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Abstract
Uncertainty is a key element of reality. Thus, it becomes natural that the search for methods
allows us to represent the unknown in mathematical terms. These problems originate a large
class of probabilistic programs recognized as stochastic programming models. They are more
realistic than deterministic ones, and their aim is to incorporate uncertainty into their definitions.
This dissertation approaches the probabilistic problem class of multistage stochastic problems
with chance constraints and joint-chance constraints. Initially, we propose a multistage stochastic
asset liability management (ALM) model for a Brazilian pension fund industry. Our model is
formalized in compliance with the Brazilian laws and policies. Next, given the relevance of the
input parameters for these optimization models, we turn our attention to different sampling
models, which compose the discretization process of these stochastic models. We check how
these different sampling methodologies impact on the final solution and the portfolio allocation,
outlining good options for ALM models. Finally, we propose a framework for the scenario-tree
generation and optimization of multistage stochastic programming problems. Relying on the
Knuth transform, we generate the scenario trees, taking advantage of the left-child, right-sibling
representation, which makes the simulation more efficient in terms of time and the number of
scenarios. We also formalize an ALM model reformulation based on implicit extensive form for
the optimization model. This technique is designed by the definition of a filtration process with
bundles, and coded with the support of an algebraic modeling language. The efficiency of this
methodology is tested in a multistage stochastic ALM model with joint-chance constraints. Our
framework makes it possible to reach the optimal solution for trees with a reasonable number of
scenarios.

Keywords: Multistage Stochastic Programming. Asset Liability Management. Scenario Genera-
tion. Chance Constraint Programming.



Resumo
A incerteza é um elemento fundamental da realidade. Então, torna-se natural a busca por métodos
que nos permitam representar o desconhecido em termos matemáticos. Esses problemas originam
uma grande classe de programas probabilísticos reconhecidos como modelos de programação
estocástica. Eles são mais realísticos que os modelos determinísticos, e tem por objetivo incorporar
a incerteza em suas definições. Essa tese aborda os problemas probabilísticos da classe de
problemas de multi-estágio com incerteza e com restrições probabilísticas e com restrições
probabilísticas conjuntas. Inicialmente, nós propomos um modelo de administração de ativos e
passivos multi-estágio estocástico para a indústria de fundos de pensão brasileira. Nosso modelo
é formalizado em conformidade com a leis e políticas brasileiras. A seguir, dada a relevância
dos dados de entrada para esses modelos de otimização, tornamos nossa atenção às diferentes
técnicas de amostragem. Elas compõem o processo de discretização desses modelos estocásticos.
Nós verificamos como as diferentes metodologias de amostragem impactam a solução final e a
alocação do portfólio, destacando boas opções para modelos de administração de ativos e passivos.
Finalmente, nós propomos um “framework” para a geração de árvores de cenário e otimização de
modelos com incerteza multi-estágio. Baseados na tranformação de Knuth, nós geramos a árvore
de cenários considerando a representação filho-esqueda, irmão-direita o que torna a simulação
mais eficiente em termos de tempo e de número de cenários. Nós também formalizamos uma
reformulação do modelo de administração de ativos e passivos baseada na abordagem extensiva
implícita para o modelo de otimização. Essa técnica é projetada pela definição de um processo de
filtragem com “bundles”; e codifciada com o auxílio de uma linguagem de modelagem algébrica.
A eficiência dessa metodologia é testada em um modelo de administração de ativos e passivos
com incerteza com restrições probabilísticas conjuntas. Nosso framework torna possível encontrar
a solução ótima para árvores com um número razoável de cenários.

Keywords: Programação Estocástica Multi-estágio. Administração de Ativos e Passivos. Geração
de Cenários. Programação com restrições probabilísticas.
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Introduction

This dissertation proposes an investigation into the stochastic optimization field applied
to financial models. As the uncertainty is part of all daily decisions, it has been incorporated
into mathematical models from different fields. It is possible to find this kind of approach in
manufacturing, queueing models, realistic inventory, portfolio selection, finance market prices
and economic behavior, marketing models, transportation and communication. These models
have been recognized as stochastic programming, (BIRGE; LOUVEAUX, 2011). In other words,
the common feature of these applications is the nature of decision-making, in that decisions
have to be made without all the information available, i.e. under uncertainty perspective. Some
examples are the actual costs of a financial transaction may depend on future interest rates, the
production order is related to unknown demands, the seeds cultivation depend on the uncertain
climatic conditions.

In our case, we take the asset liability management (ALM) problem as the application for
all models presented here. The ALM considers a balance sheet comprised by assets and liabilities,
which can be used in different contexts, i.e. a pension fund, bank, insurance company, or any
other institution as an enterprise risk management tool, (ZENIOS; ZIEMBA, 2006). Therefore,
the model description should be the asset allocation through time and based upon distinct
economic environments in order to carry out the liabilities payment. These investment decisions
should be done efficiently and dynamically in terms of resources management and risk matching
on both sides of a balance sheet (ZIEMBA, 2003). This representation must also consider the
particular peculiarities of each domain, such as policies, laws, and cash flow requirements. We
take account of these principles to propose a multistage stochastic programming model applied
to asset liability problems for the Brazilian context, which is presented in Part I.

The first step of stochastic problem description is to find the appropriate probability
model, as we denote the uncertainty through random variables that are incorporated into an
optimization model. The search for a probability model requires a definition of a probability space,
as these random variable realizations are sampled from that probability space. Additionally, we
suppose that we know these random variable distributions, and only their concrete realizations
are unknown. Different techniques have already been proposed in the literature to make this
sampling, e.g. by having matched state-space distribution moments (DUPAČOVÁ et al., 2000;
HØYLAND; WALLACE, 2001; HØYLAND; KAUT; WALLACE, 2003), minimizing Wassertein
probability metrics (ROMISCH, 2003; HEITSCH; ROMISCH, 2005; HOCHREITER; PFLUG,
2007), Latin hypercube sampling (MCKAY; BECKMAN; CONOVER, 1979), Voronoi cell
sampling (LOHNDORF, 2016), and Resampled average approximation (OLIVEIRA et al., 2017),
among others. All of these suggest ways to simulate realistic scenarios, which in multistage
problems are usually comprised of data structures denoted as scenario trees, whose aim is to
represent and correspond statistically and more plausibly with the mapped environment. In Part
II, we make a comparison of several scenarios of tree-sampling methods in order to assess their
impact on the ALM problem solutions. We mainly use the Monte Carlo Principle, which defends
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the convergence of the ideal distribution µx with any desired accuracy by a sampling distribution.
We generate a dependent stochastic sequence ξ1, ξ2, . . . , ξN such as the empirical measure

µ̂N = 1
N

N∑
i=1

δξi converges weakly to µx. (1)

Here δu denotes the point mass at the point u. As xt may depend on ξt, the sequence of decisions
is a stochastic process as well.

As the input parameters are defined by simulation, i.e. we have comprised a scenario tree
with respective realizations, we have to define the optimization model that is a description of the
main features of the application to permit a solver to find the optimal decision in regard to the
problem’s requirements. Every decision is associated with a cost function. Its role, in uncertain
environments, is to determine the expected measure of gain (loss) resulting from each feasible
decision. For instance, an investment decision about an asset portfolio, usually, is looking to
maximize return or to minimize the risk subjected to a set of constraints that are related to that
decision. An optimization problem is characterized by the objective function, for instance, F (x),
which is not explicitly known. Additionally, it must be rewritten as a deterministic equivalent (or
also a denominated extensive form) problem to allow for the computational simulation. These
equivalent models are solved through convergent iterations. The process results in an initial
solution x̄ for F (x), which is obtained by a sequential decisions vector x1, x2, x3, . . . which is
progressively improved until it converges to the optimizer x∗ in a finite number of steps.

As it is impossible to define the truly real costs function for any problem, the real
costs of some application and its constraints are approximated by simulation and optimization
effectively combined. Therefore, given the original problem P , it is denoted by PN , i.e. the
uncertainty inherent in an original environment is approximated by generating random variables
and the optimization is based on them. Initially, we use the simulation to get information about
(P ) and, after that, we optimize (PN ) to find the best decisions. That interaction between
simulation and optimization follows the non-recursive methodology, which is also known as
“stochastic counterpart” or “sample path optimization,” (PFLUG, 2012). We generate a sequence
ξ1, ξ2, . . . , ξN of random variables, and approximate it as Eq. 1. The solution of (PN ) is used as
an approximative solution of the original problem (P ). We depict an example of that approach
in Figure 1.

In multistage problems, the elements of sequence random variables ξ1, ξ2, . . . , ξN are
revealed in distinct time periods, describing the dynamic of information process disclosure
inherent to uncertain contexts. It has influence over the decision because the value of the decision
vector xt, chosen at stage τ , may depend on the information (data) available up to time τ , but not
on the results of future observations. This timing requirement is known as nonanticipativity, and
is algebraically formalized by the filtration process, which is one of probability space components.
The nonanticipativity constraints are determined as the new information will be unfolded for the
discrete points defined by the elements of that space. Therefore, in the discretization process,
the elements of probability space and denominated stages take initial decisions. After that, the
new information is unveiled. Thus, some corrective actions are determined in the direction of
the objective function’s benefit, (KING; WALLACE, 2012). This decision process is known as
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Figure 1 – Non-recursive method diagram from (PFLUG, 2012)

multistage and its formalization can be found in Consigli e Dempster (1998b), Shapiro, Dentcheva
e Ruszczynski (2009),

decision(x1) ; observation(ξ1) ; decision(x2) ;

. . . ; observation(ξT ) ; decision(xT ).

Therefore, the information flow and decisions are conditioned by the filtration process,
which determines how the interplay of different sampled paths happens according to the decision
process above. In Part III, we propose a methodology that employs the space probability
filtration and bundles to generate the implicitly deterministic equivalent of a multistage stochastic
program. We extend the bundles concept for corresponding nonanticipativity constraints. Our
modeling framework includes the stochastic process simulation and the optimization model, and
implements a novel implicit deterministic equivalent modeling methodology for both simulation
and optimization, also defining an interface between them. In terms of scenario-tree generation,
we allocate a multi-way tree represented dynamically by an equivalent binary tree, in such a way
that only distinguishable paths are produced and only one database is created, giving origin to a
compact event tree. We also formulate a theoretic multistage stochastic model with joint chance
constraint, which is introduced in two versions for its corresponding equivalent deterministic. In
the implicit extensive form optimization model, the use of bundles guarantees the creation of a
unique variable set that is generated without redundancy. We code compact representations of
AMLs that determines the interaction between simulation and optimization, as well as handling
large-scale multistage stochastic optimization problems very efficiently. This technique is applied
in a dynamic multistage stochastic programming ALM with joint chance constraint. Our design
brings an effective reduction in terms of computer processing and memory requirement without
the need of any relaxation or decomposition mechanism.

In summary, we present the following tree papers that discuss the multistage stochastic
problem applied to asset liability management problem:

I. A Multistage Stochastic Programming Asset-Liability Management Model - An Application
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to the Brazilian Pension Fund Industry

II. Performance comparison between different scenario generation tree approaches applied to
asset-liability management

III. Implicit Extensive Form for Multistage Stochastic Programming Models: A New Approach



Part I

A Multistage Stochastic Programming
Asset-Liability Management Model - An
Application to the Brazilian Pension Fund

Industry
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Abstract
This paper proposes a multistage stochastic programming approach for the asset-liability man-
agement of Brazilian pension funds. We generate asset price scenarios with stochastic differential
equations. We use a Geometric Brownian Motion model for stocks and a Cox-Ingersoll-Ross
model for fixed income securities. Intertemporal solvency regulatory rules for Brazilian pension
funds are considered endogenously in the model and enforced with a combinatorial constraint. A
VaR probabilistic constraint is incorporated to obtain a positive funding ratio at each time period
with high probability. Our model uses multiple trees to provide a representative characterization
of the uncertainty and is not computationally prohibitive. We evaluate the insolvency probability
under different initial funding ratios through extensive simulations. The study reveals that the
likely decrease of interest rate premiums in the next years will force pension fund managers to
significantly change their portfolio strategies. They will have to take more risk in order to deliver
the cash-flows required to cover the liabilities and satisfy the regulatory constraints.

keywords:ALM. Brazilian Pension Funds. Stochastic Optimization. Scenario Trees.

Note: this article has been published on Optimization and Engineering v. 18, n. 2, p. 349-368,
2017.

de Oliveira, A. D., Filomena, T. P., Perlin, M. S., Lejeune, M., & de Macedo, G. R. (2017).
A multistage stochastic programming asset-liability management model: an application to the
Brazilian pension fund industry. Optimization and Engineering, 18(2), 349-368.
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1 Introduction

Asset-liability management (ALM) is a classical topic in financial optimization and is
increasingly needed for fund managers operating in highly uncertain markets, such as those in
developing countries. In simple terms, ALM’s central problem is to develop an investment strategy
that permits to cover the liabilities over a multi-period horizon (ZIEMBA, 2003). To enable
this objective, the left-side (assets) and the right-side (liabilities) of the balance sheet must be
matched (ADAM, 2007; MITRA; SCHWAIGER, 2011). ALMmodels have been used in a variety of
environments, ranging from pension funds (JOSA-FOMBELLIDA; RINCÓN-ZAPATERO, 2012;
GÜLPINAR; PACHAMANOVA, 2013), insurance companies (FRANGOS; ZENIOS; YAVIN,
2004; CONSIGLIO; SAUNDERS; ZENIOS, 2006; ASIMIT et al., 2014; ASANGA et al., 2014),
banks (MUKUDDEM-PETERSEN; PETERSEN, 2008; URYASEV; THEILER; SERRAINO,
2010), corporate and public debt management (DATE; CANEPA; ABDEL-JAWAD, 2011;
CONSIGLIO; STAINO, 2012; VALLADÃO; VEIGA, 2014), to personal finance (NIELSEN;
POULSEN, 2004; RASMUSSEN; CLAUSEN, 2007; CONSIGLIO; COCCO; ZENIOS, 2007;
PEDERSEN; WEISSENSTEINER; POULSEN, 2013). Zenios e Ziemba (2006), Zenios e Ziemba
(2007) provide a comprehensive overview of the theoretical and methodological developments in
the ALM field and illustrate their application with a few case studies. This study focuses on the
modeling of the specific rules and conditions to which the Brazilian pension fund industry is
subjected.

Stochastic programming techniques and models have been applied to ALM since the
seventies (BRADLEY; CRANE, 1972). Cariño et al. (1994) were probably the first to present a
model with commercial application. Subsequently, (BOENDER, 1997) proposed a large-scale
model in which heuristics techniques are employed to determine the investment strategy. Ever
since, multistage stochastic programming approaches have become a trend see, e.g., Consigli e
Dempster (1998b), Kouwenberg (2001). (KOUWENBERG, 2001) focused on the challenge of
generating representative scenarios, which is a key aspect in multistage stochastic programming.
Stochastic programming ALM models involving non-neutral risk measures and based on the
CVaR measure see, e.g.,Rockafellar e Uryasev (2000), Bogentoft, Romeijn e Uryasev (2001),
Kilianová e Pflug (2009), Ferstl e Weissensteiner (2011) and on the inclusion of jumps for the
asset prices (JOSA-FOMBELLIDA; RINCÓN-ZAPATERO, 2012) have recently been proposed.

However, the legislative side of the ALM problem has seldom been the primary concern of
the existing models, especially for emerging markets. Fund managers are bound to comply to laws
in their judicial system and, therefore, the practice of ALM should also consider this particular
set of restrictions. The objective of this study is to present the regulatory framework faced by
the Brazilian pension funds’ industry and to develop a multistage stochastic programming model
that explicitly accounts for the set of ALM regulatory rules in Brazil. More specifically, we focus
on the so-called defined benefit (DB) plan (ZIEMBA, 2003), which is the most commonly used
plan in Brazilian public institutions. In DB plans, the benefits received by the members of the
plan (i.e., liabilities) are defined in advance which makes the fund liabilities almost deterministic



Chapter 1. Introduction 15

and contrasts with the stochastic nature of assets’ returns. Recent changes in the Brazilian
capital markets is the main motivation for this application, as presented by Dupačová e Polívka
(2009) and Kilianová e Pflug (2009) for other emerging markets. Brazilian pension fund managers
have been used to almost exclusively invest in fixed income securities. However, with the capital
markets and country developments, the long-term trend of the interest rate is decreasing. In
this study, we investigate the possible changes in portfolio allocation due to this new economic
environment and to the strict regulation.

Our study proposes a multistage stochastic programming ALM model with chance and
combinatorial constraints which is motivated and can be applied by the Brazilian pension
fund industry. The chance constraint enforces a Value-at-Risk (VaR) requirement to keep
the pension fund solvent across time with a high probability. The combinatorial constraint
represents endogenously an intertemporal solvency regulation imposed by the Brazilian pension
fund legislation. We construct multiple binary trees and each gives the same importance to
catastrophic and normal economic scenarios. Thus, the model tends to be more conservative,
an important feature for long-term survivorship in highly volatile environments, such as the
Brazilian market.

The scenario generation relies on suggestions given by Kouwenberg (2001) and ans its
key ingredients are the use of multiple trees and Stochastic Differential Equations (SDEs) to
simulate the asset prices. The fixed income asset prices are simulated with the mean-reverting
Cox-Ingersoll-Ross model (CIR), which guarantees the interest rate to be non-negative (COX;
INGERSOLL; ROSS, 1985). Stock prices are generated with Geometric Brownian Motion (GBM).
Some earlier studies pertaining to portfolio and ALM models have also used SDEs, but they focus
on methods in which the portfolio allocation is kept fixed throughout the time (MERTON, 1973;
MERTON, 2001; KIM; OMBERG, 1996; MILEVSKY, 1998; WACHTER, 2002). Notably different
from the single tree approach typically used in the existing literature see, e.g.,(KOUWENBERG,
2001), we implement an extensive scenario generation method to construct multiple trees. We
solve the multistage stochastic programing problem corresponding to each tree and use a variant
of the resampling method proposed by Michaud e Michaud (2008) to derive the final investment
strategy.

Using empirical data for a specific Brazilian pension fund, we estimate its insolvency
probability for different initial funding ratios. The results show that Brazilian pension fund
managers shall modify their investment behavior and strategies in the near future: they will
be pressured to increase their positions in riskier assets if the long-term downward trend of
interest rates gets confirmed. As funds managers become less risk averse, their fund’s insolvency
probability will increase. However, if pension fund managers decide to keep their current risk
profile (in terms of risk allocation and insolvency probability), pension fund’s members external
contributions would have to be raised in the next years.

The paper is organized as follows. In Chapter 2, we discuss the pension funds industry
and the capital markets in Brazil. We motivate and formulate the stochastic programming model
in Chapter 3. Chapter 4 describes the scenario generation techniques, while the algorithmic
procedure and the data used in the numerical tests are outlined in Chapter 5. The results of
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the application of the model to the Brazilian market are presented in Chapter 6. Concluding
remarks are provided in Chapter 7.



17

2 Pension Funds and Capital Markets in
Brazil

Pension funds play an important role in the Brazilian financial system by promoting
financial stability for future retirees. In 2014, according to the Brazilian Association of Closed
Supplementary Pension Funds (2014), the total nominal value of Brazilian pension funds assets
was approximately 219 billions US dollars. The value was distributed across 317 different pension
funds with varying sizes. Most of the pension funds are from private institutions.

In Brazil, every pension fund1 is under the supervision of the Board of the Pension Funds
Management, which is a regulatory authority of the Brazilian National Financial System. The
pension fund’s auditing activities are managed by the Supplementary Pensions Department that
acts as an watchdog for the existing standards. Both are subordinated to the National Monetary
Council, the highest level authority in the Brazilian financial system. The private social entities
in Brazil are organized in the form of non-profit foundations or civil societies and are accessible
only to private employees of a company, group of companies or public employees (federal and
state wide). Every investor of a pension fund is called a member.

The main legislation regarding pension’s fund asset allocation limits and operation was
designed by the National Monetary Council (Brazilian Central Bank, 2012). In Brazil, a pension
fund may invest the members’ money in the following categories: fixed income, equity, structured
investments, investment abroad, properties, and operations with participants. The maximum
allocation for each instrument is 100%, 70%, 20%, 10%, 8%, and 15% respectively, and is aimed
at controlling the pension’s fund financial risk and protecting their members. There is no minimal
allocation imposed for any of the instruments.

Solvency across time is another crucial consideration for Brazilian pension funds. Accord-
ing to the Ministry of Social Welfare (2008), the funding ratio, defined as the ratio of current
assets to the present value of future liabilities, cannot be smaller than one in more than two
consecutive years. The goal of this rule is to protect the members’ wealth by ensuring a certain
level of liquidity for the pension fund.

Currently, the fixed income allocation is highly predominant in the case of Brazilian
pension funds. It can be explained by the high real interest rate that allows managers to reach, in
most cases, the actuarial target without taking much risk. In April 2015, the domestic real short-
term interest rate was approximately 6.5% per year, a very high risk premium that discourages
managers to take positions in riskier assets.

However, the context in which Brazilian pension fund managers operate is changing. As
in the rest of the world, life expectancy (and thereby liabilities of pension funds,) in Brazil has
increased, and the high real interest rate tends to normalize at lower levels as the monetary
policy instrument reaches the objective of holding the domestic inflation. One of the objectives
1 Also called in Portuguese Entidade Fechada de Previdencia Complementar (EFPC).
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of this paper is to investigate the consequences of the modified socio-economic context on the
asset allocation strategies pursued by Brazilian pension funds.

The proposed multistage stochastic programming ALM model captures the economic
changes and regulations in Brazil. The scenario generation method accounts for the modifications
of the economic environment. The stochastic programming model incorporates constraints specific
to the legislative regulations. The model enforces endogenously the intertemporal funding ratio
constraint imposed by the current legislation. This makes the proposed model directly applicable
by the Brazilian ALM practitioners. We present the specifics of the proposed model in the next
chapter.
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3 Stochastic ALM Model

The ALM paradigm resides in the allocation of a certain amount of wealth in a number
of financial assets i = 1, . . . , N in order to cover the liabilities lt in each period t = 1, . . . , T . The
model takes the form of a stochastic and intertemporal dynamic allocation problem due to the
randomness of the asset prices and the time-dependency nature of the investment and rebalancing
decisions. The investment policy is defined with three sets of variables: Xits is the number of
shares of asset i to hold in time period t and scenario s, while Bits and Vits respectively denote
the number of shares of i bought and sold in time t and scenario s. The stochastic variable ξit is
the price of asset i in time t and can take a finite number (s = 1, . . . , S) of realizations denoted
Pits. Table 5 presents the model notations.

Table 1 – Notation Summary

Sets - Indices
t time index (stage) t = 0, 1, . . . , T
i index of asset classes i = 1, . . . , N
s index of scenarios s = 1, . . . , S
Decision variables
Xits Number of shares of assets i to hold in time t and scenario s
Bits Number of shares of assets i to buy in time t and scenario s
Xi0 Number of shares of assets i hold initially (t = 0)
Vits Number of shares of assets i to sell in time t and scenario s
Cts Binary variable taking value 1 if there is underfunding in time t and

scenario s and taking value 0 otherwise
Random variables
ξit Random price of asset i in time t
Deterministic parameters
Q Initial wealth
αt Reliability level in time t
K Legally required funding ratio
Lt Present value of future liability t = t+ 1, . . . , T
lt Liability to be paid in period t
Ft Present value of future external contributions, t = t+ 1, . . . , T
ft External contributions in each period t
M Maximum amount of underfunding allowed
ρ Discounting factor
π Maximum weight of an asset in the portfolio
pts Probability of scenario s at time t
Pits Price of asset i at time t and scenario s
Pi0 Known initial (t = 0) price of asset i

The model enforces risk and regulatory restrictions and takes the form of a multi-stage
stochastic programming problem with chance constraints formulated as follows:
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max
S∑
s=1

N∑
i=1

pTsPiT sXiT s (3.1)

s.t. : Q =
N∑
i=1

Pi0Xi0 (3.2)

Xits = Xi(t−1)s +Bits − Vits, t ∈ 1, . . . , T, i = 1, . . . , N, s = 1, . . . , S (3.3)

P
(

N∑
i=1

ξitXit ≥ K(Lt − Ft)
)
≥ αt, t = 1, . . . , T (3.4)

N∑
i=1

PitsVits −
N∑
i=1

PitsBits + ft = lt, t = 1, . . . , T, s = 1, . . . , S (3.5)

XitsPits ≤ π
N∑
i=1

XitsPits, t = 1, . . . , T, i = 1, . . . , N, s = 1, . . . , S (3.6)

K(Lt − Ft)−
N∑
i=1

PitsXits ≤MCts, t = 1, . . . , T, s = 1, . . . , S (3.7)

2∑
j=0

C(t+j)s ≤ 2, t = 1, . . . , T − 2, s = 1, . . . , S (3.8)

Xits, Bits, Vits ≥ 0, i = 1, . . . , N, t = 1, . . . , T, s = 1, . . . , S (3.9)

Cts ∈ {0, 1}, t = 1, . . . , T, s = 1, . . . , S . (3.10)

The model maximizes the expected terminal value of the fund (3.1). The objective
function reflects the goals of the fund manager who aims at reaching the largest possible gains in
the last period while respecting risk, regulatory and liability constraints. At time t = 0, there is
no uncertainty affecting the allocation of the initial wealth Q to the asset classes and the price
Pi0 of each asset is known in (3.2). The number B0 of shares bought is equal to the number X0 of
shares detained at the end of the initial period. The linear equalities (3.3) are the share balance
constraints and specify that the number of shares Xits of asset i in time t and scenario s is equal
to the number of shares Xi(t−1)s detained at the previous period augmented by the number
of purchased shares Bit minus those sold Vit at time t. Since the asset prices are known and
deterministic, we have Xi0s = Xi0,∀s. The chance constraints (3.4) enforces the funding ratio
requirements. The funding ratio represents the long-term relation between assets and liabilities.
The actual funding ratio βts of a fund in time t and scenario s is computed as:

βts =
Ft +

N∑
i=1

PitsXits

Lt
, t ∈ 1, . . . , T, s ∈ 1, . . . , S , (3.11)

where
∑N
i=1 PitsXits is the current asset value of the pension fund in scenario s. Lt and Ft are,

respectively, the present value of the future liabilities and contributions discounted by ρ:

Lt =
T∑
j=t

lj

(1 + ρ)j−t
, Ft =

T∑
j=t

fj

(1 + ρ)j−t
.



Chapter 3. Stochastic ALM Model 21

The initial funding ratio is denoted by β0 = (F0 +
N∑
i=1

Pi0Xi0)/L0. A value of β smaller than 1
signals that the value of the assets might become insufficient to cover the future liabilities and
that the fund might run into solvency issues in the near future. The Brazilian legislation on
pension funds requires the use of a discounting factor ρ equal to 5%.

Each probabilistic constraint (3.4) enforces a safety level on the funding ratio and does
not allow it to fall below a specified threshold K with some large prescribed probability level αt.
The two parameters K and αt define the risk-aversion of the asset-liability management policy.
The risk-aversion level increases monotonically with the value taken by K and αt. In general, K
is between 1 and 1.5, while αt is defined on [0.9, 1). The constraints (3.4) can be viewed as some
sort of VaR constraints that ensure that the value of the fund is at least equal to KLt in each
period t with probability at least equal to αt. Their purpose is maintain the long-term solvency
level of the fund. As discussed in Chapter 2, the Brazilian legislation defines K = 1. Haneveld,
Streutker e VAN DER VLERK (2010) considers some more risk-averse values for K (i.e., 1.05
and 1.30). Note that the probabilistic constraints (3.4) are individual ones. Alternatively, we
could have used joint chance constraints at each period t. Such an approach would not allow
for the funding ratio to fall below a specified threshold K with probability level αt at t and at
any of the earlier periods t′ = 1, . . . , t − 1. This would enforce stricter requirements, may be
appropriate in practice, and is much more difficult to solve.

The stochastic equalities (3.5) are the cash balance constraints and model the relationship
between the fund’s cash inflows and outflows. Inflows include the sales of assets, yields, and
external contributions, while outflows are the payments of liabilities and the purchases of assets.
External contributions are payments made by members or sponsors to the pension fund. The
stochastic constraints (3.6) are motivated by the Brazilian legislation that defines an upper
bound π on the proportion of the fund value invested in a particular asset. Each constraint (3.7)
indicates if there is underfunding in period t and scenario s. If this is the case, the binary variable
Cts is forced to take value one. The parameter M is a large positive number and represents the
maximum acceptable underfunding value. The Brazilian regulation stipulates that the funding
ratio of the pension fund must not be below the value of 1 for more than two years in a row.
This requirement is enforced by the combinatorial constraints (3.8). They make sure that there
is no underfunding in three consecutive periods for every scenario. Constraints (3.9) and (3.10)
define the non-negativity and integrality restrictions.

An equivalent mixed-integer programming problem can be formulated for the above
multi-stage stochastic programming problem:

max (3.1)

s.t.: (3.2)− (3.3); (3.5)− (3.10)
S∑
s=1

ptsCt,s ≤ 1− αt, t = 1, . . . , T (3.12)

Noticing that
∑S
s=1 pts = 1 for t = 1, . . . , T , the knapsack constraints (3.12) ensure that the sum

of the probabilities of the scenarios with underfunding is below the complement of the enforced
reliability level αt.
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4 Scenario Generation

As discussed by Cariño et al. (1994) and Dupačová e Polívka (2009), the benefits of the
insights provided by the model depends heavily on the quality and relevance of the scenarios
generated to represent the stochasticity of the assets’ prices. Simulating prices properly is essential
for the model’s performance. In this study, the asset prices follow correlated SDEs of form:

dξit = µ(ξit, t)dt+ σ(ξit, t)dWit.

Wit is a Wiener process normally distributed with mean zero and variance ∆ for t < t+ ∆. If
more than one asset is used in the simulation, we should take into account the returns’ correlated
errors between the different assets (DEMPSTER; GERMANO; MEDOVA, 2003). The correlation
coefficients ρij between two assets i and j at any time t are defined by:

dWi · dWj = ρijdt, ρii = 1, ∀i, j.

We consider two assets in the model: stock (ξ1t) and fixed income (ξ2t). We use the widely
known geometric Brownian motion model for stock prices (NEFTCI, 1996; DUFFIE, 2001):

dξ1t = µξ1tdt+ σξ1tdW1t.

The GBM offers a known closed form solution:

ξ1t = ξ1(t−1)e

(
µ−

1
2σ

2

)
dt+σε

√
dt

, (4.1)

with ε ∼ N(0, 1). For the price of the fixed income asset, we use the Cox-Ingersoll-Ross term
structure model (COX; INGERSOLL; ROSS, 1985) to avoid the negative values that interest
rate simulations can take with Vasicek (1977). The fixed income asset is represented by:

dξ2t = α(µ− ξ2t)dt+
√
ξ2tσdW2t , (4.2)

where ξ2t is the interest rate and Λ ≡ (α, µ, σ) are model parameters. The drift function
µ(ξ2t,Λ) = α(µ− ξ2t) is linear and presents a mean reverting property, i.e interest rate ξ2t moves
in the direction of its mean µ at speed α. The diffusion function σ2(ξ2t,Λ) = ξ2tσ

2 is proportional
to the interest rate ξ2t and ensures the interest rate to be always positive. It is important to
point out that the simulation model is related to the spot price of two assets only, one stock
and one fixed income instrument. Since we only have long positions in the assets and we are not
using prices from the other instruments in the yield term structure of the Cox-Ingersoll-Ross
model, we have not detected any arbitrage opportunities in our simulations. However, it should
be noted that in other applications it might be necessary to ensure that the simulations don’t
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allow for arbitrage opportunities, resulting in unrealistic prices of financial assets. Suggestions on
how to handle this issue can be found in (HØYLAND; WALLACE, 2001), (KLAASSEN, 2002)
and (CONSIGLIO; CAROLLO; ZENIOS, 2016).
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5 Data Structure and Algorithm

We construct multiple multistage binary event trees with T time periods (stages) and S
scenarios. Every node in a tree has two successors, except for the leaf nodes at time T . Therefore,
the total number of nodes in the tree is 2T+1 − 1. Each path from the root to a leaf node
represents a scenario, and the nodes represent decision points. The same probability is attributed
to each node at the same time (stage). The pension fund manager makes his/her decisions in time
t and scenario s based on the currently available information and future expectations of asset
prices. This process is completed in time T . Each node is equally likely, and therefore the same
probability is given to normal and extreme scenarios, which makes the approach conservative.
This is an important and valuable feature for countries like Brazil where the market volatility is
quite high when compared to more developed markets.

In the stochastic programming ALM model, a scenario tree must be constructed to depict
as accurately as possible the uncertainty structure. It is important to reduce the bias in the
generation of scenarios and trees. If one single tree is constructed, this issue could be to some
extent overcome by generating a very large tree. This could however lead to the formulation of
an enormous stochastic programming problem that could be extremely difficult to solve even
approximately. As another alternative to alleviate the issue of scenario bias in a single tree,
Kouwenberg (2001) proposes a random sampling adjustment to control the aleatory nature of
the problem. In this context of information uncertainty, we design in this paper a method that
is based on the generation of scenarios for multiple trees and the solution of an optimization
problem of smaller size for each tree, which permits to keep the computational complexity and
the solution times under control. This technique has some similarities with the resampled efficient
frontier method proposed by Michaud e Michaud (2008)1 for the construction of portfolio of
risky securities. For ALM purposes, Figueiredo (2011) have also recently adopted a multiple
scenario tree approach analyzed with the sample-average approximation presented by Linderoth,
Shapiro e Wright (2006). We provide below the pseudo-code of our algorithmic procedure.

Algorithm 1: Routine to generate the ALM results.
1 Step 1: Define the number θ of trees to be used in the ALM simulation.
2 Step 2: Use (4.1) and (4.2) to generate the asset prices’ scenarios for each path and node

of every tree.
3 Step 3: Solve for each tree the ALM Problem (3.1)-(3.3); (3.5)-(3.10); (3.12).
4 Step 4: Evaluate the results considering the θ trees. At time zero, the portfolio allocation

is the average obtained with the θ trees.

In Step 1, we define the number of trees to be solved for each parametrization see,
e.g.,Michaud e Michaud (2008). The value of θ must be sufficiently large so that the portfolio
allocations are stable and small enough so that the approach does not become computationally
prohibitive. Once the number θ of trees is defined, we generate in Step 2 scenarios for each tree
1 The resampling method was first published by Michaud (1998).
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using the method presented in Chapter 4. In Step 3, we solve to optimality the optimization
problem (see Chapter 3) corresponding to each tree. In Step 4, we evaluate the results based on
the optimal solutions of the θ trees. A key output of the model is the initial asset allocation,
which is obtained by taking the average of the optimal initial asset allocations for each of the θ
trees.

The resampling solution Michaud e Michaud (2008) presents advantages and disadvan-
tages. On the positive side, it limits extreme weight allocations that can arise with the classical
mean-variance portfolio selection model. Additionally, the constructed portfolio is usually less
sensitive to estimation error (FLETCHER; HILLIER, 2001). However, Scherer (2002) raises
some criticism to the resampling method. First, it is a heuristic without a theoretical economic
rationale. Second, when long and short positions are allowed, the resampled efficient frontier is
not necessarily an improvement over the classical efficient frontier (Markowitz, 1952). Scherer
(2002) also argues that resampling should be compared to Bayesian methods instead to the
traditional mean variance. The literature is still controversial on the pros and cons of the results
delivered by resampling (MARKOWITZ; USMEN, 2003; ULF; RAIMOND, 2006; BECKER;
GURTLER; HIBBELN, 2015). There have been some recent attempts see, e.g.,Frahm (2015) to
develop the theoretical foundations of the portfolio resampling approach. While the resampling
method is certainly not exempt from criticism, our motivation to use it lies in the possibility it
gives to consider many scenarios while preserving computational tractability.

The method described above is not without resemblance to the sample average approx-
imation (SAA) method. As noted by Kim, Pasupathy e Henderson (2014), the method can
be applied when the sample and the true problems both enjoy features that are critical (e.g.,
continuity, differentiability) for optimization solvers. However, in terms of asymptotic efficiency,
it was shown that the standard implementation of the SAA method does not perform as well
as stochastic approximation. The performance gap is due to the fixed and very large size of
the sample set, which makes extremely difficult to solve the resulting SAA formulation. To
circumvent this issue, a method called retrospective approximation retrofit was recently proposed,
in which the size of the sample set increases iteratively at a controlled rate. We refer the reader to
Kim, Pasupathy e Henderson (2014) for a comprehensive discussion of the principles, advantages,
limitations, and implementation of the sample average approximation method.
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6 Application to the Brazilian Market

We implement the model presented in Chapters 3 to 5 for a Brazilian pension fund. We
use 10-period binary scenario trees with two asset classes. In order to calibrate the simulation of
the fixed income asset, we collected data of the 1-month Brazilian LTN (similar to a T-Bill in
the USA) as a proxy for the short-term interest rate. For the stocks, we collected the returns
for the Brazilian Index IBOVESPA (similar to the S&P 500 in the USA). We use maximum
likelihood to estimate the parameters in equations (4.1) and (4.2). The training period is from
January 2005 to January 2015. In Table 2, we present some descriptive return statistics for the
two asset classes.

Table 2 – Annualized return statistics for the two asset classes.

Asset Mean % Std. Deviation%
Stocks 10.11 28.6

Fixed Income 9.6 3.34

Table 2 highlights a peculiarity of the Brazilian capital market. Namely, the fixed income
asset has an expected return (9.6%) that is very close to the stocks expected return (10.11%),
but has a much lower volatility (i.e., 3.34%) than stocks have (i.e., 28.6%). It is thus easy to
understand the preference of Brazilian pension fund managers for fixed income assets as their
volatility is much lower than that of the stocks. However, as aforementioned, the fixed income
premium is likely to decrease in Brazil, which could impact the pension funds asset allocations.
The correlation between both assets is slightly negative and equal to −0.036. Therefore, in a
node of the tree, we can have the prices of both assets going up, both going down or up and
down at the same time.

We design the scenario generation in C++ and Matlab. AMPL and the CPLEX 12.5
solver are used to model and solve the optimization problems. We run CPLEX’ standard branch-
and-bound algorithm with its default settings on a 64-bit desktop with Intel Core i7-4510U 2GHz
CPU with 8GB of RAM. The computational performance is not the central goal of this paper,
but it is worth pointing out the complexity of the model. For one single tree, we have 14, 329
variables (2, 047 integers), 2, 047 nodes and 104, 404 constraints. The computational time for
the generation of the scenarios and the solution of the optimization problem varies from 7 to 21
seconds. Without the combinatorial regulatory constraint (3.8), the time decreases to around
2− 3 seconds.

6.1 Number of trees - θ

We want to define the allocation that maximizes the wealth in the last period, while not
violating any of the solvency, risk, and regulatory constraints. Our objective in this section is
to determine the number of scenario trees needed to reach the stable state of the portfolio, i.e.,
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stable allocations in fixed-income securities and stocks. Figure 2 shows how the average initial
portfolio allocations vary with the number of trees.

Figure 2 – Stability of average solution with respect to the number of trees - θ

The results displayed in Figure 2 indicate that the initial portfolio allocations become
fairly stable with 200 generated trees. The subsequent tests presented in this paper are obtained
by using 300 trees in Algorithm 1. The computational time to run the method proposed in
this paper with 300 trees takes from 35 to 105 minutes depending on the parametrization. The
solution time varies predominantly and not monotonically with the value of the initial funding
ratio. If this latter is large (above 1.25), the solution time is minimal and about equal to 35
minutes. The solution process is the longest when the initial funding ratio is slightly smaller than
one.

6.2 Insolvency Probability

A key indicator of the financial health of the pension fund is its insolvency probability.
A tree is said to be infeasible if there is no feasible solution for the corresponding optimization
problem (see Step 3 in Algorithm 1). The probability of insolvency is defined as the following
ratio:

P (Insolvency | VaR90%) = Number of infeasible trees
Number of trees (6.1)

The model is constrained in such a way that the funding ratio must be above 1 with 90%
probability in each period t and includes a 90%-VaR constraint at each period t. Furthermore,
the intertemporal solvency regulation requires the funding ratio not be lower than 1 (K = 1) in
more than two consecutive periods in any scenario. If in scenario s the funding ratio is below 1 in
stages t and t+ 1, it must be above 1 in stage t+ 2 in scenario s. Another regulatory constraint
is the 70% maximum amount of wealth to be allocated to stocks (see Chapter 2). The strong
regulation and the high market volatility creates an environment in which the probability of a
tree to be insolvent (infeasible) is not negligible.

Figure 3 displays how the insolvency probability varies in function of the pension fund’s
initial funding ratio β0 for which we consider values ranging from 0.58 to 1.67. Note that the value
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of K, i.e., the legally required funding ratio, is kept equal 1 in each test and that we construct
300 trees for each considered value of the initial funding ratio. Each point in Figure 3 corresponds
to the mean portfolio allocation over 300 trees and the associated insolvency probability.

Figure 3 – Insolvency probability chart in terms of initial funding ratios.

Figure 3 highlights that the insolvency probability is stable and low until the pension
fund’s initial funding ratio reaches 0.95. The insolvency probability increases very fast when the
funding ratio goes below 0.95 and makes it virtually impossible to keep the fund solvent when the
value of the funding ratio falls below 0.93. For values of the funding ratios below 0.95, the pension
fund manager will definitely need additional external contributions. The external contributions
can come from the members in two ways: (i) decrease in the future benefits (liabilities) or (ii)
increase in the contributions without raising the benefits. Next, we present in Table 3 how the
portfolio allocations and insolvency probability vary with the initial funding ratio.

As in the resampled efficiency frontier method (MICHAUD; MICHAUD, 2008), the
composition of the "final" fund is obtained by taking the average of the portfolio weights of all
the 300 trees. Table 3 shows that the positions of the fund are not monotone with the initial
value of the funding ratio. If the initial funding ratio is high (i.e., amount of assets is much higher
than the present value of liabilities), the fund tends to allocate 70% and 30% in fixed income
and stocks, respectively. The 70%-30% fixed income-stock allocation coincides to the one used in
many Brazilian pension funds (Brazilian Association of Closed Supplementary Pension Funds,
2014). As the initial funding ratio becomes slightly lower than 1, the fund tends to concentrate
more in fixed income to reduce its risks of not paying the liabilities - the fixed income allocation
gets close to 80%. Once the initial funding ratio gets smaller than 0.95, the fixed income yield is
not enough to cover the liabilities, a larger part of the portfolio is then dedicated to stocks. The
70% stock allocation is the maximum amount allowed by the Brazilian legislation and such an
allocation is associated with a very high insolvency probability. This V-shaped portfolio policy is
somewhat similar to the results reported by Berkelaar e Kouwenberg (2003) and Siegmann e
Lucas (2005). With lower initial funding ratios (lower wealth levels) the allocation tends to be
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Table 3 – Portfolio allocation and insolvency probability under different initial funding ratios.

Fund Ratio Fixed-Income Bond % Stocks% No Insolv Scen Insolv. Prob.%
1.672 70 30 0 0.0
1.463 67.3 32.7 0 0.0
1.254 70.9 29.1 0 0.0
1.045 72.6 27.4 2 0.7
1.003 72.2 27.8 7 2.3
0.961 81 19 12 4
0.953 83 17 15 5
0.945 82.1 17.9 56 18.7
0.941 82.1 17.9 122 40.7
0.940 73.1 26.9 139 46.3
0.939 71.6 28.4 151 50.3
0.938 70.4 29.6 171 57
0.937 63 37 180 60
0.936 64.4 35.6 182 60.7
0.928 30 70 253 84.3
0.919 30 70 258 86.0
0.752 30 70 298 99.3
0.669 NA NA 300 100
0.585 NA NA 300 100

concentrated in the risky asset.

We also tested additional assumptions for the pension fund. We assumed that the fund
manager (or the regulator) becomes more risk averse. In such a case, we set K = 1.1 (instead of
1) in (3.4). As expected, the insolvency curve plotted in Figure 3 for K = 1 shifts to the left for
K = 1.1. If we remove the intertemporal funding ratio regulatory constraint (3.8), the insolvency
probability just slightly decreases.

6.3 Allocation with a Decreasing Interest Rate

Despite the current sharp interest rate increase in 2014 and 2015 (more than 400 bps),
a decreasing interest rate “looks like” a future tendency in Brazil. Dupačová e Polívka (2009)
observed a similar trend in the Czech Republic. We shall now analyze the impact of a long-term
decrease in the interest rate on the investment policy of Brazilian pension funds. In our analysis,
we consider two scenarios that differ in the value of the initial funding ratio. In Figure 4 panel
(a) (resp., panel (b)), we consider a pension fund with initial funding ratio of 1.25 (resp., 0.94).
We chose an initial funding ratio of 1.25 that corresponds to a financially healthy pension fund,
while 0.94 is the critical level of the initial funding ratio (see Figure 3) when the involvency
probability of a fund a pension changes significantly. The resulting portfolio is, also, constructed
by taking the average asset positions over the optimal positions of the 300 trees.

Based on Figure 4 panel (a), we observe that when the initial current asset value is much
larger than the present value of future liabilities, the portfolio allocations are stable, i.e., around
70% and 30% allocated to fixed income and stocks, respectively. Despite the lower level of the
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Figure 4 – Mean Allocations for different funding ratios and interest rates

(a) Mean Allocation - Initial Funding Ratio 1.25

(b) Mean Allocation - Initial Funding Ratio 0.94

interest rates, these funds do not increase their position in the risky assets due to their high
volatility. Under this context, it is not needed to take more risks to be able to pay the liabilities.
However, this conservative policy significantly decreases the future wealth of fund members. Now
considering in Figure 4 panel (b) funds with low initial funding ratios, we can see that as the
interest rate decreases the position in stocks becomes larger in order to possibly generate larger
returns allowing for the payments of the liabilities. When the interest rate is close to 5%, the
pension fund is required to take a riskier approach, investing more resources in stocks than in
fixed income. This is a marked departure with the standard current allocations of pension funds
and gives a clear indication the type of allocations most of Brazilian pension fund managers will
have to adopt in the near future in case of lower interest rates.

In both cases displayed in Figure 4, pension fund managers will have to change their
portfolio allocation if the decrease of interest rate becomes a reality. On one hand, if the fund is
financially healthy (initial funding ratio 1.25), this change is necessary to avoid the progressive
erosion of the initial wealth and capital. On the other hand, if the resources of the fund are
tight (i.e., initial funding ratio 0.94), this adjustment is fundamental to maintain the ability to
cover the liability payments. Besides the modification of the investment strategy, it is likely that
members will be asked to increase their contributions and/or to accept benefits of lesser value in
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the future.

6.4 Robustness and Scalability

In this section, we focus on the out-of sample robustness and on the scalability with
respect to the number of assets. First, we train the model on two different periods: Training
A - from January 2005 to December 2013 and Training B - from January 2005 to December
2014. The application of the model built on the Training A (resp., Training B) data on the
out-of-sample 2014 (resp. 2015) data permit to evaluate the out-of-sample performance of the
model. As the return data are not at the present time available for the entire 2015 year, the
2015 out-of-sample analysis is based on the January 2015 - November 2015 period. To obtain the
initial portfolio allocation, we use the method presented in Chapter 5. We test the model with
three different initial funding ratios: 0.95, 1.00 and 1.05. These initial funding ratios become the
benchmark for the out-of-sample tests presented in Table 4.

Table 4 – Out-of-sample tests with different funding ratios

Funding Ratio (FR)
Initial FR 0.950 1.000 1.050

Out-of-Sample
FR

2014 0.958 1.006 1.066
2015 0.982 1.025 1.085

We have chosen funding ratios that are close to the critical value of 1. We have also
avoided ratios below 0.95 because of the V-shaped behavior towards the riskier asset documented
in the literature (BERKELAAR; KOUWENBERG, 2003; SIEGMANN; LUCAS, 2005) and
discussed in Chapter 6.2. A 15% federal income tax discount was used for the out-of-sample
portfolio return. Based on Table 4 and considering the initial level of 1, the out-of-sample funding
ratio increases to reach 1.006 in 2014 and 1.025 in 2015. Similar results were obtained with the
initial funding ratios of 0.95 and 1.05. The initial funding ratio pension fund’ maintenance (or
increase) in the out-of-sample tests shows the robustness of the model.

We also note that this study has been conducted by accounting for the main asset
classes (i.e., stocks and fixed income) in the ALM context. Those are definitely the main
investment options considered by pension fund managers in Brazil (Brazilian Association of
Closed Supplementary Pension Funds, 2014). Next, in order to the scalability of the model, we
consider a larger number of assets. We design an experiment for two and eight assets with the
following features: 500 runs (generating the scenarios and optimizing the tree), each tree with
ten periods and funding ratio of 1. The objective here is to verify if the number of assets can be
increased without making the computational performance prohibitive. The results showed that
each run took on average 17.28 seconds for 2 assets and 22.30 seconds for 8 assets. The standard
deviation was 1.59 and 4.2 seconds, respectively, for 2 and 8 assets. Thus, the implementation
can easily be scaled up to a larger number of assets.
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7 Conclusions

The objective of this study is to develop and apply a multistage stochastic programming
ALM model for a Brazilian DB pension fund that takes into account the dynamic of the domestic
financial market and its regulatory idiosyncrasies. Besides the multistage aspect, the complexity
of the model is exacerbated by (i) the enforcement of a VaR metric modelled with probabilistic
chance constraints, and (ii) the intertemporal solvency regulation modelled with combinatorial
constraints. Different economic scenarios are simulated with the GBM and CIR models and used
to construct multiple multistage scenario trees. The proposed multiple scenario tree approach is
inspired from the resampling efficiency frontier method and is aimed at enabling the consideration
of a representative set and vast number of contingencies without making the algorithmic procedure
computationally prohibitive.

The empirical analysis shows the link between the initial funding ratio on one hand
and the insolvency probability and the positions of the fund on the other hand. A simulation
assuming a decrease in the interest case provides key insights about the likely changes in the
investment strategies of the Brazilian pension funds.

A promising future research avenue is to switch the focus from defined benefit (DB) to
defined contribution (DC) with minimum guarantees pension funds. For instance, the Brazilian
public sector is currently experiencing this shift from DB to DC with some guarantees. Consiglio,
Tummiello e Zenios (2015) not only discuss other countries in which this change is taking place
but also present a model integrating option pricing and portfolio optimization to obtain asset
allocations considering minimum guarantees.



Part II

In-sample performance comparison of
scenario-generation methods applied to

asset-liability management
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Abstract
In this paper, we provide an empirical discussion of the differences among some scenario tree-
generation approaches for stochastic programming. We consider the classical Monte Carlo
sampling and Moment matching methods. Moreover, we test the Resampled average approxima-
tion, which is an adaptation of Monte Carlo sampling and Monte Carlo with naive allocation
strategy as the benchmark. We test the empirical effects of each approach on the stability of
the problem objective function and initial portfolio allocation, using a multistage stochastic
chance-constrained asset-liability management (ALM) model as the application. The Moment
matching and Resampled average approximation are more stable than the other two strategies.
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1 Introduction

Stochastic programming (SP) is a branch of optimization, in which optimal decisions
are made under uncertainty (BIRGE; LOUVEAUX, 2011). In general, real world problems are
characterized by uncertain events modeled with random variables. We associate a collection of
random events with a probability space containing a bundle of all possible events with their
probabilities. From these concepts, we formalize a generic stochastic optimization problem, as
denoted by Eq. (1.1)

G(x) = max
x∈X

∫
F
f(x, ξ)dF (ξ), (1.1)

Where f is the objective function that is defined in terms of uncertainty, x is the decision variable
defined over the feasible set X ⊂ RI , and ξ is a random variable defined by the continuous
cumulative distribution function F : RI → [0, 1]. Furthermore, dF represents the probability
measure of the probability space F for the underlying multivariate stochastic process.

As discussed by Pflug (2001), continuous optimization problems become easier to solve
if we reduce them to discrete-state multi-period optimization problems. This logical structure
may be seen as a tree model with a non-anticipative decision process, in which dependence
relies uniquely on this history and on the probabilistic specification (DUPAČOVÁ et al., 2000;
ESCUDERO; KAMESAM, 1995). Thus, the decision functions reduce to large decision vectors
and, as Lohndorf (2016) points out, it may be calculated numerically by either drawing a sample
from F or by approximating F with a discrete distribution F̂ . Using F̂ instead of F , we have
the following maximization problem:

max
x∈X

∑
ξ∈F̂

φ̂(ξ)f(x, ξ̂) (1.2)

Where φ̂(ξ) is the probability of the mass point in F̂ . If we suppose a uniform distribution for
φ̂, the approach in Eq. (1.2) can be seen as sample average approximation (SAA). Stochastic
approximation (SA) is another approach to obtain numerical convergence for stochastic optimiza-
tion problems, which presents a random direction whose origin is usually an objective function’s
gradient with a step-size for each iteration (SHAPIRO; DENTCHEVA; RUSZCZYNSKI, 2009).

As the scenario generation methodology becomes a key part of the stochastic optimization
process, the main goal of this study is to compare the performance of different scenario sampling
methods, in order to highlight which of them is more appropriated for designing a representative
discrete-space model for asset-liability management (ALM) problems regarding the in-sample
performance. Many efforts have been made in the scenario generation direction, for instance,
by having matched state-space distribution moments (DUPAČOVÁ et al., 2000; HØYLAND;
WALLACE, 2001; HØYLAND; KAUT; WALLACE, 2003), minimizing Wassertein probabil-
ity metrics (ROMISCH, 2003; HEITSCH; ROMISCH, 2005; HOCHREITER; PFLUG, 2007),
Latin hypercube sampling (MCKAY; BECKMAN; CONOVER, 1979), Voronoi cell sampling
(LOHNDORF, 2016), and Resampled average approximation (OLIVEIRA et al., 2017), among
others.
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This study compares the empirical results of distinct approaches to generating scenarios
for ALM: Random sampling and Moment matching. We also test two Monte Carlo sampling
variations: Resampled average approximation and Monte Carlo, using a naive allocation strategy
as a benchmark. These sampling techniques were chosen among other well-known options, as cited
above. We apply sampling methods from distinct perspectives. The Monte Carlo sampling-based
algorithms are based on the uniform version of strong law of large numbers. It ensures that the
optimal objective value of the SAA problem defined by Eq. (1.2) converges to the true value of
the problem, according to the increase of the number of scenarios (GLASSERMAN, 2003). The
Moment matching depends mainly on the prior knowledge of the distribution function of the
marginals. Several changes in these paradigms can be found in the literature, for instance, Mak,
Morton e Wood (1999) and Homem-de-Mello e Bayraksan (2014b) propose variance reduction
techniques in Monte Carlo sampling-based approximations to improve the scenario representation.
Moreover, Kaut e Wallace (2011) introduce copulas in the definition of moments, but they
represent perspectives with essentially distinguished methodologies.

Our intent is not to exhaustively test the sampling methods for ALM, but to outline
how, empirically, the method may have an impact and produce different outputs. Based mostly
on the resulting values of the objective function, as suggested by Kaut e Wallace (2007), we can
conclude that the classical Monte Carlo sampling and Monte Carlo with naive allocation strategy
are dominated by the Moment matching and the Resampled average approximation.

The paper is organized as follows. First, we introduce this study’s multistage stochastic
chance-constrained ALM model in Section 2. Then, in Section 3, the scenario generation methods
are described: Monte Carlo sampling (Section 3.1), the Moment matching sampling (Section
3.2), the Resampled average approximation (Section 3.3) and the benchmark Monte Carlo with
naive allocation (Section 3.4). Section 4 describes the generation of the sample paths with other
explanations on the data and the experiment. A comparison of the results considering the different
approaches appears in Section 5. Concluding remarks are in the final section.
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2 Stochastic asset-liability management
model

ALM is focused on modeling suitable sample paths for the assets and liabilities of a
pension fund, bank, insurance company, or any other institution that dynamically manages
and matches risks on both sides of a balance sheet, see e.g.,(MULVEY; W.T.ZIEMBA, 1998;
ZENIOS; ZIEMBA, 2006; HOCHREITER; PFLUG, 2007; HANEVELD; STREUTKER; VAN
DER VLERK, 2010; MITRA; SCHWAIGER, 2011; RIGHETTO; MORABITO; ALEM, 2016).
In other words, the objective of ALM is to guarantee that liabilities are paid over a multi-period
horizon by efficiently managing investment resources , e.g., (ZIEMBA, 2003; MATOS; PADILHA;
BENEGAS, 2014). Our study’s model is designed for the pension fund environment. Thus, the
fund’s assets must be strategically managed so that the total value of all assets is greater than
the fund’s liabilities with high probability, while respecting all constraints, for instance, the
fund’s solvency (BOGENTOFT; ROMEIJN; URYASEV, 2001).

The stochastic programming community has discussed the ALM for a while. Early models
were proposed by Bradley e Crane (1972), with commercial versions emerging thereafter for banks
and insurance companies, respectively, with Cariño et al. (1994), Kusy e Ziemba (1986) and
Kosmidou e Zopounidis (2002). Others expanded these proposals, for instance, Boender (1997)
presented a large-scale model in which the asset allocation resulted from heuristic techniques.
More recently, multistage stochastic programming approaches have become a trend, with examples
in Consigli e Dempster (1998b), Kouwenberg (2001), Moraes e Faria (2016). Kouwenberg (2001)
and Høyland e Wallace (2001) discussed the challenge of generating representative scenarios; a
key aspect in multistage stochastic programming. Stochastic programming ALM models related
to non-neutral risk measures and based on the CVaR measure, or including jumps in asset
prices, have already been presented in Rockafellar e Uryasev (2000), Bogentoft, Romeijn e
Uryasev (2001), Kilianová e Pflug (2009), Ferstl e Weissensteiner (2011), Josa-Fombellida e
Rincón-Zapatero (2012).

Our stochastic ALM model is based on Oliveira et al. (2017). Suppose that there is
a set of securities denoted by i = 1, . . . , N . The ALM manager has to choose from these
investment opportunities, allocating the available wealth in order to afford the liabilities denoted
by lt. These decisions occur repeatedly through different time periods, t = 1, . . . , T . The utility
function maximizes the final expected wealth. Thus, the model takes the form of a stochastic
and inter-temporal dynamic allocation problem, due to the randomness of the asset prices and
the time-dependent nature of the investment and rebalancing decisions.

The investment strategy is designed with three sets of variables. The here-and-now
decisions that are taken before the information is revealed, denoted by Xits. This is the position
(shares) of asset i to hold in time period t and scenario s. The corrective actions, which are made
after information revealing, are described by both Bits and Vits wait-and-see variables. They are,
respectively, the position (shares) of i bought and sold during time t and scenario s.
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The input data of the optimization model is determined by the continuous random
variable ξ. This stochastic variable may be discretized by ξit that defines the price of asset i at
time t. Additionally, it can take a finite number, s ∈ 1, . . . , S, of realizations denoted by Pits. As
the asset returns are simulated by stochastic process, detailed in Section 4.1, the price realization
Pits is defined as a conditional sampling of the random variable ξit. Therefore, the realizations
for Pits depend on Pit−1s (SHAPIRO; DENTCHEVA; RUSZCZYNSKI, 2009).

The scenario tree is comprised of scenarios ranging from the initial to the final period. A
scenario k consists of a set of sequential realizations, {Pi1s, Pi2s, . . . , PiT s} ∀s ∈ S, of the random
variable ξit. They must be adapted to the non-anticipative constraints that drive the information
unfolding process. For instance, the scenario k is a random vector, generated by a ξit realization,
which is described as λk(ξit) = (Pi1k, . . . , Pitk), , ∀i ∈ N . Table 5 presents a summary of the
model’s notations.

Table 5 – Notation Summary

Sets - Indices
t time index (stage) t = 0, 1, . . . , T
i index of asset classes i = 1, . . . , N
s index of scenarios s = 1, . . . , S
Decision variables
Xits Number of shares of assets i to hold during time t and scenario s
Bits Number of shares of assets i to buy during time t and scenario s
Xi0 Number of shares of assets i to hold initially (t = 0)
Vits Number of shares of assets i to sell during time t and scenario s
Random variables
ξit Random price of asset i during time t
Deterministic parameters
Q Initial wealth
αt Reliability level during time t
K Legally required funding ratio
Lt Present value of future liability t = t+ 1, . . . , T
lt Liability to be paid during period t
Ft Present value of future external contributions, t = t+ 1, . . . , T
ft External contributions in each period t
M Maximum amount of underfunding allowed
ρ Discounting factor
π Maximum weight of an asset in the portfolio
φts Probability of scenario s at time t
Pits Price of asset i at time t and in scenario s
Pi0 Known initial (t = 0) price of asset i

The model is a multistage stochastic programming model with chance constraints,
described below:
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max
S∑
s=1

N∑
i=1

φTsPiT sXiT s (2.1)

s.t. :

Q =
N∑
i=1

Pi0Xi0 (2.2)

Xits = Xi(t−1)s +Bits − Vits, ∀t ∈ T, ∀i ∈ N, ∀s ∈ S (2.3)

P
(

N∑
i=1

ξitXit ≥ K(Lt − Ft)
)
≥ αt, ∀t ∈ T, (2.4)

N∑
i=1

PitsVits −
N∑
i=1

PitsBits + ft = lt, ∀t ∈ T, ∀s ∈ S (2.5)

XitsPits ≤ π
N∑
i=1

XitsPits, ∀t ∈ T, ∀i ∈ N, ∀s ∈ S (2.6)

Xitk = Xitk′ if λk(ξit) = λk′(ξit), ∀t ∈ T, ∀i ∈ N, k, k′ ∈ S (2.7)

Xits, Bits, Vits ≥ 0, ∀t ∈ T, ∀i ∈ N, ∀s ∈ S (2.8)

The model maximizes the expected terminal value of the fund (2.1). The objective
function reflects the fund manager’s goal to reach the largest possible gains in the last period,
while respecting the risk and liability payment constraints. At time t = 0, the constraint (2.2) is
deterministic, so that the initial wealth Q is distributed among the asset classes. As the price
Pi0 of each asset is known and deterministic, we can rewrite Xi0s as Xi0,∀s. The number Bi0 of
shares bought is equal to the number Xi0 (∀i) of shares kept at the end of the initial period. The
linear equalities (2.3) are the share balance constraints. These specify that the number of shares
Xits of asset i during time t and scenario s is equal to the number of shares Xi(t−1)s maintained
in the previous period, augmented by the number of purchased shares Bits minus those sold Vits
at time t.

The chance constraints (2.4) enforce the funding ratio requirements, which represent
the long-term relationship between assets and liabilities. The actual funding ratio βts of a fund
during time t and scenario s is computed as:

βts =
Ft +

N∑
i=1

PitsXits

Lt
, t = 1, . . . , T, s = 1, . . . , S , (2.9)

where
∑N
i=1 PitsXits is the current asset value of the pension fund in scenario s. Lt and Ft are,

respectively, the present value of the future liabilities and contributions discounted by ρ:

Lt =
T∑
j=t

lj

(1 + ρ)j−t
, Ft =

T∑
j=t

fj

(1 + ρ)j−t
.

A value of β less than 1 signals that the value of the assets may become insufficient to cover future
liabilities, so the fund might run into solvency issues in the near future. The two parameters K
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and αt define the asset-liability management policy’s risk-aversion. The constraints (2.4) can
be viewed as some sort of VaR constraints, ensuring that the value of the fund is at least equal
to K(Lt − Ft) during each period t with a probability at least equal to αt. These maintain the
fund’s long-term solvency level.

The model cash flow balance is denoted by the equalities indicated by Eq. (2.5). The
financial inputs are represented by the sales of assets and external contributions, while the financial
outputs are payments of liabilities and purchases of assets. The constraint (2.6) stipulates that
no asset can have a weight greater than an upper bound π. Multistage models have the so-called
non-anticipativity condition. This determines that decisions are impacted only by the past, not by
the future, i.e. two scenarios with a common history until the tth stage should result in the same
decisions until this stage (CARØE; SCHULTZ, 1999). Constraint (2.7) guarantees that scenarios
with the same history present identical asset allocation. A maximum admissible underfunding
value is defined through the parameter M . Constraint (2.8) defines the non-negativity restriction
on the decision variables.
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3 Scenario Generation Methods in ALM

In this section, we explain the simulation algorithms for generating scenario trees for
the multistage decision problems used in our study: Monte Carlo sampling, Moment matching
and Resampled average approximation. They gather the stochastic processes into a multistage
scenario tree to model uncertainty. Even though the Monte Carlo with naive allocation strategy
is not a scenario generation method, its explanation is still kept in this section.

3.1 ALM with classical Monte Carlo sampling

The traditional method to generate a scenario tree for ALM is through Monte Carlo
sampling, with uniformly distributed pseudo-random numbers transformed appropriately into
a target distribution (UBEDA; ALLAN, 1994; DEMPSTER; MEDOVA; YONG, 2011). This
approach is an efficient way to represent multi-dimensional distributions (ZENIOS; ZIEMBA,
2006). In this study, we generate W1, . . . ,WI random vectors from the standard normal distribu-
tion. As Homem-de-Mello e Bayraksan (2014a) note, in this case, the vectors W1, . . . ,WI are
mutually independent; a detail that characterizes this sampling method.

As Monte Carlo is based on the volume of a set distribution for the definition of probability
measure, an obvious way to deal with this problem is to increase the number of nodes in the
randomly sampled event tree. However, the stochastic program might become computationally
intractable due to the tree’s exponential growth rate. This hypothesis is supported, not only by
the law of large numbers that guarantees the convergence to a correct value as the number of
draws increase, but also by the central limit theorem that offers information about the error
magnitude after a finite number of simulations. Hence, the convergence and error estimation of
the outputs is directly linked with the number of draws. Indeed, one of the features of Monte
Carlo is the form of the standard error, which, for a generic function f , can be defined by σf/

√
n,

with n being the number of draws, and σf the sample standard deviation. The Monte Carlo
sampling is also a good choice for integrals in high dimensions, because its convergence rate
holds (O(n−1/2)) for any dimension. Glasserman (2003), Rubinstein e Kroese (2016) provide
more specific features of Monte Carlo sampling.

According to Kouwenberg (2001), despite the intuitiveness of this approach, the mean
and covariance matrix may not be correctly specified in most nodes of the tree, given that the
states are randomly sampled. Thus, the optimizer might choose an investment strategy from
erratic or misspecified parameters.

3.2 ALM with Moment matching sampling

The Moment matching approach aims to mitigate the impact of the inconsistencies in
the specification, given that it is not possible to reach a full match with misspecified parameters.
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It also allows the decision maker to determine the output features based on the statistical
distribution properties considered relevant.

Initially, as argued by Smith (1993), and proposed by Høyland e Wallace (2001), the
Moment matching sampling matches the statistical properties to minimize the error between the
sampled data of the tree and the first two moments of a theoretical distribution. Therefore, the
scenario tree keeps some statistical properties reflecting the same characteristics as the theoretical
distribution. Since there are a finite number of moments m on a continuous distribution, in our
case two, Dupačová et al. (2000) argue that there always exists a discrete probability with these
same moments and its support has at most m+ 2 points, see Prékopa (1995, chapter 5 for the
proof).

Furthermore, the literature presents examples in which higher order moments are matched
(HØYLAND; KAUT; WALLACE, 2003). However, it may become very difficult to obtain a
solution for non-linear constraints such as skewness and kurtosis. Kouwenberg (2001) and Zenios e
Ziemba (2006) also adjust only the first two moments in their analysis. In this study, we construct
an event tree that fits the mean and the covariance matrix of the underlying distribution.

In order to fit the first two moments, we use Cholesky decomposition in the same direction
as in Høyland, Kaut e Wallace (2003). The first step is to generate random vectors from the
standard normal distribution, as described in Section 3.1. Then, the I random vectors are
transformed to show a given covariance matrix by multiplying the vectors by a lower triangular
matrix L of the covariance matrix Σ,

W ′j = LWj ,Σ = LL′, j = 1, . . . , I, (3.1)

where we can obtain L by applying Cholesky decomposition. In other words, as Kouwenberg
(2001) states, we specify that the average of the disturbances should be zero, and they should
have a covariance matrix equal to Σ. Therefore, we denote this matching in Eqs. (3.2) and (3.3):

1
S

S∑
s=1

Wjs = 0 ∀j ∈ 1, ..., I, (3.2)

1
S − 1

S∑
s=1

WjsWis = Σij ∀j, i ∈ 1, ..., I. (3.3)

This methodology allows for the generation of different sample paths, which matches the first
two moments since the disturbance compose the asset price modeling (see Equations 4.1 and
4.2). As in Kouwenberg (2001), Dempster, Medova e Yong (2011) and Lohndorf (2016), it is
possible to argue that this sampling approach outperforms other methods, such as Monte Carlo
sampling, Wasserstein distance sampling, or even Latin hypercube sampling. This methodology
also enables us to capture unlikely scenarios if we consider higher order moments (DUPAČOVÁ
et al., 2000; HØYLAND; WALLACE, 2001).

Unlike Monte Carlo sampling, the Moment matching does not necessarily converge when
the number of scenarios is increased. It depends mainly on how much statistical properties are
being matched and the distribution features, for example, the smoothness (KAUT; WALLACE,
2007). Overspecification and underspecification are also an issue when dealing with the first two
moments (HØYLAND; WALLACE, 2001).
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The works of Høyland e Wallace (2001) and Høyland, Kaut e Wallace (2003) have been
also adapted during the last few years. For instance, Gülpınar, Rustem e Settergren (2004a)
discuss adaptations of Moment matching using sequential and overall optimization. Beraldi,
Simone e Violi (2010) propose a variant of Moment matching using parallel processing techniques,
in which the scenario probabilities also become decision variables. Without being extensive,
Mehrotra e Papp (2013) make the case for a more flexible optimization method in which some
lower-order moments can be matched exactly, while higher-order moments only approximately.

3.3 ALM with the Resampled average approximation

The Resampled average approximation is a simulation of many scenario trees, with
the average of the initial portfolio taken as the solution (OLIVEIRA et al., 2017). When we
consider several trees, we account for a wide spectrum of variability inherent to the parameters
in the optimization problem. This technique has some similarities to the Resampled efficient
frontier method proposed by Michaud e Michaud (2008) to construct portfolios of risky securities.
With a mathematical definition similar to that for the Resampled efficient frontier method for
mean-variance optimal portfolios, the ALM Resampled average approximation optimality is the
expected value in the solution space of the Monte Carlo ALM financial plan, as presented in
Section 3.1. Thus, it may be seen as a reshuffle of the classical Monte Carlo . This methodology
could also be adapted to the Moment matching, but the volatility of its results has already been
regulated through the adjustment of the second moment. In other words, it is a needless further
procedure to mitigate the risk, which is supposedly one of the main advantages of the Moment
matching when compared to the classical Monte Carlo sampling.

This sampling technique is applied and described in detail by Oliveira et al. (2017).
Additionally, this approach can be viewed as a particular case of one of the algorithms discussed
by Homem-de-Mello e Bayraksan (2014a), in which the stopping criteria is predefined by the
number of runs. The ALM with the Resampled average approximation has four steps. First, we
define the number of trees to solve for each parametrization, see e.g. (MICHAUD; MICHAUD,
2008). The value of these outcomes must be sufficiently large to provide stable portfolio allocations,
while being small enough to ensure that the approach does not become computationally prohibitive.
After defining the number of instances, the second step is to generate the scenarios for each
tree according to the ALM model. In Step 3, we solve each corresponding optimization problem
to optimality. In Step 4, we evaluate the results based on the optimal solutions of the trees.
The average of the initial allocation portfolio of all simulations is then the model solution. It is
distinguished from SAA because of the number of scenario trees that are solved. In the SAA,
a unique scenario tree is generated and solved. In this case, the expectation is applied on the
decisions from the next stage. Unusually, the Resampled average approximation gives origin and
solves an arbitrary number of unrelated scenario trees with the same topology, but for distinct
scenarios. After that, the expectation is taken from these independent instances.
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3.4 ALM with the Monte Carlo with naive allocation strategy

The Monte Carlo with naive allocation strategy is generally a naive policy that is
very often reported in the portfolio allocation literature, in contrast to mean-variance portfolio
optimization (BENARTZI; THALER, 2001; DEMIGUEL; GARLAPPI; UPPAL, 2009). Although
this methodology is heuristic and does not reflect rational behavior, this analysis is justified
due to the estimation error inherent in the sampling process. The Monte Carlo with naive
allocation assesses whether an optimized portfolio performs better, despite the misspecification
data when compared to irrational behavior. DeMiguel, Garlappi e Uppal (2009) assert that, in
the sample-based mean-variance strategy, a window with around 3,000 months is necessary for a
portfolio with 25 assets to outperform the 1/N benchmark.

In ALM, banks have already used this rule to make their portfolios in the 1960s (COHEN;
HAMMER, 1967). Furthermore, pension funds also adopted this policy in the 1980s (HARRISON;
SHARPE, 1983), and the USA Pension Benefit Guaranty Corporation had followed this rule.
Although the Monte Carlo with naive allocation, or the 1/N portfolio, might provide good
returns, they may not be able to meet the legal requirements and cash balance constraints.
Additionally, Zenios e Ziemba (2007) show that, as the naive allocation is unable to incorporate
new information, stochastic programming can outperform it for ALM. Fleten, Høyland e Wallace
(2002) also compared the Fixed-Mix strategy with the multistage stochastic linear programming,
verifying the superiority of its model over the Fixed-Mix approach. We consider the 1/N naive
policy version for our tests as the benchmark for other sampling methods. We define our naive
allocation as an equally distributed portfolio, described in Eq. (3.4):

Xi0 = Q

N
· 1
Pi0

i = 1, . . . , N. (3.4)

Therefore, we use this popular investment policy with the classical Monte Carlo sampling,
defined in Section 3.1, in order to settle a comparative level to other methods simulated. Even with
the investment policy defined, we have to guarantee that constraints (2.2)−(2.8) are respected in
this strategy. Therefore, in the simulations executed at Section 4, we set the funding ratio to one.
Thus, in the beginning of the simulation’s time horizon, the pension fund has the all necessary
wealth to afford the liabilities until the final time period.
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4 Simulation

First we introduce, in Section 4.1, arbitrage-free continuous-time stochastic processes
used to simulate prices at a discrete set of dates (GLASSERMAN, 2003). We adopt the Geometric
brownian motion model (GBM) and the Cox-Ingersoll-Ross model (CIR), which is a single-factor
term structure model. These stochastic processes are adapted to the scenario tree topology. Then,
in Section 4.2, the scenario tree structure is described.

4.1 Generating Sample Paths

We generate the scenario trees by asset prices realization sampling. The asset prices
follow correlated stochastic differential equations (SDEs). We use the GBM for stock prices
(NEFTCI, 1996; DUFFIE, 2001):

dξ1t = µξ1tdt+ σξ1tdW1t. (4.1)

Thus, there is a GBM for each stock. For the price of a fixed income asset, we use the Cox-
Ingersoll-Ross term structure model (COX; INGERSOLL; ROSS, 1985):

dξ2t = α(µ− ξ2t)dt+
√
ξ2tσdW2t , (4.2)

where ξ2t is the interest rate and (α, µ, σ) are model parameters. The drift function α(µ− ξ2t)
is linear and has a mean reverting property, i.e. the interest rate ξ2t moves in the direction of
its mean µ at speed α. The diffusion function ξ2tσ

2 is proportional to the interest rate ξ2t and
ensures that the interest rate is always positive.

A total of four succeeding nodes for each scenario s at time t are available to describe
the conditional distribution of these random variables in a particular node at time t − 1. We
define the disturbance Wjs as the realization in node s for the jth element of the vector W . The
model maximizes the expected wealth of an ALM problem applied to a pension fund, as defined
generically in Eq. (1.1) respecting a set of restrictions.

We use only broad stock or bond indexes that cause arbitrage in cases of very poor approx-
imation of the assets’ underlying distribution on the stochastic programming tree (KOUWEN-
BERG; ZENIOS, 2006). We use just two stock broad indexes and a floating rate fixed income
instrument with long-only positions, without any complex asset. We also present a large number
of scenarios for each tree. Thus, in our study settings, the discussion of arbitrage is not critical.

The parameters used in GBM, Eq. (4.1) are estimated through historical time series data.
Those used in CIR, Eq. (4.2), are estimated using maximum likelihood. These sampled paths
are conditioned to non-anticipative constraints defined in Eq. (2.7), following the multistage
stochastic framework integrated with the sampling algorithms. We simulate the classical Monte
Carlo sampling, the Moment matching method, the Resampled average approximation and Monte
Carlo with naive allocation, as explained in Section 3.
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4.2 Scenario Tree Simulation

The simulation occurs prior to the optimization process; this methodology is known as
the non-recursive method, see (PFLUG, 2012). In order to simulate the trees and to study the
outputs of the sampling methods, we define tree classes of scenario trees that are denoted by
small, medium and large according to their number of periods. They have 4, 6 and 8 periods
respectively. In each class, we determine a different topology, which produces a distinct number
of nodes, scenarios, variables and constraints (Table 6).

Table 6 – Classes and Topologies of scenario trees

Name Topology Nodes Scenarios Variables Constraints
Small 1-27-9-9 2,458 2,187 24,843 17,203

Medium 1-81-3-3-3-3 9,802 6,561 101,253 68,613
Large_A 1-16-3-3-3-3-3-3 17,489 11,664 180,707 122,424
Large_B 1-8-6-3-3-3-3-3 17,481 11,664 180,603 122,359

In the large class, we test the behavior of scenario generation and optimization for two
different topologies that present the same number of scenarios (11, 664). The number of variables
and constraints shown in Table 6 is defined by the deterministic linear equivalent problem,
denoted through the Eqs. (2.1) – (2.8). We compose each scenario with a discrete sequence of
conditional distributions of stocks and fixed income assets, calibrated with historical data from
January 2012 to November 2016.

We use data from the Brazilian capital market. Equation (4.1) defines the stock price
models, which are calibrated with annualized daily return prices from the Bovespa index (the
most liquid stocks in the country) and the Brazilian Small Cap BM&F Bovespa index (stocks with
small capitalization). We also have a fixed income asset modeled with Eq. (4.2) and calibrated
with data from the 1-month Brazilian LTN (similar to a T-Bill in the USA) as a proxy for the
short-term interest rate. In Table 7, we show the parameters used in the model.

Table 7 – CIR and GBM parameters.

Asset Return Annualized (µ) Std. Annualized (σ) Mean Revert. (α)
Fixed Income 0.11297 0.04358 0.14599
Bovespa index 0.13503 0.23486 -
Small Cap index 0.07426 0.17716 -

The covariance matrix Σ takes the variance and covariance among Fixed Income, Bovespa
index, and Small Cap index as inputs for Eq. (3.1) in the Moment matching sampling. In Table
8, we present the covariance matrix Σ observed from the data.

Table 8 – Covariance Matrix for the experiments.

Asset Fixed Income Bovespa index Small Cap index
Fixed Income 0.005339086 -0.001021373 -0.000973024
Bovespa index -0.001021373 0.055221863 0.035719690
Small Cap index -0.000973024 0.035719690 0.031501802
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In the Monte Carlo with naive allocation approach, we take the initial wealth and allocate
it uniformly between the financial assets, as defined in Eq. (2.2). This position is fixed until
the last period. In each period, we calculate the financial value of the portfolio and discount
its liabilities. Monte Carlo with naive portfolio is not rebalanced in any time period. Thus, the
final expected value of wealth is the sum of the net financial value of the portfolio multiplied
by its probability of occurrence, similar to Eq. (2.1). Even though the Monte Carlo with naive
allocation is not a sampling method, we take it into account as an element of comparison for our
analysis.

We performed 20 simulations for each sampling method, then estimated the average
and standard deviation from both the objective function and the initial allocation for each
methodology applied for each class. Unlike the Random sample and Moment matching, where
each turn is comprised of only one scenario tree, we generated and optimized 300 unrelated
scenario trees to compose each turn of Resample average approximation. This procedure was
applied on all topologies shown in Table 6. This analysis consists of 12, 280 runs, and evaluated
141, 426, 000 different scenarios. We designed the scenario generation in C++ and Matlab using
AMPL and the CPLEX 12.6.1 solver to model and solve the optimization problems. We run it in
a 64-bit desktop with Intel Core i7-4510U 2GHz CPU and with 8GB of RAM. In Table 9, we
report each class and method’s computational times (mean and standard deviation) in seconds
to solve a single tree.

Table 9 – Times elapsed for scenario generation and optimization

Name Tree Generation Time Model Optimization Time Total Time
Mean Std. Dev. Min. Max. Mean Std. Dev. Min. Max. Mean Std. Dev. Min. Max.

Small
Moment matching 0.4 0.06 0.24 0.48 4 0.44 4 5 4.551 0.46 4.24 5.48

Monte Carlo 0.28 0.04 0.24 0.43 4.7 0.65 4 6 4.98 0.65 4.26 6.29
Resampling 0.23 0.02 0.19 0.29 4.36 0.37 3.56 5 4.60 0.38 3.75 5.25

Medium
Moment matching 1.56 0.12 1.44 1.85 4.65 0.58 4 6 6.21 0.60 5.46 7.7

Monte Carlo 1.92 0.41 1.44 2.62 18.10 11.33 10 59 20.02 11.30 11.48 60.45
Resampling 1.81 0.18 1.59 2.12 16.586 2.26 13.66 21.02 18.39 2.39 15.39 23.14

Large
Moment matching_A 5.18 1.21 4.5 8.92 14.15 1.66 12 19 19.33 2.63 16.61 27.92
Moment matching_B 6.04 1.26 4.61 8.51 16.6 3.20 12 23 22.64 3.89 16.61 30.38

Monte Carlo_A 5.84 1.39 4.51 8.55 25.1 9.48 11 49 30.94 9.99 15.51 54.14
Monte Carlo_B 6.11 1.03 4.82 8.67 19.70 5.13 14 38 25.81 5.50 20.13 45.56
Resampling_A 5.71 0.64 4.91 6.94 24.74 1.99 20.76 28.14 30.45 2.52 25.67 35.08
Resampling_B 6.35 0.68 5.22 7.66 19.02 3.81 4.10 23.32 25.37 3.91 11.28 30.72

Based on Table 9, we notice that, on average, the computational time to solve a single
tree is between 4 and 61 seconds. For the Resampled average approximation, the computational
experiment can be taken from 7.5 to 51 hours to be completed: 6, 000 trees must be computed for
each instance. For the other three methods, the average time has to be multiplied by 20, which
is the number of simulations to finish each experiment. The Monte Carlo with naive allocation
strategy is not considered on Table 9 because it does not demand much computational effort.
Next, we present and describe the results from the simulations.



48

5 Results

Our results focus on the stochastic programming in-sample stability (KAUT; WALLACE,
2007). The in-sample stability is evaluated by generating different scenarios for each tree and
comparing how stable the problem’s objective function and solution are. Thus, we analyze the
stability of the sampling methods from two different perspectives: objective function and initial
portfolio allocation. Dempster, Medova e Yong (2011) argue that the initial portfolio allocation
criterion is not often used in the literature, because of the potential for a flat plateau objective
function. However, as our scenarios might have sampling error, we conducted the analyses from
both perspectives. We focus on the expectation and volatility of both the objective function and
initial portfolio allocation. The results of the objective function and initial portfolio allocation
are presented in Tables 10 and 11, respectively.

Table 10 – Objective function statistical outputs

Name Mean Std. Dev. Min. Max.
Small

Resampling 714,114.47 2,805.67 708,800.98 720,443.70
Moment matching 629,656 7,341.04 619,961 642,192
Naive allocation 814,619.86 30,153.65 762,498.94 864,254.46
Monte Carlo 712,815.40 22,927.45 672,949 756,231

Medium
Resampling 1,065,780.19 3,850.40 1,056,652.26 1,073,008.54

Moment matching 711,529.65 8,698.65 695,761 727,839
Naive allocation 1,136,827.87 26,529.07 1,072,786.30 1,184,755.13
Monte Carlo 1,074,340.85 20,485.86 1,028,342 1,106,371

Large
Resampling_A 1,584,145.66 18,498.18 1,554,806.82 1,633,666.16
Resampling_B 1,549,304.86 13,994.94 1,526,511.44 1,572,683.32

Moment matching_A 828,987 21,964.05 795,107 873,140
Moment matching_B 837,172.05 25,982.62 798,804 881,010
Naive allocation_A 1,564,422.42 68,972.70 1,469,548.25 1,736,670.72
Naive allocation_B 1,625,050.78 117,436.33 1,487,900.62 1,902,890.73
Monte Carlo_A 1,586,488.10 137,887.48 1,391,047 1,923,511
Monte Carlo_B 1,531,394.65 128,454.55 1,267,510 1,772,048

In Table 10, we observe that objective function’s standard deviation, of the Resampled
average approximation, is the smallest for all classes and it is followed by the Moment matching.
The Monte Carlo with naive approach and the Monte Carlo sampling present much larger
standard deviations.

Furthermore, we notice that the average value of the objective function in the Moment
matching is 11.66% and 12.19% lower compared, respectively, to the Monte Carlo sampling and
to the Resampled average approximation in the small trees. This difference increases in large
trees. In the medium class, it is 33.77% and 33.23% lower. For the large class, it becomes 47.74%
and 47.66% for the instance Large_A and 45.33% and 45.96% for Large_B. We believe that this
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Table 11 – Initial allocation of decision variables (%)

Name
Fixed Income Bovespa Index Small Cap index

Mean (%) Std. Dev. Mean (%) Std. Dev. Mean (%) Std. Dev.

Small

Moment matching 44 0.28 56 0.28 0 0

Monte Carlo 77 0.08 20 0.07 3 0.10

Resampling 79.31 2.58 18.23 1.57 2.46 1.96

Medium

Moment matching 37 0.21 63 0.21 0 0

Monte Carlo 77.76 0.01 22.00 0.01 0.24 0.00

Resampling 77.71 0.53 21.91 0.42 0.36 0.26

Large

Moment matching_A 51.40 0.32 48.60 0.32 0 0

Moment matching_B 48.57 0.30 51.43 0.30 0 0

Monte Carlo_A 74.50 0.16 20.54 0.08 4.96 0.13

Monte Carlo_B 74.36 0.19 19.49 0.14 6.15 0.12

Resampling_A 75.13 2.30 19.60 1.48 5.27 2.17

Resampling_B 72.8 2.66 18.27 1.33 8.93 1.92

happens due to the adjustment in the tree. When the second moment is adjusted, volatility might
be reduced and, thereby, the extreme scenarios (good or bad) are probably taken out of the
sampling. Clearly, the Resampled average approximation and the Moment matching dominate
the other two methods in terms of the stability of the objective function.

In relation to the initial asset allocation (Table 11), the investment in fixed income
is quite similar for the Monte Carlo sampling, the Moment matching and Resampled average
approximation. The main difference is that the Moment matching never allocates capital in the
Small Cap index. The volatility of the Monte Carlo sampling and the Moment matching are
also similar. The Resampled average approximation and Monte Carlo sampling present similar
allocations, but very different allocation volatilities. However, given that the Resampled average
approximation takes expectations from the Random sampling, the volatility of the allocation is
close to zero. This is consistent with the methodology, as the Resampled average approximation
mitigates volatility using the expected value from many trees, making the initial allocation
smoother. Notice that, for the Monte Carlo with naive approach, by design, the initial allocation
is constant among the assets, so we omit the results from Table 11.

In terms of the stability of the objective function, the Moment matching and Resampled
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average approximation dominate both Monte Carlo sampling and with naive allocation strategy.
The stability of the initial allocation is similar for the Monte Carlo sampling and the Moment
matching. Furthermore, the initial allocation’s low volatility, presented by the Resampled average
approximation, is a result of taking an average of averages. Considering not only the mixed
results obtained on the initial asset allocation stability but also the argument of Dempster,
Medova e Yong (2011), that a flat plateau can make many different allocations, resulting in
very close values of objective functions, we can focus on the objective function stability results.
Then, clearly, the Moment matching and Resampled average approximation present more stable
solutions.
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6 Conclusions

In this study, we provided an empirical discussion of the differences among methods to
generate scenario trees for stochastic programming in ALM. We examined Monte Carlo sampling,
Moment matching, the Resampled average approximation and Monte Carlo with naive allocation
strategy as the benchmarks.

Our empirical analysis approached financial scenario trees with three assets. We defined
four distinct topologies, which were assigned in three classes (small, medium and large). We
ran the simulations so that the model would be robust to represent a realistic environment, but
we regarded the technological limitations. The number of assets is a key point for the size of
financial scenario trees. It should be arranged so that it is smaller than or equal to the number
of scenario tree branches in order to guarantee the absence of arbitrage conditions (GEYER;
HANKE; WEISSENSTEINER, 2010). Therefore, the model becomes computationally intractable
very quickly when the number of assets rises, since they define a lower bound to number of
branches, which can be used to calculate the exponential growth of scenario tree (GÜLPINAR;
RUSTEM; SETTERGREN, 2004a).

The simulations are assessed by in-sample point of view. Thus, the best approximation is
the one that minimizes the error between the ”true” objective value and the optimal scenario
generation method objective value (KAUT; WALLACE, 2007). Considering the obtained results
of the objective function, we can conclude that the Moment matching and the Resampled average
approximation are more efficient in terms of in-sample stability, when compared to Monte Carlo
sampling and Monte Carlo with naive allocation. For the initial portfolio allocation, the stability
of the Moment matching and Monte Carlo sampling are similar and dominated by the Resampled
average approximation. However, the low volatility of the Resampled average approximation is a
result of taking an average of averages. Taking all the results into account, the Moment matching
and the Resampled average approximation are more appropriate for ALM scenario generation.

There are other opportunities for subsequent studies. Scenario reduction and parallel
implementation are techniques developed to deal with the curse of dimensionality in stochastic
programming problems (BERALDI; SIMONE; VIOLI, 2010; DUPAČOVÁ; GRÖWE-KUSKA;
RÖMISCH, 2003; HEITSCH; RÖMISCH, 2003). For instance, advances in the definitions of
bounds (HENRION; KÜCHLER; RÖMISCH, 2009), different metrics (HEITSCH; RÖMISCH,
2007) and clustering (BERALDI; BRUNI, 2014) have been proposed. The integration of these
techniques with different scenario generation methods might present promising results.
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Abstract
Deterministic equivalent models allow us to rewrite stochastic programing problems from a
computational perspective. Nonetheless, these models become computationally intractable quickly
with the increase on the number of stages or the probability distribution sampling. In this context,
we propose a framework for the scenario tree generation and optimization of multistage stochastic
programming problems. Relying on the Knuth transform, we generate the scenario trees, taking
advantage of the left-child, right-sibling representation and making simulation more efficient. We
also present a reformulation for the optimization model with an implicit extensive form approach,
using a filtration process with bundles. We adopt an asset-liability management multistage
stochastic model with joint chance constraints as an application to test this framework. The use
of these methodologies saved enough computational resources, enabling us to find the optimal
solution for instances with more than 160,000 scenarios in a few minutes, without the need of
any relaxation or decomposition mechanism.

keywords: Stochastic Programming. Implicit Deterministic Equivalent. Algebraic Language
Modeling. Multistage. Scenario Tree. Knuth Natural correspondence.
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1 Introduction

Stochastic programming (SP) is a representation of practical problems in which uncer-
tainty plays a major role. These problems can be approximated by equivalent convex problems that
should be feasible, solvable, dualizable and stable (WETS, 1966; WETS, 1974). These equivalent
representations are not only known as deterministic equivalent but also denominated as extensive
form. To reproduce reality properly, the size of these models might become large, turning them
out to be computationally expensive (or intractable). Thus, some research streams have risen to
deal with this complexity. Among many propositions, we can mention the solution algorithms
that exploit the model structure, such as those based on interior point methods (GASSMANN,
1990; LUSTIG; MULVEY; CARPENTER, 1991; BIRGE; HOLMES, 1992; BERGER et al.,
1995; BERKELAAR et al., 2005; SUN; LIU, 2006), branch and bound (CARØE; SCHULTZ,
1999; AHMED; TAWARMALANI; SAHINIDIS, 2004), branch and price (LULLI; SEN, 2004;
SINGH; PHILPOTT; WOOD, 2009), branch and cut (ZHANG; KÜÇÜKYAVUZ; GOEL, 2014),
branch cut and price (NOWAK, 2006) and branch and fix (ALDASORO et al., 2017). There are
also the scenario decomposition methods, which are based on Bender’s decomposition (SLYKE;
WETS, 1969; BIRGE, 1985; GASSMANN, 1990; DANTZIG; INFANGER, 1993; RUSZCZYŃSKI,
1997; CONSIGLI; DEMPSTER, 1998b; EGGING, 2013) or augmented Lagrangians (ROCK-
AFELLAR; WETS, 1991; MULVEY; RUSZCZYŃSKI, 1995; ROSA; RUSZCZYŃSKI, 1996;
TAKRITI; BIRGE, 2000; SCHULTZ, 2003; GOEL; GROSSMANN, 2006; HIGLE; RAYCO;
SEN, 2009). Another approach to dealing with SP deterministic equivalent implementation
is the use of more compact representations with algebraic modeling languages (AMLs). Some
optimization modeling languages have already been proposed: GAMMS (BROOK; KENDRICK;
MEERAUS, 1988), AMPL (FOURER; GAY; KERNIGHAN, 1990), MODLER (GREENBERG,
1992), AIMMS (BISSCHOP; ENTRIKEN, 1993), and other examples are found on Kallrath
(2013). Their benefits were outlined as a lower overall cost alternative to the matrix generators
(FOURER, 1983). Kuip (1993) drew attention for the contributions of the AMLs in terms of its
understandable, maintainable and verifiable formulation. These languages can even be integrated
with algorithms, enabling them to solve optimization problems faster. The early versions of these
AMLs did not include support for more complex data structures. In such a way, they have been
improved and extended, which made possible the increase of their capability to describe a larger
range of models, for instance, piecewise-linear functions and networks (FOURER; GAY, 1995)1.

SP was also covered by the AMLs see e.g. (GASSMANN; IRELAND, 1995; GASSMANN;
IRELAND, 1996; KALL; MAYER, 1996; MESSINA; MITRA, 1997; BUCHANAN; MCKINNON;
SKONDRAS, 2001; FOURER; LOPES, 2006; WALLACE; ZIEMBA, 2005; KARABUK, 2008;
VALENTE et al., 2009). In this field, the development of the algebraic languages enabled the
formalization of some discrete stochastic processes as an event tree describing the unfolding of
the uncertainty over the planning period. This event tree is comprised of a collection of scenarios
(also known as paths), which are determined by conditional decisions from the initial stage
1 See Entriken (2001) and Colombo et al. (2009) for more extensions
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(tree root) to the final stage (tree leaf). These scenarios are the realizations and samples of
the probability distributions (WALLACE; ZIEMBA, 2005). Hence, the event tree establishes
an approximation of the stochastic processes’ probability distribution. As the simulation of
this scenario tree is done before the optimization process, we denote this process as the overall
optimization or non-recursive method (GÜLPINAR; RUSTEM; SETTERGREN, 2004b; PFLUG,
2012).

Using AMLs, we should be able to provide a specification of the optimization model that
must be correspondent with the event tree, such as that both structures must have the same
features (cardinality, scenario links, number of stages, number of scenarios). This congruency
between the simulated scenario tree and algebraic optimization model brings some challenges.
The constraints that establish the link between the parent-child pair of each node are particularly
difficult to be generated from an AML. This procedure is determined by the nonanticipativity
constraints. They prevent a decision that is taken now from using information that will only
become available in the future. Hence, scenarios that share a common history up to a point must
have identical solutions until their information paths diverge. This is what makes the stochastic
programming approach so realistic and its resulting computational problems so challenging to be
solved (FOURER; LOPES, 2006). This difficulty comes from the lack of standard description of
the event tree or, more precisely, the lack of a tree-structure indexing systems in AMLs. The
algorithms based on decomposition, for instance, have been addressing the nonanticipativity
constraints through their relaxation. These algorithms break the main problem (also called
master problem) in smaller instances to fit them into the computer memory. In this approach,
it is necessary to produce redundant data, in other words, independent copies of decision
variables corresponding to every ancestor in the optimization model are generated for every
child of this node. The same process must be done for the event tree simulation. The data
from nonanticipativity scenario portion is replicated, taking them as independent scenarios
(WALLACE; ZIEMBA, 2005). Furthermore, nonanticipativity has to be defined by explicit
constraints that bind these redundant data. The resulting mathematical program is large, but the
algorithms may take advantage of the added structure (GASSMANN; GAYL, 2005). Consequently,
they overload the size of any multistage stochastic program and they do not operate at the
optimum solution of the problem (GUPTA; GROSSMANN, 2011). There are some language
extensions whose syntax are mostly based on the explicit formulation of the nonanticipativity ,
for example, the SPiNE (VALENTE; MITRA; POOJARI, 2005). Gassmann e Ireland (1995),
Gassmann e Ireland (1996) realized that stochastic programming modeling could greatly benefit
from the implicit declaration of scenarios. In this approach, the nonanticipativity is determined
implicitly, i.e. there is only one dataset, so only one set of decision variable is defined. This
approach can be applied to the simulation, sampling only the distinguishable realizations, or it
can also be used on the optimization model when the concept of bundles is employed. The implicit
extensive form of stochastic program reduces the size of the model because only the essential
random and decision variables have to be described, becoming as brief as possible (GASSMANN;
GAYL, 2005). Based on this methodology, Valente et al. (2009) created a notation that makes the
filtration process the central syntactic construction of multistage stochastic recourse problems.
In a similar way, Calfa (2014) used external matrices to inform the nonanticipativity condition
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implicitly and measured the memory demand decrease. Nevertheless, this last reduction is applied
only on the optimization model, using the scenario generation to distinguish the paths.

In summary, this paper addresses the following issues: (i) the simulation and optimization
performance for multistage stochastic problems, and (ii) the gap of compatibility between scenario
generator and stochastic program from the implicit extensive form perspective. Therefore, we do
not intend to make an extension on an AML language like Bisschop e Fourer (1996), Entriken
(2001), Valente et al. (2009), Colombo et al. (2009), or create a modeling tool as Fourer e Lopes
(2009), or even present a software like Kall e Mayer (1996), Messina e Mitra (1997), Karabuk
(2008). Our aim is to gather ideas from Domenica et al. (2009) which argue mainly for the
scenario generation (simulation), and from Calfa (2014) which mostly discuss the optimization
problem, to provide a modeling framework that includes the stochastic process simulation and
the optimization model. Our work implements the modeling implicit extensive form methodology
on both simulation and optimization, defining also an interface between them.

The scenario generation preceding the overall optimization strategy is processed through
C/C++ algorithm, which allocates a multi-way tree represented by an equivalent binary tree
dynamically in such a way that only distinguishable paths are produced and only one database
is created, giving origin to a compact event tree. We adopt AMLs to describe our implicit
extensive stochastic optimization model. We describe the nonanticipativity condition for the
event tree by using only a numeric vector that indicates a constant cardinality for each stage.
The method is related with the information from the filtration process to compose the bundles,
following some ideas from Valente et al. (2009). We extend the bundles concept for corresponding
nonanticipativity constraints implicitly. Our bundles definitions are tuples that reference the
relationship between a node and their children, which is slightly distinct from Valente (2011).
This approach yields an implicit deterministic equivalent structure, which is generic enough to
be applied on other SP models, for instance, the ones with recourse, chance constraints, or even
integrated chance constraints.

Our contribution consists of the application of popular concepts, either in the context of
stochastic programming, or in computer science, to formalize shorter stochastic programs with
not only the implementation of an implicit nonanticipativity constraints based on bundles, but
also using a multi-way scenario tree reformulated with the left-child-right-sibling strategy. We
express the bundle concept to be more algebraically adequate with the AMLs, rather than having
extensions. We propose a novel algorithm for bundles generation. We design a simpler data
structure with dynamic allocation for the SP model event tree, in such a way that it becomes less
expensive in terms of computational memory. These guidelines settle an innovative framework,
allowing us to find the optimal solutions for an ALM multistage stochastic program, with joint
chance constraint and with more than 160,000 scenarios without any relaxation or decomposition
approach.

The remainder of this paper is organized as follows. In Section 2, we formulate a
theoretic multistage stochastic model with joint chance constraint. We also describe two versions
for its corresponding equivalent deterministic: the explicit and the implicit formulation of
nonanticipativity constraints, respectively. In Section 3, we explain how to employ the filtration
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of a space probability and bundles to generate the implicitly extensive form of a multistage
stochastic program. Furthermore, we detail, in Section 3, the scenario generation of an event
tree driven by the filtration and bundles concepts. This framework is applied in an asset-liability
management problem (ALM) in Section 4. We discuss the empirical results in Section 5. Final
remarks are presented in Section 6. In the Appendix .1 and Appendix .2, we illustrate the use
of an AML for encoding the implicit deterministic equivalent version of multistage stochastic
program.
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2 Multistage Stochastic Model with Joint
Chance Constraint

A stochastic multistage optimization problem presents a set X ⊆ RN for some dimension
N in which x are decision variables (x ∈ X). The parameter ξ ∈ RN is a continuous random
variable (RV) defined in the probability space (Ξ,F ,P). This RV could be, for instance, asset
returns, demand for products or weather conditions discretized throughout multiple time stages.
Without loss of generality, we consider stages as time periods and decisions as asset allocations.
Thus, portfolio allocation decisions are made through discrete time steps τ ∈ T := {2, . . . , T} ∈ Z.
The filtration F = (F1, . . . ,FT = F) originates a conditioned stochastic process such as ξt C FT .
The σ-algebra of the probability space is also indexed by the time, σ(ξ) ⊆ F . This stochastic
process, also known as filtration process, defines how the new information becomes available to
the decision maker at each point in time (VALENTE et al., 2009).

The decisions through the time take into account the gain of information which is
influenced by the stochastic process. The allocation in each asset i at time τ also comprises
conditional decisions known as a policy, i.e.

xτ,i = {x1,i, x2,i(ξ1,i), . . . , xτ,i(ξ1,i, . . . , ξτ−1,i)}. (2.1)

Considering that i = 1, . . . , N , we can also define a vector that comprehends the portfolio
allocation.

xτ = {xτ,1, xτ,2, . . . , xτ,N} (2.2)

Notice that this is a dynamic problem, meaning that the decisions of period τ include the
information from period 1 to τ − 1. As discussed by Zhang, Küçükyavuz e Goel (2014), it differs
from the classical static models in which decisions are taken in the beginning and kept fixed
without an update once uncertainty is revealed . Thus, in the dynamic setting, the decisions are
adapted to the state of the random variables, considering the remaining future uncertainty of
the system (HANEVELD; STREUTKER; VAN DER VLERK, 2010).

A generic stochastic multistage programming problem with joint chance constraint is
presented through the optimization problem (2.3) − (2.7).

Maximize cx+
T∑
τ=2

Eξτ {Q(xτ , ξτ )} (2.3)

s.t.

Ax = b (2.4)

T (ξτ )xτ−1 +W (ξτ )xτ (ξτ ) ≤ hτ ∀ τ ∈ T (2.5)

P{g(xτ (ξτ ), ξτ ) ≥ 0,∀ τ ∈ T } ≥ ζ (2.6)

x ∈ X (2.7)
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The objective function (2.3) presents the first stage terms and the expected value of
the Q function. In the financial context, the value function, Q(xτ , ξτ ), denotes the utility of
choosing the portfolio xτ in stage τ with optimal allocations in all the subsequent periods. We
assume Q(xτ , ξτ ) as linear and continuous function. Deterministic constraints of the first stage
are represented by (2.4). The inequality constraints (2.5) link both the previous stage with the
forward stages. The respective parameter’s matrices of constraints (2.5) are: the technology
matrix, T , which determines the impact from the previous stages, and the recourse matrix, W ,
which models the result from the recourse decisions. T has dimensions of ((τ − 1)×N); W has
dimensions of (τ × N); and hτ := {h1, . . . , hτ} is a deterministic vector of dimension τ . The
joint chance constraint (2.6) is a probabilistic constraint which depends on the recourse actions,
i.e., g(xτ (ξτ ), ξτ ) = hτ − T (ξτ )xτ−1 +W (ξτ ). Constraints (2.7) limit the solution for a feasible
polyhedra. Next we present, respectively, the explicit and implicit equivalent formulation of the
stochastic programming problem.

2.1 Explicit deterministic equivalent formulation

The model formalized through Eq. (2.3) − (2.7) can be reformulated as a large linear
program, which is known as a deterministic equivalent or extensive form. Let S be a scenario
tree describing how ξ develops randomly over time. A path of price realizations in S is called a
scenario. The realized version of ξ is formalized as the vector ωsτ := {ωsτ,1, . . . , ωsτ,N} ∈ RN for all
assets available in time period τ and scenario s. The decision variable vector xsτ is also described
by xsτ := {xsτ,1, . . . , xsτ,N} for all N assets available in the period time τ and scenario s. This
extensive form is defined by the Eq. (2.8)−(2.13).

Maximize ω1x1 +
T∑
t=2

S∑
s=1

psτω
s
τx

s
τ (2.8)

s.t.

A1x1 = b1 (2.9)

T sτ−1x
s
τ−1 +W s

τ x
s
τ ≤ hsτ ∀ s ∈ S,∀ τ ∈ T (2.10)

xsτ = xzτ if λ(ωsτ ) = λ(ωzτ ) ∀s, z ∈ S, ∀ τ ∈ T (2.11)
S∑
s=1

psη(g(xsτ , ωsτ )) ≤ 1− ζ τ ∈ T (2.12)

xsτ ≥ 0 ∀ s ∈ S,∀ τ ∈ T (2.13)

The objective function (2.8) corresponds to the function Eξτ which is defined as a risk-
neutral expectation function. The first stage terms are added with this expected value of the
following periods and stage realizations. The function Q is the inner product vector between
the arguments, Q(xτ , ξτ ) = (ξτ )>xτ , in which the operator (·)> is the transpose operator. We
denote psτ as the probability associated with the S samples in each time period τ of the random
variable ξτ . The deterministic first stage decision is defined by constraint (2.9). The technology
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matrix and the recourse matrix remain with the same function as in constraint (2.5), but they
are indexed by the sampled realizations in the constraint (2.10).

The nonanticipative constraints are indicated by the constraint (2.11). They are defined
as the subset D ⊆ F whose scenarios are indistinguishable, in the same fashion as described
by Mulvey e Ruszczyński (1995). Hence, considering the conditional realized vector λ(ωsτ ) :=
{ωs1, . . . , ωsτ} for the scenario s, if there are two scenarios s, z and their respective conditional
realized vectors λ(ωsτ ) = λ(ωzτ ), then we must have xsτ = xzτ . In other words, the decision variable
must be the same. In the explicit extensive form, these constraints need to be specified in the
model.

The probabilistic constraint is rewritten on constraint (2.12). We use an indicator function
η(a) = 0 if a ≤ 0 and 1 if at least one component is strictly positive, (BIRGE; LOUVEAUX,
2011). The expected value from η must satisfy a minimal confidence level. This constraint defines
a risk measure for the problem. We define non-negativity of decision variables in the constraints
(2.13).

2.2 Implicit deterministic equivalent formalization

The implicit representation of a multistage stochastic model is viewed as a compact
version of a particular model. The structure given by the scenario tree can be enforced by
definition of a reduced number of decision variables, for which the nonanticipativity constraints
are implicitly satisfied. The implicit formulation is given by (2.14)−(2.18).

Maximize ω1x1 +
T∑
t=2

S∑
s=1

psτω
s
τx

s
τ (2.14)

s.t.

A1x1 = b1 (2.15)

T sτ−1x
s
τ−1 +W s

τ x
s
τ ≤ hsτ ∀ nτ,s ∈ descs−1, τ ∈ T (2.16)

S∑
s=1

psη(g(xsτ , ωsτ )) ≤ 1− ζ τ ∈ T (2.17)

xsτ ≥ 0 ∀ s ∈ S, ∀ τ ∈ T (2.18)

This deterministic equivalent from the program (2.3)−(2.7) is obtained by refining the
relationship definition between the decision variables in s−1 and s. Suppose that nτs is a discrete
point (node) from the event tree in time period τ and scenario s, then, we refer to its set of
children or descendants as descs. Thus, we determine the variable xsτ as the decision to be taken
at time τ under all scenarios s ∈ descs−1, (FOURER; LOPES, 2009; VALENTE, 2011). In the
implicit reformulation, we do not need to express the nonanticipativity explicitly, as in constraint
(2.11).
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3 Proposed modeling framework

In this section, we describe the modeling framework proposed in this work, as depicted in
Figure 5. The filtration informs how the data will be disclosed in the scenarios of an event tree.
Our objective is to design a filtration approach and to show its benefits in terms of problem size
reduction. In Section 3.1, we present how to operationalize the filtration into bundles, which is
followed in Section 3.2 by an algorithm for bundle generation. This approach allows us to compute
multistage stochastic programs without explicit nonantecipative constraints. Furthermore, in
Section 3.3, we analyze the size reduction entailed by this method. Finally, in Section 3.4, we
discuss the implicit scenario generation process.

Stochastic process

Filtration definition

Binary tree

Left-child-right-sibling

Knuth transform

               Scenario Tree                                                    Generation Optimization model

Multi Stochastic Model

Bundle modeling

AML

Solver

Distinguishable 

scenarios

Interface

Figure 5 – Framework overview.

3.1 Filtration and Bundle Definition

We adopt the filtration process as the key feature for modeling the multistage stochastic
optimization model. Not only considering the space probability (Ξ,F ,P) defined in Section 2
but also denoting Ξt the set of all nodes at stage t ∈ {1, . . . , T}, we formalize a correspondence
among the elements of set ΞT and the sigma algebra FT of all ΞT subsets. According to Shapiro,
Dentcheva e Ruszczynski (2009), the set ΞT can be denoted as the union of disjoint sets descτ−1,
∀ nτ,s ∈ ΞT−1, which represent all nodes contained in the ΞT−1. The collection of these sigma
algebras F1 ⊂ · · · ⊂ FT is called filtration. The sigma algebra F1 is mapped by the tree root, i.e.
F1 = {ΞT }. Figure 6 provides an example of event tree representation used in Valente (2011).
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Figure 6 – Example of event tree.

In this example, the initial period is the root and it has only one node. This first element
originates seven children. Thus, in the second period, each child becomes the parent of three
more nodes. They are connected by arcs that come from the parents to their children. In Figure
6, we construct a scenario tree with 4 stages, 42 scenarios and 71 nodes. A similar framework
could be used for any scenario tree model but, depending on the application, with a different
number of periods and branches for each period. The following sets comprise the σ−algebra for
the filtration generation process in the tree from Figure 6.

F1 = σ{ΞT },

F2 = σ{{ξ1, ξ2, . . . , ξ6}, {ξ7, ξ8, . . . , ξ12}, . . . , {ξ37, ξ38, . . . , ξ42}}

F3 = σ{{ξ1, ξ2}, {ξ3, ξ4}, . . . , {ξ41, ξ42}}

F4 = σ{{ξ1}, {ξ2}, . . . , {ξ42}}

With this filtration characterization, we can start discussing the bundles definition. A bundle is
associated with the nodes of the tree and consists of a stage and scenario. Rockafellar e Wets
(1991), King (1994), Fourer e Lopes (2009) and Valente et al. (2009) use the same information
structure to constitute bundles with tuples that inform (t, s). The use of bundles for a description
of the implicit extensive form guarantees that the database is generated without redundancy.

Our bundle structure is in the same direction as Valente et al. (2009) and Valente (2011)
with some significant differences. Unlike Valente et al. (2009) that employs a new syntax to
describe the relationship between the single-stage linear programs, we regard the filtration as a
tree representation through bundles containing only elementary scenario identifiers. Contrasting
with Valente (2011) in which elements of each set are composed only by the number of scenarios
in the last period, we enumerate each component for all time stages. Thus, the elements of
bundles are tuples that represent the inter-temporal relationship between the index of a node
in s− 1 and its descendants in s. Defining St as the number of nodes in stage t, and nts as the
s-th node of the t-th stage of the event tree, with s ∈ {1, . . . , St} and t ∈ {1, . . . , T}, then, the
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relationship between node nts and the scenarios passing through it are identified by Bts. These
bundles are formalized in Eq. 3.1:

Bts = {(a, b) ∈ [1, . . . , St]× [1, . . . , St+1] : a = s, b = descs}. (3.1)

Based on the event tree from Figure 6, our bundle’s definition is exemplified through
Table 12.

Table 12 – Bundles under our proposition for example event tree

Stage Bundles

1 B11 = {(1, 1), (1, 2), . . . , (1, 7)}

2 B21 = {(1, 1), (1, 2), (1, 3)}, B22 = {(2, 4), (2, 5), (2, 6)}, . . . , B27 = {(7, 19), (7, 20), (7, 21)}

3 B31 = {(1, 1), (1, 2)}, B32 = {(2, 3), (2, 4)}, . . . , B321 = {(21, 41), (21, 42)}

For instance, the bundle B21 in Table 12 is comprised by the first node of the second time
period and three of its descendants. This definition incorporates into bundles the relationship
between the event tree components, through different time stages. It becomes very informative for
the interpretation of the intertemporal constraints in the optimization problems, since they can
be rewritten taking advantage of existing features of algebraic modeling languages. Considering
this concept of bundles, constraint (2.16) could be reformulated as constraint (3.2):

T axa +W bxb ≤ hb ∀ (a, b) ∈ Bτ,s,∀ s ∈ Sτ ,∀ τ ∈ T . (3.2)

An implementation example of a binary tree with an algebraic modeling language (AMPL) is
detailed in the Appendix sections .1 and .2.

3.2 Algorithm for Bundle Generation

In this section, we present the algorithm designed to generate the bundles. Considering a
tree in which the number of branches is constant for each node in a given stage, we can define a
vector Ψt with t ∈ {1, . . . , T} indicating how many descendants come from each node in each
stage. For example, based on Figure 6, a scenario tree could be defined as Ψ := [1, 7, 3, 2]. Thus,
we have T (4) elements on this vector in which Ψ1 = 1,Ψ2 = 7,Ψ3 = 3 and Ψ4 = 2. Furthermore,
we calculate St with t ∈ {1, . . . , T} based on Ψt. As the first time period is the root tree, we
have S1 equal to one. The others time steps of vector St are defined by the Eq. (3.3)

St = St−1 ·Ψt ∀ t ∈ 2, . . . , T. (3.3)

With these definitions, we provide algorithm 2 which implements the bundles generation with Ψ
as an input.

The procedure in Algorithm 2 generates a list with all bundles for the model. The
algorithm implements the algebraic formulation presented in Eq. (3.1). Throughout the time
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Algorithm 2: Procedure for generation of the bundles list
1 Links (Ψ, S, T);
Input :Ψ: numerical vector that represents the cardinality for each scenario in each time

period, T: number of time periods, S: numerical vector determinated by the
number of scenarios for each time period

Output : ListOfTuples: List of tuples for each time period
2 while t ← 1 to T do
3 if t > 1 then
4 a ← 1, cen ← 1, b ← 1
5 while b ≤ St do
6 if cen > Ψt then
7 a ←a +1
8 cen ← 1
9 end

10 ListOfTuplest ← (a,b)
11 b ←b +1
12 cen ←cen +1
13 end
14 end
15 t ←t +1
16 end
17 return ListOfTuples;

periods, we compose pairs with indexes from stage t− 1 and t. These references are aggregated
using the Ψ vector as a reference. The index b is enumerated one-by-one up to the number of
scenarios delimited by St. An auxiliary variable, cen, is also defined to check each time that the
cardinality is achieved. Every time that the counter cen is greater than the cardinality indicated
by Ψt, we increment the index a and the counter cen is initialized again with 1.

3.3 Model Size Reduction with Bundles

The focus of this section is to show the size reduction of the problem in terms of its
variables and constraints with the use of bundles. We compare the reduction obtained by an
implicit model versus an explicit one. In other words, we contrast a multiple stage optimization
problem with implicit to one with explicit nonanticipativity constraints.

Considering the general optimization problem defined in Section 2, we have the decision
variable x with dimension N , e.g. asset classes. Then, the overall number of variables for the
implicit equivalent deterministic model could be calculated by Eq. (3.4).(

T∑
t=1

St

)
·N (3.4)

Contrasting the implicit model, in the extensive approach, scenarios are simulated and
optimized independently. However, they must still satisfy the nonanticipativity condition, which
means that decisions must be the same over indistinguishable scenarios at a given stage. This
approach increases the number of variables when compared to the implicit model. The number
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of the variables in the extensive representation is defined in Eq. 3.5.

T · ST ·N (3.5)

Therefore, when we choose the implicit extensive form for the multistage stochastic
problem, we reduce the size problem in terms of its variables. The variable reduction is given by
Eq. (3.6) which is obtained by subtracting Eq. (3.4) from (3.5).

T∑
t=2

(ST − St) (3.6)

The implicit extensive form also fosters a decrease in the number of constraints, once
there is no need for formalizing the nonanticipativity constraints. The economy, in terms of
constraints, is equivalent to the number of variables in the extensive model and it is presented in
Eq. (3.5).

3.4 Implicit scenario generation

The random variables are discretized through the scenario generation. These uncertain
values, e.g. asset returns, give origin to finite outputs that comprise a dependent sequence
of events (stages) denoting the scenario. For each time period, these stages are succeeded by
several possible realizations (DUPAČOVÁ et al., 2000; GÜLPINAR; RUSTEM; SETTERGREN,
2004b). Our objective is to produce a compact simulation that generates and saves only the
distinguishable scenarios. According to Domenica et al. (2009), since the event tree must be
compatible with the optimization model, our approach implements a C/C++ algorithm whereby
a complete multi-way tree mimics an event tree. We underpin our algorithm with left-child,
right-sibling representation. This data structure comprehends nodes that are linked only by two
classes of arcs (sibling or child). The elements that pertain to the same period are classified as
siblings (rightmost nodes), while the elements that belong to next period are pointed by child
link (leftmost node) (PFALTZ, 1975; FREDMAN et al., 1986; CORMEN, 2009). Through this
methodology, it is possible to reformulate any class of rooted trees as binary rooted tree by
linked data structure. The algorithm used for this transformation is known as Knuth transform
or natural correspondence, which was proposed by Knuth (1998). Pfaltz (1975) provides the
algorithm which describes the Knuth transform for a rooted multi-way rooted tree.

We redesign a multi-way scenario tree into a binary tree using a method based on Knuth
transform. Suppose a directed graph, denoted by G = (P,E), is a set P of points (or data items)
together with a binary relation, E, (or set of ordered pairs) defined on P . Furthermore, we define
the theoretical mathematic simulation of event tree Gm, and its computer representation GR. As
argued by Pfaltz (1975), a representation is faithful if, from GR alone, a computer procedure can
reproduce all of the information that exists in Gm. We characterize as elements of PGm1 as the
tree nodes that are sequentially numbered, i.e.

PGm :=
{

1, 2, . . . ,
T∑
t=1

St

}
. (3.7)

1 We subscribe the graph whose component pertain.
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They indicate the nodes nts pertaining to the scenario tree. The set EGm is defined using the
collection of Bts, see Eq. (3.1) for bundles definition. The Knuth transformation is seen as a
function f : Gm → GR. Thus, we rewrite each point x ∈ PGm , which composes the model Gm,
as a component cx ∈ PGR . The set EGR is defined through children and sibling edges. Their
formulation is given, respectively, by Eq. (3.8) and Eq. (3.9).

{a : (a, b) ∈ Bt1} ∀ t ∈ T (3.8)

{b : (a, b) ∈ Bts, ∀ s ∈ St} ∀ t ∈ T (3.9)

Figure 7 shows an example for the Gm and GR representation from the tree already
illustrated in the Figure 6. GR is represented as a linked list, which is allocated dynamically in

Figure 7 – Our scenario simulation proposition

the principal memory. Thus, only two link fields are necessary to completely represent the three
structured relationships between the points (PFALTZ, 1975). Thus, the cardinality of EGR is
(T − 1) +

∑T
t=1(St− 1) links. Consequently the memory demand is lower than the usual structure

used to implement the multi-way tree, which has an array or list of pointers for all children that
use

∑T
t=2(Ψt · St−1) links. Once that data structure is available in the memory, see Appendix .3,

we have defined the insertion and search operations. They are based on Ψ which will determine
how many elements compose each scenario, since they are all linked in the data structure. In
terms of computational time and complexity, we can derive an exponential asymptotic behavior,
since we have different operations of complexity O(m · n) multiplied by the number of tree nodes
(
∑T
t=1 St) whose growth is also exponential.
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4 Practical Application - ALM

The asset-liability management (ALM) is a classical financial problem. It can be defined
by a balance sheet presenting assets, liabilities and the surplus. The aim of the manager is to
allocate the wealth throughout the time in such a way to be able to pay the liability until the last
time period, meanwhile respecting the features of the problem, for instance, laws and requirements
determined by pension funds authority. The ALM problem can be viewed: (i) dynamically because
its current portfolio position is a result of previous actions (CONSIGLI; DEMPSTER, 1998a),
(ii) stochastically due to the uncertain nature of asset prices and liabilities (ZIEMBA, 2003),
and (iii) as a multistage problem as regular discrete time periods are defined in order to review
the asset allocation and guarantee the liability payment (DUPAČOVÁ et al., 2000; PFLUG,
2001). ALM models may be applied in many different financial environments, for instance,
banks (KUSY; ZIEMBA, 1986; FERSTL; WEISSENSTEINER, 2011; URYASEV; THEILER;
SERRAINO, 2010), insurance (CONSIGLIO et al., 2001; CONSIGLIO; SAUNDERS; ZENIOS,
2006), pension funds (CARIÑO et al., 1994; KOUWENBERG, 2001; ZENIOS; ZIEMBA, 2006;
ZENIOS; ZIEMBA, 2007; OLIVEIRA et al., 2017) and debt management (CONSIGLIO; STAINO,
2012; VALLADÃO; VEIGA, 2014). Furthermore, the stochastic multistage ALM problem has
been addressed before; some examples are in Cariño et al. (1994), Consigli e Dempster (1998b),
Carino e Ziemba (1998), Klaassen (1998), Kouwenberg (2001), Hilli et al. (2007), Consiglio, Cocco
e Zenios (2007), Geyer e Ziemba (2008), Dupačová e Polívka (2009). They proposed models
whose main purpose is to support decisions of long-term investors who want to achieve certain
goals and meet future obligations through an investment police.

In this section, we present a practical application of stochastic programming in ALM. We
describe a stochastic multistage dynamic ALM problem with joint chance constraint in Section
4.1. The deterministic equivalent of this stochastic problem is in Section 4.2.

4.1 ALM Multistage stochastic program with joint chance constraint

In this section, we use the implicit deterministic equivalent formalization, which is defined
by Eq. (2.14)−(2.18), as support for a definition of ALM multistage stochastic model with joint
chance constraint. The price for each asset is discretized through sampling, considering different
realization (scenarios) throughout the time period. It gives origin to a conditioned stochastic
process in the same way of Eq (2.1). Our portfolio is comprised by a vector such as Eq. (2.2).
We want to consider different scenario possibility realizations in our model. Thus, we adopt the
set S as a scenario tree, describing how ξ develops randomly over time, as defined in Section 2.1.
In other words, the decision variables are also described by vector xsτ , and the realized version
of ξτ is also denoted by ωsτ for all N assets available in the τ period time and in the s scenario
used. We apply the bundles to formalize the nonanticipativity condition, see the definition on
Eq. (3.1).

The decision vector x1 is a first-stage variable (here-and-now), and it is determined by
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the initial wealth allocation. The vector ω0 is the actual price of asset, which is known and
deterministic before the first decision. Thus, the initial allocation constraint only allocates the
initial wealth (W ) through the available assets.

W = (ω0)>x1 (4.1)

The balance constraint among time periods is defined by the different corrective actions
made by the wait-and-see auxiliary variables Bs

τ := {Bs
τ,1, . . . , B

s
τ,N} for all N securities available

in the time period τ and scenario s, and V s
τ := {V s

τ,1, . . . , V
s
τ,N} for all N assets available in the

period time τ and in the scenario s. They indicate, respectively, the number of shares bought or
sold for each asset. They also determine the inter-temporal dependence of decisions, in the same
way of the Eq. (3.2).

xb − xa = Bs
τ − V b ∀ (a, b) ∈ Bτ,s, ∀ s ∈ Sτ , ∀ τ ∈ T . (4.2)

In our model, we consider the short-term insolvency level which is defined by the fund’s
liquidity level. Therefore, the cash flow constraints take account only the respective time period
liability.

(ωb)>V b − (ωb)>Bb = lτ − fτ ∀ (a, b) ∈ Bτ,s,∀ s ∈ Sτ ,∀ τ ∈ T . (4.3)

There are some policy constraints that are linked with the nature of asset classes, in
other words, boundaries depending on their features. It is formalized by setting an upper bound
in the allocation of these securities, which is described by some percentage of total portfolio
value, denoted in Eq. (4.4) by π.

(ωbi )>xbi ≤ π (ωb)>xb i = 1, . . . , N ∀ (a, b) ∈ Bτ,s, ∀ s ∈ Sτ , ∀ τ ∈ T . (4.4)

A joint chance constraint is also formalized to guarantee an ζ solvency level for the fund
through scenarios. The aim is to model the insolvency level using the scenarios which determined
by the long-term pension fund solvency. In order to do that, the pension fund investment portfolio
has to be greater than the long-term liability (Lτ ), which is composed by the present value
of discounted liability cash flows minus the present value of some extraordinary participants
contributions (Fτ ). This requirement is modeled similarly to a joint chance constraint as presented
by Andrieu, Henrion e Römisch (2010), Haneveld, Streutker e VAN DER VLERK (2010), Zhang,
Küçükyavuz e Goel (2014), Guigues e Henrion (2017). We want to guarantee the pension fund
long-term solvency. Therefore, we define a joint chance constraint that sets the pension fund
to have a portfolio value greater than the long-term liability discounted by the extraordinary
contributions, which are multiplied by a risk-aversion factor K, with an ζ solvency probability.

P
(

N∑
i=1

ξτ,ixτ,i ≥ K(Lτ − Fτ ) τ ∈ T
)
≥ ζ (4.5)
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We have the non-negative constraints in such a way that the short positions are not
allowed.

xb, Bb, V b ≥ 0 ∀ (a, b) ∈ Bτ,s, ∀ s ∈ Sτ , ∀ τ ∈ T . (4.6)

The function Eξτ is defined as a risk-neutral expectation and it is defined in Eq. (4.7).

Eξτ =
S∑
s=1

ps((ωb)>xb) ∀ (a, b) ∈ Bτ,s, ∀ s ∈ Sτ , ∀ τ ∈ T , (4.7)

in time period τ . Furthermore, the probability of scenario realization has to follow the
∑S
s=1 p

s = 1
and ps > 0 s ∈ S.

4.2 Deterministic equivalent

The deterministic equivalent of Eq. (4.5) is defined through a set of mix-integer constraints.
Firstly, we should identify the scenarios that are underfunded. This is represented by the Eq.
(4.8), which sets to one the binary variable Csτ scenarios in that condition. Then, the model
checks, along the time period, how many scenarios have underfunding nodes, Eq. (4.9), that is
formalized by variable γs. Hence, as the total of insolvent scenario can not be greater than or
equal to (1− ζ) multiplied by the scenario tree cardinality, Eq. (4.10).

K(Lτ − Fτ )−
N∑
i=1

ωbix
b
i ≤MCsτ , ∀ (a, b) ∈ Bτ,s, ∀ s ∈ Sτ , ∀ τ ∈ T (4.8)

γb ≥ Cb, ∀ (a, b) ∈ Bτ,s, ∀ s ∈ Sτ , ∀ τ ∈ T (4.9)
ST∑
s=1

γs ≤ (1− ζ)|ST | (4.10)
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5 Simulations and Empirical Results

In this section, we present the computational results obtained by optimizing the ALM
problem described in Section 4 solving Eqs. (4.1)-(4.4) and Eqs.(4.6)-(4.10). Using the implicit
extensive form through the filtration-oriented approach with bundles and the implicit scenario
generation with natural correspondence (Section 3), we were able to perform the scenario
generation and optimization of scenario trees with more than 160,000 scenarios, without ex-
ante relaxation or decomposition procedure. We focus the results mainly on the computational
times, but we also discuss some outcomes related to the in-sample stability of the objective
function. The tests were conducted on an Intel(R) Core(TM) i7-4790 processor (3.6 GHz) with
16 Gbytes of memory RAM on 64bits-Windows 8.1. The scenario tree parameters are generated
through the discrete stochastic differential equations. These stochastic generator processes are
the Cox–Ingersoll–Ross model (COX; INGERSOLL; ROSS, 1985), CIR, and the Geometric
Brownian Motion (DUFFIE, 2001; NEFTCI, 1996), GBM. In our tests, each scenario of the tree
is consisted of three assets: a fixed-income asset and two stocks. The calibration is made using
historical annualized daily prices realization. We collected data of the 1-month Brazilian LTN
(similar to a T-Bill in the USA) as a proxy for the short-term interest rate, the Bovespa index
(the most liquid stock index in Brazil) and the Brazilian Small Cap BM&F Bovespa index (index
for small capitalization stocks) from January 2012 to November 2016. We present the calculated
statistics for the model in Table 13.

Table 13 – Parameters used for the CIR and GBM.

Asset Return Annualized (µ) Std. Annualized (σ) Mean Revert. (α)

Fixed Income 0.11296 0.04358 0.14599

Bovespa index 0.13510 0.23499 -

Small Cap index 0.07443 0.17748 -

Furthermore, the matching of the first two moments is adopted for the scenario generation
(HØYLAND; WALLACE, 2001; HØYLAND; KAUT; WALLACE, 2003). We avoid the arbitrage
opportunities in our tests constraining the optimization model to have only long positions (not
allowing short selling and leveraging), and not using prices from the other instruments in the
yield term structure of the Cox–Ingersoll–Ross model. Additionally, the branches cardinality is
always equal or bigger than the number of assets.

We adopt a deterministic liability model without external contributions, i.e. fτ and Fτ
are always zero. The other model’s parameters are presented in Table 14. In all cases, the initial
funding ratio is one. So, in the beginning, the fund is able to afford all the long-term liability.

We build the simulations by defining three classes of trees: small, medium and large.
These classes are determined by their number of periods (stages), respectively, 4, 6 and 8. For
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Table 14 – model’s parameters

Parameter Value

W 576,000

K 1

π 0.7

M 999,999

ζ 1

each tree category, we executed eight cases that are named by alphabet letters (A, B, . . . , H).
We describe the scenario tree topologies using their Ψ vector definition, see Section 3.2. The
characteristics of each type of tree (topology, number of nodes, number of scenarios, number of
variables and number of constraints) are show in the Table 15.

First, it is important to notice how big the trees we are solving are. We list, in Table 16,
some previous works as benchmarks to the number of scenarios from event trees. Some of them
do not include joint chance constraints, but they are also solved without any auxiliary method
or heuristic.

Comparing the number of scenarios on our study to the current literature, we can notice
that we are solving much bigger problems. For instance, Small_H, Medium_H and Large_H
have, respectively, 162,000, 121,500 and 104,000 scenarios. Thus, they are, respectively, more than
16, 12 and 10 times bigger than the study of Domenica et al. (2009), see Table 16. Furthermore,
our problem considers a joint chance constraint. Obviously, this a rough comparison, but it gives
an idea of the problem size that our approach can handle.

The rest of this chapter is organized as follows. In Section 5.1, we report the computational
time to simulate and optimize the scenario trees described in the Table 15. In Section 5.2, we
discuss how these distinct scenario tree arrangements can impact on the problems’ in-sample
objective function stability.

5.1 Computational Time

The computational time to solve this stochastic optimization problem is the focus of this
section. First, as there exists uncertainty in these instances, we optimize twenty samples for each
case, resulting in 480 tree generations, 1,071,900 different scenarios taking about 18 hours and
30 minutes to be finished. We exhibit the computational times descriptive statistics (measured in
seconds) in the Table 17. We separate the computational time (Table 17) in the tree generation
and the model optimization, with the total time being the sum of both. We are able to solve
quite large trees in a reasonable amount of time. For instance, trees with a smaller number of
scenarios in each class, Small_A, Medium_A and Large_A, have, respectively, 27, 243 and 2,187
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scenarios and can be solved, on average, in 2.02, 2.13 and 2.36 seconds. Furthermore, trees with
19,683 scenarios (Small_E, Medium_D e Large_C), which are almost twice the size, in terms of
scenarios, compared to the biggest problem in the current literature without the use of specific
algorithms (see Table 16), can be computed, on average, in-between 18.32 (Large_C) and 27.01
(Medium_D) seconds.

Additionally, trees with more scenarios in each class, Small_H, Medium_H and Large_H,
present 162,000, 121,500 and 104,976 scenarios and are, respectively, solved in 821.79, 455.42
and 417.78 seconds. Considering multiple stages (between 4 and 6) and a large number of
scenarios (between 104,976 and 162,000), for problems which online solutions are not required,
computational times between 7 and 14 minutes are quite reasonable.
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Table 15 – Characteristics of the generated scenario trees.

Name Topology - Ψ Nodes Scenarios Variables Constraints

Small

Small_A 1-3-3-3 40 27 381 263

Small_B 1-9-3-3 118 81 1,137 785

Small_C 1-27-3-3 352 243 3,405 2,351

Small_D 1-81-3-3 1,054 729 10,209 7,049

Small_E 1-81-81-3 26,326 19,683 256,611 177,635

Small_F 1-81-81-9 65,692 59,049 650,271 453,197

Small_G 1-243-18-18 83,350 78,732 828,876 578,828

Small_H 1-2000-9-9 182,001 162,000 1,800,003 1,254,002

Medium

Medium_A 1-3-3-3-3-3 364 243 3,513 2,423

Medium_B 1-9-3-3-3-3 1,090 729 10,533 7,265

Medium_C 1-81-3-3-3-3 9,802 6,561 94,773 65,369

Medium_D 1-81-9-3-3-3 29,242 19,683 282,855 195,131

Medium_E 1-81-9-9-3-3 86,104 59,049 833,979 575,669

Medium_F 1-81-33-3-3-3 107,002 72,171 1,035,183 714,179

Medium_G 1-24-21-21-3-3 138,121 95,256 1,338,339 923,978

Medium_H 1-1500-3-3-3-3 181,501 121,500 1,755,003 1,210,502

Large

Large_A 1-3-3-3-3-3-3-3 3,280 2,187 31,701 19,676

Large_B 1-9-3-3-3-3-3-3 9,838 6,561 95,097 65,585

Large_C 1-27-3-3-3-3-3-3 29,512 19,683 285,285 196,751

Large_D 1-21-9-3-3-3-3-3 68,818 45,927 665,283 458,831

Large_E 1-81-3-3-3-3-3-3 88,534 59,049 855,849 590,249

Large_F 1-27-9-3-3-3-3-3 88,480 59,049 855,363 589,925

Large_G 1-18-18-3-3-3-3-3 117,955 78,732 1,140,321 786,458

Large_H 1-72-6-3-3-3-3-3 157,321 104,976 1,520,859 1,048,898
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Table 16 – Characteristics of scenario tress on previous literature.

Year Article Tree Topology Number of Scenarios

1996 Kall e Mayer (1996) - 7000

2007 Domenica et al. (2009) 3 stages 10000

2010 Andrieu, Henrion e Römisch (2010) 3 stages 1000

2010 Haneveld, Streutker e VAN DER VLERK (2010) 4 stages (1-10-10-10) 1000

2014 Ackooij et al. (2014) 24 stages 100

2016 Mello e Pagnoncelli (2016) 4 stages (1-10-10-10) 1000
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We notice that the increase of nodes, scenarios, variables and constraints are exponential.
On the one hand, Small_A presents 27 scenarios, 381 variables and 263 constraints. On the other
hand, Small_H has 162,000 scenarios, 1,800,003 variables and 1,254,002 constraints. The growth
of the number of scenarios for each class of tree is presented in the Figure 8.
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Figure 8 – Exponential growth of scenario number

The same growth rate is observed in the tree generation processing times, as section 3.4.
For instance, the generation of 121,500 scenarios for Medium_H case and 104,976 for Large_H
case take 393.92 and 320.28 seconds, respectively, while it takes 766.94 seconds to generate
162,000 scenarios for Small_H. The time of optimization process also increases as the number of
scenarios gets larger, but the rate of increase is smaller than the one for the scenario generation.
The mean of the time elapsed to generate the scenario trees is presented in the Figure 9 and the
mean for optimization of the model is shown in the Figure 9.

In summary, our approach can very efficiently handle large scale multistage stochastic
optimization problems with the compact representations of AMLs and the scenario generation
method.

5.2 In-sample stability

We take the opportunity of presenting several range of tree topologies in our tests, in order
to explore some results related to the in-sample stability of the objective function. Considering
each topology and the same instances generated for the tests of Section 5.1, Table 18 shows the
mean, standard deviation, minimum and maximum values for the problem’s objective function.
Based on Table 18, the number of scenarios is inversely proportional to objective function
standard deviation, which follows the stochastic average approximation theory (KLEYWEGT;
SHAPIRO; MELLO, 2002). The standard deviation of Small_A (27 scenarios) is 22,438.91 while
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Figure 9 – Application performance tests
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962.25 for Small_H (162,000 scenarios). This result repeats again for Medium_A and Medium_H
and Large_A and Large_H.

Furthermore, we generate some trees with the same number of scenarios but with distinct
topologies. It is the case of Small_E (1-81-81-3), Medium_D (1-81-9-3-3-3) and Large_C (1-27-
3-3-3-3-3-3), all with 19, 683 scenarios, but with a different number of variables and constraints.
It seems that the topology impacts directly on the in-sample stability. Based on Table 18, trees
with the bigger number of scenarios, in the early stages of the tree, presented smaller standard
deviation, indicating that they are closer to the ’true value’. This phenomenon repeats for the
cases Small_F, Medium_E, Large_E and Large_F, all with 59, 049 scenarios. This is even
clearer when comparing just Large_E and Large_F, in which the number of stages are the same.
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Table 18 – In-sample stability - statistic data description

Name Mean Std. Dev. Min. Max.

Small

Small_A 640,803.2 22,436.91 611,101 681,156

Small_B 642,605.7 12,691.43 624,357 670,358

Small_C 637,719.3 6,988.39 627,927 651,698

Small_D 637,426.6 6,830.81 628,080 650,761

Small_E 629,107.7 3,678.078 622,844 634,190

Small_F 627,890.1 5,240.45 620,890 638,982

Small_G 625,652.2 2,886.70 619,948 629,944

Small_H 627,856.0 962.25 626,456 629,643

Medium

Medium_A 707,157.3 22,987.64 676,520 758,256

Medium_B 715,601.2 22,040.23 679,350 768,897

Medium_C 710,105.8 6,489.04 697,252 723,451

Medium_D 703,796.3 7,565.77 691,884 717,514

Medium_E 697,698.4 5,962.75 688,136 710,605

Medium_F 701,587.9 7,530.58 690,836 717,896

Medium_G 695,364.95 10,668.65 683,593 713,895

Medium_H 707,818.8 1,494.31 705,265 711,262

Large

Large_A 836,973.5 39,365.70 771,480 907,561

Large_B 837,408.3 25,976.09 802,403 897,048

Large_C 841,157.3 17,553.62 817,831 879,715

Large_D 825,551.0 16,468.40 803,660 862,746

Large_E 828,417.5 9,336.38 811,772 842,299

Large_F 827,965.8 13,923.86 801,798 852,605

Large_G 825,294.7 19,665.84 797,876 869,533

Large_H 819,502.9 10,102.82 806,444 836,548
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6 Conclusion

The size of multistage stochastic programs can grow very quickly. Consequently, a large
scenario tree becomes hard to compute (GUPTA; GROSSMANN, 2011; GUIGUES; HENRION,
2017). We propose a framework which enables the solving of larger instances of multistage
stochastic programs, without the support of any relaxation or decomposition on the initial
program. The scenario generation is carried out by a compact memory representation based
on left-child, right-sibling description, relying on Knuth transform encoded in C/C++. The
optimization model is driven by the directives of an implicit extensive form, which allows a
new formalization of nonanticipativity constraints that has direct correspondence with algebraic
modeling languages. Therefore, with the use of these guidelines, we formalize a deterministic
equivalent version of stochastic multistage programming models, which demands reasonable
time to be completely solved for large scale problems. This methodology was tested in an ALM
multistage stochastic program with joint chance constraint. It allowed us to simulate and optimize
multistage stochastic model instances with more than 160,000 scenarios, about 200,000 elements,
2 million variables and 1 million constraints to optimality in a few minutes.

Our study presents some limitations which are also opportunities for future research.
We represent the randomness in this framework with two stochastic processes (GBM and CIR),
which could be replaced by other processes, like autoregressive conditional heteroscedasticity
(ARCH) or generalized autoregressive conditional heteroscedasticity (GARCH). The probability
distribution of events in the scenario tree could also be endogenous and determined by a priori
hypotheses. The flexibility in the bundle definition also permits different branch strategies to be
formulated. Furthermore, we notice that there are some issues that still need attention in the
interface between the simulation and optimization. We compact the scenario tree in the memory
by using a data structure based on the Knuth transform. In this data structure, only the first
element from the linked list can have a child, but it would be possible to determine a structure
so that each point could give origin to their own children , increasing the performance in the
insertion and search operations. Our mechanism could also, probably, even be used to speed up
some other methods, such as algorithms based on branch and bound or branch and cut.

.1 Appendix 1

Modeling bundles in AMPL: first, we have to define the set which will contain the tuple
elements.
1 set scenario1:=1;

2 set scenario2:=1..2;

3 set scenario3:=1..4;

After that, we define the connections among the bundles.
1 set links1 within {scenario1,scenario2};

2 set links2 within {scenario2,scenario3};
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Therefore, with the sets links1 and links2, we are able to explicitly define which links
exists. It is made in the data file, as illustrated below.
1 set links1:=

2 (1,1)(1,2)

3 ;

4
5 set links2:=

6 (1,1)(1,2)

7 (2,3)(2,4)

As we can define the links freely, the tree model has flexibility in the definition of its
topology. It allows the formalization of different degrees in each level of tree. In the moment of
constraints’ formalization, it is possible use these tuples as parameters for generic definition. We
also can iterate among them, such as in the following example.
1 set scenario1:=1;

2 set scenario2:=1..2;

3 set scenario3:=1..4;

4
5 set ativos:=1..3;

6
7 set links1 within {scenario1,scenario2};

8 set links2 within {scenario2,scenario3};

9
10 var qtd0{ativos} >= 0;

11
12 var qtd1{ativos, scenario1} >= 0;

13 var comp1{ativos, scenario1} >= 0;

14 var vend1{ativos, scenario1} >= 0;

15
16 var qtd2{ativos, scenario2} >= 0;

17 var comp2{ativos, scenario2} >= 0;

18 var vend2{ativos, scenario2} >= 0;

19
20 subject to

21 ##Intertemporal dependence of variables.

22
23 balanco1{s in scenario1, a in ativos}:

24 qtd1[a,s] = qtd0[a] + comp1[a,s] - vend1[a,s];

25
26 balanco2{(i,j) in links1, a in ativos}:

27 qtd2[a,j] = qtd1[a,i] + comp2[a,j] - vend2[a,j];

.2 Appendix 2

The prices from the simulation are written in a file as AMPL standard. Therefore, before
the beginning of the optimization process, the prices of assets in every time period have already
been defined. An example of data file is presented below.
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1 data;

2
3 set links1:=

4 (1,1)(1,2)

5 ;

6
7 set links2:=

8 (1,1)(1,2)

9 (2,3)(2,4)

10
11 ##Initial prices: these prices are deterministic.

12 param price0:=

13 1 10.00

14 2 10.00

15 3 10.00

16 ;

17
18 param price1:=

19 1 1 11.23993

20 2 1 8.33407

21 3 1 13.38071

22 1 2 11.45946

23 2 2 12.39967

24 3 2 11.20237

25 ;

26
27 param price2:=

28 1 1 12.79296

29 2 1 8.32131

30 3 1 11.51957

31 1 2 12.72361

32 2 2 10.36140

33 3 2 11.26605

34 1 3 13.10480

35 2 3 8.03804

36 3 3 13.18248

37 1 4 12.96897

38 2 4 16.80583

39 3 4 12.24611

40 ;

.3 Appendix 3

The scenario tree is mapped in the computer memory through an approach based on
Knuth transform (KNUTH, 1998). Thus, every multi-way tree can be redefined more compactly
as a left-child-right-sibling binary tree. The reformulation process is detailed in the Section 3.4.
Below, we present the algorithm that allocates this data structure in the principal memory.
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Algorithm 3: Request and allocate the multi-way scenario tree data structure described
as left-child, right-sibling representation in the memory space
1 Build Tree (S, T);
Input :T: number of time periods, S: numerical vector determined by the number of

scenarios for each time period
Output : root: tree data structure

2 if root is empty then
3 root ← allocateMemory
4 root.price ← List of Prices
5 end
6 point ← root
7 for t← 1 to T do
8 point.nextNivel ← allocateMemory
9 point 2 ← point.nextNivel

10 point 2.price ← List of Prices
11 for s← St−1 to St do
12 point 2.sibling.price ← List of Prices
13 point 2 ← point 2.sibling
14 end
15 point ← point.nextNivel
16 end
17 return root;
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Final Remarks

In this dissertation, we present three articles which approach multistage stochastic pro-
gramming using the asset liability management (ALM) problem as the practical application.
In the first article, we define a multistage stochastic ALM model with chance constraints for a
Brazilian pension fund industry. In the second article, we compare different ALM scenario gener-
ation sampling models by measuring the impact of several scenario tree sampling methodologies
in the final solution and portfolio allocation from an in-sample perspective. In the last article, we
propose a framework for scenario tree generation and the optimization of multistage stochastic
programming problems. We propose the formalization and implementation of nonantecipativity
implicit version of simulation and optimization model allowing to generate and optimize a large
number of scenarios.

In the first chapter, our study proposes a multistage stochastic programming ALM model
with chance and combinatorial constraints which are motivated and can be applied by the Brazilian
pension fund industry. The chance constraint enforces a Value-at-Risk (VaR) requirement to
keep the pension fund solvent across time with a high probability. The combinatorial constraint
represents an intertemporal solvency regulation imposed by the Brazilian pension fund legislation.
We construct multiple binary trees, with each giving the same importance to catastrophic and
normal economic scenarios. The results show that Brazilian pension fund managers should
modify their investment behavior and strategies in the near future, as they will be pressured to
increase their positions in riskier assets if the long-term downward trend of interest rates gets
confirmed. As funds managers become less risk-averse, their fund’s insolvency probability will
increase. However, if pension fund managers decide to keep their current risk profile (in terms
of risk allocation and insolvency probability), pension fund members’ external contributions
would have to be raised in the next few years. As we deal with a strategic allocation, there is
an opportunity for implementation of tactical asset-liability management regarding the same
contextual constraints.

In the second chapter, we tackle scenario generation methodology. The main goal of
this study is to compare the performance of different scenario sampling methods in order to
highlight which of them is more appropriate for designing a representative discrete-space model
for asset-liability management (ALM) problems regarding the in-sample performance. This
study compares the empirical results of distinct approaches to generating scenarios for ALM:
Random sampling and Moment matching. We also test two Monte Carlo sampling variations:
Resampled average approximation and Monte Carlo, using a naive allocation strategy as a
benchmark. Our intent is to outline how, empirically, the method may have an impact and
produce different outputs. Based mostly on the resulting values of the objective function, we
can conclude that the classical Monte Carlo sampling and Monte Carlo with naive allocation
strategy are dominated by the Moment matching and the Resampled average approximation.
In spite of considering several sampling methods, there is room for an extension of similar
comparisons with another sampling method, such as minimizing Wasserstein probability metrics
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(ROMISCH, 2003; HEITSCH; ROMISCH, 2005; HOCHREITER; PFLUG, 2007) or Voronoi cell
sampling (LOHNDORF, 2016). Other opportunities for subsequent works would be scenario
reduction and parallel implementation, which are techniques developed to deal with the curse
of dimensionality in stochastic programming problems (BERALDI; SIMONE; VIOLI, 2010;
DUPAČOVÁ; GRÖWE-KUSKA; RÖMISCH, 2003; HEITSCH; RÖMISCH, 2003).

The last chapter addresses the simulation and optimization performance for multistage
stochastic problems, as well as the gap of compatibility between scenario generators and stochastic
programs from the implicit extensive form perspective. Our work implements the modeling
implicit extensive form methodology on both simulation and optimization, defining an interface
between them. Moreover, our technique is generic enough to be applied to other SP models,
for instance, the ones with recourse, chance constraints, or even integrated chance constraints.
The scenario generation allocates a multi-way tree represented by a reformulated tree with the
left-child-right-sibling strategy. We also employ the information from the filtration process to
compose the bundles, which also correspond with nonanticipativity constraints implicitly in
the optimization process. The bundle concept is more algebraically adequate, with the AMLs
avoiding support of the extensions to be done. These guidelines allow us to settle an innovative
framework, which formalizes shorter stochastic programs. This methodology was able to provide
the optimal solutions for an ALM multistage stochastic program, with a joint chance constraint
and with more than 160,000 scenarios without any relaxation or decomposition approach. Our
study presents some limitations which are also opportunities for future research. We represent
the randomness in this framework with two stochastic processes (GBM and CIR), which could
be replaced by other processes, like autoregressive conditional heteroscedasticity (ARCH) or
generalized autoregressive conditional heteroscedasticity (GARCH). Besides that, the probability
distribution of events in the scenario tree could also be endogenous and determined by a priori
hypotheses. We also could use the flexibility in the bundle definition to formulate different branch
strategies. Furthermore, we notice that there are some issues that still need attention in the
interface between the simulation and optimization. We compact the scenario tree in the memory
by using a data structure based on the Knuth transform. In this data structure, only the first
element from the linked list can have a child, but it would be possible to determine a structure
so that each point could give origin to their own children, increasing the performance of the
insertion and search operations.

Finally, we add the Section Annex in order to highlight some other contributions given
by us. They consist of two published papers, which form this dissertation, and one more paper,
which is under review. Furthermore, the other two papers were accepted in conferences. Currently,
we are involved in two working papers. In terms of academic experience, we could be part of an
exchange visiting program in a top university, presenting our papers at two conferences.
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