MODELO GENERATIVO SENSÍVEL AO CONTEXTO E REGRAS URBANAS

INTRODUÇÃO

A cidade é um sistema com elevado grau de complexidade que admite diferentes descriçoes de comportamento. Este estudo utiliza o paradigma do autômato celular para tratar das transformações morfológicas da cidade sob o ponto de vista da iluminação natural.

A utilização do autômato celular deve-se a sensibilidade ao entorno, fator indispensável no universo da cidade.

Para a simulação do modelo proposto foi escolhido um terreno de forma regular, com área aproximada de 7.915m², localizado na Zona Norte de Porto Alegre.

MATERIAL E MÉTODO

As células de simulação foram divididas em fixas e variáveis. As células fixas representam o contexto existente, enquanto as celulas variáveis correspondem a um volume virtual onde serão gerados novos edifícios. Foi desenvolvido um algoritmo no programa computacional Rhinoceros associado ao plug-in de representação Grasshopper e utilizado um script em linguagem Visual Basic.

A construção do modelo pode ser descrita nos seguintes passos:

_simplificação da geometria: a partir de uma quadra pré-definida são carregados os arquivos tridimensionais da área a ser simulada. A definição cria um modelo virtual tridimensional voxelizado da pré-existência e vazios da quadra.

_restrições globais de forma: a fim de exercer controle sobre a forma final, são definidas restrições da forma a ser gerada pelo autômato celular. Estas restrições são configuradas por três tipologias: block (ocupação perimetral), stripe (ocupação linear) e point (ocupação pontual).

_geração do autômato celular: definidas as restrições globais de geração da forma, é gerada a forma final. Nesta etapa são também definidos parâmetros referentes à dinâmica do autômato celular.

_análise de performance lumínica: gerada a forma final é realizada uma avaliação de desempenho lumínico, possibilitando a comparação de dados de forma gerada e pré-existência.

RESULTADOS

A partir da geração e simulação de diversas formas para o terreno proposto, foi possível explorar e confirmar a eficiência para a forma (controle x variabilidade), performance (densidade e iluminação) e sensibilidade ao contexto.

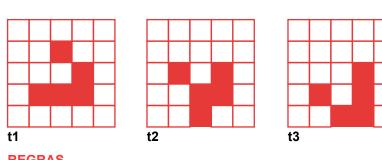
_forma: o modelo permitiu a geração de forma com maior dinâmica mantendo controles sobre a forma global da edificação, configurando diferentes tipologias de quadra.

_performance: através da análise de índices (fsi, gsi, osr, dwelling) e desempenho lumínico (sda, cda) foi possível sustentar a variabilidade da forma com performance superior a formas convencionais ou à pré-existências.

_sensibilidade: a geração da forma por meio do autômato celular se mostrou sensível às pré-existências, revelando a possibilidade de diálogo com o entorno edificado e não edificado.

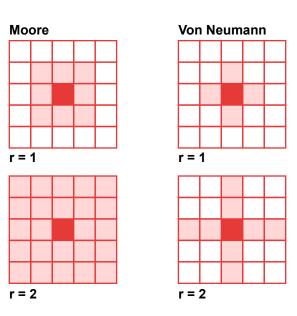
CONCLUSÕES

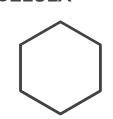
Diferentemente de outros sistemas generativos automatizados o modelo apresentou em sua abordagem (top-down) para o processo de geração da forma o atendimento dos requisitos urbanos, mantando, ou ainda otimizando, os requisitos de performance (densidade e iluminação).


ÁREA DE SIMULAÇÃO

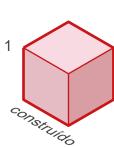
localização da quadra simulada

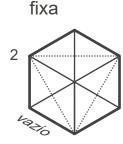
O JOGO DA VIDA DE JOHN CONWAY

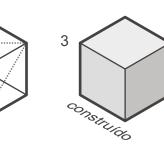

Criado pelo matemático john conway, exemplifica o funcionamento do autômato celular. Abaixo a exemplificação de um Glider em três gerações (t1, t2 e t3), onde cada geração é criada a partir da geração anterior.

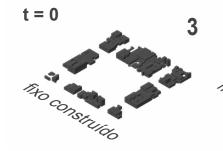

qualquer célula viva com menos de duas vizinhas vivas morre qualquer célula com mais de três vizinhas vivas morre

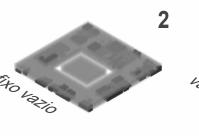
VIZINHANÇAS

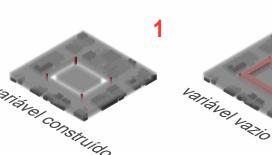

Para a geração do Autômato Celular é necessária a definição do tipo de vizinhaças e seus respectivos raios a serem utilizados.

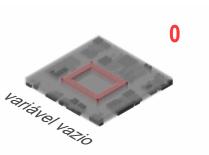


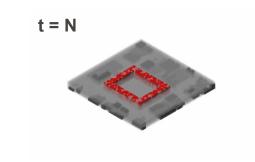

CÉLULA

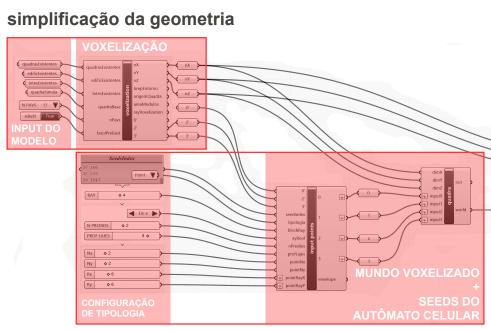


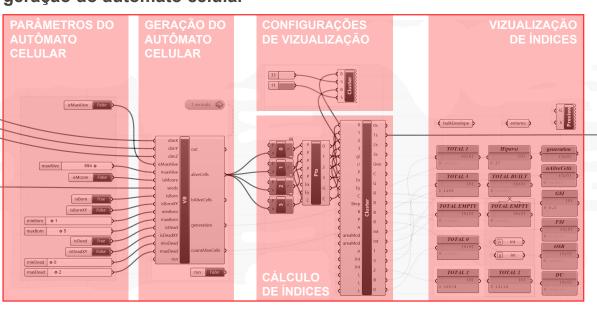








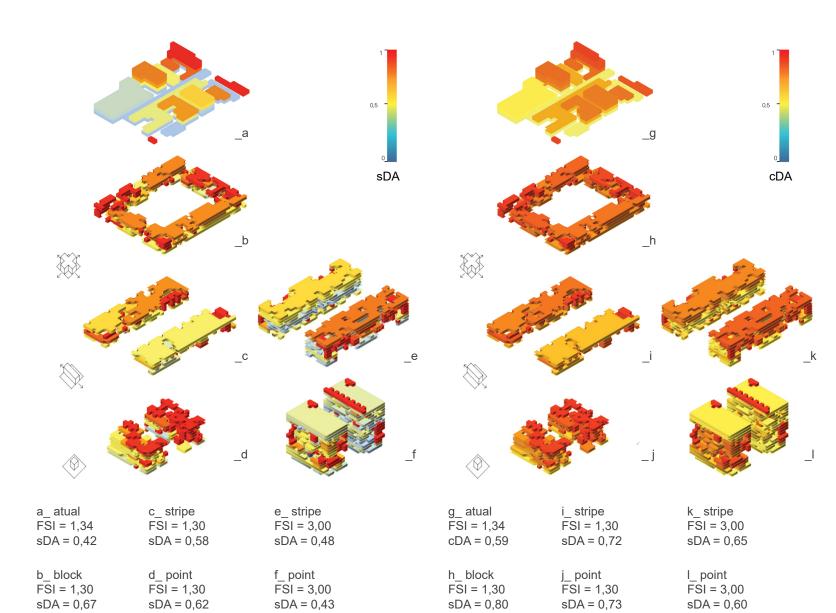




A DEFINIÇÃO

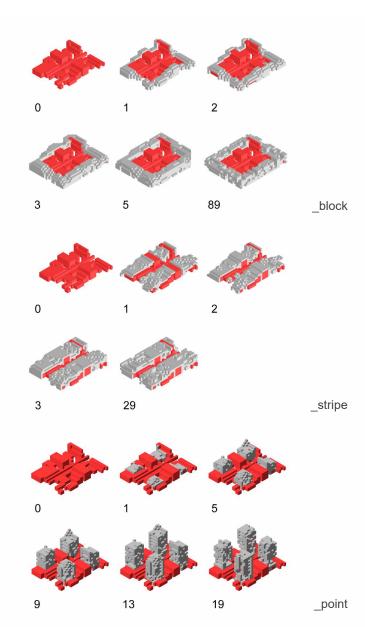
restrições globais de forma

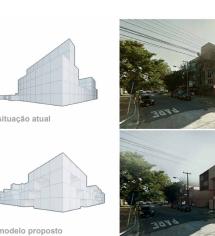
geração do autômato celular



lumínica

PERFORMANCE


iluminação e densidade



	unidade	zoneamento			tipologias					0.90	
				Actual	Block 1.3	Stripe 1.3	Point 1.3	Stripe 3.0	Point 3.0	.,	
área	cell			750	750	750	750	750	750	0,80	
dim. quadra	cell			30 x 25	30 x 25	30 x 25	30 x 25	30 x 25	30 x 25	0,70	
altura FSI	cell / floor	17			4	8	8	8	17	0,60	limite para L
	cell	975	2250	1005	965	995	935	2244	2250	0,50	nimo para c
	FSI index	1.30	3.00	1,34	1,29	1,33	1,25	2,99	3,00	0,40	
Dwelling GSI	1 = 6 cells			167,5	160,83	165,83	155,83	374,00	375,00	0,30	
	cell	562		411	516	480	240	480	240	0,20	
	GSI index	0,750		0,548	0,688	0,640	0,320	0,640	0,320	0,10	
OSR	OSR index			0,337	0,242	0,271	0,545	0,120	0,227		

SENSIBILIDADE E FORMA

tipologias e contexto

