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ABSTRACT

Performance is no longer the only optimization goal when designing a new processor.

Reducing energy consumption is also mandatory: while most of the embedded devices are

heavily dependent on battery power, General-Purpose Processors (GPPs) are being pulled

back by the limits of Thermal Design Power (TDP). Moreover, due to technology scaling,

soft error rate (i.e., transient faults) has been increasing in modern processors, which

affects the reliability of both space and ground-level systems. In addition, most traditional

homogeneous and heterogeneous processors have a fixed design, which limits its runtime

adaptability. Therefore, they are not able to cope with the changing application behavior

when one considers the axes of fault tolerance, performance, and energy consumption

altogether.

In this context, we propose two processor designs that are able to trade-off these three

axes according to the application at hand and system requirements. Both designs rely

on an instruction duplication with rollback mechanism that can detect and correct errors

and a power gating module to reduce the energy consumption of the functional units.

The former design, called adaptive processor, uses thresholds defined at design time

to allow runtime adaptation of the application’s execution and controls the application’s

Instruction-Level Parallelism (ILP) to create more slots for duplication or power gating.

The latter design (polymorphic processor) takes the former one step further by dynam-

ically reconfiguring the hardware and evaluating different processor configurations for

each application, and it also exploits the available pipelanes to maximize the number of

applications that are executed concurrently.

For the adaptive processor using an energy-oriented configuration, it is possible, on av-

erage, to reduce energy consumption by 37.2% with an overhead of only 8.2% in per-

formance, while maintaining low levels of failure rate, when compared to a fault-tolerant

design. For the polymorphic processor, results show that the dynamic reconfiguration of

the processor is able to efficiently match the hardware to the behavior of the application,

according to the requirements of the designer, achieving 94.88% of the result of an oracle

processor when the trade-off between the three axes is considered. On the other hand, the

best static configuration only achieves 28.24% of the oracle’s result.

Keywords: Adaptive processor. fault tolerance. energy consumption. performance.

VLIW.





Processador VLIW adaptativo e polimórfico para equilibrar de forma dinâmica o

desempenho, o consumo de energia e a tolerância a falhas

RESUMO

Ao se projetar um novo processador, o desempenho não é mais o único objetivo de oti-

mização. Reduzir o consumo de energia também é essencial, pois, enquanto a maior

parte dos dispositivos embarcados depende fortemente de bateria, os processadores de

propósito geral (GPPs) são restringidos pelos limites da energia térmica de projeto (TDP

– thermal design power). Além disso, devido à evolução da tecnologia, a taxa de falhas

transientes tem aumentado nos processadores modernos, o que afeta a confiabilidade de

sistemas tanto no espaço quanto no nível do mar. Adicionalmente, a maioria dos processa-

dores homogêneos e heterogêneos tem um design fixo, o que limita a adaptação em tempo

de execução. Nesse cenário, nós propomos dois designs de processadores que são capazes

de realizar o trade-off entre esses eixos de acordo com a aplicação alvo e os requisitos do

sistema. Ambos designs baseiam-se em um mecanismo de duplicação de instruções com

rollback que detecta e corrige falhas, um módulo de power gating para reduzir o consumo

de energia das unidades funcionais. O primeiro é chamado de processador adaptativo e

usa thresholds, definidos em tempo de projeto, para adaptar a execução da aplicação. Adi-

cionalmente, ele controla o ILP da aplicação para criar mais oportunidade de duplicação

e de power gating. O segundo design é chamado processador polimórfico e ele avalia (em

tempo de execução) a melhor configuração de hardware a ser usada para cada aplicação.

Ele também explora o hardware disponível para maximizar o número de aplicações que

são executadas em paralelo. Para a versão adaptativa usando uma configuração orientada

a otimização de energia, é possível, em média, economizar 37,2% de energia com um

overhead de apenas 8,2% em performance, mantendo baixos níveis de defeito, quando

comparado a um design tolerante a falhas. Para a versão polimórfica, os resultados mos-

tram que a reconfiguração dinâmica do processador é capaz de adaptar eficientemente o

hardware ao comportamento da aplicação, de acordo com os requisitos especificados pelo

designer, chegando a 94.88% do resultado de um processador oráculo quando o trade-off

entre os três eixos é considerado. Por outro lado, a melhor configuração estática apenas

atinge 28.24% do resultado do oráculo.

Palavras-chave: processador adaptativo, tolerância a falhas, consumo de energia, desem-

penho, VLIW.
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1 INTRODUCTION

As technology continues to evolve, more attention is paid to energy consumption

and fault tolerance when designing new processors. While most of the embedded devices

are heavily dependent on battery power, General-Purpose Processors (GPPs) are being

held back by the limits of Thermal Design Power (TDP), highlighting the importance of

reducing energy consumption. In addition, the need for fault tolerance on both space and

ground-level systems is increasingly present in current processor designs. As the feature

size of transistors decreases, their reliability is getting compromised as they become more

susceptible to soft errors (SHIVAKUMAR et al., 2002). Therefore, energy consumption

and fault tolerance, together with performance, should be considered and balanced to

address the aforementioned issues according to given design constraints.

On the other hand, current processors are designed to focus on one or, at most,

two of these axes. Achieving the ideal balance among them is challenging, due to their

conflicting nature. For instance, reducing energy consumption will likely reduce perfor-

mance; increasing fault tolerance will increase energy consumption and possibly reduce

performance; and improving performance will affect the energy consumption and possi-

bly reduce fault tolerance.

Figure 1.1 depicts a high-level overview, comparing the improvement and over-

head of applying common optimization techniques to the axes of fault tolerance, energy

consumption, and performance (further details about each of these techniques will be dis-

cussed in Chapter 3). Let us consider fault tolerance: replication techniques are widely

used to detect or mask faults during the execution: while hardware-based techniques in-

crease the power dissipation, software-based ones increase execution time; and both in-

crease the total energy consumption.

Energy optimization techniques usually save energy by shutting down idle hard-

ware or by reducing the supply voltage and frequency, which will very likely reduce

performance; and when operating in very low voltage states, the reliability may also

be reduced. Performance improvements may be achieved from several different tech-

niques, from core optimizations to better exploit the Instruction-Level Parallelism (ILP);

to system-level techniques, which comprise several cores and caches hierarchy to exploit

the Thread-Level Paralellism (TLP) from applications. All these techniques focus on a

single axis, and the incurred overhead in the other two axes varies depending on the cho-

sen technique.
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Figure 1.1: High-level Overview of Common Optimization Techniques

Fault tolerance techniques

Software-based Hardware-based

Im
p
ro

v
em

en
t

O
v
er

h
ea

d

Energy optimization techniques

Clock-gating, 

power-gating
DVFS

Performance optimization techniques

ILP and TLP 

exploitation
Technology scaling

Fault tolerance Energy consumption Performance

Source: The Author

In this scenario, we propose two processor designs to trade-off fault tolerance, en-

ergy consumption, and performance, named adaptive and polymorphic processors. The

adaptive balances these three axes based on design time parameters, while the polymor-

phic dynamically evaluates different configurations and reconfigures the processor, adapt-

ing the hardware to the current application. The proposed processor relies on a set of

optimization techniques that work together to provide improvements in each of the afore-

mentioned axes with a low overhead in the other ones.

The ρ-VEX Very Long Instruction Word (VLIW) processor (WONG; Van As;

BROWN, 2008) was used as target architecture for this study. VLIW processors are rep-

resentative examples of current VLIW multiple-issue architectures (e.g., Intel Itanium

(SHARANGPANI; ARORA, 2000), Trimedia CPU64 (EIJNDHOVEN et al., 1999), and

TMS320C6745 (INSTRUMENTS, 2011)). Notably, a VLIW multi-core was recently

used by the National Aeronautics and Space Administration (NASA) in its Mars rover

for image processing (BORNSTEIN et al., 2011). These processors are able to deliver

high-performance at a low energy consumption cost, as they do not rely on runtime

dependency-checking mechanisms for scheduling the instructions that will be executed

in parallel (HUCK et al., 2000). Therefore, VLIW processors are suitable options for

safety-critical systems in several fields, such as automotive, space, and avionics.

Next, all mechanisms and tools that were developed and evaluated to get to the

proposed processors are introduced. Note that several techniques were evaluated, and the

ones with the best outcome were chosen to be integrated into each version of the processor

(therefore some of them were not included into the final version of the processor).

1. Fault Tolerance Techniques:
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• Spatial redundancy: a modified dual modular redundancy approach with roll-

back that exploits idle issue-slots (i.e., functional units that execute No-Operations

(NOPs)) and dynamically duplicates instructions to improve the reliability of

the system by detecting and correcting errors.

• Temporal and spatial redundancy: takes the former mechanism one step fur-

ther by also exploiting idle issue-slots in different bundles, that is, in different

cycles, and not only within the same bundle.

• Hybrid fault injection tool that improves fault injection speed when compared

to other simulation fault injection approaches, while maintaining the accuracy

of gate-level fault injection.

2. Energy Optimization Techniques:

• A power gating mechanism that can be applied to the datapath to reduce both

static and dynamic power. As idle issue-slots are completely turned off, they

are not able to execute duplicated instructions, but they also reduce the sensi-

tive area of the processor, influencing fault tolerance.

3. Performance Optimization Techniques:

• A dynamic ILP controller that can reduce the parallelism (and therefore per-

formance) at runtime. In this case, issue-slots are artificially freed by auto-

matically moving operations to the next cycle, offering opportunities to du-

plicate more instructions or maximize the power gating phases (as it will be

explained, power gating demands that an issue-slot must be turned off for a

minimum period, so the gains in power overcome its costs).

• Application dispatcher that takes into account the issue-width requirements

of each application and the ability of the processor to change its configura-

tion during runtime to maximize the number of applications that are executed

concurrently.

• Optimization algorithm that evaluates and chooses the best configuration for

each application that is being executed, considering the trade-off between the

three axes.

• The dynamic version of the ρ-VEX, which is able to change the issue-width

of the processor during runtime, was used and extended so the optimization

modules could also resize their resources or enable/disable certain features

during runtime to exploit the trade-off between the aforementioned axes.
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Each version of the proposed processor uses a set of these techniques in addition to

a decision module, which controls these techniques during runtime. The adaptive proces-

sor uses thresholds to cope with different application behaviors, while the polymorphic

processor can dynamically test and choose the best configuration for each benchmark

considering fault tolerance, performance, and energy consumption. The polymorphic’s

learning is done by executing each iteration of a given kernel with a different configura-

tion and evaluating its outcome (a metric that considers the trade-off between the three

axes). The learning stops when the best configuration (the one that delivers the best trade-

off) is found, resulting in a reduced number of tests. In addition, an application dispatcher

module was implemented to dynamically schedule multiple applications concurrently, ac-

cording to the available hardware. Therefore, it is possible to dynamically and efficiently

adapt the processor configuration to the behavior of the application.

The remainder of this work is organized as follows. Background and related work

comprising the aforementioned axes are discussed in Chapter 2. Chapter 3 describes the

proposed techniques for each of the axes and their implementation. Next, in Chapter 4,

the adaptive and polymorphic processor implementations are discussed, and Chapter 5

presents a hybrid simulation-based fault injector that is able to speed up the fault injection

campaign while maintaining the accuracy of gate-level fault injection. In Chapter 6 the

results are discussed in terms of fault tolerance, energy consumption, performance, area,

and the trade-off between these axes. Finally, Chapter 7 concludes this work and discusses

future directions.
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2 BACKGROUND AND RELATED WORK

In this chapter, the background and related work comprising the axes of fault tol-

erance, energy consumption, and performance will be discussed. First, the faults will be

classified and related work regarding fault tolerance will be discussed. Second, energy

optimization and energy-aware fault tolerance techniques will be presented. Third, the

axis of performance will be assessed. Finally, the trade-off among these axes will be

discussed and related work will be compared to the proposed methodology.

2.1 Fault Tolerance

A fault may be classified into one of the two large groups: transient or perma-

nent. Next, each of these groups is discussed in detail and fault tolerance techniques are

presented.

2.1.1 Transient Faults

Single-event effects (SEEs) are caused by numerous energetic particles such as

protons and heavy ions from space or neutron and alpha particles at ground-level. They

are created from the deposition of energy from a single ionizing particle in either sequen-

tial or combinational logic in the silicon. The former is called Single-Event Upset (SEU)

and characterizes that a stored value in a memory cell had its value inverted (bit flip). The

latter is called Single-Event Transient (SET) and it generates a transient current pulse in

the combinational circuit, which also may affect memory elements if the inverted signal

is captured by a clock edge. SETs may not be captured in a memory element by one of

the following reasons (SHIVAKUMAR et al., 2002):

• Logical masking: occurs when the particle strike affects a signal that does not affect

the output of a subsequent gate, which is determined by its other inputs.

• Electrical masking: happens when the pulse from a particle strike is attenuated by

subsequent gates, not affecting the result of the circuit.

• Latching-window masking: due to a pulse that reaches a latch in a clock transition

in which it does not capture its input value, consequently not affecting the result.
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For Application-Specific Integrated Circuits (ASICs) and antifuse-based Field-

Programmable Gate Arrays (FPGAs), these effects are transient, and only last until the

next time a value is loaded to that same element. For Static Random Access Memory

(SRAM)-based FPGAs, in addition to the same vulnerabilities of ASICs, the configura-

tion bits are also sensitive, which means that the configuration of the programmed design

may change and lead to wrong computation. A fault in the configuration bits is perma-

nent in the sense that it needs reconfiguration in order to restore correct behavior (de Lima

Kastensmidt et al., 2004). Approaches have been proposed to perform the reconfigura-

tion: scrubbing (BERG et al., 2008), readback and partial reconfiguration of the faulty

parts (CARMICHAEL; CAFFREY; SALAZAR, 2000), etc.

Several works have been proposed for the detection and correction of transient

faults in multiple-issue processors (e.g., VLIW and superscalar). These works aim to

improve the fault tolerance of the target system, typically based on redundancy, which

may be implemented in software, hardware, or both. Next, some of these techniques will

be discussed.

2.1.1.1 Dual Modular Redundancy (DMR) with Rollback

Dual Modular Redundancy (DMR) based on checkpoints with rollback was used

by Xiaoguang et al. (2015) and Yang and Kwak (2010) to detect and correct errors. When-

ever an error is detected, the state in which the execution was correct is recovered. There-

fore, the latency to detect the error on these approaches will vary according to the period-

icity of the checkpoints (i.e., when a new checkpoint must be made). These approaches

were implemented in software.

In order to reduce the energy consumption of rollback and recovery protocols for

High-Performance Computing (HPC), Ibtesham et al. (2014) propose to apply a check-

point compression scheme. This approach reduces data volume and traffic, incurring

higher computational overhead to process the compressed packages. Even though there is

a computational cost to compress and decompress the checkpoint information, the energy

consumption is reduced due to the reduction in the execution time.

A hardware-based replication with rollback mechanism for superscalar processors

is proposed by Ray, Hoe and Falsafi (2001). In this approach, the application is replicated

into two or more threads and the computed results are checked before commit. If any

inconsistency is found, the rollback is activated, the re-order buffer is flushed, and the

execution restarts by fetching once more the next-PC from the last committed instruction.
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Figure 2.1: Hardware-based Replication with Rollback for Superscalar Processors

Source: (RAY; HOE; FALSAFI, 2001)

Figure 2.1 depicts this approach: (1) the register renaming capabilities were adapted so

the instructions fetched from a single stream can be issued redundantly into two or more

data-independent threads; (2) the multiple threads are checked against each other before

the committing the instruction; (3) any inconsistency in the redundant results rewinds the

execution. These threads have tightly coupled executions (both must execute at the same

time) and, consequently, each type of functional unit used by the main thread must be

duplicated so that the replicated thread may execute concurrently.

2.1.1.2 Duplication with Comparison (DWC)

Bolchini (2003) and Hu et al. (2009) propose software-based redundancy based on

Duplication With Comparison (DWC) for VLIW data paths aiming to reduce the perfor-

mance overhead by using the idle functional units. However, these techniques still present

huge performance degradation and increase code size, as they are implemented in soft-

ware. Mitropoulou, Porpodas and Cintra (2014) propose an optimization to the DWC’s

generated code by reducing the impact of the basic block fragmentation caused by the

check instructions, having lower, but still not negligible, performance degradation than

the previous two techniques.
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Figure 2.2: Triplication of the Combinational Logic with a Stand-by Module

Source: (WALI et al., 2015)

2.1.1.3 Triple Modular Redundancy (TMR)

Another common approach is to triplicate hardware components and use a ma-

jority voter to mask the faults, Triple Modular Redundancy (TMR), as implemented by

Schölzel (2007) and Chen and Leu (2010). In these cases, they only triplicate the func-

tional units of a VLIW processor rather than the entire processor; therefore, it is possible

to reduce area and power dissipation costs. Schölzel (2007) proposed the Reduced TMR,

in which both hardware and software needed to be changed. If the two instructions (main

and duplicated) compute different results, the instruction is executed a third time. Hu et

al. (2005) propose a similar approach to Schölzel (2007). However, instruction replication

is done in software, so the binary code is changed, even though there is no area overhead.

In the same way, replication is done partially to some instructions to amortize the costs in

performance.

Wali et al. (2015) propose to triplicate the combinational logic parts of a MIPS pro-

cessor. However, only two copies run in parallel, while the third one uses time-redundancy

in case of an error to vote the correct result. This approach is depicted in Figure 2.2. A

state-machine controls which two combinational logic modules will be active, and a con-

trol module manages the comparator, pipeline register, demultiplexer and multiplexer. In

order to re-compute the operation in case of an error (third execution), shadow latches are

used to hold the last fault-free state of the pipeline. Then, the comparator votes the three

computed results. Anjam and Wong (2013) propose a TMR approach to be applied on the

synchronous flip-flops of a VLIW processor.

Psiakis, Kritikakou and Sentieys (2017) propose to exploit temporal and spatial

duplication for the VEX Instruction Set Architecture (ISA) in order to provide more flex-
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ibility in the instruction replication, as instructions that cannot be replicated in a given

bundle are stored in a buffer so they can be executed in a subsequent cycle. The authors

evaluate the duplication (for fault detection only) and the triplication of instructions in

order to provide fault tolerance. However, no reliability, area, power, and energy results

are presented, only performance ones. In addition, the memory latency is not exploited

to execute duplicated instructions (i.e., execute instructions while the processor is waiting

for the memory), as the VEX simulator does not provide a cache and memory model.

2.1.1.4 Watchdog Processors

Watchdog processors (MAHMOOD; MCCLUSKEY, 1988) execute concurrently

to the main processor, and they compare the outputs from the main processor with their

own (pre-computed or concurrently computed). Examples of watchdog processors are

discussed next. DIVA (AUSTIN, 1999) proposes to increase the reliability of a superscalar

processor by augmenting the commit phase of the pipeline with a checker unit (watchdog

processor). This checker is a simple in-order processor that does not have any mechanism

to speed up computation (e.g., predictors, renamers and dynamic schedulers). The checker

will verify and commit the results if the computation is correct, and flush the computation

and restart the processor in case of an error, as presented in Figure 2.3. The checker is

considered to be more robust than the other parts of the circuit and the verification cost of

the checker is lower than verifying traditional processor design due to its simplicity. In

addition, the authors discuss the buffering of results in order to deeply pipeline the checker

unit, which permits implementations with large time margins and large transistors (more

resistant to transient faults and radiation interference).

Other approaches use redundant threads as watchdog processors (ROTENBERG,

1999; REINHARDT; MUKHERJEE, 2000). SHREC (SMOLENS et al., 2004) proposes

an approach for asymmetric re-execution, similar to DIVA. In addition, it allows threads

to be replicated and staggered. Hence, the difference in the execution progress between

the leading and trailing (replicated) thread hides cache-miss latencies and allows the lead-

ing thread to provide branch prediction information to the trailing thread. The trailing

thread instructions are only checked using input operands produced by the leading thread,

avoiding bottlenecks in the issue queue and reorder buffer. In addition, the functional

units are shared, unlike DIVA.

Rashid et al. (2005) propose a thread-level redundant execution that consumes less

energy than replicating the whole program and running it on identical hardware. This is
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Figure 2.3: Traditional Out-of-order Compared to the DIVA Approach

Source: (AUSTIN, 1999)

done by parallelizing the trailing thread and running it in several small cores (i.e., simple

cores with reduced frequency). Moreover, the leading thread provides the trailing thread

with branch information and L1 cache prefetch hints. Periodic checkpoints are performed

by the leading thread to allow the rollback to a fault-free state when an error is detected.

Madan and Balasubramonian (2007) propose a similar approach to Rashid et al. (2005),

using Dynamic Voltage and Frequency Scaling (DVFS) instead of only Dynamic Voltage

Scaling (DVS), and in-order execution on the trailing thread instead of an out-of-order

processor.

RECVF (SUBRAMANYAN et al., 2010) proposes to forward critical instruction

results from the leading to the trailing thread, so the latter may execute faster and the

energy consumption can be reduced by executing the trailing core at a lower voltage and

frequency. The results to be forwarded are chosen based on heuristics proposed by Tune

et al. (2001). For instance, one approach is to forward instructions on the head of the

Re-order Buffer (ROB), as these instructions are likely to be on the critical path (other

instructions have to wait for the execution of these ones, so they can be committed);

forward instructions in the head of the instruction queue; forward every Nth instruction;

forward mispredicted branches/jumps; forward all possible values (oracle heuristic given
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infinite storage and bandwidth); among other heuristics. In order to recover from an error,

the cores are reset to the instruction following the last verified instruction when an error

is detected.

2.1.1.5 Adaptive Fault Tolerance Approaches

Some works exploit the previous techniques in order to provide an adaptive fault

tolerance mechanism. Jacobs et al. (2012) propose an adaptive framework that switches

between different fault tolerance techniques depending on a priori knowledge of the en-

vironment, external events, or application-triggered events. The supported fault-tolerance

modes are triple modular redundancy, duplication with comparison, Algorithm-Based

Fault Tolerance (ABFT), internal TMR, and high-performance (no fault tolerance). This

approach is for FPGAs only, as the hardware needs to be reconfigured.

An adaptive checkpoint mechanism was proposed by Zhang and Chakrabarty (2004),

in which the checkpointing interval is adjusted during the execution based on the occur-

rence of faults and the available slack. An offline preprocessing based on linear program-

ming is used to determine the parameters that are provided to the online checkpointing

procedure. That is, the preprocessing step obtains the slack time for each job according to

the deadline constraints and the threshold for the minimum number of checkpoints. Even

though the checkpointing is adaptively made, the detection latency is still greater than

zero, besides the need for preprocessing.

Works that aim to minimize the performance cost of the software-based fault tol-

erance mechanisms were also proposed. Nakka, Pattabiraman and Iyer (2007) propose

to replicate only critical instructions of the application. This is done by first identifying

which are the critical variables, extracting the critical code sections and finally instru-

menting the code with check instructions. This approach is only able to detect faults, not

to correct them. It detects 87% of instruction errors and 97% of data errors.

Aaron (BRÜNINK et al., 2011) tackles software and hardware errors by using di-

versified software components in the Central Processing Unit (CPU) spare cycles. Eight

methods are used in this diversification, including SWIFT (REIS et al., 2005b), a software-

based fault tolerance approach that duplicates instructions and registers. The system load

is estimated, and the scheduler chooses the best variant to use the spare cycles (e.g., exe-

cuting a reliability-oriented variant, which takes longer to execute, but is able to provide

fault tolerance), as presented in Figure 2.4. Therefore, whenever load permits, more fault

coverage is achieved; even though it is only able to detect errors, not correct them. Gomaa
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Figure 2.4: Aaron Scheduling Example

Source: (BRÜNINK et al., 2011)

and Vijaykumar (2005) propose two mechanisms to exploit unused resources on low ILP

phases: the first replicates the main thread and compares the results to detect faults; the

second applies a reuse technique to detect and compare the results of implicit redundant

operations within the main thread. The previous four works discussed in this subsection

are implemented in software, having lower performance when compared to a hardware-

based mechanism. Most of these approaches are only able to detect, and not to correct, a

fault.

2.1.2 Permanent Faults

Single event effects can also be destructive, damaging the device permanently. In

this case, reconfiguration of FPGAs will not correct the error and ASICs are also affected.

Permanent damage may occur due to several factors, for instance, the energy from a

charged particle may lead to excessive supply power. Also, the Total Ionizing Dose (TID),

which is a cumulative long-term ionizing damage due to protons and electrons, has the

potential to damage the device permanently. Aging effects are also critical, especially

for space missions, where system maintenance or replacement is difficult (BOLCHINI;

SANDIONIGI, 2010).
As the detection of permanent faults is not in the scope of this thesis, only a few

works will be briefly discussed next. One technique is to relocate the affected design to a
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part of the FPGA in which there are no errors, via reconfiguration. Fay et al. (2007) use

relocation to recover the system in case of a hard fault, whereas Srinivasan et al. (2008)

also use this approach to recover from performance degradation due to aging effects.

Other approaches for hardware relocation in order to avoid faulty parts of the cir-

cuit are proposed by Bolchini, Miele and Sandionigi (2012), Noji et al. (2010), Mitra et al.

(2004). Techniques as TMR or N-modular Redundancy (NMR) naturally mask permanent

faults as long as the majority of the results is still correct.

2.2 Energy Consumption

As the energy consumption is defined by the integral of power dissipation over

time, next, we discuss the classification of power, which can be divided into two large

groups: dynamic or static power. Then, we will discuss optimization mechanisms to

reduce the energy consumption of the circuit.

2.2.1 Power Dissipation

2.2.1.1 Dynamic Power Dissipation

Dynamic power (P = C ∗ V 2 ∗ A ∗ f ) varies according to the load capacitance

(C), supply voltage (V), activity factor (A), and operating frequency (f ), next each of these

terms is discussed (KAXIRAS; MARTONOSI, 2008).

• Capacitance: mainly depends on the technology of the transistors and wire length

of the chip.

• Supply Voltage: due to its quadratic influence on power dissipation, when the volt-

age is reduced, the power is reduced proportionally to the square of that factor.

• Activity Factor: refers to how often the transistors transition from ’0’ to ’1’ or ’1’

to ’0’, which is represented by a fraction that varies between zero and one (i.e., 0%

to 100%).

• Clock Frequency: frequency affects not only the power dissipation, but also the

supply voltage. For instance, for higher clock frequencies, higher supply voltage is

required, and vice-versa. Thus, the pair V 2∗f offers the potential of cubic reduction

in the power dissipation, which is exploited by energy optimization techniques and

will be discussed in detail in the next subsections.
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2.2.1.2 Static Power Dissipation

Reducing the feature size of transistors as well as supply and threshold voltages

cause an increase in the leakage current, which increase the static power dissipation (leak-

age) of the circuit (DE; BORKAR, 1999; RAO et al., 2003). Leakage represents 20% to

30% of the total power dissipation of modern processors (BORKAR, 1999; MAIR et al.,

2007; RUSU et al., 2007).

Leakage energy can come from sub-threshold leakage and gate leakage, among

other sources (KAXIRAS; MARTONOSI, 2008). Sub-threshold leakage represents the

power that is dissipated by a gate that is supposed to be off. That is, until the current

reaches the threshold voltage (voltage in which the transistor switches on), the transistor

charge is leaked to the ground. In addition to the threshold voltage, another important

parameter that determines the sub-threshold leakage power is the temperature (it depends

exponentially on the temperature), increasing the temperature, increases the leakage. Gate

leakage occurs due to the tunneling of electrons through the gate insulator, which sepa-

rates the gate terminal from the transistor channel. It is also dependent on the temperature,

and strongly dependent on the insulator thickness, gate-to-source bias, and gate-to-drain

bias.

2.2.2 Energy Optimization Techniques

Several techniques may be applied in order to reduce the power dissipation of the

circuit and, in most cases, the energy consumption of the applications. These techniques

are applied at several and different granularities: from flip-flops to whole functional units

or subsystems (e.g., memory and processor). Some of them are discussed next.

2.2.2.1 Clock Gating

Clock gating consists in disabling the clock signal to idle units, therefore, saving

dynamic but not static power. For small circuits or individual flip-flops, clock gating

reduces the power dissipation by eliminating the switching activity of these units. At

this granularity, such transformations are routinely applied by the Register-Transfer Level

(RTL) compiler. On the other hand, for coarser granularities, high-level control policies

are needed (KAXIRAS; MARTONOSI, 2008).
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Figure 2.5: Power Gating Header Transistor

Source: (HU et al., 2004)

Due to its simplicity, this approach may be applied on a cycle-by-cycle basis with

limited penalty in area and timing. This technique is used in both low-power designs

(Intel XScale (CLARK et al., 2001)) and high-performance processors (IBM’s Power5

(CLABES et al., 2004)).

2.2.2.2 Power Gating

Power gating is used to address leakage power dissipation by shutting off idle

blocks of the circuit, thus, reducing both static and dynamic power dissipation. A suitably

sized header transistor is used to turn off the supply voltage to the circuit block, which

creates a virtual Vdd, as presented in Figure 2.5. A sleep signal controls this transistor

so the Vdd can pass through when the circuit is active (virtual Vdd = Vdd) and gate the

Vdd when idle (virtual Vdd = 0). The sleep signal is controlled via a global policy that

varies according to the implementation. As one more transistor is used, this comes at

the cost of performance penalty and power overhead as the power lines are not able to be

charged and discharged in one clock cycle. In order to cope with this additional cost of the

mechanism, the break-even point must be considered, which is the point when the leakage

energy savings equals the energy overhead of switching the circuit on and off (which will

be explained in detail next). After reaching this point, the energy consumption of the

system is reduced (HU et al., 2004).

Figure 2.6 (HU et al., 2004) depicts the key intervals that must be considered for

power gating. The inactivity interval starts at t = 0 and goes until t = T1, when the control
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Figure 2.6: Key Intervals for the Power Gating Technique

Source: (HU et al., 2004)

circuit makes the decision of power gating the unit. At t = T2, the header device receives

the sleep signal and the virtual Vdd starts going down. As the voltage decreases, the

amount of leakage energy saved per cycle increases. The break-even point is achieved

when the execution reaches t = T3, at this point the aggregate leakage energy savings

equals the energy overhead of switching ON (T1 to T2) and OFF (T5 to T6) the header

device.

At t = T4 the reduction in voltage at the virtual Vdd saturates (not necessarily at

zero due to the leakage of the header device). The control logic detects the next busy

interval at t = T5 and the sleep signal is de-asserted, and in t = T6, the header device is

turned on. From t = T6 to t = T7, the virtual Vdd is charged up to the Vdd level. As the

Vdd increases, the energy savings per cycle is gradually reduced, reaching zero at t = T7

(when the unit is completely active). Therefore, the energy savings are proportional to the

idle time that can be exploited by this mechanism while executing an application.

2.2.2.3 Dynamic Voltage and Frequency Scaling (DVFS)

The dynamic power dissipation equation (previously discussed) clearly shows the

significant leverage that voltage and frequency adjustment may provide (potential cubic
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influence in the dynamic power dissipation). However, this comes at the cost of perfor-

mance and reliability: by reducing voltage and frequency, the performance is reduced as

well, not achieving a cubic reduction in the energy consumption due to the longer exe-

cution time. That is, even though the dynamic power dissipation may be reduced by a

cubic factor, the longer execution time (which implies in more static power dissipation)

prevents a cubic reduction in the total energy consumption (KAXIRAS; MARTONOSI,

2008). Reliability is also reduced when reducing the voltage, because it allows low en-

ergy particles to create a critical charge that leads to a transient fault (ZHU; MELHEM;

MOSSÉ, 2004).

2.2.3 Energy Optimization on the ρ-VEX Processor

Giraldo, Wong and Beck (2016) propose to insert customized instructions at com-

pile time (static) to power-gate functional units and parts of the register file, based on

the profiling of the application, on the ρ-VEX processor. Their methodology follows the

flow depicted in Figure 2.7. First, the application is compiled, then it is profiled to obtain

information about the basic blocks that were executed. With this information, the Control

Flow Graph (CFG) (explained in detail next) of the application is generated, then it is

analyzed in order to determine which are the best spots to insert power gating instructions

(always placed at the beginning of the basic block). Finally, the application is executed

once more with the power gating instructions in order to evaluate the energy savings and

the incurred performance overhead.

The CFG that is built based on the application profiling (i.e., considering con-

ditional branch and loop information) is a data structure that comprises the transitions

probabilities to the other basic blocks and the number of idle cycles of each basic block.

This is done for each functional unit. An example of CFG is depicted in Figure 2.8, in

which the transition probability from basic blockB2 toB3 is of 70%, andB3 toB4 is 90%.

Therefore, the expected number of idle cycles starting at a given basic block is defined by

the weighted sum considering the number of idle cycles and the transition probability. In

the example, equation (2.1) is obtained for such functional unit.

T = 4 + (0.7 ∗ 4) + (0.7 ∗ 0.9 ∗ 10) = 13.1 (2.1)
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Figure 2.7: Methodology Flow of the Compiler-directed Power Gating

Source: (GIRALDO; WONG; BECK, 2016)

Figure 2.8: Example of Control Flow Graph for a Given Functional Unit

Source: (GIRALDO; WONG; BECK, 2016)

This value represents the expected number of idle cycles that a power gating in-

struction could exploit if it was to be inserted in the given basic block. The authors

consider the break-even point to be of 10 cycles (HU et al., 2004). Hence, in this exam-

ple, a power gating instruction would be added at the beginning of the basic block B2, as

the estimated number of idle cycles is 13.

In addition, the wake-up time is of 3 cycles for this technology. This means that

after starting a basic block in which a functional unit must be turned on, this unit will take

three cycles to be completely active, which implies that an instruction at the beginning of

the basic block that needs this functional unit will have to wait it become ready. On the

other hand, if the instructions at the beginning of the basic block do not use the functional

unit that is being activated, the execution may continue normally (i.e., there is no need to

stall the processor if all functional units that will be used are already activated).

For the register file power gating, the application is profiled and the register file

is divided into eight groups of 8 registers each. Based on the profiling, portions of the



37

register file are shut down at the beginning of the application, turning off the blocks that

are never used.

2.2.4 Energy-aware Fault Tolerance

In this subsection, works that combine energy optimization mechanisms with fault

tolerance to reduce the energy consumption of the protected circuit will be discussed.

Fault tolerance techniques usually increase the energy consumption of the application by

increasing the power dissipation of the circuit (spatial redundancy) or the execution time

(time redundancy). In addition, when using DVS or DVFS to reduce the energy consump-

tion, the circuit becomes less reliable as the voltage is reduced. Therefore, the number of

SEUs is increased exponentially as voltage decreases (HAZUCHA; SVENSSON; WEN-

DER, 2000; HAZUCHA; SVENSSON, 2000; ZHU; MELHEM; MOSSÉ, 2004).
Pop et al. (2007) propose to increase fault tolerance and minimize the energy con-

sumption in a no-fault scenario by scheduling and applying voltage scaling on a heteroge-

neous distributed time-triggered system, in which the processes are statically scheduled.

The transient faults are tolerated by re-executing the process.
Oh and McCluskey (2002) combine procedure call duplication with statement du-

plication to reduce the energy consumption overhead when compared to the duplication

of every program instruction. This approach is only able to detect errors and it reduces

the energy consumption, on average, by 25% depending on the required detection latency

when compared to the full instruction duplication.

2.3 Performance

Performance may be exploited at different levels: the most common are at instruc-

tion (ILP) or thread (TLP) level. Next, we will discuss in detail these two parallelism

exploitation granularities (for both VLIW and superscalar processors).

2.3.1 ILP and TLP exploitation

2.3.1.1 Instruction-Level Parallelism (ILP)

ILP is exploited by analyzing the instructions that have to be executed, the ones

that are independent of each other (i.e., a given instruction that does not depend on the
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result from the other) can be executed concurrently if there are available functional units.

The identification of such instructions can be performed during run-time or compile time.

The former is adopted by superscalar processors and the latter by VLIW ones.

Superscalar processors use dependency-checking mechanisms, instruction queue,

reorder buffer and other hardware components to exploit ILP during run-time. Two ex-

ecution paradigms may be applied to the instructions: in-order and out-of-order (HEN-

NESSY; PATTERSON, 2017).

• In-order processors will exploit ILP by executing instructions in parallel, however,

if a given instruction depends on an instruction that is currently being executed, the

following instructions in the instruction queue must wait the former instruction start

its execution so they can be issued to the available functional units.

• Out-of-order processors allow the instructions in the instruction queue to be issued

as soon as their operands are available and there is an available functional unit to

execute the given operation. Therefore, they are not executed in the compiled order.

Out-of-order execution allows the performance to be improved (when compared to

in-order execution) as more instructions are considered to be executed at a given

time, exploiting the functional units more efficiently. However, the cost of this

flexibility comes with increased power dissipation and area overhead for control

mechanisms.

On the other hand, VLIW processors exploit ILP by means of a compiler, execut-

ing several operations (instructions) per cycle depending on the processor’s issue-width

and the intrinsic ILP available in the application. These instructions are organized into

words (bundles), and all instructions in a bundle are executed in parallel. VLIW proces-

sors occupy less area and dissipate less power when compared to traditional superscalar

processors, since the process of scheduling instructions is statically done by a compiler.

Therefore, the hardware of a VLIW processor is much simpler: the instruction queue, re-

order buffer, dependency-checking and many other hardware components are not needed.

However, in several cases, it is not able to fill all slots of the bundle with independent

instructions (ADITYA; MAHLKE; RAU, 2000). The solution is filling the unused slots

with NOPs. These NOPs require memory bandwidth to be fetched, potentially increasing

cache misses, which would result in performance degradation and extra energy consump-

tion.

In order to amortize such costs, several techniques have been proposed to remove

these NOPs: compressed encoding for VLIW instruction (TREMBLAY et al., 2000;
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COLWELL et al., 1991; CONTE et al., 1996; JEE; PALANIAPPAN, 2002); instruction

template bits (SHARANGPANI; ARORA, 2000; WAERDT et al., 2005); and stop-bits

(FISHER; FARABOSCHI; YOUNG, 2005; RAJE; SIU, 1999; SUGA; MATSUNAMI,

2000; HUBENER et al., 2014). Even so, the functional units of the issue slot responsible

for executing the NOP (whether it was removed from code or not) will still be idle, which

potentially allows this idle hardware to be exploited in a more efficient way: executing

duplicated instructions for fault tolerance, shutting down these functional units to save

energy, or executing another thread to improve performance.

2.3.1.2 Multiple Applications and Thread-Level Parallelism (TLP)

Multicore architectures exploit parallelism by executing several applications or

several threads from the same application concurrently. Therefore, improving the per-

formance of the system or application. In order to speed up the development of parallel

applications, Parallel Programming Interfaces (PPIs) are used, such as, Open Multi Pro-

cessing (OpenMP) (CHAPMAN; JOST; Van Der Pas, 2008), POSIX threads (Pthreads)

(BUTENHOF, 1997), or Message Passing Interface (MPI) (SNIR, 1998). Each of these

PPIs have different characteristics regarding the management of the threads, distribution

of the workload and synchronization. For instance, OpenMP and Pthreads use shared vari-

ables in memory for data exchange, and MPI uses message passing. OpenMP offers a set

of compiler directives, library functions, and environment variables for the development

of multithreaded programs. Pthreads offers functions that allow a fine-grain adjustment

of the workload, and the creation/termination of the threads, distribution of the workload

and control of the execution are entirely defined by the programmer (BUTENHOF, 1997).

OpenMP synchronizes the threads using busy-waiting (i.e., the threads access the

shared memory repeatedly until the end of synchronization). On the other hand, Pthreads

synchronizes the threads by blocking them with mutexes, therefore, waiting on standby

until the end of the synchronization (TANENBAUM; WOODHULL, 1987). MPI offers

communication primitives (e.g., send and receive) to exchange data. The creation and

termination of the processes may be dynamic or static at the beginning and end of the

execution, depending on the MPI version that is used. In multicore environments, MPI

communications are implemented using shared memory regions to store First-In-First-

Out (FIFO) queues of each MPI process (CHANDRAMOWLISHWARAN; KNOBE;

VUDUC, 2010). Therefore, TLP exploitation is not transparent for the developer and



40

Figure 2.9: Multithreaded Application Behavior Regarding Communication

Source: (LORENZON; CERA; BECK, 2016)

the performance improvements greatly depend on the characteristics of the application,

target architecture, and chosen PPI.

Figure 2.9 depicts different communication behaviors that multithreaded appli-

cations may present: applications with low communication requirements (i.e., CPU-

intensive applications that distribute the workload at the beginning of the execution and

in the end join the results of the threads) present a speedup close to the ideal (Figure

2.9(a)), which is the reduction of the execution time by a factor close to the number

of available cores. On the other hand, high communication applications constantly ex-

change data between the threads during the execution (Figure 2.9(b)), which implies in

several synchronization points, consequently reducing the speedup of the parallel applica-

tion (LORENZON; CERA; BECK, 2016). In order to quantify the amount of concurrency

that an application has, the TLP metric proposed by Gao et al. (2014) is presented in (2.2).

TLP =

n∑
i=1

cii

1− c0
(2.2)

In which, ci represents the fraction of time that i cores are concurrently running

different threads, n is the number of cores, and 1 − c0 is the non-idle time fraction. The

closer this value is to the total number of threads, the more TLP is available.

2.3.2 Adaptive Multi-core Architectures

Traditional core micro-architectures are not able to efficiently exploit the TLP

available in the applications. Most commercial processors have large out-of-order cores

(Intel Core i7) or small cores (ARM A15/A7). Large Out-of-Order (OoO) cores provide
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high performance for single threaded programs by exploiting ILP, however, they are ex-

tremely power-inefficient for TLP exploitation due to the complex OoO cores. On the

other hand, small cores are able to exploit the TLP without wasting energy and area at the

cost of reduced single-thread performance.

In order to cope with high ILP and TLP programs, heterogeneous chip multipro-

cessors have been proposed (HILL; MARTY, 2008; MORAD et al., 2006; SULEMAN

et al., 2009). These processors provide a few large cores for single-thread performance

and many small cores for multithreaded applications. However, the number of cores of

each type must be chosen during design time, which restricts the ability of the core to

adapt itself for different applications that do not fit the pre-determined number of cores,

resulting in sub-optimal performance and energy consumption.

Processor architectures with the objective of overcoming the drawbacks of het-

erogeneous cores were also proposed (BOYER; TARJAN; SKADRON, 2010; GIBSON;

WOOD, 2010; GUPTA et al., 2010; IPEK et al., 2007; KIM et al., 2007; PRICOPI;

MITRA, 2012; PUTNAM; SMITH; BURGER, 2011; WATANABE; DAVIS; WOOD,

2010). In these approaches, several small cores are used to provide high throughput to

multi-threaded programs and these cores are "fused" into a large core when single thread

performance is needed.

MorphCore (KHUBAIB et al., 2012) follows the same idea of adjusting the num-

ber of cores during run-time, but instead of fusing small cores, it uses a large out-of-order

core that is able to "morph" into several small cores for multi-thread performance. This

project choice was made in order to avoid additional latencies in the pipeline stages and to

avoid the data migration among the caches when switching modes. The application starts

running in the large OoO core and the mode switching is based on the number of active

threads. Hence, when the number of active threads increases, the core switches to in-order

mode (switching back to OoO mode if the number of active threads is reduced). As the

mode switching mechanism is implemented in hardware, the operating system does not

require any modification.

2.4 Fault Tolerance, Energy Consumption, and Performance Trade-off

A few works have proposed to target all three axes: Tricriteria Scheduling Heuris-

tics (TSH) (ASSAYAD; GIRAULT; KALLA, 2011) proposes an offline scheduling heuris-

tic that produces a static multiprocessor schedule, based on a given application graph and
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Table 2.1: Core Parameters

Core Configuration
Mode

F(GHz) / V(Volt)
Buffer Size

(IQ, LSQ, ROB)
Width

(Fetch, Issue)

CCMA (Avg. core) 1.6/0.8 36,128,128 4,4
CCMN (Narrow) 2/1 24,64,64 2,2
CCML (Large) 1.4/0.8 48,128,256 4,4
CCMS (Small) 1.2/0.7 12,16,16 1,1

Source: (SRINIVASAN; KOREN; KUNDU, 2015)

a given multiprocessor architecture (homogeneous and fully connected). In order to in-

crease reliability, the instructions are replicated; and to reduce the energy consumption

DVFS is applied. A greedy scheduling algorithm takes as input the application and archi-

tecture graphs, power and reliability constraints, and the execution time of the operation

considering the maximum frequency to meet the reliability and energy requirements and

minimize the schedule length based on the aforementioned techniques.

Srinivasan, Koren and Kundu (2015) propose a multi-objective strategy to choose

the best core type considering power efficiency and reliability. Four Alpha processor core

configurations are considered, varying voltage; frequency; size of the instruction queue,

load-store queue and reorder buffer; and fetch and issue widths, these configurations are

presented in Table 2.1. Hardware counters are used to estimate the power dissipation and

the Architectural Vulnerability Factor (AVF) (discussed in detail later) of the processor,

and with this data, a Cobb-Douglas production function is applied to choose the best core

for a given part of the application. Even though reliability is considered, no solution to

protect the cores (i.e., fault tolerance mechanism) is proposed.

Ramírez et al. (2012) present a high-level reconfiguration approach that, based

on user-defined constraints, changes the configuration of a heterogeneous multicore pro-

cessor. Their approach is heavily based on the profiling of the applications before the

execution, which must be done for all different processor frequencies in a heterogeneous

processor. At every (pre-defined) number of cycles, a reconfiguration is triggered. The

reconfiguration engine receives as input the defined reliability level, power budget, and

performance counters, then, it defines what will be the frequency and voltage, and if the

Error Correction Code (ECC) and the L2 cache should be enabled. The ECC is used to

provide additional reliability and the L2 cache can be disabled to save power. Therefore,

this approach relies on static profiling of the application, limiting the dynamic adaptation.

Sato and Funaki (2008) investigate the trade-off between the aforementioned axes

in a Multiple Clustered Core Processor (MCCP). In order to modify the organization of
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Figure 2.10: Evaluated Cluster Configurations

(a) High Performance Core (b) Moderate Performance Core

Source: (SATO; FUNAKI, 2008)

the processor during runtime, some clusters are turned off, therefore, allowing to change

between high-performance (2-issue dual core) and moderate performance (single issue

dual core) processors (both superscalar processors are homogeneous and are depicted in

Figure 2.10). To improve fault tolerance, Redundant Multithreading (RMT) technique is

used, in which the threads of the application are duplicated and compared. Their contri-

bution is to choose which configuration will be applied to the next part of the application,

which is done solely based on the past Instructions Per Cycle (IPC). That is, based on the

IPC of the last sample window, they try to predict the future IPC. Therefore, the power

and reliability do not influence the decision mechanism, only performance is considered,

meaning that these axes will be improved only by those phases in which the moderate per-

formance core is chosen (because it is more reliable and consumes less energy, according

to the authors). The techniques discussed in this subsection will be further compared to

the ones that are being proposed in this work in Section 2.5.4.

2.5 Contributions of this Thesis

As aforementioned, the goal of this work is to implement an adaptive and poly-

morphic processor designed to dynamically trade-off performance, fault tolerance, and
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energy consumption. In order to do so, the following methodology was adopted: for each

axis, techniques to optimize the given axis were evaluated, identifying the most appropri-

ate ones considering the incurred overhead in the other axes and its ability to optimize the

axis on focus, which is discussed next.

2.5.1 Fault Tolerance

For this axis, the techniques were evaluated considering the power dissipation and

performance overhead, ability to be completely dynamic, and do not change the binary

code. Next, each of these characteristics will be discussed.

In order to achieve the best trade-off between the axes, we need to choose tech-

niques that interfere the least as possible in the other axes to maximize the benefits of

applying each of the chosen approaches. In addition, the chosen mechanism must be

completely dynamic, as the whole processor design that is proposed in the scope of this

work is adaptive, which eliminates the need for pre-processing. Finally, modifying and

recompiling the binary code may not be a trivial task, leading to incompatibility with fu-

ture processors and losing backward compatibility. Thus, the chosen mechanisms must

comprise all these characteristics. With this in mind, a duplication with instruction roll-

back implemented in hardware was chosen and three variations of this mechanism were

implemented and compared.

2.5.2 Energy Consumption

As previously discussed, DVFS reduces the energy consumption, but it also re-

duces the reliability of the system in addition to reducing performance. Clock gating

is a lightweight technique that can be applied to reduce dynamic energy consumption,

however, the circuit still dissipates leakage power when clock gated. On the other hand,

power gating is able to reduce both static and dynamic energy consumption with low per-

formance overhead and not affecting the reliability of the system. Therefore, we chose

to implement a power gating mechanism for the energy optimization axis. As aforemen-

tioned, Giraldo, Wong and Beck (2016) propose to apply power gating to the Functional

Units (FUs) and the register file of the ρ-VEX processor at compile time. On the other

hand, we combined power gating with a dynamic program phase detection to identify,

during run-time, the best spots to apply this technique to the FUs. We have considered
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the same overheads for the power gating mechanism as Giraldo, Wong and Beck (2016)

and, although the energy savings between these two mechanisms are similar, the exact

difference cannot be estimated because the chosen benchmarks are not the same.

2.5.3 Performance and Learning

Considering the performance axis, an ILP control module was developed to create

free slots by splitting bundles into two cycles when more fault tolerance or a power gating

phase needs to be extended. Also, a learning module was integrated into the dynamic

version of the ρ-VEX processor, which tests and chooses the best hardware configuration

to execute a given application based on its behavior.
The current implementation of the learning module focuses on multiple (single-

threaded) applications, as the ρ-VEX currently does not have support for multi-threaded

applications. However, support for OpenMP is currently being implemented, therefore,

as future work, we aim to extend the proposed polymorphic processor to cope with multi-

threaded applications as well.

2.5.4 Fault Tolerance, Energy Consumption, and Performance Trade-off

There are several differences when comparing the approaches that trade-off these

three axes to the adaptive processor that is being proposed in this work. First, instead of a

static scheduling heuristic, an adaptive design is being proposed, which is able to dynam-

ically balance the axes of performance, fault tolerance, and energy consumption without

relying on any profiling of the application prior to the execution. In addition, lightweight

fault tolerance mechanisms are applied to the proposed processor in order to efficiently

improve the reliability of the processor, instead of using the intrinsic characteristics of the

cores (no fault tolerance mechanism) or techniques that consume at least two times more

energy (RMT).
Differently from previous work, in the polymorphic processor, we propose to use

a metric that comprises the axes of fault tolerance, energy, and performance to decide

which configuration of the processor should be used, instead of using only performance

metrics, such as Sato and Funaki (2008). Moreover, several heterogeneous configurations

are available and evaluated during runtime in the proposed processor. Finally, the pro-

posed work has the goal of balancing these three axes by exploiting the same hardware

components (i.e., the issue-slots) in each of the optimization mechanisms.
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3 IMPLEMENTED TECHNIQUES

This chapter presents the details of each technique that was implemented in this

work considering the axes of fault tolerance, energy consumption, and performance.

3.1 Fault Tolerance

Next, we will discuss the fault tolerance techniques that were implemented. In this

section, only fault tolerance mechanisms will be considered, so the idle hardware will

be used for that purpose. For that, as already mentioned, a hardware-based instruction

duplication with rollback was implemented, which varies its behavior according to the

system requirements and application. In order to evaluate the trade-offs regarding area,

power dissipation, and performance, two different approaches were proposed, and a third

approach is discussed in Appendix A (which was an initial implementation that was not

used in neither versions of the proposed processor). First, the general implementation of

the instruction duplication will be explained since it is common to the three techniques;

followed by the discussion of the specifics of each one.

3.1.1 Basic Duplication with Rollback

The fault-tolerant implementation of the ρ-VEX is depicted in Figure 3.1. The

pipelanes are numbered from P0 to P7; Dec stands for the decode stage, Exe for the exe-

cution (two cycles), and WB for the write-back stage. To keep the overhead low (area and

delay), the duplication pairs are placed in the following order: pipelane 0 with pipelane

4, pipelane 1 with pipelane 5, and so on. Therefore, the issue-slots are combined in a way

that the first four pipelanes are compared with the four last ones. This approach efficiently

exploits the scheduling mechanism of the HP VEX compiler, which always schedules the

instructions starting from the lower issue-slots (from 0 to 7). An additional memory and

branch unit must be added to the core to allow duplication of all instructions. These two

specific extra functional units are used only to execute duplicated instructions (i.e., they

cannot be used for regular instructions), since the ρ-VEX does not support more than one

memory or branch operations per cycle. For the sake of comparison, a fault-tolerant 4-

issue version was implemented: it has full duplication (i.e., all pipelanes are duplicated

in hardware), so it is also composed of eight pipelanes, as depicted in Figure 3.2. Each
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Figure 3.1: Fault Tolerance Implementation of the ρ-VEX Processor
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duplicated pipelane executes the same instructions than its regular counterpart with the

full duplication approach.

A checker compares the results (i.e., all output signals) of the pipelanes that are

executing duplicated instructions (e.g., arithmetic operations, jump address of a branch, or

the values of a memory operation are checked) to detect errors. The destination register,

the register file’s and memory’s write enable signals are also compared. When an error is

detected, a rollback mechanism is triggered to correct it by executing the last uncommitted

bundle again. The Program Counter (PC) for the rollback is stored in a register and, in

the case of an error, this stored PC overwrites the current PC, this mechanism is depicted

in Figure 3.3.

As the memory and register file were not modified in the meantime (between the

rollback PC and the current PC), the pipeline is simply flushed, and the writing to the

memory and register file are blocked, avoiding memory corruption. Once the rollback

PC is loaded, the instruction corresponding to that PC is fetched again, and the execution

resumes from that point. Both the checkers and the rollback mechanism do not affect the

critical path of the processor, as they operate in parallel to the rest of the processor. The

memory and the register file are considered to be protected with ECC.

This approach has a fixed cost of five cycles to refill the pipeline, which is neg-

ligible considering the total number of cycles of an application and that this cost is only

paid in case of an error. An approach to only flush the faulty instruction and the following
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Figure 3.2: Full Duplication Configuration for the 4-issue ρ-VEX Processor
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Figure 3.3: Rollback Mechanism
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ones could be implemented, thus, the performance cost would be variable (from 3 to 5

cycles). However, more control logic to identify the faulty instruction and guarantee that

it does not affect the other instructions would imply in more area and power dissipation.

As the proposed work aims at providing the best trade-off between several axes, the cur-

rent fixed cost approach (used only in case of an error) is likely to be more cost effective

comparing to the zero to two-cycle overhead, when considering performance, area, and

power altogether. In addition, the application does not have to be modified at all, as all the

proposed techniques were implemented in hardware. Hence, any compiler that supports

the VEX instruction set architecture may be used to compile the applications (e.g., HP

VEX compiler, GNU Compiler Collection (GCC) VEX, and others).

Each of the three proposed methods in the fault tolerance axis is suitable for dif-

ferent system requirements, considering area, performance and power dissipation. Next,
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each one will be discussed.

3.1.1.1 Spatial duplication

In this technique, the idle pipelanes are used to execute duplicated instructions

when possible (i.e., when there are NOPs). Therefore, the verification is done on a per

cycle basis. After fetching an instruction word, each pipelane receives one instruction,

for decoding and further execution. We have modified this process so that the pipelane

receives the program instruction (no duplication), or the instruction from another pipelane

(when a NOP is found, it is replaced with a duplicated instruction).

No additional accesses to the memory are required for both instructions and data:

instruction words are fetched (one access), then the bundles are divided into the pipelanes

(applying duplication when possible), as depicted in Figure 3.4. The memory and the

process of transferring the instructions to the pipelanes are considered to be ECC pro-

tected. For data memory accesses, the memory is also accessed once. For data loads, the

result is divided into the pipelanes that contain memory units (performing duplication or

not depending on the duplication flag) (Figure 3.5(a)), and for data stores, the result and

address are first compared by the checker, then, if both match, they are transferred to the

memory (Figure 3.5(b)). As the whole process is dynamic, this approach is completely

transparent to the application.

An example of code execution comparing the original (unprotected) 8-issue ver-

sion with the spatial duplication approach is presented in Figure 3.6(a) and Figure 3.6(b).

In this figure, the C1 to Cn depict the cycle 1 to n of the execution, and the Ix the program

instructions that are being executed. Note that there are NOPs in some bundles due to

the lack of parallelism, which will waste energy to be executed and will not provide any

meaningful computation. This mechanism will exploit those NOPs to execute duplicated

instructions, increasing the reliability and not affecting performance, as all instructions of

a VLIW bundle are executed in parallel.
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Figure 3.4: Instruction Memory Access and Instruction Duplication
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Figure 3.5: Data Memory Access and Instruction Duplication
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Figure 3.6: Code Execution Example
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3.1.1.2 Temporal and Spatial Duplication

This technique takes the former one step further, allowing temporal duplication to

be applied when spatial duplication is not able to duplicate all instructions in the bundle.

An example on which temporal duplication is able to improve the reliability by duplicat-

ing more instructions is depicted in Figure 3.7. In Figure 3.7(b), the instructions I4, I5,

I8, and I9 are duplicated one cycle later than the original bundle. In order to maintain the

consistency of the register file and the memory, the results are only committed after all

instructions of a given bundle are checked. That is, after the duplicated instruction is exe-

cuted and its result is compared to the one from the original instruction, or after verifying

that those instructions will not be duplicated because the buffer is full, which is explained

next.

Figure 3.8 depicts the additional modules for this technique, which includes two

buffers: the issue buffer and the commit buffer. The issue buffer is responsible for storing

those instructions that could not be duplicated when only spatial duplication was applied.

For instance, instructions I4, I5, I8, and I9 from Figure 3.7(b). In this case, the pending

(duplicated) instructions are kept in the buffer until there is a free slot so they can be

scheduled. The commit buffer stores the bundles which still have pending instructions

to be executed and checked. Once all instructions from a given bundle are verified, the

bundle is committed. The buffer size can be configured during design time and it may

be modified during runtime when the polymorphic and adaptive version of the ρ-VEX is

used, which will be explained in detail in Chapter 4.

The instruction scheduler first applies spatial duplication when each bundle is go-

ing to be executed. If there are instructions that could not be duplicated because there

were not enough empty slots, these instructions will be stored in the buffers for temporal

duplication. On the other hand, if there are still idle slots, the instruction scheduler will

get pending instructions from the buffer and fill the bundle.

When the buffer is full, the temporal duplication is not applied to the next instruc-

tions until there is space in the buffer. Therefore, those instructions that cannot be stored

in the buffer will be committed without verification. The temporal duplication also ex-

ploits the memory latency to execute duplicated instructions; whenever there is a cache

miss, the instruction scheduler will start using those idle cycles to schedule the instruc-

tions that were waiting in the buffer. In the remaining cycles of the cache miss, the core is

power gated in order to reduce the energy consumption while the processor is waiting for
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Figure 3.7: Temporal and Spatial Duplication Execution Example
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Figure 3.8: Temporal and Spatial Duplication Core Overview
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the memory. A similar approach that applies power gating while the processor is stalled

on a long memory access is presented by Jeong et al. (2012).

In order to increase the flexibility for the scheduling of the duplicated instructions,

we have added extra functional units in each pipelane, which means that each pipelane is

able to execute any instruction: memory, control, or logic. The extra cost of these func-

tional units are taken into account and the area overhead is further discussed in the results

section. As the overhead of adding these extra units proved to be low, we decided to main-

tain the flexibility of scheduling any instruction to any pipelane, instead of increasing the

control logic to verify which instruction could be scheduled to each pipelane. In addition,

a forwarding mechanism was implemented to get the updated values from registers that

are in the buffer and were not committed yet. Thus, avoiding processor stalls when such
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dependencies are detected.

3.2 Energy Optimization

As previously discussed in Chapter 2, clock gating is not able to reduce the static

power of the processor. Therefore, we have chosen to implement a Power Gating (PG)

mechanism so both dynamic and static energy can be reduced. In order to not increase the

design space even further, a DVFS mechanism, which affects the reliability of the circuit

when low voltages are applied, will be evaluated as future work.

The PG is applied to the functional units of the processor. When all functional

units from a given pipelane are turned off, the whole pipelane is also turned off to reduce

energy consumption even more. To cope with the additional cost of the PG mechanism,

the module that is being power gated must remain shut down for at least the break-even

time (as discussed in detail in Chapter 2). The break-even is the time necessary to compen-

sate the additional energy consumption of the gating transistor. After this point, the longer

the circuit remains turned off, the more energy will be saved (HU et al., 2004). Consid-

ering the technology parameters used in this work, the wake-up time of this transistor is

three cycles (HU et al., 2004). Therefore, to minimize these overheads, the power gating

mechanism is applied to the granularity of Basic Blocks (BBs) (i.e., a code sequence with

no branches in except to the entry; and no branches out except at the exit). Whenever a

new BB starts to execute, its instructions are analyzed so it can be evaluated which func-

tional units are required for the execution of that BB. Based on this evaluation, a power

gating configuration is saved for that basic block for future reuse (this is controlled by the

decision module and will be discussed in detail in Section 4.2).

When a given functional unit is turned off during the execution of a BB and the

next BB needs this functional unit at its very beginning, it takes three cycles so it is

completely active. In this case, the processor has to wait for the FU to be active (stalling

the execution). On the other hand, if the FU is only needed after the wake-up time, it

is ready by the time the given instruction that needs it starts executing, and there is no

performance overhead.

Figure 3.9(a) depicts an example of code execution of a BB on the regular unpro-

tected 8-issue processor. Then, Figure 3.9(b) presents the use of those functional units

that were idle to execute duplicated instructions in the pipelanes P4 and P5 (increasing

fault tolerance) and turn off the idle pipelanes P6 and P7 (saving energy). In the case of
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Figure 3.9: Basic Block Execution Example
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pipelanes P4 and P5, at least one functional unit is used in this BB (at C2), so the whole

pipelane could not be shut down, due to the power gating costs. However, pipelanes P6

and P7 may be completely turned off as only NOPs are executed during the whole BB.

3.3 Performance

In the performance axis, we evaluate two techniques: an ILP control mechanism

that was developed to artificially create empty slots so a given PG phase is maximized, and

the exploitation of the dynamic behavior of the ρ-VEX processor to change the hardware

configuration so the hardware can adapt itself according to the application’s requirements.

The latter will be further discussed in Chapter 4, in which the proposed polymorphic

processor will be presented. Next, the variations of the ILP control module are detailed.

3.3.1 ILP Control

The ILP control mechanism can be used to either reduce the ILP so more in-

structions can be duplicated (which focus on reliability) or to maximize PG phases that
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would be interrupted by a few instructions (which focus on energy optimization). The

reliability-oriented and energy-oriented ILP control mechanism adapt the execution based

on a threshold, which can be static or dynamic. The former is defined at design time, and

the latter (only available for the reliability-oriented mode) is modified during runtime

based on reliability requirements defined at design time. Each of these modes has a par-

ticular behavior for the threshold and will be explained in detail next.

3.3.1.1 ILP Control for Fault Tolerance

As previously explained, the spatial duplication exploits idle hardware to provide

fault tolerance. However, when the VLIW bundle has more than half of the issue-width

filled with instructions, the duplication will not be full and may not offer the desired level

of fault tolerance, as depicted in Figure 3.6(b) at C2, C3, and C5.

Therefore, proposed technique is able to perform the trade-off between perfor-

mance and fault tolerance using an ILP threshold. If the ILP in a given moment is high

and the application still needs more fault tolerance, this method will reduce the ILP for

that purpose. This flexibility comes at a cost in area and power. However, as it will be

shown, it is still low when compared to other techniques.

This process is controlled by the decision module (which will be explained in the

next subsection) and it can be tuned by configuring the threshold that will activate the ILP

reduction. A "utilization value" is calculated at every bundle and changed according to

the ILP available in the current bundle. A dedicated hardware is used to calculate this

value. When the utilization value reaches the threshold, the current bundle (if it has more

than half of the issue-width occupied) is divided into two, so it is possible to apply full

duplication to each half of the bundle (trading-off performance for fault tolerance).

3.3.1.2 ILP Control for Energy Optimization

A power gating phase may be interrupted by a few instructions: Figure 3.9(b)

shows a BB in which a given pipelane is idle, except for one instruction (i.e., I4 or I5 at

C2). In this case, according to the previous discussion on the break-even point, power

gating could not be applied to this pipelane, therefore losing significant opportunities

for energy savings. The ILP control module (which is controlled by the decision module,

explained in the next subsection) splits bundles in a dynamic fashion to increase the length

of a potential power gating phase, so more energy savings can be reached.
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Figure 3.10: Spatial Duplication with PG and ILP Control
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Let us consider the previous example presented in Figure 3.9(b) again: the pipelanes

P4 and P5 would remain turned on due to the execution of instructions I4 and I5 at C2

(and therefore they would be used for replication). The presence of the ILP Control Mod-

ule adds another alternative: by applying the ILP reduction (Figure 3.10), these same

pipelanes can now be turned off (since they now reach the break-even constraints), max-

imizing the power gating phase. Therefore, while the energy consumption and the sen-

sitive area will reduce, it also restricts the duplication of some instructions. It is evident

that there is a trade-off in the number of instructions that can be replicated; the pipelanes

that can be power gated; and the parallelism that can be lost (and therefore, performance)

so even more pipelanes can be turned off. For that, a decision module was developed and

it will be described in the next chapter.
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4 PROPOSED ADAPTIVE AND POLYMORPHIC PROCESSORS

The proposed adaptive and polymorphic processors are composed of a subset of

the aforementioned techniques. The adaptive processor has a decision module that is

responsible for choosing which technique will be applied at each phase of the applica-

tion, based on pre-defined parameters. While the polymorphic processor includes a dy-

namic optimization algorithm that evaluates and chooses the best processor configuration

to trade-off performance, energy consumption, and fault tolerance. Next, the two versions

of the ρ-VEX processor will be further explained (static and dynamic), followed by the

techniques of the proposed processors.

4.1 ρ-VEX Processor Background

The ρ-VEX processor (WONG; Van As; BROWN, 2008) was chosen as target ar-

chitecture for the proposed design because it is able to cope with all mechanisms that were

implemented. In addition, it allows a detailed simulation and accurate measurements of

area, power dissipation, and performance as it is implemented in VHSIC Hardware De-

scription Language (VHDL), which is generally not available (or available with reduced

accuracy) on high-level simulators. Each version of the processor is detailed next.

4.1.1 Static ρ-VEX Processor

The static version has a five-stage pipeline, and it can be configured to have a

different number of issue slots (e.g., 2, 4, or 8). Each pipelane (issue slot) may contain

different functional units from the following set: Arithmetic Logic Unit (ALU) (always

present), multiplier, memory, and branch units. An example of a 4-issue organization is

depicted in Figure 4.1. The issue slots (pipelanes) of a VLIW processor occupy about 45%

of the core total area and the register file (which occupies the rest) can be protected with

parity (GAISLER, 1997; MCNAIRY; BHATIA, 2005) or ECC (SLEGEL et al., 1999).

Several compilers may be used to compile VLIW code for the ρ-VEX processor:

HP VEX compiler, GCC VEX, LLVM, and others, and the compiler is responsible for

scheduling independent instructions to be executed concurrently. In addition, this version

of the processor does not have cache memories.
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Figure 4.1: Static ρ-VEX organization (4-issue)

Source: (WONG; Van As; BROWN, 2008)

4.1.2 Dynamic ρ-VEX Processor

The dynamic version of the ρ-VEX processor (ANJAM; NADEEM; WONG, 2011;

BRANDON et al., 2017), takes the static one step further by allowing the code to be exe-

cuted in different issue-widths during runtime. The processor can be used as a single wide

core (8-issue), two medium cores (two 4-issue), or four small cores (four 2-issue). Figure

4.2 depicts the general overview of the processor interconnections: it is composed of four

groups, each group containing two pipelanes; the context reflects the actual configuration

of the processor, for instance, if the processor is configured to small cores, four contexts

(each with a single group) will be used. For medium cores, each of the two contexts will

use two groups (i.e., resulting in a 4-issue core for each context), and the large core will

execute a single context with four groups (eight pipelanes). Finally, the reconfiguration

controller is responsible for switching the configuration of the processor according to a

given configuration request that writes to the configuration control register. Figure 4.3

presents the general overview of the ρ-VEX polymorphism. In this example, Task 1 is

running in the 2-issue mode, Task 2 in 4-issue, Task 3 is idle and Task 4 is also running in

a 2-issue configuration. Moreover, this version of the processor supports cache memories.



61

Figure 4.2: Interconnection Between Register Contexts and Processor Pipelanes Con-
trolled by the Reconfiguration Controller
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Figure 4.3: Dynamic ρ-VEX Schematic

Source: (HOOZEMANS; STRATEN; WONG, 2017)
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The 8-issue processor uses 8 write and 16 read ports in the register file, the 4-issue

4W and 8R, and the 2-issue 2W and 4R. Therefore, when changing the configuration

(between large, medium, and small cores) the number of ports is not modified. On the

other hand, the number of registers needs to be quadrupled, because each core needs an

exclusive register file of 64 registers (up to four cores are supported) (HOOZEMANS et

al., 2015).

The main advantages of adapting the issue-width to the behavior of the application

are:

• Single-thread applications: different applications present distinct characteristics re-

garding hardware usage, and even within the same application the hardware usage

may vary (e.g., phases with high or low ILP). In addition, by adapting the issue-

width to the application’s requirements, energy can be saved by turning off idle

resources.

• Multiple threads/applications: this approach can exploit the idle resources to allo-

cate other threads and applications in the idle resources, efficiently exploiting the

available hardware as the new threads may be scheduled to use the idle resources

without affecting the execution of the other running threads.

When it comes to generating the binary code, traditional VLIW processors require

code recompilation every time that the hardware organization is changed (as the ILP is

exploited statically, the compiler must know exactly which are the available resources).

Therefore, if the hardware configuration were to be changed during run-time to exploit

the different phases characteristics that an application can present, and consequently, use

the available hardware more efficiently, several binaries would have to be loaded into

memory so they would be available during execution. Moreover, a switching control

mechanism would be required to guarantee the correct state of the processor when one

binary is changed to another. In order to tackle this issue, modifications to both hardware

and compiler are proposed by Anjam, Nadeem and Wong (2011), Brandon and Wong

(2013), Brandon et al. (2015).

Splitting bundles cannot be made simply by dividing the instruction word into

smaller parts, as hazards can be introduced by this process, consequently leading to wrong

computation, as previously discussed. Therefore, the authors use a post-assembler tool to

sort the instructions in a way that they can be executed in different cycles, which is able

to avoid most of the hazards. However, there will still be cases in which is not possible to

split the instructions, as follows.
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Figure 4.4: Example of Bundle that Cannot be Split Using the Generic Binary Scheme

Source: (BRANDON; WONG, 2013)

Figure 4.4 presents an example of a bundle that cannot be split. That is, if it were to

be split, a Read After Write (RAW) hazard would be introduced and the computed result

would be wrong. Hence, this is detected by the post-assembler tool by analyzing the

false dependency graph of the instructions. If a cycle is present in this graph, the bundle

cannot be divided. Another requirement is for bundles that contain branch instructions.

In such cases, the branch must be executed only after the other instructions of that bundle,

otherwise, the branch would be treated before the other instructions have time to finish

the computation, which would also lead to wrong computation.

As aforementioned, in several cases, the compiler is not able to fill all bundle with

program instructions (filling them with NOPs). However, splitting instructions that only

have NOPs would only decrease performance as no useful computation is performed. In

order to address this issue, the authors inserted a bit to identify the last instruction of the

bundle (called last bit). Hardware support was added so the instructions that come after

the one identified by the last bit are skipped. To do so, a second program counter was

added. This new PC is equal to the address of the next 8-issue bundle. When the last bit

is set, the second PC (next 8-issue PC) is used to fetch the instruction, instead of the main

PC (which contains the address to the next part of the current bundle).

Figure 4.5 depicts an example of instruction split for an 8-issue bundle that has no

NOPs (Figure 4.5(a)), and a bundle that has an elevated number of NOPs. Figure 4.5(b)

illustrates how the last bit and the secondary PC work. Considering the example of a

bundle that has three instructions followed by five NOPs, if it were to be split to 2-issue

mode, the last bit is placed in Instr. 2. Therefore, at t2 (in the split bundle) the last bit

is detected and the remaining two bundle parts (each containing two NOPs are skipped.

When the instruction is split, the main PC follows the addresses for the split parts (instead

of the 8-issue word). This means that at t1 it will point to the next part of the bundle (Instr.

2), at t2 to Instr. 4, and so on. As aforementioned, the secondary PC is responsible for

keeping track of the next 8-issue bundle. Thus, when the last bit is detected, the secondary

PC overwrites the main PC, which skips the execution of the last two bundle parts.
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Figure 4.5: Instruction Split Example

Instr. 0 Instr. 1 Instr. 2 Instr. 3 Instr. 4 Instr. 5 Instr. 6 Instr. 7

Instr. 0 Instr. 1

Original bundle

Split instruction – 2 issue

Instr. 2 Instr. 3

Instr. 4 Instr. 5

Instr. 6 Instr. 7

t1

t1

t2

t3

t4

Main  PC

t1 t2 t3

Last bit

(a) Instruction Split from 8-issue to 2-issue

Instr. 0 Instr. 1 Instr. 2 NOP NOP NOP NOP NOP

Original bundle

t1

Last bit

Instr. 0 Instr. 1

Split instruction – 2 issue

Instr. 2 NOP

t1

t2

Bundlet2

Secondary  PC
Main  PC

t1 t2 t3
t1

(b) Last Bit and Secondary PC when Splitting Bundles

Source: The Author

Figure 4.6 depicts the execution of three applications that exploit the ability of

dynamic issue-width adaptation, in this example the App. 1 starts executing in 8-issue

mode, then switches to 4-issue, so the App. 2 can execute in parallel in the remaining

four issue slots. Later on, the App. 1 is switched to 2-issue mode, and the App. 3 starts

executing in two issue slots, and finally App. 1 goes back to 4-issue mode and the other

two applications go to 2-issue mode. Therefore, the applications may be executed faster or

slower depending on the issue-width configuration and intrinsic ILP from the application.

Applications may exploit low ILP phases to reduce the issue-width, consequently freeing

this idle hardware to the other applications, or the applications may be forced to run at a
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Figure 4.6: Dynamic Issue-width Adaptation
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reduced speed (when the issue-width is lower than the ILP) if more applications have to

be executed in a given moment.

4.2 Proposed Adaptive Processor

The adaptive processor is based on the static version of the ρ-VEX processor.

Therefore, adaptive optimization techniques are applied to the processor, but the issue-

width is not changed during runtime. As aforementioned, the dynamic issue-width adap-

tation will be used in the polymorphic processor.

The adaptive design comprises the spatial duplication mechanism, the ILP control

module, and it can enable or disable the PG module. These techniques are highlighted

in Figure 4.7. Next, two configurations are discussed: reliability-oriented and energy-

oriented.
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Figure 4.7: Adaptive Processor Overview
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4.2.1 Reliability-oriented Configuration

When the focus is on reliability, the PG module is not used. As aforementioned,

the threshold can be either configured at design time or modified during runtime based

on pre-defined requirements (which will be explained in detail in Chapter 6). As afore-

mentioned, the utilization value is compared to the threshold. The utilization value is

presented in (4.1) and calculated from the ratio between the sum of the number of used

issue slots on the high part (pipelanes 4 to 7) of each bundle and the number of executed

bundles that use more than half of the issue-width. Hence, this value represents the aver-

age utilization of the issue slots considering the bundles on which full duplication without

the ILP reduction cannot be applied. Note that only bundles that have some instruction

at the high part will change the utilization value; otherwise, the full duplication will be

automatically applied, since it incurs no performance penalties. It also guarantees correct

program execution by detecting data-dependent operations: instructions that write to a

certain register in the first half of the instruction word and read from the same register on

the second half would introduce a read after write hazard when split, resulting in wrong

computation. These hazards are detected in hardware, and these instructions are not split,

preserving program correction.

UtilizationV alue =

n∑
i=1

(#InstrHighPart)

#Bundles

(4.1)
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Figure 4.8: Spatial Duplication with ILP Control
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Examples of code execution using different thresholds (1 and 2) are depicted Fig-

ure 4.8(a) and Figure 4.8(b), respectively. The instructions that are split into two cycles

(allowing full duplication) are highlighted by the arrows on the right side of the instruc-

tion word. When the threshold is equal to 1, every bundle that has more instructions than

the half of the issue-width is split into two, because the utilization value will always be

at least 1 for those bundles (e.g., C2, C4, and C7). When setting the threshold to 2, the

bundle at time C2 will not be divided because the average utilization value will be equal

to 1, which is below the threshold. The instruction bundle at C3 will be divided because

the utilization value will be equal to 2 (4 used issue slots/2 bundles). The same reasoning

goes to the instruction at time C6, which has a value above the threshold.

Let us analyze Figure 3.6 again. As it can be observed, there is no performance

overhead when the spatial duplication is used (Figure 3.6(b)). However, eight instructions

would not be duplicated. By using ILP reduction with the threshold equal to 1 (Figure

4.8(a)), we would have 50% of performance degradation with the ability to duplicate all

instructions. If a threshold equal to 2 (Figure 4.8(b)) is chosen, there would be 33%

of performance degradation and one instruction would not be duplicated. Hence, either

fault tolerance or performance can be prioritized for a given application by changing the

technique and/or the threshold value.
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Figure 4.9: Adaptive Processor’s Execution Flow
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4.2.2 Energy-oriented Configuration

When the focus is energy consumption, the operation flow depicted in Figure 4.9

is applied and the overview of the processor with the additional modules is presented in

Figure 4.10, both are explained in detail next:

1. Whenever there is an opportunity (i.e., a NOP is being executed on any pipelane of

the upper half of the VLIW word), the correspondent instruction will be duplicated.

2. Whenever a program phase that respects the break-even constraints is detected in

a given pipelane or functional unit, power gating will be applied. This will influ-

ence the previous item (duplication), since fewer pipelanes will be available for

duplication.
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Figure 4.10: Overview of the Processor with Fault Tolerance, Energy Optimization, and
Performance Management Mechanisms
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3. The ILP control can split instruction words, as already explained. This open more

opportunities for power gating, which will positively impact (2) and, by conse-

quence, negatively influence (1).

The fault-tolerant mode (1) is automatic and always on. For (2), the decision

module detects, at runtime, which parts of the hardware can be shut down; and, for (3),

when and how the ILP reduction shall be applied.

For (2), the decision module detects program phases as the application is executed.

This is done by using a similar approach as Sherwood, Sair and Calder (2003), in which

the information regarding the hardware utilization of each basic block is saved for future

reuse; in our case, in a direct-mapped memory. This memory is called Basic Block History

Table (BBHT), which is indexed by the PC of the first instruction of the BB. Each entry

of this memory contains one bit per functional unit that indicates if it will be turned on

or off (i.e., power gated) next time the same BB is executed. If the functional unit was

used at least one time during the execution of the BB, it means it must be turned on next

time the same BB is found, so the correspondent bit is set to 0; otherwise, it is set to 1.

As there are 16 functional units (two per pipelane), 16 bits are needed for this purpose.

Adding to them, there are 32 bits of the PC; and two control bits, in a total of 50 bits per

entry (called PG configuration).

Every time a BB ends its execution (reaches a branch instruction), the PC of the

next BB to be executed is searched in the BBHT. In case the configuration for the next

BB is not found (because that BB was never executed before or because it was replaced),

the decision module will build its PG configuration. If the entry is found, the decision
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module will turn off the functional units according to the correspondent bits in the PG

configuration.

The ILP control for the energy-oriented mode (3) represents the utilization ratio

of a given functional unit during the execution of the BB, defining whether instructions

will be split into two or not. For instance, if the threshold is configured to 50%, a given

functional unit on the high part of the issue-width must be used more than 50% so it will

remain active during that BB, otherwise (if it is used less than 50%), the instructions will

be split into two cycles and the correspondent functional units will remain turned off to

maximize the power gating phase.

Therefore, the higher the threshold value is, the more VLIW instructions will be

split. By consequence, there will be more program phases so power gating can be applied,

and fewer instructions will be replicated (energy optimization will be given more weight).

By adjusting the threshold to its minimum value, fault tolerance and performance will be

prioritized over energy consumption.

4.2.3 Final Remarks Regarding the Threshold Configuration

Note that the ILP threshold for the PG mechanism has different behavior from the

one for the instruction duplication. While the ILP threshold for the PG splits bundles that

do not have sufficient ILP to reach the threshold (which is calculated for each BB), the

threshold for the instruction duplication splits bundles that exceed the defined threshold

(which is calculated considering the average ILP). In addition, only one of these two

thresholds is active in a given configuration (which is defined at design time).

By configuring the threshold, the designer can tune the processor to be more per-

formance, energy optimization, or reliability-oriented. This tuning highly depends on the

target application’s and system’s requirements. For instance, one may require having an

application that does not spend more than X Joules, executes in less than Y cycles, or

has a certain degree of reliability. These constraints can be met by adjusting the thresh-

old value and testing the application, or enabling/disabling a certain mechanism. In this

work, the threshold for the ILP control mechanism for reliability was evaluated with sev-

eral values (from minimum to maximum) and the energy-oriented ILP mechanism was

evaluated with its minimum and maximum values, so the trade-off between all axes can

be evaluated.
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Figure 4.11: Polymorphic Processor Overview

Polymorphic Processor

(Dynamic ρ-VEX)

Polymorphic Processor

(Dynamic ρ-VEX)

Energy Consumption

POWER GATING

Energy Consumption

POWER GATING

Performance

ILP control

TLP EXPLOITATION

Performance

ILP control

TLP EXPLOITATION

OPTIMIZATION 

ALGORITHM

APPLICATION 

DISPATCHER

CONFIGURATION MEMORY

Fault Tolerance

Spatial Duplication

TEMPORAL AND SPATIAL DUP.

Fault Tolerance

Spatial Duplication

TEMPORAL AND SPATIAL DUP.

Source: The Author

4.3 Proposed Polymorphic Processor

The proposed polymorphic processor is based on the dynamic version of the ρ-

VEX processor. The available dynamic issue-width adaptation was used and extended

so the implemented techniques could also dynamically change during runtime. Figure

4.11 presents the chosen techniques (introduced in Chapter 3) to be part of this processor,

which are also detailed next:

• Fault Tolerance: Temporal and spatial duplication (Section 3.1.1.2), as it was the

technique with more flexibility and capable of duplicating more instructions than

the previous ones.

• Energy Consumption: Power gating (Section 3.2) with dynamic application profil-

ing to detect phases in which certain FUs could be shut down to save energy.

• Performance: Application dispatcher to exploit TLP and execute several bench-

marks in parallel. The ILP control mechanism was not used because the temporal

duplication already exploits the execution of duplicated instructions in different

time slots, so a more complex mechanism is required to exploit the benefits of con-

trolling the ILP together with the temporal duplication mechanism, which will be

implemented as future work.

The runtime adaptation process for the aforementioned techniques comprises: mod-

ify the buffer size, enable or disable the power gating mechanism, and change the issue-

width. Figure 4.11 also depicts the additional modules for the polymorphic processor. The

optimization algorithm comprises two main phases: learning and runtime (detailed in the
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next subsections). The buffers contain several banks, which can be shutdown to dynami-

cally re-size the available buffer size. The bank size can be configured during design time,

and each bank can be powered on/off independently by a bypass switch that enables or

disables the power supply to a given bank (WANG; KOREN; KRISHNA, 2011; PONO-

MAREV; KUCUK; GHOSE, 2001). Note that for a bank to be turned off, no instructions

can be in the buffer. However, for the proposed processor, the buffer will always be empty

when the buffer size is changed, because the buffer is only used inside the kernel and the

configuration switch occurs after the kernel was completely executed. The PG mechanism

is enabled and disabled through a control flag, and the hardware modules responsible for

these functions are shut down when these mechanisms are disabled. Finally, the dynamic

ρ-VEX provides the issue-width adaptation through a switch network.

The Configuration Memory contains two small memories that are used to (1) store

the list of configurations that are going to be evaluated by the optimization algorithm and

(2) store the best configuration (for each benchmark, identified by its Process ID (PID))

after the learning phase. The Application Dispatcher is responsible for scheduling the

applications considering the available issue slots and the configurations that were dynam-

ically chosen by the optimization algorithm, therefore, minimizing the idle hardware and

executing multiple applications concurrently.

4.3.1 Learning Phase

In this phase, a learning algorithm was implemented to evaluate different config-

urations and find which one delivers the best trade-off considering fault tolerance, energy

consumption, and performance. This learning is done by changing the hardware configu-

ration (polymorphic behavior) during runtime so each execution the application’s kernel

can be evaluated with a different configuration. For this, the kernel of the application must

be identified using pragmas, so the compiler is able to generate a code that will inform

the hardware which are the regions that need to be tested and optimized. Even though the

insertion of a pragma makes the proposed processor lose the complete transparency to the

programmer that it had so far, its use is very simple and straightforward, the programmer

only needs to mark which region corresponds to the kernel of the application.

In order to evaluate the trade-offs among the aforementioned axes and choose the

best configuration, the Mean Work Per Unit of Energy to Failure (MWPUETF) metric is

proposed. This metric is composed of the Mean Work to Failure (MWTF), which was
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adapted from (REIS et al., 2005a), and the energy consumption of the application. The

MWTF equation is presented in (4.2), where the core utilization is the ratio between the

number of program instructions and the total number of instructions (program instruc-

tions plus NOPs). With that, it is possible to capture the trade-off between performance

and fault tolerance. This allows evaluating the reliability of different issue-widths after

removing the influence of the NOPs and the difference in execution time when the issue-

width is changed. To obtain the failure rate, a fault injection campaign was conducted and

faults were injected at the design’s gate-level, using the Simbah-FI framework, which will

be detailed in Chapter 5. The metric MWPUETF is depicted in (4.3), which is the ratio

between the MWTF and the energy consumption. Each of these metrics is obtained during

runtime by using hardware performance counters, with the exception of the failure rate,

which is obtained from a previous fault injection campaign. Moreover, the MWPUETF

can be used to prioritize specific axes, for instance, prioritize energy consumption, or

performance, or fault tolerance. To allow the modification of the weight of each axis,

the MWPUETF formula is extended to (4.4), where a + b + c = 1. Thus, a, b, and c

can be tuned at design time so the adaptive processor considers different weights when

evaluating the trade-off among the axes.

MWTF =
amount of work completed

number of errors encountered

=
core utilization

(failure rate)× (execution time)

(4.2)

MWPUETF =
MWTF

energy consumption
(4.3)

MWPUETF = (
core utilization

failure rate
)a × 1

(exec. time)b × (energy cons.)c
(4.4)

The basic idea of the learning algorithm is to evaluate a different hardware con-

figuration each time a given kernel is executed until the best configuration is found. This

means that the application will run with a sub-optimal configuration until the final con-

figuration is found, but as we will demonstrate in the results chapter, this learning phase

can be performed with minimal overhead and the processor is able to adapt itself to any

application.
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Algorithm 1 presents the learning phase. It has a list of configurations to be evalu-

ated that can be selected during design time and it receives the kernelList as a parameter,

which is the identification of the target applications’ kernels. The learning algorithm will

run until it finds the best configuration for each kernel. In addition, the number of steps

of the learning algorithm is reduced by aborting the evaluation of configurations that will

not result in an improvement in the result (this will be explained in detail next).

The following optimization decisions are made regarding the learning flow:

• The issue-width is tested in the following order: 2, 4, then 8-issue. In addition,

the number of tests is reduced if the MWPUETF decreases when increasing the

issue-width. For instance, if the 4-issue core results in a worse MWPUETF when

compared to the 2-issue, the 8-issue core will not be tested, because it will result in

a MWPUETF that is lower than the 2-issue. This is explained by the following rea-

soning, the 8-issue consumes more energy (which negatively affects MWPUETF),

but the improvement in performance in most cases is much lower than the theo-

retical 2x (when going from 4-issue to 8-issue) because the compiler is not able

to fill all bundles with independent instructions, as already discussed in Chapter

2. Therefore, the energy consumption weighs more than the performance in this

scenario.

• For the temporal duplication, there are a few parameters that can be modified to

trade-off performance, reliability, energy consumption, such as the buffer size, and

use of PG. During the learning, the buffer size stops being tested when the MW-

PUETF gets worse than for the previous buffer size. When this happens, it means

that increasing the energy consumption (larger buffer) does not outweigh the in-

crease in the number of duplicated instructions (if any, because the previous buffer

size could be enough to duplicate all instructions that were stored in the buffer).

Therefore, by applying these two optimization strategies, it is possible to reduce

the number of steps until the best configuration is found, since those additional steps

would not deliver the best configuration and would only create more overhead.

After the first kernel of the queue is obtained in Algorithm 1, the optimization

module verifies if there are enough idle slots to schedule this kernel with a given con-

figuration (l. 4-5), if there are, the defined configurations are evaluated, one for each

execution of the given kernel. While testing the temporal duplication, if the result for the

current buffer (resultCurrentBuffer) is better than the result for the previous buffer,

it is saved in the configuration memory (l. 12), otherwise, it stops testing further buffer
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Algorithm 1: OptimizationAlgorithm-LearningPhase(kernelList)
1 optQueue← kernelList
2 while kernel in optQueue do
3 currentKernel← get first application of optQueue
4 if currentKernel was not tested in this time-slot and there are idle slots then
5 if currentKernel fits in the current unused issue-slots then
6 for testConfig in configList do
7 if testConfig = ”TemporalDuplication” then
8 for bufferSize in bufferSizeList do
9 for TDconfig in TDconfigList do

10 Execute currentKernel with
testConfig, TDconfig, bufferSize

11 if currentResult > previousResults then
12 Save currentResult

13 if resultCurBuffer < resultPrevBuffer then
14 Break to the next testConfig

15 else
16 Execute currentKernel with testConfig
17 if currentResult > previousResults then
18 Save currentResult

19 if currentResult is better than the previous issue-width then
20 if current issue-width < max(issue-width) then
21 currentKernel.nextIssue← next issue-width
22 Put currentKernel back in the optQueue

23 else
24 Save currentResult as the best one

25 else
26 Mark the previous result as the best one

27 else
28 Put currentKernel back in the queue

29 else
30 Put currentKernel back in the queue
31 if there are idle slots then
32 Apply PG on idle slots

33 Wait for an application to end
34 Update time-slot

35 return the best configuration for each application

sizes (l. 14). Then, the result for the current issue-width of this kernel is compared to the

one from the previous issue-width (l. 19), if it is better, the next issue-width is evaluated

(until it tests the maximum issue-width), otherwise, the best result is the currentResult.

This is repeated for all kernels that fit in the available issue-slots (l. 4). For example, in a
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Figure 4.12: Application Scheduling Example
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given moment, four kernels running on 2-issue mode can be executed in parallel. When

all issue-slots are occupied, the optimization module waits for a kernel to end, so it can

evaluate the next kernel to be scheduled (l. 30-34). In case there are still idle slots after all

kernels tried to be scheduled (because they did not fit in the available slots), PG is applied

to those slots, to reduce the energy consumption (l. 31-32).

4.3.2 Runtime Phase

In the runtime phase, the best configuration was already determined by the learn-

ing mechanism, and it was stored in the configuration memory. Therefore, the application

dispatcher is responsible for continuing the execution of the applications while trying to

schedule as many applications as possible in parallel. The execution time of each ker-

nel was already saved by the learning phase, so in the runtime phase the applications are

sorted by the descending order of the execution time (in order to allow more flexibility

in the scheduling for the other benchmarks) and the applications are scheduled to fill the

available slots.

An execution example is depicted in Figure 4.12, in which the App. 1 and App. 2

continue the execution after the learning phase in the best configuration for each of these

applications, which is the 2-issue processor with temporal duplication and buffer size of

128 with PG for App. 1 and a buffer of 64 without PG for App. 2. At the same time, the
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other four pipelanes are occupied with App. 3 having a buffer size of 16 without PG. After

App. 3 finishes the execution, App. 4 is scheduled, maintaining the 4-issue configuration

with another buffer size and PG configuration. Finally, App. 5 is scheduled in the 8-issue

mode, occupying all pipelanes. Note that power gating is applied to the empty slots that

cannot be used to fit another application (between Apps. 1 and 5, and Apps. 2 and 5).
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5 PROPOSED HYBRID FAULT INJECTOR

5.1 Motivation

Since the terrestrial neutron flux is extremely low, field-testing at sea level takes

long periods (from months to more than one year) and requires thousands of devices to

assess the reliability of a single hardware component. Therefore, alternative approaches

to evaluate the reliability of a system are necessary. High-energy particle accelerators

(KOBAYASHI et al., 2004; LESEA et al., 2005; YAHAGI et al., 2002) are used to eval-

uate the devices at approximately the same terrestrial neutron flux but at an accelerated

rate (107 to 108 times) (VIOLANTE et al., 2007). However, this approach has many draw-

backs: elevated financial cost, as there are only a few laboratories in the world that can

provide such radiation sources; it is not possible to control with precision which parts of

the circuit that will be exposed to the radiation beam; and it is only possible to test the

target hardware under radiation after the chip is produced and deployed. Examples of

laboratories that provide such equipment for testing are the Los Alamos Neutron Science

Center (LANSCE), with a source of neutrons, and the Rutherford Appleton Laboratory

(ISIS), with a source of neutrons and muons.

Another approach is to statistically determine the reliability of a structure by com-

puting the Architectural Vulnerability Factor (AVF) (MUKHERJEE et al., 2003), which

is the probability that a fault in a particular structure will result in an error. In order to

compute the AVF, the processor state bits required for Architecturally Correct Execu-

tion (ACE) are tracked. If a fault affects a storage cell that contains one of these bits,

the program’s output will present an error, when not using any fault tolerance technique.

Therefore, the AVF for a single-bit storage cell is the fraction of time that it holds ACE

bits. Un-ACE bits (bits that are not mandatory for correct execution) come from NOP

instructions, performance-enhancing instructions such as pre-fetching, dynamically dead

code, and logical masking. However, computing AVF for complex structures and proces-

sors is a difficult process, because calculating and weighing the residency and bandwidth

of every bit is extremely difficult, which very likely leads to significant error margins.

Fault injection comes as a flexible, cheap, and controllable alternative, which can

be implemented in hardware, software, or using simulated environments; and they may be

applied to several project stages, such as conception, design, prototype, and operational

phases (HSUEH; TSAI; IYER, 1997).
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Hardware fault injection uses additional hardware to introduce faults into the sys-

tem. It can be categorized into injection with and without contact. The former has direct

contact with the target system and produces voltage and current changes in order to inject

the fault. Examples of this method are pin-level probes and sockets. The latter has no

physical contact with the system and an external source produces a physical phenomenon

in the system, for instance, heavy-ion radiation or electromagnetic interference.

In order to inject SEUs in the configuration bits of FPGAs, the bitstream is modi-

fied. Nazar and Carro (2012) propose a platform to perform the fault injection and evalu-

ate the correctness of the outputs that requires only one FPGA board.

Software fault injection has the main advantage that it does not need special hard-

ware (fault injector or FPGA board) to perform the fault injection and it may be inserted

into the application itself or between the application and the operating system. On the

other hand, it is restricted to inject faults only into locations that the software has access

and it may disturb the workload on the target system. This approach may be applied

during compile-time or run-time. In the former, the program instructions are modified;

the latter uses triggers to activate the fault injection during runtime, such as time-outs,

exceptions and traps, and code insertion.

When applying fault injection in simulated environments (in which the target sys-

tem is simulated), both high-level and low-level simulations are possible, which represent

the target’s system level of detail and result in different levels of accuracy (the lower the

level, the more accurate). The main advantages of this approach are: cost - can be ap-

plied at design time, before deployment (so the designer can change the circuit in case its

reliability does not meet a certain criteria); high controllability of the fault injection - no

need for special equipment or hardware components; and flexibility to choose between

different fault models. Even though both high- and low-level simulations are slow when

compared to the real hardware implementation, they allow the evaluation of the circuit in

early design stages.

Fault injectors for high-level simulators usually only change the value of the regis-

ters during the execution of an application (e.g., the architectural registers of a processor),

which leads to highly inaccurate results: for example, given a complex superscalar proces-

sor, the architectural registers (those visible to the programmer) represent a small fraction

of all registers present in the system (i.e., the pipeline registers, instruction queue, branch

history buffer and so on will not be affected). On the other hand, when one considers

low-level simulators (e.g., gate-level simulation), faults can be injected in the hardware

module’s low-level signals, which has high controllability and accuracy.
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Even though behavioral RTL simulation provides more details than high-level sim-

ulators (i.e., access to the pipeline registers, instruction queue, etc.), the visibility of such

signals is not enough to guarantee an accurate fault injection process. Therefore, gate-

level simulations are required to provide detailed information about the target modules

as they are based on the post-synthesis netlist of such modules. However, simulating

complex hardware in such level of detail is very time-consuming. In the proposed fault

injector, we combine the accuracy of gate-level fault injection with the simulation speed

of RTL simulation, by executing the circuit in two levels of detail. Next, several fault

injectors will be compared, followed by the implementation details of the proposed fault

injector.

5.2 Fault Injectors - Related Work

Some of the high-level simulators that were modified to inject faults during the ap-

plication’s execution are discussed next: GemFI (PARASYRIS et al., 2014) is an example

of such technique, as it provides a framework for injecting faults in the Gem5 simulator

(BINKERT et al., 2011). A number of parameters are passed to the simulation in order to

characterize the fault, including location, thread, time, and behavior. FIMSIM (YALCIN

et al., 2011) presents a similar approach to Parasyris et al. (2014); however, it was built on

top of the M5 (BINKERT et al., 2006) simulator. Relyzer (HARI et al., 2012) uses two

high-level simulators (Simics (MAGNUSSON et al., 2002) and GEMS (MARTIN et al.,

2005)) to speed up the fault injection process.

Kaliorakis et al. (2015) use a fault injector for the MARSSx86 architectural simu-

lator (PATEL et al., 2011) and their approach is to terminate the simulation when a fault

is masked, or when the fault is expected to result in a failure. This reduces the simulation

time, but it also compromises the accuracy of the method, as the estimation on whether

the fault results in a failure may be incorrect. These previous approaches are not able to

accurately represent the behavior of the system under test as the faults are injected only

at high-level signals and registers, and they are restricted to a few ISAs.

Goswami (1997) and Kalbarczyk et al. (1999) propose to associate high-level ef-

fects with low-level errors, in order to reduce the simulation time. However, such statisti-

cal models may not reflect the actual error propagation when the interactions with the rest

of the system are considered (CHO et al., 2013).
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Cho et al. (2015) propose a hybrid fault injector that comprises a high-level sim-

ulator (Simics) and gate-level simulation for accurate fault injection. Even though the

authors are able to achieve high speedups by using a high-level simulator to execute the

application before and after the fault is injected, the use of high-level simulators greatly

restricts the possibility of injecting faults in designs that are not supported by the Simics

simulator (and other high-level simulators), which supports few processor architectures

(Wind River, 2017). Kooli, Natale and Bosio (2016) present an evaluation of faults that

affect data and instruction caches by combining fault injection with analytical techniques.

They use a cache emulator to trace the cache contents for a given program execution.

Then, they randomize the time and bit position to inject the faults. When an unused po-

sition of the memory is the target for the fault injection, they consider that the fault was

masked and do not inject the fault in the application. Otherwise, a fault is injected in the

software layer. That is, the assembly of the program is modified to corrupt a certain data

or to replace one instruction for another one (e.g., replace an ADD instruction for a SUB).

Therefore, their approach is restricted to cache memories only, requires the assembly code

to be modified and does not have access to the low-level signals of the processor (which

are necessary so the faults can be distributed evenly across the area of the chip).

FITSEC (EJLALI et al., 2003) proposes a hybrid fault injector that uses both be-

havioral RTL simulation and FPGA-based emulation to run the application and inject

the faults. However, the hardware description of the target module must be modified

so the faults can be modeled, which implies that the user must manually choose which

gates/signals are subject to faults, and determine the time in which the fault will be acti-

vated. As FPGA boards are required to inject the faults, this approach is not scalable to

several simulations in parallel because it involves financial cost and is technology depen-

dent.

SWAT-Sim (LI et al., 2009) analyzes the behavior of gate-level faults and pro-

poses probabilistic microarchitecture-level fault models to mimic gate-level faults, which

results in an overhead of three times when compared to RTL simulation. In addition, their

approach is only applied to small combinational logic blocks (e.g., ALU or decoder).

The proposed fault injection framework is able to maintain the fault injection accu-

racy of gate-level simulation and speed up the simulation process by executing the remain-

ing of the application in behavioral mode. The framework automatically and transparently

switches the current context between these two simulation modes when the fault is going

to be injected. Moreover, the proposed approach does not require any modification in the

application to be executed, and it can be applied to complex circuits.
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5.3 Fault Injection Framework

In order to seek the best solution considering accuracy and simulation speed, we

also propose the Simulation-based Hybrid Fault Injector, Simbah-FI, which combines the

simulation speed of behavioral RTL simulation with the accuracy of gate-level simulation,

therefore allowing faults to be accurately injected at an accelerated rate. This is done by

using two projects of the target hardware. That is, the same hardware description is used to

generate two different projects, one with high and the other with low level of detail (which

will be discussed in detail later). Thus, the gate-level simulation is used for accurate fault

injection, and the remaining of the application is executed in behavioral mode, so the

simulation can be accelerated and still maintain cycle-accuracy. In addition, the proposed

fault injector allows faults to be injected in several simulations in parallel, which can be

exploited to improve even more the fault injection speed. Note that the number of parallel

simulations depends on the number of cores and memory available on the host computer.

5.3.1 Implementation

The framework was developed in Tool Command Language (TCL), and the Mod-

elsim simulator was used to simulate the target design. In order to run the fault injector,

the following information is required:

• Hardware description of the module to be simulated (VHDL or Verilog). The same

hardware description is used for both projects: one that will be used for behavioral

mode simulation; and other, which is comprised of post-synthesized modules that

contain internal signals at gate-level, that will be used for low-level fault injection.

As the behavioral simulation contains less information about the target circuit, it is

used to speed up the simulation before and after the fault injection, while maintain-

ing the simulation’s cycle accuracy.

• Post-synthesis netlist generated by the synthesis tool. The user chooses the target

modules of the design under test and saves the generated list of signals to a file so

the framework can choose which will be the affected signals.

• Execution time of the application. This is required so the execution can be automat-

ically aborted if the application gets stuck in a loop due to a control flow failure. The

user can insert this value in the configuration of the fault injector, or the framework

can obtain it automatically by running a fault-free circuit in the first execution.
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Figure 5.1: Fault Injection Flow
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5.3.2 Fault Model

The proposed framework injects SETs in the circuit, and the following fault model

was used:

• Fault type: The injected faults are transient and comprise a SET that will affect a

signal from the design.

• Injection place: The faults are injected into any atomic signal of the target mod-

ule(s). All internal and low-level signals are considered (gate-level).

• Injection instant: Follows a uniform probability function in the range between zero

and t equal to the expected execution time of the application without faults.

• Fault duration: To increase the likelihood of the SET to be captured by a flip-flop,

the signal is forced for the duration of one clock cycle.

5.3.3 Hybrid Mechanism

Fig. 5.1 depicts the flow for the hybrid fault injection mechanism, which is com-

pletely automatic and transparent to the user. TheM1−3 represent hardware modules from

an arbitrary target circuit, and it is explained in detail next.

The context switch represents the required information to restore the simulation

from the exact same point, which depends on the target circuit that is being evaluated.
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The configuration of the context signals can be easily done in the framework by specifying

which are the required signals for the context switch (target circuit dependent), and for

our case study (a complex VLIW processor) the following information is saved: current

program counter of the application; register file, branch registers, and link registers; and

data memory.

The fault injection flow is divided into three main phases as follows.

• Phase 1 : The application is started in the RTL simulation, and it is executed until

a random time. Then, the context is saved.

• Phase 2 : After restoring the context, the gate-level simulation (which considers

all the internal signals) is started from the point in which Phase 1 ended. The

framework chooses a random bit among all signals and injects a fault on it. For this,

the fault injector checks the current value of the chosen bit and inverts it during a

clock cycle. The gate-level simulation runs for a few more cycles – this parameter

is configurable, and it was chosen as 15 cycles for the experiments - so we can

guarantee that the fault had enough time to propagate in the circuit before switching

back to the RTL mode.

• Phase 3 : After Phase 2, the context is restored once more so we can speed up the

remaining of the application as well, and the application is executed until comple-

tion.

In order to coordinate these context switches, additional flags are saved to files

so the simulations can be managed in an automatic and transparent fashion. After the

execution, the memory is compared to the golden copy in order to detect if there are

any data failures, and the number of executed cycles is compared to the expected value to

detect control flow failures. This approach is technology independent, as the functionality

of the circuit is tested without depending on any technology-specific parameters, such as

feature size.

5.4 Fault Injection Accuracy

The proposed fault injector is able to maintain the accuracy of gate-level simu-

lation and speed up the simulation by executing the remaining of the application in be-

havioral mode. Running a part of the application in behavioral mode does not change

the accuracy of the proposed method because the actual fault injection is performed in
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the gate-level simulation. The fault injection accuracy comparison between RTL and

gate-level will be presented and discussed in Section 6. After the fault is injected and

propagated through the circuit, behavioral simulation can be used to execute the remain-

ing of the application cycle-accurately and faster than gate-level simulation. Examples

of the stabilization of the failure rate as more faults are injected for three benchmarks

are depicted in Figure 5.2. Therefore, for each benchmark a minimum of 10K faults are

injected in order to get the stable behavior.

In addition, it is possible to inject faults in several simulations in parallel, which

speeds up, even more, the fault injection process. As aforementioned, the number of

parallel fault injections is dependent on the available resources (i.e., number of cores and

memory). These parallel simulations are entirely independent of each other. Therefore,

there is no interference in the results. In our setup, we executed more than 50 simulations

in parallel, which can be extended as more computing resources are available.
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Figure 5.2: Failure Rate Behavior as more Faults are Injected (Unprotected Processor)
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6 RESULTS

6.1 Methodology

By having access to the hardware description of the ρ-VEX processor, we are

able to measure performance at cycle-level; measure energy consumption and area after

synthesis; and inject faults at the gate-level. The synthesis tools used were: Cadence

Encounter RTL compiler to obtain power dissipation and ASIC area, using a 65nm Com-

plementary Metal–Oxide–Semiconductor (CMOS) cell library from STMicroelectronics

(the operating frequency was set to 200MHz).

CACTI-P (LI et al., 2011) was used to estimate the area and energy consumption

of the following modules:

• BBHT: 256 lines of 64 bits each (the closest power of two of 50 bits), one write and

one read port. This size was chosen after evaluating different configurations for the

BBHT.

• Buffer sizes for the temporal duplication: buffers of 16, 32, 64, and 128 entries

were evaluated. Even though both buffers contain the same amount of entries, the

commit buffer occupies more area and dissipates more power as it stores the whole

bundle in each entry. On the other hand, the issue buffer stores a single instruction.

In order to allow the dynamic resizing, each buffer is divided into banks of 16

entries each.

• Configuration memory module for the optimization algorithm: This module com-

prises two small memories, the first has 32 read-only entries for storing the list of

configurations that are going to be evaluated by the optimization algorithm (27 en-

tries are used in the current evaluation); the second has 16 entries to store the best

result and the corresponding configuration, for each benchmark during the learning

phase (11 entries are used as we are evaluating 11 benchmarks).

• Cache: the instruction and data caches have 16KB for the 8-issue configuration (the

4-issue and 2-issue will access 8KB and 4KB, respectively, therefore, maintaining

the 16KB for the whole dynamic processor). The caches are 4-way associative with

a block size of 4 bundles (128B for the 8-issue) and a next-line prefetch mechanism,

which will also fetch the following line whenever a cache miss occurs.

• Main memory: a 512MB memory is used, having a miss latency of 30 cycles.
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All the previous memories and buffers have ECC enabled and their size can be

modified during design time (note that the buffers and caches can still reduce their sizes

during runtime by applying power gating as discussed in Chapter 4. For the area and en-

ergy consumption evaluation, all additional modules that were implemented are also taken

into account, which include those that were implemented in VHDL and the memories that

were simulated with CACTI.

For the dynamic version of the ρ-VEX the whole process of reconfiguring proces-

sor takes 8 cycles, which is the time required to flush the pipeline, decode the new con-

figuration and start the execution (HOOZEMANS et al., 2015). In addition, the dynamic

core requires that the number of registers is quadrupled in order to have four contexts

(4x2-issue) of 64 registers each, resulting in a total of 256 registers. The same reasoning

applies to the buffer sizes: each configuration supports up to 128 buffers, so a total of 512

entries is required.

For the energy consumption estimation, when there is no switching activity, only

static power is considered. Otherwise, the average switching activity of the circuit is

considered to be 30% (GEUSKENS; ROSE, 2012) for the dynamic power dissipation.

The switching activity of 30% was chosen because it is the traditionally assumed value

for system level analysis of microprocessors (GEUSKENS; ROSE, 2012). During the

VHDL simulations, it is verified whether the functional unit is used or not in each cycle.

This simplified model was used due to the complexity of measuring and synthesizing the

real switching activity of each part of the circuit, given the very significant simulation

times.

6.1.1 Benchmarks

The benchmark set is composed of 16 applications from the WCET (GUSTAFS-

SON et al., 2010) and Powerstone (SCOTT et al., 1998) benchmark suites. Several com-

pilers may be used to compile VLIW code for the ρ-VEX processor: HP VEX compiler,

GCC VEX, LLVM, and Open64, and the compiler is responsible for scheduling indepen-

dent instructions to be executed concurrently. The HP VEX compiler was chosen because

it is more stable and robust than the other compilers.

A soft-float library (HAUSER, 2002) was used for floating-point operations, and

the original input data from the benchmark suite was used. The floating-point benchmarks

(LUDCMP, Minver, and Qurt) were compiled with LLVM (LATTNER; ADVE, 2004)
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with the back-end modified to support the VEX ISA (JOST; NAZAR; CARRO, 2016),

because the HP VEX compiler does not support soft-floating point. The benchmarks

were compiled with the -O3 flag and each one is discussed next.

• Adaptive Differential Pulse-Code Modulation (ADPCM): completely structured code

(i.e., no conditional branches, no exit from loop bodies) and contains loops;

• CJPEG: compresses an image file using the integer implementation of the Discrete

Cosine Transform (DCT) method. Contains loops and arrays;

• CRC: cyclic redundancy check computation on 40 bytes of data. It has complex

loops and many decision statements;

• Discrete Fourier Transform (DFT): uses arrays and nested loops;

• Engine: engine control application. It has sequences of condition statements and

loops;

• Expint: performs series expansion for computing an exponential integral function.

Contains nested loops and arrays;

• FIR: finite impulse response filter (signal processing algorithms) over a 700 items

long sample. It consists of an inner loop with varying number of iterations and

loop-iteration dependent decisions;

• JPEG: JPEG 24-bit image decompression standard. Uses arrays and nested loops;

• LU Decomposition (LUDCMP): performs calculations based on floating point ar-

rays with the size of 50 elements;

• Matrix multiplication: multiply two 20x20 matrices. It has multiple calls to the

same function, nested function calls, and triple-nested loops;

• Minver: inversion of floating point matrix. Floating value calculations in 3x3 matrix

with nested loops;

• NDES: complex embedded code. It does bit manipulations, shifts, and array and

matrix calculations;

• POCSAG: POCSAG paging communication protocols. Contains loops and several

condition statements;

• Qurt: root computation of quadratic equations. The real and imaginary parts of the

solution are stored in arrays;

• Sums: recursively executes multiple additions on an array;

• x264: contains arrays, matrices, and loops to calculate a sum of absolute differences

of the H.264 video encoding standard.
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For the polymorphic processor, the previous benchmarks are considered to be ker-

nels for a larger application to simulate complex application behavior. Therefore, each

application will execute these kernels several times. In order to define how many times

each kernel will be executed, the actual number of iterations of complex parallel ap-

plications was considered. These numbers were obtained from: Dongarra, Heroux and

Luszczek (2015), Seo, Jo and Lee (2011), Che et al. (2009), Petersen and Arbenz (2004),

Quinn (2003), McCalpin (1995), Bhatt et al. (1992).

6.1.2 Temporal Duplication and Optimization Module Simulators

The duplication with rollback mechanism (Section 3.1.1) and the spatial dupli-

cation (Section 3.1.1.1), in addition to the PG mechanism and the ILP control module

were all implemented in VHDL and these mechanisms were implemented to the static

version of the ρ-VEX processor. Since then, the ρ-VEX was completely rewritten so it

could allow the dynamic behavior that is described in Section 4.1.2. In order to exploit

such characteristics of the new processor, we started porting these mechanisms to the new

dynamic version. However, as the new core was developed from scratch, it was modified

considerably and it would take a considerable amount of time to fully port these mecha-

nisms. Thus, we decided to implement simulators to mimic the behavior of the dynamic

core, allowing us to evaluate the proposed polymorphic processor. In order to estimate

area and power of such design, the additional modules (e.g., caches, buffers, additional

registers of the register file, etc.) were simulated in CACTI or synthesized in the Cadence

compiler.

Two extra simulators were also implemented: one that simulates the temporal

duplication (in addition to the spatial one), allowing more flexibility in the instruction

duplication; and the second one not only mimics the behavior of the dynamic version

of the ρ-VEX, but also implements an optimization algorithm that dynamically evaluates

different core configurations and chooses the best one considering the trade-off between

the axes of energy consumption, fault tolerance, and performance. Next, each of these

simulators will be discussed.

• Temporal Duplication Simulator: The temporal duplication simulator was devel-

oped in Python and it receives as input the trace of the application that was executed

in the ρ-VEX processor (which was modified to save this trace file). As the static

version of the ρ-VEX processor that was used in this work does not have caches, a
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cache model was included in the simulator, so we are able to also exploit those cy-

cles that the core is idle waiting for the memory to duplicate instructions that were

waiting in the issue buffer. Each parameter of the simulator can be tuned to allow

the evaluation of different configurations, which includes the size of the buffers,

issue-width, enable or disable the PG module, list of benchmarks to be simulated,

and all configurations of the memory model, including associativity, block size,

prefetch size, miss penalty, and cache size.

• Optimization Module Simulator: This simulator was developed to both mimic the

dynamic behavior of the ρ-VEX and to choose the most appropriate core configu-

ration for each benchmark during its execution. The parameters for this simulator

are the list of benchmarks and the configurations that are going to be tested.

The remaining of this chapter is divided into three parts: first the results for the

hybrid fault injector will be presented, followed by the results of the techniques that were

developed for the static ρ-VEX processor. Finally, the techniques for the dynamic version

and the polymorphic processor will be evaluated. As the temporal and spatial duplication

mechanism was implemented in the dynamic version of the processor, which includes

the cache memory model that was not available in the static version, its results will be

evaluated in Section 6.4.1 (Polymorphic core section).

6.2 Hybrid Fault Injector Results

In this subsection, the accuracy comparison between RTL and gate-level fault in-

jection is presented followed by the speedup evaluation of the Simbah-FI framework. The

results for the fault injector were obtained from the 8-issue version of the ρ-VEX proces-

sor.

6.2.1 RTL vs Gate-level: Accuracy Comparison

We conducted a series of experiments to show the need for our hybrid simulator:

if the accuracy of both levels were the same, one would only need to execute and inject

faults to the RTL version, without the necessity of switching between the RTL and gate-

level versions.
First of all, we assessed the number of signals. Considering the above-mentioned

configuration of the ρ-VEX processor, the netlist has 16,128 signals for the target modules



94

Table 6.1: Accuracy Comparison between RTL and Gate-level Fault Injection

RTL fault injection Gate-level fault injection

Benchmark Failure rate
(%)

Control flow
failure (%)

Data failure
(%)

Failure rate
(%)

Control flow
failure (%)

Data failure
(%)

ADPCM 5.21 2.62 97.38 3.66 18.17 81.83

CJPEG 8.15 3.62 96.38 6.07 10.75 89.25

CRC 3.64 4.23 95.77 2.95 22.12 77.88

DFT 3.17 13.01 86.99 2.68 48.55 51.45

Average 4.71 4.78 94.04 3.64 21.40 73.55

Source: The Author

in the RTL simulation, while the gate-level simulation generates a netlist with 36,786

signals. Therefore, the gate-level simulation provides 2.28 times more information about

the target circuit than the RTL one, as it has access to all internal signals after synthesis.

By consequence, it is able to accurately represent the area distribution of the circuit, as

it includes all internal signals of the functional units and other hardware structures. This

means that each hardware module will have a different probability of being affected by a

fault depending on its area and its internal circuitry (that can be more robust or sensitive

to faults depending on the logic that is performed).
Moreover, to demonstrate the accuracy difference between these two descriptions,

the first four benchmarks of the previous benchmark list were used for RTL fault injection,

and they were compared to the gate-level fault injection. These results are presented in

Table 6.1. On average, the failure rate for the RTL fault injection was 30% higher than the

gate-level. In addition, RTL fault injection resulted in a huge difference in the distribution

of the faults: control flow failures went from 21.4% to only 4.78%, and data failures from

73.55% to 94.04% on average. These experiments reinforce that RTL fault injection is

not able to provide accurate results, requiring gate-level fault injection.

6.2.2 Fault Injection Performance

Table 6.2 presents the benchmarks’ number of cycles, the simulation time for the

RTL simulation, hybrid fault injector (Simbah-FI), and the fault injection in gate-level.

The standard deviation for the simulation time is less than 1%. As aforementioned, be-

havioral RTL simulation is faster than gate-level simulation, however, it does not provide

sufficient detail on internal signals for accurate fault injection.
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Table 6.2: Number of Cycles and Simulation Time Comparison

Simulation time (seconds)

Benchmark Num. cycles RTL simulation
(NO fault injection)

Simbah-FI overhead
vs. RTL sim. (seconds)

Gate-level fault
injection Simbah-FI Speedup

ADPCM 568 0.70 3.51 3.18 4.22 0.75

CJPEG 411 0.65 3.50 2.75 4.15 0.66

CRC 13,289 4.61 3.51 31.35 8.12 3.86

DFT 32,575 9.28 3.58 58.48 12.86 4.55

Engine 691,437 147.80 3.42 816.19 151.22 5.40

Expint 9,341 2.78 3.65 12.29 6.43 1.91

FIR 119,392 37.49 3.48 431.60 40.97 10.54

JPEG 1,448,615 396.66 3.26 3,240.02 399.92 8.10

LUDCMP 44,558 11.89 3.59 93.54 15.47 6.05

Matmult 111,050 29.65 3.49 258.31 33.15 7.79

Minver 12,224 3.57 3.62 24.36 7.19 3.39

NDES 28,527 7.99 3.58 53.96 11.57 4.66

POCSAG 18,926 6.21 3.54 49.45 9.75 5.07

Qurt 17,972 5.16 3.49 39.99 8.65 4.62

Sums 319 0.58 3.62 1.86 4.20 0.44

x264 15,089 5.60 3.48 48.87 9.08 5.38

Source: The Author

On the tested computer (Intel Core i7-7700K, 8GB DDR4), Simbah-FI can inject

faults with an average overhead of 3.52 seconds over the original RTL simulation, but

with the same accuracy as the gate-level fault injection. This overhead is a result of the

time taken for the context switches between the two simulation levels (from RTL to gate-

level and vice-versa) and to run the simulation at gate-level to inject the fault. Note that

this overhead is fixed, regardless the application at hand or its original execution time.

For instance, the gate-level fault injection would take 3,240.02 seconds (54 min-

utes) to inject a single fault in the JPEG application. On the other hand, Simbah-FI

reduces this time to 399.92 seconds (6.6 minutes), which is basically the original time

spent for the RTL simulation plus 3.26 seconds, which are spent switching contexts and

simulating at gate-level when the fault is injected. The same scenario can be observed

for the Engine application, which would take 816.19 seconds (13.6 minutes) in gate-level

fault injection, while the hybrid fault injection reduces this time to 151.22 seconds (2.5

minutes), with 3.42 seconds spent in the context switch.

As Modelsim is an event-driven simulator, the more complex the application (i.e.,

the more transitions the signals have), the higher will be its simulation time. Naturally,
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the higher number of cycles, the higher the simulation time as well. Therefore, when exe-

cuting an application in gate-level, the simulation time will be influenced by the following

factors:

• The switching activity of the signals (i.e., the overall percentage of the transitions

from ’0’ to ’1’ or from ’1’ to ’0’), which depends on the application that is being

executed;

• The number of cycles of the target application;

• The number of signals to be simulated, which is be higher than RTL simulation.

Simbah-FI’s speedup varies from 0.44 (extremely simple and small benchmark)

to 10.54 times (complex benchmark). In the case of small benchmarks, the overhead

of the context switch is higher than executing the whole application in gate-level mode.

However, for large benchmarks, Simbah-FI speeds up the execution by several times and

the overhead of the context switch turns out to be negligible.

Table 6.3 presents the number of transitions that were performed to execute each

benchmark in gate-level, the maximum number of transitions that such benchmark could

generate if all signals were transitioned in every cycle, and the resulting switching activity.

The benchmark with the maximum speedup was the FIR, with a speedup of 10.54 times,

and as it can be observed in Table 6.3, it is the benchmark with the highest switching

activity (12.52%), which also influences in the gate-level simulation’s speed. Both the

number of transitions and the number of cycles have a very strong Pearson’s correlation

with the simulation time, with a correlation factor of 0.99 and 0.97, respectively.

6.3 Adaptive ρ-VEX Processor

For the adaptive processor (i.e., adaptive optimization techniques that were imple-

mented in the static version of the ρ-VEX processor), the results are presented for the

8-issue design. The 4-issue is evaluated only when comparing the full duplication mecha-

nism, which was applied to the 4-issue, having a total of eight pipelanes. In addition, two

versions are assessed: without and with power gating, as follows.
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Table 6.3: Number of Transitions and Switching Activity from Gate-level Simulation

Benchmark Number of
transitions

Maximum
transitions

Switching activity
(%)

ADPCM 1,630,293 18,343,407 8.89

CJPEG 1,375,953 13,352,220 10.31

CRC 28,099,961 422,152,689 6.66

DFT 74,403,051 1,035,877,944 7.18

Engine 1,145,735,577 21,981,759,786 5.21

Expint 12,159,231 289,488,846 4.20

FIR 445,066,119 3,553,534,398 12.52

JPEG 3,836,163,241 46,053,205,584 8.33

LUDCMP 98,440,457 1,416,829,497 6.95

Matrix Mult. 263,947,463 3,529,881,894 7.48

Minver 24,384,221 388,899,303 6.27

NDES 62,392,015 874,506,828 7.13

POCSAG 44,905,749 601,962,585 7.46

Qurt 40,517,361 571,633,971 7.09

Sums 383,967 10,427,448 3.68

x264 53,919,303 479,980,518 11.23

Source: The Author

6.3.1 Spatial Duplication Without Power Gating

Next, the spatial duplication fault tolerance techniques (i.e., spatial duplication

with and without ILP control) are evaluated in terms of performance, fault tolerance,

energy, power, and area.

6.3.1.1 Failure Rate and Performance

Table 6.4 presents the failure rate and performance of the chosen applications in

several configurations (4-issue full duplication; and spatial duplication with and without

ILP control, using Threshold = 1.75, 2, or 2.5 and Threshold = 1), and unprotected

versions (4- and 8-issue). Note that, in some benchmarks, results of the spatial duplication

with ILP reduction are not shown for a threshold greater than 1, since the failure rate

does not decrease significantly. On average, the unprotected processors have a failure

rate of 6.61% and 3.73% for the 4- and 8-issue, respectively. These failure rates are
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Table 6.4: Failure Rate and Performance Degradation Comparison

Unprot. Prot. Unprot. Protected

4-issue Full
dup. 8-issue Spatial

Dup. Threshold

ADPCM
Failure
rate (%) 6.93 0.06 3.66 0.66 T

=
1

0.59 T
=

1.75

0.65 T
=
2

0.66

Exec.
Cycles 571 571 568 568 633 621 574

CJPEG
Failure
rate (%) 9.55 0.02 6.07 2.33 T

=
1

0.79 T
=

2.5

2.12

Exec.
Cycles 508 508 411 411 523 426

CRC
Failure
rate (%) 5.20 0.06 2.95 0.33 T

=
1

0.32

Exec.
Cycles 13289 13289 13270 13270 13616

DFT
Failure
rate (%) 4.63 0.07 2.68 0.38 T

=
1

0.15

Exec.
Cycles 35072 35072 32575 32575 32979

Expint
Failure
rate (%) 4.21 0.05 2.37 0.13 T

=
1

0.13

Exec.
Cycles 9341 9341 9097 9097 9257

FIR
Failure
rate (%) 10.94 0.04 5.93 1.21 T

=
1

0.93

Exec.
Cycles 119392 119392 111769 111769 120095

Matrix
Mul.

Failure
rate (%) 9.91 0.08 5.68 1.30 T

=
1

0.17 T
=
2

0.53

Exec.
Cycles 111050 111050 111025 111025 113929 112547

NDES
Failure
rate (%) 3.99 0.04 2.09 0.42 T

=
1

0.24

Exec.
Cycles 28527 28527 27499 27499 28667

Sums
Failure
rate (%) 5.52 0.04 2.96 0.37 T

=
1

0.37

Exec.
Cycles 332 332 319 319 319

x264
Failure
rate (%) 5.21 0.09 2.94 0.33 T

=
1

0.33

Exec.
Cycles 15102 15102 15089 15089 15090

Source: The Author

similar to other commercial processors, such as the IBM Power6 microprocessor, which

has masking of 95% (RAMACHANDRAN et al., 2008).
The protected versions present the following failure rate: 0.05% for the full du-

plication, 0.75% for the spatial duplication, and 0.4% (Threshold = 1) for the spatial

with ILP reduction. The unprotected 8-issue has a lower failure rate than the unprotected

4-issue due to the elevated number of NOPs in the VLIW instruction; therefore, the prob-
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Figure 6.1: Performance Degradation when Varying the ILP Reduction Threshold
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ability of a flipping bit affect the result of an instruction is lower than on the 4-issue

configuration. The failure rate comprises the detection and correction; all errors are de-

tected, but not all can be corrected in time. Even though there is no latency for the fault

detection, the circuit delay may prevent the memory or the register file to be blocked for

writing in time. In these specific cases, the memory and register file are blocked a mo-

ment after the incorrect data began to be written, hence, generating wrong results in some

cases.
The only approach that affects the performance of the applications is the spatial

with ILP reduction; all others have no performance overhead. Figure 6.1 presents the

performance degradation (Y axis) according to the threshold (X axis). It varies from zero

to 27.25% with the threshold equal to 1 (the lowest possible value). As we increase the

threshold, the performance degradation is reduced, being negligible (less than 1%) at 3.5.

Therefore, performance is degraded as the threshold is reduced; on the other hand, fault

tolerance is increased.
Figure 6.2 depicts the trade-off between failure rate and performance of the spa-

tial duplication without and with ILP reduction, with different thresholds, normalized to

the unprotected 8-issue version. The T stands for "Threshold" for the spatial with ILP

reduction. The failure rate reduction varies from 61.68% (CJPEG executing with spatial

duplication without ILP control) to 97.09% (matrix multiplication on spatial with T = 1),

while performance degradation reaches up to 27.25% (CJPEG on spatial with T = 1),

when compared to the unprotected version.
In the CJPEG benchmark, for instance, when switching from threshold 2.5 to 1,

the failure rate is further reduced from 65.65% to 86.96% (when compared to the unpro-
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Figure 6.2: Spatial Duplication with ILP Control Normalized to the Unprotected Version
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tected 8-issue), and the performance degrades from 3.65% to 27.25% (also compared to

the unprotected version). Therefore, for this benchmark, there is a large improvement in

fault tolerance, which comes at the high cost of performance. For benchmarks such as the

ADPCM, the performance degradation of changing the threshold from 2 to 1 is greatly

increased (1.06% to 11.44%), while the fault tolerance improvement is minimal (81.96%

to 83.98%). On the other hand, other benchmarks, such as the matrix multiplication,

present high fault tolerance improvements with low impact on performance: with 2.62%

of performance degradation, the failure rate reduction goes from 77.08% (no ILP control)

to 97.09% (Threshold = 1).
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6.3.1.2 Dynamic Threshold Adaptation

In this subsection, the dynamic threshold adaptation is exploited when executing

a given application. This approach will adapt the threshold in order to cope with a given

Acceptable Failure Rate Variation (AFRV) defined a priori by the designer before execu-

tion. In this experiment, the threshold starts at its lowest value, and is gradually increased

in order to reduce the performance degradation according to the AFRV: If the failure rate

increases more than the AFRV, the threshold will be restored to its last value in order to

maintain the failure rate within the bounds defined by the user.

Figure 6.3 depicts this approach being applied to three benchmarks. The appli-

cation is executed in batches of 250 times, and for each batch, the threshold is gradu-

ally increased if the failure rate does not increase more than the AFRV (in this example,

AFRV=0.5%). Figure 6.3(a) presents the matrix multiplication benchmark, in which the

threshold is gradually increased from 1 to 3.75 without reaching the AFRV value. How-

ever, when the threshold is increased to 4, the failure rate surpasses the AFRV, which trig-

gers the threshold reduction back to 3.75 and restore the acceptable failure rate defined by

the user. In Figure 6.3(b) (ADPCM) the threshold is increased from 1 to 4 without reach-

ing the AFRV limit, and Figure 6.3(c) (CJPEG) reaches the AFRV value with a threshold

equal to 2.5, which is reduced back to 2.25 for the next executions.

Figure 6.4 presents the performance improvement and the failure rate variation that

the dynamic threshold provides when compared to the Threshold = 1. In the ADPCM

benchmark, the dynamic threshold is able to improve the performance by 11.44% with

a failure rate that varies from 0.59 (T=1) to 0.66; for the matrix multiplication: 2.61%

speedup with 0.17 to 0.53% failure rate variation; finally, for CJPEG, 0.2% speedup and

no failure rate variation. Therefore, the dynamic threshold approach can be used to reduce

the performance overhead and still maintain the failure rate within the bounds defined by

the user.

6.3.1.3 Area, Power Dissipation, and Energy Consumption

Table 6.5 presents the area (both FPGA and ASIC versions) and power consump-

tion (ASIC only) for all VLIW configurations. As it can be observed, the overhead for the

4-issue full duplication is small in terms of area and power dissipation when compared

to the unprotected 4-issue, even though the pipelines are duplicated (the area for each

checker is less than 1%). The area overhead for the FPGA is 30% in Look-Up Tables
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Figure 6.3: Dynamic Threshold Adaptation
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(LUTs) and 35% in registers; for the ASIC is 50%, while the power dissipation over-

head is 35%. For the spatial duplication without ILP control, the overhead is extremely

low: 4.6% for the FPGA and 3.5% for the ASIC, while the power dissipation overhead is

5.3%. The overhead for the spatial approach with ILP reduction is higher because of extra

control circuitry. However, the overhead is still low when compared to other techniques,

being 18.3% for the FPGA, 14.1% for the ASIC and 27.6% in power dissipation.

Therefore, each approach has its advantages depending on the target application

and its requirements. For instance, the spatial duplication approach is able to exploit idle

hardware for low ILP applications in a completely transparent manner with extremely

low overhead. For high ILP applications, the spatial with ILP reduction can guarantee

a certain amount of duplicated instructions and therefore fault tolerance. Even though
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Figure 6.4: Performance Improvement and Failure Rate Variation for the Dynamic
Threshold Approach when Compared to the Threshold=1
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Table 6.5: Area and Power Dissipation Comparison

FPGA ASIC

Registers LUTs Cells Power dissipation (nW)

Unprotected
4-issue 3,058 16,006 28,041 2,298,962.51

8-issue 3,974 35,075 66,967 7,484,818.25

Protected

Full. Dup.
(4-issue)

4,102 20,819 42,121 3,109,613.33

Spatial Dup. 4,206 36,672 69,305 7,878,161.31

Spatial with
ILP reduction

4,834 41,485 76,407 9,553,048.27

Source: The Author

the spatial duplication is able to exploit those idle slots, it is limited to duplicate the

instructions within the same bundle (in the same cycle). The temporal duplication takes

this technique one step further, by also allowing instructions that cannot be duplicated in

the same bundle to be stored in a buffer for execution in another cycle. The latter was

implemented in the dynamic version of the processor (which was simulated in this work)

and its results are presented in the Section 6.4.1.

6.3.1.4 Comparison With Other Fault Tolerance Techniques

As already mentioned, the main limitations of software-based redundancy are the

increase in the code size, energy consumption and performance overheads that come with

it. On the other hand, hardware-based redundancy approaches increase area, power dis-

sipation with little or no performance overhead. When compared to the previous works

discussed in Chapter 2, the proposed fault tolerance approaches for the static version of

the ρ-VEX processor have low detection latency, low performance and energy consump-

tion overhead, and do not modify the application’s code, which is depicted in Table 6.6.
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Table 6.6: Fault Tolerance Techniques Comparison

Technique Area
Overhead

Performance
Degradation

Power
Dissipation
Overhead

Energy
Consumption

Overhead

Code Size
Increase

Spatial Dup. 3.5% ∼0% 5.2% 30-45% 0%

Spatial Dup.
with ILP control 14.1% ∼0-27.25% 27.6% 66-88% 0%

DMR with Rollback
(XIAOGUANG et al., 2015)
(YANG; KWAK, 2010)

0% 51-100% 0% >0% N/A 100%

TMR 200% ∼0% ∼200% ∼200% 0%

Partial TMR
(CHEN; LEU, 2010) 100% 0.6-34.3% ∼100% >100% 0%

Reduced TMR
(SCHÖLZEL, 2007) 100% 0-100% ∼100% >100% >0%

TFT (WALI et al., 2015) 50% 1% 88% >0% N/A 0%

Reduced TMR - SW
(HU et al., 2005)

0% 30-60% 0% >0% N/A 100%

Flip-flops TMR
(ANJAM; WONG, 2013) 200% ∼0% ∼200% ∼200% 0%

DWC - SW
(BOLCHINI, 2003)
(HU et al., 2009)

0% 28-106% 0% >0% N/A 109-217%

DWC Opt. - SW
(MITROPOULOU;
PORPODAS; CINTRA, 2014)

0% 29% 0% >0% N/A 100-150%

Source: The Author

For instance, the fault tolerance approach developed in the scope of this thesis has lower

detection latency and simpler rollback control structure when compared to duplication

with rollback mechanisms that use checkpoints; it is able to detect and correct faults with

less hardware cost than TMR approaches (even when compared to those that apply TMR

to only some modules of the processor) when compared to other hardware-based tech-

niques (in bold). Software-based techniques (in italic) naturally do not affect the area nor

the power dissipation, but they create a performance overhead and increase the code size,

both affecting total energy consumption of the system, as the application will take longer

to execute and the memory will be more stressed (even though none of the software-based

cited approaches evaluated the energy consumption overhead); and it is suitable for both

FPGAs and ASICs, as it does not need hardware reconfiguration.
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Table 6.7: Evaluated Designs and Their Techniques for Fault Tolerance and PG on the
Static Processor

Design FT technique PG ILP Control

Unprotected None

Unprotected with PG None X

Dupl. with ILP ctrl Dupl. with rollback X

Dupl. and PG w/o ILP ctrl Dupl. with rollback X

Dupl. and PG with ILP ctrl Dupl. with rollback X X

TMR Triplication

Source: The Author

6.3.2 Spatial Duplication With Power Gating

In this section, the results for the PG mechanism together with fault tolerance

techniques are presented in terms of failure rate, performance, energy consumption, area,

and Energy-Delay-Failure Product (which will be explained later). Table 6.7 presents the

six designs that were evaluated and which techniques each design uses, as discussed next.

1. Unprotected : Baseline processor, without fault tolerance and power gating mech-

anisms (prioritizes performance);

2. Unprotected with PG : Baseline processor, without fault tolerance and with power

gating (prioritizes energy consumption);

3. Duplication with ILP control : fault tolerant only, without power gating. It dupli-

cates instructions whenever possible and splits bundles to increase fault tolerance

(prioritizes fault tolerance);

4. Duplication and PG without ILP control : fault tolerant and with power gating (it

weighs fault tolerance and power gating equally);

5. Duplication and PG with ILP control : fault tolerant, with PG and with ILP control

(it weighs more energy consumption than fault tolerance);

6. Triple Modular Redundancy (TMR) : included in the experiments for comparison

purposes only. The processor is triplicated and the results are voted in order to mask

the faults, using the traditional TMR technique (it is only fault tolerant).

The absolute results in terms of performance, energy consumption, and failure rate

for these designs are presented in Table 6.8, and the relative numbers are explained next.
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Table 6.8: Performance, Energy Consumption, and Fault Tolerance Comparison

Bench. Metric 1) Unprot.
(baseline)

2) Unprot.
with PG

3) Dup. with
ILP control

4) Dup. and PG
w/o ILP control

5) Dup. and PG
w/ ILP control 6) TMR

ADPCM
Perf. (cycles) 568 596 633 596 630 568
Energy cons. (J) 4.83E-08 4.62E-08 9.39E-08 6.88E-08 6.32E-08 1.45E-07
Failure rate (%) 3.66 3.66 0.59 0.89 0.90 0.00

DFT
Perf. (cycles) 32,575 41,630 32,979 41,630 42,024 32,575
Energy cons. (J) 2.23E-06 1.45E-06 4.09E-06 2.44E-06 2.34E-06 6.68E-06
Failure rate (%) 2.68 2.68 0.15 0.33 0.36 0.00

Engine
Perf. (cycles) 691,437 724,482 695,852 724,482 723,553 691,437
Energy cons. (J) 4.66E-05 3.08E-05 8.54E-05 5.45E-05 5.07E-05 1.40E-04
Failure rate (%) 1.80 1.80 0.24 0.27 0.34 0.00

Expint
Perf. (cycles) 9,097 9,305 9,257 9,305 9,509 9,097
Energy cons. (J) 6.36E-07 4.10E-07 1.17E-06 6.53E-07 6.45E-07 1.91E-06
Failure rate (%) 2.37 2.37 0.07 0.09 0.10 0.00

JPEG
Perf. (cycles) 1,448,615 1,620,785 1,572,092 1,620,785 1,745,014 1,448,615
Energy cons. (J) 1.13E-04 8.02E-05 2.10E-04 1.29E-04 1.18E-04 3.38E-04
Failure rate (%) 2.15 2.15 0.12 0.22 0.22 0.00

LUDCMP
Perf. (cycles) 44,558 47,222 47,545 47,222 50,076 44,558
Energy cons. (J) 3.13E-06 2.25E-06 5.93E-06 3.86E-06 3.72E-06 9.39E-06
Failure rate (%) 2.49 2.49 0.19 0.35 0.40 0.00

Mat.Mul.
Perf. (cycles) 111,025 117,563 113,929 117,563 118,057 111,025
Energy cons. (J) 7.50E-06 5.79E-06 1.39E-05 9.70E-06 8.54E-06 2.25E-05
Failure rate (%) 5.68 5.68 0.17 0.25 0.25 0.00

Minver
Perf. (cycles) 12,224 12,779 12,767 12,779 13,063 12,224
Energy cons. (J) 8.34E-07 6.40E-07 1.56E-06 1.13E-06 1.10E-06 2.50E-06
Failure rate (%) 2.77 2.77 0.34 0.49 0.63 0.00

POCSAG
Perf. (cycles) 18,926 21,247 21,027 21,247 23,302 18,926
Energy cons. (J) 1.64E-06 1.19E-06 3.13E-06 1.94E-06 1.80E-06 4.91E-06
Failure rate (%) 1.97 1.97 0.15 0.36 0.36 0.00

Qurt
Perf. (cycles) 17,972 18,691 19,016 18,691 19,554 17,972
Energy cons. (J) 1.25E-06 9.72E-07 2.37E-06 1.69E-06 1.64E-06 3.76E-06
Failure rate (%) 1.80 1.80 0.12 0.22 0.23 0.00

Sums
Perf. (cycles) 319 321 319 321 321 319
Energy cons. (J) 2.00E-08 1.66E-08 3.68E-08 3.04E-08 3.04E-08 6.01E-08
Failure rate (%) 2.96 2.96 0.27 0.30 0.30 0.00

x264
Perf. (cycles) 15,089 20,203 15,090 20,203 20,203 15,089
Energy cons. (J) 1.08E-06 7.31E-07 2.00E-06 1.18E-06 1.18E-06 3.23E-06
Failure rate (%) 2.94 2.94 0.33 0.45 0.55 0.00

Source: The Author

6.3.2.1 Performance

Figure 6.5(a) presents the relative performance overhead of the five versions when

compared to the Unprotected. As aforementioned, when power gating is being used, and a

given BB starts its execution, a given functional unit may not be completely turned on and

ready to execute instructions. When this occurs, the processor must be stalled, incurring

in performance overhead. This is the case for the Unprotected with PG and Duplication

and PG without ILP control. Both present an average performance overhead of 9.5%,

varying from 0.6% to 33.9%, as these designs do not have the ILP control mechanism

activated. When the ILP control is activated in the Duplication and PG with ILP control



107

version, more energy is saved as the power gating phases will be extended, and this design

incurs in an average performance overhead of 13%. The Duplication with ILP control,

which does not use PG, has an average overhead of 4.4%, varying from zero to 11.4%.

Finally, the TMR maintains the performance of the unprotected processor, with a huge

overhead in energy, which will be discussed next.

6.3.2.2 Energy and Area

Figure 6.5(b) shows the relative energy consumption considering the Unprotected

version as baseline once more. When applying power gating to the baseline version

(2), which does not have fault-tolerance mechanisms, the average energy consumption

is reduced by 26.3%, varying from 4.3% to 35.5%. As aforementioned, applying fault-

tolerance mechanisms increase the energy consumption of the design, resulting in an av-

erage overhead of 200% in the TMR (since the processor is triplicated), and 86.9% (from

83.4% to 94.5%) in the Duplication with ILP control version.

When compared to the Duplication with ILP control, the Duplication and PG

without ILP control is able to reduce the energy consumption by 34%, on average; and

by 37.2%, in the Duplication and PG with ILP control (from 17% to 44%). Therefore,

the Dupl. and PG approaches are able to significantly reduce the energy consumption

when compared to a protected version of the processor. Even when compared to the

Unprotected design (that does not have any fault-tolerance mechanism), the Dupl. and

PG versions consume, on average, only 23.3% and 17.4% more energy, for the version

without and with ILP control, respectively (while the non-fully adaptive Duplication with

ILP control consumes 86.9% more).

The additional modules of the proposed design with duplication, PG and ILP con-

trol incur an area overhead of only 15.05% compared to the unprotected version, which

is low considering that we have mechanisms for fault tolerance, energy optimization, and

performance management all implemented in a single processor.

6.3.2.3 Failure Rate

Figure 6.5(c) depicts the failure rate of the chosen benchmarks for each design af-

ter the fault injection campaign. The Unprotected with PG maintained the failure rate of

the Unprotected design, as no fault-tolerance mechanism is applied. Therefore, the prob-

ability of a failure occurring remains the same. However, an application being executed

with PG will take more time to be executed, which will increase the time it is exposed
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Figure 6.5: Performance, Energy Overhead, Failure Rate, and EDFP Comparison
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to energetic particles. As expected, all the other versions present lower levels of failure

rate than the Unprotected. As aforementioned, the Unprotected has, on average, 2.63%

of failure rate; while the Duplication with ILP control, 0.20%; the Duplication and PG

without ILP control, 0.31%, and the Duplication and PG with ILP control 0.34%.

The TMR executes every instruction three times and votes the correct result, so
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it is able to mask all single faults that are injected (i.e., 0% of failure rate). Obviously,

it is the best alternative when it comes to fault tolerance only. However, it has a huge

overhead in energy and area. On the other hand, the Dupl. and PG versions trade-off

energy consumption, performance, and fault tolerance. Therefore, these versions have

a slightly higher failure rate when compared to the techniques that focus only on fault

tolerance, because they will not duplicate every single instruction of the program in order

to allow energy optimization through power gating.

6.3.2.4 EDFP - Energy-Delay-Failure Product

To better analyze the trade-off among all axes (energy consumption, performance,

and fault tolerance) for each design, we extended the equation for Energy-Delay Product

(EDP) to Energy-Delay-Failure Product (EDFP). The EDFP is the product among energy

consumption, performance, and the failure rate of a given application running on a certain

processor configuration. Figure 6.5(d) presents the relative EDFP when compared to the

baseline configuration (i.e., the Unprotected processor). Note that the lower the EDFP,

the better, as the goal is to reduce the energy consumption, delay (i.e., performance over-

head) and failure rate. In addition, note that the EDFP for the TMR design will always be

zero because such configuration masks all single faults in the processor. Therefore, when

the processor is completely protected against transient faults (including protected check-

ers and voters), it is not possible to use EDFP to evaluate the trade-off as the failure rate

would be zero. This boundary-value imprecision of the EDFP metric occurs also in other

well-established fault-tolerance metrics such as the Mean Instructions to Failure (MITF)

(WEAVER et al., 2004) and MWTF (REIS et al., 2005a), which are metrics that evaluate

the performance-reliability trade-off. However, applying TMR comes with a huge over-

head in area and energy consumption (200%). The other designs are compared in terms

of EDFP next.

The average relative EDFP is of 0.81 for the Unprotected with PG, which means

that the energy optimization is proportionally higher than the performance overhead for

such design. For the Duplication with ILP control version, even though the energy con-

sumption is increased when compared to the baseline processor, the failure rate reduction

compensates such overhead, resulting in an average EDFP of 0.14. The Dupl. and PG

versions (4)-(5) have an average EDFP of 0.16 and 0.17, respectively. Therefore, these de-

signs efficiently trade-off the target metrics in order to balance the axes of fault tolerance,

energy consumption, and performance.
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6.4 Polymorphic ρ-VEX Processor

6.4.1 Temporal and Spatial Duplication Mechanism

The EDFP metric can be used to evaluate the trade-offs between fault tolerance,

performance, and energy consumption, however, only for the same configuration of the

processor (i.e., 8-issue, or 4-issue, or 2-issue). In order to compare the reliability of dif-

ferent issue-widths (that have different sensitive area and execution time), the MWTF

metric must be considered. The latter was previously presented in Section 4.3.1 and al-

lows the evaluation of the trade-off between fault tolerance and performance while taking

into account the applications’ execution time and the sensitive area of the processor. As

aforementioned, this metric was extended to the MWPUETF, which is a combination of

the MWTF with the energy consumption of the application, allowing the assessment of

the trade-off between these three axes, with different issue-widths.

6.4.1.1 Mean Work Per Unit of Energy to Failure - MWPUETF

For the evaluation of the temporal and spatial duplication mechanism, the proces-

sor is used in a static configuration and the 2, 4, and 8-issue configurations are assessed.

In Section 6.4.2, the dynamic behavior of the core will be further explored.

Figure 6.6 shows the MWPUETF for each issue-width (2, 4, and 8). In this and

in the next figures, SD means Spatial Duplication, PG Power Gating, ILPc ILP control,

and TD Temporal Duplication. In addition, it has the 8-issue as the baseline, in order to

evaluate the relation between different issue-widths.

For each configuration of the temporal duplication, there are two extra options:

enable or disable the power gating, and the buffer size. One more configuration was also

studied, a timeout mechanism, which would discard those instructions that are waiting

for too long in the buffer, in order to free space for newer instructions. On the other

hand, this mechanism did not present many improvements when compared to not having

this mechanism, which means that using low values for the timeout would imply in too

much duplicated instructions being discarded (therefore, reducing the reliability), and a

high value for the timeout would result in a similar behavior when the timeout is not

applied. In rare cases this mechanism presented an improvement in fault tolerance: by

not duplicating an instruction that was still pending to be executed, the bundle could now

be committed and another bundle could be stored for duplication in the buffer. However,
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Figure 6.6: MWPUETF Comparison
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as these results were not significant, they were omitted from this section. In the current

work, every instruction is given the same criticality, which means that there is no priority

when scheduling the duplicated instructions, the scheduling is done in a FIFO fashion. As

future work, the sensitivity of the instructions will be assessed, so the timeout mechanism

may become more important as one can discard low priority instructions in order to free

space to duplicate instructions that are more critical.

In this figure (Figure 6.6 - note that the Y axis is in logarithmic scale), the first

observation is that it is not possible to find a single configuration (in terms of issue-width)
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that will always be better than the others considering all axes and benchmarks. For in-

stance, for the CJPEG, the 8-issue delivers the best MWPUETF when the temporal du-

plication mechanism is applied, the same goes for the CRC with the 4-issue and the DFT

with the 2-issue. In addition, for most benchmarks, all configurations of the temporal

duplication are able to deliver a better result than when only spatial duplication is applied,

because it is able to exploit those slots that the spatial duplication is not able to use for

duplication, even though the power dissipation of the temporal duplication approach is

higher because of the additional buffers and control logic. By applying temporal dupli-

cation, the MWPUETF can be improved by up to 2K times (Sums with a buffer of 128)

when compared to the unprotected processor.

By increasing the buffer size, more instructions can be stored for duplication, how-

ever, more power will be dissipated by these buffers. Therefore, each benchmark will have

an ideal buffer size considering its behavior, increasing the buffer after the point where the

benchmark effectively uses it will only result in increased power dissipation, while reduc-

ing the size of the buffer may affect the reliability as fewer instructions will be stored for

the temporal duplication. A similar reasoning can be applied to the PG mechanism, which

will turn off more hardware, at the cost of reducing the number of duplicated instructions

in some cases.

Table 6.9 depicts the best configuration for each benchmark considering the MW-

PUETF metric. Each application has an ideal configuration and issue-width that needs to

be applied in order to provide the best trade-off among all axes. For these benchmarks,

the 8-issue is the best one for three benchmarks with a buffer size of 64 (with and with-

out PG) and 16 (without PG). The 4-issue is the best configuration for four benchmarks

with a buffer size varying from 16 to 128. Finally, the 2-issue is the best alternative for

four benchmarks with a buffer size of 128. When compared to the other issue-widths, the

2-issue has fewer empty slots (NOPs), because the compiler is able to find instructions

that are not independent of each other in several cases. When the issue-width is increased

to 8, the compiler often inserts NOPs to fill the slots that could not be used, as already

discussed. Therefore, the 2-issue ends up using more positions from the buffer, while in

the 8-issue a buffer of 16 is able to deliver the best outcome for the FIR benchmark.

6.4.1.2 Duplication ratio

Tables 6.10, 6.11, and 6.12 present the percentage of instructions that were dupli-

cated in each of the considered configurations. In Table 6.10, the 2-issue requires a large
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Table 6.9: Best Configuration for Each Benchmark

Buffer PG CJPEG CRC DFT Engine Expint FIR JPEG Matmult Qurt Sums x264

Unprotected False

False 8-issue 4-issue
16

True 4-issue

False
32

True

False 4-issue 8-issue
64

True 8-issue

False 4-issue

TempDup

128
True 2-issue 2-issue 2-issue 2-issue

Source: The Author

Table 6.10: Duplication Ratio - 2-issue Processor

CJPEG CRC DFT Engine Expint FIR JPEG Matmult Qurt Sums x264

Unprotected 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
SD-PG 5% 16% 21% 13% 4% 2% 17% 22% 16% 29% 12%
SD-PG-ILPc 1% 0% 0% 1% 0% 0% 0% 0% 6% 18% 0%
TD-PG(False)-Buffer(16) 42% 61% 100% 75% 9% 86% 67% 70% 94% 76% 100%
TD-PG(True)-Buffer(16) 42% 61% 100% 75% 9% 86% 67% 70% 94% 76% 100%
TD-PG(False)-Buffer(32) 57% 82% 100% 90% 10% 92% 75% 78% 98% 100% 100%
TD-PG(True)-Buffer(32) 57% 82% 100% 90% 10% 92% 75% 78% 98% 100% 100%
TD-PG(False)-Buffer(64) 87% 100% 100% 98% 10% 99% 86% 94% 99% 100% 100%
TD-PG(True)-Buffer(64) 87% 100% 100% 98% 10% 99% 86% 94% 99% 100% 100%
TD-PG(False)-Buffer(128) 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
TD-PG(True)-Buffer(128) 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Source: The Author

buffer for most benchmarks in order to duplicate all, or almost all instructions. Also, the

buffer of 128 is large enough to provide duplication for all instructions in these bench-

marks. When compared to the spatial duplication, the temporal mechanism is able to

duplicate much more instructions as it exploits the empty slots in different time frames

and while the processor is waiting for the memory.

The 4-issue core (Table 6.11), presents elevated duplication ratio with an interme-

diate buffer size, while the 8-issue (Table 6.12) is able to duplicate most instructions with

small buffers, due to the increased amount of NOPs in the code generated by the compiler

and because it is able to execute eight instructions in each cycle on a cache miss (com-

pared to only two instructions per cycle in the 2-issue). Note that even for applications

that are able to duplicate 100% of the instructions, the checker still remains vulnerable to

faults and such vulnerability is considered in the reliability evaluation.
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Table 6.11: Duplication Ratio - 4-issue Processor

CJPEG CRC DFT Engine Expint FIR JPEG Matmult Qurt Sums x264

Unprotected 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
SD-PG 14% 39% 23% 78% 48% 10% 28% 75% 50% 76% 12%
SD-PG-ILPc 7% 8% 5% 26% 2% 0% 12% 5% 21% 63% 1%
TD-PG(False)-Buffer(16) 46% 100% 100% 100% 100% 50% 66% 100% 97% 100% 100%
TD-PG(True)-Buffer(16) 46% 94% 100% 100% 76% 31% 66% 100% 97% 100% 100%
TD-PG(False)-Buffer(32) 64% 100% 100% 100% 100% 100% 70% 100% 99% 100% 100%
TD-PG(True)-Buffer(32) 64% 100% 100% 100% 93% 90% 72% 100% 99% 100% 100%
TD-PG(False)-Buffer(64) 97% 100% 100% 100% 100% 100% 76% 100% 100% 100% 100%
TD-PG(True)-Buffer(64) 97% 100% 100% 100% 100% 97% 87% 100% 100% 100% 100%
TD-PG(False)-Buffer(128) 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
TD-PG(True)-Buffer(128) 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Source: The Author

Table 6.12: Duplication Ratio - 8-issue Processor

CJPEG CRC DFT Engine Expint FIR JPEG Matmult Qurt Sums x264

Unprotected 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
SD-PG 44% 59% 18% 19% 4% 29% 23% 37% 44% 64% 1%
SD-PG-ILPc 15% 3% 7% 0% 2% 11% 2% 0% 30% 64% 1%
TD-PG(False)-Buffer(16) 85% 100% 100% 100% 98% 100% 84% 100% 97% 100% 100%
TD-PG(True)-Buffer(16) 85% 100% 100% 100% 98% 91% 84% 100% 97% 100% 100%
TD-PG(False)-Buffer(32) 99% 100% 100% 100% 100% 100% 92% 100% 99% 100% 100%
TD-PG(True)-Buffer(32) 99% 100% 100% 100% 100% 100% 92% 100% 99% 100% 100%
TD-PG(False)-Buffer(64) 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
TD-PG(True)-Buffer(64) 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
TD-PG(False)-Buffer(128) 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
TD-PG(True)-Buffer(128) 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Source: The Author

6.4.1.3 Performance

Figure 6.7 presents the performance overhead for each configuration when running

the benchmarks in each issue-width. The average performance overhead for the spatial

duplication with PG is of 1.10%, 2.89%, and 3.10% for the 2, 4, and 8-issue respectively.

When the ILP control is applied to this technique, the overhead is increased to 23.25%,

8.43%, and 5.76%. When the Temporal duplication is added without applying PG and

with a buffer size of 128, the average overhead is of: 27.80%, 7.39%, and 1.25% for

the 2, 4, and 8-issue. Finally, when the PG is turned on, the overhead goes to 31.29%,

15.47%, and 12.78%. Considering only the spatial duplication, the PG results in more

overhead in the 8-issue configuration because it has more opportunity to apply the power

gating, which means that it will be applied more frequently and consequently it will incur

in more overhead when the required FU needs to be turned on. On the other hand, the

2-issue is only able to apply PG to a reduced number of phases, because the pipelanes are
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Figure 6.7: Performance Overhead Comparison
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occupied with program instructions most of the time.

For the temporal duplication, when the PG is applied, the buffers are stressed due

to the reduction of the empty slots (slots that were going to be used to execute dupli-

cated instructions are now turned off). In addition, there is also the overhead of the PG

mechanism. When the temporal duplication is applied, the 2-issue results in a higher

performance overhead than the 4 and 8-issue because there are fewer empty slots for the

execution of the duplicated instructions and because it is able to execute only two instruc-
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tions per cycle when a cache miss occurs, as aforementioned. The maximum overhead

is of 81% for the Expint benchmark with a buffer size of 128, note that this benchmark

was able to duplicate only 9-10% of the instructions with a small buffer size, but when

the buffer is increased to 128, it is able to duplicate 100% of the instructions (resulting in

more performance overhead).

6.4.1.4 Energy and Area

Figure 6.8 depicts the relative energy consumption when applying a protection

technique to each issue-width. As the temporal duplication increases considerably the

number of instructions that are duplicated, the energy consumption is also increased be-

cause the modules will have more switching activity, thus more power dissipation. As

the energy consumption is also relative to the execution time, the 2-issue core presents a

higher overhead in energy due to its reduced performance. The maximum energy over-

head appears in the Expint benchmark with 128 buffer and without PG, being of 2.8

times. This overhead is due to the execution of more (duplicated) instructions, reduc-

tion in performance, and the additional power dissipation of the modules, buffers, and

memories from the temporal duplication mechanism. On average, the temporal duplica-

tion increases the energy consumption by 65.04%, 30.17%, and 43.30% for the 2, 4, and

8-issue. The 4-issue presents the lowest energy overhead because the 2-issue has high

performance overhead, while the 8-issue has elevated power dissipation, both influencing

the energy consumption.

Table 6.13 presents the area of each configuration compared to the unprotected

processor that includes cache memories. Even though these results are for the polymor-

phic processor, in this table, the results are presented for each static configuration in order

to allow the comparison of different issue-widths. Increasing the buffer size naturally

increases the area, so as applying PG. The cache configuration is the same from the poly-

morphic core, that is, the 8-issue has a 16KB cache, the 4-issue 8KB, and the 2-issue 4KB.

The maximum overhead is of 13.83% on the 8-issue temporal duplication with PG and a

buffer size of 128, and it can be as low as 1.56% on the 2-issue with a buffer size of 16,

without PG. The area for the whole polymorphic processor, including the configuration

memory and the polymorphic buffers will be discussed in the next subsection.
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Figure 6.8: Relative Energy Consumption Comparison
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6.4.2 Optimization Algorithm

In this subsection, first, the number of steps required by the polymorphic processor

to find the best configuration for each application will be evaluated. Then, its ability

to cope with different applications’ behavior will be evaluated through the MWPUETF

metric. Finally, the performance and energy to execute all applications will be compared.

6.4.2.1 Number of Steps to Find the Best Configuration

Considering that we are evaluating a total of 27 possible configurations (unpro-

tected: 3 issue-widths, and temporal duplication: 4 buffer sizes, 3 issue-widths, and en-

able or disable the PG), the maximum number of steps that the optimization algorithm
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Table 6.13: Area Comparison - Temporal Duplication Mechanism

Area (mm2) Area Overhead

2-issue 4-issue 8-issue 2-issue 4-issue 8-issue

Unprotected 0.530 0.686 1.038 0.00% 0.00% 0.00%
SD-PG 0.548 0.721 1.097 3.37% 5.00% 5.68%
SD-PG-ILPc 0.548 0.721 1.097 3.37% 5.00% 5.68%
TD-PG(False)-Buffer(16) 0.539 0.703 1.086 1.56% 2.38% 4.63%
TD-PG(True)-Buffer(16) 0.549 0.722 1.119 3.41% 5.13% 7.76%
TD-PG(False)-Buffer(32) 0.542 0.708 1.096 2.20% 3.13% 5.60%
TD-PG(True)-Buffer(32) 0.552 0.727 1.129 4.04% 5.88% 8.73%
TD-PG(False)-Buffer(64) 0.549 0.719 1.112 3.41% 4.79% 7.14%
TD-PG(True)-Buffer(64) 0.558 0.738 1.145 5.26% 7.54% 10.27%
TD-PG(False)-Buffer(128) 0.562 0.737 1.149 5.90% 7.38% 10.70%
TD-PG(True)-Buffer(128) 0.572 0.756 1.182 7.75% 10.13% 13.83%

Source: The Author

Table 6.14: Number of Kernel Executions and Number of Steps to Find the Best Config-
uration

CJPEG CRC DFT Engine Expint FIR JPEG Matmult Qurt Sums x264

Num. of steps 19 19 23 19 21 17 19 19 19 19 23
Num. of iterations 215500 400 44440 200 40000 600 200 250 2000 138500 1000

Tests-Iterations ratio 0.01% 4.75% 0.05% 9.50% 0.05% 2.83% 9.50% 7.60% 0.95% 0.01% 2.30%

Source: The Author

will perform is 27. Table 6.14 presents the number of executions for each kernel (as

previously discussed in Section 6.1.1), and the number of steps required to find the best

configuration for each application. For these benchmarks, the number of tests varies from

17 to 23. Thus, the optimization algorithm is able to find the best configuration without

evaluating all possible scenarios. The average number of tests is 19.65.

This table also shows the ratio between the number of tests and iterations, which

vary from 0.01% to 9.5%, the latter occurs in the Engine and JPEG applications: 19 out of

200 kernel executions are performed by the learning phase, then, the other 181 iterations

are executed in the best configuration. Each execution is already an iteration of the kernel

and the learning phase contributes to the final result of the application, a given iteration

is not executed twice after finding the best configuration. There are two main behaviors

regarding the performance of the tests, for instance, if a given benchmark has the 4-issue

as the best issue-width, it will start testing on the 2-issue mode, which will incur in a small

performance overhead in the first 8 iterations (which is a small part of the application).

The opposite can also occur, if the application has the 2-issue as the best configuration,
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the algorithm will also test some configurations of the 4-issue to make sure that it found

the best configuration for that benchmark. In this case, the benchmark will improve its

performance while the 4-issue testing is being performed. In addition, all overheads for

the configuration switching are taken into account as discussed in Section 6.1, which are

lower than 0.003% in terms of performance for all benchmarks.

6.4.2.2 MWPUETF Comparison with the Same Weight for All Axes

In order to evaluate the proposed polymorphic processor, we compared it to the un-

protected versions and to the best static configuration on average from the configurations

evaluated in Section 6.4.1, for each issue-width. In addition, each static configuration is

able to execute multiple applications concurrently (four 2-issue applications, two 4-issue,

or one 8-issue). An Oracle processor is used for comparison and each of these configura-

tions is detailed next.

• Unprotected 2-2-2-2 : Unprotected dynamic processor with four contexts, each one

executing one application in 2-issue mode.

• Unprotected 4-4 : Unprotected processor with two contexts, 4-issue each.

• Unprotected 8 : Unprotected processor with a single 8-issue context.

• Temporal Duplication 2-2-2-2 : On average, the best 2-issue configuration is the

128 buffer with PG. Also, four applications can be executed in parallel in this con-

figuration.

• Temporal Duplication 4-4 : The best configuration for the 4-issue is also the 128

buffer with PG and it runs two contexts.

• Temporal Duplication 8 : The 8-issue has a 64 buffer without PG as the best con-

figuration, running a single context.

• Polymorphic Processor : The polymorphic processor is able to switch between

different issue-widths and configurations considering fault tolerance, energy op-

timization, and performance. Each benchmark is dynamically tested and the best

configuration is found according to the aforementioned optimization algorithm (Al-

gorithm 1).

• Oracle Processor : The oracle processor executes all applications in the best possi-

ble configuration for each one, providing an upper bound for comparison.

Figure 6.9 presents the MWPUETF of each benchmark when executed with the

best (average) configuration, and it is compared to the proposed polymorphic proces-

sor and the oracle processor. The results are normalized to the Unprotected 8 and they
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Figure 6.9: MWPUETF Comparison - Polymorphic Processor
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are presented for each application individually, the performance and energy consumption

when the applications are scheduled and executed in parallel will be evaluated in the next

subsection.

When comparing only the static versions, each configuration is the most appro-

priate for a subset of applications. On average, the Temporal Duplication 4-4 achieves

an improvement of 129 times when compared to the unprotected version. However, this

value is still low when compared to the Oracle Processor, that is able to achieve a factor

of 458 times, on average. Therefore, there is not one specific configuration or issue-width

that is able to deliver the best result when the axes of fault tolerance, energy consumption,

and performance are considered, supporting the motivation that a dynamic mechanism

is required to provide a processor that is able to efficiently adapt itself according to the

application at hand.

The results for the Polymorphic Processor in Figure 6.9 depict that it is able to

choose the best configuration dynamically after a brief period of learning and it is able

to adapt the processor to cope with all applications’ behavior, delivering a MWPUETF

improvement close to the oracle. Table 6.15 presents the results normalized to the Oracle

Processor. The Polymorphic Processor is able to get from 86.01% to 99.99% of the

oracle’s result, having an average of 94.88%. This means that the Polymorphic Processor

is able to deliver almost the same result as the Oracle Processor, but in a completely

dynamic manner. On the other hand, the best static configuration (Temporal Duplication

4-4) is only able to achieve 28.24% of the result from the Oracle Processor. In addition,

if one decides to restrict the tests to configurations that are most likely to result in higher

improvements, for instance, by eliminating the test of the unprotected configurations, the

Polymorphic Processor can get even closer to the Oracle Processor, as fewer tests will

be performed to find the best configuration.
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Table 6.15: MWPUETF Normalized to the Oracle Processor
Temporal duplication Polymorphic

2-2-2-2 4-4 8

CJPEG 0.71% 1.68% 99.14% 99.99%
CRC 0.80% 96.40% 16.79% 90.36%
DFT 100.00% 30.06% 5.61% 99.95%
Engine 100.00% 45.12% 7.54% 89.81%
Expint 2.45% 99.65% 33.69% 99.90%
FIR 1.27% 2.19% 95.57% 96.24%
JPEG 6.36% 14.06% 98.89% 86.01%
Matmult 0.59% 80.28% 12.67% 87.21%
Qurt 100.00% 52.98% 10.00% 99.10%
Sums 100.00% 34.25% 5.63% 99.98%
x264 61.02% 92.85% 14.56% 96.78%

Average 9.21% 28.24% 20.24% 94.88%

Source: The Author

Finally, the Polymorphic Processor was able to find the best configuration for

all benchmarks, running most of the application in such configuration (Table 6.9). The

small decrease in the final MWPUETF is due to the learning phase, which executes the

application in a sub-optimal configuration, but still delivers a result that is close to the

Oracle Processor in all benchmarks. On average, the Polymorphic Processor is able to

improve the MWPUETF by 434 times, when compared to the Unprotected 8. All modules

for the polymorphic processor, including the fault tolerance and PG mechanisms, result

in an area overhead of 26.82% when compared to the unprotected processor.

6.4.2.3 MWPUETF Comparison with Different Weights for Each Axis

In this subsection, we evaluate the MWPUETF metric with different weights for

each axis, prioritizing a specific axis. The complete comparison was included to Appendix

B, and here we will focus on the most significant configuration for each axis, which was

using a factor of 0.8 to each of the axes. Therefore, the a, b, and c from Equation (4.4)

are set to all combinations of 0.8, 0.1, and 0.1, prioritizing one axis at a time.

The static configurations are chosen in the same way as the ones from Section

6.4.2.2. That is, the unprotected versions are evaluated with 2, 4, and 8 issue-slots, and

the protected configurations are based on the best configuration on average for all bench-

marks. Table 6.16 depicts the best static configuration for each issue-width when priori-

tizing each of the axes.
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Table 6.16: Best Static Configuration When Prioritizing Each of the Axes

Temporal Duplication

2-2-2-2 4-4 8

Priority Buffer PG Buffer PG Buffer PG

Energy Consumption 128 True 32 True 64 False
Performance 128 True 128 False 64 False
Fault Tolerance 128 True 128 False 128 False

Source: The Author

Table 6.17 presents the best configuration for each benchmark when the energy

consumption axis is prioritized. As we increase the weight of energy consumption, the

2 and 4-issue are prioritized, as well as smaller buffer sizes and low overhead config-

urations, because they consume less energy. Table 6.18 presents the results from the

static and polymorphic configurations when normalized to the Oracle Processor. As

most benchmarks tend to use similar configurations when the energy is prioritized (i.e.,

small issue-width), the static versions are able to get closer to the oracle. The Tempo-

ral Duplication 2-2-2-2 achieves 85.95% of the oracle’s result on average, the 4-issue

90.77%, and the 8-issue 59.82%. The best unprotected configuration achieves 84.33%

(Unprotected 2-2-2-2). Nonetheless, the Polymorphic Processor still is able to provide

better adaptation to the changing applications, achieving 95.35%.

Table 6.17: Best Configuration - Priority: Energy (0.8)

Buffer PG CJPEG CRC DFT Engine Expint FIR JPEG Matmult Qurt Sums x264

Unprotected False 2-issue 2-issue 2-issue 2-issue

False 4-issue
16

True 4-issue 4-issue

False 4-issue
32

True

False
64

True 4-issue

False

TempDup

128
True 2-issue 2-issue

Source: The Author
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Table 6.18: MWPUETF Normalized to the Oracle Processor - Priority: Energy Consump-
tion

Unprotected Temporal duplication Polymorphic

2-2-2-2 4-4 8 2-2-2-2 4-4 8

CJPEG 100.00% 92.65% 69.20% 71.51% 87.38% 88.49% 99.99%
CRC 96.27% 79.90% 54.89% 89.40% 87.85% 62.91% 92.63%
DFT 68.84% 59.04% 41.13% 100.00% 90.75% 48.50% 99.96%
Engine 73.46% 58.14% 37.54% 91.11% 99.13% 52.16% 87.74%
Expint 100.00% 79.15% 54.22% 94.08% 77.50% 55.33% 99.96%
FIR 100.00% 94.13% 66.73% 69.83% 94.30% 77.46% 96.32%
JPEG 100.00% 89.47% 64.09% 83.28% 92.79% 69.25% 89.46%
Matmult 76.32% 61.26% 40.26% 60.36% 99.03% 50.48% 87.88%
Qurt 70.96% 58.87% 40.64% 98.80% 95.44% 56.75% 98.58%
Sums 68.72% 49.96% 35.51% 100.00% 89.95% 51.93% 99.99%
x264 84.64% 69.08% 45.66% 99.53% 86.55% 56.43% 97.68%

Average 84.33% 70.41% 48.64% 85.95% 90.77% 59.82% 95.35%

Source: The Author

Table 6.19 depicts the best configurations when prioritizing performance. As we

increase the weight of performance, the 4 and 8-issue are prioritized, as they deliver better

performance than the 2-issue. The 8-issue does not greatly improve the performance when

compared to the 4-issue, so even when prioritizing the axis of performance, it does not

outweigh the extra energy consumption of the 8-issue core for most benchmarks. Table

6.20 shows the results normalized to the Oracle Processor. From the static configurations,

the Temporal Duplication 8 achieves 87.85%, followed by the 4-issue with 87.56%, and

the 2-issue with 69.52%. The same reasoning of the energy prioritization can be applied to

the performance one, it narrows the set of possible configurations for the static processor

as benchmarks tend to use higher issue-widths when more performance is desired. Thus,

being able to achieve better results when compared to the scenario in which all axes have

the same weight. The Polymorphic Processor gets to 96.97% compared to the oracle.

Finally, Table 6.21 shows the configurations with focus on the fault tolerance axis.

Prioritizing the fault tolerance axis does not have a clear trend when its weight is increased

because such behavior highly depends on the application behavior and the number of in-

structions that each configuration is able to duplicate. That is, applications with low ILP

can duplicate most instructions with a small issue-width, while applications with high

ILP require larger issue-widths and buffer sizes. Table 6.22 presents the results when nor-

malized to the Oracle Processor, prioritizing fault tolerance. The Temporal Duplication

8, on average, gets to 35.45% of the oracle’s result, the 4-issue 34.96%, and the 2-issue

14.06%. As expected, the results for the unprotected versions when prioritizing fault tol-
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Table 6.19: Best Configuration - Priority: Performance (0.8)

Buffer PG CJPEG CRC DFT Engine Expint FIR JPEG Matmult Qurt Sums x264

Unprotected False

False 8-issue 4-issue
16

True 4-issue 4-issue

False
32

True

False 4-issue 8-issue
64

True 8-issue 4-issue

False 4-issue

TempDup

128
True 2-issue 2-issue

Source: The Author

Table 6.20: MWPUETF Normalized to the Oracle Processor - Priority: Performance

Unprotected Temporal duplication Polymorphic

2-2-2-2 4-4 8 2-2-2-2 4-4 8

CJPEG 36.39% 51.77% 59.50% 35.86% 56.66% 99.91% 99.99%
CRC 52.20% 57.72% 53.69% 54.68% 99.63% 83.76% 93.72%
DFT 51.47% 56.12% 56.09% 99.34% 97.84% 87.11% 99.96%
Engine 56.08% 56.03% 52.91% 100.00% 96.02% 80.99% 94.65%
Expint 68.38% 65.73% 62.57% 68.78% 99.96% 91.37% 99.94%
FIR 46.91% 60.55% 60.44% 48.79% 65.16% 99.55% 97.23%
JPEG 54.84% 66.73% 66.31% 60.29% 77.78% 99.89% 91.67%
Matmult 52.47% 53.21% 48.69% 57.50% 97.83% 81.35% 92.84%
Qurt 54.87% 57.93% 56.72% 97.28% 98.93% 86.57% 99.04%
Sums 50.85% 48.98% 47.93% 100.00% 89.84% 77.13% 99.99%
x264 52.70% 57.77% 52.41% 83.21% 99.26% 82.53% 98.16%

Average 51.95% 57.28% 55.85% 69.52% 87.56% 87.85% 96.97%

Source: The Author

erance are extremely low (it does not have any fault tolerance mechanism), being 0.99%

at most on the Unprotected 2-2-2-2. As in all the other comparisons, the Polymorphic

Processor is able to adapt the processor configuration to the application at hand, both

when all axes have the same weight or when a given axis is prioritized, and it achieves

95.37% when the priority is fault tolerance.
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Table 6.21: Best Configuration - Priority: Fault tolerance (0.8)

Buffer PG CJPEG CRC DFT Engine Expint FIR JPEG Matmult Qurt Sums x264

Unprotected False

False 8-issue 4-issue
16

True 4-issue

False
32

True

False 8-issue 4-issue 8-issue
64

True

False 4-issue

TempDup

128
True 2-issue 2-issue 2-issue 2-issue

Source: The Author

Table 6.22: MWPUETF Normalized to the Oracle Processor - Priority: Fault Tolerance

Unprotected Temporal duplication Polymorphic

2-2-2-2 4-4 8 2-2-2-2 4-4 8

CJPEG 1.21% 1.13% 1.20% 2.46% 3.58% 99.46% 99.99%
CRC 0.98% 0.89% 0.67% 1.64% 99.63% 31.84% 92.28%
DFT 0.39% 0.35% 0.30% 100.00% 39.08% 13.19% 99.96%
Engine 0.68% 0.58% 0.49% 100.00% 50.15% 16.25% 90.67%
Expint 2.82% 2.42% 1.88% 3.16% 99.96% 62.44% 99.93%
FIR 1.47% 1.48% 1.29% 3.00% 3.50% 99.25% 95.71%
JPEG 3.14% 3.56% 2.70% 8.85% 16.09% 99.62% 85.42%
Matmult 0.59% 0.56% 0.38% 1.69% 97.83% 30.83% 89.93%
Qurt 0.80% 0.71% 0.61% 100.00% 57.70% 19.55% 99.33%
Sums 0.33% 0.32% 0.28% 100.00% 43.23% 14.06% 99.98%
x264 1.42% 1.04% 0.65% 73.68% 99.26% 31.27% 97.30%

Average 0.99% 0.91% 0.73% 14.06% 34.96% 35.45% 95.37%

Source: The Author

6.4.2.4 System Performance and Energy Consumption

Figure 6.10 presents the comparison in terms of performance and energy of a sys-

tem that will schedule and execute the 11 applications that are being evaluated, for the un-

protected, temporal duplication, and polymorphic designs. Considering the performance

(Figure 6.10(a)) of the unprotected versions, the Unprotected 4-4 is able to execute the

11 benchmarks faster than the 2- and 8-issue versions, this is because the 4-issue is able

to execute two applications in parallel, while the performance improvement of the 8-issue

does not compensate the fact that it can only execute a single context. The Unprotected

2-2-2-2 is also faster than the 8-issue, even though each application takes more time to

execute, four applications can be executed in parallel.
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Figure 6.10: System Performance and Energy Consumption Comparison
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The temporal duplication designs follow the same trend as the unprotected ones,

with an overhead for the temporal duplication and PG mechanisms, which is of 21%

for the Temporal Duplication 2-2-2-2. The Polymorphic Processor will execute each

application in its best configuration (after the learning phase), so the issue-width is not

fixed, and the dispatcher needs to fill the pipelanes with up to four applications in parallel.

As discussed in Chapter 4, the dispatcher prioritizes the benchmarks with longer execution

time to be scheduled first and then tries to schedule as many benchmarks in parallel as

possible, in order to increase the flexibility of scheduling the remaining applications. The

Polymorphic Processor presents a similar performance to the Temporal Duplication 8,

because it has to schedule applications with different issue-width and shut down the slots

that cannot be used in a given instant of the execution.

Considering energy consumption (Figure 6.10(b)), the 8 and 4-issue version con-

sume more energy due to the increased power dissipation, even though the performance

of the 4-4 is better than the 2-2-2-2. The Polymorphic Processor is able to achieve 34%

less energy consumption when compared to the Temporal Duplication 8, 2% more than

the Temporal Duplication 4-4 and 26% more than the Temporal Duplication 2-2-2-2.

Therefore, the proposed Polymorphic Processor is able to dynamically choose the

most appropriate processor configuration for each application with low overhead, and it
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achieves results close to the Oracle Processor when the trade-off among fault tolerance,

energy consumption, and performance is considered.
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7 CONCLUSION AND FUTURE WORK

7.1 Summary of Contributions

In this work, a polymorphic and adaptive processor was developed to trade-off the

axes of fault tolerance, energy consumption, and performance, by implementing specific

mechanisms for each of these axes. In addition, these mechanisms together with the

processor configuration are tuned during runtime to deliver the best trade-off between

these axes by a multi-objective optimization algorithm.

The fault tolerance and ILP control mechanisms are able to provide a significant

reduction in the failure rate with modest hardware cost. The PG mechanism provides

support for reducing the energy consumption of the processor, reducing the energy over-

head that is created when executing duplicated instructions or reducing the base energy

consumption when it is used to shut down idle hardware. In addition, simulators were

developed to mimic and exploit the dynamic version of the ρ-VEX processor to allow the

configuration of the processor to be changed during runtime, and the proposed mecha-

nisms were also developed with dynamically reconfigurable features such as the buffer

sizes and the ability to enable or disable the PG mechanism.

For the polymorphic processor, the multi-objective optimization algorithm dynam-

ically tests the applications that are being executed and chooses the best configuration of

the processor to maximize the MWPUETF, which is able to achieve results within 94.88%

of the results of an oracle, on average. This demonstrates that the optimization algorithm

can quickly and accurately select the optimal configuration for each benchmark and it

allows the weight of each axis to be tuned during design time, so the polymorphic pro-

cessor can choose, during runtime, the best configuration based on system requirements.

In addition, the application dispatcher maximizes the number of applications executing in

parallel to exploit the available hardware.

Finally, a hybrid fault injector was proposed to speed up the fault injection cam-

paign by simulating the target design in two different modes: RTL and gate-level. There-

fore, executing most of the application in the accelerated mode (RTL) and automatically

switching to the gate-level simulation when the fault is going to be injected, so the accu-

racy of the fault injection is maintained.
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7.2 Future Work

As future work, some possible extensions to the polymorphic processor are dis-

cussed next.

7.2.1 Additional Techniques for Energy Optimization

Additional techniques energy optimization may be integrated into the proposed

polymorphic processor. For instance, DVFS can be evaluated as it is used in most of the

current processors, but having in mind that it may affect reliability when operating in low

voltage levels. In addition, PG can be applied to the register file as well, reducing the

energy consumption when the application does not use all the registers that are available

in the design.

7.2.2 Support for Multithreaded Applications

ρ-VEX support for OpenMP is currently being developed. Therefore, the proposed

polymorphic processor can be extended to support multithreaded applications in addition

to multiple (single-threaded) applications running concurrently. Possibly minor changes

in the proposed design would be required for such extension, as they can be applied to

individual threads in the same way they are applied to different applications. Therefore,

each thread can be evaluated individually and the best configuration for each thread can

be applied.

7.2.3 Criticality-aware Duplication

Instructions have different criticality and different probabilities of being affected

by a energetic particle. For example, a memory operation that is affect by a energy particle

will likely result in wrong computation as the data or the address of the operation will be

incorrect. On the other hand, an AND operation with one input in ’0’ will result in the

same result regardless of the other (possibly faulty) input. In addition, the probability of

an instruction being affected by an energetic particle also depends on the hardware area

that such instruction requires. For instance, a multiplication operation will likely be more
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affected than an ADD (as the multiplier occupies more area than the adder). Therefore, the

proposed processor can be extended to consider these different probabilities and criticality

to prioritize the duplication of critical instructions.

7.2.4 ILP Control for the Polymorphic Processor

As previously discussed, the ILP control used in the adaptive version (which was

implemented in the static version of the ρ-VEX) was not used in the polymorphic ver-

sion because the temporal duplication provides the flexibility of duplicating instructions

in different clock cycles, so if the same ILP control mechanism was to be implemented,

additional performance overhead would be created while those instructions could be du-

plicated in a cache miss, for instance. Therefore, a more complex ILP control mechanism

is required, which considers the temporal duplication behavior to decide when to reduce

the ILP of the application.

7.2.5 Improved Application Dispatcher

In this work, a simple mechanism was implemented to schedule the applications,

sorting them by execution time in order to increase the flexibility of the scheduling. How-

ever, more complex approaches can be evaluated in order to further reduce the total exe-

cution time and perform a scheduling closer to the optimal.

7.3 Publications

The publications that were achieved by the author during the thesis period are

listed next.

7.3.1 Journals

• Dynamic Trade-off among Fault Tolerance, Energy Consumption, and Performance

on a Multiple-issue VLIW Processor, IEEE Transactions on Multi-Scale Com-

puting Systems, (SARTOR et al., 2017).
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• Exploiting Idle Hardware to Provide Low Overhead Fault Tolerance for VLIW

Processors, ACM Journal on Emerging Technologies in Computing Systems

(JETC), (SARTOR et al., 2017).

• Multi-architecture profiler for Android, International Journal of High Perfor-

mance Systems Architecture (IJHPSA), (SARTOR; BECK, 2017).

7.3.2 Conferences and Workshops

• Adaptive and Polymorphic VLIW Processor to Optimize Fault Tolerance, Energy

Consumption, and Performance, ACM International Conference on Computing

Frontiers, (SARTOR et al., 2018)

• ISA-DTMR: Selective Protection in Configurable Heterogeneous Multicores, In-

ternational Symposium on Applied Reconfigurable Computing (ARC), (ERICH-

SEN et al., 2018).

• A Low-Cost BRAM-based Function Reuse for Configurable Soft-Core Processors

in FPGAs, International Symposium on Applied Reconfigurable Computing

(ARC), (BECKER et al., 2018).

• DIM-VEX: Exploiting Design Time Configurability and Runtime Reconfigurabil-

ity, International Symposium on Applied Reconfigurable Computing (ARC),

(SOUZA et al., 2018).

• Simbah-FI: Simulation-Based Hybrid Fault Injector, Brazilian Symposium on Com-

puting Systems Engineering (SBESC), (SARTOR; BECKER; BECK, 2017).

• Adaptive ILP control to increase fault tolerance for VLIW processors, Interna-

tional Conference on Application-specific Systems, Architectures and Proces-

sors (ASAP), (SARTOR; WONG; BECK, 2016).

• Run-time Phase Prediction for a Reconfigurable VLIW Processor, Design, Au-

tomation and Test in Europe Conference and Exhibition (DATE), (GUO et al.,

2016)

• How Programming Languages and Paradigms Affect Performance and Energy in

Multithreaded Applications, Brazilian Symposium on Computing Systems En-

gineering (SBESC), (MAGALHAES et al., 2016).

• A Novel Phase-Based Low Overhead Fault Tolerance Approach for VLIW Proces-

sors, IEEE Computer Society Annual Symposium on VLSI (ISVLSI), (SAR-
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TOR et al., 2015).

• The Impact of Virtual Machines on Embedded Systems, IEEE Computer Soft-

ware and Applications Conference (COMPSAC), (SARTOR; LORENZON; BECK,

2015).

• Evaluation of energy savings on a VLIW processor through dynamic issue-width

adaptation, International Symposium on Rapid System Prototyping (RSP), (GI-

RALDO et al., 2015).

• Evaluation of Failures Masking Across the Software Stack, MEDIAN Workshop,

(SANTINI et al., 2015).

• The Influence of Parallel Programming Interfaces on Multicore Embedded Sys-

tems, IEEE Computer Software and Applications Conference (COMPSAC),

(LORENZON et al., 2015b).

• Optimized Use of Parallel Programming Interfaces in Multithreaded Embedded Ar-

chitectures, IEEE Computer Society Annual Symposium on VLSI (ISVLSI),

(LORENZON et al., 2015a).

• A sparse VLIW instruction encoding scheme compatible with generic binaries, In-

ternational Conference on ReConFigurable Computing and FPGAs (ReCon-

Fig), (BRANDON et al., 2015).

• A Transparent Multiple-ISA MPSoC Architecture, Workshop on SoCs, Hetero-

geneous Architectures and Workloads, (SARTOR et al., 2014).
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APPENDIX A — PHASE-CONFIGURABLE DUPLICATION

This appendix presents a technique that was also implemented, but it was not

integrated to any version of the proposed processor due to its static application profiling

requirement.

Many programs have wildly different behavior during its execution. During one

part, it can have high Instruction-Level Parallelism (ILP), while in another extremely low

ILP (for example, due to memory-intensive operations). Each part is called phase, which

can be defined as a set of intervals within a program’s execution that have similar behavior,

regardless of temporal adjacency (SHERWOOD et al., 2003). Taking advantage of phase

information allows the use of several optimization mechanisms to increase fault tolerance

or reduce energy consumption.

In this first fault tolerance approach, idle pipelanes during a whole program phase

(i.e., a sequence of instructions words that always have No-Operations (NOPs) in specific

issue slots) are used to execute duplicated instructions from other pipelanes. The first step

for this approach is to profile the application, in order to detect the phases. After that, a

table indexed by the program counter (32 bits) and containing the configuration of each

application’s phase (4 bits) is created. The phase configuration represents the function

of each pipelane in a given phase, informing whether each issue slot will execute regular

instructions of the application or execute duplicated instructions from another pipelane.

Based on this table, the processor will dynamically change the function of the pipelanes

and will enable or disable the checkers in each phase.

The profiling was performed for all applications from our benchmark set. The

results for five benchmarks are depicted in Figure A.1. The dots demonstrate when a given

pipelane, identified by its ID (Y-axis), is being used (i.e., executing program instructions)

in a given moment of the application’s execution (X-axis). The profiling for the other five

benchmarks has a similar behavior to the one from the Matrix Multiplication benchmark

(i.e., there are no idle phases). The idle phases that were used to execute duplicated

instructions are highlighted in Figure A.1 (empty blocks in Figure A.1(a/b/d/e)). The

blank areas of a given pipelane ID represent a period of time in which this pipelane is idle

(executing NOPs only). The idle phases are detected when a given pipelane spends more

than 5% of the execution time of the application only executing NOPs (note that other

values can be chosen to the detection of these phases, but in this work, we restrained

ourselves with only this value in order to evaluate other mechanisms and their trade-offs).
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Figure A.1: Issue Utilization and Phase-configurable Duplication
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Figure A.2 depicts each phase for the ADPCM benchmark: the same represen-

tation is used to present the pipelanes (i.e., P0-P7 represent the pipelanes 0 to 7). The

pipelanes in white background are executing duplicated instructions from the other pipelane,

according to their respective pairs (as discussed in Figure 3.1). The pipelanes in black

background are executing main program instructions. In this example, there are phases

with full duplication (phase 4), partial duplication (phases 2 and 5) and no duplication

(phases 1 and 3).

As it can be noticed, the ADPCM, CRC, Sums, and x264 benchmarks have phases

when some issue slots are not utilized. On the other hand, as the Matrix Multiplication,

CJPEG, DFT, Expint, FIR, and NDES benchmarks do not have such phases, they cannot

take advantage of the phase-configurable approach, because the modified processor would
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Figure A.2: Phase-configurable Duplication for the ADPCM Benchmark

Phase 1

P7

P6

P5

P4

P3

P2

P1

P0

Phase 2

P7

P6

P5

P4

P3

P2

P1

P0

Phase 3

P7

P6

P5

P4

P3

P2

P1

P0

Phase 4

P7

P6

P5

P4

P3

P2

P1

P0

Phase 5

P7

P6

P5

P4

P3

P2

P1

P0

Source: The Author

have the same behavior as the unprotected version. Therefore, even though this approach

has no costs in terms of performance and negligible power overhead, it can be only used

when the application has phases with lower ILP than the processor supports.

A.1 Results

Table A.1 presents the results in terms of performance and failure rate also con-

sidering the phase-configurable approach. On average, it achieves a failure rate of 0.45%

(considering only benchmarks with phases).

Table A.2 presents the area (both Field-Programmable Gate Array (FPGA) and

Application-Specific Integrated Circuit (ASIC) versions) and power consumption (ASIC

only) for all Very Long Instruction Word (VLIW) configurations. The overhead is almost

negligible when one compares the phase-configurable approach with the base 8-issue con-

figuration: 2.6% for the FPGA (in Look-Up Tables (LUTs)) and 2.8% for the ASIC.
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Table A.1: Failure Rate and Performance Degradation Comparison

Unprot. Prot. Unprot. Protected

4-issue Full
dup. 8-issue Phase-

config.
Spatial
Dup. Threshold

ADPCM
Failure
rate (%) 6.93 0.06 3.66 0.99 0.66 T

=
1

0.59 T
=

1.75

0.65 T
=
2

0.66

Exec.
Cycles 571 571 568 568 568 633 621 574

CJPEG
Failure
rate (%) 9.55 0.02 6.07 6.07 2.33 T

=
1

0.79 T
=

2.5

2.12

Exec.
Cycles 508 508 411 411 411 523 426

CRC
Failure
rate (%) 5.20 0.06 2.95 0.64 0.33 T

=
1

0.32

Exec.
Cycles 13289 13289 13270 13270 13270 13616

DFT
Failure
rate (%) 4.63 0.07 2.68 2.68 0.38 T

=
1

0.15

Exec.
Cycles 35072 35072 32575 32575 32575 32979

Expint
Failure
rate (%) 4.21 0.05 2.37 2.37 0.13 T

=
1

0.13

Exec.
Cycles 9341 9341 9097 9097 9097 9257

FIR
Failure
rate (%) 10.94 0.04 5.93 5.93 1.21 T

=
1

0.93

Exec.
Cycles 119392 119392 111769 111769 111769 120095

Matrix
Mul.

Failure
rate (%) 9.91 0.08 5.68 5.68 1.30 T

=
1

0.17 T
=
2

0.53

Exec.
Cycles 111050 111050 111025 111025 111025 113929 112547

NDES
Failure
rate (%) 3.99 0.04 2.09 2.09 0.42 T

=
1

0.24

Exec.
Cycles 28527 28527 27499 27499 27499 28667

Sums
Failure
rate (%) 5.52 0.04 2.96 0.11 0.37 T

=
1

0.37

Exec.
Cycles 332 332 319 319 319 319

x264
Failure
rate (%) 5.21 0.09 2.94 0.07 0.33 T

=
1

0.33

Exec.
Cycles 15102 15102 15089 15089 15089 15090

Source: The Author
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Table A.2: Area and Power Dissipation Comparison

FPGA ASIC

Registers LUTs Cells Power dissipation (nW)

Unprotected
4-issue 3,058 16,006 28,041 2,298,962.51

8-issue 3,974 35,075 66,967 7,484,818.25

Protected

Full. Dup.
(4-issue)

4,102 20,819 42,121 3,109,613.33

Phase-
configurable

4,133 35,973 68,849 7,771,568.02

Spatial Dup. 4,206 36,672 69,305 7,878,161.31

Spatial with
ILP reduction

4,834 41,485 76,407 9,553,048.27

Source: The Author
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APPENDIX B — EVALUATION OF DIFFERENT PRIORITIES FOR THE

MWPUETF

In this chapter, the results for the best configuration are presented while varying the

priority of energy consumption, performance, and fault tolerance in the Mean Work Per

Unit of Energy to Failure (MWPUETF) metric. The Equation (B.1) is used to prioritize a

specific axis, where a+ b+ c = 1. Results are presented for the following priorities: 0.5,

0.6, 0.7, 0.8, and 0.9. Therefore, if a given axis has an exponent equal to 0.5, the other

two axes will have 0.25 each, and so on.

MWPUETF = (
core utilization

failure rate
)a × 1

(exec. time)b × (energy cons.)c
(B.1)

B.1 Priority: Energy Consumption

Tables B.1, B.2, B.3, B.4, and B.5 depict the change in the best configuration as

we increase the weight of the energy consumption axis in the MWPUETF metric. The

2 and 4-issue are prioritized, as well as smaller buffer sizes and low overhead configura-

tions. For instance, with a priority of 0.9 to energy, most benchmarks are executed in the

unprotected 2-issue processor, and the others are executed configurations with small or

intermediate buffer size in the 2 and 4-issue.

Table B.1: Best Configuration - Priority: Energy (0.5)

Buffer PG CJPEG CRC DFT Engine Expint FIR JPEG Matmult Qurt Sums x264

Unprotected False

False 8-issue 4-issue
16

True 4-issue

False
32

True

False 4-issue 8-issue
64

True 8-issue

False 4-issue

TempDup

128
True 2-issue 2-issue 2-issue 2-issue

Source: The Author
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Table B.2: Best Configuration - Priority: Energy (0.6)

Buffer PG CJPEG CRC DFT Engine Expint FIR JPEG Matmult Qurt Sums x264

Unprotected False

False 8-issue 4-issue
16

True 4-issue

False
32

True

False 4-issue 8-issue
64

True 8-issue

False 4-issue

TempDup

128
True 2-issue 2-issue 2-issue 2-issue

Source: The Author

Table B.3: Best Configuration - Priority: Energy (0.7)

Buffer PG CJPEG CRC DFT Engine Expint FIR JPEG Matmult Qurt Sums x264

Unprotected False

False 8-issue 4-issue
16

True 4-issue 4-issue 4-issue

False
32

True

False 4-issue
64

True 8-issue

False 4-issue

TempDup

128
True 2-issue 2-issue 2-issue

Source: The Author

Table B.4: Best Configuration - Priority: Energy (0.8)

Buffer PG CJPEG CRC DFT Engine Expint FIR JPEG Matmult Qurt Sums x264

Unprotected False 2-issue 2-issue 2-issue 2-issue

False 4-issue
16

True 4-issue 4-issue

False 4-issue
32

True

False
64

True 4-issue

False

TempDup

128
True 2-issue 2-issue

Source: The Author
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Table B.5: Best Configuration - Priority: Energy (0.9)

Buffer PG CJPEG CRC DFT Engine Expint FIR JPEG Matmult Qurt Sums x264

Unprotected False 2-issue 2-issue 2-issue 2-issue 2-issue 2-issue 2-issue 2-issue

False
16

True 4-issue

False
32

True

False
64

True 2-issue 4-issue

False

TempDup

128
True

Source: The Author

B.2 Priority: Performance

Tables B.6, B.7, B.8, B.9, and B.10 depict the change in the best configuration

as we increase the weight of the performance axis in the MWPUETF metric. The 4 and

8-issue are prioritized, as they deliver better performance than the 2-issue. The 8-issue

does not greatly improve the performance when compared to the 4-issue, so even when

prioritizing the axis of performance, it does not outweigh the extra energy consumption

of the 8-issue core for most benchmarks.

Table B.6: Best Configuration - Priority: Performance (0.5)

Buffer PG CJPEG CRC DFT Engine Expint FIR JPEG Matmult Qurt Sums x264

Unprotected False

False 8-issue 4-issue
16

True 4-issue

False
32

True

False 4-issue 8-issue
64

True 8-issue

False 4-issue

TempDup

128
True 2-issue 2-issue 2-issue 2-issue

Source: The Author
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Table B.7: Best Configuration - Priority: Performance (0.6)

Buffer PG CJPEG CRC DFT Engine Expint FIR JPEG Matmult Qurt Sums x264

Unprotected False

False 8-issue 4-issue
16

True 4-issue

False
32

True

False 4-issue 8-issue
64

True 8-issue

False 4-issue

TempDup

128
True 2-issue 2-issue 2-issue 2-issue

Source: The Author

Table B.8: Best Configuration - Priority: Performance (0.7)

Buffer PG CJPEG CRC DFT Engine Expint FIR JPEG Matmult Qurt Sums x264

Unprotected False

False 8-issue 4-issue
16

True 4-issue

False
32

True

False 4-issue 8-issue
64

True 8-issue

False 4-issue

TempDup

128
True 2-issue 2-issue 2-issue 2-issue

Source: The Author

Table B.9: Best Configuration - Priority: Performance (0.8)

Buffer PG CJPEG CRC DFT Engine Expint FIR JPEG Matmult Qurt Sums x264

Unprotected False

False 8-issue 4-issue
16

True 4-issue 4-issue

False
32

True

False 4-issue 8-issue
64

True 8-issue 4-issue

False 4-issue

TempDup

128
True 2-issue 2-issue

Source: The Author
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Table B.10: Best Configuration - Priority: Performance (0.9)

Buffer PG CJPEG CRC DFT Engine Expint FIR JPEG Matmult Qurt Sums x264

Unprotected False

False 8-issue 4-issue
16

True 4-issue 4-issue 4-issue

False
32

True

False 4-issue 8-issue
64

True 8-issue 4-issue

False 4-issue

TempDup

128
True 2-issue

Source: The Author

B.3 Priority: Fault Tolerance

Tables B.11, B.12, B.13, B.14, and B.15 depict the change in the best configuration

as we increase the weight of the fault tolerance axis in the MWPUETF metric. Prioritizing

the fault tolerance axis does not have a clear trend when its weight is increased because

such behavior highly depends on the application behavior, and the number of instructions

that each configuration is able to duplicate. That is, applications with low Instruction-

Level Parallelism (ILP) are able to duplicate most instructions with a small issue-width,

while applications with high ILP require larger issue-widths and buffer sizes.

Table B.11: Best Configuration - Priority: Fault tolerance (0.5)

Buffer PG CJPEG CRC DFT Engine Expint FIR JPEG Matmult Qurt Sums x264

Unprotected False

False 8-issue 4-issue
16

True 4-issue

False
32

True

False 4-issue 8-issue
64

True 8-issue

False 4-issue

TempDup

128
True 2-issue 2-issue 2-issue 2-issue

Source: The Author
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Table B.12: Best Configuration - Priority: Fault tolerance (0.6)

Buffer PG CJPEG CRC DFT Engine Expint FIR JPEG Matmult Qurt Sums x264

Unprotected False

False 8-issue 4-issue
16

True 4-issue

False
32

True

False 4-issue 8-issue
64

True 8-issue

False 4-issue

TempDup

128
True 2-issue 2-issue 2-issue 2-issue

Source: The Author

Table B.13: Best Configuration - Priority: Fault tolerance (0.7)

Buffer PG CJPEG CRC DFT Engine Expint FIR JPEG Matmult Qurt Sums x264

Unprotected False

False 8-issue 4-issue
16

True 4-issue

False
32

True

False 8-issue 4-issue 8-issue
64

True

False 4-issue

TempDup

128
True 2-issue 2-issue 2-issue 2-issue

Source: The Author

Table B.14: Best Configuration - Priority: Fault tolerance (0.8)

Buffer PG CJPEG CRC DFT Engine Expint FIR JPEG Matmult Qurt Sums x264

Unprotected False

False 8-issue 4-issue
16

True 4-issue

False
32

True

False 8-issue 4-issue 8-issue
64

True

False 4-issue

TempDup

128
True 2-issue 2-issue 2-issue 2-issue

Source: The Author
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Table B.15: Best Configuration - Priority: Fault tolerance (0.9)

Buffer PG CJPEG CRC DFT Engine Expint FIR JPEG Matmult Qurt Sums x264

Unprotected False

False 8-issue 4-issue
16

True 4-issue

False
32

True

False 8-issue 4-issue 8-issue
64

True

False 4-issue

TempDup

128
True 2-issue 2-issue 2-issue 2-issue

Source: The Author
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APPENDIX C — RESUMO EM PORTUGUÊS

C.1 Introdução

Ao se projetar um novo processador, o desempenho não é mais o único objetivo de

otimização. Reduzir o consumo de energia também é essencial – enquanto a maior parte

dos dispositivos embarcados depende fortemente de bateria, processadores de propósito

geral (GPPs) são restringidos pelos limites da energia térmica de projeto (TDP – thermal

design power). Além disso, devido à evolução da tecnologia, a taxa de falhas transientes

vem aumentando nos processadores modernos, o que afeta a confiabilidade de sistemas

tanto no espaço quanto no nível do mar.
No entanto, os projetos dos processadores atuais são voltados a no máximo dois

desses eixos em decorrência da sua natureza conflitante (ou seja, otimizar um deles provavel-

mente acarretará um impacto negativo aos outros). Por exemplo, reduzir o consumo de

energia provavelmente reduzirá a performance; melhorar a confiabilidade aumentará o

consumo de energia e possivelmente reduzirá a performance; e melhorar a performance

afetará o consumo de energia e possivelmente a confiabilidade.
Nesse cenário desafiador, este trabalho propõe duas versões de um processador

adaptativo e polimórfico capaz de equilibrar desempenho, tolerância a falhas e consumo

de energia em tempo de execução. Essa adaptação é feita através do desenvolvimento de

técnicas de otimização que se aproveitam das unidades de execução ociosas, que poderão

executar instruções replicadas (para tolerância a falhas), ter a sua tensão de alimentação

cortada através de power gating (para consumo de energia) ou executar threads adicionais

(para o desempenho). Também é possível reduzir artificialmente o paralelismo no nível

das instruções (ILP) para liberar unidades de execução ao preço de desempenho, quando

mais tolerância a falhas ou menor consumo de energia forem necessários.
Todas essas técnicas foram implementadas no processador VLIW ρ-VEX e uti-

lizadas para adaptar a execução da aplicação com base nas características da aplicação.

O processador tem um hardware especial para decidir de forma dinâmica qual técnica de

otimização é a mais adequada para ser aplicada em determinado momento, de acordo com

uma função de otimização que leva em conta os três eixos.

C.2 Técnicas propostas

A seguir, serão apresentadas as técnicas que foram implementadas nos eixos de

tolerância a falhas, consumo de energia e performance.
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C.2.1 Tolerância a falhas

C.2.1.1 Duplicação com rollback

A técnica base de todas as técnicas de tolerância a falhas se baseia em um meca-

nismo de duplicação de instruções com rollback, que reexecuta instruções com falhas para

corrigir o erro. A granularidade da duplicação varia conforme a técnica que está sendo

utilizada, mas todas exploram as unidades funcionais que não estão sendo usadas. Dessa

forma, pipelanes dedicados à execução de instruções duplicadas não precisam ser criados,

economizando área e dissipando menos potência. Checkers verificam os resultados das

instruções duplicadas e os resultados corretos são commitados.

C.2.1.2 Duplicação baseada em fases

Nessa técnica, é feito o profiling da aplicação com o intuito de identificar suas

fases, que são de baixo ou alto ILP. Com base nesse profiling, são criadas configurações,

e durante a execução da aplicação, essas configurações são usadas para realizar a dupli-

cação das instruções quando há pipelanes que não estão sendo utilizados. Aplicações

que possuem um alto ILP não se beneficiam dessa técnica pois as fases não podem ser

claramente exploradas para a duplicação das instruções.

C.2.1.3 Duplicação espacial - duplicação quando possível

Esse mecanismo realiza a duplicação de instruções sempre que há NOPs na palavra

VLIW. Ou seja, a cada ciclo, os NOPs são substituídos por instruções duplicadas do

mesmo bundle.

C.2.1.4 Duplicação temporal e espacial

Essa técnica leva a anterior um passo adiante, aumentando a flexibilidade para a

duplicação das instruções. Instruções que não conseguem ser duplicadas em um mesmo

bundle são armazenadas em um buffer que alocará essas instruções duplicadas em um

ciclo posterior. Assim, mais instruções são duplicadas, aumentando a confiabilidade.

Adicionalmente, a latência da memória é explorada para executar instruções que estão no

buffer, enquanto o processador aguarda os dados da memória.
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C.2.2 Consumo de energia

O Power Gating é aplicado nas unidades funcionais que não estão sendo utilizadas

pela aplicação, para reduzir o consumo de energia. Durante a execução da aplicação, ela

é avaliada, e as configurações de PG são salvas para serem usadas na próxima vez em que

um determinado trecho de código for executado novamente. Dessa forma, o power gating

pode ser aplicado sem qualquer profiling estático.

C.2.3 Performance

O ILP pode ser reduzido dinamicamente para criar artificialmente novos slots e

aumentar a duplicação ou maximizar os ganhos do power gating. O controle é feito através

de um hardware especializado que divide bundles para serem executados em dois ciclos

quando um certo threshold for atingido (definido em tempo de design).

C.3 Processador adaptativo

O processador adaptativo é baseado na versão estática do processador ρ-VEX. Ele

utiliza a duplicação espacial, o módulo de controle de ILP e pode ter o módulo de power

gating habilitado ou desabilitado, para focar em confiabilidade ou consumo de energia.

C.4 Processador polimórfico

O processador polimórfico explora as técnicas anteriores para prover a reconfi-

guração do hardware de acordo com a aplicação que está sendo executada. Ele possui

o mecanismo de duplicação temporal e espacial no eixo de tolerância a falhas, power

gating para o consumo de energia e tem a capacidade de alterar a largura do issue em

tempo de execução, possibilitando que até quatro aplicações sejam executadas em para-

lelo. Todos esses módulos são controlados por um módulo de decisão que leva em conta

o trade-off entre os três eixos para escolher a melhor configuração para cada aplicação.

Enquanto a aplicação é executada, diferentes configurações do processador são testadas

para identificar dinamicamente qual é a configuração ideal para determinada aplicação.

Assim, cada vez que um kernel da aplicação for executado, uma configuração diferente
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será avaliada, e quando o melhor resultado for encontrado, a fase de testes será encerrada

e a aplicação continuará a execução com a melhor configuração possível. Portanto, o pro-

cessador polimórfico consegue se adaptar a qualquer aplicação após uma breve fase de

aprendizado.

C.5 Injetor de falhas híbrido

No escopo desse trabalho também foi proposto um injetor de falhas híbrido, que

explora dois níveis de simulação para acelerar a campanha de injeção de falhas, mantendo

a precisão de uma injeção em gate-level. A troca entre os dois níveis de simulação é

feita de forma automática e transparente ao usuário. A aplicação é executada em uma

simulação comportamental até o momento da injeção da falha. Então, o contexto é trocado

para a simulação gate-level e a falha é injetada. Após a injeção, a simulação troca o

contexto novamente, e a aplicação segue a execução em nível comportamental, acelerando

a campanha de injeção de falhas.

C.6 Metodologia

Para obter dados de potência e área, o Cadence Encounter RTL é usado para sinte-

tizar os módulos de hardware em uma tecnologia de 65nm e o CACTI-P (LI et al., 2011)

é usado para estimar os custos dos módulos de memória e buffers, que são: memória

para as configurações do power gating, buffers da duplicação temporal, memória de con-

figurações para o processador polimórfico, memórias cache e memória principal. Todas

as memórias possuem ECC e todos os módulos adicionais são contabilizados em termos

de área e potência. O conjunto de benchmarks é composto de 16 aplicações do WCET

(GUSTAFSSON et al., 2010) e Powerstone (SCOTT et al., 1998). Simuladores foram

desenvolvidos para emular o comportamento da versão dinâmica do ρ-VEX e para incor-

porar os mecanismos do processador adaptativo.

C.7 Resumo dos resultados

Para o processador adaptativo, múltiplas configurações são avaliadas, e quando a

duplicação é aplicada juntamente com o mecanismo de power gating e controle de ILP, o
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overhead médio é de 13% em performance, 37,2% em energia e 15,05% em área, e 0,31%

de taxa de defeitos.

Considerando uma métrica que abrange os três eixos, o processador polimórfico se

mostrou capaz de realizar a adaptação para qualquer aplicação, chegando em 94,88% do

resultado de um oráculo, na média (de 86,01% até 99,99%). Em contrapartida, a melhor

configuração estática consegue apenas 28,24% do resultado do oráculo. O overhead de

área é de 26,82% e a taxa de instruções duplicadas varia de 9 até 100%, considerando

todas as configurações testadas.

C.8 Conclusões

Neste trabalho foram propostas diversas técnicas que, juntas, foram exploradas

para a implementação de um processador adaptativo e polimórfico que consegue se adap-

tar a qualquer aplicação de forma dinâmica. Uma métrica que leva em conta os eixos de

tolerância a falhas, consumo de energia e performance é usada para realizar a escolha de

qual é a melhor configuração para cada aplicação, após um breve período de aprendiza-

gem.
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