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Weight-balanced measures and free energy for
one-dimensional dynamics

Artur O. Lopes and Wm. Douglas Withers*

(Communicated by Giovanni Gallavotti)

Abstract. In this paper we consider Thermodynamic Formalism properties of one dimensional
maps. We consider the existence of weight-balanced measures and large deviation properties of
the Free-Energy of the Jacobian of measures. We show that a weight-balanced measure exists
under the hypotheses that the map is piecewise-homeomorphic and the weights piecewise
constant.

We consider also a certain class of measures with the property that the Free-Energy of the
Jacobian is differentiable by parts. For measures in this class we show that a certain measure is
the maximal entropy measure if and only if the Free-Energy of the Jacobian is linear. The result
follows from general properties of Large-Deviation Theory and does not use the more classical
approach of Thermodynamic Formalism.

1991 Mathematics Subject Classification: 58F11.

0. Introduction

In this article we consider a dynamical system consisting of a continuous function fon
an interval [a, b] with the following properties:

() f([a, b)) = [a,b].

(ii) There exist pointsa = ¢y < ¢y < ... < ¢; = b, de N, such that fis homeomorphic
on [¢;, €y ), i€eo=1{0,1,...,d— 1}, but fis not onc-to-one in any neighbor-
hood of ¢, iea—{0}. For example, if f(x)=Ax(1—x) [/S+1<i<df
satisfies these hypotheses if we take d=2,¢, = 1/2,b=c, = f(c,). and

a=cy=[(c;)

*Partially supported by the Office of Naval Rescarch.
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We say that a map fis expanding if fis continuously differentiable and there exist
o >0, 4> 1such that |( /") (x)| > «2" lor all . € N and all x in the nonwandering set
(see Mane [15] for definitions). The nonwandering set is a Cantor sct in this case.

In some aspects, a real quadratic map has more obscure dynamics than a complex
quadratic map. A major difficulty is that not all points have the same number of
preimages under a real quadratic map. While the entropy of a real quadratic map is
given by the exponential rate of growth of the number of preimages of the criticul
point (sce Misiurewics [16] and Misiurewics and Slenk [17]), finding the measure of
maximal entropy is more difficult in the real case. Moreover, Hofbauer [8] showed
that while a real quadratic map has a unique measure of maximal entropy, a real
cubic map can have more than one measure of maximal entropy.

This contrasts with the case of a complex rational map g of degree o > 1. for which
the entropy is always given by log d and the measure of maximal entropy always exists
uniquely.

The maximal entropy measure is the weak limit as n goes to infinity of the measure
giving mass ¢ " to cach of the d” points g ~"(z,). Here =, can be any fixed point of
C with at most two exceptions. The Jacobian of this measure is simply 1/d. Finding
the Jacobian of a maximal entropy measure for a real polynomial map is much more
difficult.

If'we try to proceed in an analogous way for a real quadratic polynomial, assigning
equal masses to the preimages of the critical point, we do not cven obtain an invariant
measure in the limit. Again, this is because various points may have one, two, or no

preimages under f. This article was partly motivated by the problem of suitably -

assigning masses Lo the preimages of a point in order to obtain a maximal-entropy
measure in the limit. The procedure defining a measure by assigning masses to
preimages of a point is useful in determining a functional equation satisficd by the
moment-generating function of the measure. The solution to this problem is still
unknown, even in the case where f is expanding.

An invariant measure created by assigning different masses to the preimages of
a given point is essentially a weight-balanced measure. Barnsley and several other
authors [2], [5]. [6]. [12] consider weight-balanced meusures that are essentially
measures obtained from balanced probabilities (see [5] for references). These
balanced probabilities are related to the Jacobian ol such measures ([12]). The
definition of the Jacobian of a measure is also given in Section 2.

Animportant problem in the theory of weight-balanced measures is that of finding
a measure with a predefined Jacobian. This type of measure is also sometimes called
a g-measure. Several interesting results in this dircction have been obtained [2]. [5].
[6]. Barnsley, Elton. Demko, and Geronimo [2] is a general reference about the
subject. Most of these results assume the map has a fixed number ol preimages. In this
article we study properties of weight-balanced measures for (not necessarily
polynomial) maps satislying hypotheses (i) and (i) given at the beginning of this
scction. This study differs from previous work on weight-balanced measures in
allowing the number of preimages to vary rom point o point,

In Section | we consider the existence of weight-balanced measures for such maps,
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not necessarily expanding or even differentiable, with associated piccewise-constant
probabilitics (Theorem 1.7). In Section 2 we study propertics of the free encrgy of the
Jacobian of an invariant measure under the hypotheses that the measure has
Jacobian with Free-Energy differentiable by parts.

One of the results presented in the present paper is that a measure is the
maximal-entropy measure if and only if the free energy is linear (Theorem 2.2).

Using this result in the case where fis expanding we characlerize maximal-entropy
measures as those whose Jacobians have zero asymptotic variance. These results are
related to some previous ones of Zieman [28. Theorem 3].

We hope some of these techniques can be applied to obtain existence of measures
with densities under summability conditions as in [ 19].

A large part of the results in Section 1 were already known ([1]. [9]. [23]). We
learncd this lact after our paper was written. The proof presented here is new and uses
different ideas that we belicve can be applied to more general situations.

Our main result in Section 2 is Theorem 2.2 where we do not assume expansiveness.
The proof does not use the Perturbation Theory of Lincar Operators ([1]. [9]. [23]
but general properties of Large-Deviation Theory. We believe these techniques can be
applied in very general situations to give a gencral characterization of the maximal
enlropy measure.

Note that the Ruelle-Perron-Frobenius operator can be applied in our situation
(with varying numbers of preimages) in the expanding case. The Rueclle-Perron-
Frobenius operator acts on Hélder-continuous functions ¢ defined on the nonwan-
dering set and is given by

Le@ ()= 3 (e,

Jiy)=x
7 being some Holder-continuous real-valued function defined on the nonwandering
set, Using the same reasoning as when the number of preimages is fixed. one can show
there exists a Holder-continuous eigenfunction ¢* such that L(4*) = ¢" /' ¢*, where
h( f)is theentropy ol f(see Ruelle [22]). The problem is that it is not easy to solve this
functional equation. Knowing ¢*, we could find the Jacobian of the maximal-
entropy measure v as

Prx)

g (f(x)’
and this shows that log /,(x) is cohomologous to /I /) and hence has zero asymptotic
variance, We show in this article that log J,(x) has zero asymptotic variance using
other methods (Theorem 2.6). This also shows that J, is Hélder-continuous.

Note also that the free energy can be considered as the definition of the generalized
entropy, as is done in Lopes [11]. This concept was introduced and discussed in
several physics papers, but lor rigor we prefer an approach borrowed from
Large-Deviation Theory.

We would like to thank K. Zieman and M. Viana for some helpful conversations
about onc-dimensional dynamics.

J(x) =
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1. The existence of a weight-balanced measure

We consider continuous functions f on an interval [a. b] with the following
properties:
() f([a,b]) =[a b].

(i) Thereexistpointsa = co<¢; < ... <y <€ = b such that fis homeomorphic
on[c; ¢4y Jri€0 ={0,....d— 1}, but fis not homeomorphic on any neighbor-
hood of ¢;.ie o — {0}.

We define C to be the set {c,, ..., ¢y, }. We set
E = f(C) — {a. b},

F=\Jf(E)
n=0

The set £ has no more than  — 1 elements.
For cach i € ¢, fis a homeomorphism when restricted to I; = [¢;, ¢;4  Ji we denote
the inverse of the restriction of fto I; by B;: f(I) — I

(iii) We also consider functions p;: [a,b] — [0,1].i€0 such that p;(x) > 0 if and
only if x & f(f;). p; is piecewise constant with discontinuitics only at points ol E,
and

ZPi{x) =1,

ica

We set p=(Pos--os Pa=1)-
We define a Borel measure g on [a, b] to be p-balanced if

upi(X) = )I{ pi(x)du(x)

for all i e o and Borel subsets X of [a, b]. Equivalently, p is p-balanced if
[ddu=[Thdp

for all continuous ¢ : [a, b] —» R, where we define the operator T by

(LAY Th(x) = ) pi(x) d(fi(x)).

Since p,(x) = 0 unless x is in the domain of f;, T is well defined.

We say pis invariant under fif pf ™ ' (A) = pA forany Borel subset A of [a, b]. Note
that weight-balanced measures are always invariant. It is also true that

[¢ofC)du(x) = [d(x)du(x)

for any integrable function ¢ and any invariant measure ji.
We denote by ‘|- the operation of concatenation from ¢* X ¢” to gt

“| ----- fi)l("‘k-&j\--ﬂft-kn):{il""""k-i-n)-
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We can then write

THp(x) = 3 pi(x) @ (B (X))

iemk

where p, and f; are defined recursively by f;;(x) = B,(f;(x)). and
(1.B) iy (x) = p () (B (D).

Note that p,(x) >0 if and only if x is in the domain of f.
We assume one additional hypothesis:

(iv) There exists K such that

P = sup supp(x)<l1.
xefa.b) lea®
Thisis equivalent to saying thateach x€ [a., b] hasat least two preimages under /%,
Our goal in this section is to prove the existence and uniqueness of a p-balanced
probability measure for a map /[ and probabilities p; satisfying hypotheses (i)-(iv).

1.1 Lemma. Let

discp,(x) = | p;(x) = lim p;(3)

yox=

+ ]p;(.\'} — lim pi(»)

yrx+

be the discontinuity of p; at x. Then

Y discp(x) =0

leak
unless x = ["(e) for some e€ E and 0 <n< k. Moreover, there exists a constant
M independent of k such that if x = ["(e) for some ee E and 0 S n<k.

Y, discp(x) = M ﬂl pmi_,(fj(e})»
j=

ieak

where we choose m;€ a so that fi7e) = B, L(fe).

Proof. To prove the first part of the lemma, we usc induction on k. The case k = 1 s
immediately obtainable. Now assume the first part of the lemma holds up to k — 1.
For ieg*" !, we have py, (x) = p, () py(B;, (). If disc Pui (x) > 0 then cither
disc p, (B, (x)) > 0 or discp; (x) > 0. If disc pi( B (x)) > 0. then by assumption we
have f3;, (x) =/"(e) for some e€E and 0 < n <k — 1; therefore x=/f"""(e). I
discp;,(x) > 0 then the first part of the lemma holds because x € E:

To prove the seccond part of the lemma, we let F, be the set of all points x of Fsuch
that x € E or the set /7' (x) » F has more than one point. Note that, while F'may be
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infinite, 7, must be finite. Letk, belarge enough that, forany x € F,. thereexistse € £
and n < k, such that x = f"(¢). Set

M = sup sup sup , discp,(f"(e)).
ecE k<k, Don<k ica
This ensures that the second part of the lemma holds for all k£ < k, and in particular
holds for all cases where x € E or /~ ' (x) F contains more than one point. We now
work again by induction. Suppose the sccond part of the lemma holds up through
k —1>k,. Foriea* !, we have py; (x) = p;, (X) p( B, (). Thus

dise pyy (¥) < py () dise py(By, () + i (B (2) dise py, ().

The sccond part of the lemma follows immediately from the first unless x = /" (e) for
somee e Eand 0 < n < k; let us thercfore assume that this is so. Moreover, our choice
of M yields the desired conclusion if x € E or f ~' (x) n F has more than one point; let
us therefore assume that x ¢é E, and that £ ™' (x)n F has only one element. Then
discp, (x) = 0, and

disc py;, (%) < p;, (x)disc p (B, (X))

Thus
'Z disc pyy; (¥) = 2 Y. discpy, (¥)
ifigeak iveo feak— !
=) (Pik(-") by discﬂi(.ﬂfk(—\’)))-
ikea feak-1

Letm,_, € ¢ bechosenso that /"~ ' (e) = B, _, (/™ (e)). Since we are assuming that
[~ 1(x)n F has only one clement. and the first part of the lemma ensures that all the
discontinuities of p, lic in F, we can have disc p,(f;, (x)) > 0 only if i, = m,_,. Thus

Y dise pypp (X) = P, -, (X) Y discpi(B,., ().
ie

ixea® k=1

By assumption,

n—1

S disep(fn, (D= ¥ discp(/" @) <M [] o, (S

leak=1! jeak—t

Thus

Y discp () < M [] pn,_ (fi(e). O

i|ixeak i=1

1.2 Lemma. /f

D= /O

n=10
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is dense in [a, b], then the family
i . iy | L)
{poprica’ k=12, ..
is uniformly equicontinuous for any continuous ¢ on [a. h].

Proof. Let & > 0 be given. We must find ¢ > 0 such that
(1.C) 1B N —p(fN <e

for all |x —y|<dand all k and i€ o*. Choose (0 > 0 so that | (x) — ()] < ¢ for
|x — v| < 0. Choose m sufficiently large that any point in [a, h] is within 0/2 of f;(c)
for some c € C. k < m. iea® Then (1.C) holds for any k> m.anyie ¢*. and any
x. y € [a. b] for the following reason. Ifk > m. i< e, then the range of §; can contain
no point f;(c) for ce C, n < m. je o™ Thus diam f;([a. b]) < 0.

The finite family

{(pofik=1.....mica"

is uniformly equicontinuous; we can thus choose §so that (1.C) holds for all members
of this family. O

1.3 Theorem. If D as defined in Lemma 1.2 is dense in [a, b], then there exists
a p-balanced probability measure p Sfor f.

Proof. We show that T* ¢ converges uniformly for any continuous real-valued & on
[a. b]. The p-balanced measure x can then be defined by

[ (x)du(x)y = lim T $(¥)
k-

for some fixed v e [a. £].
The first step is to prove that

(1.D) Z [T Pm,. (SN < 0

a=1 j=1

for all e € E, where m;_, is chosen so that 17 (e) = B, _, ( /7(e)). Note that

[T Pon, (/D) = Promo. ey ST (-

i=1

From hypothesis (iv), we have p;(x) < P" for iea™. Thus the sum in (1.D) is
dominated by a geometric scrics and hence converges.

We would like to point out that the above theorem can be stated in a more general
from with the only assumption that (1.D) is true.
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For xe F, set
q(x) = inf [ pn,_,(f7(),
en j=1
where e € E and n > 0 such that x = f"(e). We define mappings n_,. n,, and n, on
[a. b] by

o ()=x+ Y 240,

ye[a.x)n F

) =x+ Y 290y,

yela.x]n F
and
7o (x) = (-, (x) + 71, (1))/2.
Let
2 =n_,([a, b])uny([a b)) v, ([a, b]).
Then

i [ﬁ» b+2), fz(x)] = U (0, 1o () = U (mg (), 7, (1))

xeF xeF xefF

th_uls Q is compact. The mappings n_,, ny, and m, have a common left inverse
L Q - [a. b].sothatn™ ' (m;(x)) = xforxe[a,blandie {—1,0,1}. Noter ™ 'is
increasing and nonexpansive,

We define functions p,: @ — [0,1], ied* k=1,2,... by

Pilmo(x)) = p(x),
Hiln_ () = lim p,(»),

yrx—

and

Pl (x)) = lim p,(»).

yoxh

[_,cnjma 1.1 and the summability condition (1.D) together imply that these one-sided
limits exist. Note that the functions f are continuous on £ and

):f’ifl-

teak
We define mappings f§,: Q — Q.iec* k=1,2,.... by
By (X)) = mo(Bi(x)),

and extending f* continuously to n_,([a.5]) and =, ([a.h]). We then have
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atofl; =pon"t. For any continuous function ¢ on [a.h] we can define
a continuous function ¢ on £ by

$(&) = (")
Define the operator T: C() — C(Q) by
Th) = E PO PR

we then have

IRTIQEWAGTAVAR

ieak

We now show that the family { 7% ¢} is uniformly equicontinuous on . By Lemma
1.2, we can choose a modulus of continuity A for {¢p=f; i€ ot k=120

16 (B () — (B NI < Alx —¥])
forall iec* k =1.2,...,and x, ye[a, b]. Let & ne Q. Then

| TH G (&) - Tl =

I ASTIC R AT

feak

i Z [p, (&) — ﬁi(fﬂ] (B(ﬁl(”)} N

icak

< 3 H@ B N =B ()]

ieak
+1E1 X 14 = Al
feak

where ||+ || denotes the supremum norm on Q or [a. b]. Remember that the functions
p, are piecewise constant. Thus we have

S 17(@) — pi(m] < X {dise py(0) s xe Falr™" (@27 0]

ieak

From Lemma 1.1 it then follows that

S 17 - A1 < L iMq(0:xe Fala™ (©.n7 (i

icak

Our definition of @ then implies

T A& = pDl < MIE—nl.

jeak
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Thus
I T*G(E) — T*don] < A~ (&) —n~ )+ MBI 1< —nl.

This shows that the family {7*¢} is uniformly equicontinuous on €. By the
Arzela-Ascoli Theorem, it therefore has a uniformly convergent subsequence.
Denote the limit of this sequence by $*. Itis easy to show that || Tyl < 1]l for any
function i on &; thus

NT G — G = 1T (S — N < UTHE — NN =T — d*II:

and T*@ converges uniformly to §*.
Since T*¢ = (T*P) -y, {T*P} converges uniformly to ¢*ony. O

1.4 Lemma. Let X be a nonempty closed set in[a, b] with f = (X)L Z = X, where Z is
finite. Then there exists a nonempty perfect subset Y of X with f71(Y)=1Y.

Proof. Note that X'U Z contains the closure of the set of preimages ofany given x e X
under iterates of f; using this fact and hypothesis (iv) it can be shown that X' must be
uncountable. Let ¥ be the set of points whereol the intersection of every
neighborhood with X is uncountable. The complement of Y is the union of all
intervals open in [a, ] with rational endpoints and whose interscction with X is
countable; this shows that ¥ is closed and that X — Y is countable. Hence Y is
nonempty. It is straightforward to show that Yis a perfect setand ¥ = f~ "Y). o

1.5 Lemma. Let X be a nonempty closed set in [a, b] with f = (X)L Z = X, where Z is
finite. Then there exists a continuous increasing map hoon [a, b] with h(X) = h([a, b])
and such that

f=hofoh™!
and
pi=pioh liea,

satisfy hypotheses (i)-(iv) on h([a, b]).

Proof. By Lemma 1.4, X contains a nonempty perfect set Ywith /' (Y)= Y. We
construct /i : [a, b] — [inf ¥, sup ¥] which maps Y onto [inf Y. sup ¥] as [ollows.
Define /i(x) = inf ¥ for x < inf Yand A(x) = sup ¥ for x = sup Y. For each maximal
open interval (u, v) in [a. h] — ¥, set fi(x} = (u + )2 for x e (1, v). We then extend
I continuously to the boundary of ¥ and linearly to intervals contained in Y.

It is then straightforward to show that fand j, satisfy hypotheses (i) (iv). One uscs
the fact that ¥ = £~ '(Y). the continuity of /. and the fact that # maps each interval
not intersecting ¥ to a single point. O
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1.6 Lemma. Supposc i is a p-balanced probability measure for f. Then p has no atonts.

Proof. Recall that forany ie o¥ and any x € [a. b], pi(x) < P < 1. [t follows that for
any ie o™ and any x € [a. b]. pi(x) < P Since y is invariant under 7%, we have
pix} € P"p{ /™ (x)} < P". Letting n — o0, we obtain the desired result. O

-

1.7 Theorem. There exists a p-halanced probability measure jt for f.

Proof. The only difference between this theorem and Theorem 1.3 is the absence of
the density hypothesis on D as defined in Lemma 1.2. We now show how this
hypothesis can be eliminated. Let X be the closure of D. By Lemma 1.5, there exist
a nonempty perfect set ¥ cont X with f7'(¥)=Y and a continuous increasing
function h:Y — [inf ¥,supY] so that f=h=f=h" Uand j,=p-h"' satisty
hypotheses (1)—(iv).

Set C = h(C): then C is the set of critical points of f. Let

5 - ngoj‘_"[C).

We now show that Disdensein[inf Y.sup Y] = h([a.p]). Let H = [inf Y. sup Y] be
a nonempty open interval. Since & maps intervals not intersecting Y to points,
h~ ' (H)n Y and hence A~ ' (H)n X must be nonempty. Since h~'(H) is open, there
exists xeh ' (H)nD. Then f"(x) € C for some n; Wy =7"(h(x)e C: and
hix)e HA D.

By Theorem 1.3, fhas a p-balanced probability measure v. By Lemma | .6.vhas no
atoms. We can thus define a probability measure ¢ on [a. 5] by

nE = vh(E),
and p is a p-balanced measure for £ O
Finally we state a version of Theorem 1.7 with somewhat different hypotheses. In this
version, the probabilitics are not required to be piecewise-constant. but rather

piecewise-Holder-continuous. We require, however, that the map [be expanding. We
say [ is expanding if there exist constants x > 0 and /> 1 such that

LY (] > 2d”
for all n and all x in the nonwandering set of f.
1.8 Theorem. Suppose [ is expanding on ils nonwandering set and there exists

a Hilder-continuous function w on [a, b] such that p; = w > f..i=1.....d Thenthere
exists a p-halanced probability measure for f.

Proaf. The operator T in this case can be identified the Ruclle-Perron-Frobenius
operator L, The thcorem then follows from a Ruelle’s P-F Theorem {Bowen
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[3, Theorem 1.7]): there exist A >0, a continuous lunction h, and a probability
measure v on [a, b] such that Ly, h = Ak, Ligg,, *v = v, {hdv = 1,and the sequence
of functions A~" L., ¢ converges uniformly to / j'nfm’v for any continuous function
¢ on [a, b]. The condition . p; = 1 further implies A = 1 and /i = 1. Thus v is the
required p-balanced measure. O

2. Free energy and the maximal-entropy measure

In this section we show an invariant measure has maximal entropy if and only if the
free encrgy associated with its Jacobian is lincar. Our result generalizes in some sense
one of K. Zieman in [28]. Our techniques, however, differ from those used in [28 ]; we
will use mainly ideas from Large-Deviation Theory to prove our main theorem.

We also show in the expanding case that a measure has maximal entropy ifand only
if its Jacobian has zero asymptotic variance. This fact was already known, but our
proof follows from the results previously obtained in the beginning of paragraph two.

We first review the definition of a maximal-entropy measure. We denote by M{ f)
the set of all probability measures invariant under /. We denote by i(v, f) the entropy
of ve M (/) under f. See Maiie [ 15] for definitions and general references on entropy.
We further define the entropy of f, denoted i(f), by

h(f)= sup h(v,f).
veM(f)
A most useful formula gives 4(f) as the asymptotic growth rate of the number of
preimages of a point:

h(f)= lim % log 4 f 7"(x).

If pe M(S)and h(uf) = h(f), we call p a maximal-entropy measure for /.

Newhouse and Yomdim [26] showed that a maximal-entropy measure exists for
any C® map. Hofbauer [8] showed that in the case d = 2 (unimodal map) the
maximal-entropy measure is unique. Polynomial maps of higher degree may have
more than onec maximal-entropy measure.

Let v be a Borel measure on [a, b]. We define the Jacobian of v to be a function
J,:[a, b] — [0, co] given by

o vf([x—e x+E])
Ar=lm S e

Alternatively, J, is the Radon-Nikodym derivative of v~ f with respect to v: this
shows that J,(x) is defined for v-almost all x in [a, b].
If ve M(f) then J, must be positive v-almost everywhere; moreover.

el
fiy=x Jv(_")
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for v-almost all x in [a, #]. Morcover, if v is a weight-balanced measure associated
with probabilities {p; : i € o}, and {B,:iea} are the corresponding inverse branches
of /. then we have *

1
GNP = TG )
for v-almost all x in the domain of §,. 1f J_(x) > 0 for v-almost all x then one can show
h(v) = [logJ,(x)dv(x) (as shown in [11]).

We consider v e M( [} with Jacobian J,. Let §,, .... f, denote the inverse branches
of /. We define functions p,, ..., py by (2.A). Forie o*, we define 3, and p, recursively
as in the previous section, We define functions wj.n=1.2.....teR by w;(x) =
2(f"(x)), where ieg” is chosen so that x = f,(/"(x)). It casily verified that the
functions w, satisfy the following relations:

wh(x) = wh () wr(x). 1 <k <m
(2.B) wi(x)= (J,(x)N7"

n=1 n—1
wi(0) = T wi(/ e =[] LU ™
k=1 k=1
2.1 Definition. For ve M(f). we define the free encrgy of J, to be a function
¢,:R — [0, 00] given by

.1 i}
¢, () = lim - log [ w'(x)dv(x)
k= m k
when this exists.
We say that a measurc v is in M(f)* if the above limit exists and the three
conditions below are satisfied:

1) vis balanced, that is for any ¢ continous function and any g probability measure,
we have

[ ¢dv=1lim T"ddu.
2) ¢,(f) is differentiable by parts and right and left derivatives exist for the values of
¢ where ¢, (1) is not differentiable. We also assume c, is differentiable at r = 0.

3) For each value of r the Ruelle-Perron-Frobenius  Operator associated to
log wi ~*(x) is uniformily equicontinuous.

We point out that all the above properties 1), 2), 3) are truc, and the above limit cxists
in the case where the Jacobian is Holder-continuous and fis expanding. The function
¢, (1), in this case is in fact real analytic.

Examples of situations where the free-cnergy (also called pressure) is not
differentiable but differentiable by parts appear in ([11] (page 95). [13] (page 402),
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[14] (Theorem 1)). Examples where the pressure is differentiable but the potential is
not Hélder-continuous appear in Theorem 1 in [14], under the condition 1 <y <2

(sce [14]).

Remark. In the paper of F. Hofbauer-"Examples for the Nonuniqueness of the
Equilibrium State”-Transactions AMS vol. 228, 1977, pp. 223-241) the shift in two
symbols with a non-Holder potential is analyzed and the author shows that for the
Ruelle-Perron-Frobenius Operator property 3) above is true (scc second paragraph
from bottom to top on page 229). A large class of examples are presented in the above
mentioned paper and in some of them, two equilibrium states can coexist (see table in
page 239). If one considers for example, the class of examples satisfying a), b) and c)
on page 238 in the paper of Hofbauer, then one can find a large class of situations
where two equilibrium states coexist, oneisa Dirac-Delta and the other is a nontrivial
measure denoted by . In [8] (bottom of page 408) is presented the Jacobian of the
above measure . In this case the potential given by this Jacobian produces the same
property 3) above. The graph of the function p(¢) is presented in fig. 1 in page 402 in
the last mentioned paper and it satisfies 2) above. Therefore the hypothesis of
Theorem 2.2 below cover cases of weight-balanced measures not represented only by
the expanding case with Hélder-continuous potential (or Jacobian) and we can ask if
a balanced measure of this kind can be the maximal measure. The answer is no,
because p(¢) is not lincar.

The purpose of presenting all the above examples is to stress the fact that in several
situations the free-cnergy (or pressure) is not so nice as in the expanding maps and
Hélder-continuous case. Nevertheless under some suitable assumptions (to be in
M (f)*) we will be able to show in Theorem 2.2 some properties for ¢,(f).

In [11], [19], [23] several examples of the pathologies of the non-expanding casc
are considered.

We do not use in our proof properties like Quasi-Compactness of QOperators
([17. [19]. [23]), or the approach of [22].

The concept of free energy comes from Large-Deviation Theory. The main
concepts of this theory are typically defincd not for all objects of interest, but for
a dense subset thereof. In this case we require v e M ([)* rather than ve M (/). Ellis
[4] is a general reference for Large-Deviation Theory, including free energy and the
Legendre-Fenchel transform.

Our main goal in this section is the following:

2.2 Theorem. Let ve M(f)*, that is:

1) vis balanced; that is, for any continous function ¢ and any probabhility measure pt, we

have

If,ll)(f\' = lim T"rf)n",u.

mes
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2) ¢, (1) isdifferentiable by parts and there exist right and left derivatives at the values of
t where ¢, (1) is not differentiable. We also assume c, is differentiable at t = 0.

-
3 For each value of t the Ruelle- Perron-Frobenius Operator associated with
logvy ~'(x) is uniformiy equicontinuous.

Then h(v.[) = h( ) if and only if ¢, is a linear function.

Before the proof of the theorem we need a lemma that relates pressure and free energy
(see [22] for the concept of pressurc and about Ruelle-Perron-Frobenius operators).

2.3 Lemma. For fixed x e [a, b}, we have

1
~log ¥ plx)' 7"

8 = ]
e im i

k= ieak

This limit converges and hence ¢, (1) is defined for all real t.
Note: It should be understood here that the sum includes only those terms with

pi(x) # 0, as we consider cases with £ > 1.

Proof. Let the operator T be defined as in (1.A). As the measure is balanced
[pdv=lim [ T"pdu

for any fixed probability measure u (not necessarily invariant) and any continuous
function ¢. See also the definition of an attractive measure in [2]. We consider the
particular case where ¢ (x) = w,'(x) and pisa unit point mass at x. We then have

[rwn () du(x) = lim T ' (x).

n-

Thus

o ;
2.0) ¢, (0= lim —log lim T"w, (x).
We assume n > m without loss of generality. Recalling (1.A), we have
Trw () =T " Trw ()= 3 p(x)(T™w Y(Bi(x)).
igan-m™

From (2.B), we have

(Trw Y (B () = Y w (B (8,0 py(Bi(x)

Jea™
= ¥ WL B BN = Y p BNt
Jea™ Jea™
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since from the definition of w,,'we have p; (f;(x)) = wh (B,(B:(x)). Using (2.B), and
setting p(x) = log wh = (x), we find

(Trwz (N = Y wi ' (»=Lo(H (),

Jjea™

where L, is the Ruelle-Perron-Frobenius operator associated with y. Because of the

m

uniform equicontinuity of iterates of LY, we can find a constant K > 0 such that
@.D) e XLr(1) (x) < LI(1) (B, () < X LT (1) ().
We can inlerpret this as
e~ KTt (x) < T wa (Bi(x) < X T wr'(x).
Since Y. p;(x) = 1, we have finally
e KT i (x) < T" "Trw, (x) < eX Tmw, ' (x).

Equation (2.C) now easily transforms to

1
¢, ()= lim p log T w, ' (x)

m-*a

1
lim —log Y, w,"(;(x))pi(x)

m= 0 iea™
;] -

= lim —log 3, pi(¥)™"'Pi(x),
s o feam™

using once more the definition of w.".
To show now convergence of the limit, we write i € 6™ as a concatenation ! = jl|k,

for some jea" and keo™ ". Thus

Z Pa("')l_'= Z Z pk('\_)l_'Pj{ﬁk(x]).l_r-

igam™ jean kegm—n

using (1.B). Note now that (2.D) can also be interpreted as

e—xz PJ(-Y)I_rd Z Pj(ﬁ&(x))l_f{"x Z P}(-\')l_r-

Jean jean Jea®
Thus
= 2 1=
IO RN AR
P T s Y
T P
iea™
or

log ¥ p(0)' log Y pulx)' T —log ¥ ptn! Y =R

Jean keam - n iea™
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It then follows by a standard subadditive argument (used for example in Lopes [10])
that the limit converges. O

L
Proof of Theorem 2.2. First we assume ¢, is not lincar and show h(v) has less than
maximal entropy. From Lemma 2.3, we have

. -
e, ()= lim ~log} {1:ie6":p;(x) >0},
x € [a, b] being arbitrary. Note p;(x) > 0 ifand only if §;(x) is defined. Let us assume
x ¢ F, where Fis as defined in Scction 1; so that ff;(v) = f},(x) only ifi = j. Then we
have 3 {1:iea"; p,(x) >0} = 4 f~"(x). the number of preimages of x under /™.
Thus

c.(1)= lim 11 log # 7 "(x)=h(f).

n=*a

Now define C, to be the Legendre-Fenchel transform of c,:

C,(z) = sup (rz — ¢, ().
Recall ¢,(0) = 0; thus C, is nonnegative.
From Definition 2.1 we find

c.(f) = lim I— log [ wi'dv(x)
k=g k

1
> lim — [ logw; 'dv(x)
r—m K

k-1
= lim %_( Y tlog J(fA(xN dv(x)

k=m0 i

= jr log J,(x)dv(x) = th(v).

using (2.B) in the next-to-last step and the invariance of v in the last. Thus
c,()—th(v)=0and C,(h(v) =0 (recall C, is nonnegative).

Let us assume now that ¢, is not linear. In this case it can be shown that C, is finite
and differentiable in a neighbourhood of 0 (sec page 218 in [4]). Since C, attains its
minimum at h(v). we have C.{(h(v)) = 0.

The Legendre-Fenchel transform can be easily inverted:

e, (1) = sup (z —1C,(2)).

In particular,

sup(z— C (=) =c (1) = h([)

et
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But
c—! z—=C,(z)=1
dz

for z = h(v), so this is not a local maximum for z — C,(z). Thus
h(y) = h(v) = C,(h(v) < h(S).
Now we assume c, is linear and show that i(v) > h(f). Wefixapointxe[a bl — F
and define a sequence of probabilities v,, n=0,1, ... by
fpdv,(x) = T"$(x)

for any continuous function ¢ on [a, b]. Note that v, is supported on f ~"(x) and for
any subset S of f7"(x) we have

v,5= E wi(p.

ye§

Consider a certain value x fixed. Let £ > 0 be given. We define a sequence of closed sets

B,in=1,2.13..by
> }
Define also A, by 4, =f""(x) — B,. ‘
Our chief tool in this argument is [4, Theorem 11.6.1], which says that

1
B, = {yef"‘(x) such that |— " logw,(y)—h(v)

1 . 5
lim sup 4 logv,B,=— inf C,(2).

T Jz—hivilz ¢

We now establish

lim b log # A, =h(f).
Since ¢, is linear, ¢}, = ¢,(1) — ¢,(0) = h(f):thus C,(h(/) =0 while C,(z) = o for
z # h(f). Thus from (2.E) we have

1
lim - logv, B, = — o.

n T

By assumption, J, is bounded: from (2.B) we find that

vB,= ¥ wh(y)= (¥ B,)(supJ)™".

yve By
Thus

.
lim —log # B, = — .
1

A
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Note that as the cardinal of B, is a natural number, the only possibility is that B, is
eventually empty.

Hence

. b
lim = log # A, = lim = log(# A, + #+ B,)

Ao AT

II

lim L log # /~"(x) = h(f).

n—n

Note that w}(y) > e "™ for ye 4,. Thus

# A" < {,thm u]n\,nAn S (,lﬁ(v]-!-rh!‘

Thus we have
o1
h(f)= lim Elog#finsh[v)-{-s_

Since £ > 0 is arbitrary, this proves the theorem. O

Suppose now that f is expanding. We will show a proof of a result alrcady known

(1], [91. [23]. [21].
2.4 Lemma. ¢ (1) is a C* function of 1.

Proof. This follows from the same type of argument as those used by Marfie [15.
Corollary 1.4] or Pollicot [20] for the pressure function. We conjugate fto a Markov
shift of finite type and consider a complexification of £ in the integrand wy '(x) in the
definition of ¢,. The hypotheses that fis expanding and J is Holder-continuous are
important here.

2.5 Definition. Let ve M(f) and ¢:[a.b] » R be continuous we define the
asymptotic variance of $. denoted ag, by

a—1 2
a; = lim lj(n_[fb(_\')dv{y}—- Y (,b{ff(.r))) dv{x).
" i=o

n—a

Przytycki, Urbanski and Zdunik [21. Lemma [] showed that this limit exists and
further that o2 = 0 if and only if ¢ is cohomologous to zero.

2.6 Theorem. Let ve M(f)*. Then
'712n,uv =0

if and only if h(v) = h(f).
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Proof. By Lemma 2.4, ¢, can be differentiated under the limit; thus we obtain

J—wy'(x) logw, (x) dv(x)

e, ()= .-!I—-nl n j lt';'(x) dv (T]
and

[t (odv(x) § i () dlog wh ()2 dv(x) — (] w, ‘(x) (log wy (X)) dv(x))?
/() = lim

o (fw, () dv ()

Thus, using (2.B) and the invariance of v, we find

el (0) = lim :—l(j(log wh (X)) dv(x) — [[logw, (x) dv(x)1%)

o

Il

n—1 2
lim i (][ Y log.l,(f"(x))] dv(x) — [n]logJ (x)dv (x)]z).
n=—m i=0

From the theory of large deviations it is known that e’ (0) = 0if and only if ¢, is linear.
From Theorem 2.2, this occurs only if h(v) = (). O

3. Entropy of a weight-balanced measure: an example

For a map with essentially the same number of preimages for each point, the
maximal-entropy measure can be easily described as a weight-balanced measure
corresponding to equal weights on all branches (with multiplicity) of the inverse.
When the number of preimages varies from point to point, there is no known explicit
formula for the weights which yield a measure of maximal entropy. In this section we
present an example of such a map whose entropy isexplicitly calculable. Thisexample
shows that maximal entropy is not necessarily attained by assigning cqual weight to
cach branch of the inverse map when the number of branches depends on the point.
We define f:[0,1] — [0, 1] by

1. 3
2x+a if Og.\-gg.
7 . 3 3
f((}: 5—2\: lf gg.\'éz.
1 il > e |
—-x Sexxl.
x il = |
Note that Lebesgue measure on [0, 1] is an invariant probability measure for this

map.

Vr\)fc set X = (0.1/4). ¥ = (1/4,3/4), and Z = (3/4. 1). Any point in X has just one
preimage in Z. Any point in Y has one preimage in ¥ and one preimage in X,
Any point in 7 has two preimages in Y. Thus if xeYuYuZ and we sct
E =% X, =40 "N Yyand,=# (f "(x)nZ) then we have
the formula
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én + 1 0 I 0 ‘fn
Masr | =0 1 2 M, .
Cn*— } l O 0 ;n

The asymptotic growth rate of the number of preimages of @ point is thus given by
the largest eigenvalue of the matrix in this equation: this is

o (2244 24)/87)1 + (224 - 24}/8T) 42

z = 1.6956.

The entropy of fis then given by log 2= 0.52805.

Lebesgue measure »r is an invariant measure for /7 its Jacobian under fis cqual to
2 on (0,3/4) and equal to 1 on (3/4, 1). The corresponding weights are 1/2 on each
branch when there are two inverse branches, and 1 (necessarily) when there is one
inverse branch.

We can calculate the entropy of » under fexplicitly as A(m) = j log J_(x)dm(x).
We find h(m) = log2-3/4 = 0.51986 < h( f).
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Metric properties of positively ordered monoids

Friedrich Wehrung

{Communicated by Riidiger Gobel)

Abstract. We introduce here an intrinsic (quasi-) metric on each positively ordered monoid
(P.O.M.), which is defined in terms of the evaluation map from the given P.O.M. to its bidual
and for which P.O.M. homomorphisms are continuous. Moreover, we find a class ol refinement
P.O.M."s which, equipped with the canonical metric. are complete metric spaces; this class
includes the class of weak cardinal algebras, but also most cases of completions of a certain kind
(we will call it *strongly reduced products’) of P.O.M.’s, and of which a prototype has been used
in a previous paper for the description of the evaluation map of a given refinement P.O.M. This
result can also be viewed as a wide generalization to the non-linearly ordered case (for example
weak cardinal algebras) of the (Cauchy-) completeness of the real line.

1991 Mathematics Subject Classification: 06F05, 06F30; 28B10.

0. Introduction; basic definitions and notations

We recall here the definition of positively ordered monoids. as it appears in [15].

Definition. A positively ordered moneid (from now on a P.O.M.) is a structure
(A. +.0, <) where (A4, +.0) is a commutative monoid and < is a preordering of
A such that (4,+,0, <) satisfies the lollowing:

) Va.b.cYa<sh=a+c<b+0),

(1) (Ya)(a = 0).

In particular, when (A4, + 0, <) is a commutative monoid, then we can define
a preordering (not always antisymmetric) < on A by

(Vx.yved)(xsr<e=(Bzed)(x+z=))).



