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F́ısica Teórica.
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Abstract

In this thesis we address the subject of quantum phase transitions within the

context of spin liquids using two different models and two theoretical approaches.

The field of quantum phase transitions is quite vast and for that reason we selected

two specific examples, which are exactly solvable. The first one is described by

elementary excitations called majorana zero modes which are related to topological

phases, and the second one is described by free spinons that obey fractional statistics.

In both cases, these are elementary excitations from interacting many-body systems,

which are essentially very different from fermions or bosons. Therefore, the usual

second quantization rules are not available for these systems, opening the gate for

developing new theories and techniques. In this thesis we have the opportunity,

broadly speaking, to gather basic aspects of topological properties of low dimensional

systems in one hand, and to bring into operation some details of the structure of

the Yangian algebra to deal with the physics of free spinons, on the other hand.

We first start by studying the effect of spatial inhomogeneities in the Kitaev

chain. This one-dimensional model describes a p-wave superconductor which is

characterized by topological/non-topological phase transitions. Using an enlarged

unit-cell method, we studied a suitable topological invariant to describe the effects

of spatial modulations in the parameters of the model. We found the emergence of

compact non-topological regions, we called them bubbles, that are described by topo-

logical protected states in the homogeneous case. To characterize these phases, we

developed a polynomial description of the topological invariant, which led us to ac-

count for the emergence of bubbles in the topological region, as well as to identify an

internal structure of the topological invariant, which has a notorious similar behavior

with the spin correlation function of the XY spin-1/2 model. Both models exhibit

the same oscillation region in their phase diagrams. This is an effect of duality, as

both models are linked through a Jordan-Wigner transformation. As an application
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of our method, we used it to characterize an effective model corresponding to a one-

dimensional tight-binding model of spinless fermions with a nearest-neighbor charge

interaction, which is periodically driven. Using the Floquet formalism, we found

an effective Hamiltonian which is mapped into an inhomogeneous Kitaev chain de-

scribed by a dimerized nearest-neighbor pairing and a next-nearest-neighbor pairing

term. Applying our formalism, we accomplish a description of the effects of the

time-dependence of this effective model.

In the second part of this thesis, we studied the one-dimensional Haldane-Shastry

model plus a chiral interaction given by the z-component of the rapidity operator.

The Haldane-Shastry model is a periodically bounded spin-1/2 homogeneous chain

with a long-range exchange interaction that falls off with the inverse of the distance

squared among the spins. This model is integrable, exactly solvable through the

Yangian algebra and its symmetries describe elementary excitations given by free

spinons which satisfy a fractional statistics. Since the chiral interaction is taken as

the rapidity operator from the Yangian, the symmetry of the new model does not

change, allowing us to use the Modified Young Tableaux formalism to describe their

eigenstates. We found that the spectrum of the original model split when the chiral

interaction is turned on. The split is governed by the Yangian algebra, resulting

in non-trivial quantization rules which were studied by the representation theory

of the algebra. After our numerical description for finite systems, we extended our

results towards a thermodynamic limit, finding a general description of the ground-

state transitions at low energy that is also valid for the infinite chain. Finally,

as an application, we used the Haldane-Shastry model with a chiral interaction to

introduce a family of spin models with different medium-range interactions whose

coupling constants are extracted from this model. We describe how the solution of

these models can be found by our approach and formulate the question about the

link among them.



Resumo

Nesta tese abordamos o tema das transições de fases quânticas no contexto de

ĺıquidos de spins usando dois modelos e duas abordagens teóricas diferentes. A área

das transições de fases quânticas é bastante vasta e, por esse motivo, escolhemos

dois exemplos espećıficos, que tem solução exata. O primeiro exemplo é descrito por

excitações elementares denominadas modos de majorana de energia zero que estão

relacionadas às propriedades topológicas, enquanto que o segundo exemplo é descrito

por spinons livres que obedecem a estat́ısticas fracionárias. Nos dois casos, estas

excitações elementares vêm da sistemas interagentes de muitos corpos, as quais são

fundamentalmente diferentes dos férmions e bósons. Portanto, as regras de segunda

quantização usuais não estão dispońıveis para esses sistemas, abrindo espaço para

desenvolver novas teorias e técnicas. Nesta tese temos a oportunidade, em termos

gerais, de reunir aspectos básicos das propriedades topológicas de sistemas de baixa

dimensionalidade, por um lado, e colocar em operação alguns detalhes da estrutura

da âlgebra Yangiana para lidar com a f́ısica de spinons livres, por outro lado.

Primeiramente começamos por estudar o efeito da inomogeneidade espacial na

cadeia de Kitaev. Este modelo unidimensional descreve um supercondutor de onda

p caracterizado por fases topológicas/não-topológicas. Usando o método de célula

unitária ampliada, estudamos um invariante topológico apropriado para descrever

os efeitos das modulações espaciais nos parâmetros do modelo. Encontramos o sur-

gimento de regiões não-topológicas compactas, as que chamamos de bolhas, as quais

são descritas por estados topológicos protegidos no caso homogêneo. Para caracteri-

zar estas fases, desenvolvemos uma descrição polinomial do invariante topológico, o

que nos levou a uma explicação do surgimento destas bolhas na região topológica,

assim como a identificar uma estrutura interna do invariante topológico, tendo este

um comportamento notoriamente semelhante à função de correlação de spins do mo-

delo XY de spin-1/2. Ambos modelos exibem a mesma região de oscilações nos seus
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diagramas de fase. Isto é um efeito da dualidade, já que ambos modelos estão ligados

por uma transformação de Jordan-Wigner. Como uma aplicação do nosso método,

utilizamos ele para caracterizar um modelo efetivo correspondente a um modelo de

ligaduras-fortes de férmions sem spin, com uma interação de carga a primeiros viz-

inhos que é modulada periodicamente. Usando o formalismo de Floquet, achamos

um Hamiltoniano efetivo o qual é levado à cadeia de Kitaev inomogênea descrita

por um emparelhamento a primeiros vizinhos dimerizado e um emparelhamento a

segundos vizinhos. Aplicando o nosso formalismo, conseguimos descrever os efeitos

da dependência temporal deste modelo efetivo.

Na segunda parte da tese, estudamos o modelo unidimensional de Haldane-

Shastry, mais uma interação quiral dada pelo componente-z do operador de rapidez.

O modelo de Haldane-Shastry consiste numa cadeia homogênea com condições de

borda periódicas de spins 1/2, com uma interação de troca entre os spins que de-

cai com o inverso da distância ao quadrado. Este modelo é integrável, exatamente

solúvel através da âlgebra Yangiana, e as suas simetrias descrevem as excitações

elementares, dadas por spinons livres que satisfazem estat́ısticas fracionárias. Uma

vez que a interação quiral é tomada como o operador de rapidez, da Yangiana, a

simetria do novo modelo não muda, o que nos permite utilizar o formalismo das

Tabelas de Young Modificadas para descrever seus autoestados. Descobrimos que o

espectro do modelo original é separado quando a interação quiral é ligada. A âlgebra

Yangiana é responsável por esta separação, resultando em regras de quantização não-

triviais que foram estudadas pela teoria de representação da âlgebra. Após nossa

descrição numérica para sistemas finitos, ampliamos nossos resultados para o limite

termodinâmico, achando uma descrição geral das transições do estado fundamental

para baixas energias, que é válida até para a cadeia infinita. Para finalizar, e como

uma aplicação, utilizamos o modelo de Haldane-Shastry com interação quiral para

introduzir uma famı́lia de modelos de spins com interações a mais vizinhos, cujas

constantes de acoplamento são extráıdas deste modelo. Descrevemos como a solução

desses modelos pode ser achada por meio da nossa abordagem, o que nos permite

formular a questão sobre o v́ınculo que têm entre eles.



Chapter 1

Motivation words

Quantum phase transitions have attracted the interest of both theoretical and exper-

imental researchers in condensed matter physics from the beginning of the quantum

mechanics to explain, for instance, the fate of magnetism. These quantum phase

transitions occur at zero temperature as a result of competing ground states. Differ-

ent approaches have been developed to study this competition, being the Landau’s

theory of second order phase transitions the most celebrated in the past. In our

days, this theory is still used but cannot give answers to all questions behind the

description of the quantum states of matter, requiring to develop new approaches

that bring new concepts and answers, as well as new questions, about the features

of quantum matter and their topological quantum phase transitions.

One example corresponds to the transitions from topological to non-topological

phases, having in the Kitaev chain [1], a spinless fermion p-wave superconductor

wire, a paradigmatic model that has been studied intensively in the last seventeen

years. In this case, the transition is governed by global symmetries that keep the

gap open. Such gap protection by symmetry is the main subject of study in this new

area – the so-called topological invariant systems – for which the Landau description

of local parameters and symmetry breaking no longer applies.

To cite another example, we mention the quantum phase transition from critical-

ity of the isotropic Heisenberg model to an XXZ spin chain by quenching the system

through the inclusion of a Dzyaloshinskii-Moriya interaction [2]. Critical behavior,

like in the Heisenberg model, is a well studied subject and it is described as having

correlation functions decaying algebraically instead as exponentially. This subject
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is inserted in a broad area related to integrable systems, whose aim is to develop

validated theoretical schemes in exactly solvable models. Exact solutions are scarce

and the techniques to deal with them are sophisticated and cumbersome.

These models are generically denominated as quantum spin liquids, which may

be considered as quantum disordered ground states of spin systems, in which zero-

point fluctuations are so strong at low dimensionality that prevent conventional

magnetic long-range order at very low or even at zero temperature. Although this

definition has being sustained for a while in the specific literature, it is somehow

loose in the sense that defines quantum spin liquids for what they do not do, as they

do not order magnetically in the conventional sense. There is another, more specific,

definition of quantum spin liquids in terms of maximally entangled systems [3], but

we will not follow that line of reasoning. Although quite relevant, we will not touch

the subject of quantum entanglement in this thesis either.

Having said what we will not deal with in this thesis, it is time to declare what the

subjects of this work are. Within the general context described above, we divided

the thesis work in two parts:

We first took the example of the Kitaev chain [1], a tight-binding model of spin-

less fermions with a p-wave superconducting pairing in a one-dimensional discrete

lattice that presents topological properties, as described in more detail in the next

(second) chapter, and we found that there was an incomplete description of the

disordered situation. We therefore started to study how to implement theoretical

rules to analyze the dependence of the topological phase diagram when disorder,

in the form of distributions of the parameters of the Kitaev Hamiltonian, is in-

troduced. We found out that there is already a formalism in the literature, the

Enlarged Unit-Cell Method [4], and we adapted it to our case to obtain the modi-

fications of the phase diagram of the Kitaev chain. We include this Kitaev model

as a spin liquid because of its dual model, the anisotropic XY spin model [5], to

which the Kitaev chain is converted through an exact Jordan-Wigner transforma-

tion [6]. Furthermore, another exact unitary transformation converts the Kitaev

chain into a model described by Majorana fermions with zero energy bound states
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(majoranas zero-modes). Different from Dirac fermions, Majorana fermions are their

own antiparticles, and therefore we cannot define a usual Fock space for them as the

occupancy of majoranas is not well defined. This is the context of the first part of

the thesis and it is described in the second chapter, where a polynomial description

for the topological invariant in the enlarged unit-cell method for disordered Kitaev

models is developed. An application of our method is further worked out, in collab-

oration with Professor Cristiane Morais Smith (ITP-Utrecht), for a system with a

driving time-dependent term using the Floquet formalism.

The second part, which is detailed in the third chapter, is devoted to another spin

liquid model, namely the Haldane-Shastry spin chain. This model was proposed and

solved simultaneously by F.D.M. Haldane [7] and B. S. Shastry [8] in 1988, and it

is a sort of long-range spin interacting system with a 1/r2 exchange coupling. This

long-range interacting system is exactly solvable and the elementary excitations

are free spinons, which have a fractional statistics. The model is described by a

Yangian algebra, beyond the SU(2) algebra. We took a suggestion proposed by

Professor Germán Sierra (IFT-Madrid) to include a perturbation taken from the

Yangian algebra of the model. We coupled the Haldane-Shastry Hamiltonian to

the z-component of the rapidity vector operator and found very interesting results

by numerical (exact diagonalization) and theoretical (Yangian representation theory

[9]) approaches. Our outcomes exhibit a spin liquid behavior in the thermodynamic

limit. The singlet character of the ground-state is preserved in the large size limit as

the quantum phase transitions of the ground state always keep Sz = 0. Therefore,

no magnetic long-range order is observed in an almost exact solution of the extended

Haldane-Shastry to which a rapidity chiral interaction was applied as a perturbation.

As an application of our results, we discuss a family of medium-range Heisenberg

Hamiltonians with further neighbor chiral interactions to see whether our method

can also be applied to such general situation.



Chapter 2

Quantum phases in topological

inhomogeneous systems

2.1 Introduction

The topological properties in condensed matter physics appeared in 1980 with the

discovery of the Quantum Hall Effect (QHE) by von Klitzing et al. [10]. When a

perpendicular magnetic field is applied in a 2D metallic material at low temperature,

the QHE relates to the null longitudinal conductance of this system while its edge

is metallic with a quantized conductance, as we can see in the Fig. 2.1. Soon after,

in 1981, Laughlin [11] explained the quantum conductance of a 2D semiconductor

using his argument of “charge pumping”, whereas in 1982, Thouless, Kohmoto,

Nightingale and den Nijs (TKNN) [12] were the firsts to give topological arguments

to explain the QHE. In 1983, Laughlin [13] proposed his notorious wavefunction

whose topological features describe the Fractional Quantum Hall Effect (FQHE),

where the quantum of conductance is now fractionalized. At this time, Berry [14]

published a work in 1984 about the observable effects of a geometric phase in a

quantum system after a cyclic adiabatic evolution. This phase is known as the

Berry Phase and is characterized by an integer multiple of π. Furthermore, Zak [15]

in 1989 showed that the eigenstates of a periodic system with a band structure can

accumulate a geometrical phase in the momentum space, in the same way as the

adiabatic evolution exposed by Berry. In the 1990s, the topological properties of
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semiconductor models were studied and characterized by their global symmetries.

In 1997, Altland and Zirnbauer [16] reported a Periodic Table of the topological

invariant for non-interacting systems, paving the discussion about which type of

topological invariant can be used to characterize the topological features of a system

using their symmetries and dimensions.

Fig. 2.1: Longitudinal and transversal resistance as a function of an external mag-

netic field. This figure is the signature of the quantum Hall effect. Source:

K. von Klitzing, G. Dorda, M. Pepper: Phys. Rev. Lett., 45, 494–497,

Aug. 1980 [10].

The list of models and successful theoretical predictions that the topology give

us is composed of milestones in the theoretical physics. An example is related to the

Quantum Spin Hall Effect (QSHE), from which a theoretical prediction can be build

following the ideas of Kane and Mele [17]. They adapted the Haldane model [18]

to study graphene that was subsequently improved by Bernevig and Zhang [19].

Here, the spin-orbit coupling is crucial to experimental purposes, which allowed

Molenkap’s team to detect the QSHE in HgTe quantum wells [20].

The successful topological description of this quantum effect in semiconductor

materials discussed above, invites us to focus on another kind of materials, the

superconductors. After the BCS theory, the superconductivity has motivated many
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new approaches, which allow to build amazing phase diagrams that describe a lot of

features about this state of matter but without a clear unification [21]. One approach

to face this problem is topology, where the Kitaev chain is one of celebrated results,

not just for exploring theoretically the topological protection of the superconductor

gap, but also for its potential technological application in quantum computing.

In 2001, Kitaev [1] published his seminal work about the topological properties

of a p-wave superconductor wire, where the edge effects hide an elusive emergent

quasiparticle, the majoranas [22]. In fact, it is not really a “particle” in the sense of

an elementary particle, indeed it is more like a bound state at the edges that works

as a quasiparticle, as it will become clear in the following.

The first solid hint of the majoranas observation was found by the group of Leo

Kouwenhoven in Indium Antimonide wires [23] and shortly after the group of Charlie

Marcus detected the same signature in Indium Arsenide nanowires [24]. They are

currently working together in the fabrication of quantum devices useful for storage

quantum information on quantum computers. To detect the zero-energy mode the

researchers studied the conductivity of a superconductor wire, which is characterized

by a perfect Andreev reflection, characterized by a resonance at zero bias in the

conductance curve. Those measurements did not convince the whole community,

motivating the creation of new methods and techniques to detect and control this

state in the lab. On the other hand, theoretical approaches evolve into more realistic

features about this model, including interactions, long-range couplings, disorder and

so forth. As claims for more robust arguments about the effects of spatial modulation

on the Kitaev chain on the topological characterization grow stronger, we developed

an approach to study the internal structure of the topological invariant and describe

the effects of any spatial modulation. Using an enlarged unit-cell formalism we

found a polynomial description, where oscillatory functions give information about

the topology.

In this chapter, we present our approach, starting by a summary of the ho-

mogeneous Kitaev chain, discussing its solution as well as its topological properties.

Subsequently, we extend these results including spatial modulated parameters of the
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Hamiltonian. Here, we introduce the enlarged unit-cell method and build a suitable

topological invariant. Using a polynomial description, we analyze the analytical

structure of this topological invariant, which we apply to the study of the homoge-

neous and inhomogeneous cases, where the chemical potential and the hopping are

modulated. Finally, we discuss our results in the concluding section.

2.2 The Kitaev chain: The homogeneous case

The Kitaev chain is a one-dimensional tight-binding model of spinless fermions with

a p-wave pairing term, whose band structure is characterized by a superconducting

gap protected topologically. This model was studied by Kitaev [1] and extended

to many different systems for the last 15 years, including long-range hopping and

pairing, further interactions, as well as extra dimensions [4, 25–41] .

Different approaches and mathematical tools have been used to characterize the

topological properties of this model. Kitaev used the Pfaffian of the ground-state [1],

while other researchers count the zero modes at the edges using a transfer matrix

approach or other numerical methods, such as exact diagonalization, DMRG and so

on. Although different approaches are being used, the solution of this model and

its topological features are a framework for theoretical research, which will be the

main topic of the next sections.

2.2.1 Analytical solution

In this section, we show how the energy gap of this paradigmatic model is protected

by symmetry using topological arguments. Let us start introducing the Hamiltonian

of this model, which is given by

H = −
N∑
n=1

µ

(
c†ncn −

1

2

)
+

N−1∑
n=1

{
−t
(
c†ncn+1 + c†n+1cn

)
+ ∆

(
cncn+1 + c†n+1c

†
n

)}
,

(2.1)

where N is the length of the chain, µ is the chemical potential, t is the hopping
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(that will be positive in this section1) and ∆ is the pairing term that makes this

chain a p-wave superconductor when it is a real value2. The operators cn and c†n are

spinless fermion operators that satisfy the usual anticommutation relations

{cn, cm} = 0 and
{
cn, c

†
m

}
= δnm. (2.2)

To solve this model, we introduce the Fourier transformation of the fermion opera-

tors: ck = N−1/2
∑

n cn exp(−ikna), with a being the lattice parameter, and where

the sum is over discrete values of k from −π/a to π/a, with steps of 2π/Na. This

transformation allows us to write the Hamiltonian as follows

H =
∑
k

−µ
2

(
c†kck − ckc

†
k

)
− 2t cos(ka)ckc

†
k + ∆ exp(ika)

(
ckc−k + c†kc

†
−k

)
. (2.3)

Restricting the range of momenta k to positive values, the Hamiltonian then reads

H = −
∑

0<k<π/a

(µ+ 2t cos(ka))
(
c†kck − c−kc

†
−k

)
+ 2i∆ sin(ka)

(
c−kck − c†kc

†
−k

)
.

(2.4)

At this point, it is useful to introduce the Bogoliubov-de Gennes (BdG) trans-

formation, that maps this system into a two-band Hamiltonian with particle-hole

symmetry, using a spinless like representation, which diagonalizes the Hamiltonian.

In fact, the BdG transformation allows us to write the Hamiltonian in term of spinors

ψ̂†k = (c†k c−k) as follows

H =
∑
k

ψ̂†k hk ψ̂k =
∑

0<k<π/a

(
c†k c−k

)
hk

 ck

c†−k

 (2.5)

where

1 If t < 0 we can change its sign by a unitary gauge transformation cn → (−1)ncn and come

back to our framework.
2 If ∆ is complex another unitary transformation returns it to real, ignoring phase effects, see

ref. [1]
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hk =

−(µ+ 2t cos(ka)) 2i∆ sin(ka)

−2i∆ sin(ka) (µ+ 2t cos(ka))

 = −(µ+ 2t cos(ka))σz − 2∆ sin(ka)σy,

(2.6)

where σi (i = x, y, z) are the Pauli matrices, which span the particle-hole space. This

matrix hk can be written in an off-diagonal form using a unitary transformation as

follows

h̃k = U hk U
† =

 0 ρ(k)

ρ∗(k) 0

 (2.7)

where ρ(k) = −(µ+ 2t cos(ka)) + 2i∆ sin(ka), and

U = exp(−iπσy/4) =
1√
2

I −I
I I

 . (2.8)

The matrix h̃k can be written as h̃k = g(k) · σ, where σ = (σx, σy) and g(k) =

(Reρ,−Imρ). As ρ(k) is a complex number, we can introduce a phase φ(k) such that

ρ(k) = |ρ(k)|e−iφ(k) and the Anderson vector g(k) acquires the following expression

g(k) = |ρ(k)|

cosφ(k)

sinφ(k)

 . (2.9)

The phase φ(k) is given by the equation

tanφ(k) =
2∆ sin(ka)

µ+ 2t cos(ka)
, (2.10)

With this information, we are able to find the eigenvalues and eigenvectors of

the Hamiltonian (2.5), they are given respectively by

εk,± = ±
√

(µ+ 2t cos(ka))2 + (2∆ sin(ka))2 = ±|ρ(k)|, (2.11)

|uk,±〉 =
1

2

±e−iφ(k)

1

 . (2.12)
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The band structure, given by the equation (2.11), is characterized by a gap that

is protected by the presence of the pairing term. In figure (2.2), we can visualize

the energy bands as a function of the chemical potential. In (a), we can see how

the band structure of the tight-binding model (∆ = 0) turns it gapless for µ ≤ 2,

while in (b), the Kitaev chain (for ∆ = 1) is gapped except at µ = 2, where the

topological phase transition takes place.

Fig. 2.2: Band-structure E vs k (a) the tight-binding model: ∆ = 0 and (b) the

Kitaev chain: for ∆ = 1, when µ = 0, 1, 2 and 3 (in unit of t, the

hopping), respectively. We see the gap closes at µ = 2t in (b).

The gap protection is due to topological arguments, encoded in the geometrical

features of the eigenstates in k-space. In figure (2.3), we show how the eigenstates

of the Kitaev chain (∆/t = 1) evolve along the Brillouin Zone (BZ) in the non-

topological (a) and topological phase (b). In both cases the system is gapped and

the energy bands are similar. However, in the first case (a), for which µ = 3t,

the eigenstates in the extremes of the BZ are the same, while in the topological

phase (µ = 1t), the eigenstates rotate, accumulating a phase of π. This phase is a

topological signature, whose physical features were introduced by Zak [15] taking

the name of Zak phase, which will be explored mathematically in the next sections.
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(a) (b)

Fig. 2.3: Band structure and eigenstates evolution of the Kitaev chain in (a) the

non-topological phases for µ = 3t and (b) the topological phase for µ = 1t.

The two eigenstates are represented as orthogonal arrows that rotate in

the Hilbert space when the system is topological, accumulating a phase.

2.2.2 Topological description

In this section, we present a brief mathematical description about the topological

properties in condensed matter physics. The exact solution of the Kitaev chain

provided previously will be used as a framework, where the topological invariant is

the Zak phase [15], which is the Berry phase of a periodic system, corresponding to

the angle covered by the rotation of the eigenstates in the Hilbert space such as it

was shown in the last section. Let |uk〉 be an eigenstate of our model, the Zak phase

is then given by

Z =
i

π

∮
dk〈uk|∂kuk〉, (2.13)

where k is along the BZ. This phase can be an integer multiple of π that depends

on the parameters of the model. The set of values that the topological invariant

takes can be classified in three types. One of them is the Z-type, where the Zak

phase can take integer multiples of π; the other is Z2-type, where the phase can

take just two values, zero or π; and the zero-type (0), which is related to a system

without topological invariant. The type of topological invariant depends on the
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symmetry and dimension of the system. This classification was studied by Altland

and Zirnbauer [16], who encountered a topological classification for non-interacting

systems with spatial periodicity described by time-reversal, particle-hole and chiral

symmetries.

Table 2.1: Periodic Table of Topological Invariants for non interacting systems.

Altland and Zirnbauer found eight classes, which are summarized in Table 2.1.

There, Θ is the time-reversal, Ξ the particle-hole and Π the chiral operators repre-

senting the global symmetries. The first column labels the topological classes. The

following three columns correspond to the square value of the operator symmetries,

which can be ±1, and the other columns show the kind of topological invariant as a

function of the dimension of the system, from d = 1 to 8.

In our model, we have that the time-reversal symmetry –linked with the spa-

tial periodicity– is Θ = K (where K takes the complex conjugate) that satisfies

ΘHkΘ
−1 = H−k. Moreover, the BdG transformation evinces a particle-hole symme-

try of the model, characterized by Ξ = τxK (where τx is the Pauli matrix acting on

the particle-hole space) that satisfies ΞHkΞ
−1 = −H−k. With these two operators,

we can build a chiral operator Π = Θ Ξ = τx that satisfies ΠHk Π−1 = −Hk. For the

operators described above, we have Θ2 = Ξ2 = Π2 = 1, classifying this 1D system

into the BDI symmetry class [16, 42], whose topological invariant in one dimension
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is characterized by a Z-index, as we can see in the Table 2.1.

This global behavior of the eigenstates corresponds to the number of times that

a closed path described by the winding vector winds the origin in the complex plane

C. For a set of eigenstates in the momentum space, whose Hamiltonian can be

written in an off-diagonal form, the winding number is given by

Z =
i

π

∮
dk〈uk,±|∂kuk,±〉 (2.14)

=
1

2π

∫ π/a

k=−π/a
∂kφ(k) (2.15)

=
−i
π

∫ π/a

k=0

∂zk
zk
, (2.16)

where zk is the winding vector, which is given by zk = ρ(k)/|ρ(k)| that has been

previously calculated.

In the general case, the winding number can take just integer numbers, corre-

sponding to how many times a closed path covered by zk in C includes the origin. In

our case, the path to the winding vector covers just one loop in the complex plane,

then to know how many times the closed path include the origin we just have to

know the value of the middle and the end of the path, that correspond to ρ(0) and

ρ(π/a), respectively.

An interesting observation we can make about the values of this phase to compute

the Zak phase easily is: ρ(k) is a real number when is evaluated in the extremes

(k = ±π/a) and in the middle (k = 0) of the BZ. In fact, the function ρ(k) =

−(µ+ 2t cos(ka)) + i2∆ sin(ka) is real just at these values of k, then we have

Z = i

∮
dk〈uk,±|∂kuk,±〉 =

π

2
(sgn{ρ(π/a)} − sgn{ρ(0)}) , (2.17)

where Z = π when |µ| < 2t and 0 otherwise. This outcome is represented in Figure

(2.4). The first region (I – white) corresponds to the topological phase, where the

eigenstates makes one loop in the complex plane, including the origin, and the second

region (II – gray), represent the non topological, where the Zak phase is zero and

the states do not rotate. They do not acquire a Zak (or Berry) phase.
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Fig. 2.4: Topological phase diagram of the homogeneous Kitaev chain. The phase

diagram µ/t versus ∆/t is characterized by (I) a white region for |µ/t| <

2 corresponding to the topological phase and (II) two disconnected gray

regions corresponding to non-topological phases.

The signature of the topological phase is the presence of Majorana zero modes

at the ends of the wire. This feature can be observed numerically after an exact

diagonalization for a finite system with open boundary conditions, whose energy

levels are plotted in Figure 2.5 for a chain with N = 10 sites and for ∆/t = 1.

In the left-hand side, the dashed (continuous) lines represent the energy levels of a

chain with periodic (open) boundary conditions as a function of µ/t. We observe

that the system with periodic boundary conditions closes the gap for µ/t = ±2,

while the system with open boundary conditions presents two modes with energy

zero for |µ/t| < 2. These zero-modes are characterized by the majorana occupation

at the edges of the chain. We plotted its occupation |ψ|2 as a function of µ/t and N

at the right-hand side of Figure 2.5. The two white lines represent a region where the

topological phase takes place. It is the point where the occupation of the majoranas

bound-state grows towards the edges of the chain. To extract such occupation we

filtered out the contribution of the zero modes from the wave-function, as seen in

the left hand side of Fig. 2.5.
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Fig. 2.5: (left) Energy levels as a function of µ/t from an exact diagonalization for

N = 10 sites. Dashed lines represent a system with periodic boundary

conditions, while solid lines are for a system with open boundary condi-

tions. (right) The Majorana occupation |ψ|2 in the wire for 10 sites.

The topological invariant calculated above is a way to obtain the Zak phase. On

the other hand, Kitaev [1] used the Pfaffian to measure the parity of the eigenstates,

while DeGottardi et al. [26,27] used the roots of the characteristic polynomial from

a Transfer Matrix Approach to describe the topological phases. All these proce-

dures find topological invariants that are two integer numbers that describe the

non-topological and topological phases, therefore a topological invariant of Z-type,

in conformity with Table (2.1), for a BDI class in one-dimension (d = 1).

2.3 The inhomogeneous Kitaev chain

In this section we will study the effect of inhomogeneities in the Kitaev chain, moti-

vated by the possibility to extend the topological description previously developed

to include more realistic cases, like the effect of spatial fluctuations that may appear

during the fabrication process of an experimental sample, or due to some random-

ness of the Rashba coupling, for instance. This kind of defects induces spatial

distributions on the parameters of the model. In this work, we pay attention on the

modulations of the chemical potential and the hopping, which can be manipulated

by external fields in an atomic chain or in optical lattices.
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2.3.1 Topological invariant in the enlarged unit-cell

method

We have previously discussed the solution of the homogeneous Kitaev chain, where

the Topological Invariant is defined by the sign of the functions ρ(0) and ρ(π/a). In

order to study the effect of spatial distributions, we will develop a procedure to study

the topological properties of the system using an enlarged unit cell method. This

approach was previously used by Yi Gao et al. [4] to study some site distributions

for the hopping term. We will extend this approach to study other hopping (off-site)

distributions and chemical potential (on-site) landscapes.

Let us start to write the Hamiltonian of the system with site-dependent couplings

and with periodic boundary conditions, which is given through an enlarged unit-cell

approach. For a system with N sites, we can write such model Hamiltonian as

H =
∑N/q

`=1 H`, where q is the number of sites within each unit-cell, and

H` =

q∑
s=1

µsĉ
†
s,`ĉs,` +

q−1∑
s=1

(
−tsĉ

†
s,`ĉs+1,` + ∆ĉs,`ĉs+1,`

)
+(

−tq ĉ
†
q,`ĉ1,`+1 + ∆ĉq,`ĉ1,`+1

)
+ H.c. (2.18)

Upon using the Fourier transformation in each unit cell, ĉ†s,` =
√
q/N

∑
k ĉ
†
s,ke

ikq`,

with k ∈ (−π/q, π/q], the reduced BZ, and through the well-known Bogoliubov-de

Gennes (BdG) transformation [43], Ψ̂†k = (ĉ†1,k . . . ĉ
†
q,k ĉ1,−k . . . ĉq,−k), we can write

down the Hamiltonian in momentum space in terms of such spinor fields as

H =
1

2

∑
k

Ψ̂†kHkΨ̂k =
1

2

∑
k

Ψ̂†k

 Mk Vk

V †k −MT
−k

 Ψ̂k, (2.19)

The matrices Mk and Vk have the following nonzero elements:

• M s,s+1
k = M s+1,s

k = −ts for s = 1, ..., q − 1

• V s,s+1
k = −V s+1,s

k = −∆ for s = 1, ..., q − 1
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• M s,s
k = µs for s = 1, ..., q

• M q,1
k = (M1,q

k )∗ = −tqe−ikq

• V q,1
k = (−V 1,q

k )∗ = −∆e−ikq.

If ts, µs and ∆ are real, then Hk satisfies the time-reversal, the particle-hole and

the chiral symmetries previously discussed, and it can be unitarily transformed to

an off-diagonal matrix as follows

UHkU
† =

 0 Ak

AT−k 0

 , Ak = Mk + Vk (2.20)

U = exp(−iπσy/4) =
1

2

I −I
I I

 (2.21)

where σy is the Pauli matrix acting on the particle-hole space. The winding number

(or the Zak phase) of this enlarged unit-cell method is given by

W = − i
π

∫ π/q

0

dzk
zk
, (2.22)

where

zk = eiφ(k) =
Det(Ak)

|Det(Ak)|
(2.23)

In our approach, the winding number (W ∈ Z) can be evaluated through the

sign of the function Det(Ak) at the particle-hole symmetric points, κ = 0 and π/q

W =
1

2

[
sgn{Det(Aπ/q)} − sgn{Det(A0)}

]
. (2.24)

This expression is easy to understand, as a model of nearest-neighbors interac-

tions the winding vector zk develops a single one-loop in C as a function of k, which

is symmetric with respect to the real axis. We can deduce from its definition that

(Ak)
∗ = A−k, so the function Det(Aκ) is real at the extreme points, κ = 0 and π/q.

When the loop encloses the origin of C, the real function Det(Aκ) has opposite signs

at these points. In that case, we have from Eq. (2.24): W = ±1, i.e., a topologi-

cal (T ) phase. Meanwhile, if the loop does not include the origin of C, we have a
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non-topological (NT ) phase, withW = 0. This observation can be visualized in the

figure (2.6).

The closure of the bulk gap, which occurs only for κ = 0 and π/q, is given

by Det(Aκ) = 0. The latter can be inferred from Eq. (2.20), which implies

Det(UHkU
†) = Det(Hk) = Det(Ak) Det(AT−k), therefore, Det(Ak) can only vanish if

Hk has a vanishing determinant or equivalently a zero eigenvalue. The gap-closing

specifies the locations where the topological quantum phase transitions take place.

Fig. 2.6: Winding vector path and energy band structure of the homogeneous Kitaev

chain with an enlarged unit-cell of q = 10 and ∆/t = 0.1. The left and the

right-hand side pictures are in the topological and non-topological regions,

respectively. We see that for µ/t = 2 the topological phase transition takes

place, where Det(Ak) = 0, and the band structure is gapless for k = 0.

2.3.2 Spatial distributions

The main advantage of this approach is the possibility to study a spatial modula-

tion in the parameter space. This aim will be presented in this section. Let H` be

our tight-binding model of spinless fermions with a site-dependent chemical poten-

tial (µs), a site-dependent hopping amplitude (ts), and a constant triplet p-wave
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superconducting pairing (∆). For the site modulations we use either

µs = µ (1 + λws), (2.25)

ts = t (1 + λws), (2.26)

for the chemical potential or for the hopping amplitude, respectively, while ∆ is kept

real and constant3. The additional parameter λ, that will be taken as 0 ≤ λ < 1,

provides the strength of the inhomogeneity and ws are the spatial distributions,

which are taken as

ws =


δs,1 , a single-defect (S)

cos(2πs/q) , commensurate (C)

cos(2πsβ) , incommensurate (I)

(2.27)

where β = (
√

5 + 1)/2 is the golden ratio. The first of these distributions (S) needs

no justification, while the others two (C,I) are in the class of Aubry-André or Harper

potentials, useful for study the interrelation of disorder and superconductivity [31,

44–47]

We have chosen some particular values of the parameters to show the variations

induced by modulations on the phase diagram. Examples for the spatial distri-

butions (S,C,I), applied separately to the chemical potential and to the hopping

amplitude, can be viewed in Fig. 2.7. Due to the particle-hole symmetry, the phase

diagrams of Fig. 2.7 are symmetric with respect to ∆/t and µ/t, thus we plot them

for µ > 0 only.

Apart from the variations of the Ising transition lines at the well-known values

µ = ±2t of the homogeneous case, especially those in Fig. 2.7(b) and (e), we observe

in all cases the emergence of non-topological compact domains (“bubbles”) around

∆/t = 0. The number and shape of these isolated bubbles depend on the cell size

q, on the inhomogeneity strength λ, as well as on the spatial distribution. They

3 The pairing ∆, which comes from an effective mean-field approach, was kept real and constant

to compare with previous works. Another aspect would be to consider a pairing of the form

∆ = |∆|eiθ, with a phase constant, which can be eliminated by a gauge transformation. See

Ref. [1].
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look rather different when spatial modulations are applied either to the chemical

potential or to the hopping amplitude, as can be seen from the top and the bottom

panels in Fig. 2.7, respectively.

Fig. 2.7: Topological phase diagrams for modulated chemical potentials (top pan-

els) and modulated hopping terms (bottom panels) in the (a,d) single-

defect model, (b,e) commensurate and (c,f) incommensurate potentials.

Topological (T ) regions are drawn in white and Non-Topological (NT )

zones in gray. Blue solid lines (top panels) and red solid lines (bot-

tom panels) demarcate the loci of the T -NT phase transitions, for which

Det(Aκ) = 0. Dashed lines depicting ellipses are zeros of the oscillat-

ing function U(µ,∆, q, λ), as given below. All diagrams are symmetric

by changing µ ↔ −µ and ∆ ↔ −∆. We have used in all cases q = 10

and λ = 0.5 in the enlarged unit-cell approach. Emerging features are the

non-topological regions (“bubbles”) around the anisotropy line (∆/t = 0),

and the bending of the Ising transition lines at µ ≈ 2t, most notably for

(b) and (e) cases. Case (f) will be discussed separately.
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2.3.3 Polynomial description

In the previous section we showed how non-topological bubbles emerge in the topo-

logical regions of the phase diagram when an inhomogeneity is turned on. In this

section we will consider some analytical aspects of the topological invariant to un-

derstand the physical origin of these bubbles. First, we rewrite the (real) function

Det(Aκ), for κ = 0 and π/q, as

Det(Aκ) = U(µ,∆, q, λ)− Λκ(∆, q, λ), (2.28)

where U is a κ-independent polynomial function that carries all the dependence on

µ, and Λκ is the difference, in our (q, λ) scheme. According to Eq. (2.24), and the

discussion following it, we observe that the system is topological (W 6= 0) when U is

within the region delimited by both Λκ (viz.: Λ0 < U < Λπ/q) and non-topological

(W = 0) otherwise. For the singular cases where Det(Aκ) = 0, namely U = Λκ, Eq.

(2.24) is undefined, though these points demarcate the loci of the T -NT transitions

in the phase diagram, namely, the closure of the bulk gap. For the purpose of

analysis, we shifted our functions U and Λκ according to the sum rule expression

(2.31) below and refer, from now on, to the shifted functions. The shift is defined

so as to obtain Λ0 + Λπ/q = 0.

To understand the role played by the functions U and Λκ, we have plotted in Fig.

2.8 the homogeneous case (left panels) and the inhomogeneous single-defect model

applied to the chemical potential (right panels), respectively. The phase diagrams,

(a) and (b), are given together with the related behavior of the functions U and Λκ,

in (c) and (d).

In the homogeneous case, we see from Fig. 2.8(c) that the function U oscillates

between the two Λκ functions, for |µ| ≤ 2t, defining thus a topological phase in that

region. Whereas in the single-defect case of Fig. 2.8(d), the function U leaves these

two limits because its oscillations are now enhanced by the presence of modulations.

These extrapolations of the function U produce the bubbles seen in Fig. 2.8(b).

These bubbles have alternating sign, as seen from the figure. The borders of these

bubbles, as described above, are the points of gap-closings, location of the topological
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quantum phase transitions.

Fig. 2.8: Comparison of the homogeneous (left panels, λ = 0) and the inhomoge-

neous single-defect (right panels, λ = 10) cases applied to the chemical

potential, for q = 10. Dashed lines in the phase diagrams (a) and (b)

are zeros of the oscillating function U , the outermost one is very close

to the ellipse µ̄ = 2t, beyond which U is overdamped. The function U

(blue curves, for ∆/t = 0.1) in (c) and (d) oscillates with q zeros until it

crosses the Ising transition line, at or close to µ/t = 2. In the homoge-

neous case of Fig. 2(c) U is delimited by the two Λκ functions, while in

Fig. 2(d) the oscillations of U extrapolate these two limits until it crosses

Λπ/q definitively. This is the origin of the bubbles observed in all inho-

mogeneous cases. These bubbles have alternating signs, corresponding to

the wavefunction fermion parity. For drawing purposes, we shifted the

vertical axis to get U = 0 as the mean of both Λκ functions, see text.
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We observed numerically that at the places where U = Λπ/q the gap closes at

k = 0, while at the places where U = Λ0 the gap closes at π/q. Beyond the

topological phase, in the µ/t axis, the oscillating function U changes character and

becomes unbounded in all cases. These are the trends caused by the modulations

and they can be explained analytically as given below.

The homogeneous case

After detailed algebraic and numerical manipulations we found, in the homogeneous

case (λ = 0), that the function U can be written as

U(µ,∆, q, 0) =
(√

1− (∆/t)2
)q

UH(µ̄, q), (2.29)

where µ̄ = µ/
√

1− (∆/t)2 is a scaled chemical potential, identical to the one found

in DeGottardi et al. [26, 27], while UH(µ̄, q) is described by a polynomial in µ̄ of

degree q, restricted to integers q ≥ 2

UH(µ̄, q) =

q∑
n=1

aqn µ̄
n, (2.30)

whose coefficients aqn ∈ Z can be obtained through the following recurrence formula:

aqq = 1 for all q, aq1 = ∓q (alternating) for q odd and aq1 = 0 for q even, while for

1 < n < q we have aqn = aq−1
n−1 − aq−2

n for q − n even and aqn = 0 for q − n odd.

Some of these aqn coefficients are given in Table 2.2. We notice that the non-zero

coefficients of this polynomial expansion have alternating signs for each q. The

oscillatory behavior of the function U is due to this fact. It is easily seen that U ,

as a function of µ is symmetric for q even and antisymmetric for q odd, while it is

always symmetric with respect to ∆.

As for the delimiting functions Λκ in Eq. (2.28), we found a useful relation in

the form of a sum rule

Λπ/q + Λ0 =
(√

1− (∆/t)2
)q
s1/2 (1 + s)2, (2.31)
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Table 2.2: Some coefficients aqn, with 1 ≤ n ≤ q, of the polynomial UH in the

homogeneous case. Observe the constructing rule aqn = aq−1
n−1 − aq−2

n .

q n

1 2 3 4 5 6 7 8 9 10

2 0 1 0 0 0 0 0 0 0 0

3 -3 0 1 0 0 0 0 0 0 0

4 0 -4 0 1 0 0 0 0 0 0

5 5 0 -5 0 1 0 0 0 0 0

6 0 9 0 -6 0 1 0 0 0 0

7 -7 0 14 0 -7 0 1 0 0 0

8 0 -16 0 20 0 -8 0 1 0 0

9 9 0 -30 0 27 0 -9 0 1 0

10 0 25 0 -50 0 35 0 -10 0 1

where s = (−1)q and the factor (1 + s)2 dictates that this sum is zero for q odd,

while for q even the sum rule can be shifted to zero using this expression. All

three functions U , Λπ/q and Λ0 will be shifted in the same way, keeping Eq. (2.28)

unaltered. This is an important point in our approach to get the fermion parity

switches locations for homogeneous finite wires.

Using (2.31), we thus need to deal with only one of these polynomials. In this

work, we study Λ0 = Λ0(∆, q), which is given by an even polynomial in ∆ (bqn = 0

for n odd)

Λ0(∆, q) =

q∑
n=0

bqn ∆n. (2.32)

Some of these bqn coefficients are given in Table 2.3. They do not have a simple

constructing rule, although we observe the cyclic pattern ‘4202’ for bq0, we also have

bqq = 0 for all q, while bqq−1 = 2q for q odd, also bqq−2 = q2 for q even, etc. Such

description is not complete however.

An interesting point is that the alternating integer polynomial UH(µ̄, q) in (2.30)

has more than one root (in fact, q real roots), that yield an oscillatory behavior for
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Table 2.3: Some coefficients bqn of the delimiting function Λ0(∆, q) in the homoge-

neous case.

q n

0 2 4 6 8

2 4 0 0 0 0

3 2 6 0 0 0

4 0 16 0 0 0

5 2 20 10 0 0

6 4 24 36 0 0

7 2 42 70 14 0

8 0 64 128 64 0

9 2 72 252 168 18

10 4 80 440 400 100

U within the dome µ̄ = 2t, that is, inside the ellipse (µ/2t)2 + (∆/t)2 = 1 (see

Fig. 2.8(a)). Outside from this elliptical dome U has no more oscillations, as UH

turns from an alternating to a positive polynomial in µ in that case. Such analytical

behavior is a critical combination of the prefactor (
√

1− (∆/t)2 )q and the scaled

µ̄ = µ/
√

1− (∆/t)2 that appear in Eq. (2.29). This result is quite consistent with

those seen in Hegde et al. [29,30], about the positions of fermion parity switches for

homogeneous finite wires.

Modulated chemical potential

When site modulations are applied to the chemical potential the sum rule (2.31)

still applies, the polynomial expansion of Λ0(∆, q) is thus the same as in (2.32), viz.

Table 2.3, while the function U can be written now as

U(µ,∆, q, λ) =
(√

1− (∆/t)2
)q (

UH + Uλ

)
. (2.33)

For the single-defect (S) case, apart from the polynomial UH we have an additional

inhomogeneous contribution which is linear on λ, that is Uλ = λUS(µ̄, q), where US
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is a polynomial like in (2.30), with the same recurrence formula for the coefficients

aqn, except that aq1 = ∓1 (alternating) for q odd and aq1 = 0 for q even. Some of

these aqn coefficients are given in Table 2.4.

Table 2.4: Some coefficients aqn of the polynomial US(µ̄, q) for the (S) single-defect

case in the modulated µs.

q n

1 2 3 4 5 6 7 8 9 10

2 0 1 0 0 0 0 0 0 0 0

3 -1 0 1 0 0 0 0 0 0 0

4 0 -2 0 1 0 0 0 0 0 0

5 1 0 -3 0 1 0 0 0 0 0

6 0 3 0 -4 0 1 0 0 0 0

7 -1 0 6 0 -5 0 1 0 0 0

8 0 -4 0 10 0 -6 0 1 0 0

9 1 0 -10 0 15 0 -7 0 1 0

10 0 5 0 -20 0 21 0 -8 0 1

On the other hand, for the commensurate (C) and the incommensurate (I) po-

tentials applied to µs, the extra contributions in (2.33) do not depend on ∆ but

are nonlinear on λ. That is, we have integer polynomials Uλ written as UC(µ̄, q, λ)

and U I(µ̄, q, λ), respectively. We have not yet found a simple recurrence formula for

them, but we can give some examples. For the (C) commensurate case, for q = 3,

we have

UC(µ̄, q = 3, λ) =
1

4
λ2(λ− 3) µ̄3, (2.34)

whilst for the (I) incommensurate case, also for q = 3, we have
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U I(µ̄, q = 3, λ) =

− [cos(2πβ) + cos(4πβ) + cos(6πβ)]λ(µ̄− µ̄3)

+ [cos(2πβ) cos(4πβ) + cos(2πβ) cos(6πβ)

+ cos(4πβ) cos(6πβ)]λ2µ̄3

+ [cos(2πβ) cos(4πβ) cos(6πβ)] λ3µ̄3. (2.35)

Modulated hopping amplitude

Significant differences already begin when spatial modulations are applied to the

hopping amplitude ts. For the single-defect (S) case, for example, we found a func-

tion U described as

U(µ,∆, q, λ) =
(√

1− (∆/t)2
)q

×
(
UH +

λ(λ+ 2)

[1− (∆/t)2]
ŨS

)
, (2.36)

Likewise, the sum rule for the Λκ functions is now

Λπ/q + Λ0 =
(√

1− (∆/t)2
)q
s1/2 (1 + s)2

×
(

1 +
λ(λ+ 2)

[1− (∆/t)2](1 + s)

)
. (2.37)

In (2.36) we have ŨS = ŨS(µ̄, q), which is a polynomial in µ̄ of degree q ≥ 3, given

by the same recurrence formula as in (2.30), except that the largest-power non-zero

coefficients are now given by aqq−2 = −1 (viz.: aqq = aqq−1 = 0 for all q). Some of these

coefficients are given in Table 2.5. Interestingly enough, we see that by eliminating

the first column in Table 2.4 and inverting signs we find an equivalence with Table

2.5. We have not yet understood the origin of this similarity.

We notice in Eqs. (2.36) and (2.37) the extra terms in λ(λ + 2), which depend

also on ∆. This contribution expands the dome of the oscillations of the function U

beyond the limits ∆/t = ±1, as is indeed observed in Fig. 2.7(d).
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Table 2.5: Some coefficients aqn of the polynomial ŨS(µ̄, q) for the (S) single-defect

case in the modulated ts.

q n

1 2 3 4 5 6 7 8 9

3 -1 0 0 0 0 0 0 0 0

4 0 -1 0 0 0 0 0 0 0

5 2 0 -1 0 0 0 0 0 0

6 0 3 0 -1 0 0 0 0 0

7 -3 0 4 0 -1 0 0 0 0

8 0 -6 0 5 0 -1 0 0 0

9 4 0 -10 0 6 0 -1 0 0

10 0 10 0 -15 0 7 0 -1 0

11 -5 0 20 0 -21 0 8 0 -1

The sum rule (2.37) of the Λκ functions, gives us a selected polynomial Λ0(∆, q, λ) =∑q
n=0 b

q
n ∆n which is an even polynomial in ∆ whose coefficients are nonlinear in λ.

Some of these coefficients can be seen from Table 2.6. We notice that when λ = 0

they match those in Table 2.3, as it should be.

Lastly, for the commensurate (C) and the incommensurate (I) potentials applied

to the hopping, a general expression for the function U is

U(µ,∆, q, λ) =
(√

1− (∆/t)2
)q
UH + Ũλ. (2.38)

Namely, the corresponding inhomogeneous Ũλ terms, ŨC = ŨC(µ,∆, q, λ) or ŨI =

ŨI(µ,∆, q, λ), respectively, are now polynomials of degree q in µ and ∆, which

cannot be simply factorized as in (2.33) or in (2.36). The latter two cases in (2.38)

are examples where the above elliptical description does not apply anymore, as can

be inferred from the dashed lines in Figs. 2.7(e) and 2.7(f). The farthest case from

an elliptical description is the latter one in Fig.2.7(f), for which the incommensurate

(I) distribution provides a rather complex U function. In these cases, we do not have

integer polynomials, and a new approach should be devised.
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Table 2.6: Some coefficients bqn of the polynomial Λ0(∆, q, λ) for the (S) single-

defect case in the modulated ts. For λ = 0 it reproduces Table 2.2

q n

0 2 4 6

2 (2 + λ)2 0 0 0

3 2(1 + λ) 2(3 + λ) 0 0

4 −λ2 (4 + λ)2 0 0

5 2(1 + λ) 4(5 + 3λ) 2(5 + λ) 0

6 (2 + λ)2 2(12 + 8λ− λ2) (6 + λ)2 0

7 2(1 + λ) 6(7 + 5λ) 10(7 + 3λ) 2(7 + λ)

8 −λ2 (64 + 48λ+ 3λ2) (128 + 64λ− 3λ2) (8 + λ)2

Neither recurrence formulas for ŨC , ŨI nor sum rules for Λ̃κ in the modulated ts

case were yet found, but we can give some examples. The function ŨC in the (C)

commensurate case applied to the hopping, when q = 5, for instance, is given by

ŨC(µ,∆, q = 5, λ) =

−5∆2λ2µ+ 5
√

5+7
32

λ4µ− 5
2
λ2µ3 − 5

√
5+1
2
λ2µ, (2.39)

while the new delimiting function Λ̃C
0 , for q = 5, is

Λ̃C
0 (∆, q = 5, λ) =

2 + 1
8
λ2 (140 + 75λ2 + λ3 − 60∆2) . (2.40)

Similarly, the function ŨI in the (I) incommensurate case applied to the hopping,

for q = 3, is given by

ŨI(µ,∆, q = 3, λ) =

−µ [2λ (cos(2πβ) + cos(4πβ) + cos(6πβ))

+λ2 (cos2(2πβ) + cos2(4πβ) + cos2(6πβ))] , (2.41)
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while for the new delimiting function Λ̃I
0, for q = 3, we have

Λ̃I
0(∆, q = 3, λ) = 2(1 + 3∆2)

+2λ(1 + ∆2) [cos(2πβ) + cos(4πβ) + cos(6πβ)]

+2λ2 [cos(2πβ) cos(4πβ) + cos(2πβ) cos(6πβ)

+ cos(4πβ) cos(6πβ)]

+2λ3 [cos(2πβ) cos(4πβ) cos(6πβ)] . (2.42)

2.3.4 Concluding remarks

In order to have some insight on the new phases found in this work, we have studied

the eigenstates of Hk to see the characteristics of the band structure at both sides

of a bubble. We will use a strategy which is successfully employed nowadays in

Topological Band Theory [48]. We took as an example the single-defect (S) case

applied to the chemical potential, which is given in Fig. 2.8(b), but this analysis is

equally valid for other distributions. We can see the comparison of the low-lying

bands in Fig. 2.9 at two points that are close in the phase diagram, outside 3(a) and

inside 3(b) a bubble, whose gap closes at π/q, as explained in Section 2.3.3. The way

our BdG Hamiltonian (2.19) was built in, we can distinguish the particle-part from

the hole-part of these eigenstates. We used a particle-projection operator applied to

the eigenstates to plot them blue for particle-like (projection above 50%) and red

for hole-like (projection below 50%).

What is interesting in these results is that there is a band inversion (change

of color) in the band states from k = 0 to ±π/q and close to the gap at E = 0,

when comparing the topological bands in 3(a) with the non-topological bands in

3(b), which is an indication of a change in the fermion parity. The parity inversion

between 3(a) and 3(b) indicates a change of occupancy of one non-local fermion

state, which is another way of detecting the presence of Majorana edge modes in

the topological phase, when the system has open boundaries. This argument is

guaranteed by the bulk-edge correspondence. It is also a confirmation example of
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the usefulness of our method for detecting the fermion parity switches in the general

inhomogeneous cases, as proposed in the Introduction.

Fig. 2.9: Calculated bands at opposite sides of a bubble, whose gap closes at π/q, for

the single-defect model applied to µ, using q = 10, λ = 10 and ∆ = 0.05t,

(a) Topological region, outside the bubble, (b) Non-Topological region, in-

side the bubble. Notice that, in contrast to (b), there is a band inversion

in (a) of the band states close to the gap at E = 0 as one moves along the

reduced Brillouin Zone, from k = 0 to ±π/q, which indicates a change of

the fermion parity.

In summary, we have studied the effects of spatial inhomogeneities in the 1D

p-wave Kitaev model, for which we constructed a polynomial description for the

topological invariant using an enlarged-unit cell approach. We applied the method

to three different classes of spatial distributions, (S,C,I), although it can be easily

expanded to more general cases, like those including longer-range hoppings and

pairings [49–51].

A comparative study was made for modulated chemical potentials and mod-

ulated hopping amplitudes, using the same site distributions, finding very clear

differentiations, as the examples from Fig. 2.7 have demonstrated. The modulations
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applied to the chemical potential, for example, preserve the elliptical region of the

oscillations in (µ/2t)2 + (∆/t)2 = 1, as mentioned above, while those applied to the

hopping amplitude do not. This marked difference will establish a strong dichotomy

for diagonal versus off-diagonal disordered systems. These differentiations would not

have been seen if we had applied the modulation in both parameters simultaneously.

Additionally, our results are fully consistent with previous works [4, 25–32].

Furthermore, the oscillatory behavior of the polynomial function U and its de-

limiting functions Λκ take account of most of the topological features of the model,

not only on the origin of emerging non-topological bubbles around the anisotropy

line (∆ = 0) in the topological region of the phase diagram, but also about the exact

positions of the ground-state fermion parity switches for homogeneous finite wires

which, according to Hegde et al. [29, 30], are given by the elliptical curves

µ̄ = 2t cos

(
πp

q + 1

)
(2.43)

where p = 1, 2, . . . , [q/2], with [q/2] the integer part of q/2. Our coincident numerical

results are astonishingly precise with this expression.

The fact that our periodic boundary bulk results are consistent with those for

open boundary systems, with edge Majorana fermions, obtained otherwise through

the large size limit of the transfer matrix approach [29, 30], is a consequence of the

bulk-edge correspondence. Therefore, with this validity test we propose to use these

results also for the inhomogeneous cases. The new zeros of the shifted function U ,

like those seen in the examples of Figs. 2.7 and 2.8, should be the positions of the

new fermion parity switches in those cases. This proposal was confirmed using a

single test, shown in Fig. 2.9, where a fermion parity inversion was obtained.

Moreover, as a by-product, since the Kitaev chain is exactly mapped onto the XY

model through a Jordan-Wigner transformation [5, 52], we hope that other authors

would be willing to observe paramagnetic bubbles in the ferromagnetic region of the

inhomogeneous dual XY model, as well. What would remain to verify is whether

the oscillations of the spin correlation function for the XY model will be at the same

oscillatory region of the shifted function U , as it is in the homogeneous case.
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2.4 One application of our method

In this section, we will show an application of our approach in the characterization

of a time-dependent Hamiltonian modulated periodically in time. We will analyze

a periodically driven model of interacting spinless fermions in a 1D optical lattice.

Since the fermions have no spin, there is no on-site Hubbard interaction, but just a

NN two-body term, which, with the help of Feshbach resonances, is tailored to be

attractive. In the absence of driving, this model reduces to the Kitaev chain upon

applying a mean-field approximation in the particle-particle channel. However, when

an additional periodic ac Feshbach magnetic field is applied to the system, the NN-

interaction term acquires an ac component. Using the Floquet formalism, we derive

an effective model at stroboscopic times, which is time-independent, but much more

complex: three-body interaction terms emerge, as well as a dimerization in the NN

pairing term. In addition, a next-nearest neighbor (NNN) pairing term arises also.

Inspired by these terms, we investigate two simplified toy models, which are both

interesting generalizations of the Kitaev chain. The first is a Kitaev chain with

dimerized NN pairing, while the second is a longer-range Kitaev chain, with NNN

pairing. The enlarged unit-cell method is further applicable to both cases.

2.4.1 Floquet states

Let us start considering a 1D tight-binding model for spinless fermions with nearest-

neighbors (NN) attractive interaction and a time-dependent perturbation. The cor-

responding Hamiltonian is given by

H = HJ +Hµ +HV +Hd, (2.44)

where

HJ = −J
∑
i

(c†ici+1 + h.c.) , Hµ = −µ
∑
i

ni (2.45)

HV = V0

∑
i

nini+1 , Hd = V1 cos(ωt)
∑
i

nini+1.

The first term describes hopping between NN with amplitude J , whereas the second

term accounts for the chemical potential µ, since we are working on the grand
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canonical ensemble. The term HV describes a NN charge interaction, which is

attractive (V0 < 0). The last term is an external ac driving term, with amplitude V1

and frequency ω. Since this driving term Hd is periodic, we may apply the Floquet

theory outlined in Ref. [54] and derive an effective time-independent Hamiltonian

to describe the system at stroboscopic times. First, we build the Floquet basis as

|{nj},m〉 = |{nj}〉eimωt exp

[
−i V1

~ω
sin(ωt)

∑
j

njnj+1

]
, (2.46)

where |{nj}〉 stands for the Fock states, and m is an integer. Then, we compute

the matrix elements of the Floquet Hamiltonian H = H − i~∂t, to find a time-

independent effective model. By applying the operator −i~∂t on the Floquet basis

(2.46), we find

−i~∂t|{nj},m〉 = |{nj}〉(−i~)∂t

(
eimωt exp

[
−i V1

~ω
sin(ωt)

∑
j

njnj+1

])

= |{nj},m〉

(
m~ω − V1 cos(ωt)

∑
j

njnj+1

)
= |{nj},m〉 (m~ω −Hd) , (2.47)

The last term of eq. (2.47) cancels the driving term in eq. (2.44), thus leading to

〈〈{n′j},m′|Hd − i~∂t|{nj},m〉〉 = δn′nδm′mm~ω. (2.48)

The dc interaction term HV reads

〈〈{n′j},m′|HV |{nj},m〉〉 =
1

T

∫ T

0

dteiωt(m−m
′)〈{n′j}|HV |{nj}〉 × (2.49)

exp

[
−i V1

~ω
sin(ωt)

∑
j

(njnj+1 − n′jn′j+1)

]
.

The basis |{nj}〉 are eigenstates of HV , and hence

〈〈{n′j},m′|HV |{nj},m〉〉 = 〈{n′j}|HV |{nj}〉δm′,m. (2.50)

The chemical potential term is given by

〈〈{n′j},m′|Hµ|{nj},m〉〉 =
1

T

∫ T

0

dteiωT (m−m′)〈{n′j}|Hµ|{nj}〉 × (2.51)

exp

[
−i V1

~ω
sin(ωt)

∑
j

(njnj+1 − n′jn′j+1)

]
,
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where the main element 〈{n′j}|c
†
ici|{nj}〉 is non zero when n′i = ni, leading to

〈〈{n′j},m′|Hµ|{nj},m〉〉 = 〈{n′j}|Hµ|{nj}〉δm′,m. (2.52)

Finally, the hopping term reads

〈〈{n′j},m′|HJ |{nj},m〉〉 =
1

T

∫ T

0

dteiωt(m−m
′)〈{n′j}|HJ |{nj}〉 × (2.53)

exp

[
−i V1

~ω
sin(ωt)

∑
j

(njnj+1 − n′jn′j+1)

]
,

where the main element 〈{n′j}|c
†
ici+1|{nj}〉 is non zero when n′i = ni + 1 and n′i+1 =

ni+1 − 1. Since the occupation number n can only be zero or one, we find that

ni = 1, n′i = 0, ni+1 = 0, n′i+1 = 1 and n′j = nj ∀ j 6= {i, i + 1}. This information

allows us to compute the sum

ŝ =
∑
j

(njnj+1 − n′jn′j+1) = ni−1ni − n′i−1n
′
i + nini+1 − n′in′i+1 + ni+1ni+2 − n′i+1n

′
i+2

= ni+2 − ni−1. (2.54)

Using the integral representation of the Bessel function, and following a similar

procedure as described in Ref. [54], we can then write the effective Hamiltonian as

Heff = −µ
∑
i

ni + V0

∑
i

nini+1 − J
∑
i

(c†ici+1 + h.c.)J0[K(ni+2 − ni−1)], (2.55)

where K = V1/~ω. Factorizing the sum of the Taylor expansion of the Bessel

function as

J0[Kŝ] =
∞∑
m=0

c2mK
2mŝ2m = 1− (1− J0[K])ŝ2, (2.56)

where ŝ2 = ni+2 + ni−1 − 2ni+2ni−1, we finally find the effective Hamiltonian

Heff = HJ +Hµ +HV + J(1− J0[K])
∑
i

(c†ici+1 + c†i+1ci)(ni+2 + ni−1 − 2ni+2ni−1).

(2.57)

This effective Hamiltonian describes a kind of correlated-hopping model, with

two-body and three-body interacting terms. The next step is then to apply a mean-

field approximation and study the topological properties of this system.
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2.4.2 Mean-field approximation

In this section, we are going to apply a mean-field approximation to the effective

Hamiltonian. In the absence of a driving term (V1 = 0), the Hamiltonian (2.57)

simplifies as

H = −J
∑
i

(c†ici+1 + h.c.)− µ
∑
i

ni + V0

∑
i

nini+1. (2.58)

By applying a MF approximation to the interaction part in the particle-particle

channel, i.e. nini+1 = c†icic
†
i+1ci+1 = c†ic

†
i+1ci+1ci → 〈c†ic

†
i+1〉ci+1ci + 〈ci+1ci〉c†ic

†
i+1 −

〈ci+1ci〉〈c†ic
†
i+1〉 = ∆∗1ci+1ci + ∆1c

†
ic
†
i+1 − |∆1|2, where ∆1 = ∆∗1 ≡ 〈ci+1ci〉 = 〈c†ic

†
i+1〉,

we find that the Hamiltonian may be written as

H = −J
∑
i

(c†ici+1 + h.c.)− µ
∑
i

ni + V0∆1

∑
i

(c†ic
†
i+1 + h.c.)− V0∆2

1N, (2.59)

where N is the length of the chain and V0∆1 ∈ R acts as the usual 1D p-wave

superconducting pairing. This Hamiltonian corresponds to the homogeneous Ki-

taev chain, which exhibits Majorana edge states for |µ/J | < 2, for open boundary

conditions.

Now, we consider the case V1 6= 0 and apply a mean-field approximation on the

many-body operators found in Eq. (2.57). Upon defining T̂ ≡ c†ici+1 + h.c., we can

identify three different terms in Eq. (2.57), T̂ ni+2, T̂ ni−1 and T̂ ni+2ni−1. In this

section, we will concentrate on the two-body interaction terms, which are given by

T̂ ni+2 = ∆1(ci+2ci + h.c.) + ∆2(ci+2ci+1 + h.c.)− (∆∗1∆2 + ∆∗2∆1), (2.60)

T̂ ni−1 = ∆1(ci+1ci−1 + h.c.) + ∆2(cici−1 + h.c.)− (∆∗1∆2 + ∆∗2∆1), (2.61)

where we used ∆1 = 〈ci+1ci〉 = 〈ci+2ci+1〉 = 〈cici−1〉 (the NN paring term) and

defined a next-nearest neighbor (NNN) pairing ∆2 = 〈ci+2ci〉 = 〈ci+1ci−1〉. As a

first approximation, we neglect the term T̂ ni+2ni−1, corresponding to a three-body

interaction. Upon substituting Eqs. (2.60) and (2.61) in (2.57), we find the mean-

field Hamiltonian

HMF = Hµ +HJ +HNN +Hd
NNN +Hd

NN (2.62)
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where

HNN = V0∆1

∑
j

(cj+1cj + h.c.) (2.63)

Hd
NNN = J(1− J0[K])∆1

∑
j

(cj+1cj−1 + cj+2cj + h.c.) (2.64)

Hd
NN = J(1− J0[K])∆2

∑
j

(cj+2cj+1 + cjcj−1 + h.c.) (2.65)

which corresponds to a Kitaev chain with a NNN pairing term and an inhomogeneous

NN pairing. Indeed, the pairing between cj+1cj has intensity V0∆1, whereas for the

next pairs of sites, cj+2cj+1, the intensity is V0∆1 + J(1− J0[K])∆2.

2.4.3 Toy models

In the previous section, we applied a mean-field approximation to the effective

Hamiltonian (2.62), and obtained a non-interacting spinless fermion model with

a dimerized NN and NNN pairing terms. In this section, we study the topological

properties of this system using an enlarged unit cell approach (with two sites) and

the polynomial description previously applied to the inhomogeneous Kitaev chain.

In Fig. (2.10), we depict the coupling in a particle-hole scheme, where we defined

φ = J(1− J0[K]) to simplify the notation.

Fig. 2.10: Coupling scheme for the effective mean-field Hamiltonian (2.62). The

presence of a dimer and NNN pairing terms request the use of an en-

larged unit-cell approach.
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Kitaev chain with dimerized NN pairing. – For simplicity and pedagogical

reasons, let us start by studying the effect of the dimerized NN pairing term and

artificially take Hd
NNN = 0 in the Eq. (2.62), we then get the Hamiltonian

Hdim = −µ
∑
j

nj − J
∑
j

(c†jcj+1 + h.c.) + V0∆1

∑
j

(cj+1cj + h.c.) (2.66)

+φ∆2

∑
j

(cj+2cj+1 + cjcj−1 + h.c.)

The last term in Eq. (2.66) adds a coupling only for alternating bonds and turns the

system into a dimerized pairing wire. To solve this problem, we are going to use the

enlarged unit-cell (EUC) approach [53]. The method consists of taking a unit-cell

in the particle-hole space with more than one site (enlarged), and then describing

the model by an internal structure in the EUC plus terms that connect the cells

(hopping-like matrix). In this case, the Hamiltonian for each EUC is

Hl =
N∑
j=1

[
−µnj,l − J(c†j,lcj+1,l + h.c) + V0∆1(cj,lcj+1,l + h.c)

]
, (2.67)

where N is the number of sites in the unit-cell (N = 2 for our purpose), and l is the

label of each unit-cell. Using the Bogoliubov de Gennes (BdG) transformation, we

can write the Hamiltonian (2.67) as

Hl =
1

2
ψ†j,lĤl,lψj,l (2.68)

where ψ†j,l = (c†1,l, ..., c
†
N,l, c1,l, ..., cN,l) is an extended basis given by the BdG trans-

formation. The hopping term among the unit-cells is a combination of spatially

modulated hopping and pairing terms, given by

H t = ψ†j,lĤ
t
l,l+1ψj,l+1 + ψ†j,l+1Ĥ

t
l+1,lψj,l, (2.69)

where H t = −J(c†j+1,lcj,l+1 + h.c.) + φ∆2(cj+1,lcj,l+1 + h.c.) is the linking element

between two unit-cells (l and l + 1).

Applying a Fourier transformation to each EUC allows us to write the Hamilto-

nian in momentum space as

H =
∑
k

ψ†kĤkψk, (2.70)
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where ψ†k = (c†i,k, c
†
i+1,k, ci,−k, ci+1,−k), and k ∈ (−π/N, π/N ] is the momentum in the

reduced Brillouin Zone. The Hamiltonian Hk then acquires the structure

Hk = Hl +HT
l,l+1 exp(iNk) +HT

l+1,l exp(−iNk). (2.71)

such that Eq. (2.70) may be rewritten as

H =
1

2

∑
k

ψ†kHkψk =
1

2

∑
k

ψ†k

 Vk Mk

M †
k −V T

−k

ψk, (2.72)

where Vk and Mk are N ×N matrices. The Hamiltonian Hk can be brought into an

off-diagonal form by a unitary transformation given by

ΩHkΩ
† =

 0 Ak

ATk 0

 , (2.73)

where Ak = Mk + Vk, and Ω = exp(−iτyπ/4) is the unitary transformation and τy

is the suitable Pauli matrix on the particle-hole space. The matrix Ak will give us

the information about the topological features of the model. In fact, the winding

vector has similar properties to the function Det(Ak) for the same values of k, which

describe loops in the complex plane linked with the winding number. From now on,

we are going to study this function using a polynomial description [53].

Let us start with the Ak matrix for the dimerized pairing model, given by

Ak =

 µ −e−ik(2J cos(k) + 2iV0∆1 sin(k)− e−ikφ∆2)

−eik(2J cos(k) + 2iV0∆1 sin(k) + eikφ∆2) µ

 . (2.74)

The topological phase transition occurs when Det(Ak) = 0. For the dimer-

pairing model, the phase-transition then takes place when µ = ±
√

(2J)2 − (φ∆2)2.

This result shows that the Ising lines in the topological phase diagram change their

position, getting close to the origin, as long as φ∆2 is smaller than 2J . After this,

the system remains gapped, but is no longer topological. In Fig. (2.11), we show

how the topological phase diagram changes when the dimer-pairing term is present

in the system.
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Fig. 2.11: Topological phase diagram for a system with a dimer-pairing term. The

white (gray) zone correspond to the topological (non-topological) phase.

The dashed lines represent the topological phase transition for the ho-

mogeneous case, and the bold (orange) line is where it occur when the

dimer term is non-zero φ∆2 6= 0 .

Kitaev chain with NNN pairing term – Now, we are going to study the effect

of the NNN pairing term. Taking HNN
d = 0 in Eq. (2.62), the Ak matrix is now

given by

Ak =

 µ+ 2iφ∆1 sin(2k) −e−ik(2J cos(k) + 2iV0∆1 sin(k))

−eik(2J cos(k) + 2iV0∆1 sin(k)) µ+ 2iφ∆1 sin(2k)

 . (2.75)

In this case, the topological phase diagram remains the same as the one for the ho-

mogeneous Kitaev chain (the system is topological for |µ/J | < 2), but the anisotropy

line rotates as a function of the NNN coupling φ∆1. The anisotropy line is where
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the path of the winding vector changes its chirality. This transition occurs when

Im[Det(Ak)] = 0. In the homogeneous case, the anisotropy line is given by V0∆1 = 0

(see Fig. (2.12)-left panel) which separates the phase diagram in two regimes, char-

acterized by the chirality of the winding vector. For V0∆1 > 0, the winding vector

rotates counterclockwise (Fig. 2.12 (I)), while is rotates clockwise for V0∆1 < 0

(Fig. 2.12 (II)). Notice that the sense of rotation in Figs. 2.12 (II) and 2.12 (IV) is

the same as in 2.12 (I). The difference is that in Fig. 2.12 (I) it encloses the origin

because this phase is topological. These features hold also for the phase diagram in

Fig. (2.11), simply with the topological region.

Fig. 2.12: (left panel) Topological phase diagram of the homogeneous Kitaev chain

and (right panel) the path of the winding vector and its chirality for

different regions on the parameter space. In the right panels we plot the

trajectory of the winding vector for the parameters (µ/J, V0∆1/J) given

by (I): (1.5, 1.5), (II): (1.5,−1.5), (III): (2.5, 1.5) and (IV): (−2.5, 1.5).

When the NNN pairing is added, then Im[Det(Ak)] = V0∆1 − φ∆1µ, hence

the anisotropy transition is described by either ∆1 = 0 or V0 = φµ. Since the

effective p-wave superconducting pairing of this system is given by ∆ ≡ V0∆1, we

can think that the anisotropy line rotates by the angle θ = arctan(φ∆1) with respect

to the homogeneous case, as shown in the left panel of Fig. (2.13). Across this line,

the chirality of the winding vector changes, as in the homogeneous case, with the
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difference that this line is no longer at ∆ = 0 This behavior can be observed in the

right panel of Fig. (2.13).

Fig. 2.13: (left) Topological phase diagram of the inhomogeneous case and (right)

the path of the winding vector and their chirality for different regions on

the parameter space. In the right panel, we plot the winding vector for

φ∆1/J = 2 and the parameters (µ/J, V0∆1/J) given by (I): (1.5, 3.5),

(II): (1.5, 2.5), (III): (2.5, 2.5) and (IV): (−2.5, 2.5).

Another interesting finding is the shape of the path described by the winding

vector. While in the homogeneous case the path is an ellipse, when the NNN pairing

is added, the shape of the path becomes a boomerang (see right panels of Fig. 2.13).

Kitaev chain with dimerized-NN and NNN pairing – When the dimerized-

NN and the NNN pairings are both included, the Hamiltonian in its off-diagonal

form is described by the following Ak matrix

Ak =

 µ+ 2iφ∆1 sin(2k) −e−ik(2J cos(k) + 2iV0∆1 sin(k)− e−ikφ∆2)

−eik(2J cos(k) + 2iV0∆1 sin(k) + eikφ∆2) µ+ 2iφ∆1 sin(2k)

 . (2.76)

The topological phase diagram is then a mixture of previous results. In fact,

since each kind of pairing distribution is present in different parts of the matrix Ak

(diagonal for NNN paring and off-diagonal for the dimer-NN pairing), the topological

phase diagram exhibits the features of both systems combined. In this case, the
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Ising line changes as the dimer-NN case: the topological transition takes place when

|µ| =
√

(2J)2 − (φ∆2)2, and the condition that describes the anisotropy line is given

by V0∆1 − φ∆1µ+ φ∆2/2 = 0.

In Fig. (2.14), we display the topological phase diagram of this system. In this

case, the anisotropy line is a linear equation, given by ∆/J = φ∆1µ/J − φ∆2/2.

Fig. 2.14: Topological phase diagram for the system with dimerized NN and NNN

pairings. While the topological phase transition is descirbed by µ =

±
√

(2J)2 − (φ∆2)2, the anisotropy line is given by the equation V0∆1−

φ∆1µ+φ∆2/2 = 0. In this plot we used the parameters φ = 3, ∆2 = 0.5

and ∆1 = 1/3.

2.4.4 Concluding remarks

In this Section, we studied the effect of a periodically driving perturbation in a

1D spinless fermion interacting model. After applying the Floquet formalism and

a mean-field approximation, we found an effective model equivalent to a p-wave

superconductor wire with an inhomogeneous pairing distribution. The distribution

added to the system a dimer pairing and a NNN pairing term, which was solved
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using an enlarged unit-cell approach, allowing us to describe a topological phase

diagram as a function of the driving frequency.

While the MF is not a good approximation in one-dimensional systems as we

neglected the three-body term, our approach allows us to identify effects linked to

the parameters that drive the time-dependent perturbation, and to understand how

to modify the boundaries and properties of the topological regions. It would be in-

teresting to investigate the full time-dependent problem using numerical approaches

like DMRG, including 6th order term, long-range hopping, dimerized hopping and

interaction.

All these studies helped us to acquire a deeper understanding of the paradigmatic

Kitaev model and its stability, thus setting the theoretical basis for Majorana qubits.

(back to quantum computing)

This application of our method of the enlarged unit-cell, described in Section

2.4, was worked out in collaboration with Professor Cristiane Morais Smith (Utrecht

University, The Netherlands) and it is being processed as a preprint for publication

purposes.

All the Sections previous to this one in this Chapter were the main contributions

to this thesis for the inhomogeneous Kitaev chain, and the results were published

in Journal of Physics: Condensed Matter 29, 475503 (Nov. 2017).



Chapter 3

The Haldane-Shastry model with

a chiral interaction

3.1 Integrability of many-body systems

Integrable systems play an important role in the comprehension of interacting many-

particle models in one dimension. Integrability is better, and perhaps only, under-

stood through the Bethe ansatz method [55], where an infinite set of conserved

quantities are reduced analytically to a set of Bethe ansatz equations, whose solu-

tions would eventually give all the quasi-momenta of the exact many-body wave-

function [56]. It is an intricate set of solutions whose practical limitations took more

than 50 years to read off the non-trivial physical concepts involved. Among these

concepts there is a prominent one, which is the fractional quantization of spin in

antiferromagnetic spin-1/2 chains. Fadeev and Takhatajan [57] discovered in 1981

that the elementary excitations, now called spinons, of the spin-1/2 Heisenberg chain

solved by Hans Bethe fifty years earlier carry spin-1/2, contrary to spin flips which

carry spin-1. This is now known as fractionalization of spin and it is conceptually

similar to the fractional quantization of charge in quantized Hall liquids [13]. One

of the reasons underlying practical uses of the Bethe ansatz is that the solutions

are given as distributions of pseudomomenta, in which spinon excitations appear as

defects. Spinons hence play the role of defects or solitons in the solutions of the

Bethe ansatz equations, either for spins in the Heisenberg model as for electrons in



Chapter 3. The Haldane-Shastry model with a chiral interaction 54

the one-dimensional Hubbard model.

The spinon Hilbert space cannot be decomposed into a product space of single

particle states, as the Fock space for the familiar cases of fermions or bosons. Indeed,

such peculiarity is the kernel of the difficulties to develop a perturbative method in

the spinon field directly.

The work in this thesis confronts such possibility by coupling a chiral perturba-

tion to the Haldane-Shastry model. The chiral perturbation will be related to the

Yangian algebra and involves the z-component of the rapidity vector.

The spin and the rapidity operators define the Yangian algebra for the Haldane-

Shastry spin chain, as we shall see below. To construct the spinon Hilbert space

of the Haldane-Shastry model, one has to deal with tensor products of the funda-

mental representations of the associated Yangian algebra. It is shown here that the

representation theory of the Yangian is intimately related to the fractional statistics

of the spinons.

In this Chapter we present our study of the Haldane-Shastry model with a chi-

ral interaction given by the rapidity operator. In section 3.2, we summarize the

Haldane-Shastry model and detail the most important properties of the ground-

state and its spectrum. In section 3.3 we introduce the Haldane-Shastry model with

a chiral interaction and show our numerical results and the analytic description

that explain the features of the exact diagonalization in finite clusters. In doing this

we discovered how to use the Modified Young Tableaus formalism [63] to describe

the representation theory of the Yangian algebra that operates in the elementary

excitations of the Haldane-Shastry model. Finally, we discuss some aspects about

our findings related to the thermodynamic limit and the comparison with other

medium-range spin chain models.

3.2 A summary of the Haldane-Shastry model

In this section, we summarize the most important features of the spin-1/2 chain

model with 1/r2-exchange interactions, which was independently solved by F. D.
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Fig. 3.1: Scheme representing N sites of spin-1/2 on the unit circle. The chord

distance |zα − zβ| between the sites α and β is drawn with a dotted line.

Positions are given by zα = exp
(
i2π
N
α
)
.

M. Haldane [7] and B. S. Shastry [8] in 1988, and is part of the exclusive list of

many-body models which are exactly solved [58].

3.2.1 The Hamiltonian and its symmetries

Let us consider a chain of N Heisenberg spins (with N even), located in a unit-circle

embedded in the complex plane, as seen in Fig. 3.1. The positions of the spins-1/2

on the unit circle are uniformly distributed

zα = exp

(
i
2π

N
α

)
with α = 1, ..., N. (3.1)

The Hamiltonian of the Haldane-Shastry model (HSM) is described by exchange

interactions between the spins depending on the inverse of the distance square (1/r2)

among the spins, given by the expression

HHS =
( π
N

)2
N∑
α<β

Sα · Sβ
|zα − zβ|2

(3.2)

where |zα − zβ| is the chord distance (r) between the sites α and β, as shown in

Fig. 3.1.

The spin-chain models are usually characterized by the time-reversal symmetry,

stemming for the invariance under space translations due to their periodic bound-

ary condition or rotations of the unit circle; the parity symmetry, which can be

studied after a Jordan-Wigner transformation; and the global SU(2) spin rotations
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symmetry, which is generated for the HSM by the spin operator

Stot =
N∑
α=1

Sα,
[
HHS,Stot

]
= 0. (3.3)

The HSM possesses an additional symmetry generated by the rapidity vector

operator which measures the spin current and is given by

Λ =
i

2

N∑
α,β=1α 6=β

zα + zβ
zα − zβ

Sα × Sβ,
[
HHS,Λ

]
= 0. (3.4)

The total spin trivially satisfies the standard commutation relations for angular

momentum [
Sitot, S

j
tot

]
= iεijkSktot, (3.5)

and the rapidity operator transforms as a vector operator under spin rotations,[
Sitot,Λ

j
]

= iεijkΛk. (3.6)

Note that even though both Stot and Λ commute with the Hamiltonian, they do

not commute mutually, generating an infinite dimensional associative algebra with

certain defining relations and consistency conditions, named the Yangian Y(sl2)

[58]. This symmetry is indirectly related with the integrability of this model, whose

solution was found by the asymptotic Bethe ansatz [59,60] that will be commented

below.

3.2.2 The Haldane-Shastry eigenstates: Modified Young

Tableaux

The ground state of this model is given by the Gutzwiller projector over the free

Fermi sea described by the N -particle Slater determinant. This projection eliminates

configurations with more than one particle on any site, and reads as follows

|ψHS0 〉 = PG|ψNSD〉 (3.7)

where

|ψNSD〉 =
∏
q ∈I

c†q↑c
†
q↓|0〉, and PG =

N∏
i=1

(1− c†i↑ci↑c
†
i↓ci↓). (3.8)
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PG is the Gutzwiller projector and I is a set of N/2 adjacent momenta, which has to

be occupied by two particles of different spins [61]. The state |ψNSD〉 is a singlet by

construction and PG commutes with SU(2) rotations, then the ground-state |ψHS0 〉

is a SU(2) singlet as well. In fact, we have that

[PG,Sα] = [PG,Stot] = 0, (3.9)

and Stot|ψNSD〉 = 0, hence

Stot|ψHS0 〉 = 0. (3.10)

The ground state has momentum

p0 = −π
2
N (3.11)

where we have adopted a convention according to which the vacuum state, which is

| ↓↓ ... ↓ 〉, has momentum p = 0 (and the empty state |0〉 has p = π(N − 1)). The

energy of this ground-state is

E0 = − π2

4N
. (3.12)

Let us comment and summarize some results about the whole spectrum of HSM.

The elementary excitations of this model can be constructed by the annihilation

of a particle from the Slater determinant state before Gutzwiller projection. This

annihilation creates a spinon with opposite spin orientation and spin 1/2. The two-

spinon polarized state can be mapped to the exact eigenstates of the HSM, and the

total energy of this eigenstate takes the form of free particles if and only if each

spinon momenta is shifted [62]. The shift is due to the fractional statistics of the

spinons. In another way, the whole spectrum can be solved by the asymptotic Bethe

ansatz (ABA) [59, 60], giving us the pseudomomenta of each spinon (pi) and their

single spinon spectra. For a chain with even number of spins, the dispersion relation

of a single spinon is

ε(p) =
π2

8N2
+

1

2
p(π − p). (3.13)

The momentum and energy of each eigenstate of HSM is given by

p = p0 +
L∑
i=1

pi, E = E0 +
L∑
i=1

ε(pi) (3.14)
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where L ≤ N is the number of spinons.

The methodology to find the pseudomomenta by the ABA is rather complicate.

Greiter and Schuricht [63] has found a new, clear and heuristic approach to describe

the spinon spectra. The method consists in modifying the Young tableaux initially

used to describe the SU(2) spectrum of the Heisenberg model. The modification give

us a set of numbers, which can be identified as spinon momentum numbers (SMN)

that coincide with the motifs used in the ABA, and enabling us to compute the

Hilbert space representation of the free spinons and their single momenta spectrum.

The formalism found by Greiter and Schuricht works as follows. For our system,

the Hilbert space can be decomposed into a representation of the total spin (Stot).

Since this operator commutes with the Hamiltonian described in the Eq. (3.2), we

can classify this decomposition by the energy eigenstates. This representation can

be expressed in terms of Young tableaux, which give us a set of tableaus that depict

an irreducible representation of SU(2). The procedure to obtain the tableaus works

as follow: each spin is represented by a box numbered, then the Hilbert space is

build by the tensor product of these boxes. For instance, a system with two spins

is composed by boxes as follows

1 ⊗ 2 . (3.15)

The SU(2) representation is constructed by putting the boxes together such as the

numbers assigned to them increase in each row from left to right and in each column

from top to bottom. Each tableau obtained in this way represents an irreducible

representation of SU(2). For our example, the Young tableaux for two spins as given

by the direct sum is

1 ⊗ 2 =
1

2︸︷︷︸
S=0

⊕ 1 2︸ ︷︷ ︸
S=1

(3.16)

where the tableaux represent a basis composed by a singlet state (S = 0) and a

triplet state (S = 1). The boxes distribution indicates symmetrization over all

boxes in the same row, and antisymmetrization over all boxes in the same column,
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which implies that we cannot have more than 2 boxes on each column, because exists

just one possibility to antisymmetrize states composed by spin-1/2. In our example

we have that the first tableau represents a singlet because the two boxes are in the

same column, then the state have to be antisymmetrized. Using the spin quantum

numbers (the total spin S and the z-spin component Sz) and the spin distribution

to describe any state, we summarized the previous observation as follows

1

2︸︷︷︸
S=0

≡ |S = 0, Sz = 0〉 ≡ | ↑↓〉 − | ↓↑〉 (3.17)

For N = 4, the Young tableaux are given by direct sums as follows

1 ⊗ 2 ⊗ 3 ⊗ 4 =



1 3

2 4
⊕

1 2 4

3
⊕

1 2

3 4
⊕

1 2 3

4
⊕

1 3 4

2
⊕ 1 2 3 4

(3.18)

where we can see that each tableau has up to two rows.

Now, we will introduce the modified Young tableaux, which create a one-to-one

correspondence between the Young tableaux and the non-interacting spinon states.

For each Young tableau we shift boxes to the right such as each box is below or in

the column to the right of the box with the preceding number. Each missing box

in the resulting extended tableau represents a spinon, to which we assign a spinon

momentum number (SMN) ai given by the number in the same column. This number

is the main feature of the one-to-one correspondence by the single spinon momenta

given by

pi =
π

N

(
ai −

1

2

)
. (3.19)

The modification of the Young tableaux described above, give us the complete

set of pseudomomenta that provides us with the solution of the HSM for a complete
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description of each supermultiplet. In Table (3.1), we can see the Young tableaux

and their modifications for N = 4, including the SMN and the total energy related

to the ground-state ∆E = Ei − E0.

Table 3.1: Spectrum for N = 4 including the SU(2) Young tableaux, the total spin

Stot and its degeneracy (deg), the modified Young tableaux (MYT), the

spinon momentum number (SMN) and its relative energy ∆E.

Young Tab. Stot (deg) MYT SMN {ai} ∆E/E0

1 3

2 4
0 (1)

1 3

2 4
– 0

1 2

3 4
0 (1)

1 2 •

• 3 4
{1, 4} 2

1 2 4

3
1 (3)

1 2 4

• 3 •
{1, 4} 2

1 3 4

2
1 (3)

1 3 4

2 • •
{3, 4} 3

1 2 3

4
1 (3)

1 2 3

• • 4
{1, 2} 3

1 2 3 4 2 (5)
1 2 3 4

• • • •
{1, 2, 3, 4} 6

Using this approach, we can summarize the information required to describe the

whole spectrum of the HSM for any chain size. To finish this section, we show in

the Tables (3.2), (3.3) and (3.4) the spectrum for N = 4, 6 and 8 sites, respectively,

given by the SU(2) configuration, the SMN distribution {ai} and the energy ∆E of

each supermultiplet.
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Table 3.2: Eigenstates characterization of the HSM for N = 4 sites. n labels the

supermultiplets described by its SU(2) representation, the spinon mo-

mentum number distribution {ai} and their energy difference from the

ground-state. We have 4 different supermultiplets.

n SU(2) {ai} ∆E/E0

0 0 – 0

1 0⊕ 1 {1, 4} 2

2 1 {1, 2} 3

2 1 {3, 4} 3

3 2 {1, 2, 3, 4} 6

Table 3.3: Eigenstates characterization of the HSM for N = 6 sites. n labels the

supermultiplets, which are described by its SU(2) representation, the

spinon momentum number distribution {ai} and their energy difference

from the ground-state. We have 9 different supermultiplets.

n SU(2) {ai} ∆E/E0

0 0 – 0

1 0⊕ 1 {1, 6} 2

2 1 {1, 2} 10/3

2 1 {5, 6} 10/3

3 0⊕ 1 {1, 4} 4

3 0⊕ 1 {3, 6} 4

4 1 {3, 4} 6

5 0⊕ 1⊕ 2 {1, 2, 5.6} 20/3

6 1⊕ 2 {1, 4, 5, 6} 22/3

6 1⊕ 2 {1, 2, 3, 6} 22/3

7 2 {3, 4, 5, 6} 28/3

7 2 {1, 2, 3, 4} 28/3

8 3 {1, 2, 3, 4, 5, 6} 38/3
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Table 3.4: Eigenstates characterization of the HSM for N = 8 sites. n labels the

supermultiplets, which are described by its SU(2) representation, the

spinon momentum number distribution {ai} and their energy difference

from the ground-state. There are 19 supermultiplets in this case.

n SU(2) {ai} ∆E/E0

0 0 – 0

1 0⊕ 1 {1, 8} 2

2 1 {1, 2} 7/2

2 1 {7, 8} 7/2

3 0⊕ 1 {3, 8} 9/2

3 0⊕ 1 {1, 6} 9/2

4 0⊕ 1 {5, 8} 5

4 0⊕ 1 {1, 4} 5

5 0⊕ 1 {3, 6} 7

5 0⊕ 1⊕ 2 {1, 2, 7, 8} 7

6 1 {3, 4} 15/2

6 1 {5, 6} 15/2

7 1⊕ 2 {1, 6, 7, 8} 8

7 1⊕ 2 {1, 2, 3, 8} 8

8 0⊕ 1⊕ 1⊕ 2 {1, 4, 7, 8} 17/2

8 0⊕ 1⊕ 1⊕ 2 {1, 2, 5, 8} 17/2

9 0⊕ 1⊕ 1⊕ 2 {1, 4, 5, 8} 10

n SU(2) {ai} ∆E/E0

10 1⊕ 2 {3, 6, 7, 8} 21/2

10 1⊕ 2 {1, 2, 3, 6} 21/2

11 0⊕ 1⊕ 2 {3, 4, 7, 8} 11

11 0⊕ 1⊕ 2 {1, 2, 5, 6} 11

11 2 {5, 6, 7, 8} 11

11 2 {1, 2, 3, 4} 11

12 1⊕ 2 {3, 4, 5, 8} 25/2

12 1⊕ 2 {1, 4, 5, 6} 25/2

13 0⊕ 1⊕ 2⊕ 3 {1, 2, 3, 6, 7, 8} 14

14 1⊕ 2⊕ 3 {1, 2, 5, 6, 7, 8} 29/2

15 2 {3, 4, 5, 6} 15

16 1⊕ 2⊕ 3 {1, 2, 3, 4, 7, 8} 16

16 2⊕ 3 {1, 4, 5, 6, 7, 8} 16

16 2⊕ 3 {1, 2, 3, 4, 5, 8} 16

17 3 {3, 4, 5, 6, 7, 8} 37/2

17 3 {1, 2, 3, 4, 5, 6} 37/2

18 4 {1, 2, 3, 4, 5, 6, 7, 8} 22

This model is integrable and exactly solvable even for chains with finite length,

allowing us to derive an explicit wave-function for the ground-state and their el-

ementary spinon excitations [7]. An interesting discussion about the physics of

these excitations was developed in the last decades. Bernevig et al. [64] studied

the spinon-spinon scattering matrix for the two spinon wave-function and found ef-

fects of the interaction between the spinons. Later on, Greiter and Schuricht [62]

made a critical revision, and found that the interaction effects are in fact due to the

fractional statistics (Yangian statistics) of free particles, which results in non-trivial

quantization rules for a single spinon momenta, which are linked with the approach

previously discussed.



Chapter 3. The Haldane-Shastry model with a chiral interaction 63

3.3 The chiral interaction

In this section, we will introduce a new model given by HSM plus the z-component

of the rapidity operator Λ given by the eq. (3.4), which acts as a long-range chiral

interaction. The chiral Hamiltonian reads as follows

HHS−Ch = HHS +D
( π
N

)2

Λ3, (3.20)

where D is a real number that modulates the interaction strength, and Λ3 is the

z-component of the rapidity operator, i.e.,

Λ3 ≡ Λ · ẑ. (3.21)

In the previous section, we showed how the whole spectrum of the HSM can

be described using a SU(2) representation of free-spinons provided by the MYT.

Although this picture diagonalizes the HSM, it cannot solve the chiral Hamiltonian

HHS−Ch. In fact, the commutation relation given by eq. (3.6) show us that the ra-

pidity interaction does not commute with the spin operator and then it is impossible

to find a common basis between SU(2) and Λz. In fact, the rapidity interaction is a

generator of the Yangian algebra (Y(sl2)), which describes both the HSM and the

rapidity.

Schuricht [9] visualized the problem about the kind of states that the MYT gives

us, and he extended the description, previously developed, by means of the Yangian

Y(sl2) representation over the spinon distributions, which can be described by the

spectral parameter of the representation that are related with the previous SMN

findings. The key ingredient is the identification of the Yangian Highest Weight

State (YHWS) of each representation and the construction of the other states from

that, which will be discussed below.

First, we will develop a numerical approach based on exact diagonalization, in-

cluding a discussion about the eigenstates and the energy distribution after the

rapidity interaction was turned on. Next, we summarize the representation theory

of the Yangian algebra Y(sl2), applying it to the spectrum of N = 4. Finally we

summarize our results and discuss the outcomes in the large-size limit (N →∞).



Chapter 3. The Haldane-Shastry model with a chiral interaction 64

3.3.1 Numerical approach

In this section, we present the numerical results by exact diagonalization of the HSM

with the rapidity interaction presented above. We studied chains with N = 4, 6 and

8 spin-1/2, homogeneously distributed in a unit-circle in the complex plane. The

whole spectrum of each chain will be labeled by the supermultiplet (n) and the Λz

expectation value, as well as by the total spin S and its z-component through the

kets |n, S, Sz,Λz〉 . Furthermore, we will study the parameters where the ground-

state transition takes place and discuss the projection of the eigenstates onto a

suitable SU(2) basis, which describes the spectrum of the HSM but it is not useful

when the rapidity interaction is added.

Finite chain for N = 4 sites:

The HSM spectrum with N = 4 spin-1/2 is composed by 4 supermultiplets. The

ground-state (n = 0) is a singlet, while the excited states are degenerated, composed

by 4, 6 and 5 states, respectively. The projection in a SU(2) basis show us that the

1st excited state (n = 1) is composed by a singlet plus a triplet (S = 0 ⊕ 1), the 2nd

excited state by two triplets (S = 1⊕1) and the 3rd excited state by a quintet (S = 2)

in agreement with theoretical results previously discussed using the MYT. See Table

3.2. While the representation above allow us to describe the HSM spectrum it is not

useful when the rapidity interaction is added, where the degenerate states of each su-

permultiplet split, turning the spin not a good quantum number. The split is handled

by the Λz expectation value and its effect can be seen in Fig. (3.2). We found that

the ground-state and the 3rd supermultiplet have a rapidity expectation value equal

to zero. For the 2nd supermultiplet we found that each triplet is outlined indepen-

dently. One of them is described by the states |2, 1, 1, 1〉, |2, 1, 0, 0〉, |2, 1,−1,−1〉,

and the other by the states |2, 1, 1,−1〉, |2, 1, 0, 0〉, |2, 1,−1, 1〉, where we should

pay attention in how the rapidity expectation has opposite signs between two states

with the same Sz. Similarly, we found that two states with Sz = 0 split in the 1st

supermultiplet, while two other states do not split. The last two states are |1, 1,±1〉,

while the splitted states are a linear combination of two states with Sz = 0, with
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different total spin and |〈Λz〉| =
√

2. The linear combination is given by

|1, 0⊕ 1, 0,−
√

2〉 =
1√
2

(|1, 0, 0〉 − i|1, 1, 0〉) (3.22)

|1, 0⊕ 1, 0,
√

2〉 =
1√
2

(|1, 0, 0〉+ i|1, 1, 0〉) (3.23)

where in the right hand we have written the states with the SU(2) basis represen-

tation. |n, S, Sz〉.

The whole spectrum, including the split can be seen in the Fig. (3.2).

Fig. 3.2: Level splittings of the HSM supermultiplets, as a function of D for N = 4.

The split observed in the energy spectrum allows us to identify a ground-state

transition. In fact, we observe that since the ground-state of the HSM is not per-

turbed with the rapidity interaction, the state |1, 0⊕1, 0,−
√

2〉 turns into the ground

state for a specific value of the interaction strength D. Let the ground-states of this

model be given by

|GS, 1〉 = |0, 0, 0〉 (3.24)

|GS, 2〉 =
1√
2

(|1, 0, 0〉 − i|1, 1, 0〉) (3.25)

The energy of the ground-state can be represented as following

EGS(D) =

 E0 D < D1

E1 −
(
π
N

)2
Dλz1 D ≥ D1

(3.26)
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where E0 = −7
2
π2

N2 is the energy of the HS ground-state (n = 0), until D1 ≈ 1.41421,

and E1 = −3
2
π2

N2 is the energy of the first excited (n = 1) state, and −
(
π
N

)2√
2 is

the expectation value of the rapidity interaction in the state |GS, 2〉.

D1 can be found numerically if we know the HSM spectrum and the splitting.

For the system with N = 4 we know that E0 = −7
2
π2

N2 and E1 = −3
2
π2

N2 , then D1 can

be expressed as follows

D1 =
E1 − E0√
2(π/N)2

=
2(π/N)2

√
2(π/N)2

=
√

2 ≈ 1.41421 (3.27)

Fig. 3.3: Ground-state energy as a function of D for N = 4. There is a crossing

of levels at D = D1 = 1.41421, from |GS, 1〉 to |GS, 2〉.

Finite chain for N = 6 sites:

The HSM spectrum with N = 6 spins is composed by 9 supermultiplets (labeled

by n = 0, . . . , 8). The ground-state is a singlet, while the rest of the spectrum is

composed by degenerate states that split when the rapidity interaction is added.

The degeneracies of these states are 4, 6, 8, 3, 9, 16, 10, and 7, respectively. The

SU(2) representations of these states are the same that those given by the MYT

approach. For instance, the first supermultiplet is composed by a singlet and a

triplet (0 ⊕ 1), states previously discussed for N = 4 and in the description of the

MYT. The whole spectrum including the splitting due to the interaction can be seen

in the Fig. (3.4).
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Fig. 3.4: Level splittings of the HS supermultiplets, as a function of D for N = 6.

In this system, we observe two ground-state transitions. Numerically, we found

that the first transition occurs at D1 = 0.6413, while the second is at D2 = 2.8364.

The S and Sz expectation values of the ground-states have similar behaviors as the

system with N = 4: the total spin S grows in steps, and Sz is always zero. This

observation can be seen in figure 3.5.

Fig. 3.5: Ground-state as a function of D for N = 6. There are level crossings at

D1 = 1.11072 and D2 = 2.8364, from |GS, 1〉 to |GS, 2〉 and |GS, 3〉.
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The different ground-states can be represented as following:

|GS, 1〉 = |0, 0, 0〉 (3.28)

|GS, 2〉 =
1√
2

(|1, 0, 0〉 − i|1, 1, 0〉) (3.29)

|GS, 3〉 =
1√
2

(|5, 0⊕ 2, 0〉 − i|5, 1, 0〉) (3.30)

We found that the 3rd ground-state is a linear combination of states |5, 1, 0〉 and

|5, 0 ⊕ 2, 0〉 , while the latter state is a linear combination of |5, 0, 0〉 and |5, 2, 0〉.

It shows us that the basis that we built is not a good representation for the chiral

model, because it mixes states with different total spin.

Numerically, we found that the linear combination of mixed state |5, 0⊕ 2, 0〉 is

given by

|5, 0⊕ 2, 0〉 = −
√

5

7
|5, 0, 0〉 −

√
2

7
|5, 2, 0〉. (3.31)

In the previous subsection, we showed how to compute the value D where the

ground-state transition occurs. Using this procedure, we calculated an analytic

expression to the energy of the ground-state transition to find the values of D where

this occurs. The energy can be written as

EGS(D) =


E0 D ≤ D1

E1 −
(
π
N

)2
Dλz1 D1 ≤ D ≤ D2

E5 −
(
π
N

)2
Dλz5 D2 ≤ D

(3.32)

where E0 is the energy of the HSM ground-state, E1 and E5 are the HSM eigenen-

ergies of the supermultiplets n = 1 and n = 5, respectively. Expressions −
(
π
N

)2
λz1

and −
(
π
N

)2
λz5 are the expectation values of the rapidity interaction to the first and

fifth excited states, where λz1 =
√

6 and λz5 =
√

14. As we said before, we can calcu-

late the exact value of D for each transition. A general expression can be deduced

to find the value of D between two different ground-states A and B, as following

DA→B =
EA − EB

(π/N)2(λzA − λzB)
. (3.33)

For our system, we know that Ei = (π/N)2εi for supermultiplet i, and in the transi-

tion EB > EA, that is λzB > λzA. The last inequality allows us to create an algorithm
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to find the HSM supermultiplet that has a combination of HSM eigenstates which

is going to be a ground-state of the full system.

Equation (3.33) can be rewritten as follows

DA→B =
εB − εA
λzB − λzA

(3.34)

For the system with N = 6, we have: ε0 = −41/4 , ε1 = −29/4, ε5 = −1/4, λ0 = 0,

λ1 =
√

6, λ5 =
√

14, then

D1 =
−29/4 + 41/4√

6−
√

0
=

√
3

2
≈ 1.22474 (3.35)

D2 =
−1/4 + 29/4√

14−
√

6
=

7√
14−

√
6
≈ 5.41725 (3.36)

Finite chain for N = 8 sites:

For N = 8 sites we have 19 supermultiplets. Their degeneracies are 1, 4, 6, 8, 8, 13,

6, 16, 24, 12, 16, 28, 16, 16, 30, 5, 24, 14, 9, respectively. Their energies and the

SU(2) description match with the one given by MYT. The whole spectrum can be

observed in Figure 3.6.

Fig. 3.6: Level splittings of the HS supermultiplets, as a function of D for N = 8.

In this system we observe that the ground-state has three transition points,

characterized by the following D1 = 0.4534, D2 = 1.6591 and D3 = 4.523, while

Sz = 0 for all ground-states.
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To build the ground-state SU(2) composition, we used the information collected

in the previous subsections. The three first states have the same structure that

the systems with N = 4 and N = 6, but different values of λz (0, 12 and 34,

respectively). The ground-states are given by

|GS, 1〉 = |0, 0, 0〉 (3.37)

|GS, 2〉 =
1√
2

(|1, 0, 0〉 − i|1, 2, 0〉) =
1√
2

(i|1, 0, 0〉+ |1, 2, 0〉) (3.38)

|GS, 3〉 =
1√
2

(|5, 0?6, 0〉 − i|5, 2, 0〉) =
1√
2

(i|5, 0?6, 0〉+ |5, 2, 0〉) (3.39)

|GS, 4〉 =
1√
2

(|13, 2?12, 0〉 − i|13, 0?6, 0〉)

=
1√
2

(i|13, 2?12, 0〉+ |13, 0?6, 0〉) (3.40)

The states |13, 2?12, 0〉 and |13, 0?6, 0〉 have the following linear combination of

HSM eigenstates:

|13, 2?12, 0〉 ≈ −0.250807|13, 2, 0〉 − 0.968037|13, 12, 0〉 (3.41)

|13, 0?6, 0〉 ≈ −0.75248|13, 0, 0〉 − 0.658615|13, 6, 0〉 (3.42)

The expectation value of (Λz)2 for |GS, 4〉 is now not an integer number, but

interesting results are observed in the supermultiplet 13 that host these states. In

the HSM supermultiplet n = 13, we have a set of eigenstates that has the same Sz

expectation value. Here, we have two linear combinations that create two eigenstates

with different values of 〈Λz〉 where the sum of these squared is an integer number,

which in this case is equal to 54. For the ground-state of phase four, we have

λz4 ≈ −7.04624 that has a partner eigenstate with λ ≈ −2.08578.

Using the equation (3.34) we can identify a numerical expression for the param-

eter D in the different ground-state transitions. If ε0 = −23, ε1 = −19 , ε2 = −9

and ε3 = 5, we obtain that
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D1 =
−23 + 19√

0−
√

12
=

2√
3
≈ 0.4534 (3.43)

D2 =
−19 + 9√
12−

√
34

=
10√

34− 2
√

3
≈ 1.6591 (3.44)

D3 =
−9− 5√

34− 7.04624
≈ 11.5199 (3.45)

Fig. 3.7: Ground-state energy as a function of D for N = 8. The ground-state

transitions occur for D1 = 0.4534, D2 = 1.6591 and D3 = 11.5199

3.3.2 Early conclusion

In this subsection, we have shown a numerical description of finite chains of spin-1/2

whose interaction is described by the chiral Hamiltonian (3.20). We observed that

the degeneracy in each supermutliplet is splitted, mixing the total spin component

of the state previously described by a SU(2) representation obtained by the MYT.

Althought Sz is a good quantum number, the formalism developed by Greiter and

Schuricht [63], and discussed in the sections above, is not suitable to study our chiral

model, as we observed on the ground-state description. The main outcome of this

section was the description of the ground-state transitions. The splitting due to

the rapidity interaction enable the system to have ground-state transitions. The

different ground-states are characterized by a null Sz expectation value and they

come from specific supermultiplets of HSM, as long as the chain size increases.
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The split on each supermultiplet and the fact that a SU(2) description is not

useful to characterize the splitted state, give us arguments to introduce a descrip-

tion using the Yangian Y(sl2) algebra, which also describe the HSM spectrum in a

different way that the SU(2) basis given by the MYT. In the next section we will

follow a representation theory approach of the Yangian algebra, developed in [9] by

Schuricht.

3.3.3 Analytical approach

In this section, we present the representation theory of the Yangian algebra Y(sl2)

to describe the spectrum of the HS model with a rapidity interaction following the

approach of Schuricht [9]. The numerical calculation showed us that the states split

when the interaction is turn on. The split is driven by the expectation value of

Λz, which can be computed theoretically using the representation theory of Y(sl2).

This approach maps the Hilbert space of HSM into independent descriptions of the

elementary excitations using the Yangian, where each representation is described by

their respective spectral parameters. (For more details see [65]).

Let us start summarizing the Yangian algebra for spin-1/2 (Y(sl2)). It is com-

posed by an orthonormal basis given by Sa = σa/2, where σa are the Pauli matrices

with a = 1, 2, 3. The Y(sl2) is a infinite-dimensional associative algebra over C

generated by the elements Sa and Λa, with the following relations

[Sa, Sb] = iεabcSc (3.46)

[Sa,Λb] = iεabcΛc (3.47)

where εabc is the Levi-Civita symbol. On the other hand, Y(sl2) has a Hopf algebra

structure with comultiplications ∆ : Y(sl2)→ Y(sl2) ⊗ Y(sl2) given by

∆(Sa) = Sa ⊗ 1 + 1⊗ Sa, (3.48)

∆(Λa) = Λa ⊗ 1 + 1⊗ Λa − iεabcSb ⊗ Sc. (3.49)

The representation theory of the Yangian can be understood naively as a set of

states sorted by the weight given by the Laurent expansion of a monic polynomial
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known as Drinfel’d polynomial [9, 66]. The weight of the first state in this set

depends on the spectral parameters that describe the representation. This state is

known as the Yangian Highest Weight State (YHWS) and is the main element on

the representation.

Let us apply this algebra in the most simple case for spin-1/2: a single spinon

basis, which corresponds to two-dimensional Yangian representation, with a spectral

parameter ξ, denoted by V (1
2
, ξ). Let {| ↑〉, | ↓〉} be the basis of our two-dimensional

space. The YHWS of this representation is the state | ↑〉, which is described as

follows

Sz| ↑〉 =
1

2
| ↑〉, S+| ↑〉 = 0, S−| ↑〉 = | ↓〉

Λz| ↑〉 =
ξ

2
| ↑〉, Λ+| ↑〉 = 0, Λ−| ↑〉 = 2ξ| ↓〉.

By completeness, the state | ↓〉 is described by

Sz| ↓〉 = −1

2
| ↓〉, S+| ↓〉 = | ↑〉, S−| ↓〉 = 0

Λz| ↓〉 = −ξ
2
| ↓〉, Λ+| ↓〉 = ξ| ↑〉, Λ−| ↓〉 = 0.

Schuricht [9] found the connection between this spectral parameter and the

spinon momentum number (SMN) given by the Modified Young Tableaux (MYT).

The Modified Young Tableaux for one spinon is described by a SMN a. This number

is linked with the expectation value of Λz by the expression

Λz| ↑〉 =
1

2

(
a− N + 1

2

)
| ↑〉 (3.50)

where N is the size of the spin chain. The expression above enable us to map the

complete spectrum for each MYT using the representation theory of Y(sl2).

For the two spinons case, the Yangian representation can be build by the tensor

product of two single-spinon representation with different spectral parameter, V1 ⊗

V2 = V (1
2
, ξ1)⊗V (1

2
, ξ2). Although the YHWS of this representation is given by the

v1⊗v2, where vi is the respective YHWS of Vi, the tensor product between V1 and V2

is not isomorphic, therefore the other states are not easy to build. In fact, since the
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comultiplication relation given by the Eqs. (3.48) and (3.49) are not commutative,

the expectation value of Y(sl2) operators does not have a simple structure.

Now, we will show how the two spinons representation is build by the tensor

product of two single spinon and the comultiplication relation. Let us start with the

YHWS of this space, which is given by | ↑↑〉 = | ↑〉 ⊗ | ↑〉 and characterized by

S+| ↑↑〉 = Λ+| ↑↑〉 = 0. (3.51)

Using the comultiplication relation described in Eq. (3.49), we can find that

Λz| ↑↑〉 = λz| ↑↑〉 (3.52)

Sz| ↑↑〉 = | ↑↑〉. (3.53)

where λz = ξ1/2 + ξ2/2. ξi = ai− (N + 1)/2 for ai read from the MYT with a2 > a1.

This state is also eigenstate of both HSM and the chiral model to each set of SMN

extracted from the MYT. Moreover, the other state that is also eigenstate of the

chiral model, and the HSM too, can be found by means of the Yangian algebra. For

instance, Schuricht [9] describe the spectrum when a2−a1 = 1, finding that a singlet

state is part of the basis. Next, we will extend this results for any δ = a2 − a1 ≥ 1,

where we will see that the singlet state is just a limiting case.

Let us start to study the state S−| ↑↑〉, which turns down one spinon forming a

singlet as follows

S−| ↑↑〉 = | ↓↑〉+ | ↑↓〉 (3.54)

where we used the comultiplication relation given by Eq. (3.49). While the z-spin

component of this state is zero, hence is an eigenstate of Sz, the expectation value

of Λz is a linear combination of two elements of the algebra. In fact, using the

commutation relation [Λz, S−] = −Λ−, we found that

ΛzS−| ↑↑〉 = −Λ−| ↑↑〉+ λzS−| ↑↑〉, (3.55)

where

Λ−| ↑↑〉 = (2λz1 + 1/2)| ↓↑〉+ (2λz2 − 1/2)| ↑↓〉. (3.56)
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We can see that Λ−| ↑↑〉 ∝ S−| ↑↑〉 just when a2 − a1 = 1 that corresponds to

λz2 − λz1 = 1/2. In fact, we have that

Λ−| ↑↑〉 = λzS−| ↑↑〉, (3.57)

which allow us to identify the state S−| ↑↑〉 as an eigenstate of Λz with null expec-

tation value.

Let us verify this result using the MYT for a 2nd supermultiplet of the HSM for

N = 4 . The SMNs are a2 = 4 and a1 = 3, which can be seen in Table 3.1. The

tableau, which initially describes a triplet state, is a representation of three Yangian

states, given by

• | ↑↑〉, where 〈Λz〉 = 1 and 〈Sz〉 = 1 (YHWS),

• S−| ↑↑〉 , where 〈Λz〉 = 0 and 〈Sz〉 = 0,

• S−S−| ↑↑〉, where 〈Λz〉 = −1 and 〈Sz〉 = −1.

These results agree with the numerical approach, including the last state, which we

will name Yangian Lowest Weight State (YLWS), that is build by applying S− over

the YHWS twice.

Now, we are going to study the states created by the YHWS with two spinons

whose SMN satisfy a2−a1 > 1. The Eq. (3.56) show us that these states have to be

a combination of states given by the application of the operators S− and Λ− over

YHWS.

Motivated by the splitting observed in our numerically approach, we will propose

an educated guess given by the following state

|λ−〉 = aS−| ↑↑〉+ bΛ−| ↑↑〉 (3.58)

where a and b are complex numbers. The eqs. (3.54) and (3.56) allow us to write

the previous equation as

|λ−〉 = (a+ b(2λz1 + 1/2)) | ↓↑〉+ (a+ b(2λz2 − 1/2)) | ↑↓〉 (3.59)

= α | ↓↑〉+ β | ↑↓〉 (3.60)
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This state has to be an eigenstate of the rapidity operator, and then an eigenstate

of the chiral model, which is described by its eigenvalue

Λz|λ−〉 = λ−|λ−〉. (3.61)

To expand the left hand of the equation above we need to use the relations

Λz| ↓↑〉 = δ| ↓↑〉+
1

2
| ↑↓〉 (3.62)

Λz| ↑↓〉 = −δ| ↑↓〉 − 1

2
| ↓↑〉 (3.63)

(3.64)

where δ = λz2 − λz1, and the comultiplication relation was used. Then we find that

Λz|λ−〉 =

(
δα− β

2

)
| ↓↑〉+

(α
2
− βδ

)
| ↑↓〉 = λ−|λ−〉 (3.65)

comparing with the state given in Eq. (3.60), we find the condition

α

β
=

1

2(δ − λ−)
= 2(δ + λ−) (3.66)

which gives us the result

λ− = ±
√
δ2 − 1

4
. (3.67)

This expression shows interesting features of the state |λ−〉. First, if δ = 1/2 then

λ− = 0, identifying the state S−| ↑↑〉 as an eigenstate, outcome that was discussed

by Schuricht and summarized by us previously.

In general, λ− 6= 0, taking two possible signs and describing two eigenstates.

These states are a combination of states arising from two tableaux with the same

set of SMN, such as the first excited state in the HSM with the rapidity interaction

for any N .

Let us show how to build these states for the N = 4 case. The first excited

state is described by two MYT, as we can seen in Table 3.1. The second tableau

describes a triplet state (where YHWS is located), while the first tableau represents

a singlet state. Both have the same set of SMN, ai = 1, 4, and then belong to the

same supermultiplet. For these SMN, |λ−| =
√

2, describing two eigenstates with

the same energy, the same z-spin component (Sz = 0) and with the same absolute
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value of λ−, but with opposite sign. This outcome can be observed in the spectrum

of HSM with rapidity interaction for N = 4 (see fig. 3.2). Here, we can see how

two states split from the 1st supermultiplet in opposite directions. These states are

composed by a linear combination of two states with different total spin but the

same z-component, in agreement with our analytic description. To complement this

discussion, we found that λz = 0, then the YHWS and YLWS do not split, as we

can see in our numerical results.

In summary, we found a general result that describes any representation with two

spinons. The YHWS is described by the state | ↑↑〉 and the YLWS by S−S−| ↑↑〉.

When a2− a1 > 1 we found that the supermultiplet is represented by two tableaux,

forming two states that are a linear combination of states with different total spin,

which split with the same |λ−| but with opposite signs.

Since our model is composed by even numbers of spins, we will find tableaux

with even numbers of spinons. We found that the 1st excited state will be always

characterized by two tableaux with two spinons, which can be described by the

discussion above.

|λ−〉 for n-spinon state. – Let us proceed our discussion with a generalized |λ−〉

state from a general n-spinon state, where n is an even number that describes the

number of spinons in the representation. We will start defining the YHWS spinon

state as

| ↑⊗n〉 = | ↑ ... ↑︸ ︷︷ ︸
n−spinon

〉. (3.68)

The S− operator over this state can be generalized as follows

S−| ↑⊗n〉 =
n∑
i=1

S−i | ↑⊗n〉 (3.69)

where the operator S−i turns down the i-th up-spinon. This result can be found

applying the comultiplication relation recursively, keeping each operator on their

single-spinon representation. This procedure allows us to write the comultiplication

relation of S− as

∆(S−) =
n∑
i=1

S−i (3.70)



Chapter 3. The Haldane-Shastry model with a chiral interaction 78

where n is the number of spinons in this representation. In a similar way, we find

that the operator Λ− can be generalized as follows

∆(Λ−) =
n∑
i=1

Λ−i −
n∑
i<j

Szi S
−
j +

n∑
i>j

S−i S
z
j . (3.71)

Applying to the n-spinon state we find that

Λ−| ↑⊗n〉 =
n∑
i=1

(2λzi + κni )S−i | ↑⊗n〉, (3.72)

where 2λzi = ξi, the i-th spectral parameter, and κni is given by

κni =
1

2

n∑
j=1

θij, (3.73)

where θij = sign(j − i).

Replaying the previous procedure, we propose the following state

|λ−〉 = (aΛ− + bS−)| ↑⊗n〉 (3.74)

where a and b are complex numbers, and |λ−〉 is an eigenstate of Λz, whose eigenvalue

equation gives two possible solutions: ±λ−. To find these values and the suitable a

and b, we have to solve the following set of equations

(λ− − λz + 2λzi )(a+ b(2λzi + κni )) = −1

2

n∑
j=1

θij(a+ b(2λzj + κnj )) (3.75)

where each equation is labeled by the i-index that runs from i = 1 to n.

Although each equation can give the value of λ−, this result is not complete

because the normalization condition has not yet been satisfied. In fact, we found

just two possible values for λ−, with the same module but with opposite signs.

This result shows an internal structure about the construction of eigenstates in each

representation. While the YHWS (and the YLWS also) is only one, the other states

come in pairs, coming from a suitable operator composed by a linear combination

of Λ− and S−.

This linear combination is tailored by the distributions of the SMN, specially

by their differences. For example, we have that the SMN distribution for the four
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spinon state is {ai} = {1, 2, 3, 4}. Here, we can observe that ai+1 − ai = 1 ∀ i,

which implies that the rapidity expectation value is zero for the whole set of states

describing the last tableau for N = 4. With this last comment we finish our analysis

for N = 4. Larger clusters with even numbers follow the same analysis.

3.4 General comments

3.4.1 A large limit result

The exact solution of the HSM in the infinite limit is given by the Yangian symmetry

the same as the Heisenberg model at the same limit. Entirely different is the finite

size case, where the Heisenberg cannot be exactly solved using the Yangian algebra,

while the HSM keeps that symmetry which supports the integrability up to the

infinite system. This feature allows us to extrapolate the results previously presented

in this chapter up to chains with infinite length. One feature of the solution took our

attention related to the behavior of the system at the low energy level. We observed

that the 1st supermultiplet is always characterized by two tableaux described by

a two spinon state. The SMN of this tableaux are {ai} = {1, N}, where N is the

chain size. One state on this supermutliplet will become the ground-state, and its

energy is given by

E1 = E0 +
π2

2N
−D π2

2N2

√
N(N − 2). (3.76)

Now, taking the limit N � 1, we obtain that the difference with the HSM ground-

state is given by

∆E = E1 − E0 =
π2

2N
(1−D), (3.77)

where we can see that the ground-state phase transition in the thermodynamic limit

takes place when D = 1, as seen in Fig. (3.8). We also observe that the system is

gapless in the thermodynamic limit, the gap closes as ∆E ∼ 1/N . This means that

the symmetry of the HS model with chiral interaction does not change in that limit,

having the same properties of the HS alone.
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Fig. 3.8: Critical D values for which the ground-state transition takes place as a

function of the chain length. The large size limit value is D = 1.

3.4.2 Spin chains with chiral medium-range interactions

The aim of this last section is to study a family of spin chains with a suitable chiral

interaction, which is classified by its medium-range terms of the HSM. The range is

related to the farther neighbor where the HSM will be truncated. For a chain with

N spins, we have that the Heisenberg model has range 1, while the HSM has range

N .

For useful comparison purposes, we fix the exchange interaction term among the

different neighbor spins and the corresponding chiral interaction constant from the

HSM and for the rapidity operator, respectively, by the truncation of the Hamilto-

nian and the interaction up to a specific range as follows. The HSM and the rapidity

interaction can be rewritten as follows

HHS = −4π2

N2

∑
α<β

zαzβ

(zα − zβ)2
Sα · Sβ (3.78)

Λz = − π
2

N2
i
∑
α<β

zα + zβ

zα − zβ
(
S+
α S
−
β − S

−
α S

+
β

)
(3.79)

where N is the number of spins that lie homogeneously distributed in the unit-circle

in the complex plane, whose positions are zm = exp(2πim/N), from m = 1 to N .

We can split the Hamiltonian and gather their components by the distance,

allowing us to study the effect of each part of the interaction. The nearest neighbors
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(NN) interaction is given by β = α + 1, obtaining the Heisenberg model with a

suitable J1 = (π/N)2

sin2(π/N)
. In this case the Hamiltonain is given by

HJ1 =
(π/N)2

sin2(π/N)

∑
α

Sα · Sα+1. (3.80)

In a similar way we obtain the coupling for the system with next nearest neighbor

(NNN) interaction doing β = α + 2. In this case the Hamiltonian is given by

HJ2 =
(π/N)2

sin2(2π/N)

∑
α

Sα · Sα+2 (3.81)

The truncation of the rapidity interaction is developed in the same way as the

HSM, where the terms for NN and NNN ranges take the following expressions

Λz,J1 =
(π/N)2

tan(π/N)

∑
α

(
S+
α S
−
α+1 − S−α S+

α+1

)
(3.82)

Λz,J2 =
(π/N)2

tan(2π/N)

∑
α

(
S+
α S
−
α+2 − S−α S+

α+2

)
. (3.83)

A generalized l-range terms can be defined and they read as

HJl =
(π/N)2

sin2(lπ/N)

∑
α

Sα · Sα+l (3.84)

Λz,Jl =
(π/N)2

tan(lπ/N)

∑
α

(
S+
α S
−
α+l − S

−
α S

+
α+l

)
, (3.85)

where the HSM is re-defined asHHS =
∑N

l=1H
Jl and the rapidity as Λz =

∑N
l=1 Λz,Jl .

In order to characterize this family of models, we notice that the first element cor-

responds to the Heisenberg model with a Dzyaloshinskii-Moriya interaction, which

was exactly solved by Alcaraz et al. [2]. Motivated by this result, we studied our

chiral model following the approach developed by Alcaraz et al. [2]. We found that

the method useful for the XXZ model does not work to solve our chiral model (for

more details, see the Appendix A), which can be solved by the representation the-

ory of the Yangian Y(sl2), as we have shown in this thesis. This result opens the

question about the approaches that solve this family of spin models from finite sizes,

up to the thermodynamic limit.

To complement this discussion we developed an exact diagonalization for a chain

with N = 6 with range one (Heisenberg with a Dzyaloshinskii-Moriya interaction),
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two (J1 − J2 model with a Dzyaloshinskii-Moriya interaction up to next-nearest-

neighbors) and six (the chiral model, subject of this thesis). In Fig. (3.9) we can see

the spectrum of these models. The subject is open for discussions since we believe

that this family of medium range models involves a rich structure of levels and their

theoretical characteristics are still unveiled.
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Fig. 3.9: left panels: Energy spectrum of (top-left) the Heisenberg model, (bottom-

left) the J1 − J2 model and (in the same panel) the HS model with a

suitable rapidity interaction for N = 6. At the right panels we see a zoom

of the low-energy levels from the left panels.

3.5 Conclusion

In this Chapter, we summarized the exact solution of the HSM introduced by the

Modified Young Tableaux (MYT) that describe the elementary excitations of this
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model (the spinons) by the spinon momentum number (SMN), which are related

with the Yangian algebra through the representation theory. Using this approach,

we studied the HSM with a chiral interaction outlined by the rapidity operator,

keeping the Yangian symmetry of the system. We developed a numerical description

of our chiral model for finite chains with sizes N = 4, 6 and 8 sites. We observed

that the ground-state and the top level (higher spinon state) of the HSM do not

split when the rapidity interaction is turned on, however, the remaining eigenstates

of the spectrum split in pairs which have the same z-spin component and the same

Λz expectation value but with opposite signs.

The spectrum of our chiral model satisfied the Yangian algebra, not allowing

to use the SU(2) representation given by the usual Young tableaux. This was also

observed numerically when the total spin was not useful to describe the splitted

eigenstates. Motivated by these results, we used the intricate representation theory

of the Yangian to develop an analytic characterization of the spectrum. The splitting

observed numerically inspired us an educated guess to build the spectrum from the

principal element of the Yangian representation, the YHWS, which is fully described

by the MYT. The split of the states generated a set of ground-state transitions, which

are characterized by a linear combination of states hosted in the same supermultiplet

that has Sz = 0, keeping the nature of the ground-state of the model as a Luttinger

Liquid.

The finite size characterization of the ground-state allows us to extend our re-

sults up to the thermodynamic limit, finding that the ground-state transition for an

infinite chain at low energy takes place at D = 1 and is composed by an unusual

linear combination given by the exotic quantization rules provided by the Yangian

algebra, which mix two states with null z-spin component and different total spin

(in this case, 0⊕ 1).

Finally, we suggest the study of a family of spin chain models with a chiral

interaction, which links the Heisenberg model with a Dzyaloshinskii-Moriya inter-

action and the chiral model at intermediate-ranges, as studied in this work. All

intermediate cases are left to the new comers to this fascinating area of quantum
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spin liquids.

This part of the thesis, presented in Chapter 3, was partially worked out in

collaboration with Professor Germán Sierra (IFT-Madrid, Spain) during my visit to

Madrid in November 2017, and is being prepared for publication.



Appendix A

The XXZ model with a

Dzyaloshinskii-Moriya interaction

In this Appendix, we deal with the anisotropic Heisenberg chain with nearest-

neighbor exchange interactions, while in a second part we deal with an integrable

model which has long range (inverse squared) exchange terms, known as the Haldane-

Shastry (HS) model. For the Heisenberg model, the Dzyaloshinskii-Moriya (DM)

interaction can be argued to come from spin-orbit coupling, while for the HS model

we have taken as the chiral term the long-range “rapidity operator.” The latter com-

mutes with the HS Hamiltonian, which has a different symmetry group named the

Yangian, Y(sl2), which is a quantum deformation of the SU(2) Lie group.

A.1 The XXZ case with a DM term

Let us start from the spin-1/2 XXZ Hamiltonian with a Dzyaloshinskii-Moriya (DM)

interaction along z-axis [2, 67]

H = J
L∑
n=1

[
SxnS

x
n+1 + SynS

y
n+1 + δSznS

z
n+1 + ∆

(
SxnS

y
n+1 − SynSxn+1

)]
(A.1)

where δ is the anisotropy parameter and ∆ is the DM coupling. This model allows

to study in an exact manner the magneto-electric effect in quantum spin chains [67].

In reference [2] it was shown that a gauge transformation maps the Hamiltonian
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(A.1) into another XXZ Hamiltonian without the DM term. We will reproduce this

argument here and try to do the same for the Haldane-Shastry model.

The Hamiltonian (A.1) can be written as

H = J
N∑
n=1

[
1

2

(
S+
n S
−
n+1 + S−n S

+
n+1

)
+ δSznS

z
n+1 +

i∆

2

(
S+
n S
−
n+1 − S−n S+

n+1

)]
(A.2)

where S±n = Sxn ± iSyn. Notice that for δ 6= 0, H is a complex function and therefore

the time-reversal symmetry is broken. The unitary transformation, defined as a

site-dependent rotation

S±n → e±inφS±n , Szn → Szn (A.3)

with the choice

∆ = tanφ , −π
2
< φ <

π

2
(A.4)

brings equation (A.2) back into the form

H = J ′
N∑
n=1

[
1

2

(
S+
n S
−
n+1 + S−n S

+
n+1

)
+ δ′SznS

z
n+1

]
(A.5)

where

J ′ =
J

cosφ
, δ′ = δ cosφ = δ/

√
1 + ∆2, (A.6)

therefore, the gauge transformation mentioned in (A.3) transform the original XXZ

chain with a nearest-neighbor DM term into an exact integrable model (a new

XXZ model with J ′ and δ′), supplemented by twisted boundary conditions (not

discussed here, see [2] for further details), which can be dealt with the method of

quantum transfer matrices to determine the exact free energy and to obtain exact

thermodynamics functions, like in [67].

If we call the original Hamiltonian, equation (A.2), as

HDM
N (δ,∆) = HXXZ

N (δ) + V DM
N (∆) (A.7)

the canonical transformation, equation (A.3), means that

HDM
N (δ,∆) =

1

cosφ
HXXZ
N (δ cosφ) (A.8)
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except for the boundary conditions, which need to be dealt with separately [2]. Since

in the thermodynamics limit (N → ∞) the boundary conditions do not affect the

critical behavior, then the Hamiltonian HDM
∞ (δ,∆) will have the same critical prop-

erties as HXXZ
∞ (δ cosφ). Hence, the phase diagram of the Hamiltonian HDM

∞ (δ,∆)

will be the same as the one for the well-known XXZ model. Figure A.1 shows this

phase diagram, where a critical (massless) phase C is separated from the massive

phases A (antiferro) and F (ferro) by the lines δ′ = ±1, namely δ = ±
√

1 + ∆2. A

dashed line indicates where the critical exponents in the phase diagram are constant.

The particular line δ = 0 (XY model) represent a case where the Dzyaloshinskii-

Moriya interaction is inoperant. It does not modify the critical behavior.

Fig. A.1: The phase diagram of HDM
∞ (δ,∆). The critical lines δ = ±

√
1 + ∆2

separate the massless phase C from massive phases A and F. On the

dashed line as well on the line δ = 0 (XY model) the critical exponents

are constant. Figure taken from [2].

In the rotation (A.3), we shall take φ ∈ [0, π/2). The value φ = π/2 is singular,

because then ∆ = ∞. This means that the model δ′ = 0 cannot be reached with

this transformation (except when δ = 0). If the unperturbed XXZ model is critical,

i.e. −1 < δ ≤ 1, the perturbed model by the DM term is also critical because

−1 < δ′ ≤ 1.
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A.2 The HS model with a chiral term

The Haldane-Shastry (HS) Hamiltonian is given by

HHS =
Jπ2

N2

N∑
n<m

S̃n · S̃m
sin2 (π(n−m)/N)

= −4Jπ2

N2

N∑
n<m

znzm
(zn − zm)2

S̃n · S̃m, (A.9)

where N is the number of sites. If N � 1 the HS Hamiltonian can be expanded as

HHS = J
N∑
n

(
S̃n · S̃n+1 +

1

4
S̃n · S̃n+2 + ...

)
(A.10)

The Hamiltonian (A.9) commutes with the rapidity operator

Λ̃ = − π
N

N∑
n<m

cot

(
π(n−m)

N

)
S̃n × S̃m = −iπ

N

N∑
n<m

wnmS̃n × S̃m, (A.11)

where

wnm =
zn + zm
zn − zm

, and zn = exp(i2πn/N). (A.12)

For N � 1 equation (A.11) can be expanded as

~Λ =
N∑
n

(
S̃n × S̃n+1 +

1

2
S̃n × S̃n+2 + ...

)
(A.13)

We shall define the HS model with a chiral perturbation (along z-axis) as

HHS−DM = HHS + JDΛz

=
Jπ2

N2

N∑
n<m

S̃n · S̃m
sin2 (π(n−m)/N)

−JDπ
N

N∑
n<m

cot

(
π(n−m)

N

)
(SxnS

y
m − SynSxm). (A.14)

Notice that the direction of the Λ̃ vector is irrelevant since the HS hamiltonian is

SU(2) invariant. In the limit N � 1, one finds

HHS−DM = J
∑
n

{(
S̃n · S̃n+1 +

1

4
S̃n · S̃n+2 + ...

)
+D(SxnS

y
n+1 − SynSxn+1) +

D

2
(SxnS

y
n+2 − SynSxn+2) + ...

}
(A.15)
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Therefore, up to the nearest-neighbor coupling it coincides with the equation

(A.1) for δ = 1 and D = ∆. In the S±n basis, equation (A.14) becomes

HHS−DM =
Jπ2

N

N∑
n<m

1

sin2 (π(n−m)/N)

[
1

2
(S+

n S
−
m + S−n S

+
m) + δSznS

z
m

]
(A.16)

−iJDπ
2N

N∑
n<m

cot

(
π(n−m)

N

)
(S+

n S
−
m − S−n S+

m)

where we have introduced again the anisotropy parameter δ in the z-component.

This expression is the corresponding of (A.2) and it will be used in Chapter 3 to

extract information from a numerical approach. The question is: can we map this

model in the same way as was done for the Heisenberg model with a Dzyaloshinkii-

Moriya term? The answer is in the next Section.

A.3 The negative result for the HS+chiral case

We have tried to implement the same gauge transformation as for the XXZ chain,

with a negative result. We will show this attempt to see where are the difficulties in

finding such global unitary transformation for the Haldane-Shastry with the chiral

term. Let us focus on the S± terms

HXY
HS−DM =

Jπ2

2N

N∑
n<m

1

sin2 (π(n−m)/N)
(S+

n S
−
m + S−n S

+
m)

−iJDπ
2N

N∑
n<m

cot

(
π(n−m)

N

)
(S+

n S
−
m − S−n S+

m) (A.17)

Under the unitary transformation (A.3) one finds

S±n S
∓
m → e±(n−m)φS±n S

∓
m (A.18)

so the transformed operator is

HXY
HS−DM =

Jπ2

2N

N∑
n<m

{
1

sin2 (π(n−m)/N)
− iD

π
cot

(
π(n−m)

N

)}
e(n−m)φS+

n S
−
m

+
Jπ2

2N

N∑
n<m

{
1

sin2 (π(n−m)/N)
+
iD

π
cot

(
π(n−m)

N

)}
e−(n−m)φS−n S

+
m.
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Now, the question is: what is value of D that makes the two coefficients of S+
n S
−
m

and S−n S
+
m in equation above equal? After some algebra, the answer is

D =
π

N
tan {(n−m)φ}

[
cos

(
π(n−m)

N

)
sin

(
π(n−m)

N

)]−1

. (A.19)

Introducing this result into the equation (A.17), and restoring the z-terms, we

finally have

HHS−DM =
Jπ2

2N2

N∑
n<m

1

sin2(π(n−m)/N)

(
1

cos {(n−m)φ}

[
1

2
(S+

n S
−
m + S−n S

+
m)

]
+ δ cos {(n−m)φ}SznSzm) . (A.20)

Therefore, the new HS-DM Hamiltonian is equivalent to a pure HS model, with

the site-dependent exchange and anisotropy parameters changed to

J ′nm =
Jnm

cos {(n−m)φ}
, δ′nm = δnm cos {(n−m)φ} (A.21)

where, the original Jnm and δnm Haldane-Shastry parameters were 1/r2-type

Jnm =
1

sin2(π(n−m)/N)
, δnm =

δ

sin2(π(n−m)/N)
. (A.22)

Although, interestingly similar to the results for the XXZ model, this transfor-

mation is, however, not a global gauge transformation, as it was in the nearest-

neighbor Heisenberg case, since the DM terms are defined term-by-term in the

further-neighboring list, eq. (A.21). We cannot define a unitary (global) opera-

tor U that makes H ′ = UHU †, as in the previous XXZ case.
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May 2016.



References 96

[48] A. Bansil, Hsin Lin, and Tanmoy Das. Colloquium. Rev. Mod. Phys., 88:021004,

Jun 2016.

[49] O. Viyuela, D. Vodola, G. Pupillo, and M. A. Martin-Delgado. Topological

massive dirac edge modes and long-range superconducting hamiltonians. Phys.

Rev. B, 94:125121, Sep 2016.

[50] Antonio Alecce and Luca Dell’Anna. Extended kitaev chain with longer-range

hopping and pairing. Phys. Rev. B, 95:195160, May 2017.

[51] Kristian Patrick, Titus Neupert, and Jiannis K. Pachos. Topological quantum

liquids with long-range couplings. Phys. Rev. Lett., 118:267002, Jun 2017.

[52] Elliott Lieb, Theodore Schultz, and Daniel Mattis. Two soluble models of an

antiferromagnetic chain. Ann. Phys. (N.Y.), 16(3):407, 1961.
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