

Caracterização espectroscópica, microscópica e térmica de grânulos de amido modificados por hidrólise ácida

Roberta Zucatti, Nádya Silveira Instituto de Química - UFRGS

Introdução

O grânulo do amido de milho consiste em cadeias poliméricas de amilose e amilopectina, as quais o concedem semicristalinidade. Através de hidrólise ácida é possível alterar a razão amilose/amilopectina e modificar propriedades físico-químicas.

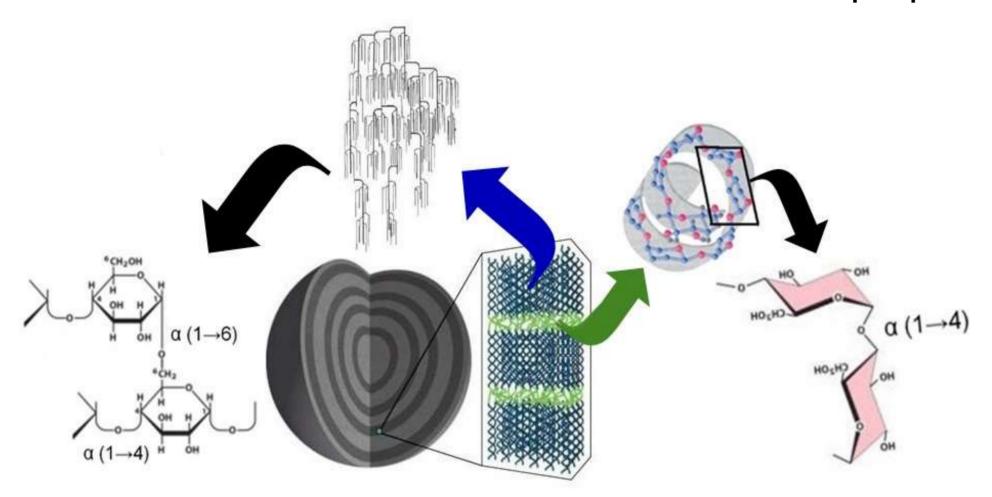
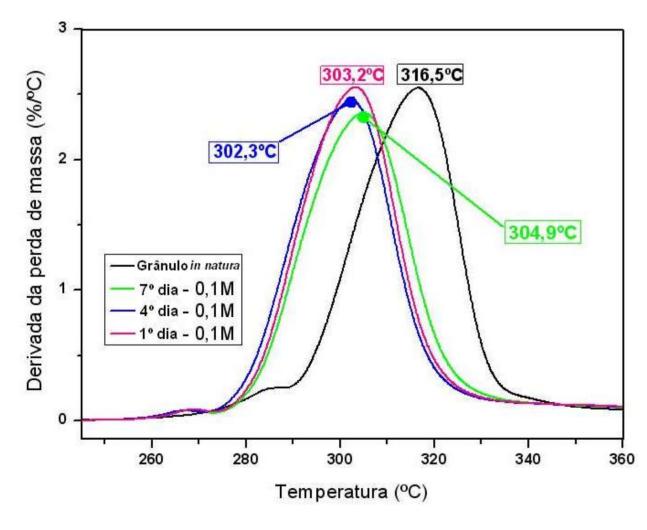


Fig.1: Estruturas poliméricas do grânulo de amido¹. Em verde: lamela amorfa, rica em amilose [ligações α -(1,4)]. Em azul: lamela cristalina, estruturada por amilopectina [ligações α -(1,6)].

Materiais e Métodos


- Amido de milho Regular (5% m/V em HCl).
- Hidrólise Livre (0,1, 1,0 e 2,0 mol/L 1, 4 e 7 dias).
- Hidrólise Orientada (1mol/L) sob campo elétrico.

Tab. 1: Parâmetros das amostras obtidas por Hidrólise Orientada.

Amostra	1	2	3	4	5	6	7	8
Tensão(V)	2	2	2	2	1,2	2	2	1,2
Tempo do ciclo(s)	10	10	25	10	20	20	10	30
Nº de ciclos	1	2	2	5	3	3	10	10
Tempo total(s)	10	20	50	50	60	60	100	300

Resultados e Discussão

> Os termogramas indicaram perda de estabilidade térmica granular após hidrólise.

Fig. 2: Derivada da perda de massa por temperatura para o Grânulo *in natura* e para as amostras obtidas por Hidrólise Livre em HCl 0,1M.

Tab. 2: Cristalinidade do Grânulo *in natura* e das amostras obtidas por ambos métodos de hidrólise, calculadas de acordo com Hulleman².

Cristalinidade%											
Grânulo <i>in natura</i> : 33,4%											
Hidrólise Livre			Hidrólise Orientada								
	0,1M	1M	2M	Amostra	1	2	3	4			
1º dia	34,4%	39,7%	40,8%		52,8%	49,3%	51,4%	54,2%			
4º dia	44,5%	48,5%	42,0%	Amostra	5	6	7	8			
7º dia	44,3%	35,0%	41,6%		46,9%	51,6%	48,6%	52,6%			

Os ensaios de microscopia óptica evidenciaram aumento na faixa de gelatinização granular após tratamento ácido.

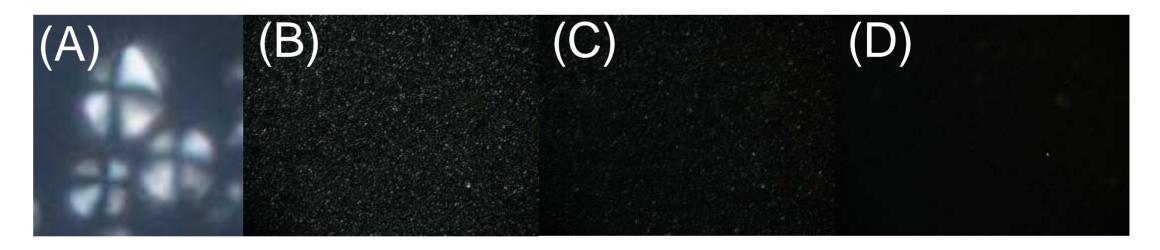
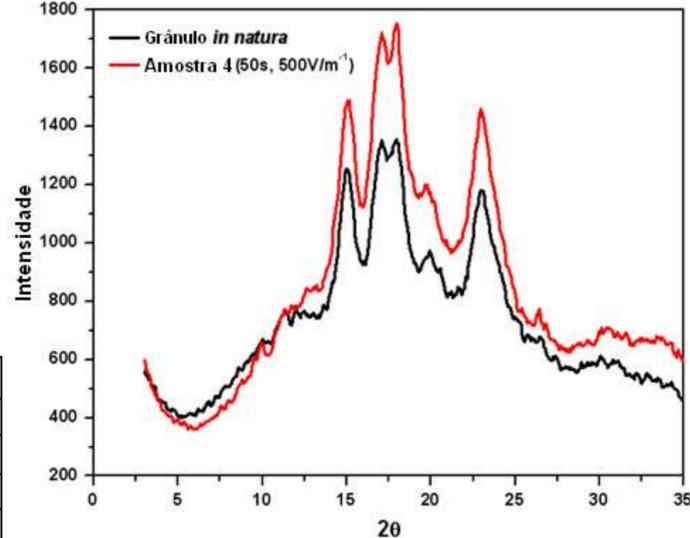



Fig. 3: Micrografias de dispersões de amido em água, sob luz polarizada. Gradual perda da birrefringência (A: "Cruz de Malta" - aumento 40x) granular, o que caracteriza o processo de gelatinização (B, C, D – aumento 10x).

(B) Amostra 10 – 25°C. (C) Amostra 10 – 65°C. (D) Amostra 10 – 70°C.

Fig. 4: Difratogramas do Grânulo *in natura* (em preto) e da Amostra 4 (em vermelho).

Conclusão

Houve aumento na cristalinidade granular após tratamento, devido à perda de amilose. A alteração estrutural foi confirmada pelos ensaios térmicos. O método de Hidrólise Orientada acelerou a hidrólise.

Agradecimentos

