

Evento	Salão UFRGS 2017: SIC - XXIX SALÃO DE INICIAÇÃO
	CIENTÍFICA DA UFRGS
Ano	2017
Local	Campus do Vale
Título	SÍNTESE DE NANOPARTÍCULAS METÁLICAS UTILIZANDO
	LIGANTES DE TIOFOSFINA SECUNDÁRIA (SPS)
Autor	LAURA SEBEN CAMPANA
Orientador	HENRI STEPHAN SCHREKKER

SÍNTESE DE NANOPARTÍCULAS METÁLICAS UTILIZANDO LIGANTES DE TIOFOSFINA SECUNDÁRIA (SPS)

Laura Seben Campana (IC), Professor Dr. Henri Stephan Schrekker (Orientador)

Universidade Federal do Rio Grande do Sul – laurascampana@gmail.com

A catálise é uma das tecnologias mais importantes na indústria do petróleo, na indústria química e na indústria farmacêutica. Porém, a grande maioria dos catalisadores industriais usados hoje em dia baseiam-se em pequenas partículas metálicas, tendo uma grande variação da sua forma e tamanho, dificultando o controle sobre a superfície ativa do catalisador. Há uma grande importância no controle da forma e do tamanho das nanopartículas para catálise, pois a relação superfície-volume influência diretamente o numero de sítios ativos, sendo o empenho de um catalisador interligado às características da sua superfície. O objetivo do presente trabalho foi sintetizar nanopartículas metálicas monodispersas (nanoclusters) de prata, tendo como diferencial a troca dos ligantes iniciais por ligantes de tiofosfina secundária (SPS) para futura aplicação em catálise.

Inicialmente foi reproduzida a síntese do produto de partida conforme metodologia utilizada. Em meio aquoso, utilizou-se ácido 2,2'-dinitro-5,5'-ditiobenzoico (DTNBA) e boroidreto de sódio (NaBH₄), responsável pela redução do DTNBA. A reação de redução originou o ácido 5-mercapto-2-nitrobenzóico (MNBA), sendo o ligante inicial do metal. Adicionou-se ao sistema nitrato de prata, responsável por disponibilizar ao sistema a prata metálica. A reação ficou sob agitação, onde ocorreu a ligação do metal ao MNBA, formando assim a nanopartícula inicial Ag₄₄[(MNBA)₃₀]-⁴. O produto da síntese foi lavado com metanol e solução NaOH, dando origem ao produto esperado, Na₄[Ag₄₄(MNBA)₃₀].30Na. Este produto foi analisado por espectroscopia de UV-Vis, verificando que houve a reprodução da nanopartícula metálica conforme a metodologia utilizada.

A próxima etapa do projeto foi realizar a troca do ligante inicial por ligantes de tiofosfina secundária (Ph₂PSH). A nanopartícula obtida no final do primeiro processo foi dissolvida em meio aquoso básico juntamente com brometo de tetrafenilfosfônio (TPPBr), e sobre a solução adicionou-se diclorometano com o ligante de tiofosfina dissolvido, formando um sistema de duas fases. O frasco foi colocado sob agitação intensa, e após verificou-se a troca dos ligantes pela mudanca da cor das fases orgânica e aquosa. O produto da troca foi tratado e após seco à vácuo e analisado por Microscopia Eletrônica de Transmissão (MET), Espectroscopia de Infravermelho (IV), Espectrometria de Massas (ESI-MS) e por Análise Termogravimétrica (TGA). A análise por MET apontou que houve a formação de nanopartículas não esféricas, com tamanho aproximado de 2,9 nm. O IV mostrou que não são observadas bandas de alongamento de P-H, indicando uma possível ligação do fósforo com o metal. O espectro também mostrou a semelhança das bandas formadas do produto da troca de ligantes com o espectro do SPS livre. A massa molecular obtida na análise por Espectrometria de Massas coincide com a massa molecular do Ag₃₀SPS₂₀, indicando que o tamanho do núcleo diminuiu na troca de ligantes. O resultado da análise por TGA mostrou uma massa residual de 43,7%, sendo um valor próximo ao valor de 42,7%, que espera-se para o produto Ag₃₀SPS₂₀.

Os próximos passos do projeto envolvem a determinação da estrutura cristalina do produto obtido na troca de ligantes e sua possível aplicação em sistemas de catálise.