cell is ∼150. Since inhibition is
present, this number must be considered a lower limit.

Taking a midpoint between the upper and lower limits de-
scribed above, we will assume that within CA3a, the ensemble
size is A = 225 (of 70,000 cells). This translates into a sparseness
of coding of a = 0.003. We also assume a sparseness of connec-
tivity of 20% (c = 0.2). These numbers lead to an estimation of
20,000 memories for CA3a if we use Willshaw’s equation (Equa-
tion 2). Treves’ formula (Equation 1), which we do not think is

altogether valid, would predict 200,000
memories for the same parameters.

Discussion
We have analyzed the CA3 region and
considered its analogy to Hopfield net-
works (and its variants) that have been
used by theorists to understand the basic
properties of associative memory. We
have enumerated some important differ-
ences: (1) CA3 does not appear to show
the persistent activity characteristic of
attractor networks, (2) CA3 has gamma
frequency oscillations that are not pre-
sented in mathematical models of at-
tractor networks, and (3) CA3 recurrent
connections are not random, as assumed
in previous theoretical models.

Despite these differences, we con-
clude that the analogy still holds, with
certain qualifications. Notably, the ideas
of pattern completion that is critical for
memory recall can be executed by recur-
rent excitatory connections, even
though oscillatory inhibition prevents
the persistent firing that is generally
considered a hallmark of Hopfield net-
works. Thus, we argue that the memory
completion property and the persistent
firing property of Hopfield networks are
separable. The non-random aspect of the
recurrent connections does indeed seem
to violate the spirit of the Hopfield net
architecture, but within CA3a, a subre-
gion of CA3, the assumption of random,
dense recurrents appears to be a reason-
able approximation.

Memory capacity of CA3
It was of interest to determine the
memory capacity of CA3a. We analyzed
whether the equation for memory ca-
pacity derived by Willshaw (Equation 2)
is applicable to oscillatory brain net-
works and conclude that it is. We have
estimated the two critical parameters of
the Willshaw equation, the sparseness of
coding (the number of neurons that fire
in the ensemble that represents a

memory) and the sparseness of connectivity among the cells of
CA3a. With these estimates, we calculate that the 70,000 cells in
CA3a can store ∼20,000 memory items. Although words are not
stored in the hippocampus, the fact that the average educated
person knows ∼10,000 words (http://thelinguist.blogs.com) gives
some perspective on this number. We will return later to what
actually constitutes a memory item in CA3. The estimate of
20,000 memories is of course very approximate. Because capacity
depends inversely on the square of ensemble size, capacity is
particularly sensitive to this parameter. We estimate ensemble
size at ∼225, but this could easily be off by a factor of two in either
direction, leading to a possible range of 5000–100,000 memories.

High-speed memory recall
As shown here, and in previous work on memory completion in
oscillatory recurrent networks (Jensen and Lisman 1996b),

Figure 4. Testing Willshaw’s synaptic matrix in an integrate-and-fire network. (A) Network response
to a complete memory pattern (seven neurons). (B) Response to an incomplete version of the same
memory. The complete memory was recalled. (C) The recall of a different memory that overlaps with
that in B. (Arrows) Neurons stimulated by an external input, (lines in the bottom) inhibitory currents.
For these simulations, the recurrent excitatory delay is 1.5 msec and the current is 1600 pA; the
inhibitory delay is 2.5 msec and the current is !180 pA. For other details about parameters and
functions describing the currents, see Appendix. (D) Synaptic matrix (Wij): Each connection between
two cells is represented by a square; the size of the square denotes the synaptic strength of the
connection between two cells.
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memory recall can be very rapid, in ∼5 msec. This duration is due
to the time that it takes the cells excited by a cue to excite the
cells that are part of that memory, but not directly excited by the
cue. Measurements of transmission in the excitatory recurrent
axons show that the time required for the action potential to
reach the target cell, for synaptic transmission, and for the firing
of an action potential in the target cells is on the order of 5 msec
(Miles 1990). Thus, pattern completion can occur within a
5-msec time period. Furthermore, this completion process, while
perhaps not perfect (we have not considered aspects of noise and
false positives), produces useful pattern completion in a single
cycle or recurrent activity.

Although it is generally thought that memory retrieval in a
Hopfield network requires many cycles, recent analysis indicates
that much of retrieval actually occurs in the first cycle. The con-
trary view that many cycles are required emerged from numerical
studies (Frolov and Husek 2000), indicating that the average con-
vergence time for the traditional Hopfield model (Hopfield 1982)
for non-sparse patterns (50% active neurons) depends as a power
law on the size of the network. Such estimates, when applied to
CA3 network size, would indicate convergence after 8–40 cycles
(Risau-Gusman and Idiart 2005), depending on the memory
load. That would imply a convergence time in the range of 20–
100 msec, if we assume a minimal time of 2–3 msec per cycle.
This is quite a long time in terms of brain computations. How-
ever, recent numerical studies have analyzed the convergence
process further and found that it actually occurs in two phases
(Risau-Gusman and Idiart 2005): an initial rapid phase of one or
two time steps that occurs in a time that is independent of net-
work size, and a second slow phase that is dependent on network
size. The important finding is that the first phase does virtually
the entire process of memory completion and that the improve-
ment produced by the second phase is miniscule. Therefore, for
all practical purposes, the convergence time can be considered to
occur in one to two cycles, even for large Hopfield networks. Fast
autoassociative recall was also demonstrated in simulations of
integrate-and-fire neurons by Battaglia and Treves (1998), con-
firming the mathematical analysis of Treves (1993). Both papers
show that the primary determinant of the rapid pattern comple-

tion time scale is the inactivation time of excitatory conduc-
tances. We conclude that both abstract Hopfield networks and
real networks based on gamma oscillations can be expected to
perform quite accurate memory completion within a single re-
current cycle.

CA3: Autoassociation versus heteroassocation
There have been some suggestions (Abbott and Blum 1996;
Jensen and Lisman 1996a; Lisman 1999; Levy et al. 2005) that
CA3 may not be an autoassociative network at all, but rather a
heteroassociatve network specialized (by itself) for sequence stor-
age and recall. The basis of these suggestions has to do with
properties of the learning rule that governs hippocampal syn-
apses. A requirement of autoassociation is the formation of sym-
metrical connections between cells that are part of the same
memory. However, there is a fundamental difficulty with achiev-
ing this at hippocampal synapses because the learning rule is
asymmetric in time; LTP occurs if a presynaptic action potential
precedes the postsynaptic action potential, but not vice versa.
This asymmetry results simply from the properties of the NMDA
channels that trigger LTP. As has been incorporated into several
models (Abbott and Blum 1996; Jensen and Lisman 1996a; Lis-
man 1999; Levy et al. 2005), this asymmetry is exactly what is
required for learning memory sequences, and for this reason CA3
may be considered a heteroassociative network linking memories
of events that occurred at different times. If this is true, then CA3
is simply not an autoassociative network, as is assumed in most
theoretical work (Marr 1971; Kunec et al. 2005; Rolls and Kesner
2006).

In the next section, we will review a proposal for how net-
works with asymmetrical connections can in fact perform au-
toassociation, provided cells fire in bursts. First, however, it is
useful to review experimental evidence that the CA3 region is
indeed performing an autoassociative function. Nakazawa et al.
(2002) tested and confirmed the idea of pattern completion by
generating and analyzing genetically altered mice where the
NMDA receptor gene was knocked out of CA3 pyramidal cells.
These mutant mice normally acquired and retrieved spatial ref-
erence memory in the Morris water maze, but they were unable
to retrieve this memory when presented with a partial cue. Simi-
lar results were obtained by Gold and Kesner (2005) with neuro-
toxic injections into CA3 of rats trained to find food based on
external cues. When part of the cues was removed, control ani-
mals displayed excellent pattern completion across all reductions
in the availability of cues, whereas rats with CA3 lesions were
impaired in pattern completion, as indicated by a linear increase
in errors as the number of available cues was reduced. Results
from Lee et al. (2004), Leutgeb et al. (2004), and Vazdarjanova
and Guzowski (2004) also showed that CA3 has critical properties
of autoassociational networks. Lee et al. (2004) monitored CA3
and CA1 activity from rats running in a circular environment
with distinct, familiar cues on the walls and on the surface of the
track. In each experiment, standard sessions were interleaved by
mismatch sessions where the cues on the track and the cues on
the wall were rotated to opposite sides. For small mismatches
(<45°), both CA1 and CA3 displayed coherent representations
that were similar to those of the original cue configuration. How-
ever, when the mismatch amounts were >45°, the CA1 represen-
tation lost its coherence; in contrast, the CA3 representation was
more coherent between the familiar environment and mismatch
environments. In other work, Vazdarjanova and Guzowski
(2004) used imaging of immediate-early gene (IEG) expression as
a measure of neuronal activity. In this work, the investigators
examined the responses of CA3 and CA1 ensembles in rats ex-
posed sequentially to two environments that could be identical,

Figure 5. Test of the range of inhibition parameters that produces
correct pattern retrieval. The color range represents the number of
memories retrieved correctly for each set of parameters: (White area)
Parameters where the integrate-and-fire network worked correctly for all
13 memories stored in the synaptic matrix; (dark area) parameters where
the network could not provide a correct response to any of the 13
memories. All other shade levels represent parameters where the network
worked correctly for some memories stored in the matrix but not for all.
Here, the number of neurons is 30 and each memory is represented by
seven neurons. The recurrent excitatory current is 1600 pA and the delay
is 1.5 msec; inhibitory current varied between 0 and !300 pA, and the
delay varied between 0 and 5 msec.
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slightly similar, or completely different.
The results showed that when the ani-
mals were presented with small changes,
ensembles in CA3 had a higher degree of
overlap when compared with CA1, simi-
larly to Lee et al. (2004). However, when
the rats were exposed to two completely
different environments, the ensemble
representations were highly orthogonal
in CA3. The same behavior for com-
pletely different environments was ob-
served by Leutgeb et al. (2004), where
the rats were sequentially tested in en-
closures with different shapes and sizes
while CA3 and CA1 were monitored.
These two behaviors, while in apparent
conflict, are perfectly in accord with the
assumption that attractor networks re-
spond nonlinearly to input patterns.

Taken together, these neurophysi-
ological and behavioral studies provide
support for the idea that CA3 performs
autoassociation and, by implication, not
heteroassociation. It is therefore impor-
tant to consider what synaptic plasticity mechanisms would
make autoassociation possible in CA3.

Bursts of action potentials make possible autoassociation
in CA3
Lisman (2003) proposed a mechanism by which an asymmetric
learning rule could lead to the symmetrical weight changes re-
quired by an autoassociative network. This solution depends on
the fact that CA3 neurons often fire brief bursts (maximum
within-bursts frequency, 200 Hz; two to five spikes per burst)
(Suzuki and Smith 1985). These bursts smear the timing of pre-
synaptic and postsynaptic firing and allow symmetrical weights
to be stored. Specifically, at all active cell pairs, some postsynap-
tic spikes (late in the burst) will occur after a presynaptic spike
generated by other CA3 cells early in their burst. When this oc-
curs, the condition for NMDAR-dependent LTP is met (Kampa et
al. 2006) bidirectionally between the cells pairs. CA3 can thus
store symmetrical weights, even though the learning rule is
asymmetric.

Why are CA3 recurrents not random?
We have argued here that CA3 (at least CA3a) can indeed be
considered an autoassociative network. The question remains,
however, why the recurrent connections in CA3 (as a whole)
should be non-random rather than random. For the purpose of
this discussion, we will consider the dentate mossy cells as part of
the CA3 system because they share so many properties with CA3
cells: (1) They receive mossy fiber input at large specialized spines
near the cell body, (2) they receive CA3 associational inputs on
their more distal dendrites, and (3) they receive perforant path
input on their most distal dendritic region.

The CA3 system has a huge number of targets (Witter 2007).
These include the entire inner third of the molecular layer of the
dentate granule cells, the entire ipsilateral and contralateral as-
sociational (the recurrent connections) system of CA3, and the
feedforward input to CA1, as shown in Figure 6. Given this enor-
mous targeting burden, subdivisions of the CA3 system may have
evolved to drive particular targets, at least in a relative way. Thus,
mossy cells are specialized to send information back to the den-
tate (Scharfman 2007); CA3c is specialized to send information to
CA1, and, in the ventral hippocampus, to the dentate (Lee et al.

2004). CA3a is specialized to generate the recurrent associational
system. CA3b may simply be intermediate between CA3a and
CA3c.

In considering the role of mossy cells and CA3c cells, the
following example may be instructive. The input via mossy fibers
from the dentate represents memory B, but with certain parts
missing (this corruption is indicated as B!). Thus, some mossy
and CA3c cells that are part of memory B will not receive the
“detonator” input from mossy fibers. However, the memory will
be completed (converted from B! to B) when these cells are
caused to fire by convergent recurrent inputs from CA3a/b cells
that are part of memory B. From this perspective, it can be seen
that the fact that mossy and CA3c cells make few recurrent con-
nections is of little functional consequence; what is important is
that they receive recurrent synapses.

Storage of the heteroassociative weights required
for sequence encoding
Since the hippocampus stores sequences (Ergorul and Eichen-
baum 2006; Foster and Wilson 2006), formation of heteroasso-
ciative weights that link sequential items is important. In recent
work, we have revised our original idea (Lisman 1999) that het-
eroassociation occurs in CA3 and now believe that it occurs in
the feedback synapses from CA3 to the dentate (Lisman et al.
2005). The key argument that heteroassociation occurs in the
dentate is that the passage of information from dentate to CA3
and back to dentate requires >20 msec, producing a delay (see
references in Lisman 2005) that turns out to be very important.
Provided the next item in the sequence to be learned arrives at
the dentate (from cortex) with about the same delay, the inputs
will be coincident and will lead to strengthening of the synapses
at which the presynaptic activity from CA3 represents the nth
item and the active granule cells are driven by the n + 1 item
from cortex. Thus, these synapses will store heteroassociative in-
formation, but not autoassociative information. In this way, in-
formation that connects different memories is stored at the feed-
back synapses onto dentate granule cells and can be later used to
produce sequence recall (see below).

For this mechanism to work, it is important that the ento-
rhinal cortex not represent sensory information in real time, but
rather act as a multiplexing buffer in which information is rep-
resented in compressed time (for a definition of compression, see

Figure 6. Dentate and CA hippocampal regions and their excitatory pathways.
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Skaggs et al. 1996). According to this view, different “chunks” of
sensory information that occurred at substantial temporal sepa-
ration are represented in cortex within different phases (gamma
cycles) of each theta cycle (Lisman and Idiart 1995; Jensen and
Lisman 2005), thereby satisfying the temporal requirement (20–
30 msec) for sequential memories described in the previous para-
graph. Moreover, each item is actually a “chunk” of information.
These ideas have their roots in psychology, particularly in the
model presented in Miller (1956). According to this model, the
brain has a limited-capacity short-term memory buffer capable of
storing 7 ! 2 items. Importantly, the definition of an item is not
fixed; rather, temporal sequences such as the syllables in a word
eventually become represented as a single item representing the
word as a whole. Recent work using single-unit recording in hu-
mans has found evidence for such high-level representations,
with the same unit responding both to a picture of a person and
the name of that person (Quiroga et al. 2005). In this way, the
seven items in the buffer store information about sequential in-
formation that spans considerable time and represents complex-
ity commensurate with the concept of an “episode.” In the com-
putational models of such a buffer that we have developed
(Jensen and Lisman 1996a,b,c; Jensen et al. 1996), complex items
are represented in different gamma cycles, ∼30 msec apart, and so
can be linked into a sequence by the dentate/CA3 system. We
refer the reader to these previous publications for a more detailed
description of these models.

Reciprocal connections of CA3 and dentate allow
accurate sequence recall and phase precession
Early theoretical work on the recall of sequences pointed out the
necessity for the interaction of autoassociative and heteroasso-
ciative weights (Golomb et al. 1990). In the heteroassociative
(chaining) step, memory A evokes memory B, but inevitably with
small errors (symbolized by B"). If B" is used to evoke C, the actual
version, C#, contains even more errors than B". Thus, as chaining
occurs during recall, the output gets progressively more cor-
rupted. To avoid this, it was suggested that autoassociative
weights be used between each chaining step to correct the rep-
resentation; a standard capability of autoassociative networks
makes it possible to covert a corrupted version of a memory, e.g.,
B", to its correct form, B.

These requirements for sequence recall can be mapped onto
the dentate/CA3 circuitry (Fig. 6), notably the reciprocal connec-
tions between dentate and CA3 (Scharfman 2007). The overall
process of sequence recall is envisioned as follows (Lisman et al.
2005): Presentation of a cue, A, to the dentate results in activity
pattern of this memory being sent to CA3 and back the dentate,
where feedback synapses onto granule cells evoked B". This B" is
then sent to CA3, where it is corrected to B and initiates the recall
of C" in the dentate, and so on. This chaining cycle continues
through a theta cycle, but is terminated when theta-mediated
inhibition becomes so strong that firing ceases. The recall process
must then be reinitiated on the next theta cycle by presentation
of a cue.

This model takes on special interest because it provides a
simple explanation of the phase precession (O’Keefe and Recce
1993) as a cued recall of a memory sequence. As the rat enters the
place field of a cell, firing is initiated but occurs at late theta
phase. As the animal progresses through the place field, firing
beings progressively earlier on each theta cycle. A simple expla-
nation follows from the idea that a cued sequence chaining pro-
cess is initiated on each theta cycle. The key point is that the cue
is updated at the beginning of each theta cycle. Thus, during the
first theta cycle, the cue is position 1 and memories for position
2, 3, 4, etc. are evoked during that theta cycle by the chaining

process. This is actually a memory-based prediction that the ani-
mal will come to these positions. On the second theta cycle, the
cue is position 2 (provided the animal moved), so all memories
now fire earlier in this theta cycle than they did on the first. A
strong prediction of this model is that the phase precession
should be linked to how fast the animal is moving (and thus
updating cues), and this has been found to be the case (Skaggs et
al. 1996). The phase precession is observed in the dentate, CA3,
and CA1. According to the above model, it is generated by recip-
rocal interactions of dentate and CA3, and then presumably
passed on to CA1, which is an output structure of the hippocam-
pus.

Phase precession: Why is it present in both
the hippocampus and the entorhinal cortex?
A possible challenge to the above interpretation is posed by re-
cent work showing that phase precession occurs in the grid cells
of layer 2 of the entorhinal cortex (Hafting et al. 2007). These are
the neurons that provide the input to the dentate/CA3 region.
This raises the question of whether it is necessary to invoke the
reciprocal interactions between dentate and CA3 to generate the
phase precession; perhaps it is simply passed on from cortex.

An important perspective in answering this question relates
to the representations used in the cortex and dentate/CA3. It is
quite clear that a new representation is formed in dentate granule
cells because these receive convergent input from the major sub-
division of the entorhinal, the lateral and medial regions. These
contain different types of information; notably, information
about the animal’s position in the environment (grid cells) is
evident only in the medial entorhinal cortex (Hargreaves et al.
2005). The lateral entorhinal cortex has strong inputs from in-
ferotemporal cortex and is thus likely to be more sensory driven.
In recent theoretical work (Lisman 2007) these ideas were gener-
alized: It was proposed that the medial region carries information
about self (including position in space and action taken) whereas
the lateral region carries information about the external world,
such as landmarks encountered.

As an illustrative example of how information from the lat-
eral and medial inputs might be combined in the dentate/CA3
region, let us consider a sequence of landmark/action couplets (at
the light, turn left; at the supermarket, turn right, etc.). Recall of
such a stored sequence would allow execution of a complex route
to a goal site. Within this context, the lateral entorhinal cortex
stores sequences of landmarks, the medial entorinal cortex stores
sequences of actions, and the dentate/CA3 stores sequences of
landmark/action couplets. Thus, when presented with the cue of
a landmark early in a sequence, the lateral region could rapidly
(within a theta cycle) recall the upcoming landmarks in the se-
quence, including the goal, through a chaining process. As the
animal moves from one landmark to the next, the cue becomes
increasingly later in the sequence; thus, in each successive theta
cycle, the excitation of cells that represent a late landmark in the
sequence occur earlier and earlier in the chaining process,
thereby creating the phase precession in the entorhinal cortex.
Importantly, however, this information is not sufficient to navi-
gate to the goal; for this, the associations of landmarks with
actions that occur in the dentate/CA3 are necessary. To see how
this works, consider what happens when a landmark is seen and
this information provides a cue to CA3. There, the autoassocia-
tion in CA3 activates the action taken at that landmark; this is
the standard pattern completion process that is the hallmark of
CA3 computational function. This completed pattern is then
sent to the dentate, where the representation of the next land-
mark/action couplet is evoked through the heteroassociative pro-
cess. Subsequent reciprocal interactions between dentate and
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CA3 then allow the entire route instructions to be recalled accu-
rately. The phase precession tends to look similar in both cortex
and hippocampus, but this is only because it is only positional
information that is read out by the experimental protocol; if
information about landmarks was also monitored, such informa-
tion would be represented in the lateral entorhinal, not repre-
sented in the medial entorhinal cortex and represented in the
dentate and CA3 jointly with positional information.

Conclusion
The idea that CA3 is an autoassociative network is a long-
standing idea. We have considered various challenges to this idea
and concluded that none of the objections are fatal. Indeed, with
the richness of physiology and anatomy added, one can begin to
see how the essential function of autoassociation, as abstracted in
nonrealistic Hopfield nets, is executed by real networks. More-
over, the autoassociative process can be placed into the func-
tional context of observable learning and recall processes in the
hippocampus.
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Appendix

Storage capacity of the CA3 network
We follow Jensen et al. (1996) and consider that the synaptic
weight between two neurons is always positive and depends on
the history of their mutual firing. Since we are interested just in
the stable state, we disregard the details of the dynamics of syn-
aptic changes, and assume interleaved learning. In this case the
strength of the synaptic connection between two neurons i and
j is

Wij =
nij

11

nij
11!11 + nij

01!01 + nij
10!10 (A1)

where nij
11 is the number of patterns where the pre- and post-

synaptic neurons j and i fire together, and nij
01, nij

10are defined
similarly for non-pre/post and pre/non-post events. The values of
!11 = 1.40, !01 = 0.21, and !10 = 0.22 depend on the specific time
constants for AMPA and NMDA channels as indicated in Jensen
et al. (1996). The weights in the formula above are zero if the two
neurons never fired together and have a modest decrease (LTD)
in the case of non-matching firing. For our simulations here the
weights varied between 0 and 0.71.

Integrate-and-fire model
The pyramidal neurons are modeled as simple, one-
compartment, integrate-and-fire neurons; however, important
temporal characteristics of membrane processes are considered.
The voltage Vn of each neuron if defined by the following equa-
tion:

dVn

dt
=

1
"n

!Rmembrane!Iext + IAHP + Isyn + IGABA" − Vn + Vrest"

(A2)

The average input resistance in pyramidal CA3 cells has been
found to be ∼Rmembrane = 33 M# (Turner and Schwartzkroin
1983), the integration time "n = 2 msec, and the rest potential
Vrest = !60 mV. A spike is an instantaneous event. When the
voltage reaches a threshold Vthres = !50 mV, the cell is reset to
Vrest.

Iext can be thought as a memory (or part of this memory)

coming from outside CA3. It is a single excitatory stimulus mod-
eled by an alpha function:

Iext!t" = Aext!t − text

"ext
exp!1 −

t − text

"ext
"" (A3)

where text is the time the external neuron fired, "ext = 1.5 msec,
and Aext = 480 pA.

The after-hyperpolarization current (IAHP) prevents pyrami-
dal cells from fast, repetitive firing. IAHP is modeled here by a
decreasing exponential (Jensen et al. 1996):

IAHP!t" = AAHPexp!−
t − tfire
"AHP

" (A4)

where "AHP = 5 msec and, for the simulations in this paper, the
constant AAHP = !560 pA.

All synaptic inputs of the recurrent collaterals are excitatory
and make one-to-one connections with other pyramidal cells of
CA3. The synaptic transmission is mediated by the release of
glutamate binding to AMPA and NMDA receptors. In this paper,
however, we assume that only AMPA receptors participate in pro-
ducing EPSP. For this reason, Isyn is basically defined by AMPA
parameters and modeled by an alpha function. The synaptic in-
put to cell i is:

Isyn
i !t" =

AAMPA

aN #
j

N

Wij!t − t fire
j − tdelayAMPA

"AMPA
"

exp!1 −
t − t fire

j − tdelayAMPA

"AMPA
" (A5)

where "AMPA = 1.5 msec, AAMPA = 1600 pA, and the delay in the
recurrent feedback tdelayAMPA = 1.5 msec. Here, t j

fire is the action
potential of the jth pyramidal cell. The term aN is used to nor-
malize the synaptic input if the network size is changed. N is the
number of neurons in our network, and a is a constant repre-
senting the sparseness of the memory. That is, a = A/N, where A
is the number of neurons representing a memory. In this paper
we use A = 7 and N = 30. The synaptic weight matrix Wij is given
by Equation A1.

The last current acting over our pyramidal neurons is the
feedback inhibition. This feedback is responsible for generating
gamma oscillations in the following way: The firing of a subset of
pyramidal neurons will excite an entire network of inhibitory
interneurons through converging excitatory inputs. The inter-
neuron will then provide an inhibitory feedback to all pyramidal
cells. After the inhibition wears off, a new subset of pyramidal
neurons could become active, and so on. Because we assume all
interneurons fire in synchrony, we model the net of GABAergic
inputs as:

IGABA!t" =
AGABA

aN #
j

N !t − t fire
j − tdelayGABA

"GABA
"

exp!1 −
t − t fire

j − tdelayGABA

"GABA
" (A6)

where, for this paper, "GABA = 4 msec, AGABA = !180 pA, and
tdelayAMPA = 2.5 msec.
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Apêndice 2 – Um modelo de mapas acoplados para o 
processamento espaço-temporal no bulbo olfatório. 

Este artigo foi publicado nos Proceedings of the Ninth Granada Seminar: 

Cooperative Behavior in Neural Systems. O trabalho apresentado aqui propõem um 

modelo de rede neural para a codificação espaço-temporal no bulbo olfatório onde os 

neurônios estão acoplados lateralmente. 



Coupled Map Model for Spatio-Temporal
Processing in the Olfactory Bulb
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†Physics Department, IF, UFRGS

∗∗Biophysics Department, ICBS, UFRGS

Abstract. Odor processing in the animal olfactory system is still an open problem in modern
neuroscience. It is a common understanding that the spatial code provided by the activity distribution
of the olfactory receptor cells (ORC) due the presence of an odorant is transformed into a spatio-
temporal code in the mitral cell (MC) layer in the case of mammals, or the projection neurons (PN)
in the case of insects, that is decoded later along the neural path. The putative role of the spatio-
temporal coding is to disambiguate the stimulus putting it in a more robust representation that allows
odor separation, categorization, and recognition. Oscillations due to lateral inhibition among MC’s
(or PN’s) may play an important part in the code as well as neural adaptation. To shed some light on
their possible role in the olfaction processing, we study the properties of a simple network model.
Upon the presentation of a random distributed input it respond with a rich spatio-temporal structure
where two distinct phases are observed. We discuss their properties and implications in information
processing.

Keywords: Odor coding, coupled maps.
PACS: 87.18.Sn, 87.19.Bb, 87.19.La

INTRODUCTION

A very important discovery toward full understanding of olfactory coding was the fact

that odor stimulation results in activation of patterns of glomeruli (spherical regions

of neuropil gathering a huge amount of synapses) distributed across the surface of the

olfactory bulb (OB). However, it is not completely clear how these patterns of glomerular

activity are transformed by the circuitry of the bulb, or even which are the crucial

elements in these circuits.

Figure 1 shows the basic circuits of the neuroepithelium in nasal cavity and the OB

(the antennal lobe of some insects has a similar behavior, although the cells involved

are different). The olfactory information starts at epithelium, when odor molecules

get in contact with the olfactory receptor neurons’ (ORNs) cilia. These neurons are

morphologically uniforms, but their molecular phenotype is highly diverse. For this

reason, men have about 100 – 200 different kinds of receptors [1] and rodents have more

than 1000 [2]. Subsets of neurons expressing the same olfactory receptor are distributed

in a (apparently) random pattern across the epithelium. However, ORNs expressing the

same receptor converge their axons to one specific glomerulus inside the bulb, exciting

dendrites of mitral cells (MCs), tufted cells (similar to mitral cells and not showed

in fig. 1), and periglomerular (PGCs). Then, MCs are going to transmit information

to subsequent cortical regions. However, the information passing through glomeruli



FIGURE 1. Main elements of the olfactory bulb: olfactory receptor neurons (ORN), mitral cells (MC),

periglomerular cells (PGC), and granule cells (GC).

and, consequently, through MCs is heavily influenced by dendrodendritic connections

between MCs and inhibitory interneurons of the OB.

The dendrites within the glomerulus not only receive the sensory input but are also

terminals. The most common patterns are dendrodendritic contacts both from MCs to

PGCs (excitatory synapses) and PGCs to MCs (inhibitory).

PGCs are the first type of inhibitory interneuron in OB because it also play an

important role in the connection between glomeruli, since the axon of these cells makes

inhibitory synapses onto the primary dendrites of MCs (and tufted) as they emerge

from the glomeruli. MCs also have dendrodendritic reciprocal connections between

their secondary dendrites and dendrites of granular cells (GRCs). These connections

follow the same patter of MCs-PGCs synapses, that is, contacts from MCs to GRCs are

excitatory and from GRCs to MCs are inhibitory. This kind of connection is responsible

for lateral inhibition between glomeruli and MCs and may play an important role in odor

coding and neural adaptation [3].

In this work, we investigate the possible function of lateral inhibition and adaptation

on the olfaction processing. For this, we study the properties of a simple network model

built as a coupled one-dimensional map [4].

MODEL

As said in the previous section, the objective of this work is to examine the role lateral

inhibition in odor coding inside the OB. However, it’s easy to notice that pure and

simple lateral inhibition doesn’t characterize a real challenge in terms of codification.

This would simply make the most active cell in a group of interconnected neurons fires

constantly while the rest of those neurons would be inhibited. But OB doesn’t have

just lateral inhibition. Connections between MCs and GRCs (or MCs and PGCs inside

the glomerulus) also result in auto-inhibition. Figure 1 shows that the activation of an



inhibitory interneuron always results in an inhibitory stimulus to all MCs connected to

this.

Our model is a coupled one-dimensional map, where cells have inhibitory connections

to their immediate neighbors (first and last elements are also connected, creating a ring).

We consider the case of “extreme inhibition" in the sense that once a cell fires it prevents

its neighbors of firing it no matter how strong is their inputs. It is in a sense a local

“winner-take-all". This concept is only possible if we are careful about the updating

order of the maps. Normally the model of a neuron with continuous input would be

a differential equation for the potential and auxiliary variables. Since the neuron has

a finite membrane capacitance there is a finite integration time ! between the input

presentation and firing. Therefore neurons with larger inputs will fire before and win the

competition with their neighbors. To incorporate this feature in a time discrete dynamics

we proceed as follows, to decide the state of a network at t+1, from its state at t

• Only neurons with inputs hi(t) above certain threshold will fire at t+1;
• The firing order is given by neurons’ hi(t), that is, the first neuron to fire is the one
with the highest internal value, then the second highest value and so on;

• A specific neuron will fire in a time t+1 only if no other neighbor has fired yet in
the update process.

The input to a neural cell depends on the sum of the olfactory stimulus and adaptation

hi(t) = Ii−ai(t) (1)

We consider, as in [3], that the stimulus is logarithmic with the coverage of the available

receptors in the olfactory epithelium. The coverage of a given receptor is proportional to

the odorant concentration and its affinity to the odorant. We them write the stimulus as

Ii = "i+C (2)

where "i is an uniform random variable between 0 and 1 representing the intrinsic affin-

ity of the glomerulus i to the odorant and C is the logarithm of the odor concentration.

We call C concentration for simplicity. The adaptation ai(t), who works as the MCs’
auto-inhibition, since we don’t have granular cells in our model, varies according to

ai(t+1) = ai(t) + # si(t+1)− D (1− si(t+1)) (3)

The parameters # and D are responsible for adaptation (or auto-inhibition) and adap-

tation recovery, respectively. Therefore, each time a neuron fires, it loses # from its

internal value hi(t). If this new hi(t) is smaller than any neighbor’s internal value or is
smaller than $ , the neuron will not fire and its internal value will be increased by D.

RESULTS

Upon the presentation of a random distributed input at certain concentration our network

responds with a rich spatio-temporal structure where two distinct regimes are observed:

a transient and a periodic regime. It’s also possible to split the transient regime in
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FIGURE 2. Spatio-temporal structure showing two different regimes. In A the raster plot for a network

of 50 neurons, in B the corresponding network activity.

two parts. Figure 2 shows that during the first steps of simulation some neurons fire

constantly since they always win the firing contest. But, as said in the previous section,

every time a neuron fires its adaptation (or auto-inhibition) value is increased by ! and,

eventually, its hi(t) will become smaller than its neighbors. At this point, the global

behavior of the network will change to the second part of the transient regime where

neurons alternate firing with neighbors. This is the check board like structure in Figure

2A, where neurons spike every other time step. If the adaptation due a spike is larger than

the subsequent recovery between spikes ( ! >D ) the alternating competing neurons will

continue to adapt until hi(t) becomes smaller than " . The firing rate then decreases since

once a neuron goes under the threshold it takes longer to recover back, this reflects in the

overall network activity, see 2B. Eventually the dynamics pushes all neuron inputs to the

the interval [" −! ," +D]. After that the regime changes from transient to periodic, and

the firing pattern gets a specific spatio-temporal structure. Depending on the stimulus

the pattern period can be a multiple of a minimal period given by

Tm = a+b (4)

where a and b are the lowest integers such that !/D = a/b . Of course, if ! and D are

incommensurable the pattern is not periodic. In figure 3 we display the distribution for

the periods obtained upon the presentation of 2000 random stimuli with concentration

C = 0 to two networks with n = 50 and n = 100 neurons, and parameters ! = 0.10,

D = 0.03 and threshold " = 0. The irregularity in the distribution is not result of poor

sampling, and its shape is still a matter of investigation. As the network increase its size

from n = 50 to 100 the distribution tends to larger periods. We observe that while for

n= 50 more than 70% of the input stimuli produce a periodic pattern with the minimal

period Tm, for n= 100 that fraction reduces to less than 30%. Periods for T/Tm > 10 are

present but we do not display in the graph.
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FIGURE 3. Distribution of periods for 2000 random stimuli with concentration C = 0 in two networks

of n = 50 (open circles) and n = 100 (solid squares) neurons, ! = 0.03, D = 0.01, and threshold " = 0.

Periods for T/Tm > 10 are not shown.

A distribution of periods is certainly a very interesting result for such a simple model.

However, if the network is to be a coding stage of a larger network it cannot afford

representations that are too wide in time, otherwise the next stage will take too long to

process. On the other hand, it is conceivable that for a given pattern with period T =mTm,

where m is an integer, not all the neurons have firing periods equal to T . Therefore there

are some neurons that are responsible for the larger observed period. If they are few,

well before t = T the network already has most of the information that is needed for

making a decision. Furthermore if the next stage network has a form of error correction

we expect that the effective period of the representation is smaller than T .

In order to investigate that possibility we reprocessed our results introducing a toler-

ance in the algorithm that finds periods. Basically, we calculate the Hamming distance

between two configurations and if it is smaller than the tolerance value, we assume that

they are the same. Mathematically, T (e) is a period with tolerance e for a temporal pat-

tern if

dH(s(t),s(t+T (e)) ≤ e ∀ t (5)

where s= (s1,s2, ...,sN) is the network configuration and

dH(s(t),s(t ′)) =
N

#
i=1

(si(t)− si(t
′))2

Therefore, the larger period is just a group of very similar patterns. Figure 4 shows the

fraction of 100 random stimuli of concentrationC= 0 that elicit stable periodic patterns

with T = Tm = 13, given a certain tolerance, for a network of n = 50 and parameters

! = 0.10, D= 0.03, and " = 0. It indicates that for tolerances between 6 and 20 unities

all the stimuli generates periodic patters of firing with the minimal period Tm. Larger

tolerances are very permissive, allowing the possibility of detection of smaller periods

and eventually for tolerances equal to n the period is 1 for all possible stimuli.
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FIGURE 4. The fraction of 100 random stimuli of concentrationC= 0 that elicit stable periodic patterns

with T = Tm = 13 as a function of tolerance ( in unities of number of cells) for a network of n = 50 and

parameters ! = 0.03, D= 0.01, and " = 0.
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FIGURE 5. The effect of concentration on the fraction of a set of 100 stimuli presenting minimal

response period.

The conclusion coming from figure 4 is that if the next stage network is capable of

10% error correction all that is needed it to process the first 2Tm time steps after the

transient to recognize the pattern.

Another very interesting finding is the effect of concentration. Concentration as mod-

eled here is an additive constant to the stimulus value [3]. As we increase the concen-

tration of the stimuli we observe that there is a sharp transition where all large periods

disappear. Figure 5 shows that for 100 random stimuli and concentration varying from 0

to 2.

This spatio-temporal distribution at the periodic regime is our main concern here,



since [5] proposes that OB (and insects’ antennal lobe) uses a similar codification for

real odors.

CONCLUSIONS

Here we discuss the dynamical properties of a simple network with two ingredients:

extreme lateral inhibition and adaptation. The network is a couple-map where each

binary neural unity fires depending on its stimulus strengh, its internal adaptation state

and its competition with the neighbors. We have introduced a update rule where the

neurons are updated in order of their input magnitude. Cells that have more input are

updated first. This makes the competition between neurons more realistic and interesting

since it can result in chain reactions, where the impact of having a neuron released from

inhibition can affect neurons many synapses away. This phenomena is more pronounced

in one dimensional systems like the one studied in this paper, but it is present in two

dimensional systems that is a more realistic model for the olfactory system. In presence

of a sustained external (olfactory) stimulus the activity of the network converge, after

a transient, to a periodic attractor that can be considered as the network output. The

period of the attractor depends on the particular stimulus, and it is always a multiple of

a minimal period Tm, determined by the parameters ! and D. For enough tolerance or

concentration the activity of the network becomes Tm independently of the stimulus.

There still much to do to access the relevance of this model for odor processing.

The preliminary results show that it produces a rich spatio-temporal response with very

well defined transient and periodic phases. Given the model’s simplicity the complete

understanding on how it comes about is at hand. A rich response, though necessary,

is not sufficient to generate a good representation for the odor space. We expect some

robustness to noise, and the preservation in the responses of the topological relation of

the stimuli. That will be the next steps on our investigation.
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