

Evento	Salão UFRGS 2017: FEIRA DE INOVAÇÃO TECNOLÓGICA DA
	UFRGS - FINOVA
Ano	2017
Local	Campus do Vale - UFRGS
Título	Montagem e análise do genoma da Escherichia coli
	extraintestinal patogênica aviária MT78
Autores	TOBIAS WEBER MARTINS
	FABIANA HORN
	CHARLEY CHRISTIAN STAATS
	DANIEL BRISOTTO PAVANELO
	SIMONE IAHNIG JACQUES
Orientador	FABIANA HORN

RESUMO DO TRABALHO - ALUNO DE INICIAÇÃO TECNOLÓGICA E INOVAÇÃO 2016-2017

TÍTULO DO PROJETO: Montagem e análise do genoma da Escherichia coli extraintestinal

patogênica aviária MT78

Aluno: Tobias Weber Martins Orientadora: Fabiana Horn

A bactéria gram-negativa *Escherichia coli* vive comensalmente na microbiota intestinal de mamíferos e aves. Sua grande versatilidade levou muitas linhagens dessa espécie a divergir das comensais, adquirindo a habilidade de causar doenças em humanos e outros animas, dependendo de seu patotipo. As APEC (*Avian pathogenic Escherichia coli*) são um dos maiores problemas para a avicultura, pois são causadoras de colibaciloses aviárias, como: colissepticemia, pneumonia, peritonite e pericardite. A fina barreira sangue-gás dos pulmões das aves facilita a infecção após inalação de APEC. Matter et al., 2011 (Vet. Microbiol. 148:51) testaram a capacidade de adesão e invasão em fibroblastos aviários de nove cepas de APEC; dentre elas, a cepa MT78 apresentou níveis de invasão comparáveis aos da bactéria invasiva *Salmonella* Typhimurium SL1344. Esse trabalho tem por objetivo a montagem e análise do genoma dessa cepa de modo a contribuir na elucidação da sua capacidade invasiva.

A partir dos dados do sequenciamento por Illumina, foram criados 118 contigs não ordenados contendo DNA cromossômico e plasmidial. Cruzamentos dos dados obtidos no programa Plasmid Finder com comparações utilizando os programas BRIG e BLAST mostraram um provável plasmídeo de 140 kbp integrado no genoma da MT78. Esse plasmídeo teve uma alta identidade com os plasmídeos pMDR56 e pAPEC-ColBM. Apesar de não-patogênicos, plasmídeos do tipo MDR (*Multi Drug Resistant*) carregam genes de resistência a diversos antibióticos, sendo classificados como plasmídeos R. O plasmídeo pAPEC-ColBM, além de carregar genes de resistência a antibióticos como estreptomicina, canamicina e neomicina, codifica para as colicinas B e M: a colicina B é uma proteína que despolariza a membrana citoplasmática da célula-alvo, e a colicina M é uma proteína que inibe a síntese de peptideoglicanos.

Além do plasmídeo, também foram feitas diversas análises comparativas com o genoma de outras 33 cepas de *E. coli* previamente selecionadas. Essas análises revelaram uma grande semelhança do genoma da MT78, de sorogrupo O2, com cepas do sorogrupo O18 (e.g. PMV-1, APEC O18, NMEC O18, RS218, NU14, entre outras). Entretanto, a maior semelhança se deu com outra APEC, também de sorogrupo O2, a IMT5155, que no entanto não apresentou capacidade invasiva (Matter et al, 2011). Visando identificar potenciais genes responsáveis por essa diferença no comportamento das cepas, foi utilizado o programa RAST (*Rapid Annotation using Subsystem Technology*) para anotar o genoma de ambas e separá-los em sistemas e subsistemas.

A ligação entre metabolismo de açúcares e virulência em Enterobacteria tem ficado cada vez mais evidente (Le Bouguénec e Schouler, 2011. Int. J. Med. Microbiol. 301:1–6). Sabendo disso, nesse primeiro momento a comparação entre os genomas se ateve às rotas do metabolismo de carboidratos. Até o momento, a análise dos genomas revelou vários genes presentes na MT78 e ausentes na IMT5155, dentre eles, vale citar: a presença de uma ilha viral próxima ao sistema de utilização de galactosamina, presença de diversas regiões com elementos transponíveis, e uma cópia a mais dos genes *ampE* e *aroP*, responsáveis pela regulação e transporte de β-lactamase e aminoácidos aromáticos, respectivamente.

Até o momento não é possível afirmar quais genes seriam responsáveis pelo fenótipo invasivo da MT78, mas a investigação de seu genoma poderá contribuir na elucidação dessas

questões e na compreensão de diferentes mecanismos de invasão de E. coli extraintestinais

