
HIDRÓLISE ÁCIDA E CAMPO ELÉTRICO APLICADOS PARA A MODIFICAÇÃO DE AMIDO DE MILHO

Andrielle D. Vailatti¹, Nádya Pesce da Silveira¹

¹Instituto de Química — Universidade Federal do Rio Grande do Sul — Porto Alegre, RS - Brasil nadya@iq.ufrgs.br, andriellevailatti@gmail.com

INTRODUÇÃO

Figura 1. Porção cristalina (azul) e amorfa (verde) antes (a,b) e após (c,d) a hidrólise ácida.1

OBJETIVO

Modificar a superestrutura do grânulo, aumentar sua cristalinidade e otimizar a hidrólise ácida do amido.

Figura 2. Estrutura molecular da amilopectina e da amilose, respectivamente.

- A hidrólise ácida ataca as ligações de H da amilose, preferencialmente às ligações de H da amilopectina.
- A amilose é extraída do grânulo, aumentando a porção cristalina do mesmo.

SEGUNDO MÉTODO:

Foram aplicados campos elétricos na solução ácida 1mol/L de amido

regular (19%) com ddp de 1,2V e 2V em diferentes números de ciclos

METODOLOGIA

PRIMEIRO MÉTODO:

> Amidos de milho ceroso (4%), regular (19%) e de alto teor de amilose (52%) foram colocados em soluções de HCl (0,1 1,0 e 2,0 mol/L) durante 24h, 96h e 168h.

e tempo de exposição (com corrente variando de 0,43A a 0,31A).

- > Através da análise de espectrofotometria UV-Visível foi possível verificar a presença de amilose nos sobrenadantes das soluções após os tratamentos, confirmando a liberação de amilose do interior dos grânulos.
- O tamanho médio dos grânulos não sofreu ,mudança significativa.
- B 33,4 % 39,7% 52,8% X6,500 2µm

Figura 3. MEV dos grânulos de amido de milho regular in natura (A), após 24h em solução de HCl 1 mol/L (B), após 1 ciclo de 10s sob ddp de 2V (C) e após 5 ciclos de 10s também sob 2V (D), com seus respectivos valores de cristalinidade.

RESULTADOS

Tabela 1. Condições experimentais e dados obtidos através da difratometria a laser e potencial Zeta das amostras de amido de milho do tipo regular.

AMOSTRA	CONDIÇÃO	TEMPO (s)	TENSÃO	TAMANHO	POTENCIAL
			(\mathbf{V})	MEDIO (μm)	ZETA (ζ) (mV)
1	in natura	_	_	4,71	-29,27 (±1,49)
2	1M, 24h,	_	_	2,17	-30,87 (±1,15)
	agitação			ŕ	
3	$10 \times 30 s$	300	1,2	4,48	-15,19 (±1,52)
4	10 x 10s	100	2,0	3,87	-18,58 (±1,31)
5	3 x 20s	60	1,2	4,78	-11,72 (±1,13)
6	3 x 20s	60	2,0	4,82	-18,97 (±1,93)
7	2 x 25s	50	2,0	4,76	-9,14 (±0,92)
8	5 x 10s	50	2,0	2,93	-17,87 (±0,89)
9	2 x 10s	20	2,0	4,22	-14,60 (±1,90)
10	1 x 10s	10	2,0	5,84	-12,83 (±1,34)

CONCLUSÕES

- > O amido de milho regular foi mais suscetível a modificações.
- > O aumento de cristalinidade foi observado após a aplicação dos dois métodos.
- > A aplicação de campo elétrico nos grânulos diminuiu o tempo do processo de hidrólise nas suspensões contendo grânulos de amido.
- > Diminuição, em módulo, do potencial Zeta devido ao desaparecimento de grupos OH da amilose presente na superfície dos grânulos.

AGRADECIMENTOS

1 Thys, R.C.S.; Westfahl, H.Jr.; Noreña, D.P.Z.; Marczak, L.D.F; Silveira, N.P.; Cardoso, M.B.; 2008 *Biomacromolecules*, 9 (7), 1894.