DETERMINAÇÃO DA TENDÊNCIA DE PROPAGAÇÃO DE TRINCAS EM MISTURAS ASFÁLTICAS ATRAVÉS DO ÍNDICE DE FLEXIBILIDADE

Kethelin Eloisa Klagenberg

keth.klagen@gmail.com Prof. Dr. Washington Peres Núñez

Laboratório de Pavimentação da UFRGS Universidade Federal do Rio Grande do Sul

Introdução

Durante a vida de serviço dos pavimentos, o tráfego realiza repetidos carregamentos que geram tensões de tração na base do revestimento asfáltico, resultando em trincas iniciais que tendem a progredir para defeitos que comprometem a serventia do pavimento e a segurança do usuário. Assim, é importante conhecer a evolução da degradação do revestimento asfáltico a fim de dimensionar pavimentos adequados, prevendo manutenções de forma mais racional, eficiente e menos onerosa.

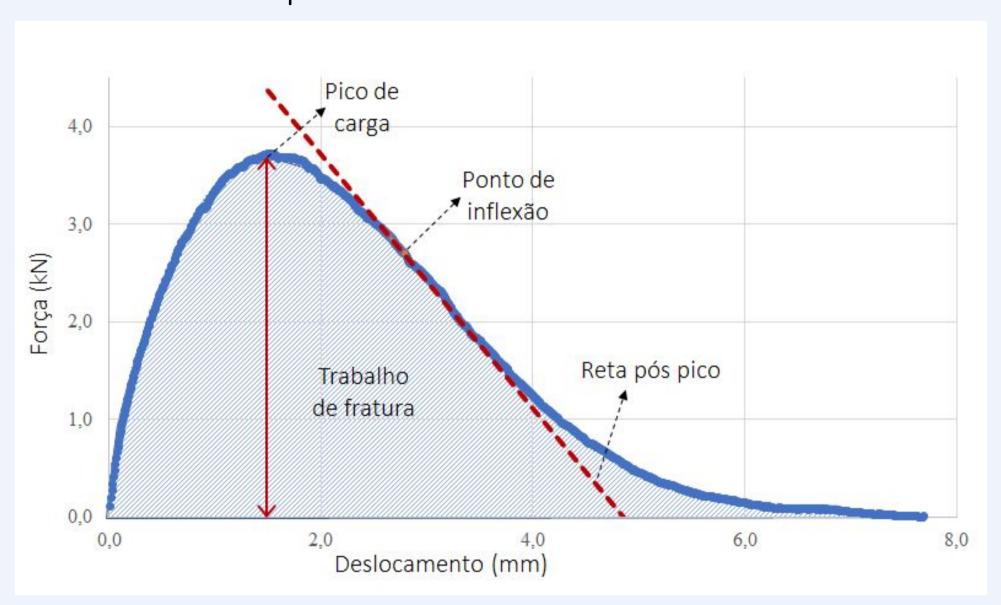
Objetivo

Comparar a suscetibilidade à propagação de trincas de três diferentes misturas asfálticas através do índice de flexibilidade obtido a partir da análise matemática da curva carga versus deslocamento gerada no ensaio de flexão em amostras semicirculares.

Metodologia

Em laboratório foram produzidos corpos de prova semicirculares com uma fenda entalhada em sua base, simulando uma trinca pré-existente. Na mistura, foram utilizados três diferentes ligantes asfálticos, o convencional (CAP 50/70), o modificado por polímero (CAP 60/85) e o modificado com borracha (AB8).

As amostras foram ensaiadas em prensa hidráulica, aplicando um carregamento monotônico no topo da amostra sobre dois apoios de rotação livre até sua ruptura. A partir da aquisição dos dados pode-se traçar a curva "carga versus deslocamento" e extrair parâmetros como a energia de fratura (dividindo-se a área sob a curva pela área de ligação da amostra); e o valor da inclinação da reta pós pico. O Índice de Flexibilidade pode ser obtido da seguinte forma:


$$FI = \frac{Gf}{|m|} \times A$$

Onde: Gf: energia de fratura (J/m²);

|m| : valor absoluto da inclinação da reta pós pico; A : fator unidade de conversão igual a 0,01.

Resultados

Uma das curvas estudadas com seus parâmetros notáveis está apresentada abaixo:

Por fim, foi calculada a média entre as quatro amostras de cada tipo de mistura conforme tabela abaixo:

Misturas	Energia de fratura (J/mm²)	m (kN/mm)	Índice de flexibilidade
AB8	3082,43	0,94	32,94
60/85	3925,47	1,60	25,04
50/70	2803,08	1,44	19,87

As amostras com ligante 60/85 apresentaram, na média, energias de fratura maiores que a mistura com AB8, mas, em contrapartida, apresentou também maior inclinação da reta pós pico quando comparadas com a AB8, gerando um índice de flexibilidade maior para a mistura AB8.

Considerações Finais

Assim, a mistura AB8 apresenta melhor desempenho quanto à propagação de trincas. Tal constatação não seria completamente elucidada calculando apenas a energia de fratura da amostra, pois a velocidade do desenvolvimento das trincas no revestimento deve ser considerada.

A utilização do índice de flexibilidade é interessante para comparar diferentes tipos de revestimento asfáltico, possibilitando a comparação de diversos materiais, inclusive os inovadores.

