
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

ESCOLA DE ADMINISTRAÇÃO

PROGRAMA DE PÓS-GRADUAÇÃO EM ADMINISTRAÇÃO

Gabriela Mosmann

Axiomatic systemic risk measures forecasting

Porto Alegre

Maio de 2018



UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Gabriela Mosmann

Axiomatic systemic risk measures forecasting

Dissertação apresentada à Escola de Ad-
ministração da Universidade Federal do Rio
Grande do Sul como requisito parcial para
obtenção do grau de mestre em Adminis-
tração.

Supervisor: Prof. Dr. Marcelo Brutti Righi

Porto Alegre

Maio de 2018



Gabriela Mosmann
Axiomatic systemic risk measures forecasting/ Gabriela Mosmann. – Porto

Alegre, Maio de 2018-
49 p. : il. (algumas color.) ; 30 cm.

Supervisor: Prof. Dr. Marcelo Brutti Righi

Dissertação – UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
ESCOLA DE ADMINISTRAÇÃO
PROGRAMA DE PÓS-GRADUAÇÃO EM ADMINISTRAÇÃO, Maio de 2018.
1. Risk measures. 2. Systemic risk. I. Marcelo Brutti Righi. II. Universidade

Federal do Rio Grande do Sul. III. Escola de Administração. IV. Axiomatic systemic
risk measures forecasting.

CDU 02:141:005.7



Gabriela Mosmann

Axiomatic systemic risk measures forecasting

Dissertação apresentada à Escola de Ad-
ministração da Universidade Federal do Rio
Grande do Sul como requisito parcial para
obtenção do grau de mestre em Adminis-
tração.

Trabalho aprovado. Porto Alegre, maio de 2018:

Prof. Dr. Marcelo Brutti Righi
Orientador

Prof. Dr. Hudson da Silva Torrent
Convidado

Prof. Dr. João Frois Caldeira
Convidado

Prof. Dr. Marcelo Scherer Perlin
Convidado

Porto Alegre
Maio de 2018



ACKNOWLEDGEMENTS

Agradeço aos meus pais e ao meu irmão por todo o carinho, amizade e com-

preensão durante a minha jornada acadêmica e profissional. Aos meus amigos e

colegas que estiveram ao meu lado, fornecendo apoio e inspiração pelo aprendizado.

Ao meu orientador, Prof. Dr. Marcelo Brutti Righi, pela disposição e auxílio na

elaboração deste trabalho, além do incentivo a ampliar meus conhecimentos e buscar

êxito acadêmico. Agradeço aos professores membros da banca por aceitarem participar

desta etapa.



RESUMO

Neste trabalho, aprofundamos o estudo sobre risco sistêmico via funções de

agregação. Consideramos três carteiras diferentes como proxy para um sistema

econômico, estas carteiras são consistidas por duas funções de agregação, baseadas

em todos as ações do E.U.A, e um índice de mercado. As medidas de risco apli-

cadas são Value at Risk (VaR), Expected Shortfall (ES) and Expectile Value at

Risk (EVaR), elas são previstas através do modelo GARCH clássico unido com

nove funções de distribuição de probabilidade diferentes e mais por um método

não paramétrico. As previsões são avaliadas por funções de perda e backtests de

violação. Os resultados indicam que nossa abordagem pode gerar uma função

de agregação adequada para processar o risco de um sistema previamente sele-

cionado.

Palavras-chaves: medidas de risco, risco sistêmico, função de agregação, mensu-

ração axiomática, GARCH.



ABSTRACT

In this work, we deepen the study of systemic risk measurement via aggregation

functions. We consider three different portfolios as a proxy for an economic system,

these portfolios are consisted in two aggregation functions, based on all U.S. stocks

and a market index. The risk measures applied are Value at Risk (VaR), Expected

Shortfall (ES) and Expectile Value at Risk (EVaR), they are forecasted via the

classical GARCH model along with nine distribution probability functions and also

by a nonparametric approach. The forecasts are evaluated by loss functions and

violation backtests. Results indicate that our approach can generate an adequate

aggregation function to process the risk of a system previously selected.

Key-words: risk measures, systemic risk, aggregation function, axiomatic measure-

ment, GARCH.
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1 INTRODUCTION

Risk measurement is a core component of the operation of financial institutions

such as banks, insurance companies, investment funds and others including financial

regulators and even any diversified firm. The objective of risk measurement is to aid

decision-making and predictions about the impact of risk on many financial applications,

such as portfolio management, asset allocation, derivatives pricing, economic capital

and financial stability. Since Markowitz (1952), much research has been devoted to

economics, finance, and mathematics, trying to continually answer questions as to what

properties should be expected from a risk measure, what should be considered as a

good risk measure, and even if there is a best of all.

The concept of risk was initiated as a deviation, and focused in quantifying

market risk. Volatility is commonly expressed by the standard deviation, and it is the

main measure in most financial analyses. However, the standard deviation and variance

do not consider tail risk, which inspired the development of another type of measures,

for instance Value-at-Risk (VaR)1 and Expected Shortfall (ES), both bothering with the

far left tail of the distribution. Recently, the literature has given attention to the measure

called Expectile Value at Risk (EvaR), for being elicitable2. Over the years, the increase

of instabilities in the financial market worldwide - especially the collapse on September

2008 - led to criticisms about the then-current risk management systems and motivated

the search for more appropriate methodologies. Following recent crises, the necessity

of perceiving and comprehending financial network dynamics and characteristics has

increased, and the desire to ensure financial stability over the globe highlighted systemic

risk in the risk discussion. Systemic risk emerges when the possibility of the breakdown

of an entire complex system due to the aftermath of actions taken by any individual or

agents with the comprised of the system. In other words, it arises when generalized

malfunctioning menaces the overall economy and welfare. Even though there is vast

research on its theoretical properties and its main mechanisms of propagation; it is
1 VaR is the most common measure in use, due to the fact that the Basel Committee had required that

each financial institutions use this measure (SUPERVISION, 1996), although they had recommended
ES as a complementary tool (SUPERVISION, 2013) and posteriorly they have implemented the
replacement of VaR to ES for capital adequacy internal models as a rule of Basel 4 (SUPERVISION,
2016).

2 A measure is defined as elicitable, according to Ziegel (2016), it is possible the verification and
comparison of competing for estimation procedures, which allows its forecasts to be evaluated.
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continuously being conceptualized as hard to define but you nonetheless know it when

you see it, as in the case of Benoit et al. (2017).

The study on systemic risk has begun focusing on the balance sheet or ac-

counting information (non-performing loan ratios, earnings and profitability, liquidity and

capital adequacy ratio, as cited by Huang et al. (2009) - and measuring correlation

coefficients. These traditional procedures were criticized because of the low frequency

of the data available that did not include the tail behavior. This lack generated a wide

new range of methods to correct it. Benoit et al. (2017) developed an extensive survey

on systemic risk strands, defining the current two main ones as the source-specific

approach and the global approach. 3 As cited by the authors, both methods have their

own virtues, however, it is necessary to have a better understanding of the integration

between them and not study them purely in isolation.

Independent of the research line, the literature had been exceedingly concerned

with proposing new measures - as can be seen in Billio et al. (2016), Giglio et al. (2016),

Bernardi et al. (2017) - and on extracting sources of risk - as in Cherubini & Mulinacci

(2014), Acemoglu et al. (2015). Despite the arguments like those of Danielsson et al.

(2012), who criticized the leading systemic risk measurement tools and had shown that

they performed worse than VaR; simpler measures are not habitual in systemic risk

studies. Pursuing the theoretical foundations of single-firm risk measures developed by

Artzner et al. (1999)4, Kusuoka (2001), Föllmer & Schied (2002)5, and also Rockafellar

et al. (2006)6,7, Chen et al. (2013) proposed an axiomatic approach for the measurement

and the management of systemic risk, which regards a system consisted of multiple

elements. Based on a set of definitions, the authors demonstrated that any measure
3 The first strand relates to qualitative models, which analyzes specific courses of risk, examples are

contagion (CHEN, 1999; ACEMOGLU et al., 2015), bank runs (CHEN et al., 2010; MARTIN et al.,
2014), and liquidity crises (BRUNNERMEIER et al., 2013). The other strand focus is to capture
the mechanisms, previously quoted, all in a global measure, as viewed in the measurement of
connectedness (BILLIO et al., 2012), conditional value at risk (CoVaR) (ADRIAN; BRUNNERMEIER,
2016), capital shortfall (SRISK) (ACHARYA et al., 2012; BROWNLEES; ENGLE, 2012) and marginal
expected shortfall (MES), also named systemic expected shortfall (SES), (ACHARYA et al., 2017).

4 In the sense proposed by Artzner et al. (1999), a functional is defined as a coherent risk measure if it
respects the following axioms: translation invariance, subadditivity, positive homogeneity, monotonicity.

5 They relaxed the axioms of positive homogeneity and of subadditivity and required instead a new
axiom denominated convexity, which is weaker than the originals

6 A deviation measure, according to Rockafellar et al. (2006), will be meant any functional that satisfies
the following axioms: Translation insensitivity, positive homogeneity, subadditivity and non-negativity

7 Among the development made by other authors, a well-known class is the spectral risk measure
developed by Acerbi (2002), Acerbi (2003).



3

that follows their definition can be characterized by an aggregation function and a

base risk measure. Later on, Kromer et al. (2016) extended this axiomatic framework,

allowing a general measurable space in contrast with the finite probability space that

was considered before.

Thus, in contrast to the majority of preceding studies, we develop a confrontation

between broadly consolidated measures that are acquainted with market risk - VaR,

ES, and EVaR - in a systemic risk view. Risk market framework - many studies had

ensured the acceptance and effectiveness of a group of consolidated measures. On the

other hand, though the property defined amount of measures, there is no consensus

about a definitive or superior risk measure, resulting in the defense of the use of

distinct measures for distinguished situations, however almost no author argues about a

measure procedure as the dominant overall.

This procedure is corroborated by Benoit et al. (2013), who followed the work

of Brownlees & Engle (2012) and added CoVaR to the risk comparison, stating that

the most popular systemic risk measures can be represented as linear transformations

of single-firm market risk. As found out by them, both measures miscarried catching

the multifaceted essence of systemic risk and, from theoretical and empirical sight,

one market risk measure can capture most of the variability of it. Yun & Moon (2014)

applied the same method among Korean banks and had similar results, suggesting that

the measures were qualitatively quite related in explaining the cross-sectional distinct

contributions across firms, and it was closely associated with specific variables (e.g.,

VaR). Brownlees et al. (2017) developed an deep comparison between CoVaR and

SRISK during eight financial panics8 placed in the era before Federal Deposit Insurance

Corporation (FDIC) insurance. The authors showed that the measures performed

similarly, but it seemed that relative progress was not made. Finally, they argued

that VaR was a suitable instrument for systemic risk monitoring. Additionally, Righi

& Borenstein (2017) compared eleven risk measures and concluded there is no clear

dominance of any measure. Previous works have commonly analyzed systemic risk

based on isolated groups of individual firms, usually financial institutions9 - as can be
8 the panics of 1873 and 1884, the Barings Crisis of 1890, the subsequent panics of 1893 and 1896,

the panic of 1907, the monetary and fiscal consolidation of 1921, and the panic of 1933.
9 In addition, studies are Banulescu & Dumitrescu (2012), Castro & Ferrari (2014) focus primally on

identifying systemically important financial institutions (SIFIs).
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seen in Benoit (2014) and Kreis & Leisen (2017) - or even employing index prices as a

proxy for systemic risk - see Bernal et al. (2014), Mensi et al. (2017) - going against the

fundamental concept that systemic risk enfolds the simultaneous outcomes across all

agents in an economic system. In order to contribute to the literature, we extend the

analysis of systemic risk to an entire economy, regarding the outlook of a regulator as a

portfolio manager who desires to manifest preference across all feasible outcomes of

the economy.

The correct estimation of risk is necessary in order to ensure that the investor

has an adequate position in the market without being overexposed and underexposed10.

As pointed out by Boucher et al. (2014), the uncertainty inherent in the model’s specifi-

cation and estimation generated the forecasting failure during the global financial crisis.

The uncertainty around the data statistical properties can cause errors in estimation

(which generates parameter risk) in misspecification and in identification. Even though

the required necessity of model risk quantification is well-known, there is no broadly-

acknowledged approach for it. One of the major differences of modeling approaches

is how they deal with the uncertainty around the distribution of the risk factors and

what assumptions are made about its shape. A risk estimative is tightly connected to

the assumption of data’s distribution. As reviewed, manifold measures are attached

to the tail behavior of the data - as VaR and ES - therefore it is feasible to assume

the relevance of the distribution of data to risk definition and the requirement of an

accurate supposition of it. Therefore, the analysis structured in this study is defined

under dissimilar assumptions of distribution functions, including the leading procedures,

jointly with an econometric GARCH model. The GARCH models are deeply consecrated

over the literature, owing to their capacity to generate more accurate predictions of the

variance and covariance of financial series over time. Arguments on behalf of the use of

GARCH models to forecast volatility compared to parsimonious models can be seen in

Angelidis et al. (2004), Zhou (2012). A large number of extensions of the GARCH have

already been proposed, however, the standard GARCH model can be widely improved

by simply replacing the normal conditional distribution assumed to the random shock zt

by another that considers characteristics as fat tails. This approach can generate more

parsimonious models. In place of it, the classical model is applied in this work due to
10 Overexposed is caused by risk underestimation, what could be considered as uncovered losses,

otherwise underexposed is caused by risk and is an overestimation, generating opportunity costs.
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the desire to obtain the best trade-off between parsimony in the parameters, as well as

better estimations. The majority of works usually focus on a small set of distributions, as

in Marinelli et al. (2007), and Tolikas (2014) on estimating with EVT, and Diamandis et

al. (2011) which assumed only the student distribution and its variants, due to empirical

literature who had shown that distributions which allow for fat-tail are more suitable to

financial data, see Kuester et al. (2006), Degiannakis & Potamia (2017), we contrast by

widening the set and applying it to the systemic overview.

In order to set up a portfolio compounded by the joint distribution of outcomes

over entities; the data set is based on all individual stock of the U.S. market that has been

negotiated in the period from January 2000 to December 2016. Based on the axiomatic

definition of Chen et al. (2013), we apply two distinct types of aggregation functions

to enable the evaluation of systemic risk according to a single-firm risk measure. To

the best of our knowledge, our work is the first to consider a data set consisted of all

U.S. Stocks, and to additionally use it to model systemic risk. As a way to ensure that

our approach is distinct; we analyze an index price of the economy in question as an

alternative portfolio selection. The choice is made based on the widespread use of both

theoretical and empirical fields and recognition by market agents. So, the selected index

is the S&P500. We also build an 1/N portfolio, also known as the naive diversification,

compounded by all U.S. Stocks and a five-factor portfolio (FF ) based on Fama & French

(2015) approach.

Since the main objective of this work is to analyze systemic risk under aggrega-

tion function, not risk measures themselves, and considering that the literature agrees

that there is no dominant risk measure, suggesting the use of distinct procedures for

different situations and emphasizing the role of the manager to decide what to consider

in every situation, and additionally, from the best of our knowledge, this work is the first

of applying this approach, we limit it to develop a comparison among the three main

risk measures currently in use: VaR, ES, EVaR. The empirical evaluation of this study is

conducted as follows: The first step consisted in assembling the data of all American

stocks by the aggregation functions stipulated, resulting in two portfolio sets and building

the S&P500, 1/N and the five-factor (FF ) portfolios. Each one of them is modeled,

according to its log-returns, to engender estimation of VaR, ES, and EVaR for every

joint of GARCH. Finally, the performances of the risk measures are compared. The
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outcomes in this study also contribute to the financial industry due to the positive result

acquired for its innovative approach in dealing with systemic risk. The methodology

based on aggregating all stocks of an economy shows solid theoretical properties and

proper empirical performance, it also outperforms the S$P500 index concerning ES

forecasting. Our findings can be used as a foundation of major and new lines of study.

This work will is divided into 5 sections, being this the first one, which ought to

present the theme, reporting in a comprehensive way the issues to be discussed later on.

The remainder of this paper is structured as follows: section 2 reports the background

of risk measures theory. Section 3 discloses the methodological procedures of the

techniques, which is used to select and analyze the data chosen for this research, and

demonstrates how empirical results are obtained.ă Section 4 expounds the empirical

analysis and its results. Finally, 5 concludes with the final considerations.
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2 BACKGROUND

Throughout the study, we work with an atomless probability space (Ω,F ,P),

where Ω represents the sample space, F is a set of possible events in Ω and P refers

the probability that is defined in Ω of the events in F . Considering n the number of a

finite set of firms, assets or portfolio, the random result of any firm in an economy is

expressed by Xi, where i = 1 . . . n, and so an economy is denoted by X = (X1, . . . , Xn)

as the juncture of all firms belonging to it. X ≥ 0 is represented as a gain and X < 0 as

a loss, and the expected value of X under P is defined by E[X]. In addition, FX is the

probability function of a given X, and F−1
X is its inverse. Let X = X (Ω,F ,P) be a space

of random variables, of which X is an element. 1n is a vector denoting a cross-sectional

loss profile in a scenario where a unit loss occurs by each component, 1Ω is a vector

denoting a unit loss of an individual agent in all scenarios and 1′Ω is its transposed.

Following this context, expressing the risk of X with a real number is equivalent to

establishing a function ρ0 : X → R. Analogously, measuring an economy X risk is

equivalent to establishing a function ρ : X n → R.

The search for an answer for the typical question about the quality of risk mea-

sures (and if it is possible to find the best of all) inspired the research to define the

characteristics that a measure should possess. The first to determine the properties

any good risk measure shall have were Artzner et al. (1999), they listed four axioms

and called any measure which satisfied them a coherent risk measure.ă In the sense

proposed by Artzner et al. (1999),ă a functională ρ0 : X → R is defined as a coherent

risk measure if it respects the following axioms:

Translation Invariance: ρ0(X + C) = ρ0(X)− C, ∀X ∈ X , C ∈ R.

Convexity11: ρ0(λX + (1− λ)Y ) ≤ λρ0(X) + (1− λ)ρ0(Y ),∀X, Y ∈ X , 0 ≤ λ ≤ 1.

Positive Homogeneity: ρ0(λX) = λρ0(X),∀X ∈ X , λ ≥ 0.

Monotonicity: if X ≤ Y , then ρ0(X) ≥ ρ0(Y ), ∀X, Y ∈ X .

The axioms were designed to correspond with the characteristics required for

a consistent measure. The first axiom, translation invariance, ensures that if adding

a certain gain C to a position X, the risk of this position should decrease by the
11 In this case, convexity coincides with subadditivity.
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same amount. Convexity is a relaxed version of subadditivity, which corresponds to

the principle of diversification, in other words, the risk of two or more combined assets,

a portfolio, is less than, or equal to, the sum of individual risks of the portfolio assets.

Positive homogeneity demonstrates the risk of a position that increases proportionally

with its size. The last axiom guarantees that if the loss of a financial position X is always

greater than another position Y , so the value of X is smaller than Y , the expected

risk of X is greater than the risk of Y . Artzner et al. (1999) defined an acceptance set

to any coherent risk measure of positions which do not causes losses, expressed by

Aρ0 = {X ∈ X : ρ0(X) ≤ 0}. In addition, they demonstrated the dual representation of

a coherent measure. This representation, in the example of a discrete case, could be

perceived as the worst expected loss of a position X, among the scenarios Q ∈ Pρ′ ⊆ P ,

where P is a probability space, and is formally expressed by ρ0(X) = supQ∈Pρ′ EQ[−X].

In the sense of Chen et al. (2013), a measure of systemic risk is defined as a

functional ρ : X n → R on the juncture of all possible scenarios of distribution outcomes

across any agent belonging to all economies X, Y ∈ X n if it satisfies the following set

of axioms:

Monotonicity: if X ≤ Y , then ρ(X) ≥ ρ(Y ), ∀X, Y ∈ X n.

Positive Homogeneity: ρ(λX) = λρ(X), with λ ≥ 0, ∀X ∈ X n.

Convexity: ρ(λX+(1−λ)Y ) ≤ λρ(X)+(1−λ)ρ(Y ), with 0 ≤ λ ≤ 1, ∀X, Y ∈ X n.

Preference consistency: given cross-sectional profiles Xi, Yi ∈ X , its said Xi �p
Yi iff ρ(Xi1′Ω) ≥ ρ(Yi1′Ω). So, if for every scenario ω ∈ Ω, X(ω) �p Y (ω), then ρ(X) ≥

ρ(Y ), ∀X, Y ∈ X n.

Normalization: ρ(1n) = n.

The axioms proposed were designed to correspond to the characteristics re-

quired for a consistent measure. The first three axioms are similar to the ones for a

single-firm risk measure, monotonicity guarantees that if the loss of a financial position

X is always greater than another position Y , and the value of X is smaller than Y : the

expected risk of X is greater than the risk of Y , positive homogeneity demonstrates the

risk of a position increases proportionally with its size, and convexity corresponds to the

principle of diversification. In other words, the risk of two or more combined assets (a
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portfolio) is less than, or equal to, the weighted sum ofă individual risks of the portfolio

assets.

The fourth axiom determines a preference relationship on cross-sectional profiles

by comparing the systemic risk of the constant economies. If an economy if compounded

only by one firm, it follows from monotonicity. This axiom claims that for every scenario

ω, if Y (ω) is always preferred to X(ω), and the systemic risk of the economy Y must be

consistent with this preference and so it cannot be greater than the one of the economy

X. The last axiom, normalization, ensures that the risk of a unit loss by all firms with

certainty to be the total loss.

To determine a systemic risk measure, it is necessary to capture both the cross-

sectional loss profiles per firms and the distribution of joint outcomes per scenario of the

economy in question. According to Chen et al. (2013) any convex systemic risk measure

ρ : X n → R can be composed by a convex single-firm risk measure ρ0 : X → R and a

convex aggregation function Λ : Rn → R. A convex aggregation function Λ : Rn → R is

a function that sets up an encapsulated statistic of the cross-sectional loss profile into

a real number, if, for all cross-sectional loss profiles x, y ∈ Rn, it satisfies the following

axioms:

Monotonicity: if x ≤ y, then Λ(x) ≥ Λ(y).

Positive Homogeneity: Λ(λx) = λΛ(x), with λ ≥ 0.

Convexity: Λ(λx+ (1− λ)y) ≤ λΛ(x) + (1− λ)Λ(y), with 0 ≤ λ ≤ 1.

Normalization: Λ(1n) = n.

So the relation of a systemic risk measure ρ and Λ is defined as:

ρ(X) = (ρ0 ◦ Λ)(X) = ρ0(Λ(X1, X2, ..., Xn)),∀X ∈ X (2.1)

where ρ0 is a base risk measure and Λ is an aggregation function.

Since the cross-sectional outcomes become aggregated, the estimation is sim-

plified to single outcomes across scenarios. The evaluation of systemic risk can be

acquired through base risk measure- a single-firm risk measure, for instance. Diverse

aggregation functions were propounded by the literature, ones that treated other partic-
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ularities of the data (as optimization, resource allocation, flow network and contagion).

See Chen et al. (2013) and Kromer et al. (2016) for more details.
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3 METHOD

The empirical study is based on available adjusted closing prices of the U.S.

stocks since it is the most important and expressive market around the world. In order to

make the work broader, and to guarantee the definition of a portfolio composed by the

joint distribution of outcomes across entities in an economy; the data set is composed

of daily log-returns of all U.S. stocks that have been negotiated in the selected period,

generating a survival bias. The time interval chosen is from January 2000 to December

2016, resulting in 17 years of observations. It is defined in order to capture turbulent

and calm observations, and also to avoid any distortion generated in small samples.

The computational implementations are performed in the R programming language12

and the empirical data is acquired through Quandl13 and the Database of Kenneth R.

French14.

The selection of an aggregation function and a base risk measure is defined

according to specific preferences of the regulator. A base risk measure is selected by

an appropriate single-firm risk measure - measures such as VaR, conditional VaR, and

even contagium models - otherwise the definition of the aggregation function is not so

simple due to the small amount of research performed in the area and the consolidation

of the characteristics of the market into a single function. An aggregation function can

be derived in many forms. The individual stocks data are aggregated by two distinct

procedures. The first function, symbolized as ΛS, is simply compounded by the sum

of all adjusted closing prices of the stocks. Similarly, the ΛW also sums the adjusted

closing prices. However, every stock is weighted by its own volume of transactions in the

sum. Once aggregated, each set has its daily log-returns extracted. From the sum up of

all losses and profits of each individual firm i, a linear aggregation function is defined:

ΛSt(xi) =
n∑
i=1

xi,t (3.1)

where xi,t corresponds to the position of each individual firm i in the time period t.
12 R Core Team, 2017.
13 Quandl is a platform for financial, economic, and alternative data that serves investment professionals.

All stocks and S&P500 data were acquired through the WIKI Prices Database developed and offered
by Quandl, Inc. More info can be seen at https://www.quandl.com/databases/WIKIP

14 All the data to build the Fama/French five-factor (FF) Portfolio was acquired through
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/index.html website.
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This function covers the definition of a portfolio composed by the joint distribution

of outcomes across firms in an economy. Meantime ΛS might subsidize losses of some

firms from gains of others and it considers firms as equals on the aggregation, not

regarding their liquidity, size, volume of transactions and other features. A reasonable

procedure to weigh entities is through its own volume of traded stocks.

ΛWt(xi) =
∑n
i=1 xi,twi,t
Wt

(3.2)

where W = ∑n
i=1wi,t is the total volume of all stocks in the economy.

We also analyze the S&P500 index price as an alternative portfolio selection, as

well the 1/N portfolio, also known as the naive diversification, and the approach pre-

sented by Fama & French (2015) to build a five-factor portfolio. The naive diversification

is defined to be one in which a fraction 1/N of wealth is allocated to each of the N

assets available for investment at each rebalancing date.

The Value at Risk (VaR) is the most widely-disseminated measure, despite

the existence of a large number of others. VaR quantifies the maximum loss that is

expected to occur over a given time period and a given confidence level. The popularity

of this measure, according to Daníelsson et al. (2013), is due to its simplicity and

practical advantages that outweigh its theoretical deficiencies. VaR does not possess

the subadditivity axiom, however, since it is the most used measure, we include it in this

study. Since Basel I, VaR has been required for all financial institutions as an integral

part of risk management operations. VaR is formally defined by the expression:

VaRα(X) = −inf{x : FX(x) ≥ α} = −F−1
X (α) (3.3)

where α ∈ (0, 1) corresponds to the significance level, usually is close to zero.

Acerbi & Tasche (2002) suggested the use of the Expected Shortfall instead of

the VaR to alleviate the problems inherent in VaR and, in addition, they proved that

ES is a coherent risk measure. This proposition was due to the fact that VaR is not

subaddivity (that is not a coherent measure) and it does not consider the severity of

losses occurred beyond the quantile of interest. ES measures the expected value of

losses occurred when VaR is violated given an α-quantile of interest, in other words, it

represents the expected losses that exceed VaR losses. ES is defined to be:
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ESα(X) = −E[X|X ≤ F−1
X (α)] = − 1

α

∫ F−1
X (α)

−∞
xFX(x)dx = − 1

α

∫ α

0
F−1
X (s)ds (3.4)

where α ∈ (0, 1), as in VaR, corresponds to the significance level, usually is close to

zero.

A recently used measure that gained attention is the Expectile Value at Risk

(EVaR). This method is connected to the concept of an expectile15, which is a generalized

quantile function. Bellini et al. (2014) showed that EVaR is a coherent risk measure for

α ≤ 0.5. EVaR is expressed by:

EVaRα(X) = −arg minγE[|α− 1X≤γ|(X − γ)2] (3.5)

where α ∈ (0, 1).

A statistical model can be represented in parallel with risk measures and a

conditional heteroskedastic model. Assuming X as a variable with a fully parametric

location-scale specification based on the expectation, dispersion and random compo-

nent; represented as: Xt = µt + σtzt, where t is a period of time, Xt is the return of

a portfolio or asset in t, µt is the conditional mean (usually equal to zero), σt is the

conditional standard deviation and zt represents the innovations, which could admit

different probability distribution functions Fz. Following this definition, any risk measures

are expressed as:

ρ(Xt) = −µt + σtρ(zt) (3.6)

where σt is the conditional standard deviation and it is defined according to the GARCH

model applied to the estimation.

Bellini & Bernardino (2017) confirmed the competitiveness of the measure

against others, and also connected EVaR, as the financial risk measure to expec-

tiles in the same way that VaR is to quantiles. According to the author, EVaR is defined
15 The concept of expectile was introduced by Aigner et al. (1976) as the τ -level partial moment, called

expectile with τ ∈ (0, 1), for a continuous random variable Y where the value of µτ minimizes the
expectation E[|τ − I[Y < µτ ]|(Y −µτ )2], where I(.) is an indicator function which is one when Y < µτ
and zero otherwise. According to Gerlach (2016) from a sample y1, ..., yT on Y , and a known-fixed τ ,
the constant τ -level expectile of Y (µτ ) could be evaluated by minimizing the asymmetric sum of a
squares function defined as:

∑T
t=1 |τ − I[yT < µτ ]|(yt − µτ )2
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as the amount of money that should be added to a position to guarantee a sufficiently

high gain-loss ratio.

The competing models are obtained by Historic Simulation16 (HS) and by the

classical GARCH model in combination with nine distributions. The conditional variance

(σ2) of the GARCH(L1, L2) model is determined by:

σ2
t = ω +

L1∑
i=1

αiX
2
t−i +

L2∑
j=1

βjσ
2
t−j (3.7)

where L1 and L2 are the orders of the dependencies of the variance with the past

returns and the past variances themselves, respectively.

The parameters are acquired by the maximum log-likelihood technique, which

has desirable asymptotic properties as shown in Bollerslev & Wooldridge (1992). Each

model is computed under different assumptions of distribution functions represented

by Fz, these being the normal distribution, the skew-normal distribution, the student-t

distribution, the skew-student-t distribution, the generalized error distribution, the skew-

generalized error distribution, the logistic distribution, and also the empirical distribution

and EVT as semiparametric approaches.

The most well-known parametric distribution is the normal one, which is entirely

described by its first and second moments, mean (µ) and variance (σ2), respectively.

Thus, a random variable X is normally distributed with a probability density function

(PDF) 17 of:

f(z) = 1
σ
√

2π
e−

(z−µ)2

2σ2 (3.8)

As an alternative to fit fatter tails of data, the student distribution was introduced

by Bollerslev (1987) into GARCH modeling. This distribution is described by a location

parameter(α), a scale parameter(β) and a shape parameter (υ) and its density is given
16 HS uses the empirical distribution of the data to model the time series and no statistical model and

parameters are assumed. This estimation method just considers the risk measure models with Fz as
the empirical distribution of past returns, and makes no assumption about the distribution of the data,
except that the returns are iid.

17 A density, or PDF, of a continuous random variable is a function that provides a relative likelihood of
a random value, in a sample space, which would equal the sample.
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by:

f(z) =
Γ(υ+1

2 )√
βυπΓ(υ2 ) [1 + (z − α)2

βυ
]−(υ+1

2 ) (3.9)

where Γ is the Gamma function.

The generalized error distribution (GED) is a distribution that belongs to the

exponential family and, like the student distribution, it is symmetric, unimodal and its

location parameter is the mean, mode, and median of the distribution (i.e µ). Alongside

the location parameter (α), it is described by the scale parameter (β) and the shape

parameter (κ) with density expressed by:

f(z) = κe−0.5| z−α
β
|κ

21+κ−1βΓ(κ−1) (3.10)

where Γ is the Gamma function.

As a form to add asymmetry for probability distributions, Fernández & Steel

(1998) inserted skewness into unimodal and symmetric distributions - Normal, Student

and GED - by adding inverse scale factors to the positive and negative real half lines.

According to a skew parameter (ξ), the density of a random variable X is described as:

f(z|ξ) = 2
ξ + ξ−1 [f(ξz)H(−z) + f(ξ−1z)H(z)] (3.11)

where ξ ∈ R+ and H(.) is the Heaviside function.

The Logistic distribution possesses a similar shape of the normal, only with

higher kurtosis (fatter tails). The logistic function is commonly used in logistic regression

and feedforward neural networks, and its PDF is expressed as:

f(z) = e−
x−µ
σ

σ(1 + e−
x−µ
σ )2

(3.12)

where µ and σ are respectively the location and scale parameters.

As an alternative method to deal with distribution assumptions; the data can

be modeled by nonparametric methods. Nonparametric models, in contrast to para-

metric ones, do not specify any assumption a priority but rather leave to the own data
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determined it. The empirical distributions are entirely defined based on the historical

data of a sample, and are obtained by extracting the observed first two moments of it.

It is most commonly applied to the Historical Simulation (HS)18 estimation approach,

Daníelsson (2011) affirms that it is a simple approach for forecasting risk, which relies

on the assumption that history repeats itself. However, it is often criticized for resulting

in bad estimations, as expressed by Christoffersen & Gonçalves (2005). Meanwhile,

the empirical distribution can be used together with a parametric model, generating the

Filtered Historical Simulation (FHS), in an attempt to generate a better estimation. The

main motivation of this method is that it allows us to capture conditional heteroskedas-

ticity through a parametric model, while still being somewhat unrestrictive about the

shape of the distribution of the data, introducing the non-normality of the risk factors.

The empirical distribution function is defined as:

F̂n(z) = 1
n

n∑
i=1

I(Xi ≤ x) (3.13)

where I(.) is the indicator function, assuming 1 if the variable has a probability and 0

otherwise.

Another well-known nonparametric process in use is the Extreme Value Theory

(EVT), which uses its own type of distribution, only of the extreme events. Singh et al.

(2011) suggested the use of EVT as a better option to model risk, because it has a

advantage of dynamically reacting to the changeable market conditions, resulting in

better forecasts.

f(z) = 1
σ
t(x)ξ+1e−t(x) (3.14)

where t(x) = (1 + ξ(x− µ)/σ)−1/ξ if ξ 6= 0 and t(x) = e−(x−µ)/σ otherwise.

The risk measures are estimated in accordance with the definitions already

exposed, except for EVaR, which is drawn following the approach stipulated by Taylor

(2008), considering it as a proxy for expectiles. Each measure was forecasted by a

one-step-ahead procedure for each portfolio set.

To ensure robustness, we considered different levels of significance and window

sizes. The significance levels of 0.01, 0.025 and 0.05 are the most commonly used for
18 HS uses the empirical distribution of the data and no statistical model and parameters are assumed.
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practical purposes and are more widespread in the risk literature, thus they are defined

for this analysis too. The Basel committee requires an estimated window of at least 1

year, approximately 250 business days, so this is the value chosen for this purpose. As

a form of robustness, the windows of 500 and 1,000 are also applied. All models are

allowed to change their parameters over time and may be updated for each day of the

moving window.

As a form to evaluate the risk forecasts, backtests techniques and loss functions

for each measure are applied. Otherwise, there are more traditional procedures utilized

instead as goodness-of-fit measures, some examples are the mean squared error, root

mean squared error and mean absolute error, as can be seen in Telmoudi et al. (2016),

however, these procedures do not address correctly the risk-forecasting property of the

models under consideration. As a way to ensure the robustness of the study, descriptive

statistics and individual characteristics of each model will be analyzed, such as mean

and variance.

In this work, VaR was backtested according to the violation rate (VR), which is

determined as the rate of violations and also could be interpreted as the proportion of

observations for which the observed returns are more extreme than those forecasted.

The most desirable measure is the one with VR close to 1, which means that the measure

in question is doing its job, otherwise when V R < 1 the forecasting is conservative,

resulting in underutilized capital, and when V R > 1 the forecasting is generating

overexposure, which means that the institution may not have sufficient resources to

cover a likely future loss. A risk measure violation rate (VR) can be expressed as:

VR = realized violations of V aR(X)t
expected violations of V aR(X)t

(3.15)

where the realized violations of V aR(X)t =
∑T
t=1 I(xt < V aR(X)t).

Backtesting ES is more difficult, owing to it being defined by an expectation and

not by a single quantile, such as VaR. McNeil & Frey (2000) determined an analogous

methodology to test ES as the violations for VaR, which consists of a hypothesis test.

The test is based on a null hypothesis (H0) of the residuals with a mean of zero that

considers the measure as corrected estimated, and an alternative hypothesis (HA) of a

mean greater than zero, considering ES as systematically underestimated since this is
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the likely direction of failure.

 H0 : µ = 0

HA : µ > 0
(3.16)

As EVaR has a definition related to a gain-loss ration, Bellini & Bernardino (2017)

argued that the notion of violation is not meaningful to it, and according to it this measure

was only qualified by its loss function.

The intention of risk measures is to support decision-making, so the best manner

to rate such measures is to detect how well they perform in an intended task. In the

context of this work, the ending goal is to ensure the minimum loss over the aggregate

system, which can be directly reached by loss functions. It also can be argued that

computing the number of violations occurred does not provide the magnitude of the

violation, but only a perception of it. Loss function is conceptually preferable to violation

backtest, thus it is used as the principal appliance for interpreting results and inferring

conclusions, although VR is considered a support tool. A loss function is a function

that maps an event, or even values of variables, onto a real number; it represents a

"cost" or "loss" associated with the event. The concept is that the closer the mean

score of a model is to zero, the better. The loss functions are calculated following the

methodologies of Acerbi & Szekely (2017), Gerlach et al. (2017) and Bellini et al. (2014),

for VaR, ES and EVaR respectively and are expressed as:

ZV aRα = 1
T

T∑
t=1

[α(xt + V aRα(X)t)+ + (1− α)(xt + V aRα(X)t)−] (3.17)

Where T is the estimation length, α ∈ (0, 1) is the significance level, xt is a realized

value of the serie and V aRα(X)t is a risk estimative.

ZESα = 1
T

T∑
t=1

[α(ESα(X)t − V aRα(X)t) + (xt + V aRα(X)t)−] (3.18)

Where T is the estimation length, α ∈ (0, 1) is the significance level, xt is a realized

value of the serie and V aRα(X)t and ESα(X)t are risk estimatives.

ZEV aRα = 1
T

T∑
t=1

[α((xt + EV aRα(X)t)+)2 + (1− α)((xt + EV aRα(X)t)−)2] (3.19)
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Where T is the estimation length, α ∈ (0, 1) is the significance level, xt is a realized

value of the serie and EV aRα(X)t is a risk estimative.
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4 RESULTS

As defined earlier, the empirical study is based on available daily data of the

U.S. stocks aggregated by two distinct aggregation procedures, ΛS and ΛW , and by

the S&P500 index, the 1/N and the fife-factor (FF) portfolios. These five portfolios are

used as a proxy for economies in a systemic context for modeling and forecasting

risk. They are detailed in Figures 4.1, 4.2, 4.3, 4.4 and 4.5. It can be easily seen that

ΛS resembling behaves as the S&P500, disregarding the very beginning of it which

is expected since S&P500 is compounded by the 500 most representative stocks of

the ones considered in ΛS. The 1/N and the FF portfolios also behave close to the

S&P500 index. However, the similarity between these four, ΛS, and additionally ΛW ,

present more turbulent behavior through time and greater deviations than the others.

All portfolios exhibited excess kurtosis and skewness, generating fatter tails, are more

accurately seen in Table 4.1. The weighted portfolio has shown a distinguished behavior

wherein a huge crisis, such as the one from 2008, cannot be identified with ease, in

contrast with the sum portfolio and the index portfolio that evidenced the effect and

subsequent recovery from a crisis. It is also observed the greater standard deviation of

ΛW than the four others, which is seen either in 4.2.

Table 4.1 – Descriptive Statistics of the Portfolios

ΛS(X) ΛW (X) S&P500 1/N FF
Mean -0.0001 0.0003 0.0001 0.0002 0.0010
Standart Deviation 0.0198 0.1833 0.0124 0.0134 0.0161
Kurtosis 7.5463 8.0047 8.1605 7.2481 5.1121
Skewness 0.0402 -0.2408 -0.01937 -0.4579 -0.1574

Figure 4.1 – Time series and histogram of ΛS(X)
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Figure 4.2 – Time series and histogram of ΛW (X)

Figure 4.3 – Time series and histogram of S&P500

Figure 4.4 – Time series and histogram of 1/N portfolio

Figure 4.5 – Time series and histogram of FF portfolio

After the statistical analysis of the portfolio series, we turn the attention to the

forecasts of risk. Proceeding from the introduced models and estimation procedures,

each portfolio generates a one-step-ahead forecast series for VaR, ES, and EVaR for 10
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models with different distributions in different scenarios concerning three significance

levels and three estimation windows. The results acquired are segregated by measure

and by the significance level (α) - which is linked to the quantile of interest - to better

expound the portfolio behavior and collate its performances.

Summarizing the descriptive statistics obtained, the econometric models of ΛS

and of S&P500 show similar behaviors for all competing models and measures, slightly

changing their means and deviations for all analyses.The models of ΛW presented

relatively greater descriptive statistics for all models, although it was quite consistent

with the criteria of estimation chosen, as was window estimation size and α. Additionally

we can see that the 1/N and the FF portfolios presented almost the same behaviors,

concerning mean and standard deviation, of one another and very similar to the S&P500

portfolio.

Figure 4.6 – Risk forecasting for ΛS(X) at 1% significance level with estimation window
of 1000 days under conditional GARCH with student distribution.

To emphasize the distinction of the estimated models, we selected the more

suitable characteristics to set up a visual analysis. Figures 4.6, 4.7, 4.8,4.9 and 4.10

display the forecast of the five portfolios studied under the student distribution at a 1%

significance level with the estimation window of 1,000 business days. Both α and the

window are selected for being the most conservative and in line to secure minimum loss
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over the system.

Figure 4.7 – Risk forecasting for ΛW (X) at 1% significance level with estimation window
of 1000 days under conditional GARCH with student distribution.

Figure 4.8 – Risk forecasting for S&P500 at 1% significance level with estimation window
of 1000 days under conditional GARCH with student distribution.
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Figure 4.9 – Risk forecasting for 1/N at 1% significance level with estimation window of
1000 days under conditional GARCH with student distribution.

Figure 4.10 – Risk forecasting for FF at 1% significance level with estimation window of
1000 days under conditional GARCH with student distribution.

Visually analyzing the graphics, the magnitude of the violations and how each

measure deals with them can be viewed. The effect of the 2008 crisis is marked in

S&P500, ΛS, 1/N and FF , in the meantime, all forecasts look quite well-fitted for the five
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portfolios. There are not any discrepant failures or violation clusters among forecasts,

although it is necessary to analyze the numerical results in order to formulate an

adequate understanding of the data. Regarding the ES forecasting, it can be seen that

for the sum the measure is more conservative, distancing more from VaR forecasts than

what is observed in the others.

The forecasts generate some patterns among portfolios and models. Focusing

the attention on VaR, which is shown in Tables 4.2, 4.3 and 4.4, the aggregation ΛS

presents a good fit in relation to the violations and it also has fewer violations than

S&P500 and 1/N for all competing models. The S&P500 index exceeded the violation

expected for all series forecasted, even though just exceeding the violation in a backtest

does not always suffice to accept the bad quality of the forecast. It is also exceeded

by an expressive ratio, usually greater than 1.5 and in extreme cases greater than 2. In

contrast to ΛS, ΛW and S&P500 present an increase of violations when the significance

level decreases, and ΛW also show an increase when the window size decreases. The

sum portfolio was far superior in VR performance than S&P500, N/1 and FF . It is

important to highlight that S&P500, 1/N , FF shown very similar results for all models,

with FF presenting a slightly better behavior.

Comparing the portfolios among distributions, ΛW performs better with the his-

torical simulation and empirical distribution in general, followed by the skew-student.

The same is observed with S&P500, even though the skew-student performed far better

considering α = 1%. The sum portfolio does not possess a global dominant distribution,

but three could be cited as the most significant, these being the generalized error

distribution and its skewed variant, as well as the logistic distribution. The 1/N and the

FF also did not present a dominant distribution over all. The generalized extreme value

distribution is among the worst results overall - with two extremes exceptions for FF

with α = 5% and 1/N with α = 1% - opposing studies as Kuester et al. (2006), it is also

relevant to cite that GEV generated V R ≥ 2 for S&P500 with α = 1%.
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Table 4.2 – Results for VaR forecasting with α = 5%

ΛS(X) ΛW (X) S&P500 1/N FF

Mean SD VR ZV aRα Mean SD VR ZV aRα Mean SD VR ZV aRα Mean SD VR ZV aRα Mean SD VR ZV aRα

Estimation window: 250
HS 0.03 0.01 0.95 1.08E-07 0.25 0.03 1.02 3.71E-06 0.02 0.01 1.06 9.79E-08 0.02 0.01 1.10 2.03E-07 0.02 0.01 1.07 1.71E-07
Normal 0.03 0.01 1.06 9.92E-08 0.26 0.11 0.81 2.45E-06 0.02 0.01 1.31 5.39E-08 0.02 0.01 1.43 1.45E-07 0.02 0.01 1.15 1.78E-07
Skew-Normal 0.03 0.01 1.03 1.02E-07 0.27 0.12 0.72 2.97E-06 0.02 0.01 1.23 6.61E-08 0.02 0.01 1.29 1.61E-07 0.02 0.01 1.02 1.71E-07
Student 0.02 0.01 1.15 7.95E-08 0.24 0.10 0.91 2.17E-06 0.02 0.01 1.49 2.88E-08 0.02 0.01 1.45 1.40E-07 0.02 0.01 1.21 1.77E-07
Skew-Student 0.02 0.01 1.15 8.56E-08 0.23 0.10 1.00 2.59E-06 0.02 0.01 1.33 5.08E-08 0.02 0.01 1.29 2.03E-07 0.02 0.01 1.09 1.69E-07
GED 0.03 0.01 1.06 9.04E-08 0.25 0.11 0.91 2.39E-06 0.02 0.01 1.35 5.89E-08 0.02 0.01 1.46 1.45E-07 0.02 0.01 1.19 1.80E-07
Skew-GED 0.03 0.01 1.03 9.59E-08 0.25 0.12 0.98 2.12E-06 0.02 0.01 1.24 6.00E-08 0.02 0.01 1.24 1.62E-07 0.02 0.01 1.02 1.71E-07
Empirical 0.03 0.01 1.03 8.99E-08 0.22 0.11 1.16 1.90E-06 0.02 0.01 1.10 4.78E-08 0.02 0.01 1.13 1.46E-07 0.02 0.01 1.04 1.57E-07
GEV 0.03 0.01 0.95 1.16E-07 0.28 0.12 0.70 2.33E-06 0.02 0.01 1.14 7.00E-08 0.02 0.01 1.44 1.58E-07 0.02 0.02 1.22 1.75E-07
Logistic 0.03 0.01 1.05 1.00E-07 0.24 0.11 0.97 2.15E-06 0.02 0.01 1.32 5.04E-08 0.02 0.01 1.42 1.43E-07 0.02 0.01 1.13 1.95E-07

Estimation window: 500
HS 0.03 0.01 0.93 1.42E-07 0.25 0.03 1.03 4.15E-06 0.02 0.01 1.06 1.30E-07 0.02 0.01 1.05 2.21E-07 0.02 0.01 1.03 1.84E-07
Normal 0.02 0.01 0.99 1.08E-07 0.26 0.10 0.65 2.79E-06 0.02 0.01 1.32 6.60E-08 0.02 0.01 1.35 1.64E-07 0.02 0.01 1.05 1.68E-07
Skew-Normal 0.02 0.01 0.95 1.09E-07 0.27 0.11 0.63 2.62E-06 0.02 0.01 1.23 6.63E-08 0.02 0.01 1.19 1.62E-07 0.02 0.01 0.98 1.63E-07
Student 0.02 0.01 1.09 9.94E-08 0.24 0.10 0.78 2.51E-06 0.02 0.01 1.40 5.08E-08 0.02 0.01 1.40 1.50E-07 0.02 0.01 1.13 1.68E-07
Skew-Student 0.02 0.01 1.05 1.00E-07 0.23 0.10 0.86 2.32E-06 0.02 0.01 1.29 5.38E-08 0.02 0.01 1.19 2.21E-07 0.02 0.01 0.98 1.56E-07
GED 0.02 0.01 0.99 1.07E-07 0.25 0.10 0.73 2.70E-06 0.02 0.01 1.34 6.39E-08 0.02 0.01 1.34 1.55E-07 0.02 0.01 1.08 1.75E-07
Skew-GED 0.02 0.01 0.95 1.08E-07 0.25 0.11 0.81 2.46E-06 0.02 0.01 1.19 6.35E-08 0.02 0.01 1.14 1.61E-07 0.02 0.01 0.97 1.59E-07
Empirical 0.02 0.01 0.97 9.67E-08 0.22 0.10 1.01 2.44E-06 0.02 0.01 1.09 7.09E-08 0.02 0.01 1.07 1.81E-07 0.02 0.01 0.94 1.51E-07
GEV 0.03 0.01 0.90 1.12E-07 0.27 0.11 0.64 2.91E-06 0.02 0.01 1.12 7.77E-08 0.02 0.01 1.20 1.34E-07 0.02 0.01 0.99 1.66E-07
Logistic 0.02 0.01 1.02 1.06E-07 0.24 0.10 0.81 2.60E-06 0.02 0.01 1.35 6.45E-08 0.02 0.01 1.32 1.65E-07 0.02 0.01 1.02 1.69E-07

Estimation window: 1000
HS 0.03 0.01 0.85 1.58E-07 0.26 0.02 1.07 4.95E-06 0.02 0.01 1.02 1.37E-07 0.02 0.01 0.89 2.47E-07 0.02 0.01 1.00 1.92E-07
Normal 0.02 0.01 0.96 1.23E-07 0.26 0.10 0.60 3.43E-06 0.02 0.01 1.25 7.26E-08 0.02 0.01 1.14 1.85E-07 0.02 0.01 0.95 1.93E-07
Skew-Normal 0.02 0.01 0.92 1.23E-07 0.27 0.10 0.55 3.27E-06 0.02 0.01 1.15 8.19E-08 0.02 0.01 1.03 1.93E-07 0.02 0.01 0.87 2.01E-07
Student 0.02 0.01 1.10 1.17E-07 0.24 0.09 0.79 3.78E-06 0.02 0.01 1.37 6.12E-08 0.02 0.01 1.19 1.77E-07 0.02 0.01 0.97 1.98E-07
Skew-Student 0.02 0.01 1.06 1.22E-07 0.23 0.09 0.83 3.46E-06 0.02 0.01 1.22 7.37E-08 0.02 0.01 1.02 2.47E-07 0.02 0.01 0.89 2.08E-07
GED 0.02 0.01 0.97 1.23E-07 0.26 0.09 0.64 3.88E-06 0.02 0.01 1.27 6.87E-08 0.02 0.01 1.13 1.81E-07 0.02 0.01 0.95 1.97E-07
Skew-GED 0.02 0.01 0.95 1.28E-07 0.25 0.10 0.67 3.61E-06 0.02 0.01 1.13 8.02E-08 0.02 0.01 0.98 1.98E-07 0.02 0.01 0.86 2.08E-07
Empirical 0.02 0.01 0.94 1.23E-07 0.22 0.09 0.97 2.99E-06 0.02 0.01 1.03 9.00E-08 0.02 0.01 0.86 2.15E-07 0.02 0.01 0.85 1.80E-07
GEV 0.02 0.01 1.11 1.30E-07 0.28 0.09 0.59 3.35E-06 0.02 0.01 1.23 8.73E-08 0.02 0.01 0.95 2.10E-07 0.02 0.01 0.90 2.08E-07
Logistic 0.02 0.01 1.01 1.21E-07 0.24 0.09 0.78 3.27E-06 0.02 0.01 1.29 7.08E-08 0.02 0.01 1.12 1.82E-07 0.02 0.01 0.91 1.93E-07
The expected violations values for the windows of 250, 500 and 1000 are, respectively, 201, 188 and 163.
The values in bold correspond to the best results for each criteria.
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Table 4.3 – Results for VaR forecasting with α = 2.5%

ΛS(X) ΛW (X) S&P500 1/N FF

Mean SD VR ZV aRα Mean SD VR ZV aRα Mean SD VR ZV aRα Mean SD VR ZV aRα Mean SD VR ZV aRα

Estimation window: 250
HS 0.03 0.02 1.11 7.54E-08 0.34 0.04 1.15 2.15E-06 0.02 0.01 1.32 8.64E-08 0.03 0.01 1.28 1.44E-07 0.03 0.01 1.28 1.23E-07
Normal 0.03 0.02 1.24 6.30E-08 0.31 0.12 1.02 1.44E-06 0.02 0.01 1.73 3.79E-08 0.02 0.01 1.63 8.67E-08 0.03 0.02 1.38 1.14E-07
Skew-Normal 0.03 0.02 1.22 6.48E-08 0.32 0.13 0.96 1.67E-06 0.02 0.01 1.53 4.59E-08 0.02 0.01 1.39 9.70E-08 0.03 0.02 1.19 1.08E-07
Student 0.03 0.02 1.19 5.74E-08 0.31 0.12 0.97 1.41E-06 0.02 0.01 1.87 2.54E-08 0.02 0.01 1.54 8.58E-08 0.03 0.02 1.40 1.16E-07
Skew-Student 0.03 0.02 1.21 6.24E-08 0.30 0.12 1.08 1.49E-06 0.02 0.01 1.46 4.31E-08 0.02 0.01 1.25 1.44E-07 0.03 0.02 1.17 1.09E-07
GED 0.03 0.02 1.10 6.30E-08 0.32 0.14 1.33 1.50E-06 0.02 0.01 1.51 4.68E-08 0.02 0.01 1.52 8.91E-08 0.03 0.02 1.28 1.16E-07
Skew-GED 0.03 0.02 1.09 6.70E-08 0.32 0.14 1.41 1.30E-06 0.02 0.01 1.40 4.76E-08 0.02 0.01 1.21 9.85E-08 0.03 0.02 1.12 1.10E-07
Empirical 0.03 0.02 1.15 7.43E-08 0.29 0.12 1.31 1.12E-06 0.02 0.01 1.29 4.22E-08 0.02 0.02 1.18 8.62E-08 0.03 0.02 1.17 1.17E-07
GEV 0.03 0.02 1.16 7.16E-08 0.33 0.13 0.91 1.33E-06 0.02 0.01 1.52 4.67E-08 0.02 0.01 1.75 9.52E-08 0.03 0.02 1.40 1.08E-07
Logistic 0.03 0.02 1.10 6.74E-08 0.30 0.12 1.13 1.31E-06 0.02 0.01 1.56 3.89E-08 0.02 0.01 1.39 8.94E-08 0.03 0.02 1.19 1.30E-07

Estimation window: 500
HS 0.03 0.02 1.04 1.01E-07 0.34 0.03 1.09 2.47E-06 0.02 0.01 1.19 9.36E-08 0.03 0.01 1.21 1.47E-07 0.03 0.01 1.10 1.34E-07
Normal 0.03 0.02 1.16 6.81E-08 0.31 0.11 0.89 1.64E-06 0.02 0.01 1.68 4.63E-08 0.02 0.01 1.72 9.70E-08 0.03 0.02 1.31 1.06E-07
Skew-Normal 0.03 0.02 1.13 6.91E-08 0.32 0.12 0.83 1.53E-06 0.02 0.01 1.46 4.78E-08 0.02 0.01 1.43 9.79E-08 0.03 0.02 1.15 1.02E-07
Student 0.03 0.02 1.14 6.73E-08 0.31 0.11 0.90 1.66E-06 0.02 0.01 1.67 4.16E-08 0.02 0.01 1.64 9.21E-08 0.03 0.02 1.24 1.10E-07
Skew-Student 0.03 0.02 1.12 6.79E-08 0.30 0.11 0.99 1.51E-06 0.02 0.01 1.35 4.39E-08 0.02 0.01 1.35 1.47E-07 0.03 0.02 1.06 1.02E-07
GED 0.03 0.02 0.95 7.14E-08 0.32 0.12 0.99 1.73E-06 0.02 0.01 1.52 4.89E-08 0.02 0.01 1.61 9.46E-08 0.03 0.02 1.16 1.12E-07
Skew-GED 0.03 0.02 0.96 7.21E-08 0.32 0.13 1.11 1.57E-06 0.02 0.01 1.24 4.90E-08 0.02 0.02 1.26 9.90E-08 0.03 0.02 1.03 1.03E-07
Empirical 0.03 0.02 1.11 7.14E-08 0.29 0.11 1.09 1.47E-06 0.02 0.01 0.17 5.81E-08 0.03 0.02 1.20 1.05E-07 0.03 0.02 1.12 9.79E-08
GEV 0.03 0.02 1.12 6.92E-08 0.32 0.13 0.91 1.68E-06 0.02 0.01 1.47 5.22E-08 0.02 0.01 1.50 7.94E-08 0.03 0.02 1.28 1.02E-07
Logistic 0.03 0.02 1.03 7.08E-08 0.30 0.11 0.94 1.59E-06 0.02 0.01 1.53 4.88E-08 0.02 0.01 1.43 1.01E-07 0.03 0.02 1.12 1.13E-07

Estimation window: 1000
HS 0.04 0.01 0.99 1.10E-07 0.35 0.02 1.07 3.44E-06 0.03 0.01 1.15 9.52E-08 0.03 0.01 1.28 1.59E-07 0.03 0.01 1.21 1.30E-07
Normal 0.03 0.02 1.09 7.80E-08 0.31 0.10 0.83 2.03E-06 0.02 0.01 1.70 5.08E-08 0.02 0.01 1.69 1.11E-07 0.03 0.02 1.38 1.22E-07
Skew-Normal 0.03 0.02 1.02 7.96E-08 0.32 0.10 0.69 1.91E-06 0.02 0.01 1.56 5.77E-08 0.02 0.01 1.33 1.17E-07 0.03 0.02 1.15 1.28E-07
Student 0.03 0.02 1.04 7.85E-08 0.31 0.10 0.78 2.37E-06 0.02 0.01 1.60 4.90E-08 0.02 0.01 1.60 1.10E-07 0.03 0.02 1.35 1.29E-07
Skew-Student 0.03 0.02 1.06 8.25E-08 0.30 0.10 0.78 2.15E-06 0.02 0.01 1.41 5.71E-08 0.03 0.02 1.23 1.59E-07 0.03 0.02 1.15 1.36E-07
GED 0.03 0.02 0.95 8.16E-08 0.33 0.10 0.74 2.40E-06 0.02 0.01 1.48 5.26E-08 0.02 0.01 1.48 1.12E-07 0.03 0.02 1.27 1.27E-07
Skew-GED 0.03 0.02 0.93 8.56E-08 0.32 0.11 0.77 2.21E-06 0.02 0.01 1.30 5.98E-08 0.03 0.02 1.14 1.23E-07 0.03 0.02 1.07 1.35E-07
Empirical 0.03 0.01 1.02 8.46E-08 0.29 0.10 0.98 1.88E-06 0.02 0.01 1.14 6.76E-08 0.03 0.02 1.09 1.26E-07 0.03 0.02 1.16 1.18E-07
GEV 0.03 0.01 1.33 8.06E-08 0.34 0.10 0.80 1.92E-06 0.02 0.01 1.73 5.88E-08 0.02 0.01 1.46 1.25E-07 0.03 0.02 1.37 1.27E-07
Logistic 0.03 0.02 1.02 8.12E-08 0.30 0.10 0.88 2.01E-06 0.02 0.01 1.52 5.35E-08 0.02 0.01 1.42 1.40E-08 0.03 0.02 1.00 1.29E-07

The expected violations values for the windows of 250, 500 and 1000 are, respectively, 100, 94 and 81.
The values in bold correspond to the best results for each criteria.
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Table 4.4 – Results for VaR forecasting with α = 1%

ΛS(X) ΛW (X) S&P500 1/N FF

Mean SD VR ZV aRα Mean SD VR ZV aRα Mean SD VR ZV aRα Mean SD VR ZV aRα Mean SD VR ZV aRα

Estimation window: 250
HS 0.04 0.02 0.65 4.22E-08 0.50 0.08 1.48 1.21E-06 0.03 0.02 1.63 4.91E-08 0.03 0.02 1.75 7.19E-08 0.04 0.02 1.70 6.52E-08
Normal 0.04 0.02 1.18 2.62E-08 0.37 0.14 1.68 6.79E-07 0.02 0.01 2.60 2.03E-08 0.03 0.02 2.20 4.12E-08 0.03 0.02 1.75 5.68E-08
Skew-Normal 0.04 0.02 1.03 2.71E-08 0.38 0.15 1.58 7.48E-07 0.03 0.02 2.10 2.44E-08 0.03 0.02 1.65 4.65E-08 0.03 0.02 1.65 5.40E-08
Student 0.04 0.02 0.85 2.80E-08 0.42 0.14 1.15 7.68E-07 0.03 0.02 2.23 1.61E-08 0.03 0.02 1.83 4.24E-08 0.03 0.02 1.70 5.94E-08
Skew-Student 0.04 0.02 0.48 3.13E-08 0.41 0.15 1.48 7.09E-07 0.03 0.02 1.63 2.79E-08 0.03 0.02 1.30 7.19E-08 0.03 0.02 1.30 5.57E-08
GED 0.04 0.02 0.88 2.90E-08 0.41 0.16 2.15 7.69E-07 0.03 0.02 1.98 2.78E-08 0.03 0.02 1.75 4.36E-08 0.03 0.02 1.70 5.87E-08
Skew-GED 0.04 0.02 0.73 3.12E-08 0.41 0.18 2.83 6.46E-07 0.03 0.02 1.43 2.82E+00 0.03 0.02 1.30 4.76E-08 0.03 0.02 1.35 5.53E-08
Empirical 0.04 0.02 0.80 3.42E-08 0.43 0.18 1.55 7.40E-07 0.03 0.02 1.93 3.03E-08 0.03 0.02 1.65 4.41E-08 0.03 0.02 1.63 6.27E-08
GEV 0.04 0.02 0.73 2.95E-08 0.39 0.15 1.53 6.08E-07 0.02 0.02 2.20 2.40E-08 0.03 0.02 2.75 4.54E-08 0.03 0.02 2.13 5.21E-08
Logistic 0.04 0.02 0.93 3.07E-08 0.38 0.14 1.60 6.46E-07 0.03 0.02 1.88 2.27E-08 0.03 0.02 1.38 4.51E-08 0.04 0.02 1.33 6.92E-08

Estimation window: 500
HS 0.04 0.02 1.38 5.31E-08 0.51 0.08 1.22 1.47E-06 0.03 0.01 1.62 5.47E-08 0.03 0.02 1.57 7.31E-08 0.04 0.02 1.27 7.18E-08
Normal 0.03 0.02 1.70 3.39E-08 0.37 0.13 1.54 7.75E-07 0.02 0.01 2.43 2.47E-08 0.03 0.02 2.08 4.57E-08 0.03 0.02 1.76 5.28E-08
Skew-Normal 0.04 0.02 1.57 3.45E-08 0.38 0.14 1.46 7.13E-07 0.03 0.02 1.92 2.60E-08 0.03 0.02 1.49 4.71E-08 0.03 0.02 1.43 5.08E-08
Student 0.04 0.02 1.24 3.65E-08 0.42 0.13 1.08 9.19E-07 0.03 0.02 1.76 2.56E-08 0.03 0.02 1.62 4.54E-08 0.03 0.02 1.43 5.67E-08
Skew-Student 0.04 0.02 1.11 3.69E-08 0.40 0.13 1.18 8.23E-07 0.03 0.02 1.46 2.69E-08 0.03 0.02 1.16 7.31E-08 0.03 0.02 1.16 5.29E-08
GED 0.04 0.02 1.19 3.75E-08 0.42 0.14 1.35 8.94E-07 0.03 0.02 1.76 2.81E-08 0.03 0.02 1.54 4.61E-08 0.03 0.02 1.43 5.68E-08
Skew-GED 0.04 0.02 1.11 3.78E-08 0.41 0.15 1.62 8.09E-07 0.03 0.02 1.43 2.82E-08 0.03 0.02 1.19 4.84E-08 0.03 0.02 1.16 5.24E-08
Empirical 0.04 0.02 1.35 3.73E-08 0.44 0.19 1.30 6.86E-07 0.03 0.02 1.46 3.44E-08 0.03 0.02 1.35 5.15E-08 0.03 0.02 1.16 4.86E-08
GEV 0.03 0.02 1.68 3.35E-08 0.38 0.15 1.78 7.71E-07 0.02 0.02 2.00 2.69E-08 0.03 0.02 2.03 3.75E-08 0.03 0.02 1.70 4.89E-08
Logistic 0.04 0.02 1.30 3.76E-08 0.38 0.13 1.46 7.82E-07 0.03 0.02 1.73 2.81E-08 0.03 0.02 1.32 5.04E-08 0.04 0.02 1.14 6.01E-08

Estimation window: 1000
HS 0.05 0.02 1.06 5.99E-08 0.50 0.05 1.09 6.71E-07 0.03 0.01 1.56 5.63E-08 0.04 0.02 1.66 7.74E-08 0.04 0.02 1.56 7.75E-08
Normal 0.03 0.02 1.53 3.89E-08 0.37 0.12 1.34 1.00E-07 0.02 0.01 2.53 2.71E-08 0.03 0.02 2.22 5.26E-08 0.03 0.02 1.94 6.05E-08
Skew-Normal 0.03 0.02 1.44 4.02E-08 0.38 0.12 1.09 8.33E-08 0.02 0.02 2.19 3.09E-08 0.03 0.02 1.59 5.65E-08 0.03 0.02 1.47 6.35E-08
Student 0.04 0.02 1.16 4.19E-08 0.42 0.12 0.88 3.08E-07 0.03 0.02 1.81 2.97E-08 0.03 0.02 1.81 5.47E-08 0.03 0.02 1.63 6.67E-08
Skew-Student 0.04 0.02 1.19 4.44E-08 0.40 0.12 1.03 2.30E-07 0.03 0.02 1.38 3.36E-08 0.03 0.02 1.25 7.74E-08 0.04 0.02 1.16 7.03E-08
GED 0.04 0.02 1.13 4.27E-08 0.42 0.12 1.00 2.10E-07 0.03 0.02 1.69 3.01E-08 0.03 0.02 1.59 5.52E-08 0.03 0.02 1.53 6.46E-08
Skew-GED 0.04 0.02 1.13 4.49E-08 0.41 0.13 1.16 1.68E-07 0.03 0.02 1.28 3.36E-08 0.03 0.02 1.16 6.07E-08 0.04 0.02 1.16 6.88E-08
Empirical 0.04 0.02 1.25 4.56E-08 0.42 0.14 1.13 1.43E-07 0.03 0.02 1.44 3.51E-08 0.03 0.02 1.31 6.07E-08 0.04 0.02 1.19 6.69E-08
GEV 0.03 0.02 1.75 3.92E-08 0.42 0.13 1.09 7.78E-08 0.02 0.01 2.59 3.04E-08 0.03 0.01 1.00 5.89E-08 0.03 0.02 1.88 6.08E-08
Logistic 0.04 0.02 1.34 4.33E-08 0.38 0.12 1.31 1.26E-07 0.03 0.02 1.78 3.07E-08 0.03 0.02 1.47 5.75E-08 0.04 0.02 1.06 6.83E-08

The expected violations values for the windows of 250, 500 and 1000 are, respectively, 40, 37 and 32.
The values in bold correspond to the best results for each criteria.
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Concerning the VaR loss function analysis, there are generally no relevant

changes in patterns among models. The five portfolios had their loss function reduced

as the significance level decreased. What was not observed with window size, what

can be explained owing to as the estimation window gets larger, risk predictions tend

to be more conservative, contradicting Degiannakis et al. (2013), who argues that

as the forecasting horizon increases, VaR underestimation turns less prevalent. For

all forecasts, ΛS presents results slightly bigger than S&P500. 1/N and FF exhibits

greater differences from both ΛS and S&P500, although not highly significant ones. ΛW

presents the worst results over all models and scenarios. Contrasting what is observed

in the VaR violation analysis, the HS produces the worst outcome for all models in all

scenarios - considering the exception of FF -, corroborating Pritsker (2006) as being a

poor choice. This bad result is justifiable due to the fact that this nonparametric approach

delays the change of the volatility in the forecasting. Another relevant point is that the

GEV distributions show quite good results in the aggregate analysis. The sum portfolio

performs better with the student distribution, as well as the S&P500 and the 1/N , as was

expected. The weighted and the FF portfolios present a superior fit with the empirical

distribution.

Artzner et al. (1999) proposed the use of Expected Shortfall after identifying VaR

as not being coherent due its lack of subaddivity19. Although other authors defend the

use of VaR and mention methods to correct it, as seen in Daníelsson et al. (2013) and

McNeil & Frey (2000), ES is widely known as being more conservative than VaR and

has thus been gaining reputability since the 2008 crisis.

The Expected Shortfall is defined by an expectation, so its forecast cannot be

simply backtested by the number of violations occurred, although it can be done by a

hypothesis test. The test considered a null hypothesis (H0) of the residuals with a mean

of zero versus an alternative hypothesis (HA) of a mean greater than zero. As the ideal

scenario is the measure possessing a mean as close to zero as possible, the objective

here is not to reject H0, otherwise, ES is considered systematically underestimated.

The data shown in Tables 4.5, 4.6 and 4.7 expose the results for ES forecasting and

where the H0 is rejected with 1%, 5% and 10% of significance. All portfolios behave
19 Subadditivity is an important property for a risk measure, and due to its relation with the diversification

principle of modern portfolio theory, its means of a measure is subadditive it shall generate lower
measured risk for a diversified portfolio than for a non-diversified portfolio.
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differently among significance levels, ΛS lowered with the decrease of α, while ΛW , 1/N

and FF were practically constant and S&P500 has mildly risen. With α = 5%, ΛS and

1/Npresents the best performance - especially with the Student distribution for ΛS - ,

however S&P500 improves its conduct with α = 2.5% and α = 1% and became more

suitable. The augmentation of the estimation window size has a positive effect on the

significance of the backtest, which can be understood because when days are added to

the window, it brings about additional information to improve the forecast.

As hoped, the U.S. market index performed expressively well, modeled by the

skew-student distribution, since it had been established by the literature from a long

time and has already has been shown in the previous test with VaR. ΛW had the worst

results in general among models, even though it performs far better than others with

the nonparametric distribution and with the semi-parametric GARCH with the empirical

distribution which also is detected in the VaR backtest. The 1/N and FF portfolios

present similar behavior in general, performing better with logistic and skew-student

distributions. Considering the first three portfolios, there is no distribution that generated

a significance greater than 10% for all the scenarios and models. On the other hand, as

already said, the 1/N and FF present their best results constant for every analysis. On

the other hand, the normal distribution and the GEV distribution exposed a significance

of 1% for every model in all scenarios.

Alternating the analysis of the outcomes of ES loss function, there are also some

patterns found previously. Overall, there is a tendency of the losses to grow as the

windows rise. The same result is also perceived as the significance level grew. Both

portfolios present constant behavior through window size and significance levels. As

seen before, ΛS produces outcomes quite similar to S&P500, whereby it is observed

that there is an increase of it when significance level became smaller. Additionally, ΛS

performs better than both 1/N and FF . The results of ΛW present the worst outcomes

for ES forecasting, while the S&P500 present the best, even though ΛS is extremely

similar to the index.
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Table 4.5 – Results for ES forecasting with α = 5%

ΛS(X) ΛW (X) S&P500 1/N FF

Mean SD p-value ZESα Mean SD p-value ZESα Mean SD p-value ZESα Mean SD p-value ZESα Mean SD p-value ZESα

Estimation window: 250
HS 0.04 0.02 0.06 8.61E-08 0.42 0.05 0.17 1.23E-06 0.03 0.01 0.01 9.18E-08 0.03 0.01 0.02 9.88E-08 0.03 0.02 0.01 8.96E-08
Normal 0.03 0.02 0.00 3.56E-08 0.33 0.13 0.00 5.79E-07 0.02 0.01 0.00 2.92E-08 0.02 0.01 0.00 3.70E-08 0.03 0.02 0.00 6.48E-08
Skew-Normal 0.03 0.02 0.00 3.70E-08 0.34 0.14 0.00 4.69E-07 0.02 0.01 0.00 3.42E-08 0.02 0.01 0.01 4.37E-08 0.03 0.02 0.00 6.04E-08
Student 0.03 0.02 0.12 5.69E-08 0.36 0.13 0.00 1.14E-06 0.02 0.02 0.00 3.29E-08 0.02 0.01 0.13 4.52E-08 0.03 0.02 0.03 7.41E-08
Skew-Student 0.03 0.02 0.10 6.40E-08 0.35 0.13 0.00 6.38E-07 0.02 0.01 0.73 5.88E-08 0.03 0.02 0.52 9.88E-08 0.03 0.02 0.10 6.81E-08
GED 0.03 0.02 0.02 5.02E-08 0.35 0.14 0.00 9.07E-07 0.02 0.01 0.02 4.98E-08 0.02 0.01 0.10 4.46E-08 0.03 0.02 0.02 7.00E-08
Skew-GED 0.03 0.02 0.01 5.36E-08 0.35 0.15 0.00 6.91E-07 0.02 0.02 0.35 5.03E-08 0.03 0.02 0.23 4.66E-08 0.03 0.02 0.02 6.49E-08
Empirical 0.03 0.02 0.00 7.00E-08 0.35 0.14 0.00 8.16E-07 0.02 0.01 0.00 6.42E-08 0.03 0.02 0.01 5.09E-08 0.03 0.02 0.01 8.23E-08
GEV 0.03 0.02 0.00 3.57E-08 0.35 0.14 0.00 4.34E-07 0.02 0.01 0.00 3.06E-08 0.02 0.01 0.00 4.22E-08 0.03 0.02 0.00 5.23E-08
Logistic 0.03 0.02 0.03 4.93E-08 0.33 0.13 0.00 6.71E-07 0.02 0.01 0.03 3.91E-08 0.03 0.02 0.72 5.13E-08 0.03 0.02 0.52 9.39E-08

Estimation window: 500
HS 0.04 0.02 0.19 8.52E-08 0.43 0.03 0.58 1.71E-06 0.03 0.01 0.03 9.34E-08 0.03 0.01 0.05 8.53E-08 0.03 0.02 0.24 1.01E-07
Normal 0.03 0.02 0.00 3.79E-08 0.33 0.12 0.00 6.68E-07 0.02 0.01 0.00 3.53E-08 0.02 0.01 0.00 3.91E-08 0.03 0.02 0.00 5.91E-08
Skew-Normal 0.03 0.02 0.00 3.90E-08 0.34 0.12 0.00 5.80E-07 0.02 0.01 0.00 3.89E-08 0.03 0.02 0.06 4.52E-08 0.03 0.02 0.01 5.59E-08
Student 0.03 0.02 0.45 5.29E-08 0.36 0.12 0.00 1.43E-06 0.02 0.01 0.36 4.94E-08 0.03 0.02 0.57 7.72E-09 0.03 0.02 0.40 7.21E-08
Skew-Student 0.03 0.02 0.36 5.35E-08 0.35 0.12 0.00 1.22E-06 0.02 0.02 0.96 5.13E-08 0.03 0.02 0.94 8.53E-08 0.03 0.02 0.48 6.72E-08
GED 0.03 0.02 0.23 4.96E-08 0.35 0.12 0.00 1.10E-06 0.02 0.01 0.24 4.75E-08 0.03 0.02 0.30 4.64E-08 0.03 0.02 0.23 6.70E-08
Skew-GED 0.03 0.02 0.20 5.01E-08 0.35 0.13 0.00 9.87E-07 0.02 0.02 0.82 4.78E-08 0.03 0.02 0.88 4.95E-08 0.03 0.02 0.41 6.31E-08
Empirical 0.03 0.02 0.04 6.34E-08 0.36 0.13 0.10 8.22E-07 0.02 0.02 0.18 5.89E-08 0.03 0.02 0.31 4.90E-08 0.03 0.02 0.07 6.86E-08
GEV 0.03 0.02 0.00 3.39E-08 0.34 0.13 0.00 5.80E-07 0.02 0.01 0.00 3.49E-08 0.02 0.01 0.00 3.28E-08 0.03 0.02 0.00 4.81E-08
Logistic 0.03 0.02 0.12 5.10E-08 0.33 0.12 0.00 8.15E-07 0.02 0.01 0.07 4.73E-08 0.03 0.02 0.78 5.40E-08 0.03 0.02 0.66 8.17E-08

Estimation window: 1000
HS 0.04 0.01 0.10 8.86E-08 0.43 0.02 0.85 2.50E-06 0.03 0.01 0.03 8.79E-08 0.03 0.01 0.04 8.85E-08 0.04 0.01 0.18 1.03E-07
Normal 0.03 0.02 0.00 4.40E-08 0.33 0.11 0.00 7.66E-07 0.02 0.01 0.00 3.84E-08 0.02 0.01 0.00 4.80E-08 0.03 0.02 0.00 6.72E-08
Skew-Normal 0.03 0.02 0.00 4.77E-08 0.34 0.11 0.00 6.63E-07 0.02 0.01 0.00 4.47E-08 0.03 0.02 0.07 5.49E-08 0.03 0.02 0.03 7.13E-08
Student 0.03 0.02 0.45 5.84E-08 0.36 0.11 0.00 2.03E-06 0.02 0.01 0.19 5.57E-08 0.03 0.02 0.40 6.04E-08 0.03 0.02 0.29 8.44E-08
Skew-Student 0.03 0.02 0.40 6.29E-08 0.34 0.11 0.00 1.70E-06 0.02 0.02 0.64 5.97E-08 0.03 0.02 0.89 8.85E-08 0.03 0.02 0.69 8.96E-08
GED 0.03 0.02 0.19 5.59E-08 0.36 0.11 0.00 1.32E-06 0.02 0.01 0.07 5.06E-08 0.03 0.02 0.29 5.84E-08 0.03 0.02 0.21 7.76E-08
Skew-GED 0.03 0.02 0.26 5.95E-08 0.35 0.11 0.00 1.14E-06 0.02 0.02 0.51 5.41E-08 0.03 0.02 0.72 6.51E-08 0.03 0.02 0.45 8.34E-08
Empirical 0.03 0.02 0.13 6.75E-08 0.37 0.12 0.32 1.38E-06 0.02 0.02 0.09 6.07E-08 0.03 0.02 0.13 5.23E-08 0.03 0.02 0.21 9.30E-08
GEV 0.03 0.01 0.00 4.05E-08 0.37 0.11 0.00 5.46E-07 0.02 0.01 0.00 3.97E-08 0.02 0.01 0.00 5.14E-08 0.03 0.02 0.00 5.85E-08
Logistic 0.03 0.02 0.04 5.98E-08 0.33 0.11 0.00 1.05E-06 0.02 0.01 0.02 5.15E-08 0.03 0.02 0.58 6.57E-08 0.03 0.02 0.64 9.24E-08

The values in bold correspond to the best results for each criteria.
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Table 4.6 – Results for ES forecasting with α = 2.5%

ΛS(X) ΛW (X) S&P500 1/N FF

Mean SD p-value ZESα Mean SD p-value ZESα Mean SD p-value ZESα Mean SD p-value ZESα Mean SD p-value ZESα

Estimation window: 250
HS 0.04 0.02 0.06 4.85E-08 0.54 0.07 0.15 7.19E-07 0.03 0.02 0.09 3.56E-08 0.03 0.02 0.03 3.03E-08 0.04 0.02 0.03 3.71E-08
Normal 0.04 0.02 0.00 1.61E-08 0.37 0.14 0.00 2.62E-07 0.02 0.02 0.00 1.32E-08 0.03 0.02 0.00 1.67E-08 0.03 0.02 0.00 2.93E-08
Skew-Normal 0.04 0.02 0.00 1.67E-08 0.38 0.15 0.00 2.10E-07 0.03 0.02 0.00 1.55E-08 0.03 0.02 0.00 1.99E-08 0.03 0.02 0.00 2.72E-08
Student 0.04 0.02 0.04 3.15E-08 0.45 0.16 0.00 6.80E-07 0.03 0.02 0.14 1.70E-08 0.03 0.02 0.05 2.22E-08 0.03 0.02 0.22 3.52E-08
Skew-Student 0.04 0.02 0.06 3.58E-08 0.44 0.16 0.00 3.67E-07 0.03 0.02 0.81 3.34E-08 0.03 0.02 0.19 3.03E-08 0.03 0.02 0.11 3.22E-08
GED 0.04 0.02 0.00 2.44E-08 0.42 0.16 0.00 4.59E-07 0.03 0.02 0.02 2.47E-08 0.03 0.02 0.01 2.08E-08 0.03 0.02 0.02 3.21E-08
Skew-GED 0.04 0.02 0.00 2.61E-08 0.42 0.17 0.00 3.44E-07 0.03 0.02 0.53 2.49E-08 0.03 0.02 0.03 2.14E-08 0.03 0.02 0.03 2.97E-08
Empirical 0.04 0.02 0.00 2.97E-08 0.45 0.18 0.01 5.94E-07 0.03 0.02 0.00 3.69E-08 0.03 0.02 0.00 3.23E-08 0.03 0.02 0.00 3.28E-08
GEV 0.04 0.02 0.00 1.57E-08 0.40 0.15 0.00 1.87E-07 0.03 0.02 0.00 1.35E-08 0.03 0.02 0.00 1.89E-08 0.03 0.02 0.00 2.30E-08
Logistic 0.04 0.02 0.00 2.44E-08 0.39 0.14 0.00 3.31E-07 0.03 0.02 0.07 1.93E-08 0.03 0.02 0.33 2.53E-08 0.04 0.02 0.56 4.63E-08

Estimation window: 500
HS 0.05 0.02 0.15 4.09E-08 0.56 0.05 0.60 1.11E-06 0.03 0.02 0.02 4.98E-08 0.04 0.02 0.02 3.38E-08 0.04 0.02 0.02 4.25E-08
Normal 0.03 0.02 0.00 1.71E-08 0.37 0.13 0.00 3.02E-07 0.02 0.01 0.00 1.60E-08 0.03 0.02 0.01 1.77E-08 0.03 0.02 0.00 2.67E-08
Skew-Normal 0.04 0.02 0.00 1.76E-08 0.38 0.14 0.00 2.61E-07 0.03 0.02 0.00 1.77E-08 0.03 0.02 0.11 2.06E-08 0.03 0.02 0.02 2.52E-08
Student 0.04 0.02 0.39 2.75E-08 0.44 0.14 0.00 8.55E-07 0.03 0.02 0.96 2.61E-08 0.03 0.02 0.83 2.32E-08 0.03 0.02 0.41 3.50E-08
Skew-Student 0.04 0.02 0.55 2.79E-08 0.43 0.14 0.00 7.21E-07 0.03 0.02 0.97 2.67E-08 0.03 0.02 0.98 3.38E-08 0.04 0.02 0.56 3.25E-08
GED 0.04 0.02 0.02 2.37E-08 0.42 0.14 0.00 5.51E-07 0.03 0.02 0.43 2.28E-08 0.03 0.02 0.66 2.16E-08 0.03 0.02 0.07 3.10E-08
Skew-GED 0.04 0.02 0.07 2.39E-08 0.42 0.15 0.00 4.94E-07 0.03 0.02 0.66 2.29E-08 0.03 0.02 0.87 2.29E-08 0.04 0.02 0.23 2.91E-08
Empirical 0.04 0.02 0.09 3.05E-08 0.47 0.17 0.09 4.83E-07 0.03 0.02 0.06 2.78E-08 0.03 0.02 0.12 2.91E-08 0.03 0.02 0.24 3.56E-08
GEV 0.03 0.02 0.00 1.49E-08 0.39 0.15 0.00 2.50E-07 0.02 0.02 0.00 1.55E-08 0.03 0.02 0.00 1.47E-08 0.03 0.02 0.00 2.09E-08
Logistic 0.04 0.02 0.05 2.52E-08 0.39 0.13 0.00 4.02E-07 0.03 0.02 0.29 2.33E-08 0.03 0.02 0.91 2.67E-08 0.04 0.02 0.76 4.03E-08

Estimation window: 1000
HS 0.05 0.02 0.45 4.40E-08 0.57 0.02 0.85 1.25E-06 0.04 0.01 0.02 4.90E-08 0.04 0.02 0.04 4.04E-08 0.04 0.02 0.08 5.53E-08
Normal 0.03 0.02 0.00 1.99E-08 0.37 0.12 0.00 3.83E-07 0.02 0.01 0.00 1.74E-08 0.03 0.02 0.00 2.17E-08 0.03 0.02 0.00 3.04E-08
Skew-Normal 0.03 0.02 0.00 2.16E-08 0.39 0.12 0.00 3.32E-07 0.02 0.02 0.00 2.03E-08 0.03 0.02 0.04 2.50E-08 0.03 0.02 0.02 3.22E-08
Student 0.04 0.02 0.12 2.95E-08 0.44 0.12 0.00 1.02E-06 0.03 0.02 0.60 2.92E-08 0.03 0.02 0.60 2.99E-08 0.04 0.02 0.60 4.11E-08
Skew-Student 0.04 0.02 0.23 3.18E-08 0.42 0.12 0.00 8.52E-07 0.03 0.02 0.90 3.06E-08 0.03 0.02 0.82 4.04E-08 0.04 0.02 0.79 4.36E-08
GED 0.04 0.02 0.02 2.65E-08 0.42 0.12 0.00 6.59E-07 0.03 0.02 0.16 2.41E-08 0.03 0.02 0.39 2.73E-08 0.03 0.02 0.26 3.59E-08
Skew-GED 0.04 0.02 0.02 2.81E-08 0.42 0.13 0.00 5.68E-07 0.03 0.02 0.61 2.55E-08 0.03 0.02 0.43 3.04E-08 0.04 0.02 0.45 3.86E-08
Empirical 0.04 0.02 0.27 3.22E-08 0.48 0.15 0.32 6.92E-07 0.03 0.02 0.05 2.73E-08 0.03 0.02 0.12 2.81E-08 0.04 0.02 0.37 5.18E-08
GEV 0.03 0.02 0.01 1.78E-08 0.44 0.14 0.00 2.73E-07 0.02 0.01 0.00 1.77E-08 0.03 0.02 0.00 2.29E-08 0.03 0.02 0.00 2.55E-08
Logistic 0.04 0.02 0.01 2.95E-08 0.39 0.12 0.00 5.23E-07 0.03 0.02 0.23 2.54E-08 0.03 0.02 0.87 3.24E-08 0.04 0.02 0.71 4.56E-08

The values in bold correspond to the best results for each criteria.
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Table 4.7 – Results for ES forecasting with α = 1%

ΛS(X) ΛW (X) S&P500 1/N FF

Mean SD p-value ZESα Mean SD p-value ZESα Mean SD p-value ZESα Mean SD p-value ZESα Mean SD p-value ZESα

Estimation window: 250
HS 0.05 0.03 0.02 1.48E-08 0.73 0.14 0.08 1.77E-07 0.03 0.02 0.03 1.11E-08 0.04 0.02 0.07 7.21E-09 0.04 0.02 0.11 8.05E-09
Normal 0.04 0.02 0.00 5.77E-09 0.43 0.15 0.00 9.39E-08 0.03 0.02 0.00 4.73E-09 0.03 0.02 0.00 6.01E-09 0.03 0.02 0.00 1.05E-08
Skew-Normal 0.04 0.02 0.00 6.02E-09 0.44 0.17 0.00 7.46E-08 0.03 0.02 0.00 5.58E-09 0.03 0.02 0.00 7.18E-09 0.03 0.02 0.00 9.75E-09
Student 0.05 0.03 0.01 1.48E-08 0.59 0.21 0.00 3.49E-07 0.03 0.02 0.08 7.28E-09 0.03 0.02 0.21 8.88E-09 0.03 0.02 0.18 1.35E-08
Skew-Student 0.05 0.03 0.00 1.70E-08 0.58 0.22 0.00 1.81E-07 0.03 0.02 0.77 1.61E-08 0.04 0.02 0.12 7.21E-09 0.03 0.02 0.07 1.23E-08
GED 0.05 0.03 0.00 9.49E-09 0.51 0.19 0.00 1.86E-07 0.03 0.02 0.16 9.75E-09 0.03 0.02 0.03 7.74E-09 0.03 0.02 0.02 1.17E-08
Skew-GED 0.05 0.03 0.00 1.01E-08 0.51 0.21 0.00 1.37E-07 0.03 0.02 0.06 9.84E-09 0.04 0.02 0.03 7.83E-09 0.03 0.02 0.01 1.08E-08
Empirical 0.04 0.02 0.00 1.14E-08 0.61 0.25 0.00 1.28E-07 0.03 0.02 0.01 1.31E-08 0.03 0.02 0.00 1.35E-08 0.03 0.02 0.00 7.19E-09
GEV 0.04 0.02 0.04 5.47E-09 0.46 0.19 0.00 6.38E-08 0.03 0.02 0.00 4.73E-09 0.03 0.02 0.00 6.73E-09 0.03 0.02 0.00 7.99E-09
Logistic 0.05 0.03 0.00 9.67E-09 0.46 0.16 0.00 1.31E-07 0.03 0.02 0.14 7.65E-09 0.04 0.02 0.18 1.01E-08 0.04 0.03 0.40 1.84E-08

Estimation window: 500
HS 0.06 0.03 0.79 1.61E-08 0.79 0.11 0.75 2.60E-07 0.04 0.02 0.13 2.05E-08 0.04 0.02 0.08 1.18E-08 0.04 0.02 0.09 9.86E-09
Normal 0.04 0.02 0.00 6.15E-09 0.43 0.14 0.00 1.08E-07 0.03 0.02 0.00 5.73E-09 0.03 0.02 0.01 6.35E-09 0.03 0.02 0.00 9.58E-09
Skew-Normal 0.04 0.02 0.00 6.34E-09 0.44 0.15 0.00 9.29E-08 0.03 0.02 0.00 6.37E-09 0.03 0.02 0.06 7.41E-09 0.03 0.02 0.01 9.03E-09
Student 0.05 0.03 0.32 1.19E-08 0.58 0.17 0.00 4.42E-07 0.03 0.02 0.95 1.15E-08 0.04 0.02 0.66 9.19E-09 0.03 0.03 0.18 1.38E-08
Skew-Student 0.05 0.03 0.33 1.20E-08 0.56 0.17 0.00 3.68E-07 0.03 0.02 0.99 1.15E-08 0.04 0.02 0.71 1.18E-08 0.03 0.03 0.29 1.28E-08
GED 0.05 0.03 0.05 8.99E-09 0.51 0.16 0.00 2.21E-07 0.03 0.02 0.32 8.77E-09 0.03 0.02 0.17 7.98E-09 0.03 0.03 0.04 1.14E-08
Skew-GED 0.05 0.03 0.05 9.09E-09 0.51 0.18 0.00 1.98E-07 0.03 0.02 0.60 8.72E-09 0.04 0.02 0.43 8.42E-09 0.03 0.03 0.11 1.07E-08
Empirical 0.05 0.02 0.27 1.29E-08 0.67 0.24 0.26 3.26E-07 0.03 0.02 0.04 1.25E-08 0.03 0.02 0.02 1.10E-08 0.03 0.02 0.02 1.87E-08
GEV 0.04 0.02 0.02 5.16E-09 0.44 0.19 0.00 8.52E-08 0.03 0.02 0.00 5.91E-09 0.03 0.02 0.00 5.24E-09 0.03 0.02 0.01 7.19E-09
Logistic 0.05 0.03 0.06 1.00E-08 0.46 0.15 0.00 1.60E-07 0.03 0.02 0.20 9.27E-09 0.04 0.02 0.52 1.06E-08 0.04 0.03 0.50 1.60E-08

Estimation window: 1000
HS 0.07 0.02 0.38 1.41E-08 0.79 0.06 0.79 3.20E-07 0.05 0.02 0.02 1.74E-08 0.05 0.02 0.02 1.62E-08 0.04 0.02 0.06 1.22E-08
Normal 0.04 0.02 0.00 7.14E-09 0.42 0.13 0.00 1.37E-07 0.03 0.02 0.00 6.24E-09 0.03 0.02 0.00 7.79E-09 0.03 0.02 0.01 1.09E-08
Skew-Normal 0.04 0.02 0.00 7.79E-09 0.44 0.13 0.00 1.18E-07 0.03 0.02 0.05 7.34E-09 0.03 0.02 0.10 9.00E-09 0.03 0.02 0.08 1.16E-08
Student 0.05 0.03 0.14 1.23E-08 0.57 0.15 0.00 5.22E-07 0.03 0.02 0.87 1.28E-08 0.04 0.02 0.91 1.21E-08 0.03 0.03 0.56 1.62E-08
Skew-Student 0.05 0.03 0.20 1.33E-08 0.55 0.15 0.00 4.31E-07 0.03 0.02 0.86 1.29E-08 0.04 0.02 0.63 1.62E-08 0.04 0.03 0.48 1.73E-08
GED 0.04 0.03 0.01 9.96E-09 0.51 0.14 0.00 2.62E-07 0.03 0.02 0.30 9.14E-09 0.04 0.02 0.40 1.02E-08 0.03 0.03 0.15 1.32E-08
Skew-GED 0.04 0.03 0.03 1.06E-08 0.51 0.15 0.00 2.25E-07 0.03 0.02 0.40 9.59E-09 0.04 0.02 0.38 1.13E-08 0.04 0.03 0.27 1.42E-08
Empirical 0.05 0.03 0.40 1.34E-08 0.69 0.23 0.60 2.62E-07 0.03 0.02 0.07 1.32E-08 0.04 0.02 0.06 1.11E-08 0.04 0.02 0.29 1.76E-08
GEV 0.04 0.02 0.00 6.21E-09 0.53 0.21 0.00 9.29E-08 0.03 0.01 0.00 6.25E-09 0.03 0.02 0.00 8.07E-09 0.03 0.02 0.00 8.80E-09
Logistic 0.04 0.02 0.03 1.17E-08 0.46 0.14 0.00 2.08E-07 0.03 0.02 0.33 1.01E-08 0.04 0.02 0.87 1.29E-08 0.04 0.02 0.64 1.81E-08

The values in bold correspond to the best results for each criteria.
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The HS is again the worst option among almost all, as occurred with VaR and

also with FF as the only exception. The sum portfolio executes its forecast more

appropriately with the GEV distribution, only presenting a narrow variation conferred

in α = 5% with the normal distributions. S&P500 performs with higher quality than

the normal and GEV distribution, what it is observed either for 1/N and FF . Finally,

the weighted portfolio is superior in general to the semi-parametric method when the

empirical and GEV distributions are applied.

Tables 4.8 to 4.10 expose the results for EVaR forecasting. As this measure

is defined by a gain-loss ration, its forecast is only qualified by a loss function. The

behavior of the forecasts is similar to the one verified in VaR and in ES, where ΛS shows

results slightly greater than S&P500, yet smaller than the others. As already verified,

1/N and FF performs very similar to one another and yet worst than ΛS and S&P500.

In EVaR analysis the results turn more clear the in VaR and ES, where S&P500 and ΛS

present very close losses and far better performs than the others.

Overall, there is a consistent pattern among portfolios and significance levels

as seen before. The portfolios tend to produce smaller losses when the significance

levels turn greater and the window sizes simultaneously turn smaller. Regarding the

distributions overview of EVaR; HS demonstrates once again to be the inferior method

for forecasting measures. ΛS, in general, has minors losses with the GEV and normal,

but was very suitable following a student distribution, while S&P500 exposes it via

normal and student and ΛW via GEV and skew-normal. The 1/N and the FF portfolios

do not show a dominant distribution, but both perform far better with the GEV, student,

normal and skew-normal distributions.

After the separated analysis of measures, an overview of the main results

aiming to establish the most suitable models and major procedures for each situation is

conducted. As there is not an extreme prevailing method through the study, and many

results are very similar, some constraints were applied to restrict the analysis, aiding

the decision making.

Resembling results are reported for estimates generated by normal and skew-

normal distribution in general. To determine a dominance between then, it is admitted

that stocks data possess heavy-tailed behavior, usually accompanied with negative
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skewness and excess kurtosis. As mentioned by Mandelbrot (1963), the normal distribu-

tion is insufficient for modeling financial data, and in addition Miller & Liu (2006) argued

that normal distribution might lead to a potential model risk. It was therefore decided

to work with its skewed variant instead. In contrast, despite allied results, the student

distribution displays a mild surpassing performance when compared to the skew student

distribution overall.
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Table 4.8 – Results for EVaR forecasting with α = 5%

ΛS(X) ΛW (X) S&P500 1/N FF

Mean SD ZEV aRα Mean SD ZEV aRα Mean SD ZEV aRα Mean SD ZEV aRα Mean SD ZEV aRα

Estimation window: 250
HS 0.02 0.01 2.30E-10 0.21 0.02 2.38E-07 0.01 0.01 3.40E-10 0.01 0.01 1.89E-09 0.02 0.01 8.81E-10
Normal 0.01 0.01 2.06E-11 0.15 0.09 9.65E-10 0.01 0.01 4.25E-12 0.01 0.01 6.10E-10 0.01 0.01 4.50E-10
Skew-Normal 0.02 0.01 2.58E-11 0.16 0.10 2.81E-08 0.01 0.01 1.76E-11 0.01 0.01 8.43E-10 0.01 0.01 3.87E-10
Student 0.02 0.01 1.93E-11 0.17 0.09 5.76E-09 0.01 0.01 7.80E-12 0.01 0.01 6.06E-10 0.01 0.01 5.05E-10
Skew-Student 0.02 0.01 4.14E-11 0.16 0.09 3.44E-08 0.01 0.01 2.78E-11 0.01 0.01 1.89E-09 0.01 0.01 4.15E-10
GED 0.02 0.01 2.66E-11 0.16 0.10 1.08E-08 0.01 0.01 2.89E-11 0.01 0.01 6.45E-10 0.01 0.01 4.90E-10
Skew-GED 0.02 0.01 4.18E-11 0.17 0.11 8.47E-12 0.01 0.01 3.18E-11 0.01 0.01 8.76E-10 0.01 0.01 4.09E-10
Empirical 0.02 0.01 6.26E-11 0.16 0.10 2.23E-09 0.01 0.01 3.64E-11 0.01 0.01 6.90E-10 0.01 0.01 4.35E-10
GEV 0.02 0.01 4.12E-11 0.17 0.10 5.45E-09 0.01 0.01 1.76E-11 0.01 0.01 6.92E-10 0.01 0.01 4.76E-10
Logistic 0.02 0.01 4.17E-11 0.15 0.09 1.17E-10 0.01 0.01 7.92E-12 0.01 0.01 6.48E-10 0.01 0.01 7.66E-10

Estimation window: 500
HS 0.02 0.01 3.48E-10 0.21 0.02 3.34E-07 0.01 0.01 5.09E-10 0.02 0.01 1.92E-09 0.02 0.01 1.10E-09
Normal 0.01 0.01 2.69E-11 0.15 0.09 3.17E-09 0.01 0.01 6.92E-12 0.01 0.01 7.85E-10 0.01 0.01 4.05E-10
Skew-Normal 0.01 0.01 3.00E-11 0.16 0.09 2.80E-11 0.01 0.01 8.13E-12 0.01 0.01 7.22E-10 0.01 0.01 3.62E-10
Student 0.02 0.01 3.97E-11 0.17 0.09 1.35E-08 0.01 0.01 5.21E-12 0.01 0.01 6.43E-10 0.01 0.01 4.77E-10
Skew-Student 0.02 0.01 4.22E-11 0.16 0.09 2.07E-09 0.01 0.01 8.81E-12 0.01 0.01 1.92E-09 0.01 0.01 3.57E-10
GED 0.02 0.01 4.89E-11 0.17 0.09 1.10E-08 0.01 0.01 2.00E-11 0.01 0.01 6.69E-10 0.01 0.01 5.29E-10
Skew-GED 0.02 0.01 5.23E-11 0.17 0.09 1.37E-09 0.01 0.01 1.70E-11 0.01 0.01 7.46E-10 0.01 0.01 3.59E-10
Empirical 0.02 0.01 5.32E-11 0.17 0.09 1.48E-09 0.01 0.01 4.79E-11 0.01 0.01 1.02E-09 0.01 0.01 3.58E-10
GEV 0.01 0.01 2.73E-11 0.16 0.09 5.17E-10 0.01 0.01 2.02E-11 0.01 0.01 5.20E-10 0.01 0.01 3.33E-10
Logistic 0.02 0.01 4.63E-11 0.16 0.09 4.51E-09 0.01 0.01 1.80E-11 0.01 0.01 8.95E-10 0.01 0.01 5.37E-10

Estimation window: 1000
HS 0.02 0.01 3.45E-10 0.21 0.01 9.43E-07 0.01 0.00 3.93E-10 0.02 0.01 2.03E-09 0.02 0.01 8.92E-10
Normal 0.01 0.01 2.62E-11 0.15 0.08 2.86E-08 0.01 0.01 8.25E-12 0.01 0.01 7.65E-10 0.01 0.01 4.82E-10
Skew-Normal 0.01 0.01 2.55E-11 0.16 0.08 1.38E-08 0.01 0.01 2.61E-11 0.01 0.01 8.78E-10 0.01 0.01 5.50E-10
Student 0.01 0.01 3.86E-11 0.17 0.08 2.65E-07 0.01 0.01 9.87E-12 0.01 0.01 7.69E-10 0.01 0.01 5.97E-10
Skew-Student 0.01 0.01 5.54E-11 0.16 0.08 1.54E-07 0.01 0.01 3.35E-11 0.01 0.01 2.03E-09 0.01 0.01 6.90E-10
GED 0.01 0.01 4.38E-11 0.17 0.08 1.73E-07 0.01 0.01 1.26E-11 0.01 0.01 7.78E-10 0.01 0.01 5.50E-10
Skew-GED 0.01 0.01 6.04E-11 0.17 0.08 1.09E-07 0.01 0.01 3.56E-11 0.01 0.01 1.02E-09 0.01 0.01 6.56E-10
Empirical 0.01 0.01 6.80E-11 0.17 0.09 4.70E-08 0.01 0.01 7.15E-11 0.01 0.01 1.04E-09 0.01 0.01 5.55E-10
GEV 0.01 0.01 3.15E-11 0.17 0.08 1.23E-08 0.01 0.00 3.01E-11 0.01 0.01 1.00E-09 0.01 0.01 5.32E-10
Logistic 0.01 0.01 4.48E-11 0.15 0.08 4.66E-08 0.01 0.01 1.97E-11 0.01 0.01 8.47E-10 0.01 0.01 6.17E-10

The values in bold correspond to the best results for each criteria.
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Table 4.9 – Results for EVaR forecasting with α = 2.5%

ΛS(X) ΛW (X) S&P500 1/N FF

Mean SD ZEV aRα Mean SD ZEV aRα Mean SD ZEV aRα Mean SD ZEV aRα Mean SD ZEV aRα

Estimation window: 250
HS 0.03 0.01 3.20E-10 0.28 0.03 2.17E-07 0.02 0.01 4.43E-10 0.02 0.01 1.59E-09 0.02 0.01 8.79E-10
Normal 0.02 0.01 3.56E-11 0.18 0.10 4.49E-09 0.01 0.01 1.39E-11 0.01 0.01 4.08E-10 0.01 0.01 4.02E-10
Skew-Normal 0.02 0.01 4.18E-11 0.19 0.10 2.43E-08 0.01 0.01 3.16E-11 0.01 0.01 5.70E-10 0.02 0.01 3.47E-10
Student 0.02 0.01 5.84E-11 0.22 0.10 2.15E-08 0.01 0.01 4.58E-12 0.01 0.01 4.38E-10 0.02 0.01 4.69E-10
Skew-Student 0.02 0.01 9.31E-11 0.21 0.10 3.37E-08 0.01 0.01 7.12E-11 0.01 0.01 1.59E-09 0.02 0.01 3.89E-10
GED 0.02 0.01 5.62E-11 0.20 0.11 2.05E-08 0.01 0.01 5.81E-11 0.01 0.01 4.58E-10 0.02 0.01 4.44E-10
Skew-GED 0.02 0.01 7.52E-11 0.20 0.11 3.12E-09 0.01 0.01 6.15E-11 0.01 0.01 6.00E-10 0.02 0.01 3.74E-10
Empirical 0.02 0.01 1.18E-10 0.22 0.11 4.70E-09 0.01 0.01 8.58E-11 0.01 0.01 2.84E-11 0.02 0.01 4.58E-10
GEV 0.02 0.01 5.37E-11 0.19 0.10 5.08E-10 0.01 0.01 2.87E-11 0.01 0.01 4.78E-10 0.01 0.01 3.81E-10
Logistic 0.02 0.01 7.06E-11 0.19 0.10 3.58E-09 0.01 0.01 2.53E-11 0.01 0.01 4.84E-10 0.02 0.01 7.22E-10

Estimation window: 500
HS 0.03 0.01 4.42E-10 0.29 0.02 3.06E-07 0.02 0.01 5.84E-10 0.02 0.01 1.55E-09 0.02 0.01 1.04E-09
Normal 0.02 0.01 4.25E-11 0.18 0.09 8.12E-09 0.01 0.01 2.04E-11 0.01 0.01 5.18E-10 0.01 0.01 3.49E-10
Skew-Normal 0.02 0.01 4.63E-11 0.19 0.10 2.31E-09 0.01 0.01 2.42E-11 0.01 0.01 5.00E-10 0.02 0.01 3.13E-10
Student 0.02 0.01 7.21E-11 0.22 0.09 3.79E-08 0.01 0.01 2.91E-11 0.01 0.01 4.64E-10 0.02 0.01 4.37E-10
Skew-Student 0.02 0.01 7.54E-11 0.21 0.09 1.65E-08 0.01 0.01 3.60E-11 0.01 0.01 1.55E-09 0.02 0.01 3.41E-10
GED 0.02 0.01 7.46E-11 0.21 0.10 2.43E-08 0.01 0.01 4.48E-11 0.01 0.01 4.73E-10 0.02 0.01 4.53E-10
Skew-GED 0.02 0.01 7.82E-11 0.20 0.10 9.99E-09 0.01 0.01 4.18E-11 0.01 0.01 5.29E-10 0.02 0.01 3.28E-10
Empirical 0.02 0.01 9.65E-11 0.23 0.10 9.20E-09 0.01 0.01 8.82E-11 0.01 0.01 7.15E-10 0.02 0.01 3.46E-10
GEV 0.02 0.01 3.93E-11 0.19 0.10 3.71E-09 0.01 0.01 3.38E-11 0.01 0.01 3.45E-10 0.01 0.01 2.75E-10
Logistic 0.02 0.01 7.49E-11 0.19 0.09 1.18E-08 0.01 0.01 4.30E-11 0.01 0.01 6.36E-10 0.02 0.01 5.08E-10

Estimation window: 1000
HS 0.03 0.01 4.29E-10 0.29 0.01 4.71E-07 0.02 0.01 4.85E-10 0.02 0.01 1.61E-09 0.02 0.01 9.30E-10
Normal 0.02 0.01 4.50E-11 0.18 0.08 1.43E-08 0.01 0.01 2.23E-11 0.01 0.01 5.26E-10 0.02 0.01 4.10E-10
Skew-Normal 0.02 0.01 4.75E-11 0.19 0.09 6.93E-09 0.01 0.01 4.50E-11 0.01 0.01 6.13E-10 0.02 0.01 4.65E-10
Student 0.02 0.01 7.27E-11 0.21 0.08 1.33E-07 0.01 0.01 3.83E-11 0.01 0.01 5.70E-10 0.02 0.01 5.40E-10
Skew-Student 0.02 0.01 9.41E-11 0.20 0.08 7.71E-08 0.01 0.01 6.89E-11 0.02 0.01 1.61E-09 0.02 0.01 6.19E-10
GED 0.02 0.01 7.33E-11 0.21 0.08 8.67E-08 0.01 0.01 3.61E-11 0.01 0.01 5.66E-10 0.02 0.01 4.84E-10
Skew-GED 0.02 0.01 9.23E-11 0.20 0.09 5.47E-08 0.01 0.01 6.32E-11 0.02 0.01 7.31E-10 0.02 0.01 5.71E-10
Empirical 0.02 0.01 1.05E-10 0.23 0.10 2.35E-08 0.01 0.01 9.92E-11 0.02 0.01 7.26E-10 0.02 0.01 5.45E-10
GEV 0.02 0.01 4.67E-11 0.21 0.09 6.14E-09 0.01 0.01 4.43E-11 0.01 0.01 6.75E-10 0.02 0.01 4.19E-10
Logistic 0.02 0.01 7.97E-11 0.19 0.09 2.33E-08 0.01 0.01 4.57E-11 0.01 0.01 6.35E-10 0.02 0.01 5.78E-10

The values in bold correspond to the best results for each criteria.
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Table 4.10 – Results for EVaR forecasting with α = 1%

ΛS(X) ΛW (X) S&P500 1/N FF

Mean SD ZEV aRα Mean SD ZEV aRα Mean SD ZEV aRα Mean SD ZEV aRα Mean SD ZEV aRα

Estimation window: 250
HS 0.03 0.02 3.47E-10 0.41 0.07 1.66E-07 0.02 0.01 4.26E-10 0.02 0.01 1.07E-09 0.03 0.01 7.41E-10
Normal 0.02 0.01 3.27E-11 0.21 0.10 5.48E-09 0.01 0.01 1.56E-11 0.01 0.01 2.19E-10 0.02 0.01 2.63E-10
Skew-Normal 0.02 0.01 3.74E-11 0.22 0.11 1.55E-08 0.01 0.01 2.95E-11 0.02 0.01 3.06E-10 0.02 0.01 2.27E-10
Student 0.02 0.02 8.07E-11 0.29 0.12 3.43E-08 0.02 0.01 1.24E-11 0.02 0.01 2.56E-10 0.02 0.01 3.26E-10
Skew-Student 0.02 0.01 1.17E-10 0.28 0.13 2.74E-08 0.02 0.01 9.54E-11 0.02 0.01 1.07E-09 0.02 0.01 2.71E-10
GED 0.02 0.01 5.97E-11 0.25 0.12 2.17E-08 0.02 0.01 6.15E-11 0.02 0.01 2.58E-10 0.02 0.01 2.96E-10
Skew-GED 0.02 0.01 7.52E-11 0.25 0.13 6.07E-09 0.02 0.01 6.42E-11 0.02 0.01 3.27E-10 0.02 0.01 2.51E-10
Empirical 0.02 0.01 1.00E-10 0.30 0.14 1.09E-08 0.01 0.01 9.53E-11 0.02 0.01 3.23E-10 0.02 0.01 2.92E-10
GEV 0.02 0.01 4.27E-11 0.23 0.12 1.37E-09 0.01 0.01 2.52E-11 0.01 0.01 2.59E-10 0.02 0.01 2.29E-10
Logistic 0.02 0.01 6.94E-11 0.23 0.11 6.21E-09 0.02 0.01 3.10E-11 0.02 0.01 2.90E-10 0.02 0.01 5.17E-10

Estimation window: 500
HS 0.03 0.02 4.14E-10 0.41 0.04 2.52E-07 0.02 0.01 5.33E-10 0.03 0.01 1.04E-09 0.03 0.01 8.31E-10
Normal 0.02 0.01 3.76E-11 0.21 0.10 8.55E-09 0.01 0.01 2.24E-11 0.02 0.01 2.71E-10 0.02 0.01 2.23E-10
Skew-Normal 0.02 0.01 4.06E-11 0.22 0.10 3.75E-09 0.01 0.01 2.68E-11 0.02 0.01 2.74E-10 0.02 0.01 2.00E-10
Student 0.02 0.01 7.69E-11 0.29 0.10 5.58E-08 0.02 0.01 4.43E-11 0.02 0.01 2.70E-10 0.02 0.01 3.04E-10
Skew-Student 0.02 0.01 7.98E-11 0.27 0.11 3.11E-08 0.02 0.01 5.03E-11 0.02 0.01 1.04E-09 0.02 0.01 2.43E-10
GED 0.02 0.01 6.81E-11 0.25 0.10 2.70E-08 0.02 0.01 4.80E-11 0.02 0.01 2.66E-10 0.02 0.01 2.92E-10
Skew-GED 0.02 0.01 7.07E-11 0.25 0.11 1.49E-08 0.02 0.01 4.60E-11 0.02 0.01 2.97E-10 0.02 0.01 2.22E-10
Empirical 0.02 0.01 8.71E-11 0.33 0.13 1.81E-08 0.02 0.01 9.93E-11 0.02 0.01 3.93E-10 0.02 0.01 2.66E-10
GEV 0.02 0.01 3.26E-11 0.22 0.11 4.62E-09 0.01 0.01 4.86E-11 0.02 0.01 1.82E-10 0.02 0.01 1.68E-10
Logistic 0.02 0.01 7.21E-11 0.23 0.10 1.37E-08 0.02 0.01 4.82E-11 0.02 0.01 3.67E-10 0.02 0.01 3.64E-10

Estimation window: 1000
HS 0.04 0.01 4.00E-10 0.41 0.02 3.84E-07 0.03 0.01 4.37E-10 0.03 0.01 1.07E-09 0.03 0.01 7.50E-10
Normal 0.02 0.01 4.12E-11 0.21 0.09 1.38E-08 0.01 0.01 2.39E-11 0.02 0.01 2.85E-10 0.02 0.01 2.60E-10
Skew-Normal 0.02 0.01 4.51E-11 0.22 0.09 7.94E-09 0.01 0.01 4.16E-11 0.02 0.01 3.38E-10 0.02 0.01 2.94E-10
Student 0.02 0.01 7.66E-11 0.28 0.09 1.26E-07 0.02 0.01 5.31E-11 0.02 0.01 3.41E-10 0.02 0.01 3.72E-10
Skew-Student 0.02 0.01 9.50E-11 0.27 0.09 7.84E-08 0.02 0.01 7.62E-11 0.02 0.01 1.07E-09 0.02 0.01 4.25E-10
GED 0.02 0.01 6.91E-11 0.25 0.09 6.72E-08 0.01 0.01 4.15E-11 0.02 0.01 3.25E-10 0.02 0.01 3.18E-10
Skew-GED 0.02 0.01 8.38E-11 0.25 0.09 4.45E-08 0.02 0.01 6.11E-11 0.02 0.01 4.17E-10 0.02 0.01 3.74E-10
Empirical 0.02 0.01 1.04E-10 0.34 0.13 3.20E-08 0.02 0.01 8.96E-11 0.02 0.01 4.10E-10 0.02 0.01 3.93E-10
GEV 0.02 0.01 3.93E-11 0.26 0.12 6.32E-09 0.01 0.01 3.76E-11 0.02 0.01 3.58E-10 0.02 0.01 2.47E-10
Logistic 0.02 0.01 7.99E-11 0.23 0.09 2.40E-08 0.01 0.01 5.06E-11 0.02 0.01 3.82E-10 0.02 0.01 4.12E-10

The values in bold correspond to the best results for each criteria.



39

It is observed that the HS performs worse than every other distribution in the

loss function analysis, even though it presents notable results in the backtests for ΛW

and for FF . Based on the assumption that a loss function is a superior form to qualify a

forecast, it is evidenced that there is an inferiority of the HS approach when dealing with

systemic risk measurement and forecasting. The lower adequacy of HS is corroborated

by Pritsker (2006), Christoffersen & Gonçalves (2005), and even by Müller & Righi (2017)

which compared VaR, ES, and EVaR based on HS, DCC-GARCH, and copula methods.

This indicates a requirement to add heteroscedastic conditional models to deal with

volatility clusters existent in financial data, and this was verified with the semiparametric

techniques. FHS and GEV perform significantly well in most cases and produce a fine

improvement of HS, especially for ES and EVaR loss functions of the weighted portfolio.

GEV performs slightly better with α = 1%, in the other cases, a preference was not

perceived.

With the intention to better support a final conclusion, Table 4.11 assembles the

best overall models for each measure and portfolio. The models selected are the ones

that show the prevailing performance for the measure and portfolio in question under

significance levels and window sizes. In other words, every model displayed is the one

that generates the best forecast for that specific measure and portfolio.

Summarizing what has been discussed, ΛS and S&P500 exposes resemblant

behavior in the aggregate, - as well 1/N and FF - meanwhile ΛW expresses this as less

suitable. In relation to measures loss functions, it is viewed that S&P500 outperforms ΛS.

Even though ΛS yields more losses than S&P500, the difference between them is not

disparate enough to truly define superiority. Simultaneously, the VR of the index is even

worse than the sum portfolio, enabling inferences about extreme events that are not

correctly addressed. Additionally, ΛS shows dominance over 1/N and FF . Regarding

the distributions, we can easily see notable patterns among forecasts. While S&P500

demonstrates far better fits with the student and normal distribution, ΛS, 1/N and FF

show more frequently a preference for GEV and normal fits, yet also demonstrates

suitable results under the student distribution with close outcomes for both. For the ΛW

evaluation, the semi-parametric models (empirical and GEV distributions) prevail for all

risk measures, closely followed by the skew-normal outcomes.
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Table 4.11 – Best forecasted model for every measure and portfolio under significance levels and window sizes.

VaR ES EVaR

ΛS ΛW S&P500 1/N FF ΛS ΛW S&P500 1/N FF ΛS ΛW S&P500 1/N FF

Estimation window: 250
α = 1% Normal GEV Student Normal GEV GEV GEV GEV Normal Empirical Normal GEV Student Normal S-Normal
α = 2.5% Student Empirical Student Student GEV GEV GEV Normal Normal GEV Normal GEV Student Empirical S-Normal
α = 5% Student Empirical Student Student Empirical Normal GEV Normal Normal GEV Student S-GED Normal Student S-Normal

Estimation window: 500
α = 1% GEV Empirical Normal GEV Empirical GEV GEV Normal Normal GEV GEV S-Normal Normal GEV GEV
α = 2.5% Student Empirical Student GEV GEV GEV GEV GEV GEV GEV GEV S-Normal Normal GEV GEV
α = 5% Empirical S-Student Student GEV Empirical GEV GEV GEV GEV GEV Normal S-Normal Student GEV GEV

Estimation window: 1000
α = 1% Normal GEV Normal Normal Normal GEV GEV Normal Normal GEV GEV GEV Normal Normal GEV
α = 2.5% Normal Empirical Student Student Empirical GEV GEV Normal Normal GEV Normal GEV Normal Normal Normal
α = 5% Student Empirical Student Student Empirical GEV GEV Normal Normal GEV S-Normal GEV Normal Normal Normal

The notation S is for Skew.
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Concerning the comparison of measures, it is hard to determine dominance. VaR

disadvantages are indeed dangerous to a systemic risk management since they violate

the principle of diversification and do not bother with the potential of losses beyond

the quantile point of interest. Although Righi & Ceretta (2015) points out that has not

been enough research done to establish the superiority of ES relative to others (due

to ES being not often used by the industry and its backtest being more complex than

that of the VaR) ES estimation errors can be minimized by larger samples, as applied in

this study, and additionally Yamai & Yoshiba (2005) demonstrated how the tail risk of

VaR could generate serious problems in real-world cases and where expected shortfall

could be more appropriately used instead. Bellini & Bernardino (2017) compared the

theoretical and numerical result of VaR, ES, and EVaR, and subsequently argued in

favor of expectiles. On the other hand, Emmer et al. (2015) opposed the properties of

the same measures and concluded that ES looked to be the best option despite some

caveats regarding estimation and backtesting. Meanwhile, any sufficient evidence to

replace ES by expectiles was not found by the authors. Our results show that EVaR

is more conservative compared to VaR and ES. This is one of the main goals when

managing systemic risk, although as EVaR does not possess an easy and clear financial

intuition, the use of supporting measures is thus recommended.

Considering this overview, the conclusions are simple. Concerning risk measures,

EVaR can be seen as more appropriate and suitable to deal with systemic risk. The

ΛW presents the worst approach to deal with risk, while ΛS and S&P500 generate close

and better results. Finally, corroborating with the literature, the student distributions are

demonstrated to be the best distributions to model both ΛS and S&P500 for VaR, and

are a good alternative for ES and EVaR.
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5 CONCLUSION

In this study, we deepen the research of systemic risk measurement via aggrega-

tion functions. The empirical evaluation consists of modeling and forecasting risk for five

distinguished portfolios as a proxy for an economic system, of which two are generated

by aggregation functions and the others are a well-known approaches. The measures

used are VaR, ES, and EVaR, these being the most disseminated to manage risk in a

single-firm view. To assess the performance and evaluate the quality of forecasts of the

competing models, we use loss functions and violation backtests as a supplementary

tool. To guarantee the robustness of this work, for each risk measure we considered

models from distinct distributions, estimation windows, and significance levels.

Regarding the empirical results, we find some patterns associated with the data.

The historic simulation demonstrates to be the inferior method by which to approach risk

management. This was verified for all scenarios and models, highly corroborating with

the literature. The student distribution prevails in general as the foremost distribution,

especially for VaR forecasting for ΛS and S&P500, although some other ones perform

similarly such as the skew-normal and the general extreme value. It can nonetheless be

affirmed as the more suited distribution for the purpose of this work. The definition of the

student as the most suitable is based on the results of it, these results were consistent

and very close to the best outcome for every scenario of significance level and window

sizes. The 1/N and FF portfolios present very similar performances throughout the

analysis and show worts results comparing to ΛS and S&P500 in general, so it can be

affirmed that both 1/N and FF are inferior to ΛS and S&P500 regarding this approach

to manage systemic risk. Overall, ΛW presents the worst forecast results, what can be

explained by two main reasons. First, as shown in Figure 4.7, the series might not have

been correctly modeled by the distributions assumed in this work, since its behavior

diverges from what is commonly assumed for financial data. Second, considering ΛW

as the weighted version of ΛS, the assumptions used for the weighting may not be

suitable for this case. The volume of transactions appears to confront information that

already has been intrinsically contained in prices, inducing an undefined behavior. The

ΛS portfolio performs quite similarly to the S&P500 index, especially considering that

the Standard & Poor’s 500 Index is the most used market index consisted by the larger

companies of the U.S., and it can be assumed that the capacity of ΛS to consider the
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major characteristics of the system in question. In addition, as the sum portfolio is built

by all assets of the American market, it is expected that there is more volatility in general

and further difficulty in forecasting what is observed in its descriptive statistics and its

measure forecasting.

There is no agreement around the definition of risk, and there is no universal

way of choosing the best measure. Measure choice should rely on the purpose of it,

and the best manner to evaluate any procedure is by finding out how well they perform

for an intended task. Considering EVaR as the most conservative measure among

the ones applied in this study, it is rather reasonable to deal with the systemic risk

than the others, since the final purpose to manage the systemic risk is to provide and

ensure the minimum loss over the aggregate system, especially over crisis periods. The

aggregated portfolio of ΛS demonstrates an aptitude to process the risk of the system

selected, as well as superior adequacy in the context that has been applied since this

portfolio - considered as a proxy of the U.S. economy - is composed of all the stock of

the economy and performs similarly to the main index price of the country itself. We

can, therefore, conclude that the aggregation function that generates ΛS is an adequate

method to determine a proxy of an economy and to process the systemic risk inherent

in it. In addition, we can consider ΛW as a tool to study better weighings to forecasts

systemic risk, since this measure is created based on ΛS which show great forecasting

performances through this study.

The results from this work can be applied in any firm belonging to the U.S. as a

form of managing systemic risk. Since we considered all stocks of the selected economy,

the ΛS possesses a huge advantage as opposed to methods that consider only indexes

or small segment stocks, especially to the firms that are not included in those samples.

This is seen with both 1/N and FF , which are very well-known approaches, where ΛS

present far better results in the loss function analysis. As already said, ΛS demonstrate

a close behavior to S&P500, even though the sum portfolio considerer much more

stocks in its compositing, what can highly increase its difficult to model the series and

guarantee acceptable forecasts.

As for suggestions for future studies; we emphasize the necessity to expand

to alternative aggregation functions to other economies. The ΛW might be improved

by reformulating the weighting or by changing the modeling technique. Moreover, ΛS
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could be applied to stressed scenarios in order to analyze the behavior in distinctive

turbulent scenes, and either in a composition of forecasting of distinct models and other

aggregation functions. This methodology can also be applied to a specific set of assets

and stock, and although it would escape from the systemic context, it may be useful for a

sectoral risk management. Furthermore, other single firm risk measures can be applied,

especially the ones that consider deviations such as the SDR proposed by Righi &

Ceretta (2016). The deviation of a loss measure is a concept that can be linked to the

risk of the model, due to the fact that any risk measurement method that presents low

deviation is expected to present a better specification of its own model. A well-specified

model posses superior adjustment of distribution of the data which could results in lower

uncertainty levels, and this is extremely relevant to systemic risk management.
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