

Evento	Salão UFRGS 2017: SIC - XXIX SALÃO DE INICIAÇÃO
	CIENTÍFICA DA UFRGS
Ano	2017
Local	Campus do Vale
Título	FONTES DE EMISSÃO DE N2O DO SOLO EM UM SISTEMA
	INTEGRADO DE PRODUÇÃO COM OVINOS NO SUL DO BRASIL
Autor	DANIELA ULIAN DA SILVA
Orientador	CIMELIO BAYER

FONTES DE EMISSÃO DE N2O DO SOLO EM UM SISTEMA INTEGRADO DE PRODUÇÃO COM OVINOS NO SUL DO BRASIL

Daniela Ulian⁽¹⁾; Cimélio Bayer⁽²⁾

(1) Aluna de graduação de Agronomia da UFRGS; (4) Professor Adjunto do Departamento de Solos da UFRGS; Porto Alegre.

O óxido nitroso (N2O) é um dos principais gases de efeito estufa, com potencial de aquecimento global até 300 vezes maior que o CO2 e como resultado da ação antropogênica, tem na atividade agropecuária sua principal fonte de emissão. Sistemas de produção com pastejo animal são potenciais fontes de emissão de N₂O para atmosfera devido à deposição de nitrogênio sobre o solo via excretas animais (urina e fezes) e/ou pela adubação mineral da pastagem. Informações sobre o real impacto dessas fontes nas emissões globais de N₂O ainda são escassas, sobretudo em ambientes subtropicais. Diante disso, foi conduzido um experimento a campo a fim de quantificar as emissões de N2O do solo oriundas da aplicação de excretas de ovinos e ureia em um sistema integrado de produção agropecuária (SIPA), bem como determinar seus respectivos fatores de emissão (FE). O experimento foi realizado em uma área com SIPA, localizada na Estação Experimental Agronômica da Universidade Federal do Rio Grande do Sul, em Eldorado do Sul, RS, durante a fase pecuária dos anos de 2015 e 2016. Os tratamentos consistiram da aplicação sobre o solo de uma dose de urina (75 mL) e uma dose esterco (14 gramas) de ovinos além de uma dose de ureia e de um tratamento testemunha, sem adição de N. O delineamento experimental utilizado foi o de blocos casualisados, com três repetições. Os fluxos diários de N2O do solo foram obtidos através do método de câmaras estáticas e as concentrações de N2O foram determinadas por cromatografia gasosa (GC-Shimadzu 14A). O FE de N₂O (FE = % do N adicionado emitido na forma de N-N₂O) para cada tratamento foi calculado levando-se em conta os fluxos de N₂O do solo durante a fase pecuária de cada ano. Os fluxos de N₂O variaram de -1,6 a 82,7 g ha⁻¹ d^{-1} de N-N₂O entre os tratamentos no ano de 2015 e de -0,5 a 67,3 g ha⁻¹ d⁻¹de N-N₂O em 2016. Os maiores fluxos observados ocorreram em até 7 dias após aplicação dos tratamentos, coincidindo com valores de porosidade preenchida por água superiores a 60%. As maiores emissões acumuladas dos tratamentos foram observadas no ano de 2015, possivelmente influenciadas pela maior precipitação acumulada ocorrida neste ano (462 mm), quando comparado à 2016 (217 mm). Os valores de FE encontrados para a urina foram de 0,32% no ano de 2015 e 0,18% em 2016, e 0,27% em 2015 e 0,04% em 2016 para o esterco. Para o tratamento ureia os valores de FE corresponderam a 0,27 e 0,04% do N aplicado, nos anos de 2015 e 2016, respectivamente. A urina foi a principal fonte de N₂O entre as excretas de ovinos e junto com a ureia são as principais responsáveis pelas emissões de N2O em solos subtropicais sob pastejo num sistema integrado de produção.