Universidade Federal do Rio Grande do Sul

Centro de Biotecnologia

Programa de Pós-Graduação em Biologia Celular e Molecular

Dissertação de Mestrado

Desenvolvimento e caracterização de duas linhagens celulares de adenocarcinoma de pulmão com níveis clinicamente relevantes de resistência à cisplatina

Carolina Lumertz Martello

Porto Alegre, janeiro de 2018

Universidade Federal do Rio Grande do Sul

Centro de Biotecnologia

Programa de Pós-Graduação em Biologia Celular e Molecular

Desenvolvimento e caracterização de duas linhagens celulares de adenocarcinoma de pulmão com níveis clinicamente relevantes de resistência à cisplatina

Dissertação submetida ao Programa de Pós-Graduação em Biologia Celular e Molecular do Centro de Biotecnologia da UFRGS como requisito parcial para a obtenção do título de Mestre.

Carolina Lumertz Martello

Profa. Dra. Karina Mariante Monteiro - Orientador

Porto Alegre, janeiro de 2018

Este trabalho foi desenvolvido no Laboratório de Genômica Estrutural e Funcional do Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul (CBiot/UFRGS), e contou com o apoio financeiro do Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) e da Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS).

Tu verdad, no: la Verdad.

Y ven conmigo a buscarla.

La tuya, guárdatela.

- Antonio Machado,

Proverbios y cantares.

ÍNDICE	5
ABREVIATURAS, SÍMBOLOS E UNIDADES	7
LISTA DE FIGURAS E TABELAS	8
RESUMO	11
ABSTRACT	12
1. INTRODUÇÃO	13
1.1. Câncer	13
1.1.1. Câncer de pulmão	13
1.2. O uso da cisplatina no tratamento do câncer	16
1.3. Mecanismos de resistência tumoral à cisplatina	18
1.3.1. Influxo/efluxo de cisplatina	18
1.3.2. Detoxificação	19
1.3.3. Reparo a danos no DNA	19
1.3.4. Sinalização de apoptose	20
1.4. Modelos celulares para o estudo da resistência à cisplatina	20
1.5. Justificativas	21
2. Objetivos	22
2.1. Objetivo geral	22
2.2. Objetivos específicos	22
3. Capítulo I - Development and characterization of two A549 human lung	cancer cell
sublines with clinically relevant levels of cisplatin resistance	23
Development and characterization of two A549 human lung cancer of	cell sublines
with clinically relevant levels of cisplatin resistance	24
ABSTRACT	25
KEYWORDS	25
ABBREVIATIONS	26
INTRODUCTION	28
MATERIALS AND METHODS	
RESULTS	36
DISCUSSION	40

ÍNDICE

	ACKNOWLEDGMENTS	46
	REFERENCES	47
	FIGURES	
	TABLES	56
	SUPPLEMENTARY MATERIAL	57
4.	DISCUSSÃO	96
5.	PERSPECTIVAS	
6.	REFERÊNCIAS	
CU	JRRICULUM VITÆ resumido	

ABREVIATURAS, SÍMBOLOS E UNIDADES

A549: linhagem celular imortalizada de adenocarcinoma de pulmão humano

A549/CDDP: linhagem celular de adecarcinoma de pulmão humano com resistência adquirida à cisplatina

A549/CDDP_{CT}: linhagem celular de adenocarcinoma de pulmão humano com resistência adquirida à cisplatina mimetizando o tratamento clínico

EMT: transição epitélio-mesenquimal (de epithelial-mesenchymal transition)

ER: retículo endoplasmático (de endoplasmic reticulum)

FASP: preparação de amostra de auxiliada por filtro (de *filter-aided sample preparation*)

GI50: concentração necessária para inibir 50% do crescimento celular

GO: ontologia (de gene ontology)

GTP: guanosina trifosfato

h: hora

INCA: Instituto Nacional do Câncer

kDa: kilodalton(s)

min: minuto(s)

ml: mililitro(s)

mM: milimolar

MMR: reparo de pareamentos errados de DNA (de DNA mismatch repair)

NER: reparo por excisão de nucleotídeos do DNA (de DNA nucleotide excision repair)

NSCLC: câncer de pulmão de células não pequenas (de non-small cell lung cancer)

°C: grau Celsius

PBS: salina tamponada com fosfato (de *phosphate-buffered saline*).

PE: eficiência de plaqueamento (de *plating efficiency*)

pGL3: plasmídeo GL3

ROS: espécies reativas de oxigênio (de *reactive oxygen species*)

SCLC: câncer de pulmão de células pequenas (de small cell lung cancer)

SD: desvio padrão (de *standard deviation*)

SF: fração sobrevivente (de *surviving fraction*)

SRB: sulforodamina B

μM: micromolar

LISTA DE FIGURAS E TABELAS

1. INTRODUÇÃO

Figura 1: Incidência e mortalidade de tipos de câncer	.14
Figura 2: Estrutura da cisplatina	17
Figura 3: Interações da cisplatina com o DNA	17

2. Development and characterization of two A549 human lung cancer cell sublines with clinically relevant levels of cisplatin resistance
2.1. Figuras

Figura 4: Cisplatin exposure led to acquisition of resistance in $A549/CDDP_{CT}$ and
A549/CDDP sublines
Figura 5: A549, A549/CDDP _{CT} and A549/CDDP presented different cell colony
formation capacity and cell surviving fraction51
Figura 6: A549/CDDP presented lower proliferation rate and higher doubling
<i>time</i>
Figura 7: A549/CDDP cells were able to repair of cisplatin-damaged DNA53
Figura 8: $A549/CDDP_{CT}$ and $A549/CDDP$ cells differentiate in two G1 subpopulations
after cisplatin exposure
Figura 9: Overview of the proteins identified from A549, A549/CDDP _{CT} and
A549/CDDP cells
Figura 10: Morphological differences between A549, A549/CDDP _{CT} and A549/CDDP
cells

2.2. Tabelas

Tabela 1: Cell cycle analysis from A549, A549/CDDP _{CT} and A549/CDDP after cisplat	in
exposure5	6

Tabela	2:	Protein	identified	by	LC-MS/MS	from	A549,	$A549/CDDP_{CT}$	and
A549/C	DDP			•••••					58
Tabela 3	3: Sign	ificant ge	ene ontolog	y ter	ms from A549	9			69
Tabela 4	4: Sign	vificant ge	ene ontolog	y ter	ms from A549	9/CDD	<i>P_{CT}</i>		81
Tabela :	5: Sign	ificant ge	ene ontolog	y ter	ms from A549	9/CDD	P		89

RESUMO

O câncer de pulmão é um dos principais responsáveis pelas mortes causadas por câncer no mundo, principalmente o câncer de pulmão de células não pequenas (NSCLC). A cisplatina é o quimioterápico mais comumente utilizado para tratamento de NSCLC. Contudo, a resistência à cisplatina e a consequente recorrência do tumor são obstáculos frequentes desse tratamento. Com o objetivo de investigar os mecanismos moleculares envolvidos na resistência à cisplatina em NSCLC, foram desenvolvidas duas sublinhagens a partir da linhagem humana de adenocarcinoma de pulmão A549 com níveis clinicamente relevantes de resistência à cisplatina, A549/CDDP_{CT} e A549/CDDP. As duas sublinhagens foram analisadas comparativamente por análises celulares e proteômica. As células A549/CDDP apresentaram menor proliferação e maior capacidade de reparo a danos no DNA quando comparadas com as células A549 e A549/CDDP_{CT}. As análises de proteômica e ontologia das células resistentes à cisplatina revelaram o enriquecimento de proteínas relacionadas ao reparo de DNA, resposta ao estresse de retículo endoplasmático, regulação do processo apoptótico, dentre outros mecanismos potencialmente envolvidos na resistência à droga. A549/CDDP_{CT} apresentou mudanças morfológicas já identificadas em células resistentes à cisplatina, perfil de proteínas ribossomais exclusivo, além de potencial evasão de danos do estresse oxidativo ocasionado pela cisplatina. A549/CDDP apresentou diversas proteínas enriquecidas relacionadas à organização do citoesqueleto, além de morfologia alongada (fibroblasto-like), sugestiva de uma possível transição epitélio-mesenquimal. Dessa forma, A549/CDDP_{CT} e A549/CDDP apresentaram conjuntos únicos de mecanismos de resistência, mostrando-se valiosos modelos celulares clinicamente relevantes para futuros estudos dos mecanismos moleculares da resistência à cisplatina.

ABSTRACT

Lung cancer, a major responsible by cancer death in the world, have platinumbased chemotherapy as first-line therapy for patients with advanced non-small cell lung cancer (NSCLC), being cisplatin the most frequently used drug. However, cisplatin resistance and consequent tumor recurrence remain an obstacle to treatment. In order to investigate the molecular pathways involved with cisplatin resistance in NSCLC, we developed two human lung adenocarcinoma A549 sublines with clinically relevant levels, A549/CDDP_{CT} and A549/CDDP. Both sublines were analyzing by cellular characterization and protein expression modulation. A549/CDDP cells presented lower proliferation and increased cisplatin DNA damage repair when compared to A549 and A549/CDDP_{CT}. Proteomic and gene ontology analyses provided evidences of DNA repair proteins, endoplasmatic reticulum stress response, apoptotic process response, as others mechanisms potentially related to cisplatin resistance. A549/CDDP_{CT} presented morphological changes already observed in cisplatin resistant cells, exclusive ribosomal profile as well as potential oxidative stress evasion. A549/CDDP presented fibroblastlike morphology and enriched proteins related to cytoskeletal organization, as a possible epithelial-mesenchymal transition (EMT). Therefore, A549/CDDP_{CT} and A549/CDDP presented two unique sets of resistance mechanisms, standing as valuable clinically relevant cellular models to further investigations of drug resistance molecular mechanisms.

1. INTRODUÇÃO

1.1. Câncer

Câncer é uma malignidade de distribuição mundial, afetando países desenvolvidos e subdesenvolvidos (TORRE et al., 2015). A crescente incidência de câncer e consequente falecimento dos pacientes se dá tanto pelo maior envelhecimento da população quanto pelos hábitos pouco saudáveis cada vez mais adotados. Dados globais de 2012 apontam 14,1 milhões de casos de câncer e 8,2 milhões de mortes derivadas da doença. Isso torna o câncer a segunda principal causa de morte no mundo, sendo doenças cardíacas a primeira causa. Entre essas ocorrências, o câncer de pulmão é um dos líderes de causa de morte por câncer no mundo.

1.1.1. Câncer de pulmão

O câncer de pulmão é classificado em duas categorias principais, o câncer de células pequenas e o de células não pequenas. Segundo dados da *American Cancer Society* (AMERICAN CANCER SOCIETY, https://www.cancer.org/content/dam/CRC/PDF/Public/8708.00.pdf), o câncer de pulmão de células pequenas representa 10 a 15% dos casos. O câncer de pulmão de células não pequenas representa 80 a 85% dos casos, sendo dividido em outras três subcategorias: adenocarcinoma, carcinoma de células escamosas e carcinoma de grandes células. O tumor de origem glandular é denominado adenocarcinoma e representa a grande parcela de 40% dos casos de câncer de pulmão.

A incidência de pacientes diagnosticados com câncer de pulmão representam 13% dos casos mundiais de câncer, apresentando uma estimativa de 1,8 milhões de casos em 2012 (TORRE et al., 2015). O câncer de pulmão é o segundo maior responsável por mortes causadas por câncer no mundo, sendo a primeira causa para homens e a segunda para mulheres (GLOBOCAN, <u>http://globocan.iarc.fr</u>) (Figura 1). No Brasil, dados do Instituto Nacional do Câncer (INCA) (INSTITUTO NACIONAL DO CÂNCER, (INCA,

http://www2.inca.gov.br/wps/wcm/connect/tiposdecancer/site/home/pulmao/definicao) apontam o câncer de pulmão como o segundo mais prevalente em ambos os sexos, apenas atrás de câncer de mama para mulheres e câncer de próstata para homens, com 28 mil novos casos estimados em 2016. Óbitos por câncer de pulmão no Brasil acompanham a distribuição global, tendo dados do Sistema de Informação sobre Mortalidade de 2013 apontado o câncer de pulmão como responsável por 24 mil mortes, sendo 14 mil de homens e 9 mil de mulheres.

A incidência de câncer de pulmão está diretamente relacionada ao tabagismo, sendo essa a principal causa desse tipo de câncer (TORRE et al., 2015). A distribuição de casos de câncer de pulmão segue a mesma distribuição da epidemia do tabaco de cada país. Países nos quais a epidemia do tabaco está em recessão apresentam uma queda da incidência de câncer de pulmão. Da mesma forma, países que estão no auge da epidemia tem expectativa de aumentar os casos de câncer de pulmão nas próximas

décadas. Além disso, a poluição do ar e o contato com substâncias carcinogênicas também são causas menos frequentes de câncer de pulmão.

Fica evidente, portanto, que a prevenção contra o tabagismo se mostra a forma mais eficiente de prevenir o desenvolvimento de câncer de pulmão. A prevenção pode ser realizada por campanhas para evitar o início do tabagismo e aumentar a desistência do hábito entre fumantes. No Brasil, o Ministério da Saúde por meio do INCA desenvolve uma campanha antitabagista desde 1980. Iniciativas como aumento do valor do produto, implementação de contrapropaganda e proibição de tabagismo em áreas fechadas são formas de prevenir o hábito. Essas iniciativas levaram a uma redução de 30% no número de fumantes nos últimos 9 anos, segundo levantamento do Sistema Único ÚNICO SAÚDE. de Saúde (SISTEMA DE http://portalarquivos2.saude.gov.br/images/pdf/2015/maio/28/apresentacao-tabaco.pdf). Campanhas nacionais como estas são de extrema importância para o combate ao desenvolvimento do câncer de pulmão, levando a uma redução da incidência e consequente diminuição de óbitos por câncer.

O diagnóstico do câncer de pulmão é realizado através de raios-X do tórax seguido de tomografia computadorizada. Contudo, o diagnóstico se torna difícil por poder se desenvolver em qualquer região do pulmão, apresentar múltiplos aspectos clínicos e patológicos e não possuir sintomas definidos. Dessa forma, o diagnóstico muitas vezes é confirmado em estágios avançados do câncer, quando os sintomas ficam mais evidentes (DESANTIS et al., 2014). Um estudo realizado pelo *The National Lung Screening Trial Research Team* demonstrou que a tomografia computadorizada de baixa dosagem poderia reverter essa situação pela detecção de câncer de pulmão em estágios iniciais (THE NATIONAL LUNG SCREENING TRIAL RESEARCH TEAM, 2011). Contudo, esse estudo apresentou uma alta incidência de resultados falsos positivos. Dessa forma, o diagnóstico precoce de câncer de pulmão continua a ser um empecilho para a correta detecção e início do tratamento contra o câncer.

O tratamento para pacientes com câncer de pulmão varia de acordo com o tipo e o estágio do tumor. De acordo com a *American Cancer Society* (AMERICAN CANCER SOCIETY, <u>https://www.cancer.org/cancer/non-small-cell-lung-</u> <u>cancer/treating.html</u>), os tratamentos incluem cirurgia, radioterapia, quimioterapia, ablação por radiofrequência, terapia alvo oncológica e imunoterapia, não sendo incomum a combinação de mais de um tipo de tratamento no combate ao câncer. Pacientes com câncer de pulmão de células pequenas normalmente são tratados com quimioterapia ou radioterapia (DESANTIS et al., 2014). Pacientes com câncer de pulmão de células não pequenas recebem tratamentos específicos, de acordo com o estágio em que se encontra o tumor. Aqueles com diagnóstico de tumores em estágios iniciais normalmente são submetidos à cirurgia e uma parcela desses recebe quimio ou radioterapia após a cirurgia. Contudo, pacientes com diagnóstico de câncer de pulmão avançado costumam ser tratados com quimioterapia, radioterapia ou a combinação dos dois. As drogas quimioterápicas mais comuns para o tratamento do câncer de pulmão de células não pequenas são a carboplatina e a cisplatina.

1.2. O uso da cisplatina no tratamento do câncer

A cisplatina foi sintetizada pela primeira vez por Michel Peyrone em 1845, tendo sua estrutura identificada em 1893 por Alfred Werner. Contudo, foi apenas na década de 1960 que a cisplatina começou a ser investigada como potencial quimioterápico (ROSENBERG et al., 1969). Compostos inorgânicos de platina, incluindo cisplatina, inibiam a mitose ou interferiam nos cromossomos das células que mantinham a divisão. A comprovação da cisplatina como quimioterápico após testes clínicos levou a sua liberação para comercialização em 1977. Atualmente, a cisplatina é uma droga amplamente utilizada contra diversos tipos de câncer e costuma ser a linha de tratamento inicial e mais efetiva.

Desde então, a cisplatina tem sido amplamente utilizada como tratamento para uma ampla variedade de tipos de câncer, como câncer de cabeça e pescoço, de mama, de cérebro e de pulmão (DASARI; TCHOUNWOU, 2014). A administração da droga se dá principalmente por infusão intravenosa, com doses específicas para cada tipo de câncer, normalmente em um intervalo de 3 a 4 semanas (THE INTERNATIONAL ADJUVANT LUNG CANCER TRIAL COLLABORATIVE GROUP, 2004). A platina se espalha pelo corpo, se concentrando principalmente no fígado, próstata e rins, seguindo em menores doses para a bexiga, os músculos, os testículos e o pâncreas, baixas concentrações atingem o intestino, as glândulas adrenais, o coração, o pulmão e o cérebro (STEWART et al., 1982).

Em nível molecular, a cisplatina é composta por um átomo de platina ligado a dois átomos de cloro e duas moléculas de amônia (Figura 2) (DASARI;

TCHOUNWOU, 2014). Em contato com a água, a cisplatina assume a sua forma tóxica, perdendo seus átomos de cloro e se tornado positivamente carregada (SIDDIK, 2003). Em sua forma ativa, a cisplatina se liga as bases nucleotídicas do DNA, criando adutos intra- e inter-cadeias (Figura 3). Essa interferência no DNA desencadeia uma inibição da replicação, transcrição e divisão celular, podendo levar a apoptose.

Figura 2: Estrutura da cisplatina. Estrutura química (A) e molecular computacional (B) da cisplatina. Adaptado de Dasari & Tchounwou (2014).

Figura 3: Interações da cisplatina com o DNA. Possíveis interações da cisplatina com o DNA e a frequência com que ocorrem. Adaptado de <u>http://www.conconilab.ca/wp-</u>content/uploads/2013/05/image-cisplatin-3.jpg (acesso em 18/10/2017).

Após a exposição das células à cisplatina e consequente interação da droga com o DNA, diversas vias de sinalização podem ser desencadeadas como resposta ao dano. A pausa da célula nos pontos de checagem do ciclo celular pode ser desencadeada normalmente para tentativa de reparo do DNA, mas caso a extensão dos danos seja muito grave a célula ativa as vias de apoptose, levando a morte celular (SIDDIK, 2003). A ativação da apoptose se dá por intermédio da proteína supressora de tumor p53, que por sua vez é ativada por proteínas quinases, sendo todo o processo uma resposta aos danos que a cisplatina causa ao DNA. Além disso, a cisplatina pode levar a morte celular por aumentar o estresse oxidativo ou desregular a homeostase do cálcio (DASARI; TCHOUNWOU, 2014).

Contudo, a resistência das células tumorais à cisplatina se apresenta como um efeito recorrente no tratamento contra diversos tipos de câncer (DASARI; TCHOUNWOU, 2014). A resistência pode ser intrínseca, quando o paciente já apresenta resistência e o tratamento inicial não será efetivo nessas células (KÖBERLE et al., 2010). Ou a resistência pode ser adquirida, por exposição à droga ao longo do tratamento, resultando na diminuição da sua eficiência. A resistência à cisplatina, por ser um problema grave no tratamento de diversos tipos de câncer, tem sido amplamente estudada e foi descrita como tendo aspecto multifatorial. Os mecanismos moleculares que caracterizam a resistência à cisplatina incluem diminuição no influxo da droga para o meio intracelular, aumento no efluxo da droga para fora da célula, diminuição da toxicidade da cisplatina por conjugação a moléculas contendo tiol, aumento no reparo ao dano no DNA causado pela cisplatina e mudanças nas vias de sinalização para evitar apoptose ou outros tipos de morte celular (SIDDIK, 2003). Esses mecanismos podem atuar sozinhos ou combinados para caracterizar resistência do tumor à cisplatina, evitando a apoptose e permitindo a contínua proliferação do tumor.

- 1.3. Mecanismos de resistência tumoral à cisplatina
 - 1.3.1. Influxo/efluxo de cisplatina

A diminuição da concentração intracelular de cisplatina é um dos fatores que levam à resistência e pode ser observado em linhagens celulares resistentes à cisplatina (BARR et al., 2013; OISO et al., 2014). Essa diferença pode ser causada tanto pela menor absorção da droga pela célula como pela maior remoção da droga de dentro da célula. A cisplatina pode entrar na célula por transporte passivo ou por meio de transportadores, como os transportadores de homeostase de cobre CTR1, CTR2 (KILARI, 2016). Assim como ser removida do meio intracelular através da ação de transportadores como ATOX1, ATP7A e ATP7B. O aumento da expressão do

transportador ATP7B, por exemplo, já foi correlacionado com resistência à cisplatina em câncer de pulmão de células não pequenas (NAKAGAWA et al., 1994).

1.3.2. Detoxificação

A cisplatina no plasma sanguíneo se apresenta principalmente em sua forma inativa, por estar presente em um ambiente com alta concentração de cloretos (NEJDL et al., 2015). Contudo, dentro da célula essa concentração diminui, fazendo com que a molécula de cisplatina dissocie seus íons de cloro, que são substituídos por moléculas de água. Nessa forma, a cisplatina é reativa e, caso chegue ao núcleo, irá interagir com o DNA. Um dos mecanismos de resistência celular à cisplatina é a diminuição da sua citotoxicidade pela interação com moléculas contendo grupos tiol no citoplasma. A cisplatina tem alta afinidade e pode interagir com glutationa (DABROWIAK; GOODISMAN; SOUID, 2002) e metalotioneína (HAGRMAN, 2003), diminuindo sua concentração reativa e citotóxica intracelularmente.

1.3.3. Reparo a danos no DNA

A citotoxicidade da cisplatina se dá por meio da formação de adutos com o DNA, os quais desencadeiam uma série de vias de sinalização que culminam na morte celular. Contudo, o reparo ao dano causado pela cisplatina no DNA pode ser reparado, evitando a perpetuação do sinal e criando resistência ao efeito causado pela cisplatina. O reparo por excisão de nucleotídeos é o principal responsável pela remoção do dano causado pela cisplatina, pois repara as interações que causam mudanças na estrutura do DNA e consequente inibição da transcrição e replicação (MARTIN; HAMILTON; SCHILDER, 2008; XIONG; HUANG; YIN, 2017). O reparo de erro de pareamento também é um dos mecanismos que pode ser utilizado para o desenvolvimento de resistência, no qual o pareamento incorreto da base nucleotídica com a molécula de cisplatina é reconhecido e corrigido. O reparo de quebra de fita dupla atua em um estado de dano ao DNA mais avançado, o qual pode ser realizado pela recombinação homóloga ou não homóloga das fitas do DNA. Dessa forma, qualquer reconhecimento de dano ao DNA pode desencadear o recrutamento de uma gama de proteínas que podem reverter o dano causado pela cisplatina, caracterizando resistência à droga.

1.3.4. Sinalização da apoptose

O mecanismo final de resistência à cisplatina é a inibição da via de sinalização da apoptose em si, independente do dano causado ao DNA. A proteína supressora de tumor p53 tem papel importante na via apoptótica. A supressão dessa proteína causa diminuição da expressão de diversos genes pró-apoptóticos, resultando em um caráter resistente à cisplatina em câncer de pulmão de células não pequenas (FENG et al., 2017). A cisplatina desencadeia uma resposta por meio proteíno-quinases ativadas por mitógenos (MAPKs), como a proteína quinase c-Jun N-terminal ativada por estresse (SAPK/JNK) e p38 quinases (KÖBERLE et al., 2010). Essas vias podem ser ativadas por diversas outras proteínas, que podem ter como resultado final a inibição da apoptose e consequente resistência à cisplatina (BROZOVIC et al., 2004; BROZOVIC; OSMAK, 2007; QI et al., 2016).

1.4. Modelos celulares para o estudo da resistência à cisplatina

A resistência tumoral à cisplatina é um problema clínico que vem sendo amplamente estudado, tanto *in vivo* (ZHANG et al., 2017) quanto *in vitro* (QI et al., 2016). Diversas linhagens celulares resistentes à cisplatina já foram desenvolvidas com o intuito do melhor entendimento das vias pelas quais a resistência se estabelece (BARR et al., 2013; GUO et al., 2013; HARVEY et al., 2015).

Contudo, a maioria dos estudos utiliza longos tempos de exposição das células a altas doses de cisplatina para desenvolvimento da resistência celular. Linhagens celulares que passam por esse tratamento adquirem altos níveis de resistência à droga, na ordem de 30 vezes maiores do que aqueles apresentados pela linhagem parental (MCDERMOTT et al., 2014). Esses são os chamados modelos de laboratório de alto nível de resistência, os quais são comumente utilizados por serem mais estáveis e suportarem melhor cultivo prolongado diversos ciclos de 0 e congelamento/descongelamento, necessários para o desenvolvimento de um estudo científico. Apesar disso, os modelos celulares com altos níveis de resistência têm gerado resultados de aplicação clínica limitada (GILLET et al., 2011).

Linhagens celulares clinicamente relevantes, por outro lado, são aquelas que apresentam uma resistência mais moderada à cisplatina, mimetizando os níveis de resistência observados em células tumorais isoladas de pacientes antes e após o tratamento com o quimioterápico (MCDERMOTT et al., 2014). Os níveis de resistência à cisplatina adquirida pelos pacientes após tratamento é na ordem de 2 a 5 vezes maior do que aquele do tumor sem resistência. Esse tipo de modelo pode ser desenvolvido a partir da utilização de menores concentrações da droga, como, por exemplo, a concentração plasmática encontrada em pacientes em tratamento (PUJOL et al., 1990), e pela utilização de protocolos que mimetizam o tratamento clínico, com ciclos de exposição ao quimioterápico seguido de períodos de recuperação em meio livre da droga (MCDERMOTT et al., 2014). As linhagens celulares resultantes normalmente apresentam resistência instável e baixos níveis de resistência, apresentando resultados mais tênues. Contudo, esses resultados tendem a ser mais aplicáveis à situação clínica.

1.5. Justificativas

O câncer de pulmão tem alta incidência mundial e é o segundo responsável por mortes por câncer no mundo, sendo a cisplatina o quimioterápico mais utilizado no tratamento. Contudo, a resistência à cisplatina se mantém como um obstáculo recorrente ao tratamento de pacientes com câncer de pulmão em estágio avançado. Apesar dos mecanismos moleculares de resistência a essa droga serem bem conhecidos, nenhuma alternativa efetiva para o problema foi desenvolvida. Linhagens celulares com altos níveis de resistência à cisplatina, comumente utilizadas para estudos nessa área, falham em ter seus resultados extrapolados para a pesquisa clínica. Desta forma, linhagens celulares clinicamente relevantes surgem como ferramentas de estudo alternativas e mais adequadas para entendimento dos mecanismos de resistência a quimioterápicos. O desenvolvimento de linhagens celulares resistentes à cisplatina utilizando baixas doses da droga e ciclos de exposição intervalados por cultivo sem cisplatina mimetizam melhor o tratamento clínico ministrado em pacientes. Sendo assim, este trabalho tem como objetivo desenvolver linhagens celulares de adenocarcinoma de pulmão clinicamente relevantes para o estudo da resistência à cisplatina. As linhagens celulares desenvolvidas foram caracterizadas em nível celular e proteômico e os mecanismos moleculares potencialmente envolvidos no desenvolvimento de resistência em cada uma delas foram avaliados e discutidos.

2. Objetivos

2.1. Objetivo geral

Desenvolvimento de linhagens celulares resistentes à cisplatina a partir da linhagem parental de adenocarcinoma de pulmão A549 e caracterização de seus mecanismos moleculares de resistência.

2.2. Objetivos específicos

- 2.2.1. Desenvolvimento de uma linhagem celular com resistência adquirida à cisplatina a partir da linhagem parental de adenocarcinoma de pulmão A549 utilizando exposição contínua à doses crescentes de cisplatina.
- 2.2.2. Desenvolvimento de uma linhagem celular com resistência adquirida à cisplatina mimetizando o tratamento clínico de pacientes com câncer de pulmão a partir da linhagem parental de adenocarcinoma de pulmão A549.
- 2.2.3. Avaliação e comparação da citotoxicidade da cisplatina, capacidade clonogênica, proliferação, capacidade de reparo ao DNA e distribuição do ciclo celular entre as linhagens celulares sensível e resistentes à cisplatina.
- 2.2.4. Avaliação e comparação dos perfis proteômicos das linhagens celulares sensível e resistentes à cisplatina.

3. Capítulo I - Development and characterization of two A549 human lung cancer cell sublines with clinically relevant levels of cisplatin resistance

O texto referente aos materiais e métodos e resultados está apresentado na forma de um manuscrito a ser submetido à revista científica *Experimental Cell Research* (https://www.journals.elsevier.com/experimental-cell-research). Os experimentos foram planejados por CLM, HBF, AZ e KMM. Os experimentos foram realizados por CLM, CSD, NAC, HBS e KMM. A análise dos dados foi realizada por CLM, CSD, HBS, HBS, AZ e KMM. A contribuição de materiais, reagentes e aparelhos foi realizada por FK, HBF, AZ e KMM. A redação do manuscrito foi realizada por CLM, HBF e KMM. Development and characterization of two A549 human lung cancer cell sublines with clinically relevant levels of cisplatin resistance

Carolina Lumertz Martello^A, Cristine de Souza Dutra^A, Nathan Araujo Cadore^A, Helier Balbinotti da Silveira^A, Fábio Klamt^B, Henrique Bunselmeyer Ferreira^A, Arnaldo Zaha^C, Karina Mariante Monteiro^A

^ALaboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia,
Universidade Federal do Rio Grande do Sul, 91501-970, Bento Gonçalves 9500,
43421/206, +555133086070, Porto Alegre, Rio Grande do Sul, Brazil

^BLaboratório 28, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde,
Universidade Federal do Rio Grande do Sul, 90035-003, Ramiro Barcelos 2600,
+555133085559, Porto Alegre, Rio Grande do Sul, Brazil

^cLaboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia,
Universidade Federal do Rio Grande do Sul, 91501-970, Bento Gonçalves 9500,
43421/204, +555133086070, Porto Alegre, Rio Grande do Sul, Brazil

The corresponding author is Karina Mariante Monteiro, email: karina@cbiot.ufrgs.br

ABSTRACT

Lung cancer, a major responsible by cancer death in the world, have platinumbased chemotherapy as first-line therapy for patients with advanced non-small cell lung cancer (NSCLC), being cisplatin the most frequently used drug. However, cisplatin resistance and consequent tumor recurrence remain an obstacle to treatment. In order to investigate the molecular pathways involved with cisplatin resistance in NSCLC, we developed two human lung adenocarcinoma A549 sublines with clinically relevant levels, A549/CDDP_{CT} and A549/CDDP. Both sublines were analyzing by cellular characterization and protein expression modulation. A549/CDDP cells presented lower proliferation and increased cisplatin DNA damage repair when compared to A549 and A549/CDDP_{CT}. Proteomic and gene ontology analyses provided evidences of DNA repair proteins, endoplasmatic reticulum stress response, apoptotic process response, as others mechanisms potentially related to cisplatin resistance. A549/CDDP_{CT} presented morphological changes already observed in cisplatin resistant cells, exclusive ribosomal profile as well as potential oxidative stress evasion. A549/CDDP presented fibroblastlike morphology and enriched proteins related to cytoskeletal organization, as a possible epithelial-mesenchymal transition (EMT). Therefore, A549/CDDP_{CT} and A549/CDDP presented two unique sets of resistance mechanisms, standing as valuable clinically relevant cellular models to further investigations of drug resistance molecular mechanisms.

KEYWORDS: lung cancer, NSCLC, cancer resistance, cisplatin resistance

ABBREVIATIONS

A549/CDDP: acquired cisplatin-resistant A549 cell line

A549/CDDP_{CT}: acquired cisplatin-resistant A549 mimicking lung cancer clinical

treatment cell line

A549: human A549 NSCLC adenocarcinoma cells

EMT: epithelial-mesenchymal transition

ER: endoplasmic reticulum

FASP: Filter Aided Sample Prep method

GI₅₀: cisplatin concentration to inhibit 50% of cellular growth

GO: gene ontology

GTP: guanosine-5'-triphosphate

MMR: DNA mismatch repair

NER: nucleotide excision repair

NHEJ: nonhomologous end joining repair

NSCLC: non-small cell lung cancer

PBS: phosphate buffered saline

PE: plating efficiency

pGL3: plasmid GL3

ROS: reactive oxygen species

SCLC: small cell lung cancer

SD: standard deviation

SF: surviving fraction

SRB: sulforhodamine B

INTRODUCTION

Lung cancer is the second more prevalent type of cancer in both men and women and the second cause of cancer death in the world (GLOBOCAN 2012: Estimated Cancer Incidence, Mortality and Prevalence Worldwide in 2012). Lung cancer can be histologically classified into two main types, non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). NSCLC accounts for approximately 85% of lung cancer cases [1]. Survival rate of NSCLC remains low mainly because patients are in advanced stages of disease at diagnosis, when symptoms appear. Therefore, the 5-year relative survival of patients is only 18% [2].

Platinum-based chemotherapy is the standard first-line treatment for patients with advanced NSCLC, being cisplatin one of the most frequent used drugs [3]. Cisplatin primarily targets DNA, forming DNA adducts intra and inter-strand and resulting in double strand breaks which ultimately lead to cell death [4]. However, tumor resistance to cisplatin is a recurrent in clinical therapy and remains a major obstacle to the success of this drug in the lung cancer treatment [5].

Cellular cisplatin resistance is a multifactorial process that modulates the expression levels of a variety of genes and proteins to avoid cisplatin from causing cell death. Reduced intracellular cisplatin accumulation is one of the possible mechanisms of drug resistance and can involve increased intracellular drug efflux or decreased environmental drug uptake [3–6]. Drug cytotoxicity reduction by cytosolic inactivation through thiol-containing molecules conjugation can also lead to resistance. Moreover, cisplatin DNA damage repair by nonhomologous end joining (NHEJ), DNA mismatch repair (MMR) and mainly by nucleotide excision repair (NER) can overcome apoptosis. Furthermore, the cell death processes itself can be evaded by protein signaling pathways

28

as a last way to overcome cisplatin cytotoxicity. These mechanisms combined to characterize a cisplatin-resistant phenotype in a cellular model.

Multiples studies have investigated cisplatin resistance using laboratory cell lines with high-levels of drug resistance (>30 fold resistance than parental cell line) [7], which are generated by exposure of a parental cell line to high doses of the drug over long periods of time [8,9]. Although stable to longtime culture and freeze-thawing cycles, these high-level drug resistant sublines provide results that have been shown limited clinical utility [10]. Clinically relevant drug-resistant sublines, on the other hand, present lower levels of drug resistance, mimicking the levels observed in tumor cells isolated from patients before and after chemotherapy [7]. These cellular models can be developed by using low concentrations of the drug and protocols that mimic clinical treatment, with cycles of drug exposure followed by recovery periods in drugfree medium. Although the resulting sublines usually exhibit unstable resistance and produces subtle results, these results tend to be more reliable to clinical application.

In this study, we generated and characterized two cisplatin-resistant A549 lung adenocarcinoma sublines with clinically relevant levels of drug resistance. We have used different protocols to generate these cisplatin-resistant sublines, one mimicking the clinical treatment of patients with lung cancer (pulse treatment) and the other exposing the cells to increased concentrations of the drug (stepwise treatment). Cellular characterization of both sublines highlighted differences in cell morphology and behavior between cisplatin-sensitive and resistant cell lines. Proteomic analysis was able to identify differential expression of several proteins already described as involved in drug resistance in cancer and pointed to new potential targets to cisplatin resistance in lung cancer. Each resistant subline presented a unique set of proteins involved in

29

mechanisms of cisplatin resistance, making both sublines reliable and valuable tools to study cisplatin resistance in lung cancer.

MATERIALS AND METHODS

Cell culture and treatments

Human NSCLC A549 cells [11] were maintained in RPMI 1640 medium supplemented with 10% fetal bovine serum in the presence of penicillin (100 IU/mL) and streptomycin (100 µg/mL) at 37 °C in a humidified atmosphere of 5% CO₂. Cisplatin resistant subline A549/CDDP_{CT} was developed by pulse treatment, which mimics lung cancer clinical treatment. A549/CDDP_{CT} was obtained by exposing sub-confluent A549 cells to 5 µM of cisplatin for 72 h, followed by 18 days in drug-free medium, this 21day cycle was repeated a total of 5 times. Resistant subline A549/CDDP was developed by stepwise treatment by continuously exposing A549 cells (5 x 10^5) to increasing concentration of cisplatin (0.1, 0.2, 0.3, 0.4 and 0.5 µM) for 72 h each. Cisplatinresistance sublines were maintained in culture medium containing 0.5 µM of cisplatin until 3 days before the experiments to ensure maintenance of the resistant phenotype. Cisplatin-resistant sublines were independently generated three times, which were considered biological replicates in all experiments performed. Cell images were taken by Floid Cell Imaging Station (ThermoFisher Scientific) with 460 X magnification.

Cytotoxicity assay

Cisplatin cytotoxicity was determined with the sulforhodamine B (SRB) assay, as described by Vichai & Kirtikara (2006) [12], using 0.25, 0.5, 1, 2, 4, 8, 16, 32 and 64 μ M of cisplatin. The GI₅₀ value was calculated using a (log)dose–response curve with non-linear regression in GraphPad Prism 6.0 software. The assay was performed in triplicate.

Clonogenic assay

Cells were plated at a density of 500 cells/well in a 6-well plate and allowed to adhere overnight. Cells were treated with 0, 0.2, 0.3, 0.4, 0.5 or 1.0 µM of cisplatin for 72 h and cultured in drug-free medium for further 10 days. Colonies were washed once with phosphate-buffered saline (PBS), then fixed and stained with 6% glutaraldehyde and 0.5% crystal violet solution for at least 30 min, as described by Franken *et al.* (2006) [13]. The wells were washed with water and dried at room temperature. Colonies were counted using Clono-Counter software [14], with a threshold of 200, minimum of 10 and gray width of 45 as parameters. All images were subjected to visual inspection and manual correction. Plating efficiency (PE) was calculated as the number of colonies formed divided by the number of cells seeded. Surviving fraction (SF) was calculated as the number of cells seeded multiplied by PE as described by Franken *et al.* (2006) [13]. All experiments were performed in triplicate.

Proliferation assay

A total of 5 x 10^3 cells/well of each cell line were seeded in 24-well plates in triplicate. The cells were collected by trypsinisation at 24, 48, 72, 96, 120 and 144 h after plating and counted using a flow cytometer Guava easyCyte. Population doubling times were calculated considering all time points using the Cell calculator++ mode of Doubling Time Online Calculator (http://www.doubling-time.com/compute.php).

Host cell reactivation assay

pGL3-Control vector (Promega) was treated with cisplatin at concentrations of 0.5, 1 and 2 μ M in TE buffer (10 mM Tris; 1 mM EDTA; pH 8.0) at 37 °C for 18 h. Damaged plasmid was recovered by precipitation with ethanol and resuspended in TE buffer. The cell lines were co-transfected with 200 ng of cisplatin-damaged plasmid pGL3 and 40 ng of transfection control plasmid pRL-TK (Promega) using Lipofectamine LTX with Plus Reagent (ThermoFisher Scientific), according to manufacturer's instructions. Transfected cells were incubated for 24 h and then assayed for luciferase activities using the Dual-Glo Luciferase Assay System (Promega). Luminescence was measured with SpectraMax M5. Data were normalized by subtracting *Renilla* and firefly luminescence background and dividing firefly by *Renilla* luminescence for each measure [15]. Fold activity was calculated by normalized sample measure (pGL3 cisplatin-damaged) divided by control (pGL3 not damaged). Luciferase relative activity was calculated considering 100% luminescence from cells transfected with undamaged pGL3 plasmid.

Cell cycle analysis

Cells were cultured with 0, 0.25 or 0.5 µM of cisplatin for 72 h. After cisplatin exposure, samples were collected by trypsinization, washed once with PBS and fixed with ethanol 70% at 4 °C for at least 2 h. Fixed cells were washed once with PBS, stained with propidium iodide for 30 min at room temperature and washed again to stop staining. Cell cycle was analyzed by flow cytometry in a Guava easyCyte.

Protein extraction and sample preparation for mass spectrometry analysis

Protein extraction and sample preparation for mass spectrometry (MS) analysis were performed by Filter Aided Sample Preparation (FASP), as described by Wiśniewski (2016) [16]. Briefly, confluent flasks of cell culture from all cell lines were trypsinized and washed with PBS. Lysis buffer [2% SDS; 100 mM Tris-HCl pH 7.8; 0.05 M DTT (dithiothreitol)] was added to cell pellets, samples were sonicated, boiled and centrifuged. Proteins were quantified using Micro BCA Protein Assay Kit (Thermo Fisher Scientific) and 100 µg were mixed with UA solution [8 M urea; 0.1 M Tris-HCl

33

pH 8.5] at a Microcon-30 kDa Centrifugal Filter (Millipore) and centrifuged twice. IAA solution [0.05 iodoacetamide in UA solution] were added at the filter and incubated in dark for 20 min. Samples were centrifuged after incubation period, washed twice with UA solution and 0.05 M Tris-HCl pH 8.5. Peptides were obtained by trypsin digestion with 3 µg of trypsin for 300 µg of protein in 0.05 M Tris-HCl pH 8.5 at 37 °C for 18 h. Peptide samples were washed to remove residual trypsin with 0.05 M Tris-HCl pH 8.5 and collected with 0.05% TFA. Oasis HLB Extraction Cartridge (Waters) was used to promote the desalting of the samples.

Mass spectrometry analysis

Peptides were analyzed by LC-MS/MS using a using a nanoACQUITY UPLC system coupled to a Xevo G2-XS Q-Tof mass spectrometer (Waters) using a low-flow probe at the source. The peptides were separated by analytical chromatography (Acquity UPLC BEH C18, 1.7 μ m, 2.1 × 50 mm, Waters), at a flow rate of 8 μ l/min, using a 7–85% water/ACN 0.1% formic acid linear gradient over 90 min. The MS survey scan was set to 0.5 s and recorded from 50 to 2000 m/z. MS/MS scans were acquired from 50 to 2000 m/z, and scan time was set to 1 s. Data were collected in data-independent MS^E mode of acquisition.

Data processing and protein identification

Continuum LC-MS^E data were processed and searched using ProteinLynx Global Server version 3.0.3(PLGS 3.0.3, Waters Corporation). The searches were conducted against human proteome obtained from Uniprot (71,567 sequences, including canonical and isoform sequences) and tolerances were set to automatic (typically 10 ppm for precursor and 20 ppm for product ions), with trypsin as enzyme, maximum of one missed cleavage, fixed carbamidomethyl modification for cysteine residues, and

34

oxidation of methionine as variable modification. Scaffold software (Proteome Software Inc., version 4.8.3) was used to validate peptide and protein identifications. Peptides were accepted when established greater than 95.0% probability and protein when contained at least two identified peptides and established greater than 99% probability. The false discovery rate, FDR (Decoy), was 1% for proteins and 0.05% for peptides. Proteins differentially expressed between cells were identified by Student's t-test using Top 3 Precursor Intensity as quantitative value and *p*-values lower than 0.05 were considered significant. The Cytoscape plugin BiNGO [17] was used to protein functional annotation and ontology enrichment analysis. REVIGO was used to group gene ontologies (GO) with 0.7 of similarity using *Homo sapiens* database and SimRel semantic similarity measure [18].

Statistical analysis

Data were presented as mean \pm standard deviation (SD). Comparison between two cell lines were subjected to paired Student t-test and comparisons between the three cell lines were subjected to ANOVA analysis and Tukey's tests using GraphPad Prism 6 software. $p \le 0.05$ was considered statistically significant.

RESULTS

Development of cisplatin-resistant sublines with clinically relevant resistance levels

Cisplatin-resistant sublines A549/CDDP_{CT} and A549/CDDP were developed from parental cell line A549 using distinct protocols of drug exposure (pulse and stepwise, respectively). The resulting cisplatin-resistant cells presented a distinct morphology in comparison to parental A549 cell line, with A549/CDDP_{CT} presenting a more enlarged morphology, while A549/CDDP presented a more elongated shape, with visible cell protrusions (Supplementary Figure 1). Cisplatin resistance was proven by comparison of average cytotoxicity between parental sensitive cell line and cisplatin-resistant sublines. The average cisplatin concentration to inhibit cellular growth by 50% (GI_{50}) was determinate by SRB assay. The average GI₅₀ values obtained for A549, A549/CDDP_{CT} and A549/CDDP were 3 µM, 14 µM and 7 µM, respectively (Figure 1). Therefore, A549/CDDP_{CT} and A549/CDDP were validated as cisplatin-resistant sublines, presenting low, clinically relevant levels of drug resistance (GI₅₀ values 4.7and 2.3-foldhigher than that of cisplatin-sensitive A549 parental cell line, respectively). Cisplatin-resistant sublines presented unstable resistance, returning to parental cell resistance level after a month of drug-free medium culture. Therefore, A549/CDDP_{CT} and A549/CDDP were culture in 0.05 µM of cisplatin.

Cisplatin-resistant sublines have increased clonogenic survival capacity

The clonogenic capacity of the cells was investigated as the number of cell colonies formed by each cell line and surviving fraction after treatment with cisplatin. Cisplatinresistant sublines showed significant reduced clonogenicities when compared with A549 parental cell line, as determined by the number of colonies formed by each cell line in absence of cisplatin, with A549/CDDP forming the lowest number of colonies
(Figure 2). However, after cisplatin exposure, A549/CDDP_{CT} and A549/CDDP showed a significant higher surviving fraction when compared to A549, for all cisplatin concentrations tested (Figure 2). Clonogenic survival data further confirmed the cisplatin-resistant phenotype of A549/CDDP and A549/CDDP_{CT}.

A549/CDDP presented reduced proliferation capacity

Cellular proliferation capacity of cisplatin-sensitive and resistant cells was evaluated and growth curves are shown in Figure 3. No differences were detected in the proliferation rate of the cells in 24, 48 and 72 h, but a significant decrease in cell proliferation of A549/CDDP was observed in 96, 120 and 144 h when compared with A549 and A549/CDDP_{CT}. Indeed, the doubling time of A549/CDDP subline (36.61 hours) was significant higher than those of A549 and A549/CDDP_{CT} cells (27.43 and 25.68 hours, respectively) (Figure 3).

A549/CDDP showed increased cisplatin-damaged DNA repair capacity

We performed a host-cell reactivation (HCR) assay using a luciferase reporter gene to evaluate the ability of the cells to repair cisplatin-damaged plasmid DNA. Luciferase activity rate was expressed as the percentage of the reactivated luciferase activity of damaged relative to the activity of undamaged plasmid (100%). A549/CDDP showed a higher luciferase activity rate when compared with A549 and A549/CDDP_{CT} in transfections with plasmid damaged with 0.5 and 1 μ M of cisplatin (Figure 4). Cells transfected with plasmid damaged with 2 μ M of cisplatin showed low DNA damage repair activity and no differences between cell lines.

Cell cycle analysis

Flow cytometry analysis of DNA content from cells exposed to cisplatin revealed that A549 presented a decreased in G1 phase arrest and an increased in G2 phase arrest when exposed to cisplatin, while cisplatin-resistant sublines showed no alteration of cell cycle in response to drug treatment (Table 1). A549/CDDP presented a lower G1 phase arrest when compared to A549 in all conditions. Moreover, cisplatin-resistant sublines showed two peaks in G1 phase after cisplatin exposure (Figure 5), as it seems that two G1 subpopulations were selected from A549/CDDP_{CT} and A549/CDDP after cisplatin exposure.

Proteomic analysis and differentially expressed proteins

Distribution of identified proteins among A549, A549/CDDP_{CT} and A549/CDDP is shown in Figure 6 and Supplementary Table 1. Samples were analyzed in triplicates and only proteins identified in at least two out of the three replicates were considered. In order to identify proteins and molecular mechanisms consistently involved in drug resistance, biological replicates from A549/CDDP_{CT} and A549/CDDP were independently generated three times each. Most of the identified proteins presented significant quantitative differences between samples, based on MS precursor intensity values (Top 3 Precursor Intensity). Among the proteins shared between A549 and A549/CDDP_{CT}, 40 were found as differentially expressed, with all of them downregulated in A549/CDDP_{CT} (Supplementary Table 1). Seventeen proteins were found differentially abundant between A549 and A549/CDDP, with 15 and 2 of them being detected downregulated and upregulated, respectively, in A549/CDDP cells. We found 14 proteins differentially expressed between the two cisplatin-resistant sublines, all upregulated in A549/CDDP cells. Proteins found upregulated and exclusive in each cell line were submitted to functional classification and enrichment analysis. GO terms identified were grouped considering medium similarity and are showed in Supplementary Table 2A, 2B and 2C.

Enrichment of functional categories

Functional categories overrepresented in cisplatin-resistant cells include 'unfolded protein binding', 'response to unfolded protein', 'regulation of cellular response to stress', 'RNA export from nucleus', 'negative regulation of mRNA processing', 'endoplasmic reticulum', 'regulation of DNA damage response', 'signal transduction by p53 class mediator', 'double-strand break repair via nonhomologous end joining' and 'regulation of secondary metabolic process' (Supplementary Table 2B and 2C). GO terms enriched exclusively in A549/CDDP_{CT} cells include 'ribonucleoprotein complex', 'pore complex', 'protein oligomerization', 'GTPase activity', 'response to oxidative stress', 'negative regulation of apoptotic process', 'vesicle', 'response to drug', 'regulation of DNA binding' and 'positive regulation of secretion' (Supplementary Table 2B). On the other hand, categories found exclusively enriched in A549/CDDP include 'actin polymerization or depolymerization', 'cell junction assembly', 'pseudopodium', 'actin filament-based movement' and 'regulation of cell migration' (Supplementary Table 2C). Categories downrepresented in cisplatin-resistant sublines included 'primary metabolic process', 'negative regulation of biological process', 'sequestering of calcium ion', 'chaperone-mediated protein complex assembly' and 'positive regulation of epithelial cell proliferation' (Supplementary Table 2A).

DISCUSSION

First-line treatment of advanced-stage lung cancer is cisplatin chemotherapy, but drug resistance remains a major problem for cancer therapy. Cell lines with high levels of resistance are commonly used to study the molecular mechanisms involved in drug resistance [19,20]. However, the results obtained from these cellular models have limited clinical application [10]. In this way, clinically relevant cell lines appear as alternative tools to study resistance to chemotherapy, as these models produce more reliable results for clinical application. In this work, two cisplatin-resistant cell sublines with clinically relevant levels of drug resistance, namely A549/CDDP_{CT} and A549/CDDP, were developed from human lung adenocarcinoma A549 cell using different protocols. Cisplatin-resistant sublines A549/CDDP_{CT} and A549/CDDP presented GI₅₀ values 4.7 and 2.3 fold higher than that of the sensitive parental cell line A549. These levels of drug resistance are similar to those observed in tumor cells isolated from patients before and after chemotherapy, therefore our cellular models were classified as clinically relevant [7].

Compared to parental cell line, cisplatin-resistant subline A549/CDDP_{CT} presented a morphology more expanded, while A549/CDDP presented a more elongated fibroblast-like shape, with cell protrusions. The enlarged morphology observed in A549/CDDP_{CT} cells has already been described for other cisplatin-resistant cells [21] and 'actin cytoskeleton reorganization' was a functional category enriched in A549/CDDP_{CT}. A549/CDDP presented actin cytoskeleton-associated proteins differentially expressed when compared to A549, as upregulated vimentin (VIM) [22], exclusive myosin light polypeptide 6 (MYL6) [23] and catenin alpha-1 (CTNNA1) [24]. Moreover, A549/CDDP showed 'actin polymerization or depolymerization', 'cell junction assembly', 'pseudopodium', 'actin filament-based movement' and 'negative regulation of cellular component movement' as enriched GO terms. Therefore, these morphological changes could be an initial evidence of epithelial mesenchymal transition [25], but specific investigation would be necessary to confirm it.

Cellular characterization showed that our cisplatin-resistant sublines presented a general lower clonogenic capacity than A549, but had an increased surviving fraction when exposed to cisplatin, as expected from cisplatin-resistant phenotypes. However, the A549/CDDP subline presented a lower proliferation rate, resulting in an increased doubling time when compared to A549 and A549/CDDP_{CT}. As cellular multiplication is necessary to cisplatin reach DNA, slow proliferation is a way to protect the cell from cisplatin DNA damage and can be related to elevated ROS level [26]. Moreover, A549/CDDP_{CT} presented 'response to oxidative stress' as an exclusive enriched functional category, so it could overcome oxidative stress and continue normal proliferation. The differences observed in proliferation rate of cisplatin-resistant cells A549/CDDP and A549/CDDP_{CT} are probably resultant from the experimental protocol used to develop each cell subline. The recovery time in drug-free medium may have differentially influenced the proliferation rate of A549/CDDP _{CT} in relation to A549/CDDP cells, which were continuously exposed to the drug during resistance development.

In addition to different cellular characteristics, the protocol used for the development of our clinically relevant cisplatin-resistant cells also seems to have led to the activation of different molecular mechanisms of drug resistance. In cell cycle experiments, we observed that A549 decreased G1 and increased G2 phase arrest as a consequence of DNA damaged caused by cisplatin [27]. Also, A549/CDDP had a lower G1 phase arrest when compared to parental cells A549 in all conditions, which can be associated to its lower proliferation. DNA damage repair in G1 phase is made by NHEJ

[28] involving XRCC5 and XRCC6 heterodimer [29], both proteins presented only in A549/CDDP. Likewise, 'double-strand break repair via nonhomologous end joining' was a GO term enriched in cisplatin-resistant sublines. Therefore, the increased A549/CDDP cisplatin DNA damage repair can be by NHEJ in G1 phase, being more effective and spending less time in this cell cycle checkpoint when compared to A549. A549/CDDP_{CT} did not show any cell cycle distribution difference and had 'negative regulation of cell cycle arrest' as enriched functional category. Moreover, A549/CDDP_{CT} and A549/CDDP selection of two G1 subpopulations after cisplatin exposure is not surprising once tumors are composed of a variety of different subpopulations, as cancer cells differentiate so quickly [30]. Isolation and characterization of these subpopulations would lead to a better understand of cisplatin-resistant sublines resistance mechanisms.

Elongation factor 1-alpha 1 (EEF1A1) was identified only in cisplatin-resistant sublines and has already been described as involved in cisplatin resistance. EEF1A1 upregulation is associated with chemoresistance in gastric cancer [31], as EEF1A1 acts inhibiting p53 and p73 proteins, therefore evading cisplatin-induced apoptosis [32]. Also, EEF1A1 can possibly promote the acceleration of synthesis of free thiolcontaining proteins in response to stress [33], inactivating cisplatin by conjugation with cytosolic thiol-containing molecules [3,5]. Likewise, GO terms associated with EEF1A1 were 'translational elongation' and 'gene expression'. Exclusive in A549/CDDP_{CT} was identified 'GTPase activity', which can be involved in reduced accumulation of cisplatin [34].

Enriched functional categories lead to an overall view of cellular mechanisms induced by cisplatin treatment. Endoplasmic reticulum (ER) stress is associated to cisplatin response in A549 cells, which trigger unfolded protein response to respond to

environmental factors [35]. Moreover, ER-stress inhibits cell viability, enhancing cell apoptosis after cisplatin exposure. Cisplatin-resistant sublines presented 'endoplasmic reticulum', 'unfolded protein binding', 'response to unfolded protein', 'regulation of cellular response to stress' and 'regulation of apoptotic process' as enriched functional categories. Likewise, 'regulation of secondary metabolic process' is associated with regulation of cisplatin-induced apoptosis [36]. So, A549/CDDP_{CT} and A549/CDDP could be using these mechanisms as a way to avoid cisplatin-induced apoptosis caused from cisplatin treatment.

Histones H1.3 and H4 were found downregulated in cisplatin-resistant sublines when compared to parental cell line A549. Histone H1.3 was described as apoptogenic when PKC kinase is cleaved or its signaling is inhibited in cisplatin-induced DNA damage, as histone phosphorylation by PKC supress this function [37]. Therefore, cisplatin-resistant sublines could be cleaving histone H1.3 to reduce its apoptotic activity. In addition, overexpression of histones competes with DNA repair factors and reduction of free histones pools can reduce DNA damage sensitivity [38]. Hence, downregulation of histones (H1.3 and H4) and enhanced cisplatin-damage DNA repair can possible be related as mechanisms involved in A549/CDDP cisplatin resistance.

A549/CDDP_{CT} cells presented an interesting ribosomal protein profile different from A549 and A549/CDDP, as RPLP2 e RPL4 were downregulated, RPS7 e HNRNPA1 were absent and RPS28, RPS8, RPL12, RPL7A, RPL8 e RPL9 were exclusive to this subline. Ribosomal proteins can have functions besides transduction, being even involved with cancer [39]. Silencing RPS7 in ovarian cancer increased proliferation and cell cycle progression, as well as decreased apoptosis *in vitro* and *in vivo* [40]. Moreover, RPS8, RPL7A e RPL12 genes were upregulated in cisplatinresistant esophageal cancer cell lines when compared to sensitive cell line [41]. Both

cisplatin-resistant sublines presented many ribosomal related enriched GO terms, as 'ribosomal large subunit biogenesis', 'ribosomal small subunit biogenesis', 'ribosomal large subunit export from nucleus' and 'ribosome assembly'. Therefore, the differential ribosomal proteins pattern presented by $A549/CDDP_{CT}$ could be a consequence from its cisplatin resistance.

Some proteins related to cisplatin-resistance were identified as upregulated in A549 when compared to A549/CDDP_{CT} and A549/CDDP. However, studies which report these proteins make use of high level cisplatin-resistant cell lines, hindering a direct correlation. YWHAE, for example, is described as an upregulated protein in cells treated with a 100-fold cisplatin concentration than the used in this work [42]. Likewise, *HSPD1* increased transcription was related to resistance in A2780 cells that remained cisplatin-resistant after 2 years in absence of drug [43]. Cisplatin-treatment protocol can also influence in proteomic results, as A549/CDDP_{CT} and A549/CDDP were treated with low doses of cisplatin for shorter periods. Therefore, different protocols of cisplatin-resistant sublines development could be the reason for such discordant results.

Overall, our results showed that A549/CDDP_{CT} and A549/CDDP present different molecular mechanisms of drug cytotoxicity evasion, as cisplatin resistance is a multifactorial process [5]. Cisplatin-resistant sublines present regulation of cellular response to stress, negative regulation of mRNA processing and regulation of DNA damage response as resistance mechanisms. A549/CDDP_{CT} cells present ribosomal biogenesis, assembly and localization, 'GTPase activity', 'response to oxidative stress', 'negative regulation of apoptotic process', 'regulation of DNA binding' and 'positive regulation of secretion' as exclusive functional categories and possible cisplatinresistant mechanisms. On the other hand, A549/CDDP cells present lower proliferation rate and enhanced cisplatin DNA damage repair and enriched GO terms pointing to

EMT phenotype. Moreover, both cisplatin-resistant sublines present their own proteome set correlated to drug resistance, which presented some differences from resistance mechanisms commonly observed for cellular models with high levels of resistance. Therefore, A549/CDDP_{CT} and A549/CDDP were two cisplatin-resistant sublines with their unique set of cisplatin resistance mechanisms and represent important alternative cellular models to further investigations of drug resistance molecular mechanisms.

ACKNOWLEDGMENTS

This work was supported by Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS). CLM and CSD were recipients of Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) M.Sc. fellowships. NAC was recipient of BIC-UFRGS undergraduate fellowship.

REFERENCES

- S.M. Haghgoo, A. Allameh, E. Mortaz, J. Garssen, G. Folkerts, P.J. Barnes, I.M. Adcock, Pharmacogenomics and targeted therapy of cancer: Focusing on non-small cell lung cancer, Eur. J. Pharmacol. 754 (2015) 82–91. doi:10.1016/j.ejphar.2015.02.029.
- [2] R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2016, CA. Cancer J. Clin. 66 (2016) 7–30. doi:10.3322/caac.21332.
- [3] B. Köberle, M.T. Tomicic, S. Usanova, B. Kaina, Cisplatin resistance: Preclinical findings and clinical implications, Biochim. Biophys. Acta - Rev. Cancer. 1806 (2010) 172–182. doi:10.1016/j.bbcan.2010.07.004.
- [4] S. Dasari, P.B. Tchounwou, Cisplatin in cancer therapy: Molecular mechanisms of action, Eur. J. Pharmacol. 740 (2014) 364–378. doi:10.1016/j.ejphar.2014.07.025.
- [5] Z.H. Siddik, Cisplatin: mode of cytotoxic action and molecular basis of resistance, Oncogene. 22 (2003) 7265–7279. doi:10.1038/sj.onc.1206933.
- [6] D.A. Fennell, Y. Summers, J. Cadranel, T. Benepal, D.C. Christoph, R. Lal, M. Das, F. Maxwell, C. Visseren-Grul, D. Ferry, Cisplatin in the modern era: The backbone of first-line chemotherapy for non-small cell lung cancer, Cancer Treat. Rev. 44 (2016) 42–50. doi:10.1016/j.ctrv.2016.01.003.
- [7] M. McDermott, A.J. Eustace, S. Busschots, L. Breen, J. Crown, M. Clynes, N. O???Donovan, B. Stordal, In vitro Development of Chemotherapy and Targeted Therapy Drug-Resistant Cancer Cell Lines: A Practical Guide with Case Studies, Front. Oncol. 4 (2014). doi:10.3389/fonc.2014.00040.
- [8] V.B. Cetintas, A.S. Kucukaslan, B. Kosova, A. Tetik, N. Selvi, G. Cok, C. Gunduz, Z. Eroglu, Cisplatin resistance induced by decreased apoptotic activity in non-small-cell lung cancer cell lines, Cell Biol. Int. 36 (2012) 261–265. doi:10.1042/CBI20110329.
- [9] W. Xu, S. Wang, Q. Chen, Y. Zhang, P. Ni, X. Wu, J. Zhang, F. Qiang, A. Li, O.D. Røe, S. Xu, M. Wang, R. Zhang, J. Zhou, TXNL1-XRCC1 pathway regulates cisplatin-induced cell death and contributes to resistance in human gastric cancer, Cell Death Dis. 5 (2014) e1055. doi:10.1038/cddis.2014.27.
- [10] J.-P. Gillet, S. Varma, M.M. Gottesman, The Clinical Relevance of Cancer Cell Lines, JNCI J. Natl. Cancer Inst. 105 (2013) 452–458. doi:10.1093/jnci/djt007.
- [11] M. Lieber, B. Smith ', A. Szakal, W. Nelson-Rees, G. Todaro, A Continuous Tumor-Cell Line From A Human Lung Carcinoma With Properties Of Type II Alveolar Epithelial Cells, Int. J. Cancer. 17 (1976) 62–70.
- [12] V. Vichai, K. Kirtikara, Sulforhodamine B colorimetric assay for cytotoxicity screening, Nat. Protoc. 1 (2006) 1112–1116. doi:10.1038/nprot.2006.179.
- [13] N.A.P. Franken, H.M. Rodermond, J. Stap, J. Haveman, C. van Bree, Clonogenic assay of cells in vitro, Nat. Protoc. 1 (2006) 2315–2319. doi:10.1038/nprot.2006.339.
- [14] M. Niyazi, I. Niyazi, C. Belka, Counting colonies of clonogenic assays by using densitometric software, Radiat. Oncol. 2 (2007) 4. doi:10.1186/1748-717X-2-4.
- [15] T. Schagat, A. Paguio, K. Kopish, Normalizing Genetic Reporter Assays : Approaches and Considerations for Increasing Consistency and Statistical Significance, Cell Notes. (2007) 9–12.
- [16] J.R. Wiśniewski, Quantitative Evaluation of Filter Aided Sample Preparation (FASP) and Multienzyme Digestion FASP Protocols, Anal. Chem. 88 (2016) 5438–5443. doi:10.1021/acs.analchem.6b00859.

- [17] S. Maere, K. Heymans, M. Kuiper, BiNGO: a Cytoscape plugin to assess overrepresentation of Gene Ontology categories in Biological Networks, Bioinformatics. 21 (2005) 3448–3449. doi:10.1093/bioinformatics/bti551.
- [18] F. Supek, M. Bošnjak, N. Škunca, T. Šmuc, REVIGO Summarizes and Visualizes Long Lists of Gene Ontology Terms, PLoS One. 6 (2011) e21800. doi:10.1371/journal.pone.0021800.
- [19] H. Zhang, B. Hu, Z. Wang, F. Zhang, H. Wei, L. Li, miR-181c contributes to cisplatin resistance in non-small cell lung cancer cells by targeting Wnt inhibition factor 1, Cancer Chemother. Pharmacol. (2017). doi:10.1007/s00280-017-3435-1.
- [20] K. Qi, Y. Li, X. Li, X. Lei, B. Wang, L. Zhang, X. Chu, Id4 promotes cisplatin resistance in lung cancer through the p38 MAPK pathway., Anticancer. Drugs. 27 (2016) 970–8. doi:10.1097/CAD.00000000000414.
- [21] M.-H. Jamal, W.-C. Ch'ng, K. Yusoff, N. Shafee, Reduced Newcastle disease virus-induced oncolysis in a subpopulation of cisplatin-resistant MCF7 cells is associated with survivin stabilization, Cancer Cell Int. 12 (2012) 35. doi:10.1186/1475-2867-12-35.
- [22] C.-Y. Liu, H.-H. Lin, M.-J. Tang, Y.-K. Wang, Vimentin contributes to epithelial-mesenchymal transition cancer cell mechanics by mediating cytoskeletal organization and focal adhesion maturation, Oncotarget. 6 (2015) 15966–15983. doi:10.18632/oncotarget.3862.
- [23] L. Xie, B.K. Law, M.E. Aakre, M. Edgerton, Y. Shyr, N.A. Bhowmick, H.L. Moses, Transforming growth factor beta-regulated gene expression in a mouse mammary gland epithelial cell line, Breast Cancer Res. 5 (2003) R187. doi:10.1186/bcr640.
- [24] S. Lamouille, J. Xu, R. Derynck, Molecular mechanisms of epithelial-mesenchymal transition, Nat. Rev. Mol. Cell Biol. 15 (2014) 178–196. doi:10.1038/nrm3758.
- [25] E. Prieto-García, C.V. Díaz-García, I. García-Ruiz, M.T. Agulló-Ortuño, Epithelial-tomesenchymal transition in tumor progression, Med. Oncol. 34 (2017) 122. doi:10.1007/s12032-017-0980-8.
- [26] G. Duan, Q. Tang, H. Yan, L. Xie, Y. Wang, X.E. Zheng, Y. Zhuge, S. Shen, B. Zhang, X. Zhang, J. Wang, W. Wang, X. Zou, A Strategy to Delay the Development of Cisplatin Resistance by Maintaining a Certain Amount of Cisplatin-Sensitive Cells, Sci. Rep. 7 (2017) 432. doi:10.1038/s41598-017-00422-2.
- [27] N. Sarin, F. Engel, G. V. Kalayda, M. Mannewitz, J. Cinatl, F. Rothweiler, M. Michaelis, H. Saafan, C.A. Ritter, U. Jaehde, R. Frötschl, Cisplatin resistance in non-small cell lung cancer cells is associated with an abrogation of cisplatin-induced G2/M cell cycle arrest, PLoS One. 12 (2017) e0181081. doi:10.1371/journal.pone.0181081.
- [28] M.H., Yun, K., Hiom, CtIP-BRCA1 modulates the choice of DNA double-strand-break repair pathway throughout the cell cycle. Nature. 21 (2009) 460-463. doi: 10.1038/nature07955.
- [29] D.-T. Bau, C.-W. Tsai, C.-N. Wu, Role of the XRCC5/XRCC6 dimer in carcinogenesis and pharmacogenomics, Pharmacogenomics. 12 (2011) 515–534. doi:10.2217/pgs.10.209.
- [30] A. Jögi, M. Vaapil, M. Johansson, S. Påhlman, Cancer cell differentiation heterogeneity and aggressive behavior in solid tumors, Ups. J. Med. Sci. 117 (2012) 217–224. doi:10.3109/03009734.2012.659294.
- [31] H.-D. Hu, F. Ye, D.-Z. Zhang, P. Hu, H. Ren, S.-L. Li, iTRAQ Quantitative Analysis of Multidrug Resistance Mechanisms in Human Gastric Cancer Cells, J. Biomed. Biotechnol. 2010 (2010) 1–11. doi:10.1155/2010/571343.
- [32] A. Blanch, F. Robinson, I.R. Watson, L.S. Cheng, M.S. Irwin, Eukaryotic Translation Elongation Factor 1-Alpha 1 Inhibits p53 and p73 Dependent Apoptosis and Chemotherapy Sensitivity, PLoS One. 8 (2013) e66436. doi:10.1371/journal.pone.0066436.

- [33] G. Chacko, Q. Ling, K.A. Hajjar, Induction of Acute Translational Response Genes by Homocysteine, J. Biol. Chem. 273 (1998) 19840–19846. doi:10.1074/jbc.273.31.19840.
- [34] D.-W. Shen, L.M. Pouliot, J.-P. Gillet, W. Ma, A.C. Johnson, M.D. Hall, M.M. Gottesman, The Transcription Factor GCF2 Is an Upstream Repressor of the Small GTPAse RhoA, Regulating Membrane Protein Trafficking, Sensitivity to Doxorubicin, and Resistance to Cisplatin, Mol. Pharm. 9 (2012) 1822–1833. doi:10.1021/mp300153z.
- [35] S. SHI, P. TAN, B. YAN, R. GAO, J. ZHAO, J. WANG, J. GUO, N. LI, Z. MA, ER stress and autophagy are involved in the apoptosis induced by cisplatin in human lung cancer cells, Oncol. Rep. 35 (2016) 2606–2614. doi:10.3892/or.2016.4680.
- [36] P. Loar, H. Wahl, M. Kshirsagar, G. Gossner, K. Griffith, J.R. Liu, Inhibition of glycolysis enhances cisplatin-induced apoptosis in ovarian cancer cells, Am. J. Obstet. Gynecol. 202 (2010) 371.e1-371.e8. doi:10.1016/j.ajog.2009.10.883.
- [37] M. Garg, N. Ramdas, M. Vijayalakshmi, G. V Shivashankar, A. Sarin, The C-terminal domain (CTD) in linker histones antagonizes anti-apoptotic proteins to modulate apoptotic outcomes at the mitochondrion, Cell Death Dis. 5 (2014) e1058. doi:10.1038/cddis.2014.20.
- [38] D. Liang, S.L. Burkhart, R.K. Singh, M.-H.M. Kabbaj, A. Gunjan, Histone dosage regulates DNA damage sensitivity in a checkpoint-independent manner by the homologous recombination pathway, Nucleic Acids Res. 40 (2012) 9604–9620. doi:10.1093/nar/gks722.
- [39] W. Wang, S. Nag, X. Zhang, M.-H. Wang, H. Wang, J. Zhou, R. Zhang, Ribosomal Proteins and Human Diseases: Pathogenesis, Molecular Mechanisms, and Therapeutic Implications, Med. Res. Rev. 35 (2015) 225–285. doi:10.1002/med.21327.
- [40] Z. Wang, J. Hou, L. Lu, Z. Qi, J. Sun, W. Gao, J. Meng, Y. Wang, H. Sun, H. Gu, Y. Xin, X. Guo, G. Yang, Small Ribosomal Protein Subunit S7 Suppresses Ovarian Tumorigenesis through Regulation of the PI3K/AKT and MAPK Pathways, PLoS One. 8 (2013) e79117. doi:10.1371/journal.pone.0079117.
- [41] H. Toshimitsu, K. Hashimoto, A. Tangoku, N. Iizuka, K. Yamamoto, S. Kawauchi, A. Oga, T. Furuya, M. Oka, K. Sasaki, Molecular signature linked to acquired resistance to cisplatin in esophageal cancer cells, Cancer Lett. 211 (2004) 69–78. doi:10.1016/j.canlet.2004.01.038.
- [42] A. Castagna, P. Antonioli, H. Astner, M. Hamdan, S.C. Righetti, P. Perego, F. Zunino, P.G. Righetti, A proteomic approach to cisplatin resistance in the cervix squamous cell carcinoma cell line A431, Proteomics. 4 (2004) 3246–3267. doi:10.1002/pmic.200400835.
- [43] M. Abu-hadid, J.D. Wilkes, Z. Elakawi, L. Pendyala, R.P. Perez, Relationship between heat shock protein 60 (HSP60) mRNA expression and resistance to platinum analogues in human ovarian and bladder carcinoma cell lines, Cancer Lett. 119 (1997) 63–70. doi:10.1016/S0304-3835(97)00255-3.

Figure 1: Cisplatin exposure led to acquisition of resistance in A549/CDDP_{CT} and A549/CDDP sublines. Dose-response curves of A549 parental cell line and cisplatin-resistant sublines A549/CDDP_{CT} and A549/CDDP. GI₅₀ values were calculated as a dose-response with non-linear regression in GraphPad Prism. Representative data were shown for each cell line. Graphic show mean \pm SD and dotted line indicates the 50% of cellular growth inhibition. Each assay was performed in triplicate.

Figure 2: A549, A549/CDDP_{CT} and A549/CDDP presented different cell colony formation capacity and cell surviving fraction. Clonogenic assay was performed exposing cells to increased cisplatin concentration from 0 to 0.5 μ M for 72 hours following culture in drug-free medium for 10 days. Representative crystal violet stained A549, A549/CDDP_{CT} and A549/CDDP colonies (*top*) without cisplatin exposure (**A**) and pre-exposed to 0.3 μ M of cisplatin (**B**). **A**) The colonies were counted from three independent experiments using Clono-Counter software and plotted as mean \pm SD (*bottom*). **B**) Surviving fraction was calculated as the number of colonies after cisplatin treatment divided by the number of cells seeded multiplies by Platting Efficiency and plotted as mean \pm SD (*bottom*). A549/CDDP_{CT} and A549/CDDP showed a higher surviving fraction for all cisplatin-concentrations when compared to A549. Statistical analysis was made using ANOVA with Tukey's test considering significant $p \le 0.01$ (**), $p \le 0.001$ (***) and $p \le 0.0001$ (****). Each assay was performed in triplicate.

Figure 3: A549/CDDP presented lower proliferation rate and higher doubling time. Growth curves from A549, A549/CDDP_{CT} and A549/CDDP were determined by cell counting in 24, 48, 72, 96, 120 and 144 h. A) A549 and A549/CDDP_{CT} showed a higher proliferation than A549/CDDP after 96 h. B) Doubling time was calculated from A549, A549/CDDPCT and A549/CDDP considering cell number in all times using Doubling Time Online Calculator (http://www.doubling-time.com). Graphic show mean \pm SD. Statistical analysis was made using ANOVA with Tukey's test considering significant $p \le 0.05$ (*), $p \le 0.01$ (**), $p \le 0.0001$ (****) and (ns) no significant. Each assay was performed in triplicate.

Figure 4: A549/CDDP cells were able to repair of cisplatin-damaged DNA. Luciferase relative activity of A549, A549/CDDP_{CT} and A549/CDDP cells transfected with cisplatin-damaged pGL3 vector. Luciferase activity rate of cells transfected with undamaged pGL3 were assumed as 100%. Graphic show mean \pm SD. Statistical analysis was made using ANOVA with Tukey's test considering significant $p \le 0.05$ (*) and $p \le 0.0001$ (****) and (ns) no significant. Each assay was performed in triplicate.

Figure 5: A549/CDDP_{CT} and A549/CDDP cells differentiate in two G1 subpopulations after cisplatin exposure. Histogram representation of A549, A549/CDDPCT and A549/CDDP before (*left*) and after (*right*) treatment with 0.5 μ M of cisplatin. A549/CDDP_{CT} and A549/CDDP presented two subpopulations (black arrows) in cell cycle G1 phase (light grey), which are more evident in A549/CDDP_{CT}.

Figure 6: Overview of the proteins identified from A549, A549/CDDP_{CT} and A549/CDDP cells. Venn diagrams of proteins identified by LC-MS/MS. Each assay was performed in triplicate and only proteins identified in at least two samples from triplicate and over 95% Scaffold probability were considered valid.

TABLES

			Cisplatin (µM)	
		0	0.25	0.5
	G1	59.21 ± 2.10 ac	$55.88 \pm 0.89 \text{ad}$	$57.23 \pm 1.24 \mathbf{e}$
A549	S	8.39 ± 0.18	9.82 ± 0.21	9.05 ± 0.52
	G2	$15.86 \pm 1.26 \textbf{b}$	17.86 ± 0.13	$18.40 \pm 1.29 \textbf{b}$
	G1	52.42 ± 5.89	54.01 ± 2.62	51.96 ± 4.61
A549/CDDP _{CT}	S	11.58 ± 0.60	12.66 ± 0.41	11.06 ± 5.34
	G2	19.94 ± 2.45	15.53 ± 2.26	15.75 ± 1.32
	G1	$45.27\pm8.61 \textbf{c}$	$48.55 \pm 4.63 \textbf{d}$	$44.88 \pm 8.96 \mathbf{e}$
A549/CDDP	S	13.05 ± 2.72	11.41 ± 1.07	13.00 ± 1.11
	G2	21.90 ± 2.30	21.01 ± 2.19	20.93 ± 3.68

Table 1: Cell cycle analysis from A549, A549/CDDP_{CT} and A549/CDDP after cisplatin exposure. Statistical significance is represented between conditions as **a**, **b**, **c** e **d** ($p \le 0.01$) and **e** ($p \le 0.05$).

SUPPLEMENTARY MATERIAL

Supplementary Figure 1: Morphological differences between A549, A549/CDDP_{CT} and A549/CDDP cells. Microscopies of the cells with 460X magnification (up) and manually enlarge highlight (down). Morphological changes undergone by A549 sublines after development of cisplatin resistance.

Supplementary Table 1: Protein identified by LC-MS/MS from A549, A549/CDDP_{CT} and A549/CDDP. Proteins differentially expressed between cell line pairs (gray lines) are indicated with *p*-values and expression profiles (up \uparrow or low \downarrow).

Identified Proteins	Accession Number	Gene name	A549	A549 /CD DP _{cT}	A549 /CD DP	A549 vs A549/ CDDP _{CT}	A549 vs A549/ CDDP	A549/ CDDP _{CT} vs A549/ CDDP
10 kDa heat shock protein, mitochondria I	CH10_HUM AN	HSPE1	x	x	x	↑A549 ↓A549/ CDDP _{CT} p = 0.036		
14-3-3 protein epsilon	1433E_HU MAN	YWHA E	x	x	x	↑A549 ↓A549/ CDDP _{CT} p = 0.026		
14-3-3 protein gamma	1433G_HU MAN	YWHA G	х	x	x			
14-3-3 protein theta	1433T_HU MAN	YWHA Q	x	x	x			
14-3-3 protein zeta/delta	1433Z_HU MAN	YWHA Z	x	x	x	↑A549 ↓A549/ CDDP _{CT} p = 0.032		
40S ribosomal protein S3a (Fragment)	D6RG13_H UMAN	RPS3A	x	x	x			
4F2 cell- surface antigen heavy chain	F5GZS6_HU MAN	SLC3A2	x	x	x			
60 kDa heat shock protein, mitochondria I	CH60_HUM AN	HSPD1	x	x	x	↑А549 ↓А549/ CDDP _{ст} p = 0.037	↑A549 ↓A549/ CDPP p = 0.031	
60S acidic ribosomal protein P1	RLA1_HUM AN	RPLP1	x	x	x			
60S acidic ribosomal protein P2	RLA2_HUM AN	RPLP2	x	x	x	↑A549 ↓A549/ CDDP _{CT} p = 0.020		
60S ribosomal protein L4	RL4_HUMA N	RPL4	x	x	x	↑A549 ↓A549/ CDDP _{CT} p = 0.045		
78 kDa glucose- regulated protein	GRP78_HU MAN	HSPA5	x	x	x	↑A549 ↓A549/ CDDP _{CT} p = 0.0081		个A549/ CDDP

								↓A549/
								CDDP _{CT}
								p = 0.043
Actin, cytoplasmic 2	ACTG_HUM AN	ACTG1	x	x	x	↑A549 ↓A549/ CDDP _{CT} p = 0.021		
Aldehyde dehydrogena se, dimeric NADP- preferring	AL3A1_HU MAN	ALDH3 A1	x	x	x			
Aldo-keto reductase family 1 member B10	AK1BA_HU MAN	AKR1B 10	x	x	x	↑A549 ↓A549/ CDDP _{CT} p = 0.023	↑A549 ↓A549/ CDDP p = 0.0044	
Aldo-keto reductase family 1 member C1	AK1C1_HU MAN	AKR1C 1	x	x	x		↑A549 ↓A549/ CDDP p = 0.025	
Aldo-keto reductase family 1 member C2	AK1C2_HU MAN	AKR1C 2	x	x	x	↑A549 ↓A549/ CDDP _{CT} p = 0.014		
Aldo-keto reductase family 1 member C3	AK1C3_HU MAN	AKR1C 3	х	x	x	↑A549 ↓A549/ CDDP _{CT} p = 0.026	↑A549 ↓A549/ CDDP p = 0.010	
Aldose reductase	ALDR_HUM AN	AKR1B 1	x	x	x			
Alpha- actinin-4	ACTN4_HU MAN	ACTN4	x	x	x	↑A549 ↓A549/ CDDP _{CT} p = 0.041		↑A549/ CDDP ↓A549/ CDDP _{CT} p = 0.015
Alpha- enolase	ENOA_HU MAN	ENO1	x	x	x	↑A549 ↓A549/ CDDP _{CT} p = 0.043		
Annexin A1	ANXA1_HU MAN	ANXA1	x	x	x			
Annexin A4	ANXA4_HU MAN	ANXA4	x	x	x	↑A549 ↓A549/ CDDP _{CT} p = 0.0078	↑A549 ↓A549/ CDDP p = 0.0041	
Annexin A5	ANXA5_HU MAN	ANXA5	x	x	x	↑A549 ↓A549/ CDDP _{CT} p = 0.0093		↑A549/ CDDP ↓A549/ CDDP _{CT} p = 0.0008
ATP synthase subunit beta, mitochondria	ATPB_HUM AN	ATP5B	x	x	x			

I								
Brain acid soluble protein 1	BASP1_HU MAN	BASP1	x	x	x			
Calreticulin	CALR_HUM AN	CALR	x	x	x			↑А549/ CDDP ↓А549/ CDDP _{ст} p = 0.016
Cofilin-1	E9PK25_HU MAN	CFL1	x	x	x			↑A549/ CDDP ↓A549/ CDDP _{CT} p = 0.0081
Elongation factor 1- alpha 2	EF1A2_HU MAN	EEF1A2	х	x	x			
Elongation factor 2	EF2_HUMA N	EEF2	x	x	x	↑A549 ↓A540/ CDDP _{CT} p = 0.020		
Endoplasmin	enpl_hum An	HSP90 B1	x	x	x	↑А549 ↓А540/ CDDP _{ст} p = 0.015		↑A549/ CDDP ↓A540/ CDDP _{CT} p = 0.049
Filamin-A	FLNA_HUM AN	FLNA	x	x	x			
Glutathione S-transferase P	GSTP1_HU MAN	GSTP1	x	x	x	↑A549 ↓A540/ CDDP _{CT} p = 0.011	↑A549 ↓A540/ CDDP p = 0.021	
Glyceraldehy de-3- phosphate dehydrogena se	G3P_HUMA N	GAPDH	x	x	x	↑A549 ↓A540/ CDDP _{CT} p = 0.029		
Heat shock 70 kDa protein 1B	HS71B_HU MAN	HSPA1 B	x	x	x	↑А549 ↓А540/ CDDP _{ст} p = 0.0042	↑A549 ↓A540/ CDDP p = 0.024	↑A549/ CDDP ↓A540/ CDDP _{CT} p = 0.046
Heat shock cognate 71 kDa protein	HSP7C_HU MAN	HSPA8	x	x	x	↑A549 ↓A540/ CDDP _{CT} p = 0.013	↑A549 ↓A540/ CDDP p = 0.048	
Heat shock protein beta- 1	HSPB1_HU MAN	HSPB1	x	x	x	↑A549 ↓A540/ CDDP _{CT} p = 0.0046		↑A549/ CDDP ↓A540/ CDDP _{CT} p = 0.0013
Heat shock protein HSP 90-beta	HS90B_HU MAN	HSP90 AB1	x	x	x	↑A549 ↓A540/ CDDP _{CT} p = 0.021		

Histone H1.3	H13_HUMA N	HIST1H 1D	х	x	x	↑A549 ↓A540/ CDDP _{CT} p = 0.021	↑A549 ↓A540/ CDDP p = 0.019	
Histone H2B	U3KQK0_H UMAN	HIST1H 2BN	х	x	x			
Histone H3.2	H32_HUMA N	HIST2H 3A	х	x	х			
Histone H4	H4_HUMA N	HIST1H 4A	x	x	x	↑A549 ↓A540/ CDDP _{CT} p = 0.025	↑A549 ↓A540/ CDDP p = 0.026	
lsoform 1 of Vinculin	P18206-2 VINC_HUM AN	VCL	x	x	x		↑A549/ CDDP ↓A549 p = 0.014	↑A549/ CDDP ↓A540/ CDDP _{CT} p = 0.0080
Isoform 2 of Annexin A2	P07355-2 ANXA2_HU MAN	ANXA2	x	x	x			↑A549/ CDDP ↓A540/ CDDP _{CT} p = 0.0059
Isoform 2 of Fructose- bisphosphate aldolase A	P04075-2 ALDOA_HU MAN	ALDOA	x	x	x			
Isoform 2 of Heterogeneo us nuclear ribonucleopr otein K	P61978-2 HNRPK_HU MAN	HNRNP K	x	x	x	↑А549 ↓А540/ CDDP _{ст} р = 0.019		
Isoform 2 of Triosephosph ate isomerase	P60174- TPIS_HUM AN	TPI1	х	x	x			
Isoform 3 of Beta-enolase	P13929- ENOB_HU MAN	ENO3	x	x	x			
Isoform 3 of Glucose-6- phosphate 1- dehydrogena se	P11413- G6PD_HU MAN	G6PD	x	x	x			
Isoform 3 of L-lactate dehydrogena se A chain	P00338- LDHA_HUM AN	LDHA	x	x	x			
Isoform 5 of Protein disulfide- isomerase A6	Q15084-5 PDIA6_HU MAN	PDIA6	x	x	x	↑A549 ↓A540/ CDDP _{CT} p = 0.026		
Keratin, type I cytoskeletal 18	K1C18_HU MAN	KRT18	х	x	x		↑A549 ↓A549/ CDDP p = 0.018	
Keratin, type	K2C1_HUM	KRT1	x	x	x			

ll cytoskeletal 1	AN							
Keratin, type II cytoskeletal 7	K2C7_HUM AN	KRT7	x	x	x		↑A549 ↓A549/ CDDP p = 0.036	
Kynureninase	KYNU_HU MAN	KYNU	х	x	х	↑A549 ↓A549/ CDDP _{CT} p = 0.046		
L-lactate dehydrogena se B chain	LDHB_HUM AN	LDHB	x	x	х		↑A549 ↓A549/ CDDP p = 0.044	
Malate dehydrogena se, mitochondria I	MDHM_HU MAN	MDH2	x	x	x			
Myosin-9	MYH9_HU MAN	MYH9	x	x	x			↑A549/ CDDP ↓A549/ CDDP _{CT} p = 0.0079
Nicotinamide N- methyltransf erase	NNMT_HU MAN	NNMT	x	x	x			
Nucleoside diphosphate kinase	Q32Q12_H UMAN	NME1- NME2	х	x	х	↑A549 ↓A549/ CDDP _{CT} p = 0.025		
Peptidyl- prolyl cis- trans isomerase A	PPIA_HUM AN	ΡΡΙΑ	x	х	х	↑A549 ↓A549/ CDDP _{CT} p = 0.036		
Peroxiredoxi n-1	PRDX1_HU MAN	PRDX1	x	x	х		↑A549 ↓A549/ CDDP p = 0.045	
Phosphoglyc erate kinase 1	PGK1_HUM AN	PGK1	х	х	х			
Polypyrimidi ne tract- binding protein 1	PTBP1_HU MAN	PTBP1	x	x	x	↑A549 ↓A549/ CDDP _{CT} p = 0.027		
Profilin-1	PROF1_HU MAN	PFN1	x	x	x	↑А549 ↓А549/ CDDP _{ст} р = 0.038		↑A549/ CDDP ↓A549/ CDDP _{CT} p = 0.038
Protein disulfide- isomerase A3	PDIA3_HU MAN	PDIA3	x	x	x			

Protein disulfide- isomerase	PDIA1_HU MAN	P4HB	х	x	x	↑A549 ↓A549/ CDDP _{CT} p = 0.029		
Protein S100- A11	S10AB_HU MAN	S100A 11	x	x	x			
Protein- glutamine gamma- glutamyltran sferase 2	TGM2_HU MAN	TGM2	x	x	x			
Pyruvate kinase PKM	KPYM_HU MAN	РКМ	х	x	х			
Retinal dehydrogena se 1	AL1A1_HU MAN	ALDH1 A1	x	x	x			
Stress-70 protein, mitochondria I	GRP75_HU MAN	HSPA9	x	х	x			
Talin-1	TLN1_HUM AN	TLN1	x	x	x	↑A549 ↓A549/ CDDP _{CT} p = 0.016		
Transgelin-2 (Fragment)	X6RJP6_HU MAN	TAGLN 2	x	x	x			↑A549/ CDDP ↓A549/ CDDP _{CT} p = 0.019
Transitional endoplasmic reticulum ATPase	TERA_HUM AN	VCP	x	x	x	↑A549 ↓A549/ CDDP _{CT} p = 0.025		
Tubulin alpha-1B chain	TBA1B_HU MAN	TUBA1 B	x	x	x	↑A549 ↓A549/ CDDP _{CT} p = 0.029		
Tubulin beta chain	TBB5_HUM AN	TUBB	х	x	х			
Tubulin beta- 4B chain	TBB4B_HU MAN	TUBB4 B	х	х	х			
Ubiquitin carboxyl- terminal hydrolase isozyme L1	UCHL1_HU MAN	UCHL1	x	x	x			
UDP-glucose 6- dehydrogena se	UGDH_HU MAN	UGDH	x	x	x	↑A549 ↓A549/ CDDP _{CT} p = 0.030		
Vimentin	VIME_HUM AN	VIM	x	x	x	↑А549 ↓А549/ CDDP _{ст} p = 0.033	↑A549/ CDDP ↓A549 p = 0.0064	↑A549/ CDDP ↓A549/ CDDP _{CT} p = 0.00086

40S ribosomal protein S13	RS13_HUM AN	RPS13	x	x				
ADP/ATP translocase 2	ADT2_HUM AN	SLC25A 5	х	x		↑A549 ↓A549/ CDDP _{CT} p = 0.0077		
Clathrin heavy chain	A0A087WV Q6_HUMA N	CLTC	х	x		↑A549 ↓A549/ CDDP _{CT} p = 0.0030		
Heterogeneo us nuclear ribonucleopr otein U	HNRPU_HU MAN	HNRNP U	х	x				
Isoform 2 of Calnexin	P27824-2 CALX_HUM AN	CANX	х	х				
Nicotinamide phosphoribos yltransferase	NAMPT_HU MAN	NAMP T	x	x				
Peroxiredoxi n-4	PRDX4_HU MAN	PRDX4	х	x				
Peroxiredoxi n-6	PRDX6_HU MAN	PRDX6	х	x				
Plastin-3	PLST_HUM AN	PLS3	х	x				
T-complex protein 1 subunit zeta	TCPZ_HUM AN	CCT6A	х	х				
40S ribosomal protein S7	RS7_HUMA N	RPS7	х		x			
Epoxide hydrolase 1	HYEP_HUM AN	EPHX1	х		x			
Heterogeneo us nuclear ribonucleopr otein A1	F8W6I7_H UMAN	HNRNP A1	х		x			
Isoform 2 of Transketolas e	P29401-2 TKT_HUMA N	ткт	х		x		↑A549 ↓A549/ CDDP p = 0.046	
Matrin-3	MATR3_HU MAN	MATR3	х		х			
Moesin	MOES_HU MAN	MSN	х		х			
NAD(P)H dehydrogena se [quinone] 1	B4DLR8_H UMAN	NQO1	х		x			
Prosaposin	C9JIZ6_HU MAN	PSAP	х		x			
Rab GDP dissociation inhibitor beta	GDIB_HUM AN	GDI2	х		х			

X-ray repair cross- complementi ng protein 5	XRCC5_HU MAN	XRCC5	х		x		
40S ribosomal protein SA	C9J9K3_HU MAN	RPSA		x	х		
Elongation factor 1- alpha 1	EF1A1_HU MAN	EEF1A1		x	x		
Eukaryotic translation initiation factor 5A-1	I3L504_HU MAN	EIF5A		x	х		
Isoform 2 of Heat shock protein HSP 90-alpha	P07900-2 HS90A_HU MAN	HSP90 AA1		x	x		
Isoform 2 of Keratin, type II cytoskeletal 8	P05787-2 K2C8_HUM AN	KRT8		x	x		
Isoform 2 of Nucleophos min	P06748-2 NPM_HUM AN	NPM1		x	х		
lsoform 9 of Filamin-B	O75369-9 FLNB_HUM AN	FLNB		х	х		
Peptidyl- prolyl cis- trans isomerase B	PPIB_HUM AN	PPIB		x	x		
Phosphoglyc erate mutase 1	PGAM1_HU MAN	PGAM 1		х	х		
Plectin	PLEC_HUM AN	PLEC		x	х		
Reticulon-4	RTN4_HUM AN	RTN4		x	х		
Serpin H1	SERPH_HU MAN	SERPIN H1		x	х		
X-ray repair cross- complementi ng protein 6	B1AHC9_H UMAN	XRCC6		x	x		
40S ribosomal protein S4, X isoform	RS4X_HUM AN	RPS4X	х				
60S acidic ribosomal protein P0	F8VWS0_H UMAN	RPLPO	х				
60S ribosomal protein L7	RL7_HUMA N	RPL7	х				

Anterior gradient protein 2 homolog	AGR2_HU MAN	AGR2	x			
Cathepsin D	CATD_HUM AN	CTSD	х			
Galectin-1	LEG1_HUM AN	LGALS1	х			
Heat shock protein HSP 90-alpha	HS90A_HU MAN	HSP90 AA1	х			
Isoform 2 of Thioredoxin- dependent peroxide reductase, mitochondria	P30048-2 PRDX3_HU MAN	PRDX3	x			
Thioredoxin reductase 1, cytoplasmic	TRXR1_HU MAN	TXNRD 1	x			
Tubulin beta- 6 chain	TBB6_HUM AN	TUBB6	x			
40S ribosomal protein S28	RS28_HUM AN	RPS28		x		
40S ribosomal protein S8	RS8_HUMA N	RPS8		x		
60S ribosomal protein L12	RL12_HUM AN	RPL12		х		
60S ribosomal protein L7a	RL7A_HUM AN	RPL7A		x		
60S ribosomal protein L8 (Fragment)	E9PKZO_HU MAN	RPL8		x		
60S ribosomal protein L9 (Fragment)	D6RAN4_H UMAN	RPL9		x		
Flavin reductase (NADPH)	BLVRB_HU MAN	BLVRB		x		
Glucosidase 2 subunit beta	K7ELL7_HU MAN	PRKCS H		х		
GTP-binding nuclear protein Ran (Fragment)	J3KQE5_HU MAN	RAN		x		
Heterogeneo us nuclear ribonucleopr	G3V2Q1_H UMAN	HNRNP C		x		

oteins C1/C2					
Isoform 2 of ATP- dependent 6- phosphofruct okinase, platelet type	Q01813-2 PFKAP_HU MAN	PFKP	x		
Isoform 2 of Elongation factor 1- gamma	P26641-2 EF1G_HUM AN	EEF1G	x		
Isoform 2 of T-complex protein 1 subunit delta	P50991-2 TCPD_HUM AN	CCT4	x		
Isoform 2 of Tropomyosin alpha-4 chain	P67936-2 TPM4_HU MAN	TPM4	x		
Isoform Cytoplasmic+ peroxisomal of Peroxiredoxi n-5, mitochondria I	P30044-2 PRDX5_HU MAN	PRDX5	x		
Isoform Short of 14- 3-3 protein beta/alpha	P31946-2 1433B_HU MAN	YWHA B	x		
Macrophage migration inhibitory factor	MIF_HUMA N	MIF	x		
Nucleolin	NUCL_HU MAN	NCL	x		
Protein deglycase DJ- 1	PARK7_HU MAN	PARK7	x		
Transaldolas e	TALDO_HU MAN	TALDO 1	x		
Trifunctional enzyme subunit alpha, mitochondria l	ECHA_HUM AN	HADHA	x		
Tubulin beta- 2A chain	TBB2A_HU MAN	TUBB2 A	x		
Tubulin beta- 3 chain	TBB3_HUM AN	TUBB3	x		
Voltage- dependent anion- selective channel	VDAC1_HU MAN	VDAC1	x		

protein 1						
ATP-citrate synthase	ACLY_HUM AN	ACLY		x		
Calpain-2 catalytic subunit	CAN2_HU MAN	CAPN2		х		
Catenin alpha-1	CTNA1_HU MAN	CTNNA 1		х		
Destrin	F6RFD5_HU MAN	DSTN		х		
Eukaryotic initiation factor 4A-I	IF4A1_HU MAN	EIF4A1		х		
Isoform 2 of 6- phosphogluc onate dehydrogena se, decarboxylati ng	P52209-2 6PGD_HU MAN	PGD		x		
Isoform 4 of Alpha- actinin-1	P12814-4 ACTN1_HU MAN	ACTN1		x		
Keratin, type II cuticular Hb1	A0A087X10 6_HUMAN	KRT81		x		
Myosin light polypeptide 6	J3KND3_H UMAN	MYL6		x		
Surfeit 4	Q5T8U5_H UMAN	SURF4		x		

Supplementary Table 2A: Significant gene ontology terms from A549. Ontologies statistical significant (p < 0.05) identified by Cytoscape plugin BiNGO and grouped by REVIGO.

<i>p</i> value	Gene ontology	Proteins		
A549				
9,75E-03	4-hydroxyproline metabolic process	UGDH		
9,99E-04	actin cytoskeleton organization	MYH9 ACTN4 PFN1 TLN1 HSP90B1 ACTN4 H SP90B1		
2,61E-02	actin filament organization	ACTN4 HSP90B1		
1,32E-03	actin filament-based process	MYH9 ACTN4 PFN1 TLN1 HSP90B1		
3,26E-03	actin rod assembly	HSPD1		
6,51E-03	activation of signaling protein activity involved in unfolded protein response	HIST1H4A		
1,30E-02	aggresome assembly	ENO1		
2,10E-03	alcohol catabolic process	LDHB ENO1 GAPDH		
2,58E-02	anatomical structure arrangement	HSPD1		
3,26E-03	anthranilate metabolic process	KYNU		
3,26E-03	B cell cytokine production	PRDX3		
1,94E-02	benzene and derivative metabolic process	МҮН9		
6,51E-03	benzoate metabolic process	HSPA5		
2,90E-02	bile acid and bile salt transport	TLN1		
3,17E-04	biological regulation	YWHAE VCP HSP90AB1 GSTP1 HSPB1 ENO1 HSPD1 HSP90B1 RPS4X PRDX3 LGALS1 PRD X1 AGR2 HSP90AA1 HSPA5 ANXA4 AKR1C1 TXNRD1 ANXA5 NME2 KRT7 ACTN4 HSPE1 YWHAZ PDIA6 NME1 HIST1H4A HNRNPK KR T18 MYH9 P4HB PFN1 TLN1 TKT PPIA HSPA1 B		
3,16E-06	biological_process	YWHAE RPL4 HSP90AB1 CLTC RPLP0 HSPB1 EN01 ACTG1 RPL7 RPS4X PTBP1 TUBA1B TU BB6 LGALS1 KYNU HIST1H1D RPLP2 CTSD HSP90AA1 ANXA4 ANXA5 NME2 KRT7 ACT N4 YWHAZ PDIA6 NME1 UGDH MYH9 PFN1 TLN1 SLC25A5 TKT GAPDH PPIA VCP GSTP1 HSPD1 HSP90B1 PRDX3 LDHB PRDX1 AGR2 HSPA8 HSPA5 AKR1C1 TXNRD1 AKR1C3 AK R1C2 HSPE1 EEF2 HIST1H4A AKR1B10 HNRN PK KRT18 P4HB VIM HSPA1B		
2,89E-02	biosynthetic process	RPL4 RPS4X UGDH KYNU RPLP0 NME2 RPLP 2 KRT7 EEF2 RPL7 NME1		
7,97E-05	catabolic process	PRDX3 LDHB VCP HSPA5 KYNU PRDX1 MY H9 ENO1 CTSD GAPDH HSPA1B HSP90B1		

1,83E-03	cell death	YWHAE VCP LGALS1 HSPB1 PFN1 HSPE1 CT SD HSPD1
2,37E-06	cell redox homeostasis	PRDX3 PRDX1 TXNRD1 P4HB PDIA6
1,90E-02	cellular biosynthetic process	RPL4 RPS4X UGDH KYNU RPLP0 NME2 RPLP 2 KRT7 EEF2 RPL7 NME1
5,77E-06	cellular component assembly	HSP90AA1 VCP AKR1C1 ANXA5 ACTN4 HSP D1 HSP90B1 TUBA1B TUBB6 HIST1H4A HIST 1H1D TLN1 CTSD TUBA1B TUBB6 HSP90AA1 VCP HIST1H4A AKR1C1 ANXA5 HIST1H1D H SPD1
7,50E-07	cellular component biogenesis	HSP90AA1 VCP AKR1C1 RPLP0 ANXA5 ACT N4 RPL7 HSPD1 HSP90B1 TUBA1B TUBB6 HI ST1H4A HIST1H1D TLN1 CTSD
4,35E-03	cellular component movement	YWHAE HSPB1 MYH9 VIM TLN1 ACTG1
3,02E-05	cellular component organization	HSPA8 HSP90AA1 VCP AKR1C1 CLTC ANXA 5 KRT7 ACTN4 YWHAZ NME1 HSPD1 HSP90B 1 PRDX3 TUBA1B TUBB6 HIST1H4A HIST1H1 D MYH9 PFN1 TLN1 CTSD
4,00E-03	cellular homeostasis	PRDX3 PRDX1 TXNRD1 P4HB PDIA6 HSP90B 1
2,61E-03	cellular ketone metabolic process	UGDH LDHB KYNU AKR1C1 AKR1C3 AKR1C 2 P4HB
4,12E-03	cellular localization	YWHAE HSPA8 HSP90AA1 VCP KRT18 CLTC MYH9 TLN1 YWHAZ
5,58E-04	cellular macromolecular complex assembly	TUBA1B TUBB6 HSP90AA1 HIST1H4A HIST1 H1D HSPD1
1,43E-02	cellular macromolecule catabolic process	VCP HSPA5 MYH9 HSPA1B HSP90B1
1,37E-02	cellular macromolecule localization	YWHAE VCP KRT18 CLTC YWHAZ
1,26E-04	cellular macromolecule metabolic process	RPL4 HSPA8 HSP90AA1 VCP HSP90AB1 HSPA 5 CLTC RPLP0 KRT7 HSPE1 EEF2 PDIA6 RPL7 HSPD1 HSP90B1 RPS4X PTBP1 HNRNPK RPLP 2 MYH9 P4HB TKT PPIA HSPA1B
6,12E-10	cellular metabolic process	RPL4 VCP HSP90AB1 CLTC RPLP0 EN01 RPL 7 HSPD1 HSP90B1 RPS4X PRDX3 PTBP1 LDH B KYNU PRDX1 RPLP2 CTSD HSPA8 HSP90A A1 HSPA5 AKR1C1 TXNRD1 NME2 AKR1C3 K RT7 AKR1C2 HSPE1 EEF2 PDIA6 NME1 UGDH AKR1B10 HNRNPK MYH9 P4HB TKT GAPDH PPIA HSPA1B
1,47E-02	cellular nitrogen compound metabolic process	VCP NME2 KRT7 RPL7 NME1 HSPD1 PTBP1 U GDH LDHB HNRNPK KYNU PPIA HSPA1B

2,00E-11	cellular process	YWHAE RPL4 HSP90AB1 CLTC RPLP0 HSPB1 ENO1 ACTG1 RPL7 RPS4X PTBP1 TUBA1B TU BB6 LGALS1 KYNU HIST1H1D RPLP2 CTSD HSP90AA1 NME2 KRT7 ACTN4 YWHAZ PDIA 6 NME1 UGDH MYH9 PFN1 TLN1 SLC25A5 T KT GAPDH PPIA VCP HSPD1 HSP90B1 PRDX3 LDHB PRDX1 HSPA8 HSPA5 AKR1C1 TXNRD 1 AKR1C3 AKR1C2 HSPE1 EEF2 HIST1H4A A KR1B10 HNRNPK KRT18 P4HB VIM HSPA1B
1,48E-03	cellular protein complex assembly	TUBA1B TUBB6 HSP90AA1 HSPD1 TUBA1B T UBB6 TUBA1B TUBB6 HSP90AA1 VCP AKR1 C1 ANXA5 HSPD1
7,91E-06	cellular protein metabolic process	RPL4 HSPA8 HSP90AA1 VCP HSP90AB1 HSPA 5 RPLP0 HSPE1 EEF2 PDIA6 RPL7 HSPD1 HSP 90B1 RPS4X RPLP2 MYH9 P4HB TKT PPIA HS PA1B
9,75E-03	cellular response to ATP	HSPD1
1,11E-02	cellular response to biotic stimulus	NME2 NME1
4,29E-05	cellular response to chemical stimulus	PRDX3 VCP LGALS1 HSPA5 KYNU PRDX1 A KR1C1 HSP90B1
1,30E-02	cellular response to glucose stimulus	HSP90AA1 KYNU TKT HSPD1
2,99E-03	cellular response to hydrogen peroxide	HSP90AA1 HSP90AB1 HIST1H4A HIST1H1D R PL7 AKR1C1 TLN1 HSP90B1 PRDX1 TLN1 P4 HB PRDX3 PRDX1
1,30E-02	cellular response to monosaccharide stimulus	HSPD1
2,55E-02	cellular response to nutrient levels	ACTN4 HSPA1B
9,75E-03	cellular response to organic cyclic substance	HSP90B1
7,64E-03	cellular response to organic substance	VCP LGALS1 HSPA5 HSP90B1
3,48E-03	cellular response to protein stimulus	VCP HSP90AB1 HSPA8 HSP90AA1 VCP HSPA 5 HSPB1 HSPE1 HSPA1B HSPD1
6,81E-03	cellular response to reactive oxygen species	PRDX3 PRDX1
8,66E-03	cellular response to starvation	HSPA5 CTSD AKR1C1 ACTN4 HSPA1B
4,40E-03	cellular response to stimulus	PRDX3 VCP LGALS1 HSPA5 KYNU PRDX1 A KR1C1 CTSD HSP90B1
2,11E-03	cellular response to unfolded protein	VCP HSPA5
5,17E-03	cellular response to xenobiotic stimulus	KYNU AKR1C1
2,58E-02	cerebellar Purkinje cell layer development	AKR1C1

6,51E-03	cerebellum structural organization	LGALS1 KYNU
2,17E-04	chaperone-mediated protein complex assembly	PRDX3 PRDX1
3,27E-02	chromatin assembly	HIST1H4A HIST1H1D
9,75E-03	cytokine production involved in immune response	PRDX1
2,26E-02	cytoskeletal anchoring at plasma membrane	TLN1
6,08E-04	cytoskeleton organization	TUBA1B KRT7 MYH9 ACTN4 PFN1 TLN1 HSP 90B1
1,91E-03	death	YWHAE VCP LGALS1 HSPB1 PFN1 HSPE1 CT SD HSPD1
3,26E-03	digestion	AKR1B10 AKR1C1 AKR1C2
3,21E-02	ER overload response	МҮН9
1,92E-02	ER-associated ubiquitin- dependent protein catabolic process	VCP HSPA5 MYH9 HSP90B1 YWHAE VCP HS PA5 VCP HSP90AB1 VCP HSPA5 HSP90B1
6,13E-03	ER-nucleus signaling pathway	NME2 NME1
1,80E-02	establishment of localization	YWHAE HSPA8 HSP90AA1 VCP AKR1C1 TXN RD1 CLTC ACTN4 YWHAZ NME1 HSP90B1 K RT18 AGR2 MYH9 SLC25A5
6,72E-03	establishment of localization in cell	YWHAE HSPA8 HSP90AA1 VCP KRT18 CLTC MYH9 YWHAZ
6,51E-03	establishment of lymphocyte polarity	LGALS1
6,51E-03	establishment of meiotic spindle localization	ACTN4 HSPD1
3,27E-03	establishment of protein localization	YWHAE VCP KRT18 CLTC MYH9 ACTN4 YW HAZ HSP90B1
3,53E-02	establishment of spindle localization	HSPD1
6,51E-03	establishment of T cell polarity	МҮН9
6,51E-03	ferric iron transport	SLC25A5
2,81E-02	gastrulation	UGDH TXNRD1
2,02E-02	gene expression	RPL4 RPS4X PTBP1 HNRNPK RPLP0 RPLP2 E EF2 RPL7 HSPD1
1,88E-02	generation of precursor metabolites and energy	LDHB TXNRD1 ENO1 GAPDH
1,62E-02	glucuronate metabolic process	TXNRD1
1,30E-03	glycolytic process	LDHB ENO1 GAPDH MYH9 UGDH LDHB ENO 1 GAPDH NME2 NME1 PRDX3 HSPA5 LDHB K YNU NME2 NME1 VCP HSPA5 VCP HSP90B1 KYNU NME2 NME1 ANXA5 HSPD1 NME2 AK R1C1 AKR1C3 AKR1C2 LDHB KYNU TXNRD1
----------	--	---
3,26E-03	Golgi to plasma membrane CFTR protein transport	HSP90B1 HSPA5 HSP90AB1
1,30E-02	Golgi to plasma membrane protein transport	HSP90AB1
9,01E-04	Golgi vesicle transport	HSPA8 VCP KRT18 CLTC
4,62E-04	GTP biosynthetic process	NME2 NME1
6,75E-04	GTP metabolic process	NME2 NME1
2,41E-02	heterocycle metabolic process	KYNU NME2 P4HB NME1
6,51E-03	hindbrain structural organization	KYNU
3,26E-03	histamine secretion by mast cell	YWHAZ KYNU MYH9 HSPA5
1,26E-02	homeostatic process	PRDX3 PRDX1 AKR1C1 TXNRD1 P4HB PDIA6 HSP90B1
1,38E-03	hydrogen peroxide catabolic process	NME2 NME1
3,23E-03	hydrogen peroxide metabolic process	PRDX3 PRDX1
8,60E-03	immune effector process	PRDX1 YWHAZ HSPD1
1,30E-02	inclusion body assembly	YWHAE
9,17E-08	interspecies interaction between organisms	YWHAE HSPA8 HNRNPK KRT18 RPLP0 KRT7 VIM SLC25A5 PPIA HSPD1
2,58E-02	intestinal cholesterol absorption	KYNU
1,34E-03	intracellular transport	YWHAE HSPA8 HSP90AA1 VCP KRT18 CLTC MYH9 YWHAZ
3,53E-02	isotype switching	HSPD1
3,26E-03	isotype switching to IgG isotypes	KRT18 HSPD1 MYH9
9,75E-03	lactate metabolic process	UGDH
3,53E-02	leukocyte mediated cytotoxicity	ACTN4 P4HB
2,51E-03	leukocyte mediated immunity	PRDX1 YWHAZ HSPD1 PRDX1 HSPD1
3,21E-02	lipid digestion	PRDX1
2,63E-02	localization	YWHAE HSPA8 HSP90AA1 VCP AKR1C1 TXN RD1 CLTC ACTN4 YWHAZ NME1 HSP90B1 K RT18 AGR2 MYH9 TLN1 SLC25A5
1,80E-02	lymphocyte mediated immunity	PRDX1 HSPD1

3,15E-04	macromolecular complex assembly	TUBA1B TUBB6 HSP90AA1 VCP HIST1H4A A KR1C1 ANXA5 HIST1H1D HSPD1
5,19E-04	macromolecular complex subunit organization	TUBA1B TUBB6 HSP90AA1 VCP HIST1H4A A KR1C1 ANXA5 HIST1H1D HSPD1
2,04E-02	macromolecule biosynthetic process	RPL4 RPS4X UGDH RPLP0 RPLP2 KRT7 EEF2 RPL7
2,91E-03	macromolecule localization	YWHAE VCP KRT18 AKR1C1 CLTC MYH9 AC TN4 TLN1 YWHAZ HSP90B1
1,42E-04	macromolecule metabolic process	RPL4 VCP HSP90AB1 CLTC RPLP0 RPL7 HSP D1 HSP90B1 RPS4X PTBP1 RPLP2 CTSD HSPA 8 HSP90AA1 HSPA5 KRT7 HSPE1 EEF2 PDIA6 UGDH HNRNPK MYH9 P4HB TKT PPIA HSPA 1B
3,21E-02	maintenance of location	PRDX3 PRDX1
2,26E-02	mast cell activation	YWHAZ
1,62E-02	mast cell degranulation	YWHAZ
1,94E-02	mast cell mediated immunity	YWHAZ
6,51E-03	meiotic metaphase I	KYNU
1,30E-02	meiotic spindle organization	P4HB
3,53E-08	metabolic process	RPL4 VCP HSP90AB1 GSTP1 CLTC RPLP0 EN O1 RPL7 HSPD1 HSP90B1 RPS4X PRDX3 PTBP 1 LDHB KYNU PRDX1 RPLP2 CTSD HSPA8 HS P90AA1 HSPA5 AKR1C1 TXNRD1 NME2 AKR 1C3 KRT7 AKR1C2 HSPE1 EEF2 PDIA6 NME1 UGDH AKR1B10 HNRNPK MYH9 P4HB TKT G APDH PPIA HSPA1B
1,94E-02	metaphase	KYNU
1,30E-02	mitochondrial outer membrane translocase complex assembly	ACTN4
2,49E-02	mitochondrial transport	HSP90AA1 YWHAZ
8,97E-03	mitochondrion organization	PRDX3 HSP90AA1 YWHAZ
5,66E-05	monocarboxylic acid metabolic process	UGDH LDHB KYNU AKR1C1 AKR1C3 AKR1C 2 P4HB
1,62E-02	monocyte differentiation	HSPD1
3,26E-03	mucus secretion	AKR1C3
3,22E-02	multicellular organismal process	YWHAE HSP90AB1 HSPA5 GSTP1 AKR1C1 T XNRD1 ANXA5 AKR1C2 YWHAZ NME1 HSP D1 RPS4X PRDX3 UGDH LGALS1 AKR1B10 P RDX1 AGR2 MYH9 PFN1 TLN1
1,09E-06	multi-organism process	YWHAE HSPA8 RPLP0 HSPB1 KRT7 ENO1 HS PD1 PRDX3 HNRNPK KRT18 VIM SLC25A5 PP IA
1,62E-02	MyD88-dependent toll-like receptor signaling pathway	HSPA1B
3,53E-02	myoblast fusion	NME1
2,58E-02	NAD biosynthetic process	HSPA5

2,58E-02	natural killer cell mediated cytotoxicity	Р4НВ
2,58E-02	natural killer cell mediated immunity	PPIA
1,22E-05	negative regulation of biological process	YWHAE HSP90AB1 HSPA5 ANXA4 GSTP1 AN XA5 NME2 HSPB1 ENO1 ACTN4 YWHAZ NM E1 HSPD1 HSP90B1 PRDX3 HIST1H4A LGALS 1 KRT18 HSPA1B
3,21E-06	negative regulation of cellular process	YWHAE HSP90AB1 HSPA5 ANXA4 GSTP1 AN XA5 NME2 HSPB1 ENO1 ACTN4 YWHAZ NM E1 HSPD1 HSP90B1 PRDX3 HIST1H4A LGALS 1 KRT18 HSPA1B
1,30E-02	negative regulation of dephosphorylation	ACTN4
9,75E-03	negative regulation of inclusion body assembly	UGDH VCP ENO1
1,83E-04	negative regulation of myeloid cell differentiation	HIST1H4A NME2 NME1 MYH9 YWHAZ NME2 NME1
2,31E-03	negative regulation of myeloid leukocyte differentiation	NME2 NME1
2,88E-09	negative regulation of programmed cell death	PRDX3 KRT18 HSPA5 ANXA4 GSTP1 ANXA5 NME2 HSPB1 YWHAZ HSPA1B HSPD1 HSP90 B1 YWHAE VCP HSPA5 ANXA4 GSTP1 ANXA 5 NME2 HSPB1 ACTN4 HSPE1 YWHAZ NME1 HSPD1 HSP90B1 PRDX3 LGALS1 KRT18 PRD X1 HSPA1B
9,58E-03	nitrogen compound metabolic process	VCP NME2 KRT7 RPL7 NME1 HSPD1 PTBP1 U GDH LDHB HNRNPK KYNU P4HB PPIA HSPA 1B
2,22E-02	nucleobase, nucleoside, nucleotide and nucleic acid biosynthetic process	KYNU NME2 NME1
4,27E-03	nucleobase, nucleoside, nucleotide and nucleic acid metabolic process	VCP NME2 KRT7 RPL7 NME1 HSPD1 PTBP1 U GDH LDHB HNRNPK KYNU PPIA HSPA1B
1,94E-02	nucleosome positioning	LDHB PRDX3 TXNRD1 HIST1H4A HIST1H1D
1,07E-04	organelle organization	HSP90AA1 CLTC KRT7 ACTN4 YWHAZ HSP9 0B1 PRDX3 TUBA1B HIST1H4A HIST1H1D M YH9 PFN1 TLN1 CTSD
2,44E-03	organic acid metabolic process	UGDH LDHB KYNU AKR1C1 AKR1C3 AKR1C 2 P4HB
1,30E-02	outer mitochondrial membrane organization	LGALS1
4,07E-05	oxidation reduction	PRDX3 UGDH LDHB AKR1B10 PRDX1 AKR1 C1 TXNRD1 AKR1C3 AKR1C2 GAPDH
2,28E-03	oxoacid metabolic process	UGDH LDHB KYNU AKR1C1 AKR1C3 AKR1C 2 P4HB

1,91E-02	oxygen and reactive oxygen species metabolic process	PRDX3 PRDX1
9,75E-03	peptidyl-proline hydroxylation	KYNU HSP90B1
9,75E-03	peptidyl-proline hydroxylation to 4-hydroxy-L-proline	HSP90B1
1,30E-02	peptidyl-proline modification	HSPA5
3,27E-02	placenta development	PRDX3 HSP90AB1
6,51E-03	platelet formation	HSP90AB1
1,00E-02	positive regulation of biological process	YWHAE HSP90AA1 VCP HSP90AB1 HSPA5 N ME2 ACTN4 NME1 HSPD1 RPS4X PRDX3 LGA LS1 PRDX1 TKT
1,67E-02	positive regulation of cell proliferation	RPS4X PRDX3 NME2 TKT NME1
4,29E-03	positive regulation of cellular process	YWHAE HSP90AA1 VCP HSP90AB1 HSPA5 N ME2 ACTN4 NME1 HSPD1 RPS4X PRDX3 LGA LS1 PRDX1 TKT
1,62E-02	positive regulation of epidermal cell differentiation	YWHAZ PRDX1 ENO1 LDHB
9,05E-03	positive regulation of epithelial cell proliferation	NME2 NME1
3,26E-03	positive regulation of erythrocyte aggregation	LGALS1 HSPD1
3,95E-03	positive regulation of hydrolase activity	VCP HSPA5 HSPE1 HSPD1
1,30E-02	positive regulation of interferon- alpha production	SLC25A5 PFN1
2,58E-02	positive regulation of interleukin- 10 production	HSPD1
3,21E-02	positive regulation of interleukin- 12 production	ANXA5
3,53E-02	positive regulation of ion transmembrane transporter activity	МҮН9
1,62E-02	positive regulation of keratinocyte differentiation	LDHB
1,30E-02	positive regulation of macrophage activation	LGALS1 NME2
4,54E-03	positive regulation of molecular function	PRDX3 VCP HSPA5 ACTN4 HSPE1 NME1 HSP D1
2,99E-03	positive regulation of nitric oxide biosynthetic process	PRDX3 PRDX1 PRDX3 HSPA5

9,75E-03	positive regulation of nuclease activity	P4HB HIST1H4A
6,51E-03	positive regulation of pinocytosis	MYH9 HSPD1
2,90E-02	positive regulation of response to biotic stimulus	ACTN4
6,51E-03	positive regulation of sodium:hydrogen antiporter activity	HSPA5 LGALS1
3,53E-02	positive regulation of T cell mediated immunity	HSPD1
8,49E-04	post-Golgi vesicle-mediated transport	HSPA8 KRT18 CLTC
7,87E-03	posttranscriptional regulation of gene expression	RPS4X HSPB1 KRT7 HSPD1
1,25E-06	primary metabolic process	RPL4 VCP HSP90AB1 RPLP0 EN01 RPL7 HSP D1 HSP90B1 RPS4X PTBP1 LDHB KYNU RPLP 2 CTSD HSPA8 HSP90AA1 HSPA5 AKR1C1 N ME2 AKR1C3 KRT7 AKR1C2 HSPE1 EEF2 PDI A6 NME1 UGDH AKR1B10 HNRNPK MYH9 P4 HB TKT GAPDH PPIA HSPA1B
1,94E-02	production of molecular mediator involved in inflammatory response	LGALS1
2,11E-03	prostaglandin metabolic process	AKR1C3 AKR1C2
2,11E-03	prostanoid metabolic process	AKR1C3 AKR1C2
2,46E-02	protein catabolic process	VCP HSPA5 MYH9 HSP90B1 VCP HSPA5 MYH 9 HSPA1B HSP90B1 PRDX3 VCP HSPA5 KYN U PRDX1 MYH9 CTSD HSPA1B HSP90B1
1,25E-03	protein complex assembly	TUBA1B TUBB6 HSP90AA1 VCP AKR1C1 AN XA5 HSPD1
1,25E-03	protein complex biogenesis	TUBA1B TUBB6 HSP90AA1 VCP AKR1C1 AN XA5 HSPD1
3,83E-09	protein folding	HSPA8 HSP90AA1 HSP90AB1 HSPE1 PDIA6 PP IA HSPA1B HSPD1 HSP90B1
4,74E-03	protein homooligomerization	VCP AKR1C1 ANXA5
4,00E-05	protein metabolic process	RPL4 HSPA8 HSP90AA1 VCP HSP90AB1 HSPA 5 RPLP0 HSPE1 EEF2 PDIA6 RPL7 HSPD1 HSP 90B1 RPS4X RPLP2 MYH9 P4HB TKT CTSD PP IA HSPA1B
2,41E-02	protein oligomerization	VCP AKR1C1 ANXA5
2,72E-06	protein refolding	HSP90AA1 HSPA1B HSPD1
3,00E-03	protein transport	YWHAE VCP KRT18 CLTC MYH9 ACTN4 YW HAZ HSP90B1 YWHAE VCP KRT18 CLTC YW HAZ YWHAE VCP KRT18 CLTC MYH9 ACTN 4 TLN1 YWHAZ HSP90B1

1,86E-02	proteolysis involved in cellular protein catabolic process	VCP HSPA5 MYH9 HSP90B1
9,27E-04	pyrimidine nucleoside triphosphate metabolic process	NME2 NME1
1,55E-03	pyrimidine ribonucleoside metabolic process	NME2 NME1
5,64E-04	pyrimidine ribonucleoside triphosphate biosynthetic process	NME2 NME1
5,64E-04	pyrimidine ribonucleoside triphosphate metabolic process	NME2 NME1
1,38E-03	pyrimidine ribonucleotide metabolic process	PRDX3 PRDX1 NME2 NME1
9,75E-03	quinolinate biosynthetic process	HSPA5 HSPD1
1,46E-03	regulation of biological process	YWHAE VCP HSP90AB1 GSTP1 HSPB1 ENO1 HSPD1 HSP90B1 RPS4X PRDX3 LGALS1 PRD X1 HSP90AA1 HSPA5 ANXA4 TXNRD1 ANXA 5 NME2 KRT7 ACTN4 HSPE1 YWHAZ PDIA6 NME1 HIST1H4A HNRNPK KRT18 MYH9 P4H B PFN1 TKT PPIA HSPA1B
9,10E-05	regulation of biological quality	AKR1C1 TXNRD1 ANXA5 ENO1 YWHAZ PDI A6 HSPD1 HSP90B1 PRDX3 PRDX1 AGR2 MY H9 P4HB TLN1 HSPA1B
1,51E-11	regulation of cell death	YWHAE VCP HSPA5 ANXA4 GSTP1 ANXA5 N ME2 HSPB1 ACTN4 HSPE1 YWHAZ NME1 HS PD1 HSP90B1 PRDX3 LGALS1 KRT18 PRDX1 HSPA1B YWHAE VCP LGALS1 PFN1 HSPE1 H SPD1
3,19E-02	regulation of cell growth	ENO1 TKT HSPA1B
1,28E-03	regulation of cellular process	YWHAE VCP HSP90AB1 GSTP1 HSPB1 ENO1 HSPD1 HSP90B1 RPS4X PRDX3 LGALS1 PRD X1 HSP90AA1 HSPA5 ANXA4 TXNRD1 ANXA 5 NME2 KRT7 ACTN4 HSPE1 YWHAZ PDIA6 NME1 HIST1H4A HNRNPK KRT18 MYH9 P4H B PFN1 TKT HSPA1B
2,19E-03	regulation of cellular protein metabolic process	YWHAE RPS4X VCP HSP90AB1 HSPA5 HSPB1 KRT7
4,87E-03	regulation of dephosphorylation	YWHAE HSP90B1 ACTN4 KRT18
2,93E-04	regulation of endopeptidase activity	VCP HSPA5 HSPE1 HSPD1 VCP HSPE1 HSPD1
3,14E-02	regulation of epithelial cell proliferation	NME2 NME1

3,26E-03	regulation of erythrocyte aggregation	HSPD1
1,30E-02	regulation of homotypic cell-cell adhesion	HSPD1
7,44E-03	regulation of hydrolase activity	VCP HSPA5 HSPE1 HSPD1 HSP90B1
2,90E-02	regulation of interferon-alpha production	PFN1
1,30E-02	regulation of interferon-gamma- mediated signaling pathway	KRT18
3,53E-02	regulation of macrophage activation	NME2
3,53E-02	regulation of mitochondrial membrane potential	PRDX1
2,12E-02	regulation of molecular function	PRDX3 VCP HSPA5 ACTN4 HSPE1 NME1 HSP D1 HSP90B1
1,30E-02	regulation of nuclease activity	VCP
1,30E-02	regulation of pinocytosis	HSPD1
3,26E-03	regulation of protein folding in endoplasmic reticulum	LGALS1
4,43E-03	regulation of protein metabolic process	YWHAE RPS4X VCP HSP90AB1 HSPA5 HSPB1 KRT7
1,96E-02	regulation of proteolysis	AKR1C1 AKR1C2
2,26E-02	regulation of proton transport	PTBP1
3,26E-03	regulation of T cell mediated immune response to tumor cell	YWHAZ PRDX1 HSPD1 HSP90B1 AGR2
1,29E-02	regulation of translation	RPS4X HSPB1 KRT7
6,51E-03	regulation of type I interferon- mediated signaling pathway	MYH9 KRT18
4,78E-02	regulation of viral genome replication	YWHAE
1,75E-07	response to biotic stimulus	PRDX3 HSPA8 HSP90AA1 VCP HSP90AB1 HS PA5 HSPB1 ENO1 HSPE1 HSPA1B HSPD1
1,59E-08	response to chemical stimulus	HSPA8 HSP90AA1 VCP HSP90AB1 HSPA5 AK R1C1 ANXA5 HSPB1 ACTN4 HSPE1 YWHAZ NME1 HSPD1 HSP90B1 PRDX3 LGALS1 KYN U PRDX1 PFN1 HSPA1B
5,48E-03	response to endoplasmic reticulum stress	VCP HSPA5
2,58E-02	response to insecticide	МҮН9
1,06E-08	response to organic substance	HSPA8 HSP90AA1 VCP HSP90AB1 HSPA5 AN XA5 HSPB1 HSPE1 NME1 HSPD1 HSP90B1 PR DX3 LGALS1 KYNU PFN1 HSPA1B

1,30E-02	response to organophosphorus	ENO1
1,60E-03	response to stimulus	HSPA8 HSP90AA1 VCP HSP90AB1 HSPA5 AK R1C1 ANXA5 HSPB1 ENO1 ACTN4 HSPE1 YW HAZ NME1 HSPD1 HSP90B1 PRDX3 LGALS1 KYNU PRDX1 PFN1 CTSD HSPA1B
1,78E-06	response to stress	HSPA8 HSP90AA1 VCP HSP90AB1 HSPA5 AN XA5 HSPB1 ACTN4 HSPE1 YWHAZ HSPD1 HS P90B1 PRDX3 LGALS1 KYNU PRDX1 PFN1 C TSD HSPA1B
6,97E-13	response to unfolded protein	HSPA8 HSP90AA1 VCP HSP90AB1 HSPA5 HSP B1 HSPE1 HSPA1B HSPD1 VCP HSPA5
3,26E-03	response to vitamin B6	KYNU
6,47E-03	response to xenobiotic stimulus	KYNU AKR1C1
3,53E-02	ribosomal large subunit biogenesis	МҮН9
9,75E-03	sequestering of calcium ion	P4HB HSPD1
2,58E-02	sequestering of metal ion	HSPD1
1,09E-02	small molecule catabolic process	LDHB KYNU ENO1 GAPDH
4,27E-03	small molecule metabolic process	UGDH LDHB KYNU AKR1C1 NME2 AKR1C3 AKR1C2 ENO1 P4HB GAPDH NME1
3,53E-02	spindle localization	HSPD1
3,04E-02	steroid metabolic process	AKR1B10 AKR1C1 AKR1C2
6,51E-03	transferrin transport	KYNU SLC25A5
7,24E-07	translational elongation	RPL4 RPS4X RPLP0 RPLP2 EEF2 RPL7 RPS4X HSPB1 KRT7
1,61E-02	transport	YWHAE HSPA8 HSP90AA1 VCP AKR1C1 TXN RD1 CLTC ACTN4 YWHAZ NME1 HSP90B1 K RT18 AGR2 MYH9 SLC25A5
6,51E-03	tryptophan catabolic process to acetyl-CoA	HSPA5 KYNU HSP90AB1 HIST1H4A TNL1 YW HAZ
9,75E-03	UDP-glucose metabolic process	LGALS1
9,75E-03	UDP-glucuronate biosynthetic process	TKT AKR1C3 LGALS1
1,29E-02	unsaturated fatty acid metabolic process	AKR1C3 AKR1C2
6,51E-03	uropod organization	HSP90AA1
1,22E-02	vesicle-mediated transport	HSPA8 VCP KRT18 CLTC YWHAZ NME1
5,17E-03	xenobiotic metabolic process	VCP HSPB1 KYNU AKR1C1

Supplementary Table 2B: Significant gene ontology terms from A549/CDDP_{CT}. Ontologies statistical significant (p < 0.05) identified by Cytoscape plugin BiNGO and grouped by REVIGO.

p value	Gene ontology	Proteins
A549/CDDP _{CT}		
4,28E-02	actin cytoskeleton reorganization	MIF
4,48E-02	activation of pro-apoptotic gene products	YWHAB
2,27E-04	aging	EIF5A NPM1 MIF RTN4
5,66E-04	alcohol catabolic process	PGAM1 TALDO1 PFKP
1,24E-02	anatomical structure regression	MIF
3,98E-02	angiogenesis	NCL RTN4
2,87E-02	behavioral defense response	VDAC1
2,67E-02	behavioral fear response	VDAC1
3,10E-04	biological_process	PRKCSH YWHAB RPL12 PARK7 RPL8 RPL9 R TN4 RPL7A PRDX5 TUBB3 SERPINH1 FLNB C CT4 EIF5A HSP90AA1 NPM1 XRCC6 TPM4 RP S8 PGAM1 KRT8 TALD01 RPSA MIF EEF1G E EF1A1 HADHA RPS28 TUBB2A NCL BLVRB V DAC1 HNRNPC PPIB RAN PFKP PLEC
1,82E-04	biosynthetic process	EIF5A EEF1G EEF1A1 RPL7A RPS28 RPS8 RPL 12 SERPINH1 RPSA MIF RPL8 RPL9
1,42E-03	carbohydrate catabolic process	PGAM1 TALDO1 PFKP
1,67E-02	catabolic process	HADHA PGAM1 NCL TALDO1 BLVRB PFKP
1,41E-02	cell death	YWHAB NCL VDAC1 PARK7 RTN4
2,87E-02	cell volume homeostasis	NPM1
4,52E-04	cellular biosynthetic process	EIF5A EEF1G EEF1A1 RPL7A RPS28 RPS8 RPL 12 RPSA MIF RPL8 RPL9
4,77E-04	cellular component assembly	HSP90AA1 NPM1 TUBB2A YWHAB TUBB3 MI F PFKP PLEC
3,51E-05	cellular component biogenesis	RPL7A HSP90AA1 NPM1 RPS28 TUBB2A YW HAB TUBB3 MIF PFKP PLEC
3,71E-04	cellular component organization	HSP90AA1 NPM1 XRCC6 YWHAB KRT8 MIF T UBB2A TUBB3 NCL SERPINH1 FLNB RAN PF KP PLEC
1,55E-02	cellular homeostasis	PRDX5 NPM1 NCL PARK7
1,46E-02	cellular localization	EIF5A HSP90AA1 NPM1 YWHAB FLNB RAN
4,07E-03	cellular macromolecular complex assembly	HSP90AA1 NPM1 TUBB2A TUBB3
3,45E-05	cellular macromolecule biosynthetic process	EIF5A EEF1G EEF1A1 RPL7A RPS28 RPS8 RPL 12 RPSA RPL8 RPL9
1,24E-02	cellular macromolecule localization	EIF5A NPM1 YWHAB RAN HSP90AA1

9,34E-04	cellular macromolecule metabolic process	EIF5A HSP90AA1 XRCC6 RPS8 RPL12 RPSA R PL8 RPL9 EEF1G EEF1A1 RPL7A RPS28 HNRN PC PPIB RAN CCT4
1,54E-05	cellular metabolic process	EIF5A HSP90AA1 XRCC6 RPS8 RPL12 PGAM1 TALDO1 RPSA PARK7 MIF RPL8 RPL9 EEF1G EEF1A1 RPL7A HADHA RPS28 BLVRB HNRN PC PPIB RAN PFKP CCT4
1,66E-09	cellular process	YWHAB RPL12 PARK7 RPL8 RPL9 RTN4 RPL7 A PRDX5 TUBB3 SERPINH1 FLNB CCT4 EIF5 A HSP90AA1 NPM1 XRCC6 TPM4 RPS8 PGAM 1 KRT8 TALD01 RPSA MIF EEF1G EEF1A1 HA DHA RPS28 TUBB2A NCL BLVRB VDAC1 HN RNPC PPIB RAN PFKP PLEC
3,77E-03	cellular protein complex assembly	HSP90AA1 TUBB2A TUBB3 NPM1 YWHAB MI F PFKP
1,21E-02	cellular protein localization	EIF5A NPM1 YWHAB RAN
2,46E-04	cellular protein metabolic process	EIF5A HSP90AA1 RPS8 RPL12 RPSA RPL8 RPL 9 EEF1G EEF1A1 RPL7A RPS28 PPIB CCT4
1,45E-02	chaperone-mediated protein complex assembly	HSP90AA1
1,04E-02	collagen biosynthetic process	SERPINH1
4,28E-02	cranial nerve development	RTN4
2,22E-03	cytoskeleton organization	NPM1 KRT8 FLNB MIF RAN
1,45E-02	death	YWHAB NCL VDAC1 PARK7 RTN4
3,48E-02	DNA integration	XRCC6
1,86E-02	DNA ligation	XRCC6
2,06E-02	double-strand break repair via nonhomologous end joining	XRCC6
1,76E-02	endoplasmic reticulum	EIF5A PRKCSH NCL SERPINH1 PPIB RTN4
3,23E-02	establishment of localization in cell	EIF5A HSP90AA1 NPM1 YWHAB RAN
4,16E-03	establishment of ribosome localization	NPM1
3,48E-02	fear response	VDAC1
1,04E-02	fructose 1,6-bisphosphate metabolic process	PFKP
8,79E-05	fructose 6-phosphate metabolic process	TALDO1 PFKP
5,62E-04	fructose metabolic process	TALDO1 PFKP
5,41E-06	gene expression	EIF5A EEF1G EEF1A1 RPL7A RPS28 RPS8 RPL 12 SERPINH1 RPSA HNRNPC RPL8 RPL9
4,16E-03	glyceraldehyde-3-phosphate metabolic process	TALDOI
6,23E-03	gonadal mesoderm development	MIF

9,03E-04	GTPase activity	EEF1A1 TUBB2A TUBB3 RAN
8,30E-03	heme catabolic process	BLVRB
2,27E-02	hemidesmosome assembly	PLEC
3,02E-04	hexose catabolic process	PGAM1 TALDO1 PFKP
2,12E-02	homeostatic process	PRDX5 NPM1 XRCC6 NCL PARK7
1,04E-02	hypusine metabolic process	EIF5A
4,28E-02	initiation of viral infection	XRCC6
4,28E-02	initiation of viral infection	XRCC6
4,59E-03	interspecies interaction between organisms	NPM1 KRT8 VDAC1 RAN
8,30E-03	lysosomal lumen acidification	NCL
4,23E-04	macromolecular complex assembly	HSP90AA1 NPM1 TUBB2A YWHAB TUBB3 MI F PFKP
6,37E-04	macromolecular complex subunit organization	HSP90AA1 NPM1 TUBB2A YWHAB TUBB3 MI F PFKP
6,16E-06	macromolecule biosynthetic process	EIF5A EEF1G EEF1A1 RPL7A RPS28 RPS8 RPL 12 SERPINH1 RPSA RPL8 RPL9
4,37E-04	macromolecule metabolic process	EIF5A HSP90AA1 XRCC6 RPS8 RPL12 RPSA R PL8 RPL9 EEF1G EEF1A1 RPL7A RPS28 NCL S ERPINH1 HNRNPC PPIB RAN CCT4
1,38E-02	maintenance of location	YWHAB FLNB
9,05E-03	maintenance of protein location	YWHAB FLNB
6,69E-03	maintenance of protein location in cell	YWHAB FLNB
2,27E-02	membrane hyperpolarization	PARK7
5,25E-06	metabolic process	RPL12 PARK7 RPL8 RPL9 RPL7A PRDX5 SERP INH1 CCT4 EIF5A HSP90AA1 XRCC6 RPS8 PG AM1 TALD01 RPSA MIF EEF1G EEF1A1 HAD HA RPS28 NCL BLVRB HNRNPC PPIB RAN PF KP
3,65E-02	microtubule cytoskeleton organization	NPM1 RAN
2,19E-02	microtubule-based movement	TUBB2A TUBB3 NPM1 RAN
1,67E-03	microtubule-based process	NPM1 TUBB2A TUBB3 RAN
8,30E-03	mitochondrial outer membrane translocase complex assembly	HSP90AA1
3,28E-02	mitotic spindle organization	RAN
3,08E-02	monoamine transport	PARK7
1,01E-02	monosaccharide metabolic process	PGAM1 TALDO1 PFKP
8,30E-03	Mullerian duct regression	MIF

2,08E-03	multi-layer follicle stage	MIF
2,24E-02	multi-organism process	EEF1G NPM1 KRT8 VDAC1 RAN
3,48E-02	NADP metabolic process	TALDO1
2,06E-02	NADPH regeneration	TALDO1
8,30E-03	negative regulation of anti- apoptosis	RTN4
8,42E-03	negative regulation of apoptotic process	EIF5A PRDX5 NPM1 MIF YWHAB RTN4
1,24E-02	negative regulation of cell cycle arrest	MIF
6,23E-03	negative regulation of centrosome duplication	NPM1
8,30E-03	negative regulation of dephosphorylation	YWHAB
2,47E-02	negative regulation of developmental growth	RTN4
8,30E-03	negative regulation of mRNA processing	NPM1
8,30E-03	negative regulation of neuron projection regeneration	RTN4
2,82E-02	negative regulation of response to stimulus	MIF RTN4
1,24E-02	negative regulation of RNA splicing	NPM1
1,65E-03	nerve-nerve synaptic transmission	VDAC1 PARK7
4,08E-02	neuron maturation	NCL
2,87E-02	non-recombinational repair	XRCC6
2,36E-04	nuclear export	EIF5A NPM1 RAN
3,43E-03	nuclear transport	EIF5A NPM1 RAN
1,79E-03	nucleobase, nucleoside, nucleotide and nucleic acid transport	EIF5A NPM1 RAN
6,23E-03	olfactory nerve development	RTN4
8,30E-03	oogenesis stage	MIF
1,71E-03	organelle organization	HSP90AA1 NPM1 XRCC6 TUBB2A NCL KRT8 FLNB MIF RAN
4,28E-02	organic alcohol transport	PARK7
8,30E-03	outer mitochondrial membrane organization	HSP90AA1
2,47E-02	pentose metabolic process	TALDO1
1,86E-02	pentose-phosphate shunt	TALDO1
3,68E-02	peptidyl-lysine modification	EIF5A

1,04E-02	peptidyl-lysine modification to hypusine	EIF5A
8,30E-03	pigment catabolic process	BLVRB
6,10E-04	pore complex	EIF5A VDAC1 RAN
2,87E-02	positive regulation of amine transport	RTN4
2,16E-02	positive regulation of binding	NPM1 MIF PARK7
1,70E-02	positive regulation of biosynthetic process	EIF5A HSP90AA1 NPM1 XRCC6 RAN
1,86E-02	positive regulation of catecholamine secretion	RTN4
1,60E-02	positive regulation of cellular biosynthetic process	EIF5A HSP90AA1 NPM1 XRCC6 RAN
1,39E-02	positive regulation of cellular metabolic process	EIF5A HSP90AA1 NPM1 XRCC6 MIF RAN
4,16E-03	positive regulation of centrosome duplication	NPM1
3,51E-02	positive regulation of developmental process	EIF5A XRCC6 RTN4
2,67E-02	positive regulation of glial cell differentiation	RTN4
1,76E-02	positive regulation of metabolic process	EIF5A HSP90AA1 NPM1 XRCC6 MIF RAN
3,28E-02	positive regulation of muscle cell differentiation	EIF5A
9,30E-03	positive regulation of neurogenesis	XRCC6 RTN4 TUBB2A TUBB3 NCL EIF5A
5,83E-03	positive regulation of NF-kappaB transcription factor activity	NPM1 MIF
2,87E-02	positive regulation of peptidyl- serine phosphorylation	MIF
1,65E-02	positive regulation of protein complex disassembly	EIF5A
3,16E-02	positive regulation of secretion	MIF RTN4
1,26E-02	positive regulation of transcription regulator activity	NPM1 MIF
6,23E-03	positive regulation of translational elongation	EIF5A
6,23E-03	positive regulation of translational termination	EIF5A

2,08E-03	preantral ovarian follicle growth	MIF
4,31E-05	primary metabolic process	EIF5A HSP90AA1 XRCC6 RPS8 RPL12 PGAM1 TALDO1 RPSA MIF RPL8 RPL9 EEF1G EEF1A1 RPL7A HADHA RPS28 NCL SERPINH1 HNRN PC PPIB RAN PFKP CCT4
2,67E-02	prostaglandin biosynthetic process	MIF
4,28E-02	prostaglandin metabolic process	MIF
7,19E-05	protein complex assembly	HSP90AA1 NPM1 TUBB2A YWHAB TUBB3 MI F PFKP
7,19E-05	protein complex biogenesis	HSP90AA1 NPM1 TUBB2A YWHAB TUBB3 MI F PFKP
5,25E-03	protein folding	HSP90AA1 PPIB CCT4
1,97E-02	protein homooligomerization	MIF PFKP
1,86E-02	protein homotrimerization	MIF
4,07E-02	protein localization	EIF5A NPM1 YWHAB FLNB RAN
1,15E-04	protein metabolic process	EIF5A HSP90AA1 RPS8 RPL12 RPSA RPL8 RPL 9 EEF1G EEF1A1 RPL7A RPS28 NCL SERPINH 1 PPIB CCT4
6,33E-04	protein oligomerization	NPM1 YWHAB MIF PFKP
1,86E-02	protein refolding	HSP90AA1
8,33E-03	protein targeting	EIF5A YWHAB RAN NPM1 HSP90AA1
3,28E-02	protein trimerization	MIF
1,65E-02	regulation of androgen receptor signaling pathway	PARK7
8,22E-03	regulation of binding	NPM1 PARK7 MIF
1,24E-02	regulation of biological quality	PRDX5 NPM1 XRCC6 YWHAB NCL FLNB PAR K7 RTN4
3,08E-02	regulation of cell cycle arrest	MIF
3,33E-02	regulation of cell cycle process	NPM1 MIF
8,40E-03	regulation of cell death	EIF5A PRDX5 NPM1 YWHAB MIF RTN4
2,08E-03	regulation of cellular amide metabolic process	PGAM1
2,48E-02	regulation of cellular component organization	EIF5A NPM1 MIF RTN4
3,48E-02	regulation of cellular pH	NCL
2,53E-03	regulation of cellular response to stress	NPM1 MIF RTN4
2,87E-02	regulation of cofactor metabolic process	PGAM1
4,22E-02	regulation of DNA binding	NPM1 MIF

2,29E-04	regulation of DNA damage response, signal transduction by p53 class mediator	NPM1 MIF
4,02E-02	regulation of establishment of protein localization	YWHAB MIF
6,23E-03	regulation of integrin biosynthetic process	MIF
2,27E-02	regulation of macrophage activation	MIF
4,28E-02	regulation of mRNA processing	NPM1
1,45E-02	regulation of neuron projection regeneration	RTN4
4,08E-02	regulation of peptidyl-serine phosphorylation	MIF
1,24E-02	regulation of protein kinase A signaling cascade	MIF
4,97E-02	regulation of protein localization	YWHAB MIF
3,65E-02	regulation of protein transport	YWHAB MIF
2,83E-02	regulation of response to stress	NPM1 MIF RTN4
2,08E-03	regulation of secondary metabolic process	PGAM1 TALDO1
2,87E-02	regulation of sensory perception	RTN4
2,87E-02	regulation of sensory perception of pain	RTN4
3,25E-02	regulation of transcription regulator activity	NPM1 MIF
1,45E-02	regulation of translational elongation	EIF5A
1,45E-02	regulation of translational termination	EIF5A
2,67E-02	respiratory burst	PGAM1
4,88E-02	response to activity	RTN4
2,91E-02	response to chemical stimulus	HADHA PRDX5 HSP90AA1 TPM4 SERPINH1 P ARK7 MIF
1,60E-02	response to drug	HADHA PARK7 MIF
6,54E-03	response to oxidative stress	PRDX5 TPM4 PARK7
2,46E-02	response to protein stimulus	HSP90AA1 SERPINH1

1,38E-02	response to reactive oxygen species	PRDX5 PARK7
8,94E-03	response to stress	PRDX5 HSP90AA1 NPM1 XRCC6 TPM4 SERPI NH1 VDAC1 PARK7 MIF
8,31E-03	response to unfolded protein	HSP90AA1 SERPINH1
7,67E-03	ribonucleoprotein complex biogenesis	RPL7A NPM1 RPS28
2,08E-03	ribosomal large subunit export from nucleus	NPM1
3,77E-04	ribosomal small subunit biogenesis	NPM1 RPS28 RPL7A
2,47E-02	ribosome assembly	NPM1
2,53E-03	ribosome biogenesis	RPL7A NPM1 RPS28
4,16E-03	ribosome localization	NPM1
9,00E-05	RNA export from nucleus	EIF5A NPM1 RAN
1,31E-03	RNA localization	EIF5A NPM1 RAN
4,16E-03	rRNA transport	NPM1
3,88E-02	sex determination	MIF
2,16E-03	small molecule catabolic process	HADHA PGAM1 TALDO1 PFKP
4,48E-02	somatic cell DNA recombination	XRCC6
4,88E-02	somatic diversification of immune receptors	XRCC6
4,48E-02	somatic diversification of immune receptors via germline recombination within a single locus	XRCC6
2,78E-10	translation	EIF5A EEF1G EEF1A1 RPL7A RPS28 RPS8 RPL 12 RPSA RPL8 RPL9
3,20E-13	translational elongation	EEF1G EEF1A1 RPL7A RPS28 RPS8 RPL12 RPS A RPL8 RPL9 EIF5A
6,23E-03	translational frameshifting	EIF5A
3,51E-06	unfolded protein binding	HSP90AA1 NPM1 SERPINH1 PPIB CCT4
2,06E-02	V(D)J recombination	XRCC6
1,55E-02	vesicle	HSP90AA1 YWHAB PPIB RAN CCT4

Supplementary Table 2C: Significant gene ontology terms from A549/CDDP. Ontologies statistical significant (p < 0.05) identified by Cytoscape plugin BiNGO and grouped by REVIGO.

<i>p</i> value	Gene ontology	Proteins
A549/CDDP		
4,27E-02	actin cytoskeleton organization	DSTN FLNB
5,61E-03	actin filament severing	DSTN
3,05E-02	actin filament-based movement	MYL6
5,02E-03	actin filament-based process	MYL6 DSTN FLNB
2,78E-02	actin polymerization or depolymerization	DSTN FLNB
1,26E-02	actin-mediated cell contraction	MYL6
1,07E-03	aging	EIF5A NPM1 RTN4
5,33E-03	alcohol catabolic process	PGAM1 PGD
2,47E-02	anatomical structure development	EIF4A1 XRCC6 MYL6 CAPN2 FLNB PGD RTN 4 VCL
9,80E-03	ATP catabolic process	ACLY
1,65E-02	biological adhesion	ACTN1 CTNNA1 RPSA VCL
3,04E-02	biological_process	EIF5A EIF4A1 HSP90AA1 NPM1 XRCC6 ACTN 1 PGAM1 SURF4 KRT8 DSTN RPSA PGD RTN4 EEF1A1 ACLY MYL6 CAPN2 CTNNA1 SERPI NH1 FLNB VIM PPIB VCL PLEC
3,47E-02	biosynthetic process	EIF5A EEF1A1 ACLY SERPINH1 RPSA PGD
9,83E-03	carbohydrate catabolic process	PGAM1 PGD ACLY
3,58E-02	carbohydrate metabolic process	ACLY PGAM1 PGD
1,64E-02	cell adhesion	ACTN1 CTNNA1 RPSA VCL
4,81E-02	cell aging	NPM1
9,15E-07	cell junction assembly	ACTN1 CTNNA1 VCL PLEC
2,93E-06	cell junction organization	ACTN1 CTNNA1 VCL PLEC
1,95E-02	cell volume homeostasis	NPM1
1,73E-03	cell-cell junction organization	CTNNA1 VCL
6,30E-03	cell-matrix adhesion	ACTN1 VCL
8,46E-03	cell-substrate adhesion	ACTN1 VCL
1,37E-03	cellular component assembly	HSP90AA1 NPM1 ACTN1 CTNNA1 VCL PLEC
2,60E-03	cellular component biogenesis	HSP90AA1 NPM1 ACTN1 CTNNA1 VCL PLEC
3,42E-04	cellular component organization	HSP90AA1 NPM1 XRCC6 ACTN1 CTNNA1 SE RPINH1 KRT8 DSTN FLNB VCL PLEC

1,94E-03	cellular localization	EIF5A HSP90AA1 NPM1 MYL6 FLNB VCL
1,32E-02	cellular macromolecular complex subunit organization	HSP90AA1 NPM1 DSTN
2,25E-02	cellular macromolecule localization	EIF5A NPM1 VCL
2,10E-04	cellular process	EIF5A HSP90AA1 NPM1 XRCC6 ACTN1 PGAM 1 KRT8 DSTN RPSA PGD RTN4 EEF1A1 ACLY MYL6 CAPN2 CTNNA1 SERPINH1 FLNB VIM PPIB VCL PLEC
2,21E-02	cellular protein localization	EIF5A NPM1 VCL
7,01E-03	cellular response to indole-3- methanol	CTNNA1
9,80E-03	chaperone-mediated protein complex assembly	HSP90AA1
9,80E-03	citrate metabolic process	ACLY
1,40E-02	coenzyme A metabolic process	ACLY
1,96E-02	coenzyme metabolic process	ACLY PGD
3,30E-02	cofactor metabolic process	ACLY PGD
7,01E-03	collagen biosynthetic process	SERPINH1
3,73E-02	collagen fibril organization	SERPINH1
4,13E-02	collagen metabolic process	SERPINH1
2,91E-02	cranial nerve development	RTN4
9,80E-03	cytoskeletal anchoring at plasma membrane	FLNB
3,30E-03	cytoskeleton organization	NPM1 KRT8 DSTN FLNB
8,89E-03	developmental process	EIF5A EIF4A1 NPM1 XRCC6 MYL6 CAPN2 FL NB PGD RTN4 VCL
2,36E-02	DNA integration	XRCC6
1,26E-02	DNA ligation	XRCC6
1,40E-02	double-strand break repair via nonhomologous end joining	XRCC6
1,24E-02	endoplasmic reticulum	EIF5A SURF4 SERPINH1 PPIB RTN4
1,12E-02	epithelial cell-cell adhesion	VCL
3,11E-02	establishment of localization in cell	EIF5A HSP90AA1 NPM1 MYL6
2,81E-03	establishment of ribosome localization	NPM1
2,88E-02	gene expression	EIF5A EEF1A1 CAPN2 SERPINH1 RPSA
2,50E-03	glucose catabolic process	PGAM1 PGD
3,51E-03	hexose catabolic process	PGAM1 PGD
7,01E-03	hypusine metabolic process	EIF5A
2,91E-02	initiation of viral infection	XRCC6

2,91E-02	initiation of viral infection	XRCC6
2,91E-02	intermediate filament-based process	VIM
1,05E-02	interspecies interaction between organisms	NPM1 KRT8 VIM
1,31E-02	intracellular transport	EIF5A HSP90AA1 NPM1 MYL6
2,09E-02	lamellipodium assembly	VCL
4,21E-03	L-serine biosynthetic process	PGD
1,12E-02	L-serine metabolic process	PGD
4,54E-02	microtubule organizing center organization	NPM1
4,00E-02	mitochondrial membrane organization	HSP90AA1
5,61E-03	mitochondrial outer membrane translocase complex assembly	HSP90AA1
3,67E-02	monosaccharide metabolic process	PGAM1 PGD
4,52E-02	multicellular organismal development	EIF4A1 XRCC6 MYL6 CAPN2 FLNB PGD RTN 4 VCL
1,96E-02	muscle contraction	MYL6 VCL
1,26E-02	muscle filament sliding	MYL6
3,76E-02	muscle organ development	MYL6 FLNB
5,90E-03	muscle structure development	MYL6 CAPN2 FLNB
2,31E-02	muscle system process	MYL6 VCL
1,54E-02	myoblast fusion	CAPN2
2,50E-02	myotube differentiation	CAPN2
2,36E-02	NADP metabolic process	PGD
1,40E-02	NADPH regeneration	PGD
5,61E-03	negative regulation of anti- apoptosis	RTN4
4,56E-03	negative regulation of cellular component movement	ACTN1 VCL RTN4
2,54E-02	negative regulation of cellular component organization	NPM1 RTN4
4,21E-03	negative regulation of centrosome duplication	NPM1
1,67E-02	negative regulation of developmental growth	RTN4
5,61E-03	negative regulation of mRNA processing	NPM1

5,61E-03	negative regulation of neuron projection regeneration	RTN4
8,40E-03	negative regulation of RNA splicing	NPM1
3,86E-02	nerve development	RTN4
1,95E-02	non-recombinational repair	XRCC6
2,99E-03	nuclear export	EIF5A NPM1
1,77E-02	nuclear transport	EIF5A NPM1
1,15E-02	nucleobase, nucleoside, nucleotide and nucleic acid transport	EIF5A NPM1
1,67E-02	nucleoside bisphosphate metabolic process	ACLY
4,21E-03	olfactory nerve development	RTN4
4,94E-02	organ regeneration	EIF4A1
1,07E-02	organelle organization	HSP90AA1 NPM1 XRCC6 KRT8 DSTN FLNB
5,61E-03	outer mitochondrial membrane organization	HSP90AA1
4,21E-03	pentose biosynthetic process	PGD
1,67E-02	pentose metabolic process	PGD
1,26E-02	pentose-phosphate shunt	PGD
2,50E-02	peptidyl-lysine modification	EIF5A
7,01E-03	peptidyl-lysine modification to hypusine	EIF5A
1,80E-02	positive regulation of biosynthetic process	EIF5A HSP90AA1 NPM1 XRCC6
5,30E-03	positive regulation of cell differentiation	EIF5A XRCC6 RTN4
1,71E-02	positive regulation of cellular biosynthetic process	EIF5A HSP90AA1 NPM1 XRCC6
3,85E-02	positive regulation of cellular component organization	EIF5A NPM1
4,40E-02	positive regulation of cellular metabolic process	EIF5A HSP90AA1 NPM1 XRCC6
2,81E-03	positive regulation of centrosome duplication	NPM1
1,23E-02	positive regulation of developmental process	EIF5A XRCC6 RTN4
5,61E-03	positive regulation of dopamine secretion	RTN4
1,81E-02	positive regulation of glial cell differentiation	RTN4

1,95E-02	positive regulation of gliogenesis	RTN4
2,23E-02	positive regulation of muscle cell differentiation	EIF5A MYL6 FLNB
3,46E-02	positive regulation of nitric oxide biosynthetic process	HSP90AA1
1,12E-02	positive regulation of protein complex disassembly	EIF5A
4,40E-02	positive regulation of translation	EIF5A
4,21E-03	positive regulation of translational elongation	EIF5A
4,21E-03	positive regulation of translational termination	EIF5A
1,12E-02	protein autoprocessing	CAPN2
2,36E-02	protein folding	HSP90AA1 PPIB
3,79E-02	protein localization	EIF5A NPM1 FLNB VCL
1,95E-02	protein localization at cell surface	VCL
1,13E-02	protein maturation	CAPN2 SERPINH1
1,26E-02	protein refolding	HSP90AA1
1,26E-02	pseudopodium	ACTN1
4,27E-02	purine nucleoside metabolic process	ACLY
4,27E-02	purine ribonucleoside metabolic process	ACLY
1,26E-02	purine ribonucleoside triphosphate catabolic process	ACLY
1,81E-02	purine ribonucleotide catabolic process	ACLY
3,05E-02	regulation of apoptotic process	EIF5A NPM1 ACTN1 RTN4
3,73E-02	regulation of catecholamine secretion	RTN4
3,13E-02	regulation of cell death	EIF5A NPM1 ACTN1 RTN4
4,77E-02	regulation of cell development	XRCC6 RTN4
4,14E-02	regulation of cell differentiation	EIF5A XRCC6 RTN4
3,67E-02	regulation of cell migration	RTN4 VCL
3,76E-02	regulation of cell size	NPM1 RTN4

1,41E-03	regulation of cellular amide metabolic process	PGAM1 EIF5A EEF1A1 RPSA
4,43E-03	regulation of cellular component movement	ACTN1 RTN4 VCL
3,86E-02	regulation of cellular component organization	EIF5A NPM1 RTN4
1,45E-02	regulation of cellular response to stress	NPM1 RTN4
1,95E-02	regulation of cofactor metabolic process	PGAM1 ACLY PGD
1,54E-02	regulation of DNA damage response, signal transduction by p53 class mediator	NPM1
4,54E-02	regulation of generation of precursor metabolites and energy	PGAM1
4,47E-02	regulation of locomotion	RTN4 VCL
2,91E-02	regulation of mRNA processing	NPM1
4,01E-02	regulation of nervous system development	XRCC6 RTN4
4,27E-02	regulation of nitric oxide biosynthetic process	HSP90AA1
3,86E-02	regulation of RNA splicing	NPM1
1,41E-03	regulation of secondary metabolic process	PGAM1 PGD
1,95E-02	regulation of sensory perception	RTN4
1,95E-02	regulation of sensory perception of pain	RTN4
9,80E-03	regulation of translational elongation	EIF5A
9,80E-03	regulation of translational termination	EIF5A
1,81E-02	respiratory burst	PGAM1
3,32E-02	response to activity	RTN4
7,01E-03	response to indole-3-methanol	CTNNA1
1,17E-02	response to protein stimulus	HSP90AA1 SERPINH1
3,85E-03	response to unfolded protein	HSP90AA1 SERPINH1
1,26E-02	ribonucleoside triphosphate catabolic process	ACLY

2,09E-02	ribonucleotide catabolic process	ACLY
1,54E-02	ribosomal large subunit biogenesis	NPM1
1,41E-03	ribosomal large subunit export from nucleus	NPM1
1,95E-02	ribosomal small subunit biogenesis	NPM1
1,67E-02	ribosome assembly	NPM1
2,81E-03	ribosome localization	NPM1
1,58E-03	RNA export from nucleus	EIF5A NPM1
9,30E-03	RNA localization	EIF5A NPM1
2,81E-03	rRNA transport	NPM1
3,59E-02	serine family amino acid metabolic process	PGD
5,90E-03	small molecule catabolic process	ACLY PGAM1 PGD
3,05E-02	somatic cell DNA recombination	XRCC6
3,32E-02	somatic diversification of immune receptors	XRCC6
3,05E-02	somatic diversification of immune receptors via germline recombination within a single locus	XRCC6
1,95E-02	syncytium formation	CAPN2
4,46E-02	system development	EIF4A1 XRCC6 MYL6 FLNB PGD RTN4 VCL
4,13E-02	telomere maintenance	XRCC6
4,27E-02	telomere organization	XRCC6
8,14E-03	translational elongation	EEF1A1 RPSA
4,21E-03	translational frameshifting	EIF5A
1,76E-05	unfolded protein binding	HSP90AA1 NPM1 SERPINH1 PPIB
1,40E-02	V(D)J recombination	XRCC6

4. DISCUSSÃO

O câncer de pulmão é o principal responsável por mortes relacionadas ao câncer no mundo. Apesar do tratamento ser realizado com cisplatina, o tumor adquire resistência ao quimioterápico durante o tratamento. Portanto, estudos para aumentar o conhecimento acerca dos mecanismos envolvidos na resistência tumoral à cisplatina e o desenvolvimento de ferramentas celulares e moleculares que auxiliam nesses estudos são essenciais para a reversão desse problema clínico. Dessa forma, linhagens celulares resistentes à cisplatina de fácil desenvolvimento e que produzam resultados confiáveis, como as desenvolvidas nesse trabalho, são ferramentas extremamente valiosas.

Apesar de A549 e A549/CDDP_{CT} apresentarem fenótipos celulares parecidos, as linhagens diferem significativamente em relação ao perfil proteico. A diminuição da expressão de VIM, por exemplo, está diretamente relacionada com a resistência à cisplatina em células de câncer de ovário (HUO et al., 2014) e o silenciamento desta proteína estimulou a resistência à cisplatina por diminuir o acúmulo intracelular da droga. Além disso, VIM foi identificada positivamente regulada em células NG108-15 com senescência induzida por cisplatina (LI et al., 2014a). Portanto, a diminuição da expressão de VIM em células de A549/CDDP_{CT} pode ser um mecanismo de proteção para diminuir o acúmulo intracelular de cisplatina e evadir a senescência celular causada pela droga. Por outro lado, a maior expressão de VIM na sublinhagem A549/CDDP pode ser responsável pela morfologia diferencial que as células apresentam e pode estar envolvida com transição epitelial-mesenquimal (LIU et al., 2015a).

Diversas proteínas já relacionadas com resistência à cisplatina foram identificadas nas células A549/CDDP_{CT}, como o fator MIF, a proteína DJ-1 (PARK7), a proteína de ligação à GTP nuclear Ran (RAN) e a tubulina TUBB3, podendo estar envolvidas nos mecanismos de resistência apresentados por essa sublinhagem. MIF

96

promove proliferação e migração em células de osteosarcoma pela ativação da via RAS/MAPK, além do silenciamento desse fator aumentar a sensibilidade à cisplatina (WANG et al., 2017a). Especificamente em NSCLC, o silenciamento de MIF induz a diminuição de proliferação e migração celular (GOTO et al., 2017). Da mesma forma, MIF foi relacionada à reorganização do citoesqueleto de actina, regulação negativa de morte celular e resposta ao dano no DNA entre as ontologias enriquecidas para A549/CDDP_{CT}.

A proteína DJ-1, por sua vez, foi associada à resistência à cisplatina em células A549, reparando a proliferação perdida após exposição à cisplatina (ZENG et al., 2011). Aumento da expressão de DJ-1 também foi associado à diminuição da apoptose induzida pela cisplatina em células de carcinoma renal (TRIVEDI et al., 2016). Da mesma forma, a proteína RAN, quando associada à RCC1, é descrita como responsável pela evasão de apoptose e inibição da pausa no ciclo celular induzidos pela cisplatina em SCLC (LENG et al., 2016). TUBB3 também foi associada com resistência à cisplatina em NSCLC (LENG et al., 2012; SEVE, 2005) e seu silenciamento levou à diminuição de crescimento de tumor de NSCLC em camundongos (MCCARROLL et al., 2010). Além disso, a diminuição da expressão de TUBB3 foi relacionada a uma melhor resposta à quimioterapia com compostos de platina em pacientes de NSCLC (AZUMA et al., 2009; LI et al., 2014c). Associado a isso estão as ontologias enriquecidas em A549/CDDP_{CT}, que incluem reorganização do citoesqueleto de actina, regulação negativa da apoptose e da morte celular, regulação negativa do dano ao DNA, complexo de poros, resposta a droga e resposta a estresse oxidativo.

Igualmente, A549/CDDP_{CT} apresentou a proteína nucleosídeo difosfato quinase (NME1-NME2) diferencialmente expressa. A diminuição da expressão da proteína NME foi associado à resistência à cisplatina em células de carcinoma de cabeça e

pescoço (WANG et al., 2014), enquanto que sua superexpressão reverteu a resistência, além de ser sugerido como um marcador de células de carcinoma escamoso esofágico (IIZUKA et al., 1999). Além disso, a diminuição da expressão de NME pode prevenir o dano causado pela cisplatina no DNA genômico e mitocondrial (LIZUKA et al., 2000). A549/CDDP_{CT} apresentou categorias funcionais como complexo da proteína ligase 4 DNA-quinase dependente de DNA e a regulação negativa da resposta ao dano no DNA, sinal de transdução pelo mediador p53 que se relacionam com as possíveis funções dessas proteínas. Ontologias enriquecidas que incluem NME foram regulação de apoptose, regulação de morte celular programada e resposta a estímulo químico, entre outras.

A proteína aldo-keto redutase membro C1 da família 1 (AKR1C1), identificada menos expressa em A549/CDDP, é descrita como negativamente expressa em células de NSCLC tratadas com baixas doses de cisplatina (LEUNG et al., 2016), como realizado nesse trabalho. Da mesma forma, o aumento da expressão de AKR1C1 promove proliferação e migração celular em câncer de pulmão de células pequenas (TIAN et al., 2016). Além disso, calpaina 2 (CAPN2), exclusivamente identificada em A549/CDDP, foi observada mais expressa em tumores de ovário resistentes à cisplatina (STORR et al., 2012) e seu silenciamento causou sensibilidade à cisplatina em câncer de mama (GRIEVE et al., 2016). A proliferação reduzida apresentada pela A549/CDDP, assim como ontologias enriquecidas na linhagem, como polimerização e depolimerização de actina e regulação da migração celular suportam a ideia dessas proteínas estarem envolvidas nos mecanismos de resistência à cisplatina da sublinhagem.

Algumas proteínas foram identificadas diferencialmente expressas entre A549/CDDP e A549/CDDP_{CT} e, apesar de não poderem ser diretamente relacionadas à resistência à cisplatina, valem ser destacas. A expressão do gene da alfa-actinina 4

98

(ACTN4) foi associado com resistência à compostos de platina em neuroblastoma (PISKAREVA et al., 2015) e especificamente com resistência à cisplatina em câncer de ovário (LIU et al., 2015b). A inibição da endoplasmina HSP90B causa sensibilidade à cisplatina e apoptose em câncer de pulmão (WANG et al., 2017b; WENG et al., 2012). O silenciamento da miosina MYH9 desencadeia capacidade invasiva em tumor de células escamosas (SCHRAMEK et al., 2014). A profilina PFN1 é descrita como menos expressa em linhagemcelular EC109 resistente à cisplatina (WEN et al., 2009). A proteína anexina A5 (ANXA5) é descrita como mais expressa em linhagem celular de carcinoma nasofaríngeo resistente à cisplatina quando comparada à linhagem parental (TANG et al., 2012). A proteína de choque térmico beta-1 (HSPB1) foi descrita como responsável pela resistência à cisplatina, tendo o silenciamento desta proteína inibido a resistência em câncer de pulmão (KIM et al., 2007) e câncer de ovário (LU et al., 2016). Além disso, células cancerosas laríngeas resistentes à cisplatina que apresentam maior expressão de HSPB1 obtiveram um menor crescimento celular (LEE et al., 2006).

A proteína de 78 kDa regulada por glicose (HSPA5) foi encontrada menos expressa em A549/CDDP_{CT} em relação a A549 e A549/CDDP e serve como um bom exemplo da dualidade de algumas proteínas em relação à resistência à cisplatina. A HSPA5, quando regulada positivamente, aumenta a sensibilidade das células à cisplatina pela ativação da via JNK e NF- κ B, levando a apoptose (AHMAD; HAHN; CHATTERJEE, 2014). Da mesma forma, a exposição das células à cisplatina reprime a expressão de HSPA5 pela inibição de ATF6 α -p50, sendo inclusive sugerido que sua maior expressão poderia auxiliar no tratamento da cisplatina contra o câncer (KUO et al., 2016). Contudo, a superexpressão da proteína foi descrita como tendo papel protetor da senescência celular induzida pela cisplatina, sendo essa característica revertida quando a proteína é inibida (LI et al., 2014b). Assim como sua inibição causa aumento

da sensibilidade à quimioterápicos em câncer coloretal (MHAIDAT et al., 2016). Portanto, a expressão diferencial dessa proteína entre $A549/CDDP_{CT}$ e A549/CDDPpode auxiliar o fenótipo de resistência à cisplatina de ambas sublinhagens, contudo mais estudos seriam necessários para comprovar isso.

Apesar de diversas proteínas identificadas serem bem relacionadas com resistência à cisplatina, algumas não possuem papel definido pela literatura e se apresentam como potenciais alvos para melhor estudo. O fator de alongamento 2 (EEF2), por exemplo, é bem descrito como mais expresso em diversos tipos de tumores (CHEN et al., 2011; OJI et al., 2014; SUN et al., 2013), mas nenhuma relação com resistência à cisplatina foi descrita ainda. Da mesma maneira, nenhum trabalho envolvendo a proteína de choque térmico HSPE1 em câncer de pulmão resistente à cisplatina foi realizado. Portanto, maiores estudos nessas duas proteínas nas sublinhagens resistentes à cisplatina podem levar a um melhor entendimento do papel dessas proteínas nos mecanismos de resistência e descoberta de possível biomarcadores da resistência em câncer de pulmão.

A identificação de tantas proteínas já anteriormente relacionadas à resistência à cisplatina confirma o caráter resistente das sublinhagens A549/CDDP_{CT} e A549/CDDP. Os mecanismos de resistência identificados na A549/CDDP_{CT}, baseados nas ontologias enriquecidas, podem estar relacionados ao perfil ribossomal, resposta ao estresse oxidativo e regulação negativa de morte celular. Os mecanismos apresentados pela A549/CDDP, por outro lado, seriam definidos pelo maior reparo ao dano no DNA causado pela cisplatina e presença de ontologias enriquecidas associadas à transição epitelial-mesenquimal. Portanto, ambas as sublinhagens se mostram como ferramentas adequadas para estudos que visam o estudo dos mecanismos de resistência à cisplatina em câncer de pulmão.

5. PERSPECTIVAS

- 5.1. Realização de nova análise proteômica com o intuito de aumentar o número de proteínas identificadas.
- 5.2. Seleção de proteínas-alvo descritas no trabalho para estudos de silenciamento e superexpressão gênica nas linhagens celulares sensível e resistentes à cisplatina para avaliação de seu potencial papel na resistência à cisplatina.

6. REFERÊNCIAS

AHMAD, M.; HAHN, I. F.; CHATTERJEE, S. GRP78 up-regulation leads to hypersensitization to cisplatin in A549 lung cancer cells. **Anticancer research**, v. 34, n. 7, p. 3493–500, 2014.

AMERICAN CANCER SOCIETY. **About Small Cell Lung Cancer**. Disponível em: https://www.cancer.org/content/dam/CRC/PDF/Public/8708.00.pdf>. Acesso em: 18 dez. 2017a.

AMERICAN CANCER SOCIETY.Treating Non-Small Cell Lung Cancer.Disponívelem:https://www.cancer.org/cancer/non-small-cell-lung-cancer/treating.html. Acesso em: 18 dez. 2017b.

AZUMA, K. et al. Expression of ERCC1 and class III β -tubulin in non-small cell lung cancer patients treated with carboplatin and paclitaxel. **Lung Cancer**, v. 64, n. 3, p. 326–333, 2009.

BARR, M. P. et al. Generation and Characterisation of Cisplatin-Resistant Non-Small Cell Lung Cancer Cell Lines Displaying a Stem-Like Signature. **PLoS ONE**, v. 8, n. 1, p. e54193, 2013.

BROZOVIC, A. et al. Long-term activation of SAPK/JNK, p38 kinase and fas-L expression by cisplatin is attenuated in human carcinoma cells that acquired drug resistance. **International Journal of Cancer**, v. 112, n. 6, p. 974–985, 2004.

BROZOVIC, A.; OSMAK, M. Activation of mitogen-activated protein kinases by cisplatin and their role in cisplatin-resistance. **Cancer Letters**, v. 251, n. 1, p. 1–16, 2007.

CEKAN, P. et al. RCC1-dependent activation of Ran accelerates cell cycle and DNA repair, inhibiting DNA damage-induced cell senescence. **Molecular Biology of the Cell**, v. 27, n. 8, p. 1346–1357, 2016.

CHEN, C.-Y. et al. Sumoylation of eukaryotic elongation factor 2 is vital for protein stability and anti-apoptotic activity in lung adenocarcinoma cells. **Cancer Science**, v. 102, n. 8, p. 1582–1589, 2011.

Cisplatin-Based Adjuvant Chemotherapy in Patients with Completely Resected Non– Small-Cell Lung Cancer. **New England Journal of Medicine**, v. 350, n. 4, p. 351–360, 2004.

DABROWIAK, J. C.; GOODISMAN, J.; SOUID, A.-K. Kinetic study of the reaction of cisplatin with thiols. **Drug metabolism and disposition: the biological fate of chemicals**, v. 30, n. 12, p. 1378–84, 2002.

DASARI, S.; TCHOUNWOU, P. B. Cisplatin in cancer therapy: Molecular mechanisms of action. **European Journal of Pharmacology**, v. 740, p. 364–378, 2014.

DESANTIS, C. E. et al. Cancer treatment and survivorship statistics, 2014. CA: A Cancer Journal for Clinicians, v. 64, n. 4, p. 252–271, 2014.

FENG, X. et al. Annexin A2 contributes to cisplatin resistance by activation of JNK-

p53 pathway in non-small cell lung cancer cells. **Journal of Experimental & Clinical Cancer Research**, v. 36, n. 1, p. 123, 2017.

GILLET, J.-P. et al. Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance. **Proceedings of the National Academy of Sciences**, v. 108, n. 46, p. 18708–18713, 2011.

GLOBOCAN. GLOBOCAN: Estimated Cancer Incidence, Mortality and Prevalence Worldwide in 2012. Disponível em: http://globocan.iarc.fr. Acesso em: 18 dez. 2017.

GOTO, A. et al. The low expression of miR-451 predicts a worse prognosis in non-small cell lung cancer cases. **PLOS ONE**, v. 12, n. 7, p. e0181270, 2017.

GRIEVE, S. et al. Calpain Genetic Disruption and HSP90 Inhibition Combine To Attenuate Mammary Tumorigenesis. **Molecular and Cellular Biology**, v. 36, n. 15, p. 2078–2088, 2016.

GUO, R. et al. Promoter methylation profiles between human lung adenocarcinoma multidrug resistant A549/cisplatin (A549/DDP) cells and its progenitor A549 cells. **Biological & pharmaceutical bulletin**, v. 36, n. 8, p. 1310–6, 2013.

HAGRMAN, D. KINETIC STUDY ON THE REACTION OF CISPLATIN WITH METALLOTHIONEIN. **Drug Metabolism and Disposition**, v. 31, n. 7, p. 916–923, 2003.

HARVEY, H. et al. Modulation of chemotherapeutic drug resistance in neuroblastoma SK-N-AS cells by the neural apoptosis inhibitory protein and miR-520f. **International Journal of Cancer**, v. 136, n. 7, p. 1579–1588, 2015.

HUO, Y. et al. Downregulation of vimentin expression increased drug resistance in ovarian cancer cells. **Oncotarget**, 2014.

IIZUKA, N. et al. The nm23-H1 gene as a predictor of sensitivity to chemotherapeutic agents in oesophageal squamous cell carcinoma. **British Journal of Cancer**, v. 81, n. 3, p. 469–475, 1999.

INSTITUTO NACIONAL DO CÂNCER. **PULMÃO**. Disponível em: http://www2.inca.gov.br/wps/wcm/connect/tiposdecancer/site/home/pulmao/definicao >. Acesso em: 18 dez. 2017.

KILARI, D. Role of copper transporters in platinum resistance. World Journal of Clinical Oncology, v. 7, n. 1, p. 106, 2016.

KIM, E.-H. et al. Inhibition of Heat Shock Protein 27-Mediated Resistance to DNA Damaging Agents by a Novel PKC -V5 Heptapeptide. **Cancer Research**, v. 67, n. 13, p. 6333–6341, 2007.

KÖBERLE, B. et al. Cisplatin resistance: Preclinical findings and clinical implications. **Biochimica et Biophysica Acta (BBA) - Reviews on Cancer**, v. 1806, n. 2, p. 172–182, 2010.

KUO, J. et al. Cisplatin-induced regulation of signal transduction pathways and transcription factors in p53-mutated subclone variants of hepatoma cells: Potential

application for therapeutic targeting. Oncology Letters, 2016.

LEE, J.-H. et al. Overexpression of human 27 kDa heat shock protein in laryngeal cancer cells confers chemoresistance associated with cell growth delay. **Journal of Cancer Research and Clinical Oncology**, v. 133, n. 1, p. 37–46, 2006.

LENG, X.-F. et al. Combined analysis of mRNA expression of ERCC1, BAG-1, BRCA1, RRM1 and TUBB3 to predict prognosis in patients with non-small cell lung cancer who received adjuvant chemotherapy. **Journal of Experimental & Clinical Cancer Research**, v. 31, n. 1, p. 25, 2012.

LEUNG, A. W. Y. et al. Combined Use of Gene Expression Modeling and siRNA Screening Identifies Genes and Pathways Which Enhance the Activity of Cisplatin When Added at No Effect Levels to Non-Small Cell Lung Cancer Cells In Vitro. **PLOS ONE**, v. 11, n. 3, p. e0150675, 2016.

LI, W. et al. Proteomics Analysis of Normal and Senescent NG108-15 Cells: GRP78 Plays a Negative Role in Cisplatin-Induced Senescence in the NG108-15 Cell Line. **PLoS ONE**, v. 9, n. 3, p. e90114, 2014a.

LI, W. et al. Cisplatin-induced senescence in ovarian cancer cells is mediated by GRP78. **Oncology Reports**, v. 31, n. 6, p. 2525–2534, 2014b.

LI, Z. et al. Predictive value of APE1, BRCA1, ERCC1 and TUBB3 expression in patients with advanced non-small cell lung cancer (NSCLC) receiving first-line platinum–paclitaxel chemotherapy. **Cancer Chemotherapy and Pharmacology**, v. 74, n. 4, p. 777–786, 2014c.

LIU, C.-Y. et al. Vimentin contributes to epithelial-mesenchymal transition cancer cell mechanics by mediating cytoskeletal organization and focal adhesion maturation. **Oncotarget**, v. 6, n. 18, p. 15966–15983, 2015a.

LIU, X. et al. Oncogenes associated with drug resistance in ovarian cancer. Journal of Cancer Research and Clinical Oncology, v. 141, n. 3, p. 381–395, 2015b.

LIZUKA, N. et al. Downregulation of intracellular nm23-H1 prevents cisplatin-induced DNA damage in oesophageal cancer cells: possible association with Na(+), K(+)-ATPase. **British journal of cancer**, v. 83, n. 9, p. 1209–15, 2000.

LU, H. et al. HSP27 Knockdown Increases Cytoplasmic p21 and Cisplatin Sensitivity in Ovarian Carcinoma Cells. **Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics**, v. 23, n. 3, p. 119–128, 2016.

MARTIN, L. P.; HAMILTON, T. C.; SCHILDER, R. J. Platinum Resistance: The Role of DNA Repair Pathways. **Clinical Cancer Research**, v. 14, n. 5, p. 1291–1295, 2008.

MCCARROLL, J. A. et al. III-Tubulin Is a Multifunctional Protein Involved in Drug Sensitivity and Tumorigenesis in Non-Small Cell Lung Cancer. **Cancer Research**, v. 70, n. 12, p. 4995–5003, 2010.

MCDERMOTT, M. et al. In vitro Development of Chemotherapy and Targeted Therapy Drug-Resistant Cancer Cell Lines: A Practical Guide with Case Studies. **Frontiers in Oncology**, v. 4, 2014.

MHAIDAT, N. M. et al. GRP78 regulates sensitivity of human colorectal cancer cells to DNA targeting agents. **Cytotechnology**, v. 68, n. 3, p. 459–467, 2016.

NAKAGAWA, T. et al. Expression of copper-transporting P-type adenosine triphosphatase (ATP7B) correlates with cisplatin resistance in human non-small cell lung cancer xenografts. **Oncology Reports**, 1994.

NEJDL, L. et al. Mechanisms of Uptake and Interaction of Platinum Based Drugs in Eukaryotic Cells. In: **Platinum Metals in the Environment**. p. 401–415, 2015.

OISO, S. et al. Factors involved in the cisplatin resistance of KCP-4 human epidermoid carcinoma cells. **Oncology Reports**, v. 31, n. 2, p. 719–726,2014.

OJI, Y. et al. The translation elongation factor eEF2 is a novel tumor-associated antigen overexpressed in various types of cancers. **International Journal of Oncology**, 2014.

PISKAREVA, O. et al. The development of cisplatin resistance in neuroblastoma is accompanied by epithelial to mesenchymal transition in vitro. **Cancer Letters**, v. 364, n. 2, p. 142–155, 2015.

PUJOL, J. L. et al. Tumor-tissue and plasma concentrations of platinum during chemotherapy of non-small-cell lung cancer patients. **Cancer chemotherapy and pharmacology**, v. 27, n. 1, p. 72–5, 1990.

QI, K. et al. Id4 promotes cisplatin resistance in lung cancer through the p38 MAPK pathway. **Anti-cancer drugs**, v. 27, n. 10, p. 970–8, 2016.

Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening. **New England Journal of Medicine**, v. 365, n. 5, p. 395–409, 2011.

ROSENBERG, B. et al. Platinum compounds: a new class of potent antitumour agents. **Nature**, v. 222, n. 5191, p. 385–6, 1969.

SCHRAMEK, D. et al. Direct in Vivo RNAi Screen Unveils Myosin IIa as a Tumor Suppressor of Squamous Cell Carcinomas. **Science**, v. 343, n. 6168, p. 309–313, 2014.

SEVE, P. Expression of Class III -Tubulin Is Predictive of Patient Outcome in Patients with Non-Small Cell Lung Cancer Receiving Vinorelbine-Based Chemotherapy. **Clinical Cancer Research**, v. 11, n. 15, p. 5481–5486, 2005.

SIDDIK, Z. H. Cisplatin: mode of cytotoxic action and molecular basis of resistance. **Oncogene**, v. 22, n. 47, p. 7265–7279, 2003.

SISTEMA ÚNICO DE SAÚDE. **Controle do Tabagismo**. Disponível em: http://portalarquivos2.saude.gov.br/images/pdf/2015/maio/28/apresentacao-tabaco.pdf>. Acesso em: 18 dez. 2017.

STEWART, D. et al. Human tissue distribution of platinum after cisdiamminedichloroplatinum. Cancer Chemotherapy and Pharmacology, v. 10, n. 1, 1982.

STORR, S. J. et al. Calpain-2 expression is associated with response to platinum based chemotherapy, progression-free and overall survival in ovarian cancer. Journal of Cellular and Molecular Medicine, v. 16, n. 10, p. 2422–2428, 2012.

SUN, H.-G. et al. Clinical Value of Eukaryotic Elongation Factor 2 (eEF2) in Nonsmall Cell Lung Cancer Patients. **Asian Pacific Journal of Cancer Prevention**, v. 14, n. 11, p. 6533–6535, 2013.

TANG, S. et al. Identification Keratin 1 as a cDDP-resistant protein in nasopharyngeal carcinoma cell lines. **Journal of Proteomics**, v. 75, n. 8, p. 2352–2360, 2012.

TIAN, H. et al. High expression of AKR1C1 is associated with proliferation and migration of small-cell lung cancer cells. **Lung Cancer: Targets and Therapy**, p. 53, 2016.

TORRE, L. A. et al. Global cancer statistics, 2012. CA: A Cancer Journal for Clinicians, v. 65, n. 2, p. 87–108, 2015.

TRIVEDI, R. et al. The antioxidant protein PARK7 plays an important role in cell resistance to Cisplatin-induced apoptosis in case of clear cell renal cell carcinoma. **European Journal of Pharmacology**, v. 784, p. 99–110, 2016.

WANG, C. et al. Macrophage migration inhibitory factor promotes osteosarcoma growth and lung metastasis through activating the RAS/MAPK pathway. **Cancer Letters**, v. 403, p. 271–279, 2017a.

WANG, H. et al. 3-O-(Z)-coumaroyloleanolic acid overcomes Cks1b -induced chemoresistance in lung cancer by inhibiting Hsp90 and MEK pathways. **Biochemical Pharmacology**, v. 135, p. 35–49, 2017b.

WANG, Y.-F. et al. NM23-H1 expression of head and neck squamous cell carcinoma in association with the response to cisplatin treatment. **Oncotarget**, v. 5, n. 17, p. 7392–7405, 2014.

WEN, J. et al. Comparative proteomic analysis of the esophageal squamous carcinoma cell line EC109 and its multi-drug resistant subline EC109/CDDP. **International Journal of Oncology**, v. 36, n. 1, 2009.

WENG, S.-H. et al. Inhibition of thymidine phosphorylase expression by using an HSP90 inhibitor potentiates the cytotoxic effect of cisplatin in non-small-cell lung cancer cells. **Biochemical Pharmacology**, v. 84, n. 1, p. 126–136, 2012.

XIONG, Y.; HUANG, B.-Y.; YIN, J.-Y. Pharmacogenomics of platinum-based chemotherapy in non-small cell lung cancer: focusing on DNA repair systems. **Medical Oncology**, v. 34, n. 4, p. 48, 2017.

ZENG, H.-Z. et al. Proteomic Analysis Identified DJ-1 as a Cisplatin Resistant Marker in Non-Small Cell Lung Cancer. **International Journal of Molecular Sciences**, v. 12, n. 12, p. 3489–3499, 2011.

ZHANG, H. et al. miR-181c contributes to cisplatin resistance in non-small cell lung cancer cells by targeting Wnt inhibition factor 1. Cancer Chemotherapy and Pharmacology, 2017.

CURRICULUM VITÆ resumido

MARTELLO, C. L.; MARTELLO, CAROLINA LUMERTZ; MARTELLO, CAROLINA

1. DADOS PESSOAIS

Nome:

Carolina Lumertz Martello

Local e data de nascimento:

Porto Alegre, Rio Grande do Sul, Brasil, 12/10/1990

Endereço profissional:

Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia

Avenida Bento Gonçalves, 9500 Prédio 43421 salas 206/204

91501-970, Porto Alegre, RS, Brasil

Telefone profissional:

(051) 33086070

E-mail:

carolinamartello1@gmail.com

2. FORMAÇÃO:

2015 - Atual

Mestrado em Biologia Celular e Molecular Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brasil Orientador: Dra. Karina Mariante Monteiro Bolsista do: Conselho Nacional de Desenvolvimento Científico e Tecnológico **2010 – 2014** Graduação em Biotecnologia Molecular Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brasil

3. ESTÁGIOS:

2014 - 2014

Estágio Curricular

Enquadramento Funcional: Estagiário

Carga horária: 20 h

Instituição: Laboratório de Genética Molecular (Hospital de Clínicas de Porto Alegre)

Surpervisor: Dra. Maria Luiza Saraiva Pereira

Resumo das atividades desenvolvidas:

- Diagnóstico de doenças.
- Cultivo celular de linhagem primária de pacientes.
- Sequenciamento de ácidos nucleicos.
- Análise de fragmentos por PCR Multiplex e TP-PCR.
- Discriminação alélica por PCR em tempo real.

2013 - 2014

Bolsista

Enquadramento Funcional: Estagiário - Iniciação Tecnológica

Carga horária: 20 h

Instituição: Laboratório de Genômica Estrutural e Funcional (Centro de Biotecnologia/UFRGS)

Orientador: Dr. Henrique Bunselmeyer Ferreira

Resumo das atividades desenvolvidas:

- Extração de ácidos nucleicos e técnica de PCR.
- Clonagem molecular e transformação bacteriana.
- Expressão e purificação de proteína recombinante.
- Imunização animal em camundongos e ensaio imunológico ELISA.

2012 - 2013

Graduando

Enquadramento Funcional: Estagiário - Iniciação Científica Voluntária

Carga horária: 20 h

Instituição: Laboratório de Genômica Estrutural e Funcional (Centro de Biotecnologia/UFRGS)

Orientador: Dr. Henrique Bunselmeyer Ferreira

Resumo das atividades desenvolvidas:

- Extração de ácidos nucleicos e técnica de PCR.
- Clonagem molecular e transformação bacteriana.
- Expressão e purificação de proteína recombinante.
2010 - 2011

Bolsista

Enquadramento Funcional: Estagiário - Iniciação Científica

Carga horária: 20 h

Instituição: Laboratório de Fisiologia Vegetal (Departamento de Botânica/UFRGS)

Orientador: Dra. Janette Palma Fett

Resumo das atividades desenvolvidas:

- Crescimento vegetal.
- Extração de ácidos nucleicos, clonagem celular e transformação bacteriana.

4. ARTIGOS COMPLETOS PUBLICADOS

- 4.1. Leal, Fernanda Munhoz dos Anjos; Virginio, Veridiana Gomes; Martello, Carolina Lumertz; Paes, Jéssica Andrade; Borges, Thiago J.; Jaeger, Natália; Bonorino, Cristina; Ferreira, Henrique Bunselmeyer. Mycoplasma hyopneumoniae and Mycoplasma flocculare differential domains from orthologous surface proteins induce distinct cellular immune responses in mice. Veterinary microbiology (Amsterdam. Print), V. 190, P. 50-57, 2016.
- 4.2. Reolon, Luciano Antonio; **Martello, Carolina Lumertz**; Schrank, Irene Silveira; Ferreira, Henrique Bunselmeyer. Survey of surface proteins from the pathogenic *Mycoplasma hyopneumoniae* strain 7448 using a biotin cell surface labeling approach. Plos One, V. 9, P. E112596, 2014.
- 4.3. **Martello, Carolina**; Leal, Fernanda; Virginio, Veridiana; Reolon, Luciano; Schrank, Irene; Zaha, Arnaldo; Ferreira, Henrique. Orthologous surface proteins from *Mycoplasma hyopneumoniae* and *Mycoplasma flocculare*: in silico comparison and heterologous expression of differential extracellular domains. Bmc Proceedings, V. 8, P. P157, 2014.

5. RESUMOS E TRABALHOS APRESENTADOS EM CONGRESSOS

- 5.1. **Martello, C. L.**; Dutra, C. S.; Cadore, N. A.; Silveira, H. B.; Monteiro, K. M. Nuclear and perinuclear proteome analysis of cisplatin-sensitive and -resistant human lung adenocarcinoma cells. 2015. (Apresentação de trabalho/Outra).
- 5.2. Dutra, C. S.; **Martello, C. L.**; Silveira, H. B.; Cadore, N. A.; Monteiro, K. M. Identification of newly synthesized proteins in human lung adenocarcinoma cells exposed to cisplatin. 2015. (Apresentação de trabalho/Outra).
- 5.3. Martello, C. L.; Leal, F. M. A.; Ferreira, H. B. Immunological evaluation in mice of a *Mycoplasma hyopneumoniae* recombinant protein produced in LPS producing and LPS-free *Escherichia coli* strains. 2014. (Apresentação de trabalho/Congresso).

- 5.4. Leal, F. M. A.; Martello, C. L.; Virginio, V. G.; Reolon, L. A.; Schranck, I. S.; Ferreira, H. B. Expression of differential extracellular domains of orthologous surface proteins from *Mycoplasma hyopneumoniae* and *Mycoplasma flocculare*. 2014. (Apresentação de trabalho/Congresso).
- 5.5. **Martello, C. L.**; Virginio, V. G.; Paes, J. A.; Zaha, A.; Ferreira, H. B. Antígenos recombinantes de *Mycoplasma hyopneumoniae* para formulações de vacinas contra a pneumonia enzoótica suína. 2014. (Apresentação de Trabalho/Outra).
- 5.6. Leal, F. M. A.; Martello, C. L.; Virginio, V. G.; Reolon, L. A.; Schranck, I. S.; Zaha, A.; Ferreira, H. B. *In silico* analyses of ortholog surface proteins from *Mycoplasma hyopneumoniae* and *Mycoplasma flocculare*. 2013. (Apresentação de trabalho/Congresso).
- 5.7. Paes, J. A.; Virginio, V. G.; Martello, C. L.; Bonotto, R. M.; Zaha, A.; Ferreira, H. B. Antígenos recombinantes de *Mycoplasma hyopneumoniae* para a formulação de vacinas baseadas em construções de DNA contra a pneumonia enzoótica suína. 2013. (Apresentação De Trabalho/Outra).
- 5.8. Bonotto, R. M.; Virginio, V. G.; Paes, J. A.; Martello, C. L.; Zaha, A.; Ferreira, H. B. Caracterização de proteínas recombinantes de *Mycoplasma hyopneumoniae* para a formulação de vacinas contra a pneumonia enzoótica suína. 2013. (Apresentação De Trabalho/Outra).
- 5.9. **Martello, C. L.**; Paloma K. Menguer; Felipe K. Ricachenevsky; Karina L. Lopes; Janette P. Fett. Análises sobre a família gênica VIT em plantas e caracterização dos genes OsVIT1 e OsVIT2 por meio de transformação de levedura. 2012. (Apresentação De Trabalho/Outra).
- 5.10. Martello, C. L.; Paloma K. Menguer; Felipe K. Ricachenevsky; Karina L. Lopes; Janette P. Fett. Análises sobre a família gênica VIT em plantas e caracterização dos genes OsVIT1 e OsVIT2 por meio de transformação de levedura. 2011. (Apresentação De Trabalho/Outra).