

Evento	Salão UFRGS 2017: SIC - XXIX SALÃO DE INICIAÇÃO
	CIENTÍFICA DA UFRGS
Ano	2017
Local	Campus do Vale
Título	Ensaio de tração na flexão em solo siltoso cimentado
	artificialmente
Autor	ALICE MÜLLER BARCELOS
Orientador	LUCAS FESTUGATO

Universidade Federal do Rio Grande do Sul

Título: Ensaio de tração na flexão em solo siltoso cimentado artificialmente

Autor: Alice Müller Barcelos Orientador: Lucas Festugato

Para a realização de uma obra de infraestrutura, necessita-se de um solo com uma resistência mínima determinada em projeto. Quando o solo utilizado possui baixa capacidade, o engenheiro possui algumas opções, como modificar o projeto e adequá-lo ao solo local; transferir o local da obra para outro em que haja um solo mais resistente; substituir o material utilizando jazidas de empréstimo; ou melhorar as propriedades do solo através da adição de materiais cimentantes. Nesta pesquisa, será analisado o comportamento de um solo de granulometria siltosa acrescentado de cimento Portland (CP V) e associado à compactação estática em relação à resistência à tração. Para isso, serão moldados corpos de prova prismáticos de dimensões 4,0 x 4,0 x 17,0 cm de caulim, variando a porcentagem de cimento em 3, 5, 7 e 9% e o peso específico em 14, 15 e 16 kN/m³ em relação à massa de material seco. Serão moldados três corpos de prova para cada combinação, mantendo-se constante a umidade de 20% e o período de cura de 7 dias. Após a moldagem e cura, serão realizados ensaios de carregamento de três pontos até a ruptura. Com os resultados, será feita uma análise da relação entre a porosidade e o volume de cimento em relação à carga de tração aplicada. Resultados preliminares, realizados com outros materiais e diferentes tipos de ensaio, indicam que o aumento da quantidade de cimento e a diminuição da porosidade aumentam a resistência à tração. Dessa forma, espera-se que esta pesquisa siga a mesma tendência. Os resultados obtidos podem ser aplicados para a escolha da quantidade de cimento apropriada, assim como a compactação necessária, para que atenda a resistência à tração especificada em projeto, de modo a otimizar seus custos e tempo de desenvolvimento.