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ABSTRACT

Threshold logic is a powerful alternative paradigm for realizing Boolean functions in dig-
ital circuit design. A threshold logic function (TLF) can be roughly defined as a Boolean
function in which the output is evaluated in terms of input weights and a threshold value.
Although the subject has been investigated since the 1960’s, the lack of effective hardware
implementation for threshold functions led to a loss of interest in developing a threshold
logic design flow. However, for some emerging technologies, such as memristors, spin-
tronic, quantum cellular automata (QCA) and resonant tunneling devices (RTD), such
a logic design strategy seems to be more appropriate than the traditional switch-based
CMOS circuitry. Thus, research and development of synthesis and verification methods
applicable to large, multi-level threshold circuits are desired. Existing state-of-the-art
threshold logic synthesis tools rely on locally resynthesizing each single-output node out
of circuits initially mapped disregarding thresholdness. This work presents the first ef-
fective technology mapping approach for threshold logic gates (TLGs), which is based
on identifying threshold logic functions during the mapping. This enables to explore the
entire circuit-level search space, seeking a threshold logic covering. As a consequence,
we improve both area and performance results, as well as the synthesis scalability. A
second contribution introduced in this thesis improves the quality of results by efficiently
exploring redundant cuts. The technology mapper, we propose herein, is also able to
target different threshold-based area estimations: the total summation of input weights
and threshold values; the total summation of gate inputs; and the total number of TLGs.
Finally, we propose a TLF-based approach to perform logic synthesis for majority-gate-
based emerging nanotechnologies.

Keywords: Logic Synthesis. nanotechnologies. majority logic. threshold logic. technol-
ogy mapping. digital circuit.



Síntese Lógica para nanotecnologias emergentes

RESUMO

Lógica de Limiar (Threshold Logic) é um promissor paradigma alternativo para imple-
mentar funções Booleanas is projetos de circuitos digitais. Uma função limiar pode ser
definida como uma função Booleana onde a saída é avaliada em termos dos pesos das
entradas e um valor de threshold. Embora esse assunto tenha sido investigado desde a
década de 1960, a lacuna por implementações em hardware eficientes para funções th-
reshold resultaram em um menor interesse no desenvolvimento de um fluxo de projeto
baseado em threshold logic. No entanto, para algumas tecnologias emergentes como mem-
ristors, spintronic e diodos de tunelamento ressonantes (RTD), essa estratégia de projeto
se mostra mais apropriada que os circuitos CMOS tradicionais baseados em chaves lógicas.
Portanto, a pesquisa e o desenvolvimentos de métodos de síntese e verificação aplicáveis a
circuitos threshold multi-níveis são necessárias. As ferramentas estado-da-arte para a sín-
tese de circuitos threshold realizam um mapeamento tecnologico genérico, sem considerar
informações de propriedades threshold, e depois realizam uma resíntese para cada nodo do
circuito mapeado. Este trabalho apresenta a primeira abordagem efetiva de mapeamento
tecnológico para portas lógicas threshold (TLGs), baseada em identificar funções threshold
durante o mapeamento. Essa abordagem habilita a exploração do espaço de busca em
todo o circuito, procurando por uma cobertutra threshold logic. Como consequência, os
resultados em termos de área e desempenho são melhorados, assim como a escalabili-
dade do circuito. Uma segunda contribuição introduzida nesse trabalho é melhora da
qualidade dos resultados explorando cortes redundantes de uma maneira mais eficiente.
Finalmente, o mapeador tecnológico proposto também é capaz de otimizar diferente esti-
mativas de área dos TLGs: o somatório total de pesos e valor de threshold; o somatório
total de entradas; e o número total de TLGs.

Palavras-chave:
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1 INTRODUCTION

The MOS transistor begins to reach its physical limits of construction, with di-
mensions very close to the atomic dimensions of the Silicon (Si), which is the basis for
the realization of this device. The estimated limit for the length of the transistor channel
is about 5 nm. It is also estimated that, in the next 5-10 years, the MOS transistor will
be replaced by new devices that allow continue in the evolution of integrated circuits
according to the prediction of Moore’s Law (ITRS, 2015).

An alternative for the technological evolution is not dedicating the main devel-
opment effort in reducing the MOS transistor, but look for new alternatives in different
technologies. Among new nanoscale devices, candidates to replace the MOS transistor, we
can mention the memristor (memory resistor)(GAO; ALIBART; STRUKOV, 2013; FAN;
SHARAD; ROY, 2014), spintronic (NUKALA; KULKARNI; VRUDHULA, 2014), quan-
tum cellular automata (QCA) (CAMPOS et al., 2016a), tunneling phase logic (TPL),
single electron tunneling (SET), resonant tunneling diode (RTD), graphene transistor
and carbon nanotubes. Besides, there are other technologies based on the same MOS
transistor devices, such as SiGe, SiC, FinFET, ZnO, etc (KAHNG, 2013).

If the candidate who will replace the MOS transistor in the future has a similar
behavior, based on operation of ideal logic switches type P and type N, then the current
knowledge and the existing design and optimization CAD tools can be applied directly on
such a new technology. And, in this case, scientific and industrial effort for technological
advancement can focus only on an appropriate and reproducible physical construction of
the new device.

However, for some of the mentioned new technologies, it is already possible to
notice new challenges in implementing logic functions and digital circuits. For instance,
in the case of QCA technology, the logic gate which requires less physical area for its
construction is the 3-input majority gate (LENT et al., 1993). Something similar happens
with memristor and spintronic technologies, where the most optimized core circuit of a
logic function is a threshold logic gate (MAAN; JAYADEVI; JAMES, 2017).

The fact is that research on new methods and paradigms of logic synthesis, which
are more appropriate to future candidates to replace MOS technology, should not be
delayed until the completion of this substitution. It would generate a delay in the devel-
opment of integrated circuits due to the waiting for the development of knowledge and
circuit design tools for a specific technology.
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1.1 Motivational case: differences between threshold and CMOS logic

Threshold logic is a powerful alternative paradigm for building Boolean functions
in digital designs. A threshold logic function (TLF) can be roughly defined as a Boolean
function in which the output is evaluated in terms of input weights and a threshold
value. A TLF is completely represented by a compact vector [w1,w2,. . . ,wn;T ], where
w1,w2,. . . ,wn are the input weights and T is the function threshold value. For instance,
the representation of the given functions f = x1x2x3 and g = x1 + x2 + x3 are [1, 1, 1; 3]
and [1, 1, 1; 1], respectively. The electronic structure which implements a TLF is called a
threshold logic gate (TLG).

The main challenges when designing threshold logic based circuits are the differ-
ences to that based on traditional static CMOS logic. For instance, Boolean functions
which are trivially implemented in a CMOS logic gate, as the function f = x1x2 +x3x4 +
x5x6, requires a network of TLGs. In the other hand, Boolean functions considered com-
plex to be implemented in CMOS can be easily implemented in a single TLG. In the
following, we discuss an example for illustrating this challenge. Notice that the objective
is not to explain how the gate works, but demonstrate the differences between threshold
logic and CMOS based circuits. Figure 1.1 presents an RTD-based TLG, where each
device area corresponds to an input weight or to the threshold value.

Figure 1.1: Five different Boolean functions implemented in RTD-based threshold logic
gate by just when varying the threshold value (i.e. the drive device sizing.
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Suppose all the input weights wa, wb, wc, wd and we be equal to 1 and the threshold
value T equal to 5, i.e., F1 = [1, 1, 1, 1, 1; 5]. This corresponds to the Boolean function
F1 = abcde, the 5-input AND (AVEDILLO; J.M., 2004). By keeping the input weights
and by changing only the threshold value, one can implement different functions. For
instance, by decreasing the threshold value to 4, the gate implements the function F2 =
abcd + abce + abde + acde + bcde, and by decreasing the threshold value to 3, the gate
implements F2 = abc + abd + abe + acd + ace + ade + bcd + bce + bde + cde. Figure 1.1
shows different functions implemented by keeping all input weights equal to 1 and just
decreasing the threshold value.

Whereas, in threshold logic, the design cost for implementing the more complex
functions is practically the same to implement the 5-input AND/OR ones, in CMOS
the implementation of these functions are significantly different. Figure 1.2 shows the
implementation of the same 5-input Boolean functions in static CMOS logic. For instance,
the number of transistors used to implement F1, F2 and F3 is 10, 21 and 46, respectively.
The circuit complexity varies significantly. Such differences should be taken into account
when developing algorithms to design a TLG-based circuit.

Figure 1.2: Five different Boolean functions implemented in traditional static CMOS gate.
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1.2 Overview of the related works

Although the subject has been studied since the 1960’s, the lack of effective hard-
ware implementation for threshold functions led to a loss of interest in developing a
threshold logic design flow (MUROGA, 1971). However, for some of the emerging tech-
nologies, such as memristors (GAO; ALIBART; STRUKOV, 2013; FAN; SHARAD; ROY,
2014), spintronic (NUKALA; KULKARNI; VRUDHULA, 2014) and resonant tunneling
devices (RTD) (AVEDILLO; QUINTANA, 2004), such a logic design strategy seems to
be more appropriate than the traditional switch-based CMOS circuitry. Thus, research
and development of synthesis and verification methods applicable to large, multi-level
threshold circuits are desired.

Algorithms addressing threshold logic synthesis have been presented in recent years
(ZHANG et al., 2005; SUBIRATS; JEREZ; FRANCO, 2008; GOWDA et al., 2011;
PALANISWAMY; TRAGOUDAS, 2014; NEUTZLING et al., 2014; LIN et al., 2014;
CHEN; WANG; CHANG, 2016). The main drawback of these methods is that they
do not consider threshold logic while generating an initial covering in terms of 6-input
single-output nodes. Once the circuit is already covered, the previous approaches locally
perform a threshold network synthesis for each single-output node, aiming to cover the
circuit using only threshold logic gates (TLGs). Besides, their area estimation relies only
on the number of TLGs in the final circuit. This estimation may be inaccurate, since
some TLG implementations fit better with area estimations related with the sum of input
weights and threshold values, or even the total number of inputs.

1.3 Thesis proposal

The objective of this thesis is to propose an effective technology mapping for emerg-
ing nanotechnologies that are based on threshold and majority logic functions. In this
sense, effective means to explore the thresholdness proprieties of the target circuit earlier
in the flow. As a consequence, the method can explore solutions that are impossible to
be reached for the previous works. In the following, a case of study of this improve-
ment is presented. Fig. 1.3 presents a circuit with 3 inputs and 2 outputs is represented
through an And-Inverter Graph logic structure called AIG. An output implements a 2-
input Exclusive-OR (XOR) between the inputs a and b, and the other output implements
a 2:1 multiplexer (MUX), being the input b the selector.
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Since the first step of previous approach is to perform a general technology map-
ping, i.e., without considering thresholdness information, such approaches obtain a net-
work containing one LUT for each output. This solution, presented in Fig.1.3, is optimal
in terms of LUTs (2 LUTs) and in terms of logic depth (1 level). However, as demon-
strated in Fig 1.4, this solution results in 4 TLGs, since each LUT implementation requires
2 TLGs.

Figure 1.3: The best general technology mapping for the given circuit comprises only one
LUT for each output.

Figure 1.4: The synthesis is performed independently for each LUT. The best solution
obtained by traditional approaches comprises 4 TLGs.

In the other hand, in our approach, during the technology mapping we already
know which "parts" of the AIG can be implemented in a single TLG or not. As a con-
sequence, the solution of the proposed approach contains 3 LUTs and 2 levels of depth .
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Figure 1.5: The proposed flow knows the thresholdness information during the technology
mapping. The solution comprises 3 TLGs.

In this case, each LUT function is a TLF, i.e., corresponds directly to a TLG in the final
netlist, as shown in Fig. 1.5.

Besides to enable improvements, as illustrated in Fig. 1.5, the threshold technology
mapping enables different improvements on logic synthesis for emerging technologies.
These improvements, pointed out in the following, are the specific objectives of the thesis.

1.3.1 Specific objectives

The proposed threshold logic technology mapping enables several opportunities of
both improvements and new approaches based on threshold logic synthesis.

• We present a novel threshold logic synthesis flow combining area and delay opti-
mization. In particular, the proposed strategy relies on identifying threshold logic
functions earlier in the mapping flow. This simple (yet effective) change gives us a
fast and clean synthesis flow and a better quality-of-results (QoR) based on explor-
ing the threshold logic information during the technology mapping.

• The TLF-based technology mapping is based on priority cuts, where the main task
is the cut sorting. We propose different approaches for cut sorting based on the
thresholdness and unateness information.

• We are also exploring QoR improvments for threshold synthesis by cleverly enu-
merating redundant cuts. We show that, even if a given irredudant cut i does not
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represent a threshold function, there may exist some threshold cuts redundant with
i which can then be used by the threshold logic mapper to reduce the circuit area.

• The technology mapper, we propose herein, is also able to target different threshold-
based area estimations: the total sum of input weights and threshold values, the
total sum of gate inputs, or the total number of TLGs. This is particularly inter-
esting when the synthesis targets specific threshold-oriented emerging technologies,
in which the TLG area estimation varies from one technology to another.

• Finally, we propose a majority gate synthesis approach, which is based on the TLF
technology mapping and explores the relationship between threshold and majority
functions.

1.4 Thesis Structure

The rest of the text is organized as follows.

• In Section 2, some fundamentals on Boolean networks, AIGs and structural cuts are
reviewed for a better understanding of the proposed approach. We define thresh-
old logic functions and threshold logic gates, besides discussing different TLG area
estimations used in the proposed mapper.

• Section 3 presents the related works. This section is essential to identify how the
previous approaches perform threshold logic synthesis and understand the contri-
butions of the proposed thesis.

• The proposed threshold synthesis flow is presented in Section 4. We explain the
proposed technology mapping, based on the LUT based mapping. The two main
tasks are detailed: the cut enumeration and cut covering. We present several or-
thogonal improvements to TLG-oriented technology mapping, such as ( i) threshold
logic priority cuts; ( ii) redundant threshold cuts; ( iii) optimizing different TLG area
estimations.

• Section 5 provides the results, demonstrating the potential of the proposed method
when comparing to the state-of-the-art approaches. We present results which sup-
port each of the improvements discussed on Section 4. Moreover, we present new
results over huge benchmarks which can be adopted in future works evaluation.
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• In Section 6, we present two additional contribution:

(i) Some new technologies are suitable for a specific class of threshold logic func-
tions, the majority functions (a.k.a. as voters). We propose a logic synthesis
for majority functions based on the threshold logic synthesis flow;

(ii) A crucial task for any threshold logic synthesis flow is the threshold logic
identification. We analyze the trade-offs between ILP and heuristic approaches,
proposing a fast and efficient approach, which is an enabler for the threshold
logic technology mapping proposed in this thesis.

• In Section 7, we present the final considerations, pointing out the main contributions
and discussing open questions to be addressed in future works .
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2 PRELIMINARIES

In this section, some fundamentals on Boolean networks, AIGs and structural
cuts are reviewed. We define threshold logic functions and threshold logic gates. The
background for the different area estimations considered in this work is presented. We
also review LUT-based technology mapping for FPGAs used in the proposed mapper.

2.1 General Terms and Definitions

2.1.1 Boolean Function

A Boolean function f defined over the variable set X = {x1,. . . ,xn} is a function
defined as f(X): Bn → B, where B = {0,1} and n = |X|, i.e., n is the number of
variables in X. In this work, AND, OR and NOT operations are denoted by ‘.’,‘∨’ and
‘!’, respectively.

2.1.2 Cubes and Literals

A literal is a variable (xi) or its complement (!xi), whereas a cube is a product
of literals that represents a Boolean sub-space. The cube size of a cube with l literals
in a Boolean space Bn is given by 2(n− l). Consequently, the size of a cube is inversely
proportional to the number of literals in this cube.

2.1.3 Sum-of-Products

Furthermore, an expression is called sum-of-products (SOP) when this expression
corresponds to product terms (AND) joined by a sum (OR) operation. In particular, an
irredundant sum-of-products (ISOP) is a SOP in which neither a literal nor a cube can
be removed without changing the function behavior.
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2.1.4 Unateness

A completely specified function is positive unate in variable x, iff f(xi = 1) ⊃
f(xi = 0), where f(xi = 1) is the positive cofactor and f(xi = 0) is the negative cofactor
of f with respect to variable xi. Given a Boolean function, the unateness checking is
based on the positive and negative cofactors generation. Given a function f represented
by an ISOP form, this function is unate if, and only if, either direct (positive polarity) or
complemented (negative polarity) literals, but not both, appear to each variable. Notice
that a unate function has a unique ISOP representation (BRAYTON et al., 1982).

2.1.5 Boolean Network

A Boolean network is a directed acyclic graph (DAG) where nodes correspond to
logic gates and directed edges represent the wires connecting the gates. It is assumed that
each node has a unique ID (integer number).

A fanin (fanout) cone of node n is a subset of all nodes of the network reachable
through the fanin (fanout) edges from the given node.

A node n has zero or more fanins (nodes driving n) and zero or more fanouts (nodes
driven by n). The primary inputs (PIs) are nodes without fanins, whereas the primary
outputs (POs) are a subset of nodes from the network connecting it to the environment.

2.1.6 AIG

AND-inverter graph (AIG) is a DAG where each node has either zero incoming
edges (in the case of a PI) or two incoming edges (in the case of an AND node). Each
edge can be complemented or not. Some nodes are marked as POs.

2.1.7 Structural Cuts

A cut C of a node n is a set of nodes of the network, called leaves of the cut, such
that every path between a PI and n contains a node in C. A cut of n is irredundant if no
subset on it is a cut. A K-feasible cut contains K or fewer nodes. Fig. 2.1 present some
examples of K-cuts when limiting Kto3.
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Figure 2.1: Examples of structural cuts: sets of nodes C of the network such that every
path between a PI and n contains a node in C.

Node n is called the root of cut C. The cut size is the number of its leaves. A
trivial cut is the node itself. A local function of an AIG node n, denoted by fn(x), is a
Boolean function of the logic cone rooted in n and expressed in terms of the leaves x of
a cut of n.

Cut enumeration is a technique used by a cut-based technology mapper to per-
form cut computation using dynamic programming, starting from PIs and ending at POs
(MISHCHENKO; CHATTERJEE; BRAYTON, 2007; PAN; LIN, 1998).

2.1.8 NPN Classes

By considering a set of all functions with up to n variables, these functions can
be grouped into classes. Boolean functions can be grouped taking into account the nega-
tion (N), and/or the permutation (P) of variables, and/or the negation of function value
(HINSBERGER; KOLLA, 1998). For instance, NP-class corresponds to the set of distinct
functions obtained by negating and/or permuting the input variables.
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2.2 Threshold Logic Terms and Definitions

2.2.1 Threshold Logic Function

A threshold logic function is a Boolean function satisfying the following condition.
Each input has a specific weight and the gate has a threshold value. If the weight sum of
active inputs (inputs equal to 1) is equal or greater than the threshold value, the function
evaluates to 1. Otherwise, the function evaluates to 0. This can be expressed as follows
(MUROGA, 1971):

f =


1, if

n∑
i=1

xiwi ≥ T ;

0, otherwise,
(2.1)

where xi represents each Boolean input value {0, 1}, wi is the weight of each input, and
T is the function threshold value.

A TLF is completely represented by a compact vector [w1,w2,. . . ,wn;T ], where
w1,w2,. . . ,wn are the input weights and T is the function threshold value. For instance,
the corresponding TLG of the given functions f = x1x2x3 and g = x1 + x2 + x3 are
[1, 1, 1; 3] and [1, 1, 1; 1], respectively. A TLF can also be called a ‘linearly separable’
function.

2.2.2 Threshold Logic Identification

Although some complex functions are TLFs, there exist some simple functions
which are not TLFs. For instance, the function h = x1x2 + x3x4 cannot be represented
in terms of input weights and threshold value. The threshold logic identification process
verifies if a Boolean function is TLF (or not) and compute the input weights and gate
threshold value. In this work, we adopt the identification process presented in (NEUT-
ZLING et al., 2013), instead of the integer linear programming based algorithms applied
in previous works (ZHANG et al., 2005; SUBIRATS; JEREZ; FRANCO, 2008, 2008;
GOWDA et al., 2011; PALANISWAMY; TRAGOUDAS, 2014). This is mainly due to
the fast runtime and the good quality of results.
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2.2.3 Threshold Logic Properties

All threshold logic functions are unate, i.e., if a given function is not unate then
it is not TLF. Unate functions can be non-threshold functions. Considering threshold
functions, a negative unate variable can be changed to a positive one by just inverting
the weight signal, and this amount is then subtracted from the threshold value.

In identification methods, negative variables are usually treated as positive ones,
and this information is stored. After computing the threshold function parameters, the
input weights are adjusted.

Figure 2.2: Elementary properties of threshold logic functions (MUROGA, 1971).

For instance, in the given function foriginal = (!a∨(b.c)), the variable a is negative
unate. The method considers the function fpositive = (a∨(b.c)), where a is positive unate.
The identified variable weights for fpositive are 2, 1 and 1. Afterwards, the signal of the
negative variables and the function threshold value are adjusted based on the properties
illustrated in Fig. 1. The variable weights for foriginal are -2, 1 and 1, respectively.

2.2.4 Threshold Logic Gates

More than a gate that realizes a threshold function, a threshold logic gate is a
single primitive, or a non-decomposable circuit, which physically embodies the comparison
expressed in Equation (2.1). Notice that this excludes implementations that realize the
threshold functions using CMOS-like, AND/OR-based primitives.

TLGs can implement complex functions. For instance, the TLG [4,3,3,1,1;7] im-
plements f = x1x2 + x1x3 + x2x3x4 + x2x3x5. Using larger threshold functions has the
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potential benefit of reducing the total number of gates needed to implement digital cir-
cuits.

Several implementations of TLGs have been proposed for both CMOS and new
nanometric technologies. A survey with more than 50 TLG implementations was pre-
sented by BEIU; QUINTANA; AVEDILLO, in (BEIU; QUINTANA; AVEDILLO, 2003).
More recently, implementations based on memristors (GAO; ALIBART; STRUKOV,
2013), spintronic devices (FAN; SHARAD; ROY, 2014; NUKALA; KULKARNI; VRUD-
HULA, 2014), SET (LAGEWEG; COTOFANA; VASSILIADIS, 2001; CHEN; MAO,
2008), QCA (NAVI et al., 2010), and RTDs (ZHANG et al., 2005; PACHA et al., 2000)
have also been proposed.

2.2.5 Threshold Logic Network

Threshold logic network (TLN) is a netlist of TLFs and its interconnections. A
TLN can be implemented through TLGs, since each TLF can be directly implemented
through a single TLG. The area of TLN corresponds to the sum of the TLG areas.

2.2.6 TLG Area Estimation

The area of a TLG depends directly upon the technology used to implement such
a gate. However, since no technology currently available is mature enough to implement
TLGs in large scale, or in a standard cell library, synthesis tools usually consider that each
TLG has the same area. As a consequence, the total circuit area is commonly calculated
through the overall number of TLGs in the mapped circuit.

Although it is hard to define a general TLG area estimation, some of them are
more suitable for specific technologies. For instance, when implementing a TLG through
RTDs, each input weight and the threshold value define the diode area. Therefore, the
gate area is directly related to the sum of the weight inputs and the threshold, as defined
in the following equation:

ATLG = T + Au(
k∑
i=1

wi), (2.2)

where k is the number of inputs of the gate, wi is the weight of input i, Au is the unit
area of an RTD with w = 1, and T is the threshold of the gate (ZHANG et al., 2005).

For other technologies, such as memristors (GAO; ALIBART; STRUKOV, 2013;
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FAN; SHARAD; ROY, 2014) or spintronic-based devices (NUKALA; KULKARNI; VRUD-
HULA, 2014), the weight is set by applying a voltage for some time and, thus, do not
impact the device area. In these cases, each input requires one device (with the same
area) and, as a consequence, the more suitable gate area estimation is the number of its
inputs.
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3 RELATED WORKS ON THRESHOLD LOGIC SYNTHESIS

The studies on threshold logic were intense the 1960s (HU, 1965; DERTOUZOS,
1965; LEWIS; COATES, 1967; SHENG, 1969; MUROGA, 1971). The lack of efficient
circuit implementations, competitive with static NMOS and later CMOS logic, resulted
in less interest in further development of threshold logic synthesis methods. Recently,
the interest in threshold logic has been renewed together with emerging nanotechnolo-
gies proposed as alternatives to CMOS, such as resonant tunneling diodes (AVEDILLO;
QUINTANA, 2004), quantum cellular automata (CAMPOS et al., 2016a), single electron
transistors and memristive devices (GAO; ALIBART; STRUKOV, 2013), because can
implement threshold functions very compactly and efficiently.

Table 3.1 presents a summary of the related works that are discussed in this sec-
tion. For each work we present the publication year and vehicle as well as the author’s
name. The works are joined according to their strategies in three groups: threshold logic
synthesis, threshold logic rewriting and hybrid (CMOS and Threshold logic). The table
presents also a brief description of the works in these groups.

Table 3.1: Related works grouped according their strategies.

Threshold Logic Synthesis Threshold Logic Rewriting Hybrid synthesis
2004 Avedillo Euromicro 2014 Lin DATE 2016 Kulkarni TVLSI
2005 Zhang TCAD 2014 Palaniswamy JETC
2008 Subirats TCAS 2016 Lee ICCAD
2011 Gowda TCAD
2014 Neutzling ISCAS
Description: Perform a
generic technology mapping and
for each non-TLF Boolean
function in the resulting
network find a TLG network.

Description: Starts from a
TLG network. Requires another
method to perform threshold
logic synthesis.

Description: Starts from a
standard cell netlist and replace
standard flip-flops to threshold
logic flip-flops.

Previous methods on threshold logic synthesis start by generating an initial cover-
ing in terms of 6-input nodes. Once the circuit is already covered, they locally perform a
threshold network synthesis for each single-output node, aiming to cover the circuit using
only threshold logic gates (TLGs).

Te first threshold logic synthesis approach in the recent years was proposed by
AVEDILLO; QUINTANA in (AVEDILLO; QUINTANA, 2004). This work uses the SIS
logic synthesis tool for “partition” the circuit and integer linear programming (ILP) is used
to perform threshold logic identification. For each Boolean function, a search procedure
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is used to synthesize feedforward threshold circuits with one threshold gate at each level.
This procedure is based on SAT formulation. This method is suitable only for small
fanin and for small circuits, taking minutes to synthesize them. Moreover, the number of
levels is equal to the number of gates, a naive strategy in terms of logic depth. Fig. 3.1
demonstrates the structure of the threshold networks generated by such method.

ZHANG et al., in (ZHANG et al., 2005), propose the recursive partition of non-
threshold functions to merge the nodes respecting fanin restrictions. The input to this
methodology is an algebraically-factored multi-output combinational Boolean network,
generated by SIS tool. AN ILP approach is applied to perform the threshold logic iden-
tification.

Two methods are used for synthesis, as shown in Fig. 3.2. In Method 1, the
synthesis algorithm begins by processing each primary output of the Boolean network.
At first, the node representing a primary output is collapsed. If the node represents a
binate function, it is split into multiple nodes which are then processed recursively. If the
unate node is a threshold function, it is saved in the threshold network and the fanins
of the node are processed recursively. Otherwise, the unate node is first split into two
nodes. If neither of the split nodes is a threshold function, the original node is split into
multiple nodes which are then processed recursively. The synthesis algorithm by Method
1 terminates when all the nodes in network are mapped into threshold nodes. In Method
2, one-to-one mapping is firstly performed on the network. After that, starting from each
primary output, we obtain the subnetworks of AND and OR gates only satisfying the
fanin restriction. The synthesis is then performed on each subnetwork by Method 1.

Zhang’s approach is very important because it is the first open source available
method for threshold logic synthesis. The code was developed inside the SIS tool and

Figure 3.1: Threshold logic network structure from Avedillo’s method, with a single TLG
per level (AVEDILLO; QUINTANA, 2004).
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is public available. For this reason, several works in threshold logic synthesis adopt this
work as reference in order to compare their results. The main drawback is that the quality
of results is very sensitive to the initial Boolean network description.

Moreover, a method based on truth table descriptions was presented by SUBI-
RATS; JEREZ; FRANCO, in (SUBIRATS; JEREZ; FRANCO, 2008). This method also
starts from a Boolean network generated by SIS tool and applies ILP to perform threshold
logic identification. Subirats’ algorithm computes a variable ordering using information
about the on-set and the off-set, and performs Shannon decomposition in order to find
threshold logic functions.

For each Boolean function in the Boolean network, the algorithm is performed.
According to its Hamming distance, it is decided whether to use an OR or AND repre-
sentation of the function. The choice of representation affects the algorithm in two ways:
firstly, the output function of the final architecture will be an OR (AND) if more than
half of the outputs of the target function are 1’s (0’s). Secondly, it affects the function
splitting procedure, as 0’s and 1’s are used for filling new undefined instances created
after the splitting process is applied. For the case of an input target function with half of
the bits equals to 0, any of the two choices can be used.

After the representation to be used is selected, the whole decomposition procedure
continues by adding the target function to the work-set, a reservoir that contains all
functions that will be analyzed. At the beginning, the work-set contains only the target
function but later on, it will contain the newly created functions, after the splitting
procedure is applied iteratively. The algorithm continues by picking a function from the
work-set and applying a variable simplification procedure in order to eliminate irrelevant

Figure 3.2: Overview of the threshold logic synthesis flow proposed by Zhang et. al in
(ZHANG et al., 2005).
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variables which have no impact at the output of the function. If the function is not TLF
the functions are added to the work-set. Otherwise, if the function is TLF, it is added to
the solution set. The whole procedure is repeated until there is no more function to be
analyzed in the work-set. The set of found threshold functions are then all combined using
the OR and AND functions selected at the beginning and the final output will compute
the desired function.

Subirat’s approach improves the Zhang’s results in terms of number of gates. How-
ever, this approach produces two-level threshold networks without fanin restriction, which
is more suitable for neural networks than for digital designs.

Figure 3.3: Truth table based synthesis approach proposed by Subirats et. al in (SUBI-
RATS; JEREZ; FRANCO, 2008).
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In (GOWDA et al., 2011), GOWDA et al. use a factorized tree method to generate
the network of threshold gates. The method recursively breaks the initial expression
tree into sub expressions, identifying sub-trees which represent TLFs and assigning the
input weights. It is more appropriate for IC synthesis using several TLGs, but it is time
consuming and the result strongly depends on the initial structure, in particular, on the
ordering of tree nodes.

The two methods presented by Gowda are based on efficient traversal of decision
diagrams (binary decision diagrams - BDD and max literal factor trees - MLFT), which
allows not only to quickly identify that a given function is a threshold function, but also
to compute its minimal weight assignment. The basic threshold identification procedure
is used to decompose a Boolean function into a network of threshold functions. It also
allows for exercising limitations on certain gate parameters such as maximum fanin, sum
of weights, and function threshold making it more suitable for synthesis of realizable
threshold circuits. Fig. depicts an example of Gowda’s method, identifying a given
threshold function over a BDD structure.

Figure 3.4: Example of the threshold synthesis approach proposed by Gowda et al. in
(GOWDA et al., 2011).
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The results demonstrate improvements in terms of number of gates when comparing
to previous works. However, the authors do not present results in terms of circuit logic
depth. Moreover, the method is slow and the results strongly depends on the BDD or
MLFT variable ordering. Besides, the identification procedure is not effective, even for
functions with smaller number of inputs.

The method proposed by Palaniswamy in (PALANISWAMY; TRAGOUDAS, 2014),
implicitly implements Gowda’s method (GOWDA et al., 2011). The work is based on a
downhill approach which looks for circuit outputs that can be implemented in single
TLGs. However, this work suffers from the same drawbacks of Gowda’s method.

The method proposed by Neutzling, in (NEUTZLING et al., 2014), is based on a
TLG association procedure through the principle called functional composition (MAR-
TINS; RIBAS; REIS, 2012), based on dynamic programming. The algorithm associates
simpler sub-solutions, with known costs, in order to produce a final solution with mini-
mum cost.

Optimal TLG implementations containing all functions up to 4 inputs are generated
with a straightforward procedure. This approach is interesting for a mapping point-of-
view, since it is necessary only one execution to generate a full library, and the results are
stored for posterior reuse, so avoiding the matching task.

For functions larger than 4 inputs a heuristic method based on the Boolean factor-
ing algorithm presented by Martins et al., in (MARTINS et al., 2010), is proposed. The
first step for the synthesis of threshold network up to 6 inputs is to check if the target
function is TLF. If this condition is attained, the algorithm returns a TLG provided by
the identification algorithm. Otherwise, the heuristic algorithm starts by decomposing
the target function in cofactors and cube cofactors, and these functions are stored in a
set of derived functions. The next step is to discover the implementation of each func-
tion in this set, calling recursively the algorithm. After all functions in the set have an
implementation in threshold network, the second step is combining these functions using
AND/OR operations in order to generate new functions.

This method presents better results in terms of TLG count when compared to
previous approaches. However, it does not present significant optimization in terms of
logic depth. Moreover the algorithm does not scale for functions with a larger number of
inputs.

The threshold logic synthesis methods, as mentioned above, generate a TLF net-
work from a general Boolean function netlist. Another set of approaches focuses in the
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Figure 3.5: Threshold logic synthesis approach propose by Neutzling et. al in (NEUT-
ZLING et al., 2014).

optimization starting from a TLF network. As consequence, they need to use one of the
mentioned threshold logic synthesis approaches as input of their methods.

Methods for TLG based circuit rewiring are presented by Kuo et al., in (KUO;
WANG; HUANG, 2011), and by Lin et al., in (LIN et al., 2014). Kuo’s approach focuses
only on circuit restructuring for satisfying a new fanin constraint and does not take into
account the area or level minimization issue. Lin’s approach, on the other hand, represents
a heuristic for rewiring the circuit by minimizing the summation of input weights and
function threshold value.

In (CHEN; WANG; CHANG, 2016), Chen et al. propose an analytic approach
based on collapsing two threshold gates in order to minimize the total number of TLGs.
This approach is different from all others because the method is performed directly over
the AIG, without running a traditional threshold logic synthesis. The authors does not
justify the greedy strategy and, although it is a recent work (2016), they compare the
results only to the Zhang’s approach (ZHANG et al., 2005).

Finally, Kulkarni et al., in (KULKARNI et al., 2016), propose TLG-based ap-
proaches to reduce the circuit area and power consumption without loss of performance.
However, the technology mapping is performed by a commercial tool using a conventional
(non-threshold-based) standard cell library. This method replaces some conventional flip-
flops by threshold logic sequential cells, latches and flip-flops (KULKARNI et al., 2016).
As a consequence, a hybrid netlist comprising both TLGs and conventional logic gates is
generated.
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3.1 Thesis proposal

Notice that all of the mentioned threshold logic synthesis approaches focus basically
on synthesizing single output non-TLFs. The first step of previous methods relies on a
complete synthesis process which disregards threshold logic domain. Therefore, they do
not explore the whole circuit where they would find, for instance, TLFs between different
functions in the netlist.

In this thesis, we propose the first effective technology mapping approach for
threshold logic gates, which is based on identifying threshold logic functions during the
mapping. This enables to explore the entire circuit-level search space, seeking a threshold
logic covering. As a consequence, we improve both area and performance results, as well
as the synthesis scalability.

A second contribution introduced improves the quality of results by efficiently
exploiting redundant cuts. Moreover, the technology mapper, we propose herein, is also
able to target different threshold-based area estimations: the total summation of input
weights and function threshold values; the total summation of gate inputs; or the total
number of TLGs. Finally, the proposed technology mapping can be modified to handle
majority (MAJ) functions, generating a MAJ gate netlist for different fanin restrictions.
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4 PROPOSED THRESHOLD LOGIC SYNTHESIS

Given a digital circuit functionality, usually described in RTL format, the threshold
logic synthesis (TLS) relies on finding an optimized threshold logic network. The most
TLS tools initially cover the circuit by single-output nodes, disregarding their threshold-
ness, as illustrated in Fig. 4.1(a) (ZHANG et al., 2005; SUBIRATS; JEREZ; FRANCO,
2008; GOWDA et al., 2011; PALANISWAMY; TRAGOUDAS, 2014; NEUTZLING et
al., 2014). In the next, these approaches perform the resynthesis of any non-TLF found
to individual, unshared threshold logic network in order to provide the final covering.

In a preliminar approach, also presented in (NEUTZLING et al., 2015), we propose
a synthesis flow that identifies TLFs before the circuit covering task. It is based on a
three-stage procedure, as depicted in Fig. 4.1(b): (i) a complete cut enumeration, storing
Boolean functions of cuts in the design; (ii) the identification of TLFs related to this
set of computed cuts; and (iii) the technology mapping considering thresholdness of pre-
computed functions. By doing so, this approach is able to discard those non-TLFs and
provides a threshold network since the first covering action. This strategy allows the
exploration of multi-objective technology mapping algorithms. On the other hand, notice
that this approach relies on computing cuts twice in the flow, in stages (i) and (iii) above.

In the following, we present our threshold logic synthesis method, depicted on Fig.
4.1(c), based on the LUT-based technology mapping. For this, we discuss the two main
steps of the priority cut-based technology mapping algorithms: the cut enumeration and
cut covering. Common area and delay cost functions for threshold logic synthesis are,
respectively, TLG count and logic circuit depth. Thus, it is straightforward to relate
threshold logic synthesis with FPGA technology mapping.

This section is organized as follows. Firstly, we present how the traditional cut enu-
meration works, presenting also two strategies to optimize this procedure. In Subsection
4.2, we propose an approach to identify threshold functions during the cut enumeration.
Next, we discuss how we choose the best cuts, during the traditional covering. Finally,
in Subsection 4.4, we present threshold logic covering based on priority cuts. Moreover,
we present how to consider different TLG area estimations during the mapping, like the
summation of input weights or the overall number of gate inputs.
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Figure 4.1: Comparison on the different threshold synthesis flow in the literature.

4.1 Traditional Cut Enumeration

Technology mapping transforms a technology-independent logic network, called the
subject graph, into a network of logic nodes. In FPGAs, each logic node is represented
using a K-input look-up table (LUT) implementing any Boolean function up to K inputs.
The subject graph is often represented as an AIG comprising of two-input ANDs and
inverters.

Most structural methods of FPGA mapping (CONG; DING, 1994; CHEN; CONG,
2004; MISHCHENKO; CHATTERJEE; BRAYTON, 2007; MISHCHENKO et al., 2007)
start by computing all, or nearly all, K-feasible cuts for each AIG node. Similar methods
exist for standard cell mapping. In the next, the AIG nodes are traversed in a topological
order and a dynamic programming approach is used to find an optimum-depth LUT
mapping of the AIG. In this section, we demonstrate the cut enumeration procedure.

As we defined in Section 2, a cut c of a node n is a set of nodes of the network,
called leaves of the cut, such that every path between a PI and n contains a node in c.
The cut enumeration is the task to compute a cut set for each node in the AIG.
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Let A and B be two sets of cuts. We define the operation A ./ B as follows:

A ./ B ≡ {a ∪ b | a ∈ A, b ∈ B, |a ∪ b| ≤ K}. (4.1)

Let Φ(n) be the set of K-feasible cuts of node n. If n is an AND node, let n1 and n2

denote its fanins. We have

Φ(n) ≡


{{n}} : n ∈M1in

;

{{n}} ∪ {Φ(n1) ./ Φ(n2)} : otherwise,
(4.2)

This formula translates into a simple procedure that computes all K-feasible cuts
in a single pass from the PIs to the POs in a topological order. Informally, the cut set
of an AND node is computed by merging the two cut sets of its children and adding the
trivial cut (the node itself). This is done by taking the pairwise unions of cuts belonging
to the fanins.

Figure 4.2 illustrates the bottom-up cut enumeration procedure for a small circuit.

Figure 4.2: Example of cut enumeration.



36

4.1.1 Discarding cuts larger than K

In this process of merging the cut sets to form the resulting cut set, it is necessary to
detect duplicated cuts and to remove dominated cuts. Removing them before computing
cuts for the next node reduces the number of cut pairs considered without impacting the
quality of mapping. In practice, the total number of cut pairs tried during the merging
greatly exceeds the number of K-feasible cuts found.

Since the final mapping contains only LUTs up to Kinputs, any cuts larger than
K-inputs can be pruned from the cut set. When merging cuts, the minimum number of
inputs is determined by the largest cut. It was demonstrated in (PAN; LIN, 1998; CHEN;
CONG, 2004) that discarding these cuts larger than K do not impact in the quality of
results.

4.1.2 Discarding dominated cuts

A cut is said to be dominated if there is another cut of the same node, which is
contained, set-theoretically, in the given cut. For instance, in Figure 4.2, the cutset of
node x contains a dominated cut adbc (dominated by abc) that may be removed without
affecting the quality of mapping.

In traditional state-of-the-art mappers for FPGA technology, dominated cuts are
discarded during the cut enumeration (PAN; LIN, 1998; CHEN; CONG, 2004; MISHCHENKO;
CHATTERJEE; BRAYTON, 2007). The methods applies a dominance checking for each
operation {Φ(n1) ./ Φ(n2)} so that dominated cuts are not considered.
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4.2 Threshold Logic Cut enumeration

In a threshold logic technology mapping, we must guarantee that only the cuts that
the corresponding function is TLF can be chosen in the final solution. In this section,
we discuss how we efficiently determine if a structural cut is a threshold cut. Moreover,
we demonstrate that obtaining the thresholdness information during the cut enumeration
allows to improve the mapping results by exploring redundant cuts.

4.2.1 Identifying threshold cuts

Each structural cut represents a Boolean function. A threshold logic mapper needs
to be aware which cuts represent TLFs. The threshold logic identification process verifies
if a Boolean function is TLF (or not) and compute the respective input weights and
the function threshold value. In this work, we have adopted the identification process
presented in (NEUTZLING et al., 2017), instead of the integer-linear-programming-based
(ILP) algorithms applied in previous works (ZHANG et al., 2005; SUBIRATS; JEREZ;
FRANCO, 2008, 2008; GOWDA et al., 2011; PALANISWAMY; TRAGOUDAS, 2014).
This is mainly due to fast runtime and good quality of results obtained.

This heuristic approach is a secondary contribution of this thesis, being better
discussed in Section 6.2. Here, we present a summary of the results in order to justify the
importance of such a method in the proposed flow:

• Our method scales better and recognizes more threshold functions.

• Our method is the only one that compares numerically to ILP, whereas other authors
only state that ILP is slow, without providing numerical results.

• We have reassessed the comparison with the ILP-based method. Our heuristic is
around 8 times faster than the ILP, missing only 1% of the threshold functions with
up to 15 inputs present in large opencore benchmark circuits as sub-circuits.

• Our heuristic approach scales up to 92 inputs.

• For large functions, the proposed method is around 3 orders of magnitude faster
than ILP.
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4.2.2 Unique TL identification per NPN representative cut function

Although the identification we have adopted is very fast, such a procedure still can
be a bottleneck due to the huge number of cuts created during the enumeration.

An effective solution for this issue is avoid repeating the identification for the same
Boolean function. Actually, it can be even better if the identification is performed once
for each NPN representative class, since the input weights and the function threshold
value have the same magnitude for functions in the same NPN class (MUROGA, 1971).

In order to acomplish this strategy, two tasks are required:

1. Find as fast as possible an NPN representative for a given Boolean function;

2. Store the thresholdness information in a hashtable, defining the NPN representative
as a hashtable key.

In this work, we adapt a software package called DSD manager to perform the
above mentioned tasks. DSD manager was proposed in (MISHCHENKO; BRAYTON,
2007) for storing Boolean functions using their DSD structures, performing Boolean op-
erations, and caching intermediate computations.

Disjoint-support decomposition (DSD) represents a completely-specified Boolean
function as a tree of nodes with non-overlapping supports and inverters as optional com-
plemented attributes on the edges (BERTACCO; DAMIANI, 1997; CALLEGARO et al.,
2015). This tree is called the DSD structure of a function. Unlike truth tables and BDDs,
DSD structures have the advantage of making Boolean properties of the function explicit.
Several examples are:

• symmetric variables of a full DSD structure are found by detecting symmetric nodes
(AND/XOR) at the leaves of the structure;

• decomposability of a full DSD into a network of K-LUTs is checked by computing
K-feasible cuts, without an expensive search for a K-feasible bound-set;

• a DSD structure can be made canonical by permuting branches according to some
ordering principle, and by removing complemented attributes from the inputs and
the output, resulting in an NPN canonical form.

In our case, the NPN canonical form is very useful. Since the decomposition is
very fast (orders of magnitude faster than the threshold logic identification procedure),
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for each new cut, we find the corresponding DSD structure and check in the hash table
if the NPN representative of such a DSD structure was already identified. If not, we
perform the identification and store in the hash the thresholdness information.

The structure developed to hash the thresholdness information of the cuts is quite
efficient, allowing the proposed approach scales even for large circuits. The results in
Section 5 present threshold synthesis for circuits containing more than twenty millions of
AIG nodes.

An overview of the threshold logic cut enumeration step is presented in Algorithm
4.1. The idea of find the NPN representative of the cut function is performed in line 9.
The hashing is performed between lines 10 and 15. The procedure of cut sorting in lines
16-20 is part of the covering step and will be properly explained in Section 4.3 and in
Section 4.4.

Algorithm 4.1: Pseudo-code of the proposed approach.
Input: AIG, K, C
Output: AIG with covering information
/* traverse and nodes in topo order */

1 foreach node ∈ AIG.andNodes do
2 cutSet = empty cut set;
3 foreach cut0 ∈ node.fanin0.cutSet do
4 foreach cut1 ∈ node.fanin1.cutSet do
5 cut = merge(cut0,cut1);
6 if cut.nLeaves > K then
7 continue;
8 cutFunc = extracted func. from cut;
9 cutNpn = NPN represent. of cutFunc;

10 if cutNpn is hashed then
11 cut.isThreshold = get from hash cut.thresholdArea = get from

hash;
12 else
13 cut.isThreshold = run identification;
14 cut.threshArea = get from identification;
15 add this information into the hash;
16 add cut into cutSet and sort it;
17 if cutSet.nCuts > C then
18 discard the worse cut ∈ cutSet;

19 add the trivial cut into cutSet and sort it;
20 node.bestCut = best threshold cut in CutSet;
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4.2.3 Improving Quality-of-Results by Enumerating Redundant Cuts

In the context of EDA and logic synthesis, the state-of-the-art algorithms for cut
computation rely on enumerating irredundant cuts only. By pruning redundant cuts, the
enumeration methods have a better performance (both in terms of runtime and memory
usage) with almost no losses on the QoR for the general cases (near-optimal logic depth
is still achievable, for instance). This procedure is taken as a ground base and it is im-
plemented in the main state-of-the-art methods for cut computation, such as the priority
cuts approach (MISHCHENKO et al., 2007).

In this work, we demonstrate that cleverly relaxing the cut redundancy checking
can decrease area in the final TLG nestlist without a significant impact neither on the
circuit delay nor on the methods performance. The following example, depicted in Figure
4.3, illustrates how this QoR improvement is achieved.

Consider the case in which the AIG shown in Figure 4.2(a) is taken as input in
a threshold mapper. If only irredundant cuts are enumerated, the most likely covering
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Figure 4.3: Example of area reduction by enumerating redundant cuts: a given AIG (a);
mapped circuit by enumerating only irredundant cuts (b); mapped circuit with reduced
area by enumerating redundant cuts (c).
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has three TLGs in the mapped circuit, as illustrated in Figure 4.2(b). The cuts used
in this covering are x = {A,B}, z = {A,B,C} and wi = {x, z}. Now, if we allow
for redundant cuts to be additionally enumerated, a covering with only two TLGs is
achievable, as depicted in Figure 4.2(c). In this case, the cuts used in the covering are
x = {A,B} and wr = {x,A,B,C}. Notice that the cut wr would never be enumerated in
the prior mapping, since it is redundant with cut z = {A,B,C} (as wr is a superset of z).
However, computing the redundant cut wr allowed for decreasing the number of TLGs in
the mapping from three to two without impacting the circuit delay.

The idea of looking for redundant threshold cuts was primarily cited by KULKA-
RNI; VRUDHULA, in (KULKARNI; VRUDHULA, 2016). In that work, the authors
claim that, despite some threshold cuts are not enumerated for being redundant, in-
cluding redundant cuts in the enumeration procedure would have large computational
requirements. To overcome this issue, they propose (a) to change from node cut to line
cut computation, and (b) to compute only unidirectional cuts.

In order to avoid such a change on the cut computation paradigm, but still trying
to keep the procedure computationally feasible, we propose to relax the cut redundancy
checking while enumerating priority cuts. Thus, we allow for redundant threshold cuts to
be added in the priority cut set (according to the sorting function). Such a strategy is
possible since the thresholdness identification is performed during the cut enumeration.
The experimental results presented in Section 5 demonstrate that such a proposed strategy
provides improvments in the quality of results with a bearable execution time and memory
usage.
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4.3 Traditional Cut Covering

The conventional algorithm for delay optimal K-LUT mapping enumerates all K-
feasible cuts and chooses the best set of cuts by using dynamic programming on the
AIG. The algorithm proceeds in two passes over the nodes. The first pass, called the
forward pass, is in topological order from PIs to POs. For each node, all K-feasible cuts
are enumerated (using the K-feasible cuts of its children), and the cut with the earliest
arrival time is selected.

The second pass of the algorithm is done in reverse topological order. For each
PO, the best K-feasible cut is chosen, and an LUT is constructed in the mapped netlist to
implement it. Then, recursively for each node in this best cut, this procedure is repeated.

State-of-the-art FPGA technology mappers (CHEN; CONG, 2004; CONG; DING,
1994; MISHCHENKO; CHATTERJEE; BRAYTON, 2007) produce near-optimum logic
depth while minimizing the number of LUTs in the resulting network. A typical procedure
consists of the following steps:

1. Near-optimum delay mapping: compute arrival time at each node by computing the
depth of priority cuts and choosing the best one;

2. Area recovery: improve area using several heuristics (for instance, area flow and
exact local area (PAN; LIN, 1998));

3. Choose the resulting cover.

4.3.1 Delay-oriented covering

The delay of a FPGA circuit is determined by two factors: (1) the delay in K-
LUTs; and (2) the interconnection delay. Each K-LUT has a constant delay independent
of the function it implements (the access time of a K-LUT). The interconnection delay
is dominated by the physical configuration of the FPGA, which is not available during
synthesis. Therefore, the state-of-the-art FPGA technology mappers assume that each
edge in the mapping solution has a constant delay. Due to these reasons, the circuit
delay is commonly represented by the logic depth and the circuit area is represented by
the number of K-LUTs in the mapping solution (PAN; LIN, 1998; CHEN; CONG, 2004;
MISHCHENKO; CHATTERJEE; BRAYTON, 2007).
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Algorithm 4.2 shows the pseudo-code of depth-oriented mapping performed in the
traditional FPGA mapping.

Algorithm 4.2: Depth-oriented traditional FPGA covering.
Input: AIG, K
Output: AIG with covering information
/* traverse and nodes in topo order */

1 foreach node ∈ AIG.andNodes do
2 bestCut=NULL;
3 foreach cutC ∈ node.cutSet do
4 if bestCut=NULL OR getLevel(bestCut) > getLevel(C) then
5 bestCut=C;

6 setLevel(n,getLevel(bestcut));
7 setRepresentative(n,bestcut);

The AIG nodes are considered in a topological order. At each node, all cuts are
enumerated and an optimum-depth cut is found. This cut along with its level is stored
at the node. The level of a cut is computed by adding 1 to the largest level of the cut
fanins, i.e.,

level(C) = 1 +maxlevel(n) (4.3)

where n ∈ C and level(n) is the best level for node n (from among all its K-feasible
cuts). This recursion is well defined, since when the cuts for a node n are being processed,
the nodes in the transitive fanin of n have already been processed. Thus, the best arrival
time of any node in a K-feasible cut of n has already been computed.

4.3.2 Area-oriented covering

Next to find a near-optimum mapping solution in terms of delay, a heuristic is
applied in order to improve the area. The heuristic explored in this work, called area
flow, has a global view and selects logic cones with more shared logic.

Area flow, presented in (MANOHARARAJAH; BROWN; VRANESIC, 2006),
a.k.a. effective area, is a useful extension of the notion of area. It can be computed
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in one pass over the network from the PIs to the POs. Area flow for the PIs is set to 0.
Area flow at a node n is the following:

AF (n) = [Area(n) +
∑
i

AF (Leafi(n))]/NumFanouts(n) (4.4)

where Area(n) is the number of LUTs needed to map the current best cut of node
n. Area(n) can be 1 or larger if some of the fanins of the top most LUT do not have
external fanouts. Leafi (n) is the i-th leaf of the best cut at n, and NumFanouts(n) is
the number of fanouts of node n in the currently selected mapping. If a node is not used
in the current mapping, for the purposes of area flow computation, its fanout count is
assumed to be 1.

If nodes are processed from the PIs to the POs, computing area flow is fast. Area
flow gives a global view of how useful the logic is in the cone for the current mapping.
Area flow estimates sharing between cones without the need to re-traverse them.

4.3.3 Choose the resulting cover

The procedure used in the traditional mapping to derive the final LUT network is
shown in Algorithm 4.3. The procedure assumes that one K-feasible representative cut
is assigned at each node. Two sets of AIG nodes are supported: the nodes used in the
mapping (M) and the nodes currently present in the frontier (F ). While the frontier is
not empty, one node (n) is extracted from it, added to the mapping, the representative
cut of this node is computed, and the leaves of this cut are explored. If a leaf of n does
not belong to the mapping or is not a PI, this leaf is added to both the mapping and the
frontier. When the frontier is empty, the procedure terminates and returns the set M of
nodes used in the mapping. Each of these nodes will be implemented by a LUT.
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Algorithm 4.3: Producing the mapped LUT network.
Input: AIG, K
Output: set of nodes mapped containing the nodes used in the final mapping

1 mapped=NULL;
2 frontier=NULL;
3 while frontier 6= ∅ do
4 n=extractNode(frontier);
5 insertNode(n,mapped);
6 cut=getCut(n);
7 foreach cutnode m ∈ cut do
8 if m /∈ mapped OR m /∈ PIs then
9 frontier=frontier ∪m;

10 return mapped;

4.3.4 Priority cuts

As discussed before, the traditional approach for delay optimal K-LUT mapping
enumerates all K-feasible cuts and chooses the best set of cuts by using dynamic program-
ming on the AIG. The main limitation of the conventional algorithm is that it explicitly
enumerates a large number of all K-feasible cuts during the forward passing.

The priority cuts approach avoids exhaustive cut enumeration by computing only
a small fixed number (typically, 5-10) of “good” K-feasible cuts at each node. The criteria
used to prioritize the cuts differ depending on the mapping goals. The candidate cuts
are sorted using a sorting function, and the best C cuts are found and stored at the
node. In practice, sorting is done on the fly by keeping only the C best cuts at any time.
Finally, the best cut from the previous pass is always added to the set of at most (C+ 1)2

candidate cuts derived using the fanins cuts. As a result, the mapping procedure never
loses good cuts. If this is not done, the best cut may be lost due to the heuristic nature
of cut selection.

Algorithm 4.4 represents the cut sorting procedure. The command isBetterThan
compare two cuts according to a defined sorting function. Different sorting functions are
used at each mapping pass. If there is a tie, a secondary cost function is compared.

Experiments indicate that such a prioritization gives a depth-optimum mapping for
95% of all benchmarks and LUT sizes, even if only one cut is stored at each node. Storing
8 priority cuts per node allows the algorithm to avoid area penalty due to not enumerating
all cuts. For 6-input LUTs, memory is reduced 10x and runtime 5x compared to previous
approaches, while circuit depth and area are comparable or better. For 8-input and larger
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LUTs, the reduction in memory and runtime is about 50x (MISHCHENKO et al., 2007) .

Algorithm 4.4: Cut sorting procedure.
Input: Set of cuts CutSet, Cut current
Output: Sorted et of cuts CutSet
/* traverse the cutset from the worse cut to the best one */

1 foreach cut ∈ cutSet do
2 if current isBetterThan cut then
3 SWAP (current,cut);
4 else
5 return;

4.4 Threshold cut covering

In our proposed approach to perform threshold logic synthesis, we explore the
priority cut based technology mapping. The main objective in the covering step is selecting
only threshold cuts. This is possible since we have performed the identification procedure
during the enumeration. In Subsection 4.4.1, we present different strategies for sorting
the cuts during the covering.

When performing the identification during the enumeration, besides to know if
the cut represents a threshold logic function, we compute the input weights and the
function threshold value required to implement such a function. In Subsection 4.4.2, we
demonstrate how we use these information in order to optimize different area estimations
in the proposed method.

4.4.1 Threshold cut sorting

In our threshold logic technology mapping approach, we propose different cut sort-
ing strategies, based on the cut thresholdness. At first, we guarantee that the best cut is
always a threshold cut, i.e., the function implemented by the cut can be implemented in
a single TLG. This strategy results in netlist composed only by TLG.

For this, we modify the cut sorting procedure. Before starting the traditional cut
sorting, we check if the best cut is not threshold and the current cut is threshold. In
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this case, we exchange these two cuts. Besides, if the best cut is threshold, it can not be
replaced by a non-threshold cut. Such a modification procedure is presented in Algorithm
4.5.

Algorithm 4.5: Threshold cut sorting procedure.
Input: Set of cuts CutSet, Cut current
Output: Sorted set of cuts CutSet

1 if current.thresholdness AND !bestCut.thresholdness then
2 SWAP (current,bestCut);
3 cutSorting(CutSet,cut);
4 return;

/* traverse the cutset from the worse cut to the best one */
5 foreach cut ∈ cutSet do
6 if current isBetterThan cut then
7 SWAP (current,cut);
8 else
9 return;

Although we restrict the best cut to threshold cuts, the other cuts stored at the cut
set for each node can be non-threshold. An alternative strategy is to increase the number
of threshold cuts in the cutset, assuming that threshold cuts can potentially generate
other threshold cuts. While non-threshold cuts are generating non-threshold cuts.

Based on this assumption, we proposes 4 different priority cut sorting approaches,
focusing on privileging threshold cuts.The first strategy is prioritizing threshold cuts in
the cut set. Such a strategy would potentially increase the number of threshold cuts in
the next levels. Non-threshold cuts stay in the cutset only if the number of threshold cuts
is less than the cutset capacity.

In order to implement this cut sorting strategy, we have modified the function is-
BetterThan in Algorithm 4.5 which is responsible to compare two cuts. Before to compare
by using the defined cost function, i.e., delay, area or inputs, the method compare the
thresholdness of the cuts. A threshold cut is always considered better than a non-threshold
cut and the other cost functions are used as tie-brakers.

All threshold functions are unate, but there are unate functions which are not
threshold. An interesting issue is the potential of non-threshold unate cuts to generate
threshold cuts. For instance, given two non-TLF cuts C1 and C2 that implement the
functions F1 = ab+cd and F2 = ac+bd, that are non-TLF, the resulting cut C3 implements
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the function F3 = a(bc + bd + cd) + bcd, which is TLF. Therefore, the second strategy
allows unate cuts at the cut set.

Another possibility is that binate functions can generate good threshold functions.
Taking it into account, we also proposes an strategy which increases the number of thresh-
old (unate) function without discarding the best non-TLF cuts. We do this reserving at
least half of the cut set for the TLF cuts and half for non-TLF cuts.

Finally, we experiment the same strategy for cuts which implement unate functions.
We reserve at least half of the cut set for the unate cuts and half for the other cuts.

Thee summary of the threshold logic priority cuts strategies are listed in the fol-
lowing and illustrated in Figure 4.4.

• (a) Best cut Threshold:

• (b) All cuts Threshold:

• (c) All cuts Unate:

• (d) Half cut set Threshold:

• (e) Half cut set Unate:

Figure 4.4: Different cut sorting strategies for the threshold priority cut approach.
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4.4.2 Different TLG area estimations

To the best of our knowledge, the state-of-the-art works on threshold logic synthesis
are limited to optimize the overall number of TLGs. Although two of them present
numbers regarding different threshold-based area estimations, such works still optimize
the total number of TLGs during the synthesis. ZHANG et al. in (ZHANG et al., 2005),
just reports those numbers in the final netlists. KULKARNI et al., in (KULKARNI et al.,
2016), uses the Zhang’s synthesis method to obtain a TLG netlist and proposes a rewiring
method to locally improve the summation of input weights and function threshold value.

We propose an effective technology mapping which is able to optimize different
threshold-based area estimations. The considered area estimations are either (i) the
overall number of TLGs, (ii) the summation of input weights and threshold values, and
(iii) the overall summation of gate inputs. Such area estimations are more suitable with
the state-of-the-art TLG physical implementations and were discussed in Section 2.2.6.

The following example demonstrates an instance where optimizing the suitable
cost function impacts on different mapping results. Given the circuit represented by the
AIG in Fig 4.4(a), the whole circuit can be implemented in a single 5-inputs TLG. Such a
solution is optimal in terms of TLG count. However, it is not the best solution if the area
estimation is defined by the overall summation of input weights and function threshold
value. Considering this area estimation, the solution with one TLG, presented in Figure
4.5(b), has the total area equals to 15. In contrast, the best solution, showed in Figure
4.5(c), is obtained with two TLGs and the total area is equal to 11. Such a solution is
found by the proposed method.

In order to optimize different area estimations, we compute the TLG area along
with the threshold identification procedure. As discussed in Section 4.2, the threshold
identification is performed only once per NPN representative during the cut enumeration.
If the identified function is threshold, the corresponding TLG area is computed and stored
in the hash table. Afterwards, such an information is used during the covering step.

This TLG information are used more specifically during the area recovery step,
replacing the LUT area in the area flow equation. As a result, the area flow is computed
asfollows:

AF (n) = [TLGArea(n) +
∑
i

AF (Leafi(n))]/NumFanouts(n). (4.5)
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Figure 4.5: Example of different TLG netlists obtained by optimizing different area es-
timations: a given AIG (a); mapped circuit optimizing the overall number of TLGs (b);
mapped circuit optimizing the summation of input weights and function threshold values
(c).
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5 EXPERIMENTAL RESULTS

In order to validate the proposed threshold logic synthesis approach, experiments
were carried out taking into account three different sets of benchmark circuits. The first
set presents results to support the claims stated in Section 4. In the second set, the
proposed work is compared to related threshold logic synthesis approaches from other au-
thors (ZHANG et al., 2005; SUBIRATS; JEREZ; FRANCO, 2008; GOWDA et al., 2011;
PALANISWAMY; TRAGOUDAS, 2014; NEUTZLING et al., 2014; LIN et al., 2014;
CHEN; WANG; CHANG, 2016). In the third set of experiments, we present a compre-
hensive collection of results when customizing the developed mapper to achieve different
mapping goals (i.e., circuit area versus logic depth) and targeting different threshold-based
circuit area estimations.

All results have been checked through the combinational equivalency by using the
ABC “cec” command (Berkeley Logic Synthesis and Verification Group, 2017). For the
sake of reproducibility, all the experiments can be repeated using the complete dataset
available in (NEUTZLING et al., 2017), which includes the optimized benchmarks and
threshold synthesis scripts. The proposed approach is implemented in the ABC tool
(Berkeley Logic Synthesis and Verification Group, 2017), using C programming language
and compiled using gcc 4.7.2. The experiments were performed on a computer with
Intel(R) Core(TM) i5-2400 CPU @ 3.10GHz, 8GB RAM.

5.1 Evaluation of Proposed Contributions

First of all, we compare the new proposed unified flow for threshold logic synthesis,
which identify threshold cut during the enumeration, with the previous work pre-
sented in (NEUTZLING et al., 2015), both based on cut pruning as discussed in Section 4.
Opencore circuits are used as benchmarks (PISTORIUS et al., 2007). Table 5.1 presents
the results obtained. Columns 2-7 refer to the method described in (NEUTZLING et
al., 2015), comprising the three steps illustrated in Fig. 4.1(b), and present the mapping
results (number of TLGs and circuit logic depth) followed by the execution time of each
stage. Columns 8-10 refer to the single-step mapping proposed in this work. The execu-
tion time reduction is up to 53%, being 36% on average, so demonstrating the advantage
on identifying threshold functions during the cut enumeration task. The new threshold
synthesis flow improves both the execution time and the quality of results in terms of
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Table 5.1: Summary of results for the proposed threshold logic synthesis approach in
comparison to (NEUTZLING et al., 2015).

Approach presented in (NEUTZLING et al., 2015) Proposed work

circuit #TLGs
logic
depth

step 1
(sec)

step 2
(sec)

step 3
(sec)

total
time
(sec)

#TLGs
(ratio)

logic
depth
(ratio)

total
time
(ratio)

oc_aquarius 9271 29 16.77 0.81 17.10 34.68 (0.99) (1.00) (0.63)
oc_cfft_1024x12 4002 8 6.28 0.86 6.90 14.04 (0.99) (1.00) (0.76)
oc_cordic_p2r 4007 8 5.90 0.95 6.82 13.67 (0.98) (1.00) (0.73)
oc_cordic_r2p 4943 8 6.58 1.00 7.12 14.70 (0.98) (1.00) (0.74)
oc_des_perf 9245 7 26.79 0.19 27.97 54.95 (0.99) (1.00) (0.79)
oc_ethernet 3741 7 3.96 0.16 4.24 8.36 (0.99) (1.00) (0.61)
oc_fpu 8501 281 19.44 1.30 18.31 39.05 (0.96) (1.00) (0.66)
oc_mem_ctrl 6626 8 5.97 0.08 6.59 12.64 (0.99) (1.00) (0.59)
oc_video_dct 14748 13 34.22 1.24 32.36 67.82 (0.99) (1.00) (0.62)
oc_video_jpeg 19218 12 31.58 1.19 31.58 64.35 (0.98) (1.00) (0.66)
radar20 30745 14 73.96 2.12 65.38 141.46 (0.99) (1.00) (0.47)
uoft_raytracer 61879 23 210.75 3.17 182.54 396.46 (0.98) (1.00) (0.49)
geomean (0.98) (1.00) (0.64)

TLG counting, without loss on circuit logic depth.

The benefits of performing threshold logic synthesis while relaxing the cut re-
dundancy checking during the priority cuts enumeration is also demonstrated taking
into account the opencore circuits as benchmarks (PISTORIUS et al., 2007). Table 5.2
presents the results in terms of the number of TLGs and the circuit logic depth on the
final netlist, along with the runtime and memory usage during the execution. Columns
2-5 refer to the traditional cut enumeration, pruning the redundant cuts. Columns 6-9
refer to the proposed approach in which redundant cuts are enumerated during threshold
logic synthesis. The results show that the proposed strategy allows for circuit area re-
duction up to 21%, being 11% on average, with no significant impact on the circuit logic
depth. Although there are runtime and memory overheads, none of the circuit synthesis
has taken longer than 4 minutes nor needed more than 130 MB of memory usage during
mapping.

It is expected that different area estimations may deliver completely different
mapped circuits. Table 5.3 compares the obtained results when the proposed mapper
addresses the standard cost function (i.e., the total number of TLGs) to the two new cost
functions: the total sum of input weights and threshold values, and the total number of
gate inputs. Columns 2-4 present the total sum of input weights and threshold values
obtained from the two cost functions. Columns 5-7 show the total number of gate inputs
when targeting the evaluated cost functions. Notice that the best results are obtained
when the most appropriate area estimation is considered during the mapping. Regarding
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Table 5.2: Trade-off obtained when relaxing the cut redundancy checking.
Pruning Redundant Cuts Enumerating Redundant Cuts

circuit #TLGs logic
depth

run-
time
(sec)

memory
(MB)

#TLGs
(ra-
tio)

logic
depth
(diff)

run-
time
(ratio)

memory
(ratio)

oc_aquarius 9426 29 20.55 20.62 (0.97) 0 (1.09) (1.22)
oc_cfft_1024x12 4997 8 6.51 6.81 (0.79) 0 (1.70) (3.46)
oc_cordic_p2r 4763 7 6.15 10.12 (0.83) +1 (1.66) (2.42)
oc_cordic_r2p 5752 7 6.95 10.27 (0.84) +1 (1.63) (2.32)
oc_des_perf 10415 7 26.59 49.39 (0.88) 0 (1.72) (2.16)
oc_ethernet 3774 7 4.79 5.48 (0.98) 0 (1.11) (1.15)
oc_fpu 9345 281 21.10 24.29 (0.87) +1 (1.24) (1.98)
oc_mem_ctrl 6642 9 7.44 3.70 (0.99) -1 (1.08) (1.57)
oc_video_dct 17075 14 35.76 51.22 (0.86) -1 (1.22) (2.17)
oc_video_jpeg 20965 13 35.62 49.80 (0.90) -1 (1.25) (2.26)
radar20 34254 14 54.90 44.63 (0.89) 0 (1.26) (2.02)
uoft_raytracer 70263 23 168.61 87.34 (0.86) 0 (1.18) (1.39)
geomean (0.89) (1.32) (1.92)

the total sum of input weights and threshold values, the overhead can be up to 88%, being
60% on average, when minimizing the number of TLGs. Concerning the total number
of gate inputs, the results can be up to 19% worse, being 10% on average, whether the
mapper optimizes the number of TLGs instead of the considered cost function. Therefore,
a threshold logic mapper capable of optimizing circuits taking into account different area
estimations tends to be more effective when targeting different technologies.

Finally, we evaluate the results obtained by the different threshold cut sorting
approaches: (1) the best cut threshold, (2) all cuts threshold, (3) all cuts unate, (4) half
of cuts threshold and (5) half of cuts unate. Table 5.4 present the results obtained in
terms of number of gates and circuit logic depth. First column present the circuit names.
Column 2 present the number of TLGs and columns 2-6 present presents the ratio of each

Table 5.3: Optimization for different TLG area estimations.
area estimation (

∑
W + T) area estimation (

∑
#inputs)

circuit CF=
∑

W + T CF=#TLGs (ratio) CF=
∑

#inputs CF=#TLGs (ratio)
oc_aquarius 64776 97130 (1.50) 28372 32908 (1.16)
oc_cfft_1024x12 22949 42464 (1.85) 12826 14662 (1.14)
oc_cordic_p2r 27761 39244 (1.41) 12370 13310 (1.08)
oc_cordic_r2p 32236 50198 (1.56) 15455 16733 (1.08)
oc_des_perf 58212 93687 (1.61) 29378 30307 (1.03)
oc_ethernet 23349 35979 (1.54) 11695 12974 (1.11)
oc_fpu 43445 58186 (1.34) 23374 24269 (1.04)
oc_mem_ctrl 34363 54483 (1.59) 19684 21156 (1.07)
oc_video_dct 98118 175844 (1.79) 45729 54351 (1.19)
oc_video_jpeg 123335 232028 (1.88) 60407 68898 (1.14)
radar20 161436 241578 (1.50) 86378 94799 (1.10)
uoft_raytracer 355222 593636 (1.67) 191468 210825 (1.10)
geomean (1.60) (1.10)
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Table 5.4: Evaluating different threshold cut sorting approaches.
Number of TLGs Logic depth

circuit sort1 sort2
(ratio)

sort3
(ratio)

sort4
(ratio)

sort5
(ratio) sort1 sort2

(ratio)
sort3
(ratio)

sort4
(ratio)

sort5
(ratio)

cord1 4001 0.96 0.96 0.96 0.96 8 1.00 0.88 1.00 1.00
video 14711 0.99 0.99 1.02 1.00 13 1.00 1.00 1.00 1.00
cfft 3990 1.00 0.99 0.99 0.99 8 1.00 1.00 1.00 1.00
cord2 4932 0.98 0.98 0.99 0.98 8 1.00 1.00 1.00 1.00
aqua 9261 1.00 1.00 1.01 1.00 29 0.97 0.97 0.97 0.97
jpeg 19214 0.99 0.99 1.00 0.99 12 1.00 1.00 1.00 1.00
mem 6631 0.99 0.99 1.00 0.99 8 1.00 1.00 1.00 1.00
desperf 9219 0.95 0.96 0.96 0.96 7 1.00 1.00 1.00 1.00
fpu 8583 1.06 1.01 1.09 1.06 393 1.01 0.97 0.70 0.72
ether 3752 1.00 0.99 1.00 0.99 7 1.00 1.00 1.00 1.00
geomean 0.99 0.99 1.00 0.99 1.00 0.98 0.96 0.96

approach (1-4) related to approach number 1. Similarly, column 7 presents the circuit
logic depth when using the approach number 1 and columns 8-11 presented the ratio when
using the other approaches.

The results show that the difference is less than 5% in the most of cases and
also in the geometric average. We think that, although we increase the total number of
enumerated threshold cuts, the best cuts are the same for all approaches. For the FPU
(floating point unit) circuit present a different behaviour. For this circuit and by using the
cut sorting 4 and 5 (half of cuts threshold and unate, respectively), there are a significant
improvement of around 30% in the logic depth with an increasing of less than 10% in the
number of gates. Further investigation can be done since improving the logic depth can
be crucial in this kind of arithmetic circuits.

5.2 Comparison to the state-of-the-art work

In order to compare the proposed synthesis flow to other approaches from different
authors, three experiments were carried out. The first one compares the number of TLGs
and the circuit logic depth to the results obtained from both strategies presented by Chen
et al., in (CHEN; WANG; CHANG, 2016), and also adopting a commercial tool. In
the second, the proposed approach is compared to the Gowda’s method, in (GOWDA et
al., 2011), and the Palaniswami’s method, in (PALANISWAMY; TRAGOUDAS, 2014),
in terms of the number of TLGs. It is done because the most recent Chen’s work, in
(CHEN;WANG; CHANG, 2016), does not compare itself to those approaches. In the third
experiment, the circuit area results is compared to the numbers presented in (ZHANG
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et al., 2005) and in (LIN et al., 2014) in terms of the sum of input weights and function
threshold value.

The comparison of our method to the approach presented by CHEN; WANG;
CHANG, in (CHEN; WANG; CHANG, 2016), was carried out taking into account the
IWLS 2005 benchmark suite (ALBRECHT, 2005). Table 5.5 shows the obtained results
in terms of TLG count and circuit logic depth. Notice that the Chen’s method already
provides improvements of 28% in TLG count and 14% in logic depth when compared to
the Zhang’s method (ZHANG et al., 2005). Therefore, the Cheng’s method has been
adopted as reference.

When limiting the TLGs to 6 inputs, the proposed method reduced the TLG count
in 94% of the circuits, with reductions up to 39% of such a count, being 20% on average.
The logic depth is reduced in all applied benchmark circuits, with reductions up to 64%
and 53% on average. The runtime is less than one second per circuit.

In order to exploit the gate level scalability, we have synthesized circuits for TLGs
with up to 15 inputs. In this case, the TLG count was reduced in all circuits, with
reductions up to 47% and 25% on average. The reduction in terms of logic depth is up
to 67%, being 57% on average. In the same experiment, we have also synthesized the
circuits by adopting a commercial tool. To do that, we provided the tool with a cell

Table 5.5: Comparison to the results presented by Chen (CHEN; WANG; CHANG, 2016)
et al., in and by a commercial tool.

number of TLGs circuit logic depth

circuit
Chen
et. al,
2016

Commer-
cial
Tool

Proposed
K=6

Proposed
K=15

Chen
et. al,
2016

Com-
mercial
Tool

Proposed
K=6

Proposed
K=15

spi 1614 (0.78) (0.74) (0.71) 19 (1.21) (0.53) (0.47)
systemcaes 5333 (0.82) (0.79) (0.77) 33 (0.88) (0.42) (0.42)
steppermotor 83 (0.75) (0.71) (0.61) 7 (2.57) (0.43) (0.43)
tv80 3559 (0.91) (0.81) (0.76) 30 (1.40) (0.47) (0.37)
ac97_ctrl 6194 (1.01) (0.95) (0.91) 7 (1.43) (0.57) (0.43)
sasc 333 (1.04) (0.92) (0.89) 7 (1.14) (0.43) (0.43)
pci_conf_cyc 62 (0.89) (0.68) (0.68) 4 (1.50) (0.50) (0.50)
usb_funct 6842 (0.93) (0.82) (0.78) 19 (1.42) (0.53) (0.47)
mem_ctrl 4721 (0.77) (0.76) (0.71) 23 (1.30) (0.39) (0.35)
systemcdes 1377 (0.90) (0.82) (0.77) 19 (1.16) (0.47) (0.47)
i2c 482 (0.87) (0.76) (0.69) 11 (1.45) (0.36) (0.36)
pci_bridge32 10497 (0.91) (0.89) (0.87) 21 (1.95) (0.38) (0.33)
aes_core 10057 (0.97) (0.89) (0.78) 17 (1.29) (0.53) (0.53)
simple_spi 436 (1.01) (0.85) (0.82) 8 (1.38) (0.50) (0.38)
des_area 2011 (1.01) (1.01) (0.95) 20 (1.40) (0.55) (0.50)
wb_conmax 21956 (0.87) (0.82) (0.80) 13 (1.62) (0.62) (0.54)
pci_spoci_ctrl 399 (0.64) (0.61) (0.53) 12 (1.50) (0.42) (0.33)
usb_phy 221 (0.85) (0.70) (0.64) 7 (1.14) (0.43) (0.43)
geomean (0.88) (0.80) (0.75) (1.39) (0.47) (0.43)



56

library composed by all NPN threshold functions with up to 6 variables. Notice that,
although the commercial tool improves the Cheng’s results in terms of TLG count, our
method has been able to improve these results even more. On average, the commercial
tool improves 7% whereas the proposed approach improves 15%. Moreover, the TLG
count and circuit logic depth are simultaneously reduced by the proposed flow, whereas
the commercial tool increases the Cheng’s results in around 38% in terms of circuit logic
depth.

On the other hand, in (PALANISWAMY; TRAGOUDAS, 2014), PALANISWAMY;
TRAGOUDAS present two different improvements, called as BDD decomposition method
(BDM) and ZDD decomposition method (ZDM), to the max literal factor tree (MLFT)
method proposed by GOWDA et al., in (GOWDA et al., 2011). The results shown in Fig.
5.1 present the TLG count obtained by these methods and the one proposed herein. The
ISCAS’85 set of benchmarks has been adopted for this evaluation. When compared to
the MLFT approach, BDM and ZDM methods provide an average TLG count reduction
of 12% and 17%, respectively. The average reduction obtained by our method is about
65% and 48% when compared to MLFT and ZDM, respectively.
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Figure 5.1: Comparing to the results presented by Palaniswamy (PALANISWAMY;
TRAGOUDAS, 2014) and Gowda (GOWDA et al., 2011)
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Finally, we compare our results to the work presented by LIN et al., in (LIN et
al., 2014), in terms of the summation of input weights and threshold value. This method
starts from a TLG netlist generated by the Zhang’s method, in (ZHANG et al., 2005),
and performs a rewiring procedure, optimizing the TLG area cost function. Table 5.6
shows the results from this experiment. In (LIN et al., 2014), Lin’s method improves
the Zhang’s approach results for all benchmarks, obtaining a reduction of 4% on average.
Our approach does not depend on a preliminary threshold synthesis and optimizes the
cost function performing a threshold logic technology mapping directly over the original
circuit. Therefore, we have improved the Zhang’s results for all benchmarks, so reducing
the circuit area in up to 46%, being 31% on average.

Table 5.6: Comparison to the area results from Zhang’s (ZHANG et al., 2005)
and Lin’s (LIN et al., 2014) approaches.

area estimation (∑W + T) (ratio)

circuit Zhang (ZHANG
et al., 2005)

Lin (LIN et al.,
2014) Proposed

alu4 1986 1934 (0.97) 1973 (0.99)
apex6 2079 2007 (0.97) 1720 (0.83)
C1355 2102 2098 (1.00) 1312 (0.62)
C1908 1671 1631 (0.98) 1157 (0.69)
C5315 4661 4651 (1.00) 4133 (0.89)
C6288 9892 9844 (1.00) 7147 (0.72)
C7552 6468 6412 (0.99) 3972 (0.61)
dalu 3644 3608 (0.99) 2456 (0.67)
frg2 3299 2977 (0.90) 1928 (0.58)
i10 7490 6888 (0.92) 5472 (0.73)
i2c 3268 2867 (0.88) 2043 (0.63)
pair 4057 3945 (0.97) 3557 (0.88)
pci_spoci_ctrl 3254 3127 (0.96) 1472 (0.45)
rot 1960 1878 (0.96) 1550 (0.79)
s13207 9542 9221 (0.97) 5438 (0.57)
s9234 7056 6415 (0.91) 4149 (0.59)
simple_spi 2626 2540 (0.97) 2085 (0.79)
spi 12004 11184 (0.93) 6523 (0.54)
systemcdes 11677 11139 (0.95) 7190 (0.62)
usb_phy 1586 1498 (0.94) 1176 (0.74)
x3 2170 2054 (0.95) 1730 (0.80)
Geomean (0.96) (0.69)
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5.3 Scalability analysis

In the last set of experiments, we evaluate the behaviour of the proposed approach
when increasing the two main variables which the method depends: (i) the maximum
number of inputs for each cut (K), and (ii) the maximum number of cuts stored for each
AIG node (C). Figure 5.2 demonstrates two different graphs. The first graph presents
the execution time variation, when increasing K and the second one presents the impacts
in the resulting mapped circuit both in terms of the number of TLGs and the circuit logic
depth. The value of K is increased from K = 4 to K = 15

The results show that the execution time increases more than 20 times when com-
paring K = 15 to K = 4, whereas the number of TLGs decreases around 24% and the
logic depth decreases around 12%. It is also possible to notice that although the execution
time is always increasing, the improvement in the mapped circuit is more significant up
to 12 inputs. Moreover, we notice that the execution time behaviour seems to be linear
up to 12 inputs (according to the expected), but seems to be quadratic for larger number
of inputs. Through some experiments, we could conclude that for more than 12 inputs,
the threshold identification time becomes predominant, and the method is quadratic in
the number of inputs.

Figure 5.2: The behaviour of the proposed approach when increasing the maximum num-
ber of inputs for each cut (K).
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Figu. 5.3 shows the results when increasing the number of cuts (C) stored for
each AIG node. Three curves are presented, presenting the execution time, the number
of TLGs and the logic depth in the mapped circuit. The C parameter is increased 8 by
8, from C = 8 to C = 80.

The results show that, although the execution time is always increasing, the quality
of the mapped results is almost the same. The logic depth is not improved and the number
of TLGs present a 1% of difference. This behaviour was the expected and is according
to the priority cuts proposal (MISHCHENKO et al., 2007). Moreover, we notice that the
execution time behaviour seems to be linear, although we expected a quadratic behaviour.
We investigate and could conclude that, although the maximum number of cuts which
can be stored for each AIG node increases, the real number of cuts stored is not always
the maximum. The number of different cuts enumerated for each node is limited.

Figure 5.3: The behaviour of the proposed approach when increasing the maximum num-
ber of cuts stored for each AIG node (C).
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Table 5.7: Summary of the obtained results for all the experimented cost functions and area estimations.
area = #TLGs area =

∑
W + T area =

∑
#Inputs

area oriented level oriented relaxed level area oriented level oriented relaxed level area oriented level oriented relaxed level
circuit area level area level area level area level area level area level area level area level area level
C1355 252 13 211 7 208 9 1312 13 2091 7 1648 9 656 13 908 8 868 10
C1908 175 18 192 10 174 13 1162 21 1637 10 1532 13 570 21 683 11 610 14
C2670 271 14 281 7 276 10 1777 13 2231 7 1955 9 828 15 869 10 835 13
C3540 396 24 398 13 394 16 2244 30 3155 13 2922 16 1361 25 1562 13 1396 18
C5315 650 18 669 10 645 11 4106 19 5648 9 4830 13 1993 18 2162 11 2052 14
C7552 678 32 714 10 692 11 3991 36 5645 10 4769 13 2150 30 2326 11 2240 14
oc_aquarius 8990 84 9179 29 9095 37 64776 92 83105 29 78035 37 28372 89 30406 32 29970 44
oc_cfft_1024x12 3943 22 3963 8 3961 10 22949 25 32365 8 30096 10 12826 26 14500 9 14170 11
oc_cordic_p2r 3787 20 3936 8 3886 9 27761 21 34454 8 32378 10 12370 22 13829 9 13331 11
oc_cordic_r2p 4720 22 4841 8 4794 9 32236 25 43353 8 41821 10 15455 27 17433 8 16998 10
oc_des_perf 8405 12 9136 7 8521 9 58212 13 84235 7 65235 9 29378 12 35223 7 31361 9
oc_ethernet 3648 24 3689 7 3651 9 23349 33 26493 7 25266 9 11695 33 12246 9 12072 11
oc_fpu 7816 948 8173 282 7973 360 43445 1016 79646 388 70018 361 23374 997 27616 291 26706 384
oc_mem_ctrl 6521 16 6588 8 6548 10 34363 25 41943 8 40089 10 19684 21 20317 11 19907 14
oc_video_dct 14003 29 14659 13 14290 16 98118 34 157479 13 149972 16 45729 31 55449 14 52370 18
oc_video_jpeg 18128 30 18879 12 18632 15 123335 34 171704 12 158158 15 60407 33 67014 14 65289 18
radar20 28782 45 30346 14 29719 18 161436 47 258722 14 229448 18 86378 45 98597 17 96131 19
uoft_raytracer 59232 70 60626 23 59925 29 355222 88 522004 23 481115 29 191468 85 211060 25 206744 32
adder 286 102 341 33 322 42 1967 129 3212 33 3069 42 906 129 1112 33 1095 42
bar 1792 14 1663 5 1406 7 8960 14 17856 5 13306 7 4480 14 5310 8 4941 10
div 17374 2117 20001 568 16392 752 85465 2272 144716 502 129789 705 47575 2200 43028 585 60450 790
hyp 129857 7337 137089 3189 134277 4167 731970 8778 1026321 3208 919501 4170 362848 8660 410824 3284 395135 4279
log2 16236 218 15570 91 15908 118 94205 221 142949 91 128127 119 46908 222 57093 97 52602 128
max 954 82 1398 35 1051 61 7089 179 16106 36 13199 49 3040 98 3891 56 3207 70
multiplier 15458 170 15279 62 15303 80 88022 179 119674 62 99787 78 41265 176 47965 64 43516 84
sin 2687 108 2690 43 2564 57 12844 141 28328 42 25839 54 7911 129 10505 46 10187 65
sqrt 11232 2169 12748 879 12585 1160 52842 2306 131820 885 121237 1160 31598 2167 42689 625 41867 803
square 9898 118 10007 42 9911 54 56593 132 67512 42 59345 49 28680 123 30738 50 28818 66
sixteen 4377156 50 4393330 31 4377179 40 5464453 87 5183416 31 5425647 40 4459711 53 4470871 34 4459728 44
twenty 5479332 54 5500745 34 5479282 44 7458200 69 7420364 34 8262487 44 5675698 53 5678591 39 5675698 52
twentythree 6127154 52 6148970 38 6126980 49 8541690 108 7812179 38 8395822 49 6364909 51 6369649 42 6364909 51
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6 ADDITIONAL CONTRIBUTIONS

In this thesis, we proposed a new threshold logic synthesis flow based on identify
threshold logic functions during the technology mapping. We have demonstrated that
this approach results in improvements in terms of the number of TLGs and in terms of
the circuit logic depth, when comparing to all the best works previously presented in the
literature. In this chapter we show two additional contributions.

In Subsection 6.1, we demonstrate how to explore the threshold logic synthesis flow
in order to synthesize circuits based on majority functions, a special case of TLFs. We
propose how to implement any TLF in a majority gate with unbounded number of inputs
and how to determine the minimum majority gate able to implement a given TLF. The
obtained results overcome the state-of-the-art methods for 3-input and 5-input majority
synthesis. Moreover, we present a guide for physical designers which are developing
majority gates with a larger number of inputs. The objective is to evaluate which is a
good area trade-off between a maj-n and a maj-3 gate.

Previous approaches for threshold logic synthesis adopt integer linear programming
(ILP) to perform the threshold logic identification. The approach proposed in this thesis
requires a very fast TLF identification method in order to identify if each enumerated
cut represents a TLF or not. For this, we propose an ISOP-based heuristic where the
inequality system is simplified and the weights are quickly assigned without solving the
complete system. This approach represents an improvement of another method previously
proposed in my master degree (NEUTZLING et al., 2017). We demonstrate the main
differences that allowed the obtained improvements. The results demonstrate an excellent
trade-off. The method is able to correctly identify more than 99% of the functions up to
16 inputs with 8 times of speedup. For large functions with up to 92 inputs, the speedup
is around 4 orders of magnitude. This threshold logic identification approach is presented
in Subsection 6.2.
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6.1 Synthesis for Majority Based Circuits

A TLF is completely represented by a compact vector [w1,w2,. . . ,wn;T ], where
w1,w2,. . . ,wn are the input weights and T is the function threshold value. For instance,
the corresponding TLG of the given functions f = x1x2x3 and g = x1 + x2 + x3 are
[1, 1, 1; 3] and [1, 1, 1; 1], respectively.

A k-input majority function (maj-k), where k is an odd integer, is a special case
of a threshold logic function where each input weight is 1 and the threshold value is
(k + 1)/2. For instance, the maj-3 and maj-5 are equivalent to the TLFs [1, 1, 1; 2] and
[1, 1, 1, 1, 1; 3], respectively.

The technology mapping flow we propose exploits a standard FPGA technology
mapping. The two main steps during FPGA technology mapping are the cut enumera-
tion and covering. The cut enumeration decomposes the circuits into cuts that can be
transformed into LUT. In turn, the covering phase chooses which of such cuts are actually
used in the final circuit implementation. In this sense, the threshold method guarantees
that only cuts that represent threshold functions are chosen during the cover phase.

In order to exploit the proposed threshold flow, we need a method to convert a
threshold function into a majority gate. In this sense, to convert means to determine
what is the number of inputs of the majority gate, which inputs are constants (0 or 1)
and which inputs are tied together in order to represent the TLF input weight.

Since MAJ gates with a large number of inputs can be impractical, we set a max-
imum size k on the size of the majority gate. Therefore, during the cover phase, only
threshold functions that fit into a k-input majority gate are allowed.

Several approaches were proposed in the recent years for synthesizing circuits based
on majority gates (WANG; WALUS; JULLIEN, 2003; ZHANG et al., 2004; WALUS et
al., 2004; IMRE et al., 2006; WANG et al., 2015; AMARU; GAILLARDON; MICHELI,
2016). After presenting the proposed approach, we compare the obtained results with the
state-of-the-art work on majority synthesis.

6.1.1 Equivalence of threshold logic and majority logic

In this section, we show that any TLF can be converted into an unbounded majority
gate. The proposed conversion is based on: (i) tying majority inputs together in order to
obtain the required weight for a variable; and (ii) tying majority inputs to logic constant
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1, in order to obtain the required threshold value. Thus, given a TLF Fth with m inputs,
we obtain a majority gate Gmaj with nmin inputs that implements Fth. The value of
nmin depends on both the total sum of weights and on the threshold value of the target
function Fth. In the following, Tth and Tmaj−n denote the threshold value of Fth and of
Gmaj, respectively, and ∆T = Tmaj−n − Tth.

In a majority gate, each input has weight equal to 1. Therefore, a variable xi of Fth,
with weight wi, must be connected to wi inputs of Gmaj to obtain the target weight. For
instance, in order to implement the TLF f1 = [2, 1, 1, 1; 3] into a majority gate, variable
x1 must be connected to 2 inputs of the majority gate. In turn, each one of the remaining
variables are connected to a single input of Gmaj. Therefore, the minimum number of
inputs nmin in Gmaj to implement the target function is 5.

In the previous example, the target TLF has the same threshold value of the
used majority gate. However, consider the case of converting the 4-variable TLF f2 =
[1, 1, 1, 1; 2] into a 5-input majority gate1. Since, in this case, ∆T = 1, one input of the
majority gate should be tied to logic 1. This can be seen as if Tmaj is reduced by one. In
general case, the number of inputs tied to logic 1 is equals to ∆T .

In the following example, consider the case of converting the threshold function
f3 = [2, 1, 1, 1; 2] into a majority gate g1. Since the sum of weights of f3 is 5, we begin
by trying to fit it into a maj − 5 gate. As the weight of x1 is 2, we assign two inputs of
the maj − 5 to x1 and obtain the function [2, 1, 1, 1; 3]. Since ∆T = 1, one input of g1

should be tied to logic 1. However, all the inputs of g1 are already assigned to a variable
of f3. Thus, f3 cannot be implemented in a maj − 5. Consequently, we try to fit f3 into
a maj − 7. As before, 5 inputs are assigned to variables of f3. Therefore, there are 2 free
inputs of the maj − 7 that can be used. Since ∆T = 2, both free inputs are set to logic
1 and the target function [2, 1, 1, 1; 2] is obtained.

From the previous examples, we can conclude that both the sum of weights and
the threshold value impose lower bounds on the number of inputs the majority gate must
have. In the following, we use:

W =
m∑
i=1

xiwi, (6.1)

n0 = (2 ∗ Tth)− 1. (6.2)

1Notice that majority gates always have an odd number of inputs.
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Then, the following relationship must hold:

nmin ≥MAX(W,n0). (6.3)

Moreover, if ∆T > 0, but there are no free inputs that can be connected to logic 1,
the size of the majority gate must be increased and 2.∆T additional inputs are required.

In the previous examples, we applied a trial and error approach to obtain a majority
implementation for a threshold function. In the following, we describe a more efficient
method to obtain the value of nmin, which is shown in Algorithm 6.1. Initially, the
algorithm checks which of (6.1) and (6.2) corresponds to the lower bound for nmin. If
n0 ≥ W , then nmin is bounded by Tth and is equal to n0. Otherwise, nmin is bounded
by the sum of weights W . In this case, extra inputs are needed to obtain the correct
threshold. The number of extra inputs is 2∆T when W is odd, or 2∆T − 1 when W is
even. Notice that the final value for nmin is always an odd number, as expected.

The method to obtain a majority gate implementation for a threshold function
consists of 4 steps, which are executed in the following order:

1. Obtain nmin: as shown in Algorithm 6.1.

2. Set the input weights: for a variable xi with weight wi, assign xi to wi inputs of
the majority gate.

3. Adjust the threshold values: if ∆T > 0, then ∆T inputs of the majority gate are
tied to logic 1.

4. Handle unused inputs: if there are unused inputs at the majority gate, all such
inputs are tied to logic 0.
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Algorithm 6.1: Obtaining the size of majority gate.
Input: TLF represented by [w1,w2,. . . ,wn;T ]
Output: the number of inputs k of the majority gate

1 n0 = (2 ∗ Tth)− 1;
2 W =

m∑
i=1

wi;

3 if n0 ≥ W then
4 nmin = n0;
5 elseif W is odd then
6 ∆T = W+1

2 − Tth;
7 nmin = W + (2 ∗∆T );
8 else
9 ∆T = W+2

2 − Tth;
10 nmin = W − 1 + (2 ∗∆T );
11 return nmin;

6.1.2 Experimental Results on MAJ synthesis

In this section, we perform two experiments to demonstrate the efficacy of the pro-
posed method for majority logic synthesis. The first experiment compares the proposed
approach with the state-of-the-art methods (WANG et al., 2015; AMARU; GAILLAR-
DON; MICHELI, 2016). The second experiment present results for the logic synthesis
using majority gates with a larger number of inputs.

The proposed method is implemented in the ABC tool (Berkeley Logic Synthesis
and Verification Group, 2017), being available to be adopted as a majority logic synthesis
tool. The results presented in this section are generated through the command "&if -a
-M m -L l". The parameter "-M m" enables the majority logic synthesis limiting the use
of majority gates with up to m-inputs. In turn, the parameter "-L l" defines the gate area
dependence on the number of inputs. Such an influence will be discussed in the second
experiment.

6.1.2.1 Comparison to the state-of-the-art approach

The first set of experiments compares the results obtained by the proposed method
to the state-of-the-art approach for maj−3 synthesis, proposed by WANG et al. (WANG
et al., 2015) and by AMARU; GAILLARDON; MICHELI (AMARU; GAILLARDON;
MICHELI, 2016). In order to allow a direct comparison, we adopt the same benchmark
suites from the references. Namely, IWLS 2005 benchmark for (WANG et al., 2015) and



67

circuits taken from OpenCores for (AMARU; GAILLARDON; MICHELI, 2016).
Moreover, we also explored the use of maj− 5 which previous works are unable to

consider. In this experiment, we assume that both gates have the same area, which is a
valid assumption for the USE methodology (CAMPOS et al., 2016b).

In Table 6.1, columns 2 and 3 present respectively the number of maj − 3 gates
and the logic depth obtained by Wang’s method. Columns 4 and 5 present the results
obtained by the proposed method restricted tomaj−3. Improvements with respect to the
number of gates and circuit logic depth are up to 36% (16% on average) and up to 32%
(13% on average), respectively. Columns 6 and 7 show the results for maj − 5 synthesis.
In this case, the proposed approach reduces in up to %55 the number of gates (%46 on
average) and up to 53% the logic depth (%26 on average) when compared to (WANG et
al., 2015).

The work presented by AMARU; GAILLARDON; MICHELI, in(AMARU; GAIL-
LARDON; MICHELI, 2016), introduces the majority-inverter graph (MIG) data struc-
ture. Although MIGs do not originally target emerging technologies, a MIG can be
directly translated into a network of 3-input majority gates. Table 6.2 shows a trade-off
between both methods when only maj−3 are used. Our method yields a smaller number
of gates at the cost of increased logic depth. In this sense, the main advantage of the
proposed method is the capability of using larger gates. For instance, when considering
maj− 5, we improve the average number of gates in more than 40% while also improving
the average logic depth in around 17%.

Table 6.1: Comparison to the results obtained by the Wang‘s approach in (WANG et al.,
2015).

Wang 2015 Proposed
(Maj3)

Proposed
(Maj5)

Gates Level Gates Level Gates Level
alu2 329 18 0.98 1.44 0.62 1.22
c8 108 8 0.99 0.88 0.60 0.88
k2 1193 19 0.72 0.68 0.49 0.58
frg2 568 15 1.07 0.80 0.63 0.73
apex6 662 17 0.86 0.71 0.55 0.59
example2 241 9 0.92 1.00 0.63 0.89
vda 670 14 0.64 0.79 0.45 0.79
frg1 102 17 0.65 0.71 0.38 0.47
x1 253 11 0.88 0.82 0.53 0.55
ttt2 144 10 0.82 1.10 0.53 1.00
geomean 0.84 0.87 0.54 0.74
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Table 6.2: Comparison to the results obtained by the Amaru‘s approach in (AMARU;
GAILLARDON; MICHELI, 2016).

Amarú
2016

Proposed
(Maj3)

Proposed
(Maj5)

Gates Level Gates Level Gates Level
systemcdes 2453 19 0.91 1.16 0.66 0.74
spi 3337 19 0.78 1.37 0.49 0.84
mem_ctrl 7143 19 0.94 1.21 0.61 0.74
tv80 7397 30 0.82 1.30 0.52 0.77
systemcaes 9547 25 0.83 1.16 0.54 0.80
ac97_ctrl 10745 8 0.96 1.13 0.61 0.75
usb_funct 12995 19 0.90 1.32 0.56 1.00
aes_core 20947 18 0.88 1.28 0.63 0.78
DSP 40517 34 0.87 1.68 0.56 1.35
des_perf 67194 15 1.03 1.07 0.76 0.67
geomean 0.89 1.26 0.59 0.83

6.1.2.2 maj − n logic synthesis

In the second set of experiments, we explore the use of larger majority gates. When
considering larger majority gates, it is important to take into account that the gate area
can increase with the number of inputs. Therefore, reducing the number of gates may
not always reduce the circuit area. In this sense, this experiment has two main goals: (i)
evaluate the use of larger majority gates for different area estimation functions; and (ii)
demonstrate the efficacy of the proposed method when handling maj − n gates.

Herein, there is not a specific target technology. Therefore, it is important to
consider a general metric for area estimation that can be used in different scenarios. The
gate area, normalized to the maj−3 area, as function of the number of inputs is expressed
by the following equation:

gateArea = (n3 )α (6.4)

where n is the number of inputs in the gate and α is a parameter to model the impact
of the number of inputs on gate area. When α = 0, all gates have the same area. When
α=1 has been adopted as the area is proportional to the number of inputs. Notice that
the area of the maj − 3 gate is the reference, being equal to 1 for any α.

In the experiment, we consider the same circuits from Table 6.1. In Figure 6.1,
each curve represents the total number of instances of maj − 3, maj − 5, maj − 7 and
maj − 9 gates in the mapped networks, when varying α from 0 to 1.4.

We begin by evaluating the utilization of the maj − 5 gate. The optimum im-
plementation of the maj − 5 using maj − 3 gates contains 4 maj − 3 (AKERS, 1962).
Hence, the area of the maj− 5 could be as much as four times larger than the area of the
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Figure 6.1: Impact of the number of inputs in the maj gate area assigning different values
of the α parameter.

maj− 3, leading to a maximum for α of 2.7. However, it is observed that no maj− 5 has
been used when α = 1.4. The reason for this is that the most maj − 5 gates has been
used to implement OA21 (f = x0(x1 + x2)) and AO21 (f = x0 + x1x2) functions, which
can be impĺemented using 2 maj− 3 gates. In this case, the maj− 5 area can be at most
two times the maj − 3 area, leading a maximum value for α of 1.36.

Some usual functions in circuits such as f1 = x3x0(x1 +x2) and f2 = x3 +x0 +x1x2

can be implemented in a maj− 9 but not in a maj− 7. This explains why the maj− 9 is
more used than maj− 7 for α ≤ 0.8. In turn, for α ≥ 0.8, using a maj− 3 and a maj− 7
to implement each of f1 and f2 leads to a smaller area than using a maj − 7.

Although this set of information is related to the evaluated benchmarks and to the
technology mapping approach proposed in this work, it can be a useful guide to evaluate
the trade-offs of gates with a larger number of inputs. Finally, we also performed the
synthesis for majority gates with unbounded number of inputs and α = 0. In this case,
majority gates with up to 123 inputs have been used in the final circuit. This result
indicates that majority gates with large number of inputs can be useful if the gate area
is kept close to the maj − 3 circuit area.
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6.2 Threshold logic identification

The threshold logic identification is an essential task that corresponds to the process
of identifying whether a given Boolean function is TLF, besides computing the variable
weights and function threshold value. Notice that the most of the identification meth-
ods available in the literature is based on solving systems of inequalities generated from
truth table description form. These methods exploit integer linear programming (ILP)
to provide optimal results (ZHANG et al., 2005; AVEDILLO; QUINTANA, 2004; SUBI-
RATS; JEREZ; FRANCO, 2008). However, scalability is their main bottleneck because
the system of inequalities tends to increase exponentially with the number of function
variables.

One of the first heuristic (non-ILP based) methods to identify threshold functions
was proposed by Gowda et al., in (GOWDA; VRUDHULA; KONJEVOD, 2007) and later
improved in (GOWDA et al., 2011). Gowda’s method applies functional decomposition
and min-max factorization tree techniques. The target function is decomposed into simple
sub-functions until these ones can be directly identified as AND and OR basic functions,
or even as constant logic values ‘0’ and ‘1’. These sub-functions are then merged by
exploiting TLF properties.

In (TRAGOUDAS et al., 2010) Palaniswamy et al. proposed a method based di-
rectly on the Chow’s parameters, being later improved in (PALANISWAMY; TRAGOUDAS,
2012). However, the main drawbacks of Palaniswamy‘s approach are the degradation on
the number of identified TLFs and the fact that the assigned variable weights do not
always correspond to the minimum possible values. These non-minimum weights may
impact the final circuit area (ZHANG et al., 2005)(GAO; ALIBART; STRUKOV, 2013).

6.2.1 ILP-based approach

Equation 2.1 defines the relationship between the variable weights and the thresh-
old value of the target TLF. If the function value is true (‘1’) for certain assignment vector
then the sum of weights of this assignment is equal to or greater than the threshold value.
Otherwise, the function value is false (‘0’), i.e., the sum of weights is less than the thresh-
old value. From these relationships, it is possible to generate the associated inequalities.
This relationship for the function f1 = x1x2 + x1x3x4 is illustrated in Table 6.3.
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Table 6.3: Inequalities of the function f1 = x1x2 + x1x3x4 thruth table
x1 x2 x3 x4 f Inequality
0 0 0 0 0 0 < T
0 0 0 1 0 w4 < T
0 0 1 0 0 w3 < T
0 0 1 1 0 w3 + w4 < T
0 1 0 0 0 w2 < T
0 1 0 1 0 w2 + w4 < T
0 1 1 0 0 w2 + w3 < T
0 1 1 1 0 w2 + w3 + w4 < T
1 0 0 0 0 w1 < T
1 0 0 1 0 w1 + w4 < T
1 0 1 0 0 w1 + w3 < T
1 0 1 1 1 w1 + w3 + w4 ≥ T
1 1 0 0 1 w1 + w2 ≥ T
1 1 0 1 1 w1 + w2 + w4 ≥ T
1 1 1 0 1 w1 + w2 + w3 ≥ T
1 1 1 1 1 w1 + w2 + w3 + w4 ≥ T

Each sum of variable weights greater than the function threshold value is placed
on the greater side set, whereas each sum of weights which is less than the threshold
value belongs to the lesser side set. Each element on the greater side is greater than each
element on the lesser side, and the greater side elements are greater than (or equal to) the
threshold value, whereas the lesser side elements are smaller than that. The inequalities
system is generated by performing a Cartesian product of the greater side set and the
lesser side set.

The ILP-based methods than use linear programming to solve this generated in-
equalities system. If the system has a solution, the given Boolean function is threshold
and the solution corresponds to the input weights and the function threshold value. Oth-
erwise, the function is not a TLF.

6.2.2 TLF identification method proposed in my master thesis

During my master thesis, I proposed a heuristic method to address threshold logic
identification (NEUTZLING et al., 2017). In such an approach, a complete system of
inequalities is also built using a similar strategy to ILP inequalities generation algorithms.
However, unlike ILP-based approaches, the inequalities system is not solved. Instead, the
algorithm selects some of the inequalities as constraints to the associated variables to
compute the variable weights in a bottom-up way. After this assignment, the consistency
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of the complete system is verified in order to check whether the weights have been correctly
computed. In the following, we briefly present the main steps of this previously proposed
approach.

6.2.2.1 Generation of inequalities system from ISOP

In our method, redundancies in the initial inequalities system are avoided using two
ISOP expressions, one for the direct function f and another for the negated function !f .
In the example presented in Section 6.2.1, f1 = x1x2 + x1x3x4, the least true assignment
vectors are (1,1,0,0) and (1,0,1,1), and the greatest false assignment vectors are (1,0,1,0),
(1,0,0,1) and (0,1,1,1). Therefore, the algorithm creates only (w1 +w2) and (w1 +w3 +w4)
on the greater side, and (w1 +w3), (w1 +w4) and (w2 +w3 +w4) on the lesser side. Each
sum of variable weights greater than the function threshold value is placed on the greater
side set, whereas each sum of weights which is less than the threshold value belongs to
the lesser side set.

6.2.2.2 Simplification of inequalities

After creating the inequalities system, the inequalities simplification process is
performed through four basic tasks:

• Merging of variables with the same VWO parameter;

• Elimination of variables that appear in both sides of inequalities;

• Elimination of inequalities with no elements on the lesser side;

• Elimination of inequalities with a single element on the lesser side.

After the inequalities simplification and before computing the variable weights, the
tuple <variables,inequalities> associating the variables with some of the inequalities is
created, like the map in Figure 6.2. By making so, each variable points to inequalities
in which the variable is present on the greater side. This relationship is exploited in the
weight assignment step, discussed in the next section.
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Figure 6.2: Example of relationship associating variables and inequalities .

6.2.2.3 Input weight assignment

The inputs weight assignment step receives the variables ordered by the Chow
parameters, the inequalities and the map defined in the previous section. The first step is
to assign minimum values for each variable. The variable with the lowest Chow parameter
value is assigned by ’1’, the second smallest with ’2’, and so on. For each variable, in
ascending ordering, the method checks the inequalities for which the variable points on
the map (inequalities where such variable appears on the greater side). The checking is
performed by simply verifying if the sum of the current values of the greater side variables
is greater than the sum of the current values of the lesser side variables. If any of these
inequalities is inconsistent, the value of the variable can be incremented, to try make it
consistent.

In this previous version of the method, the input weight is incremented 1 by 1
and the inequality consistency is checked between each increment. The increments occurs
either up to the inequality is consistent or up to the weight reach a defined limit. At the
end, a single check is performed on the original system, replacing the variables with the
values found. If all inequalities are consistent, the values are correct input weights.

After checking whether the input weights have been assigned correctly, the method
calculates the function threshold value. In a TLF represented through an ISOP form, the
sum of weights of the variables present in each product is equal to or greater than the
threshold value. Therefore, the threshold value is equal to the least sum of weights of the
greater side set.
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6.2.3 Improvments in the TLF identification

In this thesis, we present a novel non-ILP based method to perform the identifi-
cation and synthesis of TLF. The proposed approach presents three major contributions:
(1) a new heuristic method to assign the variable weight values of threshold logic func-
tions; (2) a novel ISOP-based procedure able to define the variable weight ordering before
computing the absolute variable weight values; and (3) a fast algorithm to generate ISOP
representation of unate Boolean functions.

(1) In the weight assignment of the previous approach, the algorithm creates a
temporary variable, which controls the value assigned to the weights. Such a temporary
value is initialized with a minimum value, being initially equal to 1, and is then increased
one-by-one during the iterations. In the new method, each input weight is assigned in
the first interaction, keeping the pre-computed order. When necessary, these weights are
increased. In order to avoid many weight increasing steps, a "delta computation" step
is introduced. As a result, this new weight assignment procedure provides significant
improvements in the execution time with no loss in the number of identified TLFs.

(2) When the old version of the method received a truth table as input, the Espresso
Logic Minimizer tool (BRAYTON et al., 1982) was used to generate the ISOP, but the
execution time of this step was not computed in the results. In practical applications, often
the input is a Boolean functions. For this reason, a fast ISOP generation method, specific
for unate functions , is presented in this new version. The execution time of the ISOP
generation is significantly less than the TLF identification method (the difference is around
two orders of magnitude). Therefore, the ISOP is generated without significant impact
in the execution time of the complete identification process. The execution time includes
now the ISOP generation, and they remain similar to the execution time presented in the
prior version, meaning that the presented gains are real.

(3) The old version of the method computes the Chow’s parameters to determine
the variable weight order. This step was performed based on the truth tables and the
complexity is (2n), being n the number of input variables. In this new version, a new
parameter VWO is proposed, being computed directly from the ISOP, and now the com-
plexity of the method depends on the number of cubes, which is O( n!

(bn/2c!.dn/2e!)) for unate
functions, which is strictly smaller than 2n.
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6.2.3.1 ISOP generation based on Hasse diagram

The method proposed for threshold logic identification works over an ISOP rep-
resentation of a given Boolean function f and an ISOP representation of !f . The ISOP
needs to be generated when either the input function is represented by a truth table
(usually for functions with up to 16 variables) or an ISOP of !f is not provided.

The conventional methods adopted in the ISOP generation usually apply the
Espresso Logic Minimizer tool (BRAYTON et al., 1982) and the Minato-Morreale al-
gorithm (MINATO, 1993), being suitable for general (unate and binate) Boolean func-
tions. In this work, we developed a faster procedure created specifically to handle unate
functions.

This novel ISOP generation algorithm is based on the Hasse diagram, where each
vertex corresponds to a minterm, each level i contains cubes with i literals, and each
cube covers all of its descendants in the diagram (BIRKHOFF, 1940). A breadth-first
search (BFS) is performed, such that larger cubes, i.e., cubes that cover more minterms,
are visited before the smaller cubes. For instance, a complete Hasse diagram of a 4-input
Boolean function is illustrated in Fig. 6.3.

Figure 6.3: Hasse diagram of a 4-input Boolean function (BIRKHOFF, 1940).

For each visited vertex in the diagram, if the respective cube function fc is con-
tained in the target function f , then this cube is added to the partial solution fp and
its descendants are not visited. When the partial solution function is equivalent to the
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target function (f ≡ fp), the final solution is found. The ISOP generation procedure is
described by the pseudo-code in Algorithm 6.2.

Algorithm 6.2: Compute the ISOP of a positive unate function based on the
Hasse diagram.

Input: Boolean function f
Output: Set of cubes isop

1 queue = ∅;
2 isop=∅;
3 status[ ]= ∅;
4 fp = ∅;
5 foreach xi ∈ X do
6 queue.add(2i);
7 while queue is not empty do
8 cube=queue.remove;
9 if (status[parentof(cube)] = ACCEPTED) then

10 continue;
11 fc = getfunction(cube);
12 if (f = f ∨ fc) then
13 isop=isop ∪ cube;
14 status[cube]=ACCEPTED;
15 fp = fp ∨ fc;
16 else
17 queue.add[childrenof(cube)];
18 if fp = f then
19 return isop;

20 return isop;

6.2.3.2 Variable weight ordering computation

In the proposed method, the computation of the variable weight ordering is a
crucial task because this information is used in the inequalities simplification and the
weight assignment steps. A well-known way to obtain such an ordering is through the
Chow’s parameters (BRAYTON et al., 1982; MUROGA, 1971). The correlation between
the Chow’s parameters pi and pj of two variables xi and xj, respectively, induces the
correlation between the corresponding weights wi and wj, i.e., if pi > pj then wi > wj

(WINDER, 1971).
A new algorithm to obtain a variable weight ordering parameter (VWO) is pre-

sented in this work. VWO parameters provide similar variable weight ordering as the
Chow’s ones, although the absolute parameter values are possibly different. These pa-
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rameters are calculated directly from the ISOP, being quite straightforward and fast to
compute. They are based on the max literal computation, as proposed in (GOWDA et
al., 2011).

Considering an ISOP representation of a given function f , the largest variable
weight of the target TLF is associated to the literal that occurs most frequently in the
largest cubes of f , i.e., in the cubes with fewer literals. In the case of a tie, it is decided
by comparing the frequency of the literals in the next cubes with the smaller size.

The algorithm defines a weight for each cube, corresponding to the cube size. This
weight is added to the VWO parameter of the variables present in the cube. The variable
weight ordering is associated with the ordering of these parameters computed for each
variable.

In the previous approach, the variable ordering is obtained through the Chow’s
parameters computation, whose time complexity is always 2n for each variable. The
complexity to compute the VWO parameter of each variable depends on the number of
ISOP cubes, which is strictly smaller than 2n. For unate functions, the worst case of the
number of cubes is ( n!

(bn/2c!.dn/2e!)).

6.2.3.3 New weights assignment approach

The variable weight assignment step receives the set of variables, ordered by the
VWO parameters, as well as the inequalities and relationships defined in the final of
Section 6.2.2.2. The first task is to assign minimum values for each variable. The variable
with the lowest VWO parameter value is assigned by 1, the second lowest one by 2, and
so on. This step is described in line 2 in Algorithm 6.3.

In the sequence, the algorithm iterates over all variables, in ascending order (ac-
cording to the VWO ordering). Each variable points to a set of inequalities. The consis-
tency of each inequality is verified, being performed by checking whether the sum of the
current values of the greater side variables is greater than the sum of the current values
of the lesser side variables.

The difference between the two inequality sides summation is called delta. If
delta is not positive, the inequality is not consistent, i.e., the current assigned weights
do not satisfy this inequality. In this case, the value of the variable under verification
is incremented, trying to make it valid. Delta is computed in line 6 in Algorithm 6.3,
whereas the consistency is checked in line 7.

When the value of this variable is incremented, the value of the variables with
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greater VWO parameter is also incremented in order to maintain the ordering. For in-
stance, considering the following case (A+ C) > (B + B + B), increasing the value of C
would never turn the inequality consistent because it also increases the values of A and
B, i.e., (A+ 1 + C + 1) ≥ (B + 1 + B + 1 + B + 1). In this sense, the lesser side cannot
increase more than the greater side. The procedure increment_weights is responsible for
incrementing the weight of variable vi and the weight of the variables greater than vi.

The decision whether the weight of a variable should be incremented is computed
in three steps:

1. increment the variable value, as well as the value of the greater variables, by 1;

2. compute the new delta, denoted delta’;

3. if delta′ ≤ delta, then the increment is undone and the inequality is kept as incon-
sistent, and the algorithm proceeds to the next inequalities and variables. When
delta’ > delta, the increment_weights procedure is applied.

The increment value that makes the inequality consistent is computed as follows:

increment = d −delta
delta− delta′

e. (6.5)

Finally, the original system is checked for consistency by replacing the variables
by the assigned weights. If all inequalities are consistent, then the values correspond to
the right variable weights. Otherwise, if at least one of the inequalities is not consistent
then the method identifies the given function as not TLF. This ensures that false positive
solutions are not found.

After checking whether the input weights have been assigned correctly, the method
calculates the function threshold value. In a TLF represented through an ISOP form, the
sum of weights of the variables present in each product is equal to or greater than the
threshold value. Therefore, the threshold value is equal to the least sum of weights of the
greater side set.
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Algorithm 6.3: New and faster weight assignment approach.
Input: : list_variables, relationship <variables , inequalities>
Output: Array of weights W with assigned values

1 foreach variable v1 ∈ list_variables do
2 wi[vi] = i

3 foreach variable v1 ∈ list_variables do
4 ineq_set = get_ineqs_by_variable(vi);
5 foreach inequality ineq ∈ ineq_set do
6 delta = weight_sum(greaterSide)− weight_sum(lesserSide);
7 if delta ≤ 0 then

/* this inequality is inconsistent */
8 increment_weights(vi, list_variables, 1);
9 delta′ = weight_sum(greaterSide)− weight_sum(lesserSide);

10 if delta′ > delta then
11 increment = −delta/(delta− delta′);
12 increment_weights(vi, list_variables, increment);
13 else
14 increment_is_undone;

6.2.4 Summary of improved results

The modifications has improved the method scalability. Although the main focus
of the proposed method is to identify functions with at most 16 inputs, we now are able to
identify larger functions (with up to 92 inputs). We would like to wrap-up by highlighting
the contributions of this work compared to the related state-of-the-art approaches:

• Our method scales better and recognizes more threshold functions;

• Our method is the only one that compares numerically to ILP, whereas other authors
only state that ILP is slow, without providing numerical results;

• We have reassessed the comparison with the ILP-based method. Our heuristic is
around 8 times faster than the ILP, missing only 1% of threshold functions with up
to 15 inputs present as sub-circuits in large opencore benchmark circuits;

• Our heuristic approach scales up to 92 inputs;

• For large functions, the proposed method is around 3 orders of magnitude faster
than ILP.
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7 FINAL REMARKS

This thesis presented an effective technology mapping for circuits using threshold
logic gates, which overcome the state-of-the-art approaches. The main contributions of
this work are the following:

• an efficient threshold logic synthesis flow based on cut pruning, which reduces area
and delay, as well as is scalable to large benchmark circuits;

• a new priority cut strategy, where the cut sorting is based on the thresholdness of
the Boolean functions implemented by each enumerated cut;

• a clever way to explore redundant cuts in order to improve the Quality-of-results;

• a technology mapping able to handle different TLG area estimations: the sum total
of input weights and function threshold values, the total sum of gate inputs, and
the total number of TLGs;

• a method for preforming majority gate synthesis, based on threshold logic functions.

When compared against the state-of-the-art related methods, the proposed ap-
proach reduces up to 47% the area and up to 67% the delay. We also present results
customizing the developed mapper to achieve different mapping objectives (area x delay)
and targeting different threshold-based area estimations, which can be used as reference
in further publications. The proposed threshold logic synthesis is available through the
public ABC tool.

Besides, the thesis presents improvements in a previous proposed threshold logic
identification method, which is an enabler for the proposed technology mapping approach.
Such an identification method is some orders of magnitude faster than the widely applied
integer linear programming (ILP)-based strategy.
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