


Análise pelo Método dos Elementos Finitos dos Efeitos de um Concentrador de Tensões e da Eficácia de Reparo Proposto em **Componente Estrutural.**

Egnaldo G. S. Neto, Prof. Dr. Carlos E. F. Kwietniewski

INTRODUÇÃO

Para um ensaio de tração com cargas flutuantes de 0 à 200 toneladas, foram projetados dispositivos de interface da bancada com a amostra. No presente trabalho é feito um estudo sobre o concentrador de tensão que um furo para movimentação, mal posicionado, causou em uma das peças. Assim como analisar a metodologia de reparo empregada.

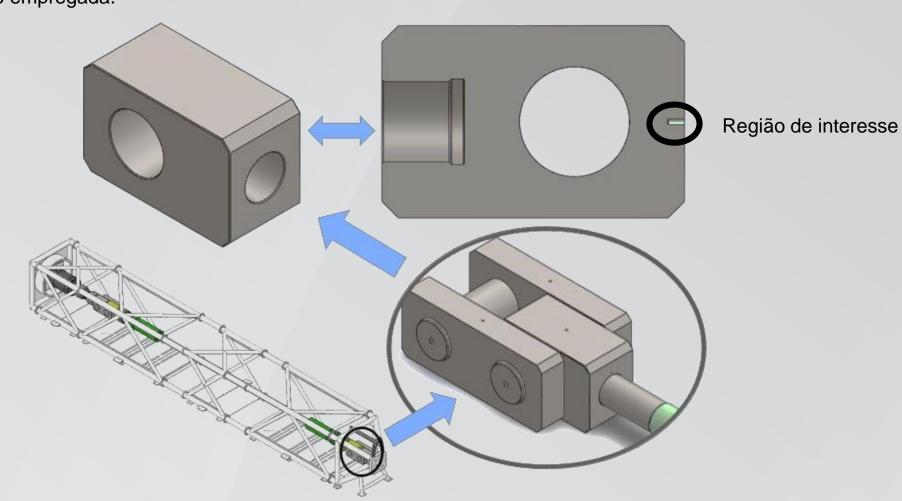
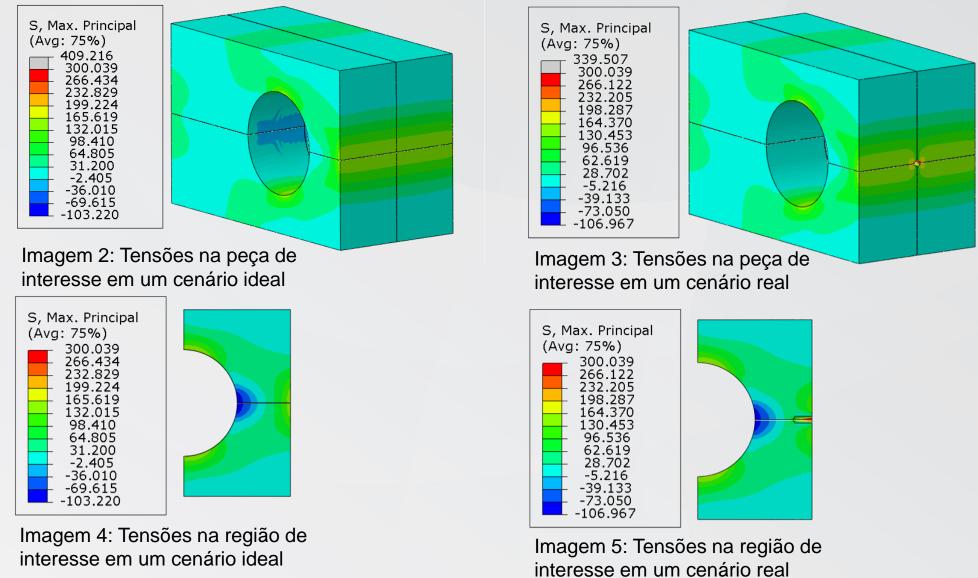
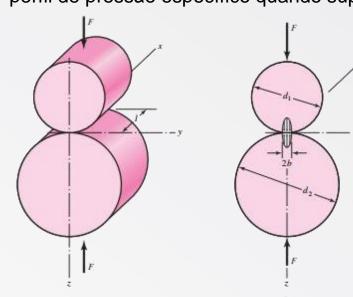
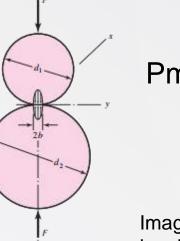


Imagem 1: Bancada de ensaio e peça de interesse.


OBJETIVO

Através de uma análise por elementos finitos, quantificar o efeito do concentrador de tensão sobre a peça de interesse e verificar a eficácia do reparo empregado.


METODOLOGIA


O estudo foi dividido em quatro etapas principais:

- 1- Análise de um "Cenário Ideal", onde são levantadas as tensões na peça sem a presença do furo;
- 2- Análise de um "Cenário Real", verificando o fator de concentração de tensão Kt que o furo gera na peça;
- 3- Análise das tensões na peça após aplicação do reparo, que consiste na inserção de diversos pinos roscados cônicos de comprimento 15mm e diâmetro máximo variável, interferentes na região do furo, avaliando qual deles obtém maior êxito;
- 4- Avaliação da tensão média e sua amplitude no ponto crítico, entre o estado inicial (carga mínima) e estado final (carga máxima), e utilização dos valores para aplicação do critério de falha por fadiga de Goodman modificado.

Para reduzir o custo computacional, os demais dispositivos de interface foram substituídos do modelo por um perfil de pressão específico quando superfícies cilíndricas estão em contato por ação de uma força F.

$$\mathsf{Pm\acute{a}x} = \frac{2F}{\pi b l}$$

$$b = \sqrt{\frac{2F}{\pi l} \frac{\frac{(1-v1^2)}{E1} + \frac{(1-v2^2)}{E2}}{\frac{1}{D1} + \frac{1}{D2}}}$$

Imagem 6: Dois cilindros em contato por ação de uma força F igualmente distribuída ao longo do comprimento I.

RESULTADOS

Os resultados de cada modelo são mostrados na tabela abaixo, onde é possível comparar as tensões na região de interesse, tal como sua amplitude e a partir deste ponto, fazer uma análise de fadiga.

Tabela 1 – Análise da alteração na amplitude de tensão

	rabola i Tilianos da altoração ha amplitado do toriodo									
	ANÁLISE DA ALTERAÇÃO NO ESTADO DE TENSÕES									
	Modelos Iniciais									
			Tensão Máx Inicial (Mpa)	Tensão Máx Final (Mpa)	Tensão de Amplitude (Mpa)	Tensão Média (Mpa)				
	Cenário Ideal		0	154	77	77				
	Cenário Real		0	303	152	152				
	Modelos com Reparo									
	Modelo	Raio do Pino (mm)	Tensão Máx Inicial (Mpa)	Tensão Máx Final (Mpa)	Tensão de Amplitude (Mpa)	Tensão Média (Mpa)				
	1	6.160	1923		-	-				
	2	6.050	613	- / - /	-	-				
	7	6.030	334	473	69	404				
	6	6.025	149	342	97	246				
	3	6.020	149	382	116	265				
	5	6.015	110	342	115	226				
	8	6.010	90	310	110	200				

Foram selecionados os pinos que apresentaram os resultados mais satisfatórios e inserido suas respectivas amplitudes de tensões em função das tensões médias. O critério de resistência à fadiga adotado foi Goodman modificado.

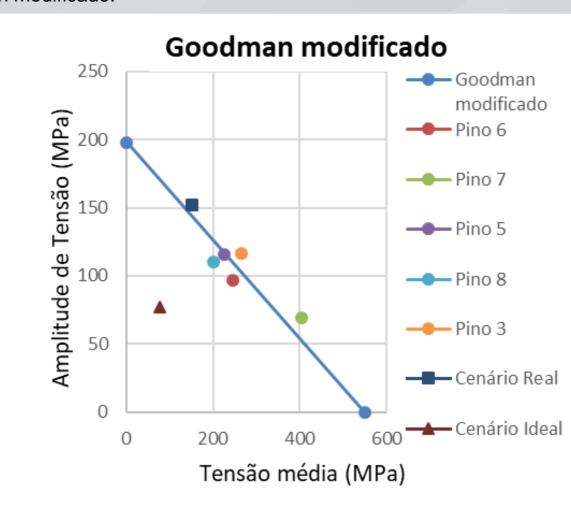


Imagem 7: Gráficos de resistência à fadiga pré e pós reparo

Tabela 2 – Análise da alteração na amplitude de tensão

Coeficiente de Segurança n						
Cenário Ideal	Cenário Real	Pino 6	Pino 8			
77	152	97	110			
77	152	246	200			
198	198	198	198			
550	550	550	550			
1,89	0,96	1,07	1,09			
	Cenário Ideal 77 77 79 198 550	Cenário Ideal Cenário Real 77 152 77 152 198 198 550 550	Cenário Ideal Cenário Real Pino 6 77 152 97 77 152 246 198 198 198 550 550 550			

Os coeficientes de segurança para cada cenário, de acordo com o critério de Goodman modificado, foram obtidos pela relação:

$$\frac{\sigma a}{Se} + \frac{\sigma m}{Sut} = \frac{1}{n}$$

CONCLUSÃO

O furo posicionado em uma região inapropriada culminou em um concentrador de tensão que elevou a tensão a um nível de risco para falha por fadiga. O reparo empregado, apesar de aumentar a tensão máxima na peça, fez com que a amplitude de tensão diminuísse gerando um novo estado de tensões dentro do critério de aceitação. Entretanto, o coeficiente de segurança verificado não atendeu ao requisito de 1,5 estabelecido pela equipe de projeto. Desta forma, sugere-se, para trabalhos futuros, que a mesma metodologia empregada neste trabalho seja usada para reclassificar a carga do componente até que uma metodologia de reparo eficaz seia encontrada.