

Evento	Salão UFRGS 2017: SIC - XXIX SALÃO DE INICIAÇÃO
	CIENTÍFICA DA UFRGS
Ano	2017
Local	Campus do Vale
Título	Síntese de matrizes de anatásio contendo nanopartículas de
	ouro aplicadas na produção de H2
Autor	ANTONIO BAUER QUEVEDO
Orientador	TANIA MARIA HAAS COSTA

Síntese de matrizes de anatásio contendo nanopartículas de ouro aplicadas na produção de H_2

Aluno: Antonio Bauer Quevedo

Orientadora: Tania Maria Haas Costa

Universidade Federal do Rio Grande do Sul

Nas últimas décadas o interesse pelos materiais contendo óxido de titânio (TiO₂) na forma de anatásio vem aumentando por conta da sua capacidade de absorção de radiação ultravioleta, a qual possibilita que estes materiais sejam utilizados em fotocatálise. O material comercial extensamente utilizado para tal finalidade é o P25, o qual apresenta baixa área superficial ($\approx 45 \text{ m}^2\text{g}^{-1}$). Assim,nanotubos de titânia (NTTiO₂) vem sendo utilizado como precursor para na matrizes de anatásio de alta área superficial (≈ 200 m²g⁻¹), visto que a produção de materiais com área elevada pode conduzir à maior eficiência. Visando melhores resultados na fotocatálisenanopartículas de ouro (AuNP) vem sendo inseridas nas matrizes de anatásio, pois as AuNP ajudam a ampliar a faixa do espectro eletromagnético absorvida pelo fotocatalisador. A manutenção do tamanho das AuNP é de extrema importância, por este motivo é necessária a utilização de agentes estabilizantes, como silsesquioxanos iônicos que além de estabilizar AuNP atuam como agentes de adesão das mesmas em matrizes inorgânicas, como o TiO₂. Neste contexto, no presente trabalho foram sintetizados nanotubos de titânia (NTTiO₂) pelo método hidrotérmico, utilizando como precursor o composto comercial P25 degussa. Posteriormente, estes materiais foram impregnados com nanopartículas de ouro estabilizadas pelo silsesquioxano iônico contendo o grupo catiônico 1,4diazoniabiciclo [2,2,2] octano. Foram feitas adições de AuNPem três estágios diferentes da síntese dos NTTiO₂: antes (AAuNP), depois (DAuNP), antes e depois (ADAuNP) do enrolamento dos NTTiO₂. Foram adicionadas dispersões AuNP até a saturação das amostra, assim colocou-se o volume de 1, 3 e 4 dispersões nas amostras DAuNP, AAuNP e ADAuNP, respectivamente. Estes materiais foram calcinados na temperatura de 450 °C por 4 horas, a fim de obtenção da fase anatásio, sendo chamados de ACAuNP, DCAuNP e ADCAuNP. Estes materiais foram caracterizados porespectroscopia na região do UV-Vis, difração de raios X, isotermas de adsorção e dessorção de N₂ e microscopia eletrônica de transmissão (TEM), além disso foram realizadostestes fotocatalíticos para produção de H₂. Os resultados de UV-Vis mostraram que as amostras calcinadas e não calcinadas apresentam bandas de extinção de luz com máximos próximos de 550 nm e 530 nm, respectivamente. Osdifratogramas das amostras antes da calcinação mostram picos característicos de trititanato, enquanto os materiais calcinados apresentaram picos referentes à fase anatásio. As áreas superficiais dos materiais calcinadas foram de 281, 374, 316, 325, 298 e 343m²g⁻¹, para as amostras AAuNP, DAuNP, ADAuNP, ACAuNP, DCAuNP e ADCAuNP, respectivamente. As imagens de TEM dos materiais mostram a presença das AuNPs esféricas dispersas em todas as amostras. Nos testes fotocatalíticos foram produzidos 34 μmol/g, 91 μmol/g e 161 μmol/g de H₂ após 90 min, para as amostras DCAuNP, ACAuNP e ADCAuNP, respectivamente. O aumento de produção está diretamente ligada à quantidade de nanopartículas de ouro adicionadas às amostras. As amostras obtidas neste trabalho apresentaram excelente produção de H2 devido à presença de AuNPs e a elevada área superficial.