
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM MICROELETRÔNICA

LUIS ALBERTO CONTRERAS BENITES

Automated Design Flow for Applying Triple
Modular Redundancy in Complex

Semi-Custom Digital Integrated Circuits

Thesis presented in partial fulfillment
of the requirements for the degree of
Master of Microeletronics

Advisor: Prof. Dr. Fernanda Lima Kastensmidt

Porto Alegre
July 2018

CIP — CATALOGING-IN-PUBLICATION

Contreras Benites, Luis Alberto

Automated Design Flow for Applying Triple Modular Re-
dundancy in Complex Semi-Custom Digital Integrated Circuits
/ Luis Alberto Contreras Benites. – Porto Alegre: PGMI-
CRO da UFRGS, 2018.

139 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Microeletrônica, Porto Alegre,
BR–RS, 2018. Advisor: Fernanda Lima Kastensmidt.

1. Fault tolerance. 2. Radiation effects. 3. TMR. 4. Equiva-
lence checking. 5. Semi-custom design flow. 6. ASIC. 7. FPGA.
I. Lima Kastensmidt, Fernanda. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Rui Vicente Oppermann
Vice-Reitora: Profa. Jane Fraga Tutikian
Pró-Reitor de Pós-Graduação: Prof. Celso Giannetti Loureiro Chaves
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenadora do PGMICRO: Prof. Fernanda Gusmão de Lima Kastensmidt
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“All the breaks you need in life wait within your imagination. . . .

Imagination is the workshop of your mind, capable of turning mind energy into

accomplishment and wealth

— NAPOLEON HILL

ACKNOWLEDGMENTS

This work is one way to thank my parents William and Yuni for their guidance and

love. Also, to my siblings Williams and Melany for being always along with me although

the distance.

I want to express my gratitude to my girlfriend Thaiane for being supportive, un-

derstanding and a wonderful companion.

I would like to sincerely thank my adviser professor Fernanda Lima for her con-

stant support, patience, motivation, and sharing her expertise and knowledge with me.

Thank CEITEC for providing facilities to allow me to attend the master’s subjects

during work hours. I am particularly grateful with Janaina Costa for her several advice

and help.

I am also thankful for the financial aid provided by CAPES and CNPq during the

development of my master course in microelectronics and my training in the CI Brasil

Program.

Finally, to the persons that I met in Porto Alegre, Mauricio, Sebastian, Nolberto

and Jorge for their invaluable friendship.

ABSTRACT

Radiation effects have been one of the most serious issues in military and space applica-

tions. But they are also an increasing concern in modern technologies, even for commer-

cial applications at the ground level. Protection or hardening of integrated circuits against

radiation effects can be obtained through the use of enhanced fabrication processes and

strategies at different stages of the circuit design. The triple modular redundancy (TMR)

technique is a widely and well-known technique employed to mask single faults without

detecting them. However, the design of TMR circuits is not automated by commercial

electronic design automation (EDA) tools and even they can remove partially or totally

the redundant logic. On the other hand, there are several tools that can be used to im-

plement the TMR technique in integrated circuits, although most of them are licensed

commercial tools, convenient only for specific devices, or with restricted use because of

the International Traffic in Arms Regulations (ITAR) regimen. The present work intends

to overcome these issues so a methodology is proposed to automate the design of TMR

circuits using a commercial design flow. The proposed approach uses a structured netlist

to implement automatically TMR circuits at different granularity levels of redundancy

for cell-based and field-programmable gate array (FPGA) designs. Optimization of the

resulting TMR circuit is also applied based on the gate sizing approach. Moreover, verifi-

cation of the implemented TMR circuit is based on equivalence checking, and guarantee

its correct functionality and its fault-tolerant capability against soft errors. Experiments

with an high-level synthesis (HLS)-derived circuit and an obfuscated description of the

ARM Cortex-M0 soft-core are performed to show the use and the advantages of the pro-

posed design flow. Several issues related to the removal of the implemented redundant

logic were found as well as the impact in the increment of area caused by the major-

ity voters. Furthermore, the reliability of different TMR implementations of the ARM

soft-core synthesized in FPGA was evaluated using emulated-simulation fault injection

campaigns. As a result, it was reinforced the high-reliability level of the finest granularity

implementation even in the presence of up to 10 accumulated faults and the poorest miti-

gation capacity corresponding to the replication of flip-flops solely.

Keywords: Fault tolerance. Radiation effects. TMR. Equivalence checking. Semi-

custom design flow. ASIC. FPGA.

Fluxo de projeto automatizado para aplicar redundância modular tripla em

circuitos digitais semicustomizados complexos

RESUMO

Os efeitos de radiação têm sido um dos problemas mais sérios em aplicações militares e

espaciais. Mas eles também são uma preocupação crescente em tecnologias modernas,

mesmo para aplicações comerciais no nível do solo. A proteção dos circuitos integrados

contra os efeitos da radiação podem ser obtidos através do uso de processos de fabricação

aprimorados e de estratégias em diferentes estágios do projeto do circuito. A técnica de

TMR é bem conhecida e amplamente empregada para mascarar falhas únicas sem detectá-

las. No entanto, o projeto de circuitos TMR não é automatizado por ferramentas EDA co-

merciais e até mesmo eles podem remover parcial ou totalmente a lógica redundante. Por

outro lado, existem várias ferramentas que podem ser usadas para implementar a técnica

de TMR em circuitos integrados, embora a maioria delas sejam ferramentas comerciais

licenciadas, convenientes apenas para dispositivos específicos, ou com uso restrito por

causa do regime ITAR. O presente trabalho pretende superar esses incovenientes, para

isso uma metodologia é proposta para automatizar o projeto de circuitos TMR utilizando

um fluxo de projeto comercial. A abordagem proposta utiliza um netlist estruturado para

implementar automaticamente os circuitos TMR em diferentes níveis de granularidade de

redundância para projetos baseados em células e FPGA. A otimização do circuito TMR

resultante também é aplicada com base na abordagem do dimensionamento de portas ló-

gicas. Além disso, a verificação do circuito TMR implementado é baseada na verificação

de equivalência e garante sua funcionalidade correta e sua capacidade de tolerancia a

falhas simples. Experimentos com um circuito derivado de HLS e uma descrição ofus-

cada do soft-core ARM Cortex-M0 foram realizados para mostrar o uso e as vantagens do

fluxo de projeto proposto. Diversas questões relacionadas à remoção da lógica redundante

implementada foram encontradas, bem como o impacto no incremento de área causado

pelos votadores de maioria. Além disso, a confiabilidade de diferentes implementações

de TMR do soft core ARM sintetizado em FPGA foi avaliada usando campanhas de inje-

ção de falhas emuladas. Como resultado, foi reforçado o nível de alta confiabilidade da

implemntação com mais fina granularidade, mesmo na presença de até 10 falhas acumula-

das, e a menor capacidade de mitigação correspondente à replicação de flip-flops apenas.

Palavras-chave: Tolerância a falhas. Efeitos da radiação. TMR. Comprovação de equi-

valência. Fluxo de projeto semicustomizado. ASIC. FPGA.

LIST OF ABBREVIATIONS AND ACRONYMS

ALPEN Alpha-particle source/drain penetration

ASIC Application specific integrated circuit

ASTEP Altitude Single Event Effects Test European Platform

CERN Conseil Européen pour la Recherche Nucléaire

CGTMR Coarse grain TMR

DD Displace damage

DICE Dual interlocked storage cell

DSP Digital signal processing

EDA Electronic design automation

ELT Enclosed layout transistor

FGLTMR Fine grain local TMR

FGDTMR Fine grain distributed TMR

FGTMR Fine grain TMR

FI Fault injection

FPGA Field-programmable gate array

HDL Hardware description language

HKMG High-k metal gate

HLS High-level synthesis

LHC Large Hadron Collider

LSM Laboratory of Modane

IC Integrated circuit

IP Intellectual property

ITAR International Traffic in Arms Regulations

LEO Low Earth orbit

LET Linear energy transfer

MBU Multiple-bit upset

NIEL Non-ionizing energy loss

PKA Primary knock-on atom

RHBD Radiation Hardening by Design

RHBP Radiation Hardening by Process

RTL Register-transfer level

TMR Triple modular redundancy

SAA South Atlantic Anomaly

SDC Silent data corruption

SEE Single-event effect

SEL Single-event latch-up

SET Single-event transient

SEU Single-event upset

SKA Secondary knock-on atom

SoC System-on-a-chip

SOI Silicon-on-insulator

SRAM Static random-access memory

STI Sallow trench isolation

TID Total-ionizing dose

LIST OF FIGURES

Figure 2.1 Two doughnut-shaped regions of trapped radiation with maximum inte-
sity (inner and outter radiation belts) ..20

Figure 2.2 Inner belt is closer to the ground over South America and the South Atlantic21
Figure 2.3 Map of radiation dosage over South Atlantic Anomaly (SAA).....................21
Figure 2.4 Representation of cosmic rays cascade through the earth’s atmosphere22
Figure 2.5 Defect types and sub-cascade formation related to primary knock-on

atom energy in Silicon ...24
Figure 2.6 Cross section representation and positive trapped charge of a) LOCOS

and b) STI isolated transistors. c) Leakage paths (1 and 2 arrows) in STI
transistors ..25

Figure 2.7 Charge deposition and drift and diffusion collection processes. Pulse
current duration...27

Figure 2.8 Pulse quenching mechanism..28
Figure 2.9 Real-time soft-error rate measurements from three technological gener-

ations of single-port SRAMs: CMOS 130, 65 and 40 nm......................................29
Figure 2.10 Measurements of SBU and MCU events as a function of technology node30

Figure 3.1 Fault, failure and error events ..33
Figure 3.2 Triple Well process ..34
Figure 3.3 Epitaxial bulk CMOS ..34
Figure 3.4 Cross sections of a) Partially Depleted and b) Fully Depleted SOI MOS-

FETs..35
Figure 3.5 SOI parasitic a)PBJT and b) MOS ..35
Figure 3.6 Annular transistor with a) 90o angle, b) 45o angle and large W/L case37
Figure 3.7 Enclosed layout transistors with a) just source enclosed and b) both

drain and source enclosed ..37
Figure 3.8 Cross section of two adjacent NMOS transistor with guard band be-

tween them..38
Figure 3.9 Resistor memory cell schematic ..39
Figure 3.10 DICE memory cell schematic..39
Figure 3.11 HIT memory cell schematic ..40
Figure 3.12 Immune Latch diagram..41
Figure 3.13 a) SEILA memory cell schematic, b) and c) shows the same area uti-

lization for single and double height cell schemes respectively41
Figure 3.14 a) BISER latch diagram and b) C-element diagram and truth table42
Figure 3.15 a) SERT diagram and b) half transition NAND gate42
Figure 3.16 Dual Modular Redundancy (DMR) ...44
Figure 3.17 a) Triple Modular Redundant (TMR) structure, b) Triplicated TMR of

a processor/memory system and c) Sub-system TMR..45
Figure 3.18 Different implementations of majority voters for TMR systems46
Figure 3.19 a) Schematic of a non redundant complementary half adder imple-

mented with NAND logic and b) Quadded implementation of the comple-
mentary half adder ..47

Figure 3.20 a) Self-voting dual modular redundancy circuit, b) Self-voting major-
ity circuit and c) DMR-to-TMR and TMR-to-DRM mixed circuits.......................48

Figure 3.21 Temporal sampling in TMR latch with a) internal clock delays and b)
internal data delays. c) Minimal temporal sampling latch replicating itself in
time ...49

Figure 4.1 Typical approaches to implement digital integrated circuits52
Figure 4.2 Generalized semi-custom design flow ...54
Figure 4.3 Proposed fault tolerant design flow to automate the implementation, op-

timization and verification steps of TMR circuits...56
Figure 4.4 Illustration of a a) simple circuit and its TMR implementations: b)

CGTMR, c) FGLTMR and d) FGDTMR..58
Figure 4.5 Flowchart to automate the implementation of TMR circuits.........................61
Figure 4.6 Logic cones of a) unmitigated flip-flop and the resulting TMR logic

cones: b) FGLTMR, c) CGTMR and d) FGDTMR..64
Figure 4.7 Triplicated combinational logic paths of primary output in a) CGTMR

and b) FGDTMR implementations respectively...65
Figure 4.8 Comparing process and fault injection for the FGDTMR implementation...67
Figure 4.9 Flowchart to get elements of logic cone of a selected flip-flop68
Figure 4.10 Flowchart to find shared elements in logic cones of three redundant

flip-flops ..69
Figure 4.11 Flowchart to find shared elements in logic cones of a selected primary

output ..70
Figure 4.12 Flowchart to verify the correct functionality and masking capability of

the implemented TMR design...71

Figure 5.1 Matrix multiplication algorithm ..74
Figure 5.2 Procedure to evaluate the proposed cell-based flow to design TMR circuits 75
Figure 5.3 Extract from flip-flop’s searching report in optimized TMR circuit de-

rived from low-optimized implementation ...79
Figure 5.4 Extract from logic cones’ report of optimized TMR circuit derived from

low-optimized implementation ...79
Figure 5.5 Extract from voter’s searching report in optimized TMR circuit derived

from low-optimized implementation ..80
Figure 5.6 Extract from flip-flop’s searching report in optimized TMR circuit (gate

sizing) derived from high-optimized implementation ..80
Figure 5.7 Extract from logic cones’ report of optimized TMR circuit (gate sizing)

derived from high-optimized implementation ..81
Figure 5.8 Extract from voter’s searching report in optimized TMR circuit (gate

sizing) derived from high-optimized implementation ..81
Figure 5.9 Extract from logic cones’ searching report of voters in optimized TMR

circuit (gate sizing) derived from high-optimized implementation82
Figure 5.10 Verification report shows the correct implementation of the TMR ver-

sions of MM1..82
Figure 5.11 Verification report shows the correct implementation of the TMR ver-

sions of MM2..83
Figure 5.12 Verification report shows the correct implementation of the TMR ver-

sions of MM3..83
Figure 5.13 System example based on the ARM Cortex-M0 processor.........................84
Figure 5.14 Procedure to evaluate the proposed FPGA flow to design TMR circuits85
Figure 5.15 Verification report shows the correct implementation of the TMR ver-

sions of the ARM Cortex-M0 processor ...87

Figure 5.16 Microcontroller system provided into the ARM Cortex-M0 Design-
Start Eval package...89

Figure 5.17 Placement of a) unmitigated and its TMR implementations: b) CGTMR,
c) FGLTMR and d) FGDTMR..89

Figure 5.18 Placement of the reference and the implementations under test of the
ARM Cortex-M0 processor ...90

Figure 5.19 Reliability curve from accumulated fault injection campaigns92

Figure A.1 Unmitigated s27 circuit...111
Figure A.2 CGTMR s27 circuit ..114
Figure A.3 FGLTMR s27 circuit...117
Figure A.4 FGDTMR s27 circuit ..120

LIST OF TABLES

Table 1.1 Dedicated tools to implement TMR circuits ...17

Table 2.1 Alpha emissivities of various materials...23
Table 2.2 SEE classification..28

Table 3.1 Radhard standard cell libraries ..43
Table 3.2 Summary of techniques, the effects that they mitigate and the need of

logic gates customization..50

Table 5.1 Summary of low and high effort synthesis results of circuit versions.............76
Table 5.2 Summary of TMR implementation results from low-optimized netlist

(left section) and further aggressive optimization (right section)77
Table 5.3 Summary of TMR implementation results from high-optimized netlist

(left section) and further gate sizing optimization (right section).............................78
Table 5.4 Summary of TMR synthesis results of generic cell-based and FPGA im-

plementations ..86
Table 5.5 Classification of errors from the fault injection campaigns91

CONTENTS

1 INTRODUCTION...16
1.1 Motivation..16
1.2 Related work..17
1.3 Objective ..17
1.4 Outline..18
2 RADIATION EFFECTS IN INTEGRATED CIRCUITS19
2.1 Introduction...19
2.2 Radiation environments..19
2.2.1 Space environment...19
2.2.2 Terrestrial environment ..20
2.2.3 Artificial Man-made radiation..23
2.3 Classification of radiation effects...23
2.3.1 Displacement Damage (DD)..24
2.3.2 Total Ionization Dose (TID) damage ...25
2.3.3 Single-Event Effect (SEE) ...26
2.3.3.1 Basic mechanisms of SEE ..26
2.3.3.2 Types of SEEs ...27
2.4 Radiation effects in modern world ..27
2.5 Conclusion ...31
3 FAULT-TOLERANCE TECHNIQUES FOR DIGITAL CIRCUITS32
3.1 Introduction...32
3.2 Fault classification...32
3.3 Enhanced Process..33
3.4 Radiation Hardening by Design ..36
3.4.1 Layout ..36
3.4.1.1 Edgeless transistor ..36
3.4.1.2 Guard rings..38
3.4.2 Circuit Level ..38
3.4.2.1 Hardened Memory cells..38
3.4.2.2 Rad-hard library of digital cells ..42
3.4.2.3 Filtering...43
3.4.2.4 Redundancy...44
3.5 Conclusion ...50
4 AUTOMATED TMR DESIGN ..51
4.1 Introduction ..51
4.2 Implementation of digital Integrated Circuits ...51
4.3 Semi-custom design flow...53
4.4 Proposed fault-tolerant design flow...55
4.4.1 TMR implementation process (TMRi) ..57
4.4.2 TMR optimization Process (TMRo) ..62
4.4.3 TMR verification process (TMRv) ..62
4.5 Conclusion ...72
5 EXPERIMENTS ...73
5.1 Introduction...73
5.2 Fault-tolerant cell-based design flow...73
5.2.1 Analyzing the impact of logic optimization in the designs....................................74
5.2.2 Analyzing the impact of adding TMR in area and performance76
5.2.3 Analyzing the impact of performing logic optimization after adding TMR..........77

5.3 Fault-tolerant FPGA design flow...84
5.3.1 Analyzing synthesis in the cell-based and FPGA design flows.............................85
5.3.2 Fault injection campaigns ..87
5.3.3 Analyzing reliability of unmitigated and TMR implementations..........................91
5.4 Conclusion ...93
6 CONCLUSION ...94
6.1 Future work...96
REFERENCES...98
APPENDIX A — TMR DESIGN EXAMPLE ..106

16

1 INTRODUCTION

1.1 Motivation

Radiation effects have been one of the most serious issues in military and space ap-

plications but currently, they are an increasing concern even for commercial applications

at the ground level. The radiation effects in semiconductor devices can vary from data

corruption to permanent damage such as parametric shifts and complete device failure.

For terrestrial applications, the transient faults or single-event effects (SEEs) caused by

ionizing radiation are predominant (BAUMANN, 2005; DODD; MASSENGILL, 2003).

The main factors that affect the sensitivity of electronic devices to radiation are

the reduction in the transistor’s dimensions and the operating voltages in order to sat-

isfy the demand for higher density, functionality and lower power. Whereas technology

scaling enables the design of whole systems into a single die, also known as system-on-a-

chip (SoC), they also increase design complexity and encounter reliability issues. Thus,

ensuring the correct functionality of SoC designs becomes a challenging task.

In order to deal with the effects of radiation, fault-tolerant techniques are em-

ployed to prevent malfunctions of electronic systems. Protection or hardening of inte-

grated circuits (ICs) against radiation effects can be done by the use of enhanced fab-

rication processes and strategies at different stages of the circuit design such as layout,

circuit, system and embedded software levels (HUGHES; BENEDETTO, 2003; NICO-

LAIDIS, 2005). The last approach is not based on a specific technology node, so it can

be employed in commercial design flows. However, the implementation of fault-tolerant

techniques is not automated by commercial electronic design automation (EDA) tools.

The main issue of considering commercial tools to design radiation hardening circuits is

that those techniques are based on some type of redundancy. Unfortunately, one typical

optimization performed by the EDA tools is to remove redundant logic structures. As a

consequence, the designer must restrict the features of the tool to preserve the inserted

redundancies. Specialized tools to harden electronics systems are available as well but

they affect the design cost because of the extra cost due to license purchase. Moreover,

some country regulatory regimes restrict the export of technology related to spatial and

military applications. The ITAR regimen imposed by the United States is a clear example

of this limitation (BLOUNT, 2008; MONTENEGRO; PETROVIC; SCHOOF, 2010).

17

Table 1.1: Dedicated tools to implement TMR circuits
Tool Vendor/Institution License Design level Device

XTMR Xilinx Commercial Synthesis FPGA
Sinplify Premier Synopsys Commercial Synthesis FPGA
Precision Hi-Rel Mentor Commercial Synthesis FPGA

FTMR Cobham Gaisler Commercial RTL FPGA
TMRG CERN Internal use RTL ASIC
TLegUp Macquarie University Academic HLS FPGA
BL-TMR Brigham Young University Academic Netlist FPGA

- IHP Academic Netlist ASIC
Source: From the author

1.2 Related work

There are several dedicated tools that are able to implement the TMR technique in

ASIC and FPGA designs (XILINX, 2017; SYNOPSYS, 2012; MENTOR, 2018; PRATT

et al., 2005; KULIS, 2017; HABINC, 2002; LEE et al., 2017; STAMENKOVIC; PETRO-

VIC; SCHOOF, 2013). Table 1.1 lists some of them and also indicates the step in the

design where it is applied the replication of the circuit.

In spite of the features of the aforementioned tools to implement TMR design,

none of them automates the verification of the resulting TMR circuit. Fault injection

(FI) campaigns are usually employed to observe the behavior of a system in presence of

faults. According to the complexity of the system and the design stage where is performed

the FI, it can incur in large simulation times and even discover the TMR implemented

was removed partially or completely after fabrication of the circuit. An interesting ap-

proach is the use of equivalence checking to speed up the verification process in an early

design stage. Authors in (MELANY; LABEL; PELLISH, 2016; BELTRAME, 2015;

BURLYAEV, 2015; SESHIA; LI; MITRA, 2007) details the challenges of using formal

verification for design verification against soft errors.

1.3 Objective

This work intends to overcome the issues encountered in the use of commercial

EDA tools to design fault-tolerant circuits. The well known TMR technique is employed

for that purpose. It was developed a methodology to automate the implementation, opti-

mization, and verification of the TMR technique for complex circuits.

18

The main features of the devised approach in this work are:

• Reuse of any behavioral description such as HLS, RTL, and structured netlist.

• No dependence in the code-style of the behavioral description.

• Selection of the desired granularity of the TMR technique.

• Selectivity to protect an entire system or only its critical blocks.

• Use of customized voter elements.

• Insertion of voters to protect finite state machines.

• Redundancy of designs with undefined blocks (black boxes).

• Implementation of TMR circuit for ASIC and FPGA designs.

• Verification of the functionality and fault tolerant against soft errors.

• Further optimization of the resulting TMR circuit.

1.4 Outline

This document is compound of 6 chapters. In Chapter 2 are described the radiation

environments and their operating conditions that affect electronic systems. Moreover, the

mechanisms of the radiation effects are explained in order to understand its interaction

with electronics. Chapter 3 brings a compilation of several techniques to mitigate the

effects of radiation in digital ICs. Chapter 4 shows the additional steps of the proposed

fault-tolerant design flow to automate the design of TMR circuits. Chapter 5 shows the

use of the proposed methodology through experimentation in two study-case circuits.

Eventually, the conclusion of the present work and future works are exposed in Chapter

6.

19

2 RADIATION EFFECTS IN INTEGRATED CIRCUITS

2.1 Introduction

Development of man-made technology is highly driven by the use of microelec-

tronics. Furthermore, the technological development of these miniaturized devices is

powered by the advance of the semiconductor industry. The transistor, which is compound

of complex semiconductor structures, becomes smaller, faster, dissipates less power and

is cheaper to fabricate in each new technology generation. Despite these advantages, the

constant shrink of the transistor’s dimensions along with the shortcomings of the litho-

graphic techniques employed in the fabrication process cause that characteristics of man-

ufactured devices to be unpredictable. Moreover, devices become more susceptible to

failures induced by radiation.

The levels of radiation that semiconductor devices encounter during their life cycle

depend on the radiation environment and their operating conditions. In general, it is

possible to identify three main environments where man-made technology is deployed

and exposed to the effects of radiation: space, terrestrial and artificial-made environments.

In the following sections, these environments and also the main effects of radiation are

detailed.

2.2 Radiation environments

2.2.1 Space environment

The space environment is governed by three main sources of radiation: galactic

cosmic rays, particles emitted by the Sun and particles trapped into earth’s magnetic field.

Galactic cosmic rays are particles originated outside our solar system. Protons

are the predominant particles in this environment (about 85%). These particles can reach

very high energies of up to hundreds of GeV. As a consequence, the associated high power

penetration makes unpractical to shield using reasonable amounts of material. Fluxes of

these particles are in order of a few particles per cm2 per second (CLAEYS; SIMOEN,

2002)

Solar activity generates solar particles that includes all types of elements, from

protons to uranium and their flux depends on the solar cycle. The flux of solar particles

20

Figure 2.1: Two doughnut-shaped regions of trapped radiation with maximum intesity
(inner and outter radiation belts)

Source: (Van Allen; FRANK, 1959)

can reach 105 particles/cm2/s with energies higher than 10 MeV (MOOR; DE, 2011). The

solar activity consists of a cycle of 7 years of high activity and 4 years of low activity.

Solar cycle influences galactic cosmic ray flux. During the high solar activity, the flux of

cosmic rays is reduced due to the shielding effects of solar particles.

Charged particles can be trapped by the Earth’s magnetic field. These trapped

particles form two permanent doughnut-shaped regions knows as van Allen Belts (Van

Allen; FRANK, 1959). The Inner belt is located from about 500 Km from the earth’s

surface and it extends to 13000 Km. Protons and low-energy electrons (from 1 up to 5

MeV) compose the inner belt. The Outer belt, located further out the Inner belt, contains

high energy electrons with energies in the range from 10 to 100 MeV. Figure 2.1 depicts

these charge trapped regions.

The earth’s magnetic field is tiled 11◦with respect to the geographic axis. In con-

sequence, van Allen belts come closer to the earth surface over South America and South

Atlantic (Figure 2.2). This region is called as South Atlantic Anomaly (SAA), where

spacecrafts traveling inside the low Earth orbit (LEO) encounters the Inner belt (Figure

2.3).

2.2.2 Terrestrial environment

Particles in the wind solar are not able to penetrate Earth’s atmosphere. Only cos-

mic ray particles with energies of more than 2 GeV go through the atmosphere layers

and interact with Nitrogen and Oxygen atoms to produce a cascade of secondary parti-

cles (Figure 2.4). These high-energy cosmic rays, mainly protons and helium nuclei, are

21

Figure 2.2: Inner belt is closer to the ground over South America and the South Atlantic

Source: (NASA, 2018)

Figure 2.3: Map of radiation dosage over South Atlantic Anomaly (SAA)

Source: (NASA, 2018)

22

Figure 2.4: Representation of cosmic rays cascade through the earth’s atmosphere

Source: (ZIEGLER et al., 1996)

called primary cosmic rays. The interaction of primary cosmic rays with the atmosphere

produces secondary cosmic rays (protons, muons, pions, neutrons) and an electromag-

netic component. These particles have enough energy to create further particle cascades.

However, the amount of secondary particles decreases when the shielding effect of the

atmosphere overcomes the production of particles.

High-energy neutrons (> 10 MeV) or atmospheric neutrons, which are originated

in the atmosphere’s outer layers, are among the most abundant ionizing particle at the

sea level. Despite neutrons are not charged particles, they can trigger nuclear reactions

with chip materials, giving rise to charged secondary products. Atmospheric neutron flux

depends on altitude, solar activity, latitude, and atmospheric pressure. The neutron flux

of New York City, which is 14 n/cm2/hour with energy above 10MeV, is taking as a

reference (GORDON et al., 2004). Tables are available in order to calculate neutron flux

in other locations (JEDEC, 2006; WILKINSON, 2006). The neutron flux increases with

altitude but around 15 km of altitude, neutron flux shows a peak. That is the reason why

avionics is an application where neutrons are a serious concern for electronics. The energy

spectrum in aircraft altitudes and on the ground is essentially identical (NORMAND;

BAKER, 1993). On the other side, thermal neutrons exhibit short lifetime of around 0.1

s and energy levels about 25 meV. Their effects can be considerable because of the high

probability of interacting with the boron isotope 10B. often found in inter-metal layers of

integrated circuits or as a dopant. The reaction produces an alpha particle and 7Li, with a

combined energy of 2.3 MeV. The flux of terrestrial thermal neutron presents an average

value of 4 cm-2h-1 at the sea level (DIRK et al., 2003).

23

Table 2.1: Alpha emissivities of various materials
Material Emissivity (cm-2h-1)
Fully Processed Wafers < 0.0004
30um thick Cu Metal < 0.0003
20um thick AlCu Metal < 0.0003
Mold compound < 0.024 – < 0.0005
Flip Chip Underfill < 0.004 – < 0.0007
Eutectic Pb-based Solders < 7.2 – < 0.0009

Source: (JEDEC, 2006)

The second source of radiation-induced effects in electronics at terrestrial level is

alpha particles. They are produced from the decay of radioactive elements intentionally

used in integrated circuit fabrication or unexpected impurities. Table 2.1 shows alpha

particle surface emissions from some key production materials used during the fabrication

process.

2.2.3 Artificial Man-made radiation

Some man-made radiation environments such as high-energy physics experiments

and nuclear plants are very harsh in terms of ionizing radiation. For instance, Conseil

Européen pour la Recherche Nucléaire (CERN) plans to use doses above 100 Mrad(Si) in

the High-Luminosity Large Hadron Collider (HL-LHC), which is the planned upgrade of

the current Large Hadron Collider (LHC) (BAGATIN; GERARDIN, 2015).

Ionizing radiation is also a concern in nuclear fission plants and future fusion

plants under development. In the ITER project, which is a magnetic fusion reactor, large

fluxes of neutrons with a maximum energy of 14.1 MeV are expected to hit electronic

systems (BAGATIN et al., 2012).

2.3 Classification of radiation effects

Exposition of electronic components to radiation can lead to displacement of atoms

from their lattice sites and generation of electron-hole pairs (ionization). The former ef-

fect is known as displacement damage (DD) meanwhile, the last can be divided into total

ionizing dose (TID) and single-event effects (SEE) according to the place where electron-

hole pairs are deposited.

24

Figure 2.5: Defect types and sub-cascade formation related to primary knock-on atom
energy in Silicon

Source: (BAGATIN; GERARDIN, 2015)

2.3.1 Displacement Damage (DD)

High-energy particles (neutrons, protons, heavy ions, electrons and indirectly pho-

tons) can transmit enough energy to a lattice atom of the target material to dislodge it from

its original location. The capacity of an energetic particle to trigger a DD is established

by its non-ionizing energy loss (NIEL) coefficient. NIEL measures the amount of energy

lost per unit of length of the striking particle due to non-ionizing processes. It is directly

related to the linear energy transfer (LET) or stopping power for ionizing events. Atomic

displacement leads to the creation of a vacancy in the lattice and an interstitial defect in

a non-lattice position (Frenkel pair). The first displaced atom, also known as primary

knock-on atom (PKA), can induce further displacements of secondary knock-on atoms

(SKA), which are able to generate additional defects. Resulting groups of defects close

to each other are denominated clusters (SROUR; MARSHALL; MARSHALL, 2003).

Figure 2.5 illustrates the defect types related to DD.

Vacancies travel across the lattice until they become stable because of the high

probability of recombination of the Frenkel pair soon after its generation or due to the

creation of other types of defects. More stable defects can be the result of the combination

of two close vacancies (divacancies) or a vacancy and an impurity close to ones another

(defect-impurity complexes).

DD causes alteration of electrical properties of the semiconductor crystal and can

lead to degradation or failure of the device.

25

2.3.2 Total Ionization Dose (TID) damage

TID represents the accumulated amount of energy deposited by ionization pro-

cess in the target material. In electronic devices, radiation-induced currents in insulators

are generally not a problem because of lower mobility and lower amount of electron-

hole pairs are created. However, charges can be trapped for long period of time. The

trapped charges generate internal space-charge electric fields that can lead to a shift in the

threshold voltage, reduction in transconductance and leakage current in MOS devices. In

modern low-voltage MOSFETs, radiation-induced charge trapping in thin gate oxides is

negligible.

TID issues are associated with thick lateral isolation and oxide spacers. Unlike

gates oxides that are thermally grown, insulation layers like field oxides and shallow

trench isolation (STI), used in older and state-of-the-art devices respectively, are gener-

ally deposited (Figure 2.6. So, these oxides exhibit lower quality than gate oxides that

becomes them more susceptible to TID effects (SCHWANK et al., 2008).

Figure 2.6: Cross section representation and positive trapped charge of a) LOCOS and b)
STI isolated transistors. c) Leakage paths (1 and 2 arrows) in STI transistors

(a)
(b)

(c)

Source: (SCHWANK et al., 2008)

26

2.3.3 Single-Event Effect (SEE)

An SEE is caused when a single high-energy particle goes through sensitive re-

gions of a microelectronic device. According to the consequences of an SEE over the

device, it may be classified as soft effects and hard effects. The former leads to no per-

manent damage (nondestructive), meanwhile the last causes irreversible physical damage

(destructive).

Unlike TID and DD effects that are cumulative and build up over time, an SEE is

a stochastic event.

2.3.3.1 Basic mechanisms of SEE

An ionizing particle deposits charge along its path in the target material. In conse-

quence, electron-hole pairs are generated until the striking particle loses all of its energy.

The energy loss per unit path length is described by the linear energy transfer (LET). The

LET depends on the mass and energy of the incident particle and the target material. In

Silicon, a charge deposition of 1 pC/um correspond to a LET of 97 MeV-cm2/mg.

The most sensitive regions under particle strikes are usually reversed-biased p-n

junctions. There is a high-electric field into the depletion region of a reversed-biased

junction. Thus, electron-hole pairs can efficiently be collected through drift process and it

generates a transient current at the junction contact. Charge generated along the particle

track can distortion temporarily the electrostatic potential of the junction into a funnel

shape (field funnel). This funneling effect can enhance charge collection by extending the

junction’s electric field away from the junction and deep into the substrate.

Carriers generated beyond the depletion region may diffuse back toward the junc-

tion where they can be efficiently collected. However, diffusion occurs on a longer

timescale. Figure 2.7 illustrates the resulting current pulse induced by a single radiation

event.

In deep sub-micron MOS transistor, charge collection mechanism may be trig-

gered when an alpha-particle at grazing strike passes through both drain and source of

the transistor. In consequence, a disturbance in the channel potential can induce a short-

lived current that mimics the on-state of the transistor. This charge collection effect is

denominated as the alpha-particle source/drain penetration effect (ALPEN) (TAKEDA;

HISAMOTO; TOYABE, 1988).

Furthermore, an ionizing particle can generate electron-hole pairs inside the well

27

Figure 2.7: Charge deposition and drift and diffusion collection processes. Pulse current
duration

Source: (BAUMANN, 2005)

or body region of the transistor. The potential of the well is altered as well. For instance,

in an NMOSFET, the generated carriers can be collected at the drain/well junction. Hole

diffusion raises the potential of the p-well and the source/well junction becomes forward-

biased. The source injects electrons into the channel and can be collected at the drain,

strengthen the effect of the original particle-induce current. A parasitic bipolar effect is

evidenced in this mechanism where the well, the source, and the drain represents the base,

emitter and the collector respectively.

2.3.3.2 Types of SEEs

According to the effect of the SEE over the performance of a circuit, they can

be classified as permanent or hard and soft for recovery faults. Table 2.2 gives a short

description of the types of SEE.

2.4 Radiation effects in modern world

Technology feature size of semiconductor devices has scaled from sub-micron to

deep sub-micron, and in the last years to sub-100 nm. TID hardness of modern CMOS

microelectronics components is high and the dominated radiation effects are related to

single-event effects. Consequences of the rapidly shrinking geometry are the increasing

of density integration, high operation frequencies, reduction of nodal capacities, and the

use of lower power voltages. These factors contribute to SEEs are one of the key reliability

issues in advanced integrated circuits.

28

Table 2.2: SEE classification
SEE Description
Single-event upset (SEU) Corruption of electric state of a storage cell such as memory

cell, latches, and flip-flops. SEU is often called as a soft
error.

Multiple-bit upset (MBU) A single particle strike changes the state of more than one
adjacent storage cells.

Single-event transient (SET) Current/voltage transient pulse that can propagate and be
latched by a storage element leads to soft error.

Single-event functional inter-
rupt (SEFI)

Perturbation of control registers or clock signal induces
temporal loss of device functionality

Single-event latch-up (SEL) A strong and sudden increase of power supply current due to
radiation-induced activation of parasitic bipolar structures.

Single-event snapback (SES) A sustained high-current condition in SOI devices. The
bipolar amplification effect is similar to SEL

Single-event burnout (SEB) Activation of parasitic bipolar structures causes burnout of
power devices (e.g. power MOSFETs and IGBTs).

Single-event gate rupture
(SEGR)

Irreversible rupture of transistor’s gate oxide observed es-
pecially in power MOSFETs.

Source: From the author

Pulse quenching consists in the SET width pulse reduction due to the delayed

charge collection as a direct result of charge sharing. Figure 2.8 illustrates the pulse

quenching mechanism (AHLBIN et al., 2009).

Figure 2.8: Pulse quenching mechanism

Source: (AHLBIN et al., 2009)

29

Figure 2.9: Real-time soft-error rate measurements from three technological generations
of single-port SRAMs: CMOS 130, 65 and 40 nm

Source: (AUTRAN et al., 2014)

The high density of transistors in the same die enables that multiple transistors

can be vulnerable to a single ion strike. Multiple-cell upsets (MCU) events in planar de-

vices can be caused by bipolar amplification (OSADA et al., 2004) and charge sharing

(AMUSAN et al., 2008). Authors in (AUTRAN et al., 2014) present real-time soft-error

rate measurements of advanced static random-access memory (SRAM) technologies con-

ducted during the last decade on the Altitude Single Event Effects Test European Platform

(ASTEP) and at the Underground Laboratory of Modane (LSM). They found experimen-

tally up to 21, 8 and only 2 MCUs for the CMOS 40, 65 and 130 nm single-port SRAM

technologies respectively. The MCU multiplicity (i.e. number of bit flips per MCU event)

for the different technologies is depicted in Figure 2.9.

Authors in (FANG; OATES, 2016) characterize single-bit upset (SBU) and MCU

events for 40, 28, and 20 nm planar SRAMs and 16nm FinFET SRAM. Figure 2.10

shows how both SBUs and MCUs per cell decrease with technology scaling. Moreover,

FinFET SRAMs reach a significant reduction in both SBUs and MCUs with regard to

planar devices.

30

Figure 2.10: Measurements of SBU and MCU events as a function of technology node

Source: (FANG; OATES, 2016)

The use of new materials has decreased considerably the soft error rate. It is the

case of strained silicon devices that achieve a higher ON current due to the boost of carrier

mobility. Thereby, the use of strain transistors increases the driven current as well as the

necessary critical charge to induce a current transient. Authors in (MAHATME et al.,

2012) show a reduction of around 50% in the total SER and most importantly, the lower

SER is achieved without any area penalty.

However, the presence of high-Z materials (like tungsten) can increase the SEU

and MCU cross sections of high critical charge devices exposed to terrestrial neutrons

(CLEMENS et al., 2011). Besides, even though the BPSG is not utilized in modern

semiconductor processes, 10B can subsist within the back-end-of-line (BEOL) structure

as a coating over tungsten plugs, for instance (AUTRAN et al., 2014).

Evaluation of HKMG (high-k metal gate) SRAM devices in (ZHANG, 2011)

shows a negligible soft error rate induced by thermal neutrons comparing to the effect

of terrestrial high-energy neutrons. Also, they conclude that thermal neutrons do not pro-

voke MBU/SEFI/SEL in 32 nm HKMG SRAMs.

31

2.5 Conclusion

This section brought a survey of the main concepts related to the effects of ra-

diation in electronic devices. In summary, electronic systems are affected by radiation

according to the environment where is deployed, and their operating conditions. The radi-

ation environments can be classified in space, terrestrial and artificial environments. Each

one of these environments is characterized by its own spectrum of particles and energy

distribution. Radiation exposure of electronic components can lead to the displacement

of atoms from their lattice sites (displace damage) and generation of electron-hole pairs

(ionization). Accordingly, to the regions where electron-hole pairs are deposited into the

structure of the transistor, ionization can affects insulators (TID) or reverse-biased p-n

junctions (SEE). In modern devices at the sub-100nm node, microelectronic devices are

more resilient to TID and SEEs become the key concern in the design of advanced inte-

grated circuits.

32

3 FAULT-TOLERANCE TECHNIQUES FOR DIGITAL CIRCUITS

3.1 Introduction

The effects of radiation on electronics devices represent an increasing concern for

reliability even in terrestrial applications. Furthermore, the use of commercial technolo-

gies is not enough to ensure the correct functionality. Hence, strategies that deal with

these issues becomes mandatory, especially in deep submicron technologies.

Protection or hardening of circuits against radiation effects can be taken into ac-

count in different categories. The employment of enhanced fabrication process is de-

nominated as Radiation Hardening by Process (RHBP). On the other hand, the use of

strategies at different stages of the circuit design is known as Radiation Hardening by De-

sign (RHBD). This approach is not based on a technology process so, it can be considered

in commercial applications.

The following sections will give a revision about the most popular RHBD tech-

niques. Knowing these mitigation techniques is useful for planning strategies to accom-

plish the desired fault tolerance for the circuit. Moreover, the employment of these tech-

niques must be accompanied by a trade-off between the improvement in soft error tol-

erance and the unavoidable penalties of area, power or performance that implicates their

use.

3.2 Fault classification

Any system is far away from being totally free of faults during their operational

life. A fault is a physical defect or a flaw in hardware component or software. An error

is the manifestation of a fault and represents the deviation from correctness or accuracy

in the behavior of a component. Furthermore, the presence of an error in the system can

propagate to its final output and cause malfunction. This deviation from the specified

functionality of a system is known as a failure. Figure 3.1 depicts the hierarchy of fault,

error and failure events.

Faults can be caused by several issues at the specification, implementation and

fabrication stages of the design process. Also, external factors such as inappropriate oper-

ator’s use or environmental disturbances can generate faults. On the other hand, according

to the duration of the faults, they can be classified into permanent, intermittent or tran-

33

Figure 3.1: Fault, failure and error events

Source: (IBE, 2015)

sient. A permanent fault remains continue and stable until a corrective action is taken.

An intermittent fault never disappears entirely, it oscillates between being quiescent and

active. A transient fault goes away after some time and the functionality of the system is

fully recovered. The origin of transient faults is mostly due to environmental conditions

as electrical power drops, overheating, mechanical shock, electrostatic discharge, electro-

magnetic interference or ionizing radiation. This master thesis is focused on the radiation

interference.

3.3 Enhanced Process

Commercial CMOS fabrication process is not addressed to deal with the radiation

effects. Thus, dedicated processes are used to avoid these undesired effects. The use of

enhanced processes to mitigate these effects is called Radiation Hardening by Process

(RHBP). The main drawback of using dedicated fabrication processes is its expensive

production cost.

For instance, triple-well technology is typically used in deep submicron CMOS

technology. This process consists of independent P-well and N-well regions. Thus, an

NMOS transistor is electrically isolated in a p-type substrate. Figure 3.2 shows the iso-

34

Figure 3.2: Triple Well process

Source: (WILSON et al., 2011)

lated P-well embedded into N-well in a P-substrate. The triple-well process reduces sub-

strate noise currents improving transistor performance, limiting the charge deposition by

heavy ions and avoiding the latch-up effect (WILSON et al., 2011).

Another well-known approach to reducing the risk of latch-up is the addition of

a thin epitaxial layer to increase the bulk resistance as depicted in Figure 3.3. Initially

used to mitigate the latch-up effect, however, in scaled technologies epitaxial substrates

showed to be affected by latch-up (SHELDON, 2005).

Silicon-on-insulator (SOI) CMOS technology historically was developed for rad-

hard and power applications. This once niche market has now reached maturity and is

challenging traditional bulk CMOS in all sectors of the market (KONONCHUK; NGUYEN,

2014).

An SOI structure is composed of an insulating layer that separates a top single-

crystal silicon layer from the bulk substrate. In microelectronics, it is widely employed

as a buried oxide (BOX) layer SiO2 as the insulator. Based on the thickness of the top

Figure 3.3: Epitaxial bulk CMOS

Source: (SECRETARY, 2016)

35

Figure 3.4: Cross sections of a) Partially Depleted and b) Fully Depleted SOI MOSFETs

(a) (b)

Source: (BOHR; MISTRY, 2011)

silicon layers, two types of SOI transistor structures can be identified: Fully and Partially

Depleted Transistors.

Fully depleted (FD) SOI transistor has a very thin film silicon to form the channel

(typically less than 50 nm). Hence, the whole body area is underneath the depletion region

and there is no need to dope the channel. On the other side, the partially depleted (PD)

SOI transistor uses a thicker silicon film (normally greater than 100 nm). This structure

exhibits a no depleted area at the bottom of the body, forming a neutral region called

floating body. Figure 3.4a and 3.4b illustrates the PD SOI and the FD SOI transistors

respectively.

In presence of radiation, parasitic structures illustrated in Figure 3.5 are activated

in the SOI structure (SCHWANK et al., 2003). The floating body can behave as the base

of a parasitic bipolar transistor. In order to avoid the activation of this undesired element,

Figure 3.5: SOI parasitic a)PBJT and b) MOS

Source: (SCHWANK et al., 2003)

36

the body region can be tied to the source potential or ground. So, the radiation generated

charge can be removed through the body tie. On the other hand, the bulk substrate and the

thick BOX can act as the gate and the gate insulator of the parasitic back gate transistor.

SOI devices are completely immune to latch-up, although they can be affected by

single-event snapback originated by the parasitic bipolar transistor.

3.4 Radiation Hardening by Design

As an alternative to the use of enhanced CMOS fabrication processes, Radiation

Hardening by Design (RHBD) consists of designing integrated circuits using available

commercial fabrication processes. In order to accomplish with the desired fault tolerance

level, RHBD techniques may be applied at different levels of design. RHBD takes advan-

tage of process maturity, high levels of die yield, availability of many silicon foundries,

low cost and quick prototyping, low volume of production and the portability to modern

technologies.

3.4.1 Layout

RHBD layout techniques have been demonstrated to be very effective in eliminat-

ing single event latch-up and preventing radiation-induced leakage currents related with

Total Ionizing Dose (TID) (CAO PAUL LEROUX, 2015). Furthermore SET and SEU

are also mitigated (SECRETARY, 2016). Additionally, standard layout techniques also

can improve radiation tolerance. For instance, folded MOSFET transistors are drawn as

interconnected fingers with reduced drain and source areas. Thus, the folding technique

reduces the sensitive p-n cross-section areas (SCHRIMPF; FLEETWOOD, 2004).

3.4.1.1 Edgeless transistor

A very effective RHBD practice is to avoid the edge leakage. The layout draws

a closed gate shape separating the drain and source region of the CMOS transistor. The

transistor’s edge is designed to connect common implant areas such as source-source or

drain-drain or to eliminate completely all the edges, where only the drain or source touch

the edge (Figure 3.6). The former receives the name of annular transistor and the last is

denoted as the Enclosed Layout Transistor (ELT) (Figure 3.7).

37

Figure 3.6: Annular transistor with a) 90o angle, b) 45o angle and large W/L case

(a) (b) (c)

Source: (CRESSLER; MANTOOTH, 2012)

The main drawbacks of the ELT transistor are its relatively large area and its in-

accurate modeling (CAO PAUL LEROUX, 2015). The minimum typical width of the

annular transistor is around four to five times the standard transistor’s minimum width.

On the other side, it is possible to draw a small width ELT (CRESSLER; MANTOOTH,

2012).

Reduction of the drain’s area diminishes the cross-section of the device and conse-

quently the sensitivity to SET and SEU. Thus, the drain is generally located on the internal

side of the ring-shaped transistor (CAMPLANI et al., 2014). This approach is applied typ-

ically on NMOS transistors. PMOS transistors can be designed conventionally because is

not prone to current leakage, reducing the area overhead.

Figure 3.7: Enclosed layout transistors with a) just source enclosed and b) both drain and
source enclosed

(a) (b)

Source: (CRESSLER; MANTOOTH, 2012)

38

Figure 3.8: Cross section of two adjacent NMOS transistor with guard band between them

Source: (CAMPLANI et al., 2014)

3.4.1.2 Guard rings

Guard rings consist of p-well or n-well diffusions that are inserted around NMOS

or PMOS transistors respectively. In Figure 3.8, the use of guard rings allows reducing the

leakage current through thick field oxides between N-type diffusions of adjacent NMOS

transistors. Moreover, guard rings are used to prevent the latch-up effect by reducing the

gain of the parasitic thyristor structure.

The main drawback is also the increase of the area of RHBD circuits by the use of

additional p-well diffusions. This structure is available in conventional CMOS process.

Thus, this approach is commonly employed along with the edgeless layout technique.

3.4.2 Circuit Level

Design of RHBD circuits takes advantage of concepts with regard to circuit topolo-

gies, electrical properties, and redundancy. Circuits can contain interconnecting transis-

tors, in order to create logic cells, or use a set of logic cells to design a more complex

circuit. Thus, two views of design are defined: cell view and block view respectively.

3.4.2.1 Hardened Memory cells

The most representative case of RHBD circuit at the cell view is the design of

hardened memory cells. In the literature can be found a great diversity of storage ele-

ments designed to be insensitive to radiation-induced single event upsets. However, most

of them are derived from well-known designs. The importance of understanding the oper-

ation of this cells is due to they can be found in commercial Rad-Hard libraries of standard

cells for ASICs.

The use of decoupling or feedback resistors in SRAM cells is an effective harden-

ing approach to reduce the SEU tolerance (WEAVER et al., 1987). Decoupling resistors

39

Figure 3.9: Resistor memory cell schematic

Source: From the author

delays the propagation of the current transient through the regenerative feedback of the

SRAM cell. Thus, increasing the resistors’ values leads to the reduction of SEU suscep-

tibility of the SRAM cell. Figure 3.9 illustrates the schematic of an SRAM cell with the

decoupling resistors.

The Dual Interlocked Storage Cell (DICE) was proposed as a hardened storage

element insensitive to single-event effects. It does not require special constraints on tran-

sistor sizes (CALIN; NICOLAIDIS; VELAZCO, 1996). The DICE structure is basically

a 4-node structure. Figure 3.10 shows the composition of the latch DICE. If a node Xi is

affected by a single event effect, the transistors controlled by this node are affected. How-

ever, the other transistors float storing its correct values temporally until the SEE disap-

pears. Because of the necessary time to propagate the see through the rest of nodes is very

high (AMUSAN et al., 2007), the nodes return to their internal values. Figure 3.10 shows

master-slave flip-flops implemented using two DICE latches (WANG; GONG, 2004).

Several commercial rad-hard libraries are based on the DICE structure for memory

cells. Cogenda, Atmel, ATK, and Aeroflex are some of them (SECRETARY, 2016).

Figure 3.10: DICE memory cell schematic

Source: (CALIN; NICOLAIDIS; VELAZCO, 1996)

40

Figure 3.11: HIT memory cell schematic

Source: (BESSOT; VELAZCO, 1993)

The Heavy Ion Tolerant (HIT) cell was designed for fast recovery time after a sin-

gle event upset. Moreover, its low power consumption reduces the impact on performance

(BESSOT; VELAZCO, 1993). The HIT cell is built using two storage structures and it is

shown in Figure 3.11. The nodes Q and Qhat conserves their respective values while the

clock signal is inactive. To modify the value stored in the cell the new values have to be

put in the data lines. When the clock signal goes to high, the transistor MP4 or MP6 is

responsible for activating the transistors MN1 and MN2. If a particle strikes the nodes Q,

Qhat or M for an initial value of Q in high level, the circuit of the cell restores its original

values but is affected when more than one out of nodes is attacked.

In (ARIMA et al., 2004) proposes an almost free soft error latch that keeps its state

on three storage nodes PDH, NDH, and DH. The error in one node never propagates to

the other nodes. The recovery process after a soft error is not depended on the duration

of the charge is deposited doing the circuit almost soft-error free for any nuclear radiation

energy spectrum. PDH and NDH nodes never fail simultaneously because of the polarity

of soft errors; however, one of them along with the DH node might fail as a result of one

neutron impact. Figure 3.12 shows the schematic of the Immune Latch Circuit.

The Soft Error Immune Latch (SEILA) developed in (UEMURA et al., 2010) is

a robust latch that enhances single event rate efficiency against multi-node single event

effects (MNSEEs) and single event transients on the local clock. The SEILA cell is an

inter-lock type storage structure hence data corruption on one node can not corrupt storage

data on the storage structure (Figure 3.13a). The data in the latch is corrupted if two

critical areas, the NMOS areas on node n1 and n2, are affected by an ion strike. Though

41

Figure 3.12: Immune Latch diagram

Source: (ARIMA et al., 2004)

Figure 3.13: a) SEILA memory cell schematic, b) and c) shows the same area utilization
for single and double height cell schemes respectively

(a)

(b)

(c)

Source: (UEMURA et al., 2010)

if a third area is compromised, the PMOS area on node 3, the data is preserved. The last

one is denominated canceling area. In order to accomplish with this placement approach,

the layout latch is based on double height cell (DHC) scheme illustrated in Figure 3.13b.

Thus the two critical areas are keeping away putting them at the top and at the bottom of

the cell layout. Otherwise, MNSEEs are attenuated by placing the canceling area between

the two critical areas. It can be noticed that the size of the cell of DHC is not changed

from single height cell. The mitigation of transients on the local clock of the latch is

achieved by using redundant clock buffers.

In (MITRA et al., 2006) is proposed the Built-In Soft Error Resilience (BISER)

technique that uses the advantage of the reduced overhead generated by replication. The

BISER technique incorporates a voter for correcting soft errors. The voter is based on

42

Figure 3.14: a) BISER latch diagram and b) C-element diagram and truth table

(a)
(b)

Source: (MITRA et al., 2006)

Figure 3.15: a) SERT diagram and b) half transition NAND gate

(a)
(b)

Source: (SHULER et al., 2009)

the use of the C-element, also called guard gate, along with a weak keeper in its output.

Figure 3.14a and Figure 3.14b show respectively the configuration used for correcting

errors in latches and the C-element along with its truth table.

The Single Event Resistant Topology (SERT) is a dual-rail latch design. It does

not present state conflicts in its internal nodes under single event transient, so recovery

is no dependent on transistor sizing (SHULER et al., 2009). The dual-rail SERT latch

is shown in Figure 3.15a. The SERT latch scheme consists of an input multiplexer and

half transition NAND gates. The half transition NAND gate is almost identical with the

C-element (Figure 3.15b) though without one of the series-PMOS.

3.4.2.2 Rad-hard library of digital cells

Radiation hardened (rad-hard) libraries are developed over commercial process

based on the use of the previously detailed layout techniques and including hardening

memory cells. Also, some rad-hard libraries are developed over RHBP technology to

improve the reliability of the circuits.

43

Table 3.1: Radhard standard cell libraries
Radiation hardened Library CMOS Technology node
ATC18RHA ATMEL 180 nm
ATK 350 nm
C65SPACE STMicroelectronics 65 nm
CERN 250 nm
UT90nHBD/UT130nHBD Cobham 90 and 130 nm
Cogenda 65 and 130 nm
DARE IMEC 180 nm
BAEsystems 150 nm
Radlib Redcat 130, 150 and 180 nm
Ramonchips 130 and 180 nm

Source: From the author

In Table 1.1 are listed several available commercial rad-hard standard cell libraries.

Author in (SHULER, 2015) makes an interesting proposal relying on the uses a

small cell count RHBD library. The aim of using a reduced set of cells is to make designs

portable between processes of the same technology node. Moreover, to reduce the effort

for the migration to modern nodes. The basic 10-cell library is composed by the following

gates: an inverter, a buffer, a strong buffer, 3 variations of NAND, only one NOR, two

types of 2-input MUX and a tristate buffer. Additionally, it is included a delay cell for SET

filtering in dual input circuits. One of the implementations for MUX is for combinational

logic use and the other one is employed to build dual interlocked memory cells as DICE

or SERT. The tristate buffer may be used to implement the guard gate (C-element).

3.4.2.3 Filtering

A transient pulse can be filtered or masked by the intrinsic properties of a com-

binational circuit. This natural capability to avoid the propagation of glitches is strongly

depended on the physical and the temporal location of the fault. The fault masking mech-

anisms can be classified into logical, electrical and window (timing) masking.

Logical masking avoids the propagation of a transient fault due to the input values

of a multi-input gate, which receives the faulty signal. Electrical masking occurs when

a transient pulse is attenuated through its propagation path. So, the pulse amplitude is

not enough to induce an error. Furthermore, sizing up a gate reduces the probability

that a striking particle cause a glitch of strong magnitude. Authors in (RAO; BLAAUW;

SYLVESTER, 2006) show an average reduction in the soft error rate of around 8 times

after and area penalty of only 5% after applying gate sizing over a set of benchmark

44

circuits.

Windows masking refers to the case when a transient fault reaches a memory ele-

ment out of its clocking window. In spite of the natural contention to faults of the afore-

mentioned masking mechanisms, they are not enough to guarantee the correct functional-

ity of a circuit in radiation environments.

3.4.2.4 Redundancy

Redundancy represents the use of additional resources of a system in order to get

correct operation even in presence of faults. Moreover, redundant structures can be omit-

ted without affecting the normal operation of a system (LALA, 2001). In the design of

circuits that resources may include additional hardware, information, time or a combina-

tion of these.

Hardware redundancy

Hardware redundancy, also called space redundancy, is probably the most com-

monly redundancy approach. It is based on the use of an M-out-of-N system consisting

of N modules and at least M of them available for proper operation. This type of systems

accomplishes fault tolerance without the need of detecting any fault.

The simplest form of redundancy is the use of only two identical modules and a

voting element. This approach is known as Duplex system or Dual Modular Redundancy

(DMR). The DMR is only able to detect the presence of a faulty module but further

processing is necessary to handle it. Figure 3.16 shows the implementation of DMR.

Perhaps the most important M-out-of-N system is the 2-of-3 or Triple Modular

Redundancy (TMR) (KOREN; KRISHNA, 2010). The TMR implementation, originally

suggested by von Neumann, uses three identical modules and a voting element as illus-

trated in Figure 3.17a. A module may represent a whole circuit or even a logic gate. The

voting element receives the output from the three modules and selects the majority output.

Figure 3.16: Dual Modular Redundancy (DMR)

Source: (KOREN; KRISHNA, 2010)

45

Figure 3.17: a) Triple Modular Redundant (TMR) structure, b) Triplicated TMR of a
processor/memory system and c) Sub-system TMR

(a) (b)

(c)

Source: (KOREN; KRISHNA, 2010)

The voter can be considered as a critical point of failure. Thus, the reliability of

a voter can be improved by employing three identical copies. This approach is called the

triplicated TMR and is depicted in Figure 3.17b.

Furthermore, replication and voting can be applied at the subsystem level instead

of the entire system. Figure 3.17c illustrates the application of the TMR technique at the

internal individual units of a system.

The fault mitigation success of the TMR technique is conditioned by the voters.

They are responsible for giving the final value that interfaces with other modules. In

Figure 3.18 is listed a set of alternative implementations for the voter element in TMR

designs (BALASUBRAMANIAN; MASTORAKIS, 2015).

The general case of TMR is called N-modular redundancy (NMR) and represents

an M-out-of-N system. Practically, N is considered to be an odd number although can

also be an even number (example N=4). An NMR system can operate correctly in the

presence of up to n module failures, where n = (N-1)/2. For instance, the Quintuple

Modular Redundancy (5MR) uses five identical circuits and is able to tolerate up to two

erroneous responses in different modules.

46

Figure 3.18: Different implementations of majority voters for TMR systems

Source: (BALASUBRAMANIAN; MASTORAKIS, 2015)

An alternative to the N-of-M system approach is the interwoven redundant logic.

Interwoven logic uses alternating stages of NOR, NAND, AND and OR gates to correct

errors using its logic characteristics. These gates own a dominant input defining their

output values. For instance, if a 2-input NAND gate receives a ’0’ in any of its inputs, the

NAND’s output is always ’0’. This means that in presence of the dominant input value,

the output is independent of the failure in the other input.

Quadded Logic is an implementation of the interwoven redundant logic and uses

the quadruplication of the circuit interconnected in a systematic way to correct errors.

Figure 3.19 depicts how is implemented the quadded logic for a given combinational

logic. The quadded implementation is obtained by the duplication of the inputs of each

gate and dividing its output into two branches to connect them with the next logic stage

(HAN et al., 2005). It does not require specific voters for fine grain output elements.

47

Figure 3.19: a) Schematic of a non redundant complementary half adder implemented
with NAND logic and b) Quadded implementation of the complementary half adder

(a)

(b)

Source: (HAN et al., 2005)

The main drawback of using hardware redundancy is the area overhead. (TEIFEL,

2008) presents an alternative TMR implementation taking advantage of module duplica-

tion, triplication and the utilization of self-voting elements. The self-voting element is a

majority voter identical to the one used for the TMR technique but is used to deliver the

majority vote of two combinational logic units’ outputs and its own output as is shown

in Figure 3.20a. This approach is based on the triplicated TMR with the flexibility of

combinational logic units may be replaced by a self-voting element as showed in Figure

3.20b. Also, it is possible does not replace some combinational logic units to have a mixed

approach. Figure 3.20c illustrated this combined design.

48

Figure 3.20: a) Self-voting dual modular redundancy circuit, b) Self-voting majority cir-
cuit and c) DMR-to-TMR and TMR-to-DRM mixed circuits

(a)

(b)

(c)

Source: (MITRA et al., 2006)

Information redundancy

The most common type of information redundancy is coding, which involves the

addition of check bits to the original data. Employing coding is possible to verify the

correctness of the data and even correct the erroneous bits in some cases. For the case of

finite state machines (FSM), single fault tolerance can be achieved by the state codification

with a minimum Hamming distance of 3.

In memory systems, single bit failures may be effectively mitigated by means of

Error Checking and Correction (ECC) techniques (LALA, 2001). Furthermore, in order

to avoid accumulating errors in memory banks, memory scrubbing technique is employed.

It consists in to reload completely or partially the content of memory bits from another

safety memory bank. Memory scrubbing is often employed in SRAM-FPGA designs.

49

Temporal redundancy

Temporal redundancy relays on the use of a module at different times and the

comparison of the delayed responses. Unlike hardware redundancy, temporal redundancy

achieves fault tolerance without much additional hardware. However, using an extra time

for processing impacts negatively in performance. This approach is useful in the presence

of transient faults.

The use of temporal redundancy along with the TMR technique is very attractive

against the effect of SETs and SEUs. Basically, transient faults in combinational paths

can be mitigated by delaying their outputs or the clock signals to feed TMR flip-flops.

The inserted delay (dT) must be greater than the transient pulse duration to mitigate it. It

is useful to notice the ease of inserting delays in the data path. However, special treatment

is necessary when delays are placed in the clock line. Automatic clock tree generation

may affect the relation between the inserted delays. Figure 3.21 shows several ways of

use delays in latches.

Figure 3.21: Temporal sampling in TMR latch with a) internal clock delays and b) internal
data delays. c) Minimal temporal sampling latch replicating itself in time

(a)

(b)

(c)

Source: (MAVIS; EATON, 2002)

50

3.5 Conclusion

In this chapter, several techniques at different levels of design were reviewed. Ra-

diation hardening can be achieved by the use of specialized fabrication processes (RHBP)

and the use of mitigation techniques during the design process (RHBD). Moreover, it is

important to identify the effectiveness of each mitigation technique against the different

types of radiation effects and the penalties that they involve. Table 3.2 summaries the

relation between the reviewed techniques and the radiation effects that they are able to

overcome.

In order to design of fault-tolerant digital ICs, Table 3.2 also includes a classi-

fication regards to the need of using customized the logic cells. This is considered to

highlight the use of mitigation approaches for customized or semi-custom design flows

respectively.

Table 3.2: Summary of techniques, the effects that they mitigate and the need of logic
gates customization

Mitigation technique Radiation effect Customized logic gates
Triple-well Technology SEU, SEL -
Thin epitaxial layer SEL -
Silicon on Insulator Technology SEU, SET, SEL -
Edgeless transistor TID Yes
Guard rings TID, SET, SEL Yes
Hardened cells SEU Yes
Rad-hard library TID, SET, SEU, SEL No
Hardware redundancy SEU, SET No
Information redundancy SEU No
Temporal redundancy SEU, SET No

Source: From the author

51

4 AUTOMATED TMR DESIGN

4.1 Introduction

The TMR technique is widely employed to design fault-tolerant designs. Its popu-

larity relays on its capacity to mask single faults without detecting them and with slightly

impact over performance. Although area overhead, reduction of transistor dimensions

and high-density integration enables its utilization in commercial applications. However,

the design of TMR circuits is not automated by commercial Electronic Design Automa-

tion (EDA) tools. Moreover, they perform some types of optimization that can affect the

implementation of redundancy-based mitigation techniques. In consequence, they can be

implemented by hand or by using dedicated tools. The former approach is prone to hu-

man error and may become cumbersome for large designs. On the other hand, dedicated

commercial tools may be employed to automatically implement TMR circuits. For in-

stance Xilinx TMRTool, Synopsys Sinplify Premier and Mentor Precision HiRel are able

to apply TMR in both coarse and fine grain granularity levels during the synthesis process.

The use of these tools can add extra cost to the project due to license purchase. Moreover,

some country regulatory regimes restrict the export of technology related to spatial and

military applications. The International Traffic in Arms Regulations (ITAR) imposed by

the United States is a clear example of this. An alternative is the use of the BYU BL-TMR

tool to implement TMR designs. In spite of this tool is open source, it can be employed

for FPGA designs, specifically for Xilinx’s devices. Table 1.1 listed several existing tools

to implement the TMR technique and highlighted the shortage of tools to implement the

TMR technique in cell-based designs.

In order to overcome these issues, this work presents an approach to automati-

cally design TMR circuits using a commercial EDA tool and following the cell-based and

FPGA design approaches.

4.2 Implementation of digital Integrated Circuits

There are several approaches to implement a microelectronics design according to

the requirements demanded by the user in terms of speed, power consumption, cost, and

production volume. Figure 4.1 shows an overview of the typical approaches to design

digital integrated circuits.

52

Figure 4.1: Typical approaches to implement digital integrated circuits

Source: (RABAEY; CHANDRAKASAN; NIKOLIC, 2003)

Custom circuit design includes the design of standard cells or larger circuit blocks

at the mask level (custom mask layout). Custom design can be prohibitively expensive and

its use is conditioned to reuse, large volume and where cost is the main design criterion.

On the other hand, a semi-custom design employs a small subset of fabrication layers in

order to reduce costs and automate the design process. Cell-based design reduces im-

plementation effort by the reuse of a limited library of pre-designed cells. A library can

be compound of standard-cells and macro cells. Standard-cells consists of logic gates

(such as inverter, AND, OR, XOR, and its negative counterparts buffer, NAND, NOR,

XNOR respectively), flip-flops and latches as well as complex logic functions, multi-

plexer, adder, and so on. Macro cells or mega cells are also ready-to-use layout cells

but with larger size and complexity than standard-cells. For instance, multipliers, data

paths, memories (RAM and ROM), soft-core microprocessors and digital signal process-

ing (DSP) modules. Macro cells can be also acquired from third-party vendors and they

are called intellectual property (IP) modules.

The cell-based design reduces the design time however it does not address the

manufacturing process time. A complete fabrication run can take from weeks to several

months. Hence, the array-based approaches come up to avoid the complete run through

the manufacturing process. However, designs exhibit lower performance, lower integra-

tion density or higher dissipation than the cell-based approach.

Gate-array and sea-of-gates wafers contain arrays of primitive transistors or cells

that are offered by vendors. Only the interconnection layers must be added in order to get

the final design. Another option to enable fast implementation is the pre-wired array of

cells and also called field-programmable gate array (FPGA). It is a pre-fabricated die that

can be configured or programmed for the user outside the semiconductor foundry. The

53

advantage of this approach is the complete separation of the manufacturing process from

the design process. In general, there are three different techniques to store the configu-

ration or program based on the employed memory technology: Fused-based, nonvolatile,

and volatile or RAM-based FPGAs. The first type is one-time programmable but the

area overhead corresponding to the configuration memory is very small. For the second

type, a nonvolatile memory is employed to retain the configuration of the design when

the power supply is turned off. Electrically erasable Read-Only memory (EEPROM) and

Flash memory are examples of nonvolatile memories. Programming and erasing these

memory cells require high voltages (> 10 V).

The last type employs commonly volatile static random-access memory (SRAM)

cells to store the configuration. In these memories, information is stored on cross-coupled

inverters. However, they lose the stored configuration when the FPGA is powered off.

FPGAs do not require special manufacturing processes so they can be fabricated in com-

mercial CMOS foundries. Implementation of FPGA designs requires the configuration

of both logic functions (programmable logic) and the interconnections among them (pro-

grammable interconnection).

4.3 Semi-custom design flow

The semi-custom design flow can be split up into two main stages: front-end and

back-end. During the front-end stage, the circuit is described using a hardware description

language (HDL) such as Verilog and VHDL, or purely behavioral description languages

as C programs and MATLAB models for data and signal processing. Using a high level

of abstraction allows the designer to put mainly efforts on logic design and minimize the

concern about physical issues. Figure 4.2 shows a generalized semi-custom design flow.

The description of the circuit is processed by a synthesis tool that translates it

into a set of interconnected gates. These gates belong to a library of standard cells or

logic primitives in the cell-based and FPGA approaches respectively. During logic syn-

thesis, the circuit is optimized with the aim of minimizing area while meeting some time

constraints. According to the level of abstraction of the entry design, synthesis can be

named: logic synthesis, register-transfer level (RTL) synthesis, and architectural syn-

thesis. Logic synthesis generates combinational gates networks and simple finite state

machines (FSMs). A logic synthesis tool accepts the use of logic equations built from

basic operators such as NOT, AND, OR, XOR, truth tables, state graphs, and so on. RTL

54

Figure 4.2: Generalized semi-custom design flow

Source: (WESTE; HARRIS, 2015)

synthesis views an entire circuit as a network compound of storage elements (registers

and memories) and combinational logic between them. The circuit is represented by its

behavioral specification and it is not limited to logic operations because it can include

arithmetic functions, string operation, arrays, etc. Architecture synthesis, which is also

called high-level synthesis (HLS), does not explicit the necessary hardware resources.

The advantage of this method is the exploration of architectures in order to generate a

close-to-optimal design under several constraints as performance, power, and area. Even-

tually, a gate-level netlist, which contains information about the circuit composition, is

generated from the automatic synthesis process.

The back-end stage involves physical aspects of design such as floorplanning,

placement, and routing of the netlist’s elements. Moreover, the resulting circuit from

each automatic transformation step in the design flow must be checked for correctness.

The verification approaches that are employed along the design flow include behavioral

verification, formal verification, timing analysis, power analysis, and electrical integrity

analysis (noise, IR drop and electromigration issues). Once the circuit meets all design

constraints and functions, a binary file with the information for mask generation is sent to

the semiconductor foundry. This last step is known as tape out. Unlike cell-based design,

55

the last step of the FPGA approach is the bit-stream generation that configures the device.

4.4 Proposed fault-tolerant design flow

Logic treatment of the circuit is mainly performed during the front-end stage.

Thus, the implementation of TMR circuits is suitable at this stage. The TMR technique

can be applied during the behavioral design or using the gate-level netlist in a standard

design flow. For instance, authors in (ENTRENA; LÓPEZ; OLÍAS, 2001; LEVEUGLE,

2002; HABINC, 2002; KULIS, 2017; LEE et al., 2017; SANTOS et al., 2017) imple-

ment redundancy during the RTL and HLS design. Implementing TMR for flip-flops is

relatively simple but it is cumbersome to implement it efficiently for combinational logic.

Also, in order to be feasible to apply TMR in the behavioral description, the circuit’s de-

scription needs to be clearly split between combinational and sequential elements. That

represents a limitation when it is intended to apply the TMR in behavioral description.

Furthermore, that approach needs the circuit to be properly constrained to avoid com-

mercial tool removes the inserted redundant logic. In consequence, over-constraining the

design result in a non-optimal implementation. On the other hand, a post-synthesis netlist

is handled to make modifications directly in its structure (STAMENKOVIć; PETROVIć;

SCHOOF, 2013). The main advantage of this approach is the possibility of using an

optimized netlist and preventing easily the elimination of the replicas.

The aforementioned works only show the implementation of TMR circuits but

none of them verify if they were successfully implemented. Thus, this work comes up

with an integrated solution that automates the implementation and verification processes

to design TMR circuits using the semi-custom design flow (BENITES; KASTENSMIDT,

2018). Also, an additional step is considered to attempt to resolve timing issues but

preserving the redundant logic in the resulting TMR circuit. Integration of the proposed

solution to the design flow is depicted in Figure 4.3. The different steps to design TMR

circuits for cell-based and FPGA designs are detailed in the following sections.

The proposed methodology was devised using Cadence EDA tools with the aim

of being helpful for researchers from institutions that are part of the Cadence Univer-

sity Software Program and IC design centers in Brazil (CADENCE, 2018),(CI-BRASIL,

2018). The approach can also be extended to other commercial design flows.

In Appendix A it is shown a simple tutorial with the application of the proposed

approach to automate the TMR design of a simple circuit from ISCAS’89 benchmark set.

56

Figure 4.3: Proposed fault tolerant design flow to automate the implementation, optimiza-
tion and verification steps of TMR circuits

Source: From the author

57

4.4.1 TMR implementation process (TMRi)

This work considers three variants of the TMR approach. For convenience, they

are identified using the name convention employed in (NIKNAHAD, 2012). Granularity

levels of redundancy can be classified into coarse grain and fine grain. Coarse grain TMR

(CGTMR) is the same as the conventional modular TMR, where a module is considered

to be the entire design and the modules’ outputs are voted. The CGTMR is suitable for in-

tellectual property (IP) modules that are bought from third-parties and cannot be edited by

the final user, for instance. The fine grain TMR (FGTMR) replicates sub-modules instead

of the whole design. One case is the replication of sequential gates while the combina-

tional paths remain the same. Also, a single voter is placed at the outputs of triplicated

sequential gates. This approach is known as fine grain local TMR (FGLTMR). However,

the trend for combinational logic in advanced technology nodes is to be more susceptible

to radiation effects. Thus, a more effective approach is the fine grain distributed TMR

(FGDTMR), where both combinational paths and sequential gates are replicated. Voters

are also triplicated with the aim of reducing the amount of single point of failures. In this

case, voters can be placed at the outputs of the sequential gates, and the final outputs, but

also at the end of some combinational paths according to the need for the designer. Figure

4.4 illustrates a simple circuit and its resulting TMR implementations.

In this work, TMR circuits are implemented using Cadence Genus synthesis tool.

The TMRi library was developed based on the design information hierarchy and built-in

commands of the aforementioned tool (CADENCE, 2016). Tcl scripts were used for the

development of the TMRi library because Tcl is commonly used in automatic synthesis

tools, well documented and very intuitive (OUSTERHOUT et al., 2010).

The devised TMRi library provides three commands to implement each TMR ver-

sion with the following syntax:

• TMRi_CGTMR

<top_level_design_name>

<top_level_cgtmr_design_name>

<voter_design_name>

• TMRi_FGLTMR

<top_level_design_name>

<top_level_fgltmr_design_name>

<voter_design_name>

58

• TMRi_FGDTMR

<top_level_design_name>

<top_level_fgdtmr_design_name>

<voter_design_name>

Figure 4.4: Illustration of a a) simple circuit and its TMR implementations: b) CGTMR,
c) FGLTMR and d) FGDTMR

(a)

(b)

(c)

(d)

Source: From the author

59

The previous commands affect the circuit defined by the first argument. However,

in the case of the designer only need to apply the TMR technique over an internal block,

it must be extracted from the entire design and apply the command directly to it. Further-

more, a customized design of the voter circuit can be employed. The voter circuit has to

be synthesized previously and loaded along with the target design.

The automatic TMR implementation approach employs a structural netlist, the

used technology library, the TMRi library, and a voter HDL. According to the custom-

design approach, the netlist corresponds to a gate-level netlist (mapped to standard cells)

or a generic logic netlist (primitive gates) for the cell-based and FPGA flows respectively.

This differentiation is because the implementation of combinational logic is based on

LUTs in FPGA designs instead of logic standard cells. By default a generic HDL voter is

available and it is included in the TMRi library if an user-customized voter is not utilized.

In this work, the implemented TMR circuit has identical number and type of ports

with the aim of avoiding interface mismatches when the circuit is part of an existing sys-

tem. Thereby, the proposed methodology can protect selectively critical modules in com-

plex systems. Clock and asynchronous reset lines are also not replicated. The main issue

of clock replication is clock skew among the redundant clock domains. Also, the syn-

chronous design approach is violated in paths containing voters because of the presence

of flip-flops with multiple clock domains. Thus, synchronization among replicas may be

cumbersome, affecting substantially the design process (MELANY; LABEL; PELLISH,

2016). Synchronous designs are also characterized by the use of a single-master reset

line in order to put the whole circuit into a known state. Furthermore, the implementation

and treatment of these signal lines are performed in the back-end stage, where buffers

are added to meet timing constraints. So, those elements are available after the synthesis

stage and it skips from the scope of this work.

Some library cells include sequential gates with two complementary output pins.

Corruption of the stored value in a sequential gate affects both normal and complementary

signals because they are typically extracted from the same loop that holds the stored value.

Consequently, avoiding the use of the complementary output by the synthesis tool reduces

the number of voters in the implemented TMR circuit.

In order to avoid the accumulation of faults in enabled flip-flops, voters are placed

before their feedback node. Hence, the transitions of FSMs built with this type of flip-

flops are not corrupted by single faults. The feedback node of the enabled flip-flop must

be external to the flip-flop’s cell in order to implement adequately this feature.

60

Furthermore, the entry design can contain undefined blocks or black boxes. How-

ever, they are replicated in the same way as the combinational logic according to the cho-

sen granularity of the TMR implementation. For instance, this feature is employed when

the unmitigated design contains dedicated data paths, multipliers and memory arrays.

The internal steps performed by the use of the aforementioned commands are ex-

plained next. Alike the three commands, it is extracted information about input and out-

put ports, and sequential instances (flip-flops) from the post-synthesis netlist. Using the

same environment is created a new empty design that will be the container of the desired

TMR design. Then, the same number and name of input and output ports of the origi-

nal circuit are assigned to the TMR design. According to the applied command, one or

three instances of the original circuit are inserted within the TMR design. CGTMR and

FGDTMR approaches employ three instances to provide both combinational paths and

sequential gates in triplicate. FGLTMR version utilizes only one because combinational

paths are non-redundant and sequential gates are afterward handled for replication. The

following step is the insertion of voters that is performed in different ways for the TMR

approaches as commented before. In the FGLTMR version, each sequential gate is re-

placed by three identical gates of the original thereof and a single voter. Moreover, it

has the same input and output pins in order to do not alter connectivity among the gates.

For the FGDTMR, triplicated voters are inserted for the existing triplicated sequential

elements. CGTMR does not insert voters for the sequential gates. Additionally, single

voting elements are collocated at the output pins of the inserted instances of the original

circuit for the CGTMR and FGDTMR approaches. For the FGLTMR, there is no need

to insert voters for this purpose. Afterward, the input ports of the TMR design are linked

with the inputs of the inserted instances. Output ports are connected to the output pins of

the inserted instance’s outputs or voters according to the TMR approach.

Eventually, the TMR netlist is generated along with information about the corre-

spondence of triplicated sequential gates in the TMR circuit with their original counter-

parts in the unmitigated circuit. Furthermore, input and output ports are also listed. This

information is employed in the verification process of the TMR design.

The aforementioned steps to implements TMR circuits are depicted in Figure 4.5.

61

Figure 4.5: Flowchart to automate the implementation of TMR circuits

Source: From the author

62

4.4.2 TMR optimization Process (TMRo)

The use of TMR increases output capacitance and fan-out of gates. Furthermore,

the timing of the paths is altered by the voter’s delays. In the case of encountering timing

violations in the TMR design or with the aim of improving performance, further optimiza-

tion based on gate sizing is employed. The circuit is easily constrained for this purpose

in order to preserve all the gates. On the other hand, if timing issues are not yet resolved

after applying optimization, the clock frequency must be redefined. An additional delay

budget may be considered in the initial synthesis process to manage this issue.

The circuit is synthesized again in order to perform the sizing of the design. An

optimized TMR netlist is generated. This step is only performed for the cell-based flow

because the FPGA flow employs generic logic primitives without information of area,

timing, and power.

4.4.3 TMR verification process (TMRv)

The optimized TMR implementation must be in compliance with the original cir-

cuit functionality. Moreover, it must be proved its capability to mitigate single faults into

one copy of the replicas. In other words, redundant logic and voter elements are expected

to be successfully inserted. The behavior of a system in presence of faults can be ob-

served inserting intentionally faults into the system and monitoring the responses. That

approach is known as fault injection and permits to evaluate the dependability of a system.

According to the design stage where is performed the fault injection, it can be classified in

simulation-based, emulation-based, and hardware fault injection. At early design stages

(before fabrication) is only possible to use the simulation-based approach.

The simulated-based fault injection brings full observation an control of the netlist.

However, it needs the use of an exhaustive testbench that can leads to prohibitive long

simulation times and big resource utilization. Unlike executing simulations, a powerful

approach is the use of formal verification. Formal verification is employed to check as

long as the current circuit implementation will function as previously specified at some

higher level of abstraction. Equivalence checking is a type of formal verification and it

consists in the Boolean comparison of pairs of combinational paths of two different im-

plementations of a design. Combinational paths can be bounded by memory elements

(flip-flops) and ports. In the simplest case, it is expected a one-to-one correspondence

63

between these boundary elements for both designs under comparison. All pairs of corre-

sponding next-state logic functions and output functions must be proved to be functionally

equal in presence of the same set of stimuli at the corresponding flip-flops and primary

inputs. For instance, equivalence checking is performed to verify the correctness of the

resulting post-synthesis netlist in relation to the RTL design during the front-end stage.

Some works consider equivalence checking to validate TMR designs. Authors in

(BERG; LABEL, 2016) propose a verification method employing gate to gate tracking

in order to verify both functional and topology correctness of TMR implementations. in

(BELTRAME, 2015), the author uses the equivalence checking to perform fault injec-

tion campaigns but without performing gate-level simulations. In this work, the TMR

netlist is implemented directly from a post-synthesis netlist so, evaluation of the equiva-

lence between these two designs is simplified because the matching process of registers

and primary ports is done by naming convention. The verification process comprises the

analysis of the correct functionality and fault tolerance of the automatically generated

TMR circuit. A library was developed to perform TMR verification (TMRv library) for

the Cadence’s Genus and Logic Equivalence Checking (LEC) tools (CADENCE, 2013).

Likewise the TMRi library, TMRv library is based on Tcl scripting files.

Early analysis falls in verifying the presence of triplicated flip-flops into the re-

sulting TMR design. To do that, an iterative search is performed and it is reported the

number of matched TMR flip-flops. Furthermore, the correctness of redundant combina-

tional logic must be checked also. Combinational logic may represent next-state or output

logic functions. In the first case, replication must not share any gate in order to preserve

the isolation among the redundant paths as depicted in Figure 4.6. Whereas redundant

combinational logic paths that drive output ports have to share uniquely the voter element

at the end of the path (Figure 4.7). The amount of common gates encountered between

redundant logic paths is reported for each case.

In the aforementioned steps, no logic analysis is done. As a consequence, they are

executed using the Genus synthesis tool because of the simplicity to access the circuit’s

structure information instead of using the equivalence checking tool, which reduces the

circuits to their minimum logical forms.

The following three commands belong to the TMRv library and they are employed

to verify the presence of TMR flip-flops and the independence of redundant combinational

paths that drives flip-flops and output ports respectively:

64

• TMRv_replication_ff <tmr_design_flipflop_list>

• TMRv_replication_cmb_logic_ff <tmr_design_flipflop_list>

• TMRv_replication_cmb_logic_po <tmr_design_output_port_list>

The arguments tmr_design_flipflop_list and tmr_design_output_port_list receives

the target flip-flops and output ports of the TMR circuit intended for verification. They

are obtained in the TMRi step.

Figure 4.6: Logic cones of a) unmitigated flip-flop and the resulting TMR logic cones: b)
FGLTMR, c) CGTMR and d) FGDTMR

(a)
(b)

(c)

(d)

Source: From the author

The procedure to find the elements of a logic cone for a chosen flip-flop is illus-

trated after in Figure 4.9. Furthermore, the structural verification process is shown in

65

Figure 4.7: Triplicated combinational logic paths of primary output in a) CGTMR and b)
FGDTMR implementations respectively

(a)
(b)

Source: From the author

Figure 4.10 and Figure 4.11 for redundant combinational paths of flip-flops and primary

output ports respectively.

Once the structural verification of the replicas is validated, the synthesis tool is left

and from this point, the equivalence checking tool is employed. The equivalence check-

ing uses the unmitigated (golden) and the target TMR (revised) designs, the technology

library, the TMRv library, and also the information about the matching flip-flops and ports

between the golden and the revised designs.

In order to make clear the logic equivalence process, the simple circuit and its

TMR implementation depicted in Figure 4.4 are used as an example. Let us take the

flip-flop FF1 as a reference. It loads its data from a combinational logic path (also called

logic cone), which is stimulated by two flip-flops (FF0 and FF1). Figure 4.6 illustrates

the replicated logic cones in the different TMR implementations.

In order to validate the correct implementation of designs implementing fine grain

redundancy, the start point is to prove that triplicated sequential gates in the TMR design

are driven by equivalent combinational paths. Each one of the combinational logic paths

in the FGTMR designs are composed of the original logic path and one or more voters.

Moreover, each replicated path is stimulated by the same set of flip-flops and input ports.

In the example, each redundant combinational paths is fed by the TMR flip-flops U0_FF0,

U1_FF0, and U2_FF0 and U0_FF1, U1_FF1, and U2_FF1. Figure 4.6b and Figure 4.6d

depict the resulting logic cones for each TMR flip-flop in fine grain approaches. Three

66

logic cones corresponding to each TMR flip-flop must be proved to be equivalent. In

case of mismatch, the process of verification must be interrupted and the revised design

must be checked. Debugging begins verifying that redundant combinational paths have

the same set of inputs. If there are no missing inputs among the replicas, logic cones must

be fixed before going on to the next step.

Once replicated logic cones in the revised design are proved to be equivalent, the

unmitigated and TMR designs are compared. This step pursues to verify that the resulting

TMR implementation performs the same functionality that the original circuit. Moreover,

it must be tested the fault tolerance against single faults of the revised design. Hence, the

presence of soft-errors in flip-flops are modeled to validate the effectiveness of the TMR

implementation. The fault model considered during the equivalence checking consists

in setting the same output values for two of the triplicated sequential gates while the

other one can take any value. Because there are only two valid logic values during the

equivalence checking ("1" or "0"), the fault model represents effectively the behavior of

an SEU and an SET latched by a flip-flop, where the location of the fault is determined

by the redundant flip-flop with opposite value to the other two replicas. There is no

need to specify the time when the fault occurs because if the TMR technique is properly

implemented the single fault must be masked. In consequence, the fault is not propagated

to the next logic state and no error is manifested. On the other side, if the triplicated

flip-flops have the same output value, the circuit acts free of faults and therefore, boolean

equivalence of both unmitigated and TMR circuits must be achieved as well. Also, in

case of no equivalence, correspondence of key points between the golden and the revised

design must be observed. If there are no issues of this type, logic cones between designs

must be fixed.

Figure 4.8 depicts an SEU in the U2_FF1 flip-flop and the comparison process

between the unmitigated and its TMR implementation. The logic cones of two out of

the triplicated flip-flops of TMR implementation are merged in the comparison process.

That is valid and not lost generality because they take the same value and the equivalence

between its logic cones was already verified previously.

Unlike fine grain implementations, the coarse grain version does not link sequen-

tial gates of the replicas with voters. Otherwise, it only uses voters for primary outputs.

So, each logic cone for a sequential element does not share necessarily the same key

points. The logical equivalence between replicated logic cones in the revised design is

verified setting the same stimulus for two of the triplicated sequential gates and compar-

67

Figure 4.8: Comparing process and fault injection for the FGDTMR implementation

Source: From the author

ing the results in its respectively end key points. In case of mismatching, correspondence

of key points is analyzed. If the key point mapping is correct, logic cones must be fixed.

Equivalence between the revised and golden designs and fault tolerance is verified using

the same approach explained before.

The following commands are utilized for the equivalence checking and the verifi-

cation of fault tolerant capability for each one of the implemented TMR versions accord-

ing to the selected granularity respectively:

• TMRv_lec_CGTMR

• TMRv_lec_FGLTMR

• TMRv_lec_FGDTMR

Figure 4.12 illustrates the verification process of the correct functionality and the

fault-tolerant capability between the unmitigated circuit and its TMR counterpart.

68

Figure 4.9: Flowchart to get elements of logic cone of a selected flip-flop

Source: From the author

69

Figure 4.10: Flowchart to find shared elements in logic cones of three redundant flip-flops

Source: From the author

70

Figure 4.11: Flowchart to find shared elements in logic cones of a selected primary output

Source: From the author

71

Figure 4.12: Flowchart to verify the correct functionality and masking capability of the
implemented TMR design

Source: From the author

72

4.5 Conclusion

In this chapter was explained the steps of the proposed methodology to automated

the design of TMR circuits. The adaptation of a commercial design flow was the goal of

the present work in order to ease the design of fault-tolerant circuits. Also, the proposed

methodology does not interfere with the use of a high-level description of the circuit and

speeds up the design of fault-tolerant circuits. TMR circuits with a single clock and reset

domains are automatically implemented in order to reduce the design effort and to reuse

designs initially not addressed for critical applications where the effect of radiation is a

concern. Moreover, the proposed methodology is not restricted to a specific technology

node. That feature is worthy of taking into account the constant miniaturization of the

transistor. Furthermore, the proposed methodology deals with the semi-custom design of

digital circuits, so TMR circuits can be implemented following the cell-based and FPGA

approaches from a mapping netlist or using generic primitive gates respectively. Opti-

mization of the resulting TMR circuit is also applied based on the gate sizing approach

with the aim of resolving timing issues. Verification of the implemented TMR circuit is a

relevant step in order to detect issues early before the deployment of the circuit. Because

tools are also prone to error, the verification step pursues to ensure the correct functional-

ity and fault-tolerant capability of the resulting TMR design.

73

5 EXPERIMENTS

5.1 Introduction

The aim of this section is to show how the design of fault-tolerant circuits is sim-

plified by the use of the proposed automated methodology. The following guidelines were

taken into account to select the circuits intended for experimentation:

• Large-size circuits, where manual insertion of redundancies would be a hard, inef-

ficient and prone to error task.

• Circuits generated from behavioral languages, where the resulting optimized RTL

description is generated entirely by the synthesis tool.

• Circuits with restricted information about its implementation or where circuit de-

scription is not easily readable.

As a result, two study-case circuits corresponding to a matrix multiplication and a

soft-core microprocessor were chosen. They are used to follow the proposed cell-based

and the FPGA flows respectively shown in the previous chapter.

5.2 Fault-tolerant cell-based design flow

The case-study design for the cell-based design flow corresponds to a matrix mul-

tiplication. Matrix multiplication circuit is a hardware-implemented algorithm essentially

built from blocks of multipliers and adders. These mathematical operations are very com-

mon in digital signal processing (DSP) applications and its recurring structure enables the

exploration of different implementations. It is considered for the experiments that each

input matrix is a 6x6 array of 8-bit vectors and the output thereof is also a 6x6 array

composed of 19-bit vectors.

Three architectural versions were generated using the high-level synthesis ap-

proach. The Xilinx Vivado HLS tool was used for that purpose. Figure 5.1 shows the

C algorithm used to generate the three RTL implementations.

The architectural exploration was based on pipelining the loop iterations in the

C code. The first version (MM1) was generated without using optimization directives

that lead to a non-pipelining version with a latency of 733 clock cycles. Meanwhile, two

optimized versions (MM2 and MM3) were implemented utilizing the pipeline directive.

74

Figure 5.1: Matrix multiplication algorithm

Source: (TONFAT et al., 2016)

MM2 is a 21-stage pipeline with a latency of 112 clock cycles, meanwhile, MM3 exhibits

a 7-stage pipeline an latency of 133 clock cycles.

These three versions of the matrix multiplication algorithm were employed to fol-

low the cell-based flow of the proposed methodology. They were synthesized using the

NanGate 45nm Open Cell Library and setting the target clock frequency to 125 MHz. The

area of each implementation is expressed in terms of the NAND2 Gate Equivalent (GE)

size of the technology library and it is not considered interconnection’s area and delay at

this stage.

In order to analyze the proposed TMR cell-based flow, two approaches were fol-

lowed after the generation of the RTL implementations as depicted in Figure 5.2. The

left branch is followed to evaluate the resulting TMR circuits from a low-optimized syn-

thesis. Further aggressive optimization is performed after the TMR implementation. On

the other side, in the right branch is applied the TMR in high-optimized versions of the

circuits and afterward, gate sizing optimization is employed.

5.2.1 Analyzing the impact of logic optimization in the designs

Each one of the three RTL descriptions was synthesized setting the Genus syn-

thesis tool to perform low- and high-effort levels of logic optimization. In the case of

low-effort synthesis, very little RTL optimization such as constant propagation, resource

sharing, logic speculation, MUX optimization and carry-save arithmetic (CSA) optimiza-

tion is performed. Also, relaxed redundancy identification and removal is done. As a

75

Figure 5.2: Procedure to evaluate the proposed cell-based flow to design TMR circuits

Source: From the author

result, the post-synthesis netlist retains the behavioral structures of the entry RTL de-

scription. On the other hand, high-effort approach performs aggressive utilization of the

aforementioned optimization tasks. Table 5.1 summarizes the resulting designs after syn-

thesis.

In the case of the high-optimized implementation of MM1, the number of com-

binational gates suffers a considerable reduction of 24% and an insignificant variation in

the number of flip-flops (1%) in comparison to its low-optimized implementation. There-

fore, the area comes down by 8%. Besides, its maximum clock frequency is reduced

by 32%. This happens because area optimization is obtained by the use of small, slow

gates. High-optimized implementations of MM2 and MM3 exhibit similar results in the

diminution of the number of combinational gates (16% and 13% respectively), flip-flops

76

Table 5.1: Summary of low and high effort synthesis results of circuit versions
Design MM1 MM2 MM3

Low-optimized implementations
Combinational gates 523 (1×) 9180 (1×) 1981 (1×)
Flip-flops 73 (1×) 722 (1×) 209 (1×)
Area (GE) 1242.67 (1×) 21592.00 (1×) 4805.67 (1×)
Max. Freq (MHz) 223 (1×) 163 (1×) 131 (1×)

High-optimized implementations
Combinational gates 395 (0.76×) 7735 (0.84×) 1715 (0.87×)
Flip-flops 72 (0.99×) 709 (0.98×) 206 (0.99×)
Area (GE) 1144.33 (0.92×) 20515.00 (0.95×) 4607.00 (0.96×)
Max. Freq (MHz) 153 (0.68×) 147 (0.90×) 129 (0.98×)

Source: From the author

(2% and 1% respectively) and area (5% and 4% respectively). Maximum clock frequency

also decreased by 10% and 2% respectively.

Low-optimized implementation of MM1 leads to a maximum clock frequency

greater than the values for MM2 and MM3 (1.4 and 1.7 times respectively). For that

reason, performance degradation is more noticeable for MM1.

5.2.2 Analyzing the impact of adding TMR in area and performance

The left sections of Table 5.2 and Table 5.3 show the characteristics of the gener-

ated TMR implementations for the low and high-optimized versions respectively. Because

the CGTMR triplicates all the elements of the circuit, the resulting area of the replicated

elements is 3 times the area of the unmitigated circuit. Likewise the CGTMR, FGDTMR

also triplicates all the internal elements of the unmitigated circuit. In the FGLTMR, by

contrast, it is only triplicated the flip-flops leaving the combinational logic unaltered. For

the low-optimized implementations of MM1, MM2, and MM3, the area overhead caused

by the addition of voters at the output ports is 19%, 1%, and 6% respectively. Perfor-

mance is not affected for CGTMR versions. FGTMR approaches, in contrast, are slightly

reduced in 8%, 1%, and 5% respectively. In the case of high-optimized implementations,

the area overhead related to the insertion of voters at the output ports is 21%, 2% and 7%

for MM1, MM2, and MM3 respectively. Furthermore, the increase of area because of

the addition of single voters per each triplicated flip-flop is 33%, 18%, and 24% respec-

tively in both cases. About performance, CGTMR does not suffer impact meanwhile the

FGTMR approaches only suffers a reduction of around 5%.

77

Table 5.2: Summary of TMR implementation results from low-optimized netlist (left
section) and further aggressive optimization (right section)

Design Unmitigated CGTMR FGLTMR FGDTMR Opt. Opt. Opt.
CGTMR FGLTRM FGDTMR

Low-optimized implementation of MM1

Combinational gates 523 1613 596 1832 945 402 402
Flip-flops 73 219 219 219 110 72 72
Area (GE) 1242.67 3962.67 2459.33 5130.67 2469.00 1142.67 1142.67

(1×) (3.19×) (1.98×) (4.13×) (1.99×) (0.92×) (0.92×)
Max. Freq (MHz) 223 223 205 205

(1×) (1×) (0.92×) (0.92×)

Low-optimized implementation of MM2

Combinational gates 9180 27598 9902 29764 22815 7629 7625
Flip-flops 722 2166 2166 2166 2166 709 709
Area (GE) 21592.00 65085.33 33674.67 76637.33 61744.67 20461.00 20455.67

(1×) (3.01×) (1.56×) (3.55×) (2.86×) (0.95×) (0.95×)
Max. Freq (MHz) 163 163 149 149

(1×) (1×) (0.92×) (0.91×)

Low-optimized implementation of MM3

Combinational gates 1981 6001 2190 6628 4141 1368 1369
Flip-flops 209 627 627 627 627 206 206
Area (GE) 4805.67 14726.33 8289.00 18070.33 13550.33 441.33 4442.00

(1×) (3.06×) (1.72×) (3.76×) (2.82×) (0.92×) (0.92×)
Max. Freq (MHz) 131 131 125 125

(1×) (1×) (0.95×) (0.95×)

Source: From the author

5.2.3 Analyzing the impact of performing logic optimization after adding TMR

The resulting TMR implementations are also optimized with the goal of evaluating

how the synthesis tool treats the automatically inserted redundancies and its relation with

the selected TMR granularity. The right sections of Table 5.2 and Table 5.3 show the

characteristics of the optimized TMR implementations for the low and high-optimized

versions respectively.

First, the TMR implementations obtained from the low-optimized circuits were

optimized without using additional constraints. Thus, the synthesis is able to perform

aggressive optimization. As a result, in the case of the coarse grain approach, flip-flops

were removed partially in MM1 but they were not affected in MM2 and MM3. On the

other hand, in the fine grain approaches, the tool excluded all the redundant flip-flops

and even it generated post-synthesis circuits with the same number of flip-flops than their

high-optimized implementations respectively. The fine grain approaches have voters as

common points among the triplicated flip-flops. Therefore, the synthesis tool was able

78

Table 5.3: Summary of TMR implementation results from high-optimized netlist (left
section) and further gate sizing optimization (right section)

Design Unmitigated CGTMR FGLTMR FGDTMR Opt. Opt. Opt.
CGTMR FGLTRM FGDTMR

High-optimized implementation of MM1

Combinational gates 395 1229 467 1445 1265 467 1481
Flip-flops 72 216 216 216 216 216 216
Area (GE) 1144.33 3667.67 2344.33 4819.67 3691.67 2344.33 4843.67

(1×) (3.21×) (2.05×) (4.21×) (3.23×) (2.05×) (4.23×)
Max. Freq (MHz) 153 153 144 144 153 144 144

(1×) (1×) (0.94×) (0.94×) (1×) (0.94×) (0.94×)

High-optimized implementation of MM2

Combinational gates 7735 23263 8444 25390 23331 8485 25581
Flip-flops 709 2127 2127 2127 2127 2127 2127
Area (GE) 20515.00 61854.33 32386.33 73198.33 61899.67 32359.00 73325.67

(1×) (3.02×) (1.58×) (3.57×) (3.02×) (1.58×) (3.57×)
Max. Freq (MHz) 147 147 140 140 147 142 141

(1×) (1×) (0.95×) (0.95×) (1×) (0.97×) (0.96×)

High-optimized implementation of MM3

Combinational gates 1715 5203 1921 5821 5271 1925 5904
Flip-flops 206 618 618 618 618 618 618
Area (GE) 4607.00 14130.33 8040.33 17426.33 14175.67 8046.33 17492.67

(1×) (3.07×) (1.75×) (3.78×) (3.08×) (1.75×) (3.80×)
Max. Freq (MHz) 129 129 124 124 129 125 125

(1×) (1×) (.96×) (0.96×) (1×) (0.97×) (0.97×)

Source: From the author

to merge them. On the other side, the tool was not efficient to optimize the flip-flops

without direct interaction with its redundant counterparts in the designs with coarse grain

granularity.

Figure 5.3 shows an extract of missing replicas for TMR flip-flops. The amount

of removed flip-flops is arbitrary and depends on the analyzed flip-flop.

Reduction in the number of combinational gates can be a consequence of remov-

ing partially or completely the redundant logic or replacing simple logic gates by complex

logic ones. So, it is not possible to affirm if the fault mitigation capability of the TMR

approach is broken or persists. Therefore, it was performed the verification of the struc-

ture of combinational paths in the fine grain approaches in order to validate or reject the

resulting optimized TMR versions of the low-optimized designs. Figure 5.4 shows an ex-

tract of the verification result of the logic cones of flip-flops. It is possible to quantify the

number of common gates into the logic cones, as a result, it is observed that the mitigation

capability is lost because a fault in those common gates can propagate up to triplicated

flip-flops. It remarks the importance of verifying the generated TMR circuit in order to

correct the design in early stages of design.

79

Figure 5.3: Extract from flip-flop’s searching report in optimized TMR circuit derived
from low-optimized implementation

Source: From the author

Figure 5.4: Extract from logic cones’ report of optimized TMR circuit derived from low-
optimized implementation

Source: From the author

For output ports, first it is found the voter instances that drive them and the analysis

is performed over the logic cones for each one of their input pins. Figure 5.5 shows an

extract where no voter instances were found.

In conclusion, it is hard to predict all the situations where the synthesis tool can re-

move designer’s inserted redundancy. Analogously, the implementation of TMR designs

from the RTL description depends on the use of properly constraints. Thus, that approach

generally results in a greater area overhead and worse performance than employing a full

optimized circuit as it was found in the previous section.

The number of combinational gates and flip-flops is coherent with the expected

values for the optimized TMR version of the high-optimized implementations. Area over-

80

Figure 5.5: Extract from voter’s searching report in optimized TMR circuit derived from
low-optimized implementation

Source: From the author

head and performance after optimization were slightly worsted e improved respectively

for around 1% and 2%. The increase in the area happens because the sizing of gates to get

a fast response. Also, the synthesis tool added inverters and buffers in order to fix some

timing issues.

The resulting optimized TMR implementations were also verified to ensure that

no issues were produced by the use of the synthesis tool. Figure 5.6 shows an extract

of the full report where it is indicated the presence of all triplicated flip-flops. Common

gates among logic cones of TMR flip-flops are also illustrated in Figure 5.7. Surprisingly,

several cases with common gates were encountered as in consequence, the fault tolerance

capacity was affected. Inspecting these issues, it was found that those common gates

were in majority inverters inserted in the gate sizing optimization step. Again, even con-

straining all the gates for minimum optimization, the synthesis tool corrupted the TMR

implementation. Hence, the verification step is a critical task of the proposed automatic

flow to guarantee the correctness of the TMR implementation. In this case, the optimiza-

tion step can be avoided because as it was shown in Table 5.3, it did not make a noticeable

impact on performance or area.

On the other side, the logic cones of the output ports were correctly implemented.

Figure 5.6: Extract from flip-flop’s searching report in optimized TMR circuit (gate siz-
ing) derived from high-optimized implementation

Source: From the author

81

Figure 5.7: Extract from logic cones’ report of optimized TMR circuit (gate sizing) de-
rived from high-optimized implementation

Source: From the author

Figure 5.8: Extract from voter’s searching report in optimized TMR circuit (gate sizing)
derived from high-optimized implementation

Source: From the author

Figure 5.8 shows an extract where all voter instances were found. Furthermore, Figure 5.9

illustrates that there are not common gates among the redundant logic cones that drives

the voter instances’ pins.

Figure 5.10, Figure 5.11 and Figure 5.12 show the verification reports that indicate

the correct functionality and fault-tolerant capability of the implemented TMR versions

for MM1, MM2 and MM3 circuits respectively. The matched flip-flops and primary input

and outputs were found equivalent to their unmitigated counterparts. Also, the equiv-

alence between the merged flip-flops was checked in the aforementioned figures. The

extra flip-flops represent the ones that can take different values in relation to its merged

replicas. Eventually, the final result "PASS" points out the correctness of the TMR imple-

mentations.

82

Figure 5.9: Extract from logic cones’ searching report of voters in optimized TMR circuit
(gate sizing) derived from high-optimized implementation

Source: From the author

Figure 5.10: Verification report shows the correct implementation of the TMR versions
of MM1

Source: From the author

83

Figure 5.11: Verification report shows the correct implementation of the TMR versions
of MM2

Source: From the author

Figure 5.12: Verification report shows the correct implementation of the TMR versions
of MM3

Source: From the author

84

5.3 Fault-tolerant FPGA design flow

For the FPGA design flow design, a soft-core IP processor was chosen as a case-

study. The ARM Cortex-M0 processor is a soft-core processor available in the ARM De-

signStart Eval package for free use. The Cortex-M0 processor is a 32-bit processor that

implements the Armv6-M architecture. It employs a three-stage pipeline for low-area im-

plementation and it is capable of achieving performance figures of 2.33 CoreMarks/MHz

(ARM, 2017). Figure 5.13 illustrates the Cortex-M0 processor in an example system pro-

vided in the ARM DesignStart Eval package. The processor communicates with the rest

of the system through an AHB Lite interface. The Cortex-M0 processor from DesignStart

Eval package features only a master port of the AHB Lite interface. The RTL description

of the Cortex-M0 processor is an obfuscated, although synthesizable Verilog code. The

obfuscated code brings the opportunity to show how the proposed methodology is able to

implement successfully fault-tolerant versions of large designs even without the need of

identifying its behavioral description.

Figure 5.13: System example based on the ARM Cortex-M0 processor

Source: (ARM, 2017)

85

Other works that implement the TMR technique over the ARM core utilized the

FGLTMR approach with triplicated flip-flops or the CGTMR with voters placed at the

output port of the entire triplicated circuit (BALLAST et al., 2015; ÖZER; Ghahroodi,

M; BULL, 2013). Even a commercial radiation hardened micro-controller based on the

ARM Cortex-M0 only uses the FGLTMR approach (BANNATYNE et al., 2016). In the

knowledge of the author, there is not past work implementing the FGDTMR version of

any family of ARM processors. As part of the experiments, the CGTMR, FGTMR and

moreover the FGDMTR of the ARM Cortex-M0 processor were implemented using the

proposed automated methodology.

5.3.1 Analyzing synthesis in the cell-based and FPGA design flows

For this work, it was only applied the TMR technique over the Cortex-M0 proces-

sor block shown in Figure 5.13. Program memory (PM), data memory (DM), as well as

other peripherals present in the ARM processor system were not protected using the TMR

technique. The TMR versions were implemented using Cadence tools and then exported

to the Xilinx FPGA flow as illustrated in Figure 5.14.

Figure 5.14: Procedure to evaluate the proposed FPGA flow to design TMR circuits

Source: From the author

86

The synthesis was done restricting the use of generic primitive gates. Furthermore,

the TMR circuits employ flip-flops with no more than one asynchronous input. These con-

siderations ensure that the resulting netlist can be synthesized adequately using primitive

logic blocks of the target FPGA device. In this work is used the programmed logic of

the Xilinx Zynq-7000 Z030 SoC, which is built on 28 nm process technology and mainly

uses high-k metal gate (HKMG) (XILINX, 2015). The target system clock frequency was

50 MHz. Because the mapping process was performed considering the FPGA resources,

constraints must be used to avoid removing the redundancies in the FPGA design flow.

Table 5.4 shows the synthesized implementation results of the ARM Cortex-M0

processor and its TMR versions following the cell-based and FPGA design flows. Figure

5.15 shows the correctness of the TMR implementations.

In the cell-based section of Table 5.4, the number of flip-flops in the TMR imple-

mentations is three times as expected. Also, majority voters inserted at the output ports

and for each triplicated flip-flops represent 13% and 25% of the number of gates of the

unmitigated design.

In the case of the FPGA section, the unmitigated circuit was optimized by the Xil-

inx’s synthesis tool whereas, the TMR circuits were constrained to preserve the redundant

logic. In consequence, the number of flip-flops is reduced in almost 25% in the unmit-

igated implementation but it remains the same for TMR implementations in comparison

with the cell-based implementations. Thus, the number of flip-flops in the TMR imple-

mentations is more than three times. The reduction of flip-flops in the unmitigated circuit

also affects the proportion of LUTs between it and its TMR counterparts because of the

removal of their logic cones.

Table 5.4: Summary of TMR synthesis results of generic cell-based and FPGA imple-
mentations

Design Unmitigated CGTMR FGLTMR FGDTMR

Generic cell-based flow

Combinational gates 21522 (1×) 67310 (3.13×) 26858 (1.25×) 83318 (3.87×)
Flip-flops 1334 (1×) 4002 (3.00×) 4002 (3.00×) 4002 (3.00×)

FPGA flow

LUTs 3104 (1×) 16683 (5.37×) 6681 (2.15×) 20854 (6.72×)
Flip-flops 1027 (1×) 4002 (3.90×) 4002 (3.90×) 4002 (3.90×)
Configuration bits 1110127 (1×) 5983337 (5.39×) 2340227 (2.11×) 7516339 (6.77×)
Max. Frequency (MHz) 54 (1×) 53.6 (0.99×) 54.6 (1.01×) 52.2 (0.97×)

Source: From the author

87

Figure 5.15: Verification report shows the correct implementation of the TMR versions
of the ARM Cortex-M0 processor

Source: From the author

Maximum operating frequency was slightly impacted by the use of TMR in the

FPGA flow with a maximum degradation of 3% for the FGDTMR implementation. The

FGLTMR exhibits an increment of 1% in the maximum frequency that it may be a result

of a better placement of the utilized resources or because a large logic cone was better

optimized with regard to the unmitigated circuit.

5.3.2 Fault injection campaigns

SRAM-based FPGA solutions are very attractive because of their fast time-to-

market, high density and reconfiguration capability. However, they are susceptible to the

effect of radiation even at ground level. Neutron-induced soft errors in the FPGA’s config-

uration memory may result in unexpected bit-flips that can provoke erroneous operation of

the entire system. Thus, it is mandatory to analyze the possible effects of radiation before

the deployment of the system. Accelerated radiation test allows to collect data in a much

shorter time but it is very expensive. Another alternative is the emulated fault injection

approach, which comes up with a suitable and affordable solution to analyze radiation’s

susceptibility in early stages of development. Emulated fault injection is an accepted ap-

88

proach that speeds up the fault injection campaigns instead of using simulation, which is

very time and resource consuming for large systems. In this work, it is employed the fault

injector platform developed and detailed in (TONFAT et al., 2015) to analyze the effect

of bit-flips in the configuration memory of the unmitigated and TMR implementations

of the ARM Cortex-M0 processor. Bit-flips in the configuration memory can affect both

interconnection and logic implementation of the circuit and in consequence, its operation

can be corrupted. Unlike flip-flops, which update their states in the next triggering clock

edge, the configuration memory is usually loaded only once before the deployment of the

circuit. Thus, a bit-flip in any of these memory cells remain until the design is updated

for maintenance or in case of updating the functionality of the system. Consequently,

the configuration memory represents the most vulnerable part of an SRAM-based FPGA

system to SEUs because these memory cells are abundant, spread over the entire area and

mainly its data is loaded once. For instance, in Table 5.4 it is shown that the number

of utilized configuration bits is considerably greater than the number of flip-flops, from

around 600 times in FGLTMR to about 2000 times in FGDTMR.

The emulated fault injection campaigns performed in this work consider the accu-

mulative effect of bit-flips in the configuration memory. Figure 5.16 shows the example

microcontroller system provided into the Cortex-M0 DesignStart Eval package and em-

ployed to perform the fault campaigns.

The software algorithm corresponding to matrix multiplication was executed in

the ARM Cortex-M0 processor for experimentation. The matrix multiplication algorithm,

unlike the first case-study circuit, employs 32x32 array inputs compound of 32-bit vec-

tors. The matrix operands and result were loaded into the memory data implemented by

BRAMs. Single faults are inserted randomly before starting each execution of the appli-

cation. In case of correct system response, the application is restarted and a new bit-flip is

added randomly in order to emulate the persistence of faults in the configuration memory.

The accumulated bit-flips remains up to an error is found.

The unmitigated and TMR versions of the ARM Cortex-M0 processor were placed

into the same regions of the FPGA in order to limit the frame of configuration bits in the

fault injection. That means, the configuration bits used for the biggest TMR implemen-

tation (FGDTMR) contains the configuration bit of the rest. So, the fault injection cam-

paigns are over this big section in order to emulate the same flux of particle over the same

area. Figure 5.17 illustrates the placement of the unmitigated and TMR versions of the

ARM Cortex-M0 processor. The above region represents the safe block where no faults

89

Figure 5.16: Microcontroller system provided into the ARM Cortex-M0 DesignStart Eval
package

Source: (ARM, 2017)

Figure 5.17: Placement of a) unmitigated and its TMR implementations: b) CGTMR, c)
FGLTMR and d) FGDTMR

(a) (b)

(c) (d)

Source: From the author

90

Figure 5.18: Placement of the reference and the implementations under test of the ARM
Cortex-M0 processor

Source: From the author

are injected. The upper region represents a safe block where no faults are injected. This

region contains an ARM core which brings the correct values of the matrix multiplication

application. Also, the data memories, program memories, and peripherals for both the

reference design and the design under test (DUT) are placed in the safe block. On the

other side, the lower region only contains an ARM processor implementation under test

which runs the application in the presence of faults in its configuration memory.

Two separated blocks containing implementations of the ARM core were exe-

cuted simultaneously the same application with the aim of comparing the normal response

against the circuit under the presence of bit-flips in its configuration memory. The unmit-

igated implementation of the ARM processor was taken into account as the design that

provides the correct response in each execution. Figure 5.18 illustrates the placement of

the reference and the implementations under test of the ARM processor.

According to the manifestation of the errors in relation with the behavior of the

circuit, they can be classified in: timeout, where the faulty circuit takes more time to

finish and even stays in an infinite loop without finishing the processing, and silent data

corruption (SDC), where the execution time is respected but the result is incorrect. Table

5.5 classifies the errors found in the fault injection campaigns. For all implementation,

reaching to 1000 errors was the target to evaluate the rate of error of each type.

The amount of timeout errors in the CGTMR implementation is very close to

the results for the unmitigated circuit. That can be explained because the coarse grain

91

Table 5.5: Classification of errors from the fault injection campaigns
Unmitigated CGTMR FGLTMR FGDTMR

Total faults 66404 40353 47203 99060
Total errors 1000 (100%) 1000 (100%) 1000 (100%) 1000 (100%)

SDC 385 (39%) 366 (37%) 512 (51%) 825 (82%)
Timeout 615 (61%) 634 (63%) 488 (49%) 175 (18%)

Source: From the author

approach is not suitable to avoid state corruption of the FSM that controls the circuit.

Therefore, due to the accumulative effects of bit-flips in the configuration memory, a

corrupted state can remain latent for the next execution increasing the probability of error.

On the other hand, voters inserted after flip-flops reduce the number of timeout error in

fine grain implementations. The rate of timeout errors is reduced by about 20% and a

striking 80% for FGLTMR and FGDTMR implementations respectively.

5.3.3 Analyzing reliability of unmitigated and TMR implementations

Reliability is the probability of a system operates correctly in a specified inter-

val of time. It can also be understood as the complement of the probability of error of

the system. Thus, the reliability curve can be derived from the classification of the rate

of erroneous executions in relation to the amount of accumulated injected faults (BEN-

EVENUTI; KASTENSMIDT, 2018). Figure 5.19 depicts the reliability curve of the ARM

Cortex-M0 processor running the matrix multiplication algorithm.

From the reliability curve is remarkable to notice that the CGTMR and FGDTMR

approaches could mask all the single injected bit-flips in the configuration memory bits.

That also corroborated the correct implementation of the TMR implementations. Mean-

while, the unmitigated and the FGLTMR versions could not mask all the single injected

faults as expected. In addition, the FGLTMR and the unmitigated implementations have

similar reliability levels under the presence of single faults. Furthermore, it is remark-

able to realize the poor reliability levels of the FGLTMR implementation even for a few

accumulated faults. This can be attributed to the replication and insertion of voters that

increased in twice the number of configuration bits. So, the FGDTMR and the CGTMR

implementations were the most proper approaches to protect the circuit from the effects

of radiation whereas, the FGLTMR approach was not suitable for this application. These

results were obtained for the total number of 1000 errors and injecting random faults. The

92

exhaustively fault injection of the susceptibility would show a better representation of the

susceptibility of the unmitigated and FGLTMR implementations.

Comparing the accumulated effect of faults among the four implementations, the

FGDTMR presents the best reliability levels. The FGDTMR is suitable to operate at a

high level of reliability even for 10 accumulated faults. The CGTMR was more efficient

to mitigate up to 20 accumulated faults than the FGLTMR and the unmitigated implemen-

tations. From that point, the unmitigated circuit responds better than the CGTMR and the

FGLTMR.

Figure 5.19: Reliability curve from accumulated fault injection campaigns

100 101 102 103

Accumulated injected faults

0.0

0.2

0.4

0.6

0.8

1.0

Re
lia

bi
lit

y

MXM Unmitigated
MXM CGTMR
MXM FGLTMR
MXM FGDTMR

Source: From the author

93

5.4 Conclusion

In this section was showed the application of the proposed methodology to im-

plement TMR designs from a post-synthesized netlist, as it was detailed in the previous

chapter. Two study-case circuits were considered in order to follow the cell-based and

the FPGA flow to design semi-custom digital integrated circuits respectively. For the first

case-study circuit, a matrix multiplication generated using the HLS approach it is em-

ployed to show the advantage of employing a post-synthesis netlist instead of behavioral

description to implement its TMR versions. This circuit was synthesized using low-effort

levels of optimization in order to make an analogy with the implementation of TMR

circuits directly from the RTL description. In both approaches, the circuit is poorly opti-

mized by the synthesis tool. Furthermore, a high optimized implementation is also gener-

ated in order to notice the advantages of allowing aggressive optimization before applying

the TMR technique. The implementation of the TMR circuits was verified to show how

a commercial tool can corrupt the redundant elements. Whereas the verification of the

presence of triplicated flip-flops in the resulting TMR circuit is a straightforward task,

the correct replication of combinational logic paths must consider different cases in or-

der to guarantee that redundant paths do not share any elements. Moreover, the replicas

must perform the same boolean function and provide the expected mitigation capabil-

ity against single faults. Our proposed methodology also performs further optimization

of the generated TMR circuit. However, it was encountered that the TMR implementa-

tion was corrupted even constrained the commercial tool to perform only simple sizing

of gates. In consequence, the designer must be careful and always verify the correct-

ness of the resulting implementation when consider using commercial tools to implement

redundancy-based mitigation techniques.

For the second case-study circuit, TMR versions of the ARM Cortex-M0 processor

were generated and implemented in FPGA. A contribution of the present work is to make

available the FGDTMR version of the ARM processor. Emulated fault injection cam-

paigns were performed with the finality of analyzing the susceptibility of the ARM pro-

cessor running a benchmark application. Moreover, the reliability of the application was

evaluated through the effects of accumulated faults. The traced reliability curve showed

that poor fault tolerant of the FGLTMR approach of the circuit implemented in FPGA.

On the other hand, the FGDTMR presented an outstanding reliability level of up to 10

accumulated faults.

94

6 CONCLUSION

The objective of this work was to develop a methodology to automate the design

of TMR circuits for cell-based and FPGA designs. The Cadence’s commercial design

flow was adapted to design fault-tolerant circuits. Hence, the need for dedicated tools

along with the issues of the ITAR regimen are avoided. The outcome of this work was

the development of the Tcl libraries TMRi and TMRv to implement a verify the use of

the TMR technique in different granularity levels respectively. In spite of these libraries

are based on the Cadence’s data hierarchy and commands, they can be extended to other

commercial tools by replacing the proprietary commands adequately.

The most representative features of the TMRi library are the reuse of existing

designs initially not addressed for critical applications, the selection of the granularity

level of the TMR technique, the protection of FSMs against accumulated faults, the no

dependency of a fabrication process and its utilization for both cell-based and FPGA

designs.

Furthermore, the chosen study-case circuits showed how the use of a structural

netlist to implement TMR designs exhibits the advantage of non-intervention in the be-

havioral design. Therefore, the utilization of HLS and RTL descriptions is compatible

with the developed approach. In the case-study circuit for the cell-based flow, it was ob-

served that a fully optimized netlist can get a reduction of 8% in its area compared to

a circuit with restricted optimization. So, it is more effective to utilize a netlist than a

constrained behavioral description to implement TMR circuits. An important observation

is a considerable increment in area derived from the insertion of voters, which can reach

up to 110% according to the number of flip-flops, output ports and the granularity level of

the replication. Thus, the use of small majority voters contributes to the reduction in area

overhead.

The use of a structured netlist eases the verification process because of the direct

relation between the flip-flops of the unmitigated circuit and its TMR counterparts. The

verification process was conveniently divided into two steps: structural verification and

the logic equivalence verification. It is remarked that the structural verification of logic

cones of output ports is conditioned to the presence of the voters. If they are not identified

in the TMR circuit, the structural verification cannot be applied with the resources of the

TMRv library.

The proposed fault-tolerant design flow also estates the possibility to apply further

95

optimization in the resulting TMR netlist. Gate sizing optimization was considered for

that purpose. However, during the verification of the TMR circuits, it was found that even

constraining all the gates for this purpose, the TMR implementation can be corrupted in its

structure but not in its functionality. So, that fact highlights the importance of performing

both structural and logical verification of the resulting TMR circuit. Also, the use of the

optimization step requires special attention.

In the case of the circuit that follows that FPGA design flow, the size of the config-

uration memory is much more than 3 times for the FGDTMR and CGTMR implementa-

tions. That shows a limitation of generating a generic TMR netlist for the FPGA flow. So,

the resulting circuit is not totally optimized. However, the use of the proposed approach

must be balanced between the desired reliability level and the overhead caused by the use

of a generic netlist. This issue is not found in the cell-based approach.

Another contribution of this work is to make available the FGDTMR version of

the ARM Cortex-M0 soft-core. Although it was derived from a reduced version of the

ARM soft-core, its RTL description is open access and validated by ARM company so

further research over this implementation is relevant. The set of TMR implementations of

the ARM soft-core was verified and also synthesized in FPGA. Also, their capability to

mitigate accumulated errors in the configuration memory was evaluated using emulated-

based fault injections. According to the results from the fault injection campaigns, the

FGDTMR implementation presented the highest reliability level even in the presence of

up to 10 accumulated faults. On the other hand, the FGLTMR version showed the worst

reliability level even lower than the unmitigated circuit. The reliability level of CGTMR

approach drops after a few accumulated faults but its mitigation capacity is slightly better

than the unmitigated circuit.

The fault-injection campaigns applied in the FPGA implementations of the ARM

soft-core exhibit the efficacy of the voters inserted for enabled flip-flops because of the

low rate of timeout errors in the TMR implementations.

Moreover, the fault-injection campaigns also corroborate the correct implemen-

tation of the CGTMR and FGTMR designs, which present full mitigation against single

faults.

In order to improve the reliability of the FPGA designs, regular refreshing of the

configuration memory can be applied. For instance, authors in (CARMICHAEL; CAF-

FREY; SALAZAR, 2000) describes the use of partial reconfiguration for the purpose of

correcting SEUs in the configuration memory. Authors in (AZAMBUJA et al., 2009)

96

applies dynamic partial reconfiguration with TMR technique in SRAM-based FPGA de-

signs. They employ reconfiguration only in faulty modules with the finality of reducing

fault recovery time and energy consumption in CGTMR designs.

A collateral effect of the experiments is related to the fact that the Cadence syn-

thesis tool was not able to eliminate efficiently the redundant paths in the coarse grain

approach. That exhibits a limitation of the tool to remove redundant paths.

This work also gave a revision of the radiation effects on electronics in order to

offer the background and expose the increased concern of these effects in modern tech-

nologies. Also, fault-tolerant techniques were revised to serve as a guide for designers

who deal with this type of applications.

6.1 Future work

The main drawback of the TMR technique is the overhead in area caused by the

use of replicas and the insertion of voters. Thus, several approaches can be considered to

improve the implementation of TMR designs through the proposed approach.

One way to reduce the cost of employing redundancy is to apply it selectively to a

portion of the design. This approach is called Partial TMR. Use of this approach requires

making a trade-off between improvement in reliability and the cost of the replication.

Authors in (RUANO; MAESTRO; REVIRIEGO, 2009) and (IMAGAWA et al., 2013)

present methodologies to automatically select critical flip-flops for replication and ob-

tain the desired SEU susceptibility level. On the other hand, authors in (MOHANRAM;

TOUBA, 2003) target the partial replication of combinational logic paths. They employ

the cluster sharing and the dominant value reduction methods in TMR circuits. The first

reduction method carefully selects the nodes with low soft-error susceptibility to avoid

performing replication over them. The second method exploits the fact that the soft-error

susceptibility is related to the frequency of the determined logic value (0 or 1) in primary

outputs. If a primary output exhibits low failure rate and it is frequently asserted to logic 1

(logic 0), only two copies are used along with the replacement of the 2-out-of-3 majority

voter for an OR (AND) gate. The author in (TEIFEL, 2008) combines the DMR and TMR

techniques in the same design as well. Interestingly, it employs self-voters built from a

normal majority voter for the DMR parts.

Approximate TMR also exploits the benefits of logic masking properties to reduce

the overhead caused by replication of combinational logic paths. The approximated repli-

97

cas perform different but closely related logic functions. Consequently, approximate TMR

can provide flexibility to get an optimal balance between fault coverage and the over-

head in area an power (SANCHEZ-CLEMENTE et al., 2016; SANCHEZ-CLEMENTE;

ENTRENA; GARCIA-VALDERAS, 2016; ARIFEEN et al., 2016; ALBANDES et al.,

2018). Authors in (SANCHEZ-CLEMENTE et al., 2016) shows a reduction in area over-

head of around 150% and reduction of 2% in the fault masking capability of the approxi-

mated TMR implementation in relation to the CGTMR implementation.

On the other side, the developed libraries are based on the command of Cadence

tools but they can be adapted to be utilized with open-source synthesis tools such as ABC

and Yosys (BRAYTON; MISHCHENKO, 2010; WOLF, 2012)

Experiments with the different TMR implementations of the ARM Cortex-M0

synthesized in FPGA were conducted to evaluate the behavior under the impact of heavy

ions. The tests were performed using the 8UD Pelletron accelerator at Laboratório Aberto

de Física Nuclear (LAFN) at Universidade de São Paulo. The results of the experiments

will be exhibited in a future work.

In a collaborative project with the Carnegie Mellon University (Pittsburg, USA),

the first case-study circuit and its TMR implementations were used to implement a test

system chip that integrated all these circuits. The aim of the project was to expose the

chip to accelerated radiation tests in order to analyze the behavior of the different imple-

mentations under the effects of radiation. The chip was fabricated using the FinFET 16nm

technology. The dimensions of the die are 1.8 mm x 1.8 mm and the chips can operate

with a maximum clock frequency of 1 GHz. The fault-free functionality of the chip was

successfully tested and we expect to perform the radiation tests in the near future.

98

REFERENCES

AHLBIN, J. R. et al. Single-event transient pulse quenching in advanced CMOS logic
circuits. In: IEEE Transactions on Nuclear Science. [S.l.: s.n.], 2009. v. 56, n. 6, p.
3050–3056. ISSN 00189499.

ALBANDES, I. et al. Improving approximate-TMR using multi-objective optimization
genetic algorithm. In: 2018 IEEE 19th Latin-American Test Symposium (LATS).
[S.l.]: IEEE, 2018. p. 1–6. ISBN 978-1-5386-1472-3.

AMUSAN, O. et al. Single Event Upsets in Deep-Submicrometer Technologies Due to
Charge Sharing. IEEE Transactions on Device and Materials Reliability, v. 8, n. 3, p.
582–589, sep 2008. ISSN 1530-4388.

AMUSAN, O. A. et al. Single event upsets in a 130 nm hardened latch design due
to charge sharing. In: 2007 IEEE International Reliability Physics Symposium
Proceedings. 45th Annual. [S.l.: s.n.], 2007. p. 306–311. ISSN 1541-7026.

ARIFEEN, T. et al. Probing Approximate TMR in Error Resilient Applications for Better
Design Tradeoffs. In: 2016 Euromicro Conference on Digital System Design (DSD).
[S.l.]: IEEE, 2016. p. 637–640. ISBN 978-1-5090-2817-7.

ARIMA, Y. et al. Cosmic-ray immune latch circuit for 90nm technology and beyond.
In: Solid-State Circuits Conference, 2004. Digest of Technical Papers. ISSCC. 2004
IEEE International. [S.l.: s.n.], 2004. p. 492–493 Vol.1. ISSN 0193-6530.

ARM. Arm R© Cortex R© -M0 DesignStart TM Eval Revision: r2p0 User Guide Arm
Cortex-M0 DesignStart Eval User Guide. [S.l.], 2017.

AUTRAN, J. et al. Real-time soft-error rate measurements: A review. Microelectronics
Reliability, Pergamon, v. 54, n. 8, p. 1455–1476, aug 2014. ISSN 0026-2714.

AZAMBUJA, J. R. et al. Evaluating large grain TMR and selective partial reconfiguration
for soft error mitigation in SRAM based FPGAs. In: 2009 15th IEEE International
On-Line Testing Symposium, IOLTS 2009. [S.l.: s.n.], 2009. p. 101–106. ISBN
9781424445950.

BAGATIN, M. et al. Radiation environment in the ITER neutral beam injector prototype.
IEEE Transactions on Nuclear Science, v. 59, n. 4 PART 1, p. 1099–1104, 2012. ISSN
00189499.

BAGATIN, M.; GERARDIN, S. Ionizing radiation effects in electronics : from
memories to imagers. [S.l.: s.n.], 2015. 394 p. ISBN 9781498722605.

BALASUBRAMANIAN, P.; MASTORAKIS, N. Power, delay and area comparisons of
majority voters relevant to tmr architectures. Recent Advances in Circuits, Systems,
Signal Processing and Communications, 2015.

BALLAST, J. et al. A method for efficient Radiation Hardening of multicore processors.
In: IEEE Aerospace Conference Proceedings. [S.l.: s.n.], 2015. v. 2015-June. ISBN
9781479953790. ISSN 1095323X.

99

BANNATYNE, R. et al. High temperature / radiation hardened capable ARM R© Cortex
R© -M0 microcontrollers. International Microelectronics Assembly and Packaging

Society, v. 2016, n. HiTEC, p. 46–50, may 2016. ISSN 2380-4491.

BAUMANN, R. C. Radiation-induced soft errors in advanced semiconductor
technologies. IEEE Transactions on Device and Materials Reliability, v. 5, n. 3, p.
305–315, 2005. ISSN 15304388.

BELTRAME, G. Triple Modular Redundancy verification via heuristic netlist analysis.
PeerJ Computer Science, PeerJ Inc., v. 1, p. e21, aug 2015. ISSN 2376-5992.

BENEVENUTI, F.; KASTENSMIDT, F. L. Reliability evaluation on interfacing with
axi and axi-s on xilinx zynq-7000 ap-soc. In: 2018 IEEE 19th Latin-American Test
Symposium (LATS). [S.l.: s.n.], 2018. p. 1–6.

BENITES, L. A. C.; KASTENSMIDT, F. L. Automated design flow for applying
Triple Modular Redundancy (TMR) in complex digital circuits. In: 2018 IEEE
19th Latin-American Test Symposium (LATS). [S.l.]: IEEE, 2018. p. 1–4. ISBN
978-1-5386-1472-3.

BERG, M.; LABEL, K. A. Verification of Triple Modular Redundancy (TMR)
Insertion for Reliable and Trusted Systems. [S.l.], 2016. 26p p.

BESSOT, D.; VELAZCO, R. Design of seu-hardened cmos memory cells: the hit cell.
In: Radiation and its Effects on Components and Systems, 1993.,RADECS 93.,
Second European Conference on. [S.l.: s.n.], 1993. p. 563–570.

BLOUNT, P. The ITAR Treaty and Its Implications for U.S. Space Exploration Policy
and the Commercial Space Industry. Journal of Air Law and Commerce, v. 73, n. 705,
2008. Available from Internet: <http://scholar.smu.edu/jalchttp://scholar.smu.edu/jalc>.

BOHR, M.; MISTRY, K. Intel’s Revolutionary 22 nm Transistor Technology. [S.l.],
2011. Available from Internet: <https://www.intel.com/content/dam/www/public/us/en/
documents/presentation/revolutionary-22nm-transistor-technology-presentation.pdf>.

BRAYTON, R.; MISHCHENKO, A. ABC: An Academic Industrial-Strength Verification
Tool. In: . [S.l.]: Springer, Berlin, Heidelberg, 2010. p. 24–40.

BURLYAEV, D. Design, Optimization, and Formal Verification of Circuit
Fault-Tolerance Techniques. Thesis (PhD) — Université de Grenoble, 2015.

CADENCE. Equivalence Checking User Guide. San Jose, CA, 2013. 480 p.

CADENCE. Genus User Guide for Legacy UI. San Jose, CA, 2016. 1–324 p.

CADENCE. University Software Program. 2018. Available from Internet:
<https://www.cadence.com/content/cadence-www/global/en_US/home/services/
cadence-academic-network/university-software-program.html>.

CALIN, T.; NICOLAIDIS, M.; VELAZCO, R. Upset hardened memory design for
submicron cmos technology. IEEE Transactions on Nuclear Science, v. 43, n. 6, p.
2874–2878, Dec 1996. ISSN 0018-9499.

http://scholar.smu.edu/jalc http://scholar.smu.edu/jalc
https://www.intel.com/content/dam/www/public/us/en/documents/presentation/revolutionary-22nm-transistor-technology-presentation.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/presentation/revolutionary-22nm-transistor-technology-presentation.pdf
https://www.cadence.com/content/cadence-www/global/en_US/home/services/cadence-academic-network/university-software-program.html
https://www.cadence.com/content/cadence-www/global/en_US/home/services/cadence-academic-network/university-software-program.html

100

CAMPLANI, A. et al. Cmos ic radiation hardening by design. p. 251–258, June 2014.

CAO PAUL LEROUX, M. S. Y. Radiation-Tolerant Delta-Sigma Time-to-Digital
Converters. [S.l.: s.n.], 2015.

CARMICHAEL, C.; CAFFREY, M.; SALAZAR, A. Correcting Single-Event Upsets
Through Virtex Partial Configuration. [S.l.], 2000. 1–12 p.

CI-BRASIL. Design Houses. 2018. Available from Internet: <http://www.ci-brasil.gov.
br/index.php/pt/design-houses>.

CLAEYS, C.; SIMOEN, E. Radiation Effects in Advanced Semiconductor Materials
and Devices. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. (Springer Series in
Materials Science, v. 57). ISBN 978-3-642-07778-4.

CLEMENS, M. A. et al. The effects of neutron energy and high-Z materials on single
event upsets and multiple cell upsets. In: IEEE Transactions on Nuclear Science. [S.l.:
s.n.], 2011. v. 58, n. 6 PART 1, p. 2591–2598. ISBN 0018-9499. ISSN 00189499.

CRESSLER, J.; MANTOOTH, H. Extreme Environment Electronics. [S.l.]: Taylor &
Francis, 2012. (Industrial Electronics). ISBN 9781439874301.

DIRK, J. et al. Terrestrial thermal neutrons. IEEE Transactions on Nuclear Science,
v. 50, n. 6, p. 2060–2064, dec 2003. ISSN 0018-9499.

DODD, P. E.; MASSENGILL, L. W. Basic mechanisms and modeling of single-event
upset in digital microelectronics. IEEE Transactions on Nuclear Science, v. 50 III, n. 3,
p. 583–602, 2003. ISSN 00189499.

ENTRENA, L.; LÓPEZ, C.; OLÍAS, E. Automatic generation of fault tolerant VHDL
designs in RTL. In: Forum on Design Languages (2001). [S.l.: s.n.], 2001. p. 1–5.

FANG, Y.-p.; OATES, A. S. Characterization of Single Bit and Multiple Cell Soft Error
Events in Planar and FinFET SRAMs. IEEE Transactions on Device and Materials
Reliability, v. 16, n. 2, p. 132–137, June 2016. ISSN 1530-4388.

GORDON, M. et al. Measurement of the flux and energy spectrum of cosmic-ray
induced neutrons on the ground. IEEE Transactions on Nuclear Science, v. 51, n. 6, p.
3427–3434, dec 2004. ISSN 0018-9499.

HABINC, S. Functional Triple Modular Redundancy (FTMR). [S.l.], 2002. 1–56 p.

HAN, J. et al. Toward hardware-redundant, fault-tolerant logic for nanoelectronics.
IEEE Design Test of Computers, v. 22, n. 4, p. 328–339, July 2005. ISSN 0740-7475.

HUGHES, H.; BENEDETTO, J. Radiation effects and hardening of MOS technology:
devices and circuits. IEEE Transactions on Nuclear Science, v. 50, n. 3, p. 500–521,
jun 2003. ISSN 0018-9499.

IBE, E. H. Terrestrial Radiation Effects in ULSI Devices and Electronic Systems.
[S.l.: s.n.], 2015. 1–268 p. ISBN 9781118479308.

http://www.ci-brasil.gov.br/index.php/pt/design-houses
http://www.ci-brasil.gov.br/index.php/pt/design-houses

101

IMAGAWA, T. et al. A Cost-Effective Selective TMR for Heterogeneous Coarse-Grained
Reconfigurable Architectures Based on DFG-Level Vulnerability Analysis. In: Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2013. New Jersey:
IEEE Conference Publications, 2013. p. 701–706. ISBN 9781467350716.

JEDEC. Measurement and Reporting of Alpha Particle and Terrestrial Cosmic Ray
Induced Soft Error in Semiconductor Devices. JEDEC Standard JESD89A, n. October,
p. 1–85, 2006.

KAJIHARA, S. et al. Combinationally irredundant ISCAS-89 benchmark circuits.
In: 1996 IEEE International Symposium on Circuits and Systems. Circuits and
Systems Connecting the World. ISCAS 96. [S.l.]: IEEE, 1989. v. 4, p. 632–634. ISBN
0-7803-3073-0.

KONONCHUK, O.; NGUYEN, B. Silicon-On-Insulator (SOI) Technology:
Manufacture and Applications. [S.l.]: Elsevier Science, 2014. (Woodhead Publishing
Series in Electronic and Optical Materials). ISBN 9780857099259.

KOREN, I.; KRISHNA, C. Fault-Tolerant Systems. [S.l.]: Elsevier Science, 2010.
ISBN 9780080492681.

KULIS, S. Single Event Effects mitigation with TMRG tool. In: Journal of
Instrumentation. [S.l.: s.n.], 2017. v. 12, n. 1. ISSN 17480221.

LALA, P. Self-checking and Fault-tolerant Digital Design. [S.l.]: Morgan Kaufmann,
2001. (The Morgan Kaufmann Series in Computer Architecture and Design Series).
ISBN 9780124343702.

LEE, G. et al. TLegUp: A TMR code generation tool for SRAM-based FPGA
applications using HLS. In: Proceedings - IEEE 25th Annual International
Symposium on Field-Programmable Custom Computing Machines, FCCM 2017.
[S.l.: s.n.], 2017. p. 129–132. ISBN 9781538640364.

LEVEUGLE, R. Automatic modifications of high level VHDL descriptions for fault
detection or tolerance. In: Proceedings -Design, Automation and Test in Europe,
DATE. [S.l.: s.n.], 2002. p. 837–841. ISBN 0-7695-1471-5. ISSN 15301591.

MAHATME, N. N. et al. Impact of strained-Si PMOS transistors on SRAM soft error
rates. IEEE Transactions on Nuclear Science, v. 59, n. 4 PART 1, p. 845–850, 2012.
ISSN 00189499.

MAVIS, D. G.; EATON, P. H. Soft error rate mitigation techniques for modern
microcircuits. In: 2002 IEEE International Reliability Physics Symposium.
Proceedings. 40th Annual (Cat. No.02CH37320). [S.l.: s.n.], 2002. p. 216–225.

MELANY, B.; LABEL, K.; PELLISH, J. Susceptibility of Redundant Versus Singular
Clock Domains Implemented in SRAM-Based FPGA TMR Designs. Monterey, 2016.

MENTOR. Precision R© Hi-Rel Advanced FPGA Synthesis Datasheet. [S.l.], 2018.

MITRA, S. et al. Soft error resilient system design through error correction. In: 2006
IFIP International Conference on Very Large Scale Integration. [S.l.: s.n.], 2006. p.
332–337. ISSN 2324-8432.

102

MOHANRAM, K.; TOUBA, N. Partial error masking to reduce soft error failure rate
in logic circuits. In: Proceedings. 16th IEEE Symposium on Computer Arithmetic.
[S.l.]: IEEE Comput. Soc, 2003. p. 433–440. ISBN 0-7695-2042-1.

MONTENEGRO, S.; PETROVIC, V.; SCHOOF, G. Network Centric Systems for Space
Applications. In: 2010 Second International Conference on Advances in Satellite and
Space Communications. IEEE, 2010. p. 146–150. ISBN 978-1-4244-7275-8. Available
from Internet: <http://ieeexplore.ieee.org/document/5502778/>.

MOOR, J. P.; DE, P. Ionizing Radiation Effects in Electronics: From Memories to
Imagers. Solid State Technology, p. 394, 2011.

NASA. The van Allen Belts. 2018. Available from Internet: <https://image.gsfc.nasa.
gov/poetry/tour/AAvan.html>.

NICOLAIDIS, M. Design for soft error mitigation. IEEE Transactions on Device and
Materials Reliability, v. 5, n. 3, p. 405–418, sep 2005. ISSN 1530-4388. Available from
Internet: <http://ieeexplore.ieee.org/document/1545900/>.

NIKNAHAD, M. Using Fine Grain Approaches for highly reliable Design of
FPGA-based Systems in Space. [S.l.]: KIT Scientific Publishing, 2012. ISBN
9783731500384.

NORMAND, E.; BAKER, T. Altitude and latitude variations in avionics SEU and
atmospheric neutron flux. IEEE Transactions on Nuclear Science, v. 40, n. 6, p.
1484–1490, 1993. ISSN 00189499.

OSADA, K. et al. SRAM immunity to cosmic-ray-induced multierrors based on analysis
of an induced parasitic bipolar effect. IEEE Journal of Solid-State Circuits, v. 39, n. 5,
p. 827–833, may 2004. ISSN 0018-9200.

OUSTERHOUT, J. K. et al. Tcl and the Tk Toolkit. 2. ed. Upper Saddle River, New
Jersey: Addison-Wesley, 2010. (Addision-Wesley Professional Computing Series). ISBN
978-0-321-33633-0.

ÖZER, E.; Ghahroodi, M, M.; BULL, D. SEU and SET-tolerant ARM Cortex-R4 CPU
for Space and Avionics Applications. 2013.

PRATT, B. et al. Improving FPGA Design Robustness with Partial TMR. In: 2005
MAPLD International Conference. Washington, D.C.: [s.n.], 2005.

RABAEY, J. M.; CHANDRAKASAN, A. P.; NIKOLIC, B. Digital integrated circuits:
a design perspective. [S.l.]: Pearson Education, 2003. (Prentice Hall electronics and
VLSI series).

RAO, R. R.; BLAAUW, D.; SYLVESTER, D. Soft error reduction in combinational logic
using gate resizing and flipflop selection. In: IEEE/ACM International Conference on
Computer-Aided Design, Digest of Technical Papers, ICCAD. [S.l.: s.n.], 2006. p.
502–509. ISBN 1595933891. ISSN 10923152.

RUANO, O.; MAESTRO, J. A.; REVIRIEGO, P. A methodology for automatic insertion
of selective TMR in digital circuits affected by SEUs. In: IEEE Transactions on
Nuclear Science. [S.l.: s.n.], 2009. v. 56, n. 4, p. 2091–2102. ISBN 1550-5774. ISSN
00189499.

http://ieeexplore.ieee.org/document/5502778/
https://image.gsfc.nasa.gov/poetry/tour/AAvan.html
https://image.gsfc.nasa.gov/poetry/tour/AAvan.html
http://ieeexplore.ieee.org/document/1545900/

103

SANCHEZ-CLEMENTE, A. J.; ENTRENA, L.; GARCIA-VALDERAS, M. Partial
TMR in FPGAs Using Approximate Logic Circuits. IEEE Transactions on Nuclear
Science, v. 63, n. 4, p. 2233–2240, aug 2016. ISSN 0018-9499.

SANCHEZ-CLEMENTE, A. J. et al. Error Mitigation Using Approximate Logic
Circuits: A Comparison of Probabilistic and Evolutionary Approaches. IEEE
Transactions on Reliability, v. 65, n. 4, p. 1871–1883, dec 2016. ISSN 0018-9529.

SANTOS, A. F. dos et al. Applying TMR in Hardware Accelerators Generated by
High-Level Synthesis Design Flow for Mitigating Multiple Bit Upsets in SRAM-Based
FPGAs. In: Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics). [S.l.: s.n.], 2017. v.
10216 LNCS, p. 202–213.

SCHRIMPF, R.; FLEETWOOD, D. Radiation Effects and Soft Errors in Integrated
Circuits and Electronic Devices. [S.l.]: World Scientific Pub., 2004. (International
journal of high speed electronics and systems). ISBN 9789812389404.

SCHWANK, J. R. et al. Radiation effects in soi technologies. IEEE Transactions on
Nuclear Science, v. 50, n. 3, p. 522–538, June 2003. ISSN 0018-9499.

SCHWANK, J. R. et al. Radiation effects in MOS oxides. In: IEEE Transactions on
Nuclear Science. [S.l.: s.n.], 2008. v. 55, n. 4, p. 1833–1853. ISBN 0018-9499. ISSN
00189499.

SECRETARY, E. Technique for radiation effects mitigation in ASICs and FPGAs
handbook. [S.l.: s.n.], 2016.

SESHIA, S. A.; LI, W.; MITRA, S. Verification-Guided Soft Error Resilience.
In: 2007 Design, Automation & Test in Europe Conference & Exhibition.
IEEE, 2007. p. 1–6. ISBN 978-3-9810801-2-4. Available from Internet: <http:
//ieeexplore.ieee.org/document/4212011/>.

SHELDON, D. Selection and qualification of foundries for cmos integrated circuits. p.
1–10, May 2005.

SHULER, R. L. Porting and scaling strategies for nanoscale cmos rhbd. IEEE
Transactions on Circuits and Systems I: Regular Papers, v. 62, n. 12, p. 2856–2863,
Dec 2015. ISSN 1549-8328.

SHULER, R. L. et al. Comparison of dual-rail and tmr logic cost effectiveness and
suitability for fpgas with reconfigurable seu tolerance. IEEE Transactions on Nuclear
Science, v. 56, n. 1, p. 214–219, Feb 2009. ISSN 0018-9499.

SROUR, J.; MARSHALL, C.; MARSHALL, P. Review of displacement damage effects
in silicon devices. IEEE Transactions on Nuclear Science, v. 50, n. 3, p. 653–670,
2003. ISSN 0018-9499.

STAMENKOVIć, Z.; PETROVIć, V.; SCHOOF, G. Design flow and techniques for
fault-tolerant asic. In: Proceedings of the 20th IEEE International Symposium on
the Physical and Failure Analysis of Integrated Circuits (IPFA). [S.l.: s.n.], 2013. p.
93–98. ISSN 1946-1542.

http://ieeexplore.ieee.org/document/4212011/
http://ieeexplore.ieee.org/document/4212011/

104

STAMENKOVIC, Z.; PETROVIC, V.; SCHOOF, G. Design flow and techniques
for fault-tolerant ASIC. In: Proceedings of the 20th IEEE International
Symposium on the Physical and Failure Analysis of Integrated Circuits
(IPFA). IEEE, 2013. p. 93–98. ISBN 978-1-4799-0480-8. Available from Internet:
<http://ieeexplore.ieee.org/document/6599133/>.

SYNOPSYS. Latest Synplify FPGA Synthesis Software Offers New High-
Reliability Features and Improves Productivity for FPGA-Based Prototyping.
2012. Available from Internet: <https://dac.com/media-center/exhibitor-news/
latest-synplify-fpga-synthesis-software-offers-new-high-reliability>.

TAKEDA, E.; HISAMOTO, D.; TOYABE, T. A new soft-error phenomenon in VLSIs:
the alpha-particle-induced source/drain penetration (ALPEN) effect. In: 26th Annual
Proceedings Reliability Physics Symposium 1988. [S.l.]: IEEE, 1988. p. 109–112.

TEIFEL, J. Self-voting dual-modular-redundancy circuits for single-event-transient
mitigation. IEEE Transactions on Nuclear Science, v. 55, n. 6, p. 3435–3439, Dec
2008. ISSN 0018-9499.

TONFAT, J. et al. Method to analyze the susceptibility of HLS designs in SRAM-based
FPGAs under soft errors. In: Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). [S.l.:
s.n.], 2016. v. 9625, p. 132–143. ISBN 9783319304809. ISSN 16113349.

TONFAT, J. et al. Multiple fault injection platform for SRAM-based FPGA based
on ground-level radiation experiments. In: FPGAs and Parallel Architectures for
Aerospace Applications: Soft Errors and Fault-Tolerant Design. [S.l.: s.n.], 2015. p.
135–151. ISBN 9783319143521.

UEMURA, T. et al. Seila: Soft error immune latch for mitigating multi-node-seu and
local-clock-set. In: Reliability Physics Symposium (IRPS), 2010 IEEE International.
[S.l.: s.n.], 2010. p. 218–223. ISSN 1541-7026.

Van Allen, J. A.; FRANK, L. A. Radiation around the earth to a radial distance of
107,400 km. Nature, v. 183, n. 4659, p. 430–434, 1959. ISSN 00280836.

WANG, W.; GONG, H. Edge triggered pulse latch design with delayed latching edge for
radiation hardened application. IEEE Transactions on Nuclear Science, v. 51, n. 6, p.
3626–3630, Dec 2004. ISSN 0018-9499.

WEAVER, H. T. et al. An seu tolerant memory cell derived from fundamental studies
of seu mechanisms in sram. IEEE Transactions on Nuclear Science, v. 34, n. 6, p.
1281–1286, 1987. ISSN 15581578.

WESTE, N. H. E.; HARRIS, D. CMOS VLSI design: a circuits and systems
perspective. [S.l.]: Pearson Education, 2015.

WILKINSON, J. Neutron Flux Calculation. 2006. Available from Internet:
<http://www.seutest.com/cgi-bin/FluxCalculator.cgi>.

WILSON, A. et al. Radiation and reliability characterization of a multiplexer family
using a 0.35 um triple-well cmos technology. In: 2011 IEEE Radiation Effects Data
Workshop. [S.l.: s.n.], 2011. p. 1–7. ISSN 2154-0519.

http://ieeexplore.ieee.org/document/6599133/
https://dac.com/media-center/exhibitor-news/latest-synplify-fpga-synthesis-software-offers-new-high-reliability
https://dac.com/media-center/exhibitor-news/latest-synplify-fpga-synthesis-software-offers-new-high-reliability
http://www.seutest.com/cgi-bin/FluxCalculator.cgi

105

WOLF, C. Yosys Manual. [S.l.], 2012.

XILINX. Zynq-7000 All Programmable SoC Architecture Porting Quick Start
Guide. [S.l.], 2015. UG1181, 1–26 p. Available from Internet: <https://www.xilinx.com/
support/documentation/user{_}guides/ug1181-zynq-7000-architecture-porting.>

XILINX. Xilinx TMRTool User Guide: TMRTool Software Version 13.2 User
Guide (UG156). [S.l.], 2017. Available from Internet: <https://www.xilinx.com/support/
documentation/user{_}guides/ug156-tmrtool.>

ZHANG, M. Thermal neutron SER testing and analysis: findings from a 32nm HKMG
SRAM case study. In: 2011 IEEE Workshop on Silicon Errors in Logic – System
Effects, Champaign, IL,. [S.l.: s.n.], 2011. p. 7–10.

ZIEGLER, J. et al. IBM experiments in soft fails in computer electronics (1978-1994).
IBM Journal of Research and Development, v. 40, n. 1, p. 3–18, 1996. ISSN
0018-8646.

https://www.xilinx.com/support/documentation/user{_}guides/ug1181-zynq-7000-architecture-porting.
https://www.xilinx.com/support/documentation/user{_}guides/ug1181-zynq-7000-architecture-porting.
https://www.xilinx.com/support/documentation/user{_}guides/ug156-tmrtool.
https://www.xilinx.com/support/documentation/user{_}guides/ug156-tmrtool.

106

APPENDIX A — TMR DESIGN EXAMPLE

The aim of this design example is to introduce the use of the proposed approach

in this master thesis to automate the design of TMR circuits employing Cadence tools.

Simple scripts are shown for the Genus and LEC tools in order to perform the implemen-

tation and verification steps in the automated TMR design. Furthermore, the generated

files through the steps of implementations and verification are included in order to show

the data used in this work.

The circuit s27 from the ISCAS’89 benchmark set (KAJIHARA et al., 1989) was

utilized in order to illustrate the steps of implementation and verification of the devised

automated TMR design. It was chosen because of its reduce number of gates in order to

ease the visualization of the information contained in the generated files.

107

Implementation and structural verification of TMR designs

1 # ###

2 # Templa te f i l e f o r Cadence Genus s y n t h e s i s t o o l

3 # ###

4

5 # Name of t o p module (u n m i t i g a t e d c i r c u i t)

6 s e t t o p _ d e s i g n " s27 "

7

8 # Pa th t o l i b r a r y

9 s e t _ a t t r i b u t e l i b _ s e a r c h _ p a t h "$DIR_LIB_NANGATE_CMOS_45nm" /

10

11 # Pa th t o n e t l i s t d i r e c t o r y

12 s e t _ a t t r i b u t e h d l _ s e a r c h _ p a t h " $DIR_NETLIST " /

13

14 # Read l i b r a r y

15 s e t _ a t t r i b u t e l i b r a r y "$LIB_NANGATE_CMOS_45nm" /

16

17 # Read n e t l i s t s (u n m i t i g a t e d and v o t e r c i r c u i t s)

18 r e a d _ n e t l i s t " $ t o p _ d e s i g n . v "

19 r e a d _ n e t l i s t " m y v o t e r . v "

20

21 # ###

22 # TMR i m p l e m e n t a t i o n (TMRi)

23 # ###

24

25 # Load TMRi l i b r a r y

26 i n c l u d e " TMRi_ l ib ra ry / ∗ . t c l "

27

28 # TMR g r a n u l a r i t y (cg tmr / f g l t m r / fg d tm r)

29 TMRi_CGTMR " $ t o p _ d e s i g n " " $ t o p _ d e s i g n \ _cgtmr " " myvoter "

30 TMRi_FGLTMR " $ t o p _ d e s i g n " " $ t o p _ d e s i g n \ _ f g l t m r " " myvoter "

31 TMRi_FGDTMR " $ t o p _ d e s i g n " " $ t o p _ d e s i g n \ _ fgd tmr " " myvoter "

32

33 # Wr i t e o u t g e n e r a t e d TMR n e t l i s t s

34 w r i t e _ h d l −v2001 $ t o p _ d e s i g n \ _cgtmr > " $ t o p _ d e s i g n \ _ c g t m r . v "

35 w r i t e _ h d l −v2001 $ t o p _ d e s i g n \ _ f g l t m r > " $ t o p _ d e s i g n \ _ f g l t m r . v "

36 w r i t e _ h d l −v2001 $ t o p _ d e s i g n \ _ fgd tmr > " $ t o p _ d e s i g n \ _ f g d t m r . v "

37

38 # ###

39 # TMR v e r i f i c a t i o n (TMRv) : s t r u c t u r a l v e r i f i c a t i o n

40 # ###

41

42 # Load TMRv l i b r a r y f o r Genus t o o l

43 i n c l u d e " TMRv_l ibra ry_genus / ∗ . t c l "

44

45 # S t r u c t u r a l v e r i f i c a t i o n o f cgtmr and fg d tm r

46 T M R v _ r e p l i c a t i o n _ f f [a r r a y g e t " $ t o p _ d e s i g n \ _ c g t m r _ f g d t m r _ f f "]

47 T M R v _ r e p l i c a t i o n _ c m b _ l o g i c _ f f [a r r a y g e t " $ t o p _ d e s i g n \ _ c g t m r _ f g d t m r _ f f "]

48 TMRv_rep l i ca t i on_cmb_ log i c_po " $ t o p _ d e s i g n \ _ l i s t _ p o r t s _ o u t _ t o p "

49

50 # S t r u c t u r a l v e r i f i c a t i o n o f f g l t m r

51 T M R v _ r e p l i c a t i o n _ f f [a r r a y g e t " $ t o p _ d e s i g n \ _ f g l t m r _ f f "]

108

52 T M R v _ r e p l i c a t i o n _ c m b _ l o g i c _ f f [a r r a y g e t " $ t o p _ d e s i g n \ _ f g l t m r _ f f "]

53 TMRv_rep l i ca t i on_cmb_ log i c_po " $ t o p _ d e s i g n \ _ l i s t _ p o r t s _ o u t _ t o p "

scripts/genus_script.tcl

109

Logical and masking capability verification of TMR designs

1 # ###

2 # Templa te f o r Cadence LEC t o o l

3 # ###

4

5 # LEC t o o l i n t c l mode

6 t c lmode

7

8 # Name of t o p module (u n m i t i g a t e d c i r c u i t)

9 s e t t o p _ d e s i g n " s27 "

10

11 # TMR g r a n u l a r i t y (cg tmr / f g l t m r / fg d tm r)

12 s e t t m r _ v e r s i o n " f gd tmr "

13 # s e t t m r _ v e r s i o n " f g l t m r "

14 # s e t t m r _ v e r s i o n " fgd tm r "

15

16 # Pa th t o l i b r a r y d i r e c t o r y

17 vpx add s e a r c h p a t h − l i b r a r y "$DIR_LIB_NANGATE_CMOS_45nm"

18

19 # Pa th t o n e t l i s t d i r e c t o r y

20 vpx add s e a r c h p a t h −design −both " $DIR_NETLIST "

21

22 # Read l i b r a r y

23 vpx r e a d l i b r a r y − s t a t e t a b l e − l i b e r t y −both "$LIB_NANGATE_CMOS_45nm"

24

25 # Read n e t l i s t s (u n m i t i g a t e d and TMR c i r c u i t s)

26 vpx r e a d d e s i g n −ve r i l og2k −golden − lastmod −noelab " $ t o p _ m o d u l e . v "

27 vpx r e a d d e s i g n −ve r i l og2k − r ev i sed − lastmod −noelab " $top_module \ _ $ t m r _ v e r s i o n . v "

28

29 # E l a b o r a t e d e s i g n s (u n m i t i g a t e d and TMR d e s i g n s)

30 vpx e l a b o r a t e d e s i g n −golden −root " $ top_module "

31 vpx e l a b o r a t e d e s i g n − r ev i sed −root " $ top_module \ _ $ t m r _ v e r s i o n "

32

33 # ###

34 # TMR v e r i f i c a t i o n (TMRv) :

35 # l o g i c a l and masking c a p a b i l i t y v e r i f i c a t i o n

36 # ###

37

38 # Load TMRv l i b r a r y f o r LEC t o o l

39 s o u r c e " TMRv_l ib r a ry_ l ec / ∗ . t c l "

40

41 # TMR g r a n u l a r i t y (CGTMR/FGLTMR/FGDTMR)

42 TMRv_lec_CGTMR

43 #TMRv_lec_FGLTMR

44 #TMRv_lec_FGDTMR

scripts/lec_script.tcl

110

Unmitigated netlist

1 / / G e n e r a t e d by Cadence Genus (TM) S y n t h e s i s S o l u t i o n GENUS15 . 2 2 − 15.20− s024_1

2

3 module s27 (CK, G0 , G1 , G17 , G2 , G3) ;

4 i n p u t CK, G0 , G1 , G2 , G3 ;

5 o u t p u t G17 ;

6 wire CK, G0 , G1 , G2 , G3 ;

7 wire G17 ;

8 wire G5 , G6 , G7 , n_0 , n_1 , n_2 , n_3 , n_4 ;

9 wire n_6 ;

10 DFF_X1 DFF_0_I1_Q_reg (. CK (CK) , .D (n_6) , .Q (G5) , .QN ()) ;

11 AND2_X1 g76 (. A1 (G17) , . A2 (G0) , . ZN (n_6)) ;

12 DFF_X1 DFF_1_I1_Q_reg (. CK (CK) , .D (n_4) , .Q (G6) , .QN ()) ;

13 INV_X1 g77 (. A (n_4) , . ZN (G17)) ;

14 NOR2_X1 g78 (. A1 (n_3) , . A2 (G5) , . ZN (n_4)) ;

15 DFF_X1 DFF_2_I1_Q_reg (. CK (CK) , .D (n_2) , .Q (G7) , .QN ()) ;

16 AOI22_X1 g80 (. A1 (n_1) , . A2 (G3) , . B1 (G6) , . B2 (n_0) , . ZN (n_3)) ;

17 NOR2_X1 g81 (. A1 (n_1) , . A2 (G2) , . ZN (n_2)) ;

18 NOR2_X1 g82 (. A1 (G7) , . A2 (G1) , . ZN (n_1)) ;

19 INV_X1 g83 (. A (G0) , . ZN (n_0)) ;

20 endmodule

benchmark/s27/s27.v

111

Figure A.1: Unmitigated s27 circuit

Source: From the author

112

Resulting CGTMR netlist

1 / / G e n e r a t e d by Cadence Genus (TM) S y n t h e s i s S o l u t i o n GENUS15 . 2 2 − 15.20− s024_1

2

3 module s27_cg tmr (CK, G0 , G1 , G2 , G3 , G17) ;

4 i n p u t CK, G0 , G1 , G2 , G3 ;

5 o u t p u t G17 ;

6 wire CK, G0 , G1 , G2 , G3 ;

7 wire G17 ;

8 wire U0_G5 , U0_G6 , U0_G7 , U0_n_0 , U0_n_1 , U0_n_2 , U0_n_3 , U0_n_4 ;

9 wire U0_n_6 , U1_G5 , U1_G6 , U1_G7 , U1_n_0 , U1_n_1 , U1_n_2 , U1_n_3 ;

10 wire U1_n_4 , U1_n_6 , U2_G5 , U2_G6 , U2_G7 , U2_n_0 , U2_n_1 , U2_n_2 ;

11 wire U2_n_3 , U2_n_4 , U2_n_6 , n_6 , n_7 , n_8 ;

12 myvoter g1 (. i n 0 (n_6) , . i n 1 (n_7) , . i n 2 (n_8) , . o u t (G17)) ;

13 DFF_X1 U0_DFF_0_I1_Q_reg (. CK (CK) , .D (U0_n_6) , .Q (U0_G5) , .QN ()) ;

14 AND2_X1 U0_g76 (. A1 (n_6) , . A2 (G0) , . ZN (U0_n_6)) ;

15 DFF_X1 U0_DFF_1_I1_Q_reg (. CK (CK) , .D (U0_n_4) , .Q (U0_G6) , .QN ()) ;

16 INV_X1 U0_g77 (. A (U0_n_4) , . ZN (n_6)) ;

17 NOR2_X1 U0_g78 (. A1 (U0_n_3) , . A2 (U0_G5) , . ZN (U0_n_4)) ;

18 DFF_X1 U0_DFF_2_I1_Q_reg (. CK (CK) , .D (U0_n_2) , .Q (U0_G7) , .QN ()) ;

19 AOI22_X1 U0_g80 (. A1 (U0_n_1) , . A2 (G3) , . B1 (U0_G6) , . B2 (U0_n_0) ,

20 . ZN (U0_n_3)) ;

21 NOR2_X1 U0_g81 (. A1 (U0_n_1) , . A2 (G2) , . ZN (U0_n_2)) ;

22 NOR2_X1 U0_g82 (. A1 (U0_G7) , . A2 (G1) , . ZN (U0_n_1)) ;

23 INV_X1 U0_g83 (. A (G0) , . ZN (U0_n_0)) ;

24 DFF_X1 U1_DFF_0_I1_Q_reg (. CK (CK) , .D (U1_n_6) , .Q (U1_G5) , .QN ()) ;

25 AND2_X1 U1_g76 (. A1 (n_7) , . A2 (G0) , . ZN (U1_n_6)) ;

26 DFF_X1 U1_DFF_1_I1_Q_reg (. CK (CK) , .D (U1_n_4) , .Q (U1_G6) , .QN ()) ;

27 INV_X1 U1_g77 (. A (U1_n_4) , . ZN (n_7)) ;

28 NOR2_X1 U1_g78 (. A1 (U1_n_3) , . A2 (U1_G5) , . ZN (U1_n_4)) ;

29 DFF_X1 U1_DFF_2_I1_Q_reg (. CK (CK) , .D (U1_n_2) , .Q (U1_G7) , .QN ()) ;

30 AOI22_X1 U1_g80 (. A1 (U1_n_1) , . A2 (G3) , . B1 (U1_G6) , . B2 (U1_n_0) ,

31 . ZN (U1_n_3)) ;

32 NOR2_X1 U1_g81 (. A1 (U1_n_1) , . A2 (G2) , . ZN (U1_n_2)) ;

33 NOR2_X1 U1_g82 (. A1 (U1_G7) , . A2 (G1) , . ZN (U1_n_1)) ;

34 INV_X1 U1_g83 (. A (G0) , . ZN (U1_n_0)) ;

35 DFF_X1 U2_DFF_0_I1_Q_reg (. CK (CK) , .D (U2_n_6) , .Q (U2_G5) , .QN ()) ;

36 AND2_X1 U2_g76 (. A1 (n_8) , . A2 (G0) , . ZN (U2_n_6)) ;

37 DFF_X1 U2_DFF_1_I1_Q_reg (. CK (CK) , .D (U2_n_4) , .Q (U2_G6) , .QN ()) ;

38 INV_X1 U2_g77 (. A (U2_n_4) , . ZN (n_8)) ;

39 NOR2_X1 U2_g78 (. A1 (U2_n_3) , . A2 (U2_G5) , . ZN (U2_n_4)) ;

40 DFF_X1 U2_DFF_2_I1_Q_reg (. CK (CK) , .D (U2_n_2) , .Q (U2_G7) , .QN ()) ;

41 AOI22_X1 U2_g80 (. A1 (U2_n_1) , . A2 (G3) , . B1 (U2_G6) , . B2 (U2_n_0) ,

42 . ZN (U2_n_3)) ;

43 NOR2_X1 U2_g81 (. A1 (U2_n_1) , . A2 (G2) , . ZN (U2_n_2)) ;

44 NOR2_X1 U2_g82 (. A1 (U2_G7) , . A2 (G1) , . ZN (U2_n_1)) ;

45 INV_X1 U2_g83 (. A (G0) , . ZN (U2_n_0)) ;

46 endmodule

47

48 module myvoter (in0 , in1 , in2 , o u t) ;

49 i n p u t in0 , in1 , i n 2 ;

50 o u t p u t o u t ;

51 wire in0 , in1 , i n 2 ;

113

52 wire o u t ;

53 wire n_0 , n_1 ;

54 NAND2_X1 g28 (. A1 (n_1) , . A2 (n_0) , . ZN (o u t)) ;

55 OAI21_X1 g29 (. A (i n 2) , . B1 (i n 0) , . B2 (i n 1) , . ZN (n_1)) ;

56 NAND2_X1 g30 (. A1 (i n 0) , . A2 (i n 1) , . ZN (n_0)) ;

57 endmodule

benchmark/s27/s27_cgtmr.v

114

Figure A.2: CGTMR s27 circuit

Source: From the author

115

Resulting FGLTMR netlist

1 / / G e n e r a t e d by Cadence Genus (TM) S y n t h e s i s S o l u t i o n GENUS15 . 2 2 − 15.20− s024_1

2

3 module s 2 7 _ f g l t m r (CK, G0 , G1 , G2 , G3 , G17) ;

4 i n p u t CK, G0 , G1 , G2 , G3 ;

5 o u t p u t G17 ;

6 wire CK, G0 , G1 , G2 , G3 ;

7 wire G17 ;

8 wire U0_G5 , U0_G6 , U0_G7 , U0_n_0 , U0_n_1 , U0_n_2 , U0_n_3 , U0_n_4 ;

9 wire U0_n_6 ;

10 l ibce l l_TMR_0 U0_DFF_0_I1_Q_reg_tmr (. D0 (U0_n_6) , . C (CK) , . Q0

11 (U0_G5)) ;

12 l ibce l l_TMR_1 U0_DFF_1_I1_Q_reg_tmr (. D0 (U0_n_4) , . C (CK) , . Q0

13 (U0_G6)) ;

14 l ibce l l_TMR_2 U0_DFF_2_I1_Q_reg_tmr (. D0 (U0_n_2) , . C (CK) , . Q0

15 (U0_G7)) ;

16 AND2_X1 U0_g76 (. A1 (G17) , . A2 (G0) , . ZN (U0_n_6)) ;

17 INV_X1 U0_g77 (. A (U0_n_4) , . ZN (G17)) ;

18 NOR2_X1 U0_g78 (. A1 (U0_n_3) , . A2 (U0_G5) , . ZN (U0_n_4)) ;

19 AOI22_X1 U0_g80 (. A1 (U0_n_1) , . A2 (G3) , . B1 (U0_G6) , . B2 (U0_n_0) ,

20 . ZN (U0_n_3)) ;

21 NOR2_X1 U0_g81 (. A1 (U0_n_1) , . A2 (G2) , . ZN (U0_n_2)) ;

22 NOR2_X1 U0_g82 (. A1 (U0_G7) , . A2 (G1) , . ZN (U0_n_1)) ;

23 INV_X1 U0_g83 (. A (G0) , . ZN (U0_n_0)) ;

24 endmodule

25

26 module myvoter (in0 , in1 , in2 , o u t) ;

27 i n p u t in0 , in1 , i n 2 ;

28 o u t p u t o u t ;

29 wire in0 , in1 , i n 2 ;

30 wire o u t ;

31 wire n_0 , n_1 ;

32 NAND2_X1 g73 (. A1 (n_1) , . A2 (n_0) , . ZN (o u t)) ;

33 OAI21_X1 g74 (. A (i n 2) , . B1 (i n 0) , . B2 (i n 1) , . ZN (n_1)) ;

34 NAND2_X1 g75 (. A1 (i n 0) , . A2 (i n 1) , . ZN (n_0)) ;

35 endmodule

36

37 module l ibce l l_TMR_0 (D0 , C , Q0) ;

38 i n p u t D0 , C ;

39 o u t p u t Q0 ;

40 wire D0 , C ;

41 wire Q0 ;

42 wire n_1 , n_2 , n_3 ;

43 myvoter v o t e r _ 0 (. i n 0 (n_1) , . i n 1 (n_2) , . i n 2 (n_3) , . o u t (Q0)) ;

44 DFF_X1 f f _ 0 (. CK (C) , .D (D0) , .Q (n_1) , .QN ()) ;

45 DFF_X1 f f _ 1 (. CK (C) , .D (D0) , .Q (n_2) , .QN ()) ;

46 DFF_X1 f f _ 2 (. CK (C) , .D (D0) , .Q (n_3) , .QN ()) ;

47 endmodule

48

49 module l ibce l l_TMR_1 (D0 , C , Q0) ;

50 i n p u t D0 , C ;

51 o u t p u t Q0 ;

116

52 wire D0 , C ;

53 wire Q0 ;

54 wire n_1 , n_2 , n_3 ;

55 myvoter v o t e r _ 0 (. i n 0 (n_1) , . i n 1 (n_2) , . i n 2 (n_3) , . o u t (Q0)) ;

56 DFF_X1 f f _ 0 (. CK (C) , .D (D0) , .Q (n_1) , .QN ()) ;

57 DFF_X1 f f _ 1 (. CK (C) , .D (D0) , .Q (n_2) , .QN ()) ;

58 DFF_X1 f f _ 2 (. CK (C) , .D (D0) , .Q (n_3) , .QN ()) ;

59 endmodule

60

61 module l ibce l l_TMR_2 (D0 , C , Q0) ;

62 i n p u t D0 , C ;

63 o u t p u t Q0 ;

64 wire D0 , C ;

65 wire Q0 ;

66 wire n_1 , n_2 , n_3 ;

67 myvoter v o t e r _ 0 (. i n 0 (n_1) , . i n 1 (n_2) , . i n 2 (n_3) , . o u t (Q0)) ;

68 DFF_X1 f f _ 0 (. CK (C) , .D (D0) , .Q (n_1) , .QN ()) ;

69 DFF_X1 f f _ 1 (. CK (C) , .D (D0) , .Q (n_2) , .QN ()) ;

70 DFF_X1 f f _ 2 (. CK (C) , .D (D0) , .Q (n_3) , .QN ()) ;

71 endmodule

benchmark/s27/s27_fgltmr.v

117

Figure A.3: FGLTMR s27 circuit

Source: From the author

118

Resulting FGDTMR netlist

1 / / G e n e r a t e d by Cadence Genus (TM) S y n t h e s i s S o l u t i o n GENUS15 . 2 2 − 15.20− s024_1

2

3 module s 2 7 _ f g d t m r (CK, G0 , G1 , G2 , G3 , G17) ;

4 i n p u t CK, G0 , G1 , G2 , G3 ;

5 o u t p u t G17 ;

6 wire CK, G0 , G1 , G2 , G3 ;

7 wire G17 ;

8 wire U0_n_0 , U0_n_1 , U0_n_2 , U0_n_3 , U0_n_4 , U0_n_6 , U1_n_0 , U1_n_1 ;

9 wire U1_n_2 , U1_n_3 , U1_n_4 , U1_n_6 , U2_n_0 , U2_n_1 , U2_n_2 , U2_n_3 ;

10 wire U2_n_4 , U2_n_6 , n_6 , n_7 , n_8 , n_10 , n_11 , n_12 ;

11 wire n_13 , n_14 , n_15 , n_16 , n_17 , n_18 , n_19 , n_20 ;

12 wire n_21 , n_22 , n_23 , n_24 , n_25 , n_26 , n_27 ;

13 myvoter g1 (. i n 0 (n_6) , . i n 1 (n_7) , . i n 2 (n_8) , . o u t (G17)) ;

14 myvoter g2 (. i n 0 (n_13) , . i n 1 (n_14) , . i n 2 (n_15) , . o u t (n_10)) ;

15 myvoter g3 (. i n 0 (n_13) , . i n 1 (n_14) , . i n 2 (n_15) , . o u t (n_11)) ;

16 myvoter g4 (. i n 0 (n_13) , . i n 1 (n_14) , . i n 2 (n_15) , . o u t (n_12)) ;

17 myvoter g5 (. i n 0 (n_19) , . i n 1 (n_20) , . i n 2 (n_21) , . o u t (n_16)) ;

18 myvoter g6 (. i n 0 (n_19) , . i n 1 (n_20) , . i n 2 (n_21) , . o u t (n_17)) ;

19 myvoter g7 (. i n 0 (n_19) , . i n 1 (n_20) , . i n 2 (n_21) , . o u t (n_18)) ;

20 myvoter g8 (. i n 0 (n_25) , . i n 1 (n_26) , . i n 2 (n_27) , . o u t (n_22)) ;

21 myvoter g9 (. i n 0 (n_25) , . i n 1 (n_26) , . i n 2 (n_27) , . o u t (n_23)) ;

22 myvoter g10 (. i n 0 (n_25) , . i n 1 (n_26) , . i n 2 (n_27) , . o u t (n_24)) ;

23 DFF_X1 U0_DFF_0_I1_Q_reg (. CK (CK) , .D (U0_n_6) , .Q (n_13) , .QN ()) ;

24 AND2_X1 U0_g76 (. A1 (n_6) , . A2 (G0) , . ZN (U0_n_6)) ;

25 DFF_X1 U0_DFF_1_I1_Q_reg (. CK (CK) , .D (U0_n_4) , .Q (n_19) , .QN ()) ;

26 INV_X1 U0_g77 (. A (U0_n_4) , . ZN (n_6)) ;

27 NOR2_X1 U0_g78 (. A1 (U0_n_3) , . A2 (n_10) , . ZN (U0_n_4)) ;

28 DFF_X1 U0_DFF_2_I1_Q_reg (. CK (CK) , .D (U0_n_2) , .Q (n_25) , .QN ()) ;

29 AOI22_X1 U0_g80 (. A1 (U0_n_1) , . A2 (G3) , . B1 (n_16) , . B2 (U0_n_0) , . ZN

30 (U0_n_3)) ;

31 NOR2_X1 U0_g81 (. A1 (U0_n_1) , . A2 (G2) , . ZN (U0_n_2)) ;

32 NOR2_X1 U0_g82 (. A1 (n_22) , . A2 (G1) , . ZN (U0_n_1)) ;

33 INV_X1 U0_g83 (. A (G0) , . ZN (U0_n_0)) ;

34 DFF_X1 U1_DFF_0_I1_Q_reg (. CK (CK) , .D (U1_n_6) , .Q (n_14) , .QN ()) ;

35 AND2_X1 U1_g76 (. A1 (n_7) , . A2 (G0) , . ZN (U1_n_6)) ;

36 DFF_X1 U1_DFF_1_I1_Q_reg (. CK (CK) , .D (U1_n_4) , .Q (n_20) , .QN ()) ;

37 INV_X1 U1_g77 (. A (U1_n_4) , . ZN (n_7)) ;

38 NOR2_X1 U1_g78 (. A1 (U1_n_3) , . A2 (n_11) , . ZN (U1_n_4)) ;

39 DFF_X1 U1_DFF_2_I1_Q_reg (. CK (CK) , .D (U1_n_2) , .Q (n_26) , .QN ()) ;

40 AOI22_X1 U1_g80 (. A1 (U1_n_1) , . A2 (G3) , . B1 (n_17) , . B2 (U1_n_0) , . ZN

41 (U1_n_3)) ;

42 NOR2_X1 U1_g81 (. A1 (U1_n_1) , . A2 (G2) , . ZN (U1_n_2)) ;

43 NOR2_X1 U1_g82 (. A1 (n_23) , . A2 (G1) , . ZN (U1_n_1)) ;

44 INV_X1 U1_g83 (. A (G0) , . ZN (U1_n_0)) ;

45 DFF_X1 U2_DFF_0_I1_Q_reg (. CK (CK) , .D (U2_n_6) , .Q (n_15) , .QN ()) ;

46 AND2_X1 U2_g76 (. A1 (n_8) , . A2 (G0) , . ZN (U2_n_6)) ;

47 DFF_X1 U2_DFF_1_I1_Q_reg (. CK (CK) , .D (U2_n_4) , .Q (n_21) , .QN ()) ;

48 INV_X1 U2_g77 (. A (U2_n_4) , . ZN (n_8)) ;

49 NOR2_X1 U2_g78 (. A1 (U2_n_3) , . A2 (n_12) , . ZN (U2_n_4)) ;

50 DFF_X1 U2_DFF_2_I1_Q_reg (. CK (CK) , .D (U2_n_2) , .Q (n_27) , .QN ()) ;

51 AOI22_X1 U2_g80 (. A1 (U2_n_1) , . A2 (G3) , . B1 (n_18) , . B2 (U2_n_0) , . ZN

119

52 (U2_n_3)) ;

53 NOR2_X1 U2_g81 (. A1 (U2_n_1) , . A2 (G2) , . ZN (U2_n_2)) ;

54 NOR2_X1 U2_g82 (. A1 (n_24) , . A2 (G1) , . ZN (U2_n_1)) ;

55 INV_X1 U2_g83 (. A (G0) , . ZN (U2_n_0)) ;

56 endmodule

57

58 module myvoter (in0 , in1 , in2 , o u t) ;

59 i n p u t in0 , in1 , i n 2 ;

60 o u t p u t o u t ;

61 wire in0 , in1 , i n 2 ;

62 wire o u t ;

63 wire n_0 , n_1 ;

64 NAND2_X1 g118 (. A1 (n_1) , . A2 (n_0) , . ZN (o u t)) ;

65 OAI21_X1 g119 (. A (i n 2) , . B1 (i n 0) , . B2 (i n 1) , . ZN (n_1)) ;

66 NAND2_X1 g120 (. A1 (i n 0) , . A2 (i n 1) , . ZN (n_0)) ;

67 endmodule

benchmark/s27/s27_fgdtmr.v

120

Figure A.4: FGDTMR s27 circuit

Source: From the author

121

Generated list of three redundant flip-flops and original counterpart for CGTMR

and FGDTMR circuits

1 a r r a y s e t s 2 7 _ c g t m r _ f g d t m r _ f f {

2 0 { DFF_0_I1_Q_reg / U$1 U0_DFF_0_I1_Q_reg / U$1 U1_DFF_0_I1_Q_reg / U$1 U2_DFF_0_I1_Q_reg / U$1}

3 1 { DFF_1_I1_Q_reg / U$1 U0_DFF_1_I1_Q_reg / U$1 U1_DFF_1_I1_Q_reg / U$1 U2_DFF_1_I1_Q_reg / U$1}

4 2 { DFF_2_I1_Q_reg / U$1 U0_DFF_2_I1_Q_reg / U$1 U1_DFF_2_I1_Q_reg / U$1 U2_DFF_2_I1_Q_reg / U$1}

5 }

benchmark/s27/s27_build_tri_ff_cgtmr_fgdtmr.txt

Generated list of three redundant flip-flops and original counterpart for FGLTMR

circuit

1 a r r a y s e t s 2 7 _ f g l t m r _ f f {

2 0 { DFF_0_I1_Q_reg / U$1 U0_DFF_0_I1_Q_reg_tmr / f f _ 0 / U$1 U0_DFF_0_I1_Q_reg_tmr / f f _ 1 / U$1

U0_DFF_0_I1_Q_reg_tmr / f f _ 2 / U$1}

3 1 { DFF_1_I1_Q_reg / U$1 U0_DFF_1_I1_Q_reg_tmr / f f _ 0 / U$1 U0_DFF_1_I1_Q_reg_tmr / f f _ 1 / U$1

U0_DFF_1_I1_Q_reg_tmr / f f _ 2 / U$1}

4 2 { DFF_2_I1_Q_reg / U$1 U0_DFF_2_I1_Q_reg_tmr / f f _ 0 / U$1 U0_DFF_2_I1_Q_reg_tmr / f f _ 1 / U$1

U0_DFF_2_I1_Q_reg_tmr / f f _ 2 / U$1}

5 }

benchmark/s27/s27_build_tri_ff_fgltmr.txt

List of input ports of TMR circuit

1 s e t s 2 7 _ l i s t _ p o r t s _ i n _ t o p { \

2 CK G0 G1 G2 G3

3 }

benchmark/s27/s27_ports_input.txt

List of output ports of TMR circuit

1 s e t s 2 7 _ l i s t _ p o r t s _ o u t _ t o p { \

2 G17

3 }

benchmark/s27/s27_ports_output.txt

122

Reports of structural verification step of CGTMR circuit

1 V e r i f i c a t i o n o f DFF_0_I1_Q_reg r e p l i c a s :

2 Found f l i p− f l o p s : 3 o u t o f 3 r e p l i c a s

3

4 V e r i f i c a t i o n o f DFF_1_I1_Q_reg r e p l i c a s :

5 Found f l i p− f l o p s : 3 o u t o f 3 r e p l i c a s

6

7 V e r i f i c a t i o n o f DFF_2_I1_Q_reg r e p l i c a s :

8 Found f l i p− f l o p s : 3 o u t o f 3 r e p l i c a s

9

10 Comparison among l o g i c cones f o r DFF_0_I1_Q_reg r e p l i c a s :

11 6 c o m b i n a t i o n a l g a t e s i n l o g i c cone of U0_DFF_0_I1_Q_reg

12 6 c o m b i n a t i o n a l g a t e s i n l o g i c cone of U1_DFF_0_I1_Q_reg

13 6 c o m b i n a t i o n a l g a t e s i n l o g i c cone of U2_DFF_0_I1_Q_reg

14 No common g a t e s be tween l o g i c cones o f U0_DFF_0_I1_Q_reg and U1_DFF_0_I1_Q_reg

15 No common g a t e s be tween l o g i c cones o f U1_DFF_0_I1_Q_reg and U2_DFF_0_I1_Q_reg

16 No common g a t e s be tween l o g i c cones o f U2_DFF_0_I1_Q_reg and U0_DFF_0_I1_Q_reg

17

18 Comparison among l o g i c cones f o r DFF_1_I1_Q_reg r e p l i c a s :

19 4 c o m b i n a t i o n a l g a t e s i n l o g i c cone of U0_DFF_1_I1_Q_reg

20 4 c o m b i n a t i o n a l g a t e s i n l o g i c cone of U1_DFF_1_I1_Q_reg

21 4 c o m b i n a t i o n a l g a t e s i n l o g i c cone of U2_DFF_1_I1_Q_reg

22 No common g a t e s be tween l o g i c cones o f U0_DFF_1_I1_Q_reg and U1_DFF_1_I1_Q_reg

23 No common g a t e s be tween l o g i c cones o f U1_DFF_1_I1_Q_reg and U2_DFF_1_I1_Q_reg

24 No common g a t e s be tween l o g i c cones o f U2_DFF_1_I1_Q_reg and U0_DFF_1_I1_Q_reg

25

26 Comparison among l o g i c cones f o r DFF_2_I1_Q_reg r e p l i c a s :

27 2 c o m b i n a t i o n a l g a t e s i n l o g i c cone of U0_DFF_2_I1_Q_reg

28 2 c o m b i n a t i o n a l g a t e s i n l o g i c cone of U1_DFF_2_I1_Q_reg

29 2 c o m b i n a t i o n a l g a t e s i n l o g i c cone of U2_DFF_2_I1_Q_reg

30 No common g a t e s be tween l o g i c cones o f U0_DFF_2_I1_Q_reg and U1_DFF_2_I1_Q_reg

31 No common g a t e s be tween l o g i c cones o f U1_DFF_2_I1_Q_reg and U2_DFF_2_I1_Q_reg

32 No common g a t e s be tween l o g i c cones o f U2_DFF_2_I1_Q_reg and U0_DFF_2_I1_Q_reg

benchmark/s27/s27_cgtmr_str_verify.rpt

123

1 O u t p u t : / d e s i g n s / s27_cg tmr / p o r t s _ o u t / G17

2 Found v o t e r : / d e s i g n s / s27_cg tmr / i n s t a n c e s _ h i e r / g1

3

4 Comparison among l o g i c cones f o r / d e s i g n s / s27_cg tmr / i n s t a n c e s _ h i e r / g1 p i n s :

5 5 c o m b i n a t i o n a l g a t e s i n l o g i c cone of p i n i n 0

6 5 c o m b i n a t i o n a l g a t e s i n l o g i c cone of p i n i n 1

7 5 c o m b i n a t i o n a l g a t e s i n l o g i c cone of p i n i n 2

8 No common g a t e s be tween l o g i c cones o f p i n s i n 0 and i n 1

9 No common g a t e s be tween l o g i c cones o f p i n s i n 1 and i n 2

10 No common g a t e s be tween l o g i c cones o f p i n s i n 2 and i n 0

benchmark/s27/s27_cgtmr_str_verify_po.rpt

124

Reports of structural verification step of FGLTMR circuit

1 V e r i f i c a t i o n o f DFF_0_I1_Q_reg r e p l i c a s :

2 Found f l i p− f l o p s : 3 o u t o f 3 r e p l i c a s

3

4 V e r i f i c a t i o n o f DFF_1_I1_Q_reg r e p l i c a s :

5 Found f l i p− f l o p s : 3 o u t o f 3 r e p l i c a s

6

7 V e r i f i c a t i o n o f DFF_2_I1_Q_reg r e p l i c a s :

8 Found f l i p− f l o p s : 3 o u t o f 3 r e p l i c a s

9

10 Comparison among l o g i c cones f o r DFF_0_I1_Q_reg r e p l i c a s :

11 15 c o m b i n a t i o n a l g a t e s i n l o g i c cone of U0_DFF_0_I1_Q_reg_tmr

12 15 c o m b i n a t i o n a l g a t e s i n l o g i c cone of U0_DFF_0_I1_Q_reg_tmr

13 15 c o m b i n a t i o n a l g a t e s i n l o g i c cone of U0_DFF_0_I1_Q_reg_tmr

14 15 common g a t e s be tween l o g i c cones o f U0_DFF_0_I1_Q_reg_tmr and U0_DFF_0_I1_Q_reg_tmr

15 15 common g a t e s be tween l o g i c cones o f U0_DFF_0_I1_Q_reg_tmr and U0_DFF_0_I1_Q_reg_tmr

16 15 common g a t e s be tween l o g i c cones o f U0_DFF_0_I1_Q_reg_tmr and U0_DFF_0_I1_Q_reg_tmr

17

18 Comparison among l o g i c cones f o r DFF_1_I1_Q_reg r e p l i c a s :

19 13 c o m b i n a t i o n a l g a t e s i n l o g i c cone of U0_DFF_1_I1_Q_reg_tmr

20 13 c o m b i n a t i o n a l g a t e s i n l o g i c cone of U0_DFF_1_I1_Q_reg_tmr

21 13 c o m b i n a t i o n a l g a t e s i n l o g i c cone of U0_DFF_1_I1_Q_reg_tmr

22 13 common g a t e s be tween l o g i c cones o f U0_DFF_1_I1_Q_reg_tmr and U0_DFF_1_I1_Q_reg_tmr

23 13 common g a t e s be tween l o g i c cones o f U0_DFF_1_I1_Q_reg_tmr and U0_DFF_1_I1_Q_reg_tmr

24 13 common g a t e s be tween l o g i c cones o f U0_DFF_1_I1_Q_reg_tmr and U0_DFF_1_I1_Q_reg_tmr

25

26 Comparison among l o g i c cones f o r DFF_2_I1_Q_reg r e p l i c a s :

27 5 c o m b i n a t i o n a l g a t e s i n l o g i c cone of U0_DFF_2_I1_Q_reg_tmr

28 5 c o m b i n a t i o n a l g a t e s i n l o g i c cone of U0_DFF_2_I1_Q_reg_tmr

29 5 c o m b i n a t i o n a l g a t e s i n l o g i c cone of U0_DFF_2_I1_Q_reg_tmr

30 5 common g a t e s be tween l o g i c cones o f U0_DFF_2_I1_Q_reg_tmr and U0_DFF_2_I1_Q_reg_tmr

31 5 common g a t e s be tween l o g i c cones o f U0_DFF_2_I1_Q_reg_tmr and U0_DFF_2_I1_Q_reg_tmr

32 5 common g a t e s be tween l o g i c cones o f U0_DFF_2_I1_Q_reg_tmr and U0_DFF_2_I1_Q_reg_tmr

benchmark/s27/s27_fgltmr_str_verify.rpt

125

1 O u t p u t : / d e s i g n s / s 2 7 _ f g l t m r / p o r t s _ o u t / G17

2 Not found v o t e r i n s t a c e − Found l i b c e l l

benchmark/s27/s27_fgltmr_str_verify_po.rpt

126

Reports of structural verification step of FGDTMR circuit

1 V e r i f i c a t i o n o f DFF_0_I1_Q_reg r e p l i c a s :

2 Found f l i p− f l o p s : 3 o u t o f 3 r e p l i c a s

3

4 V e r i f i c a t i o n o f DFF_1_I1_Q_reg r e p l i c a s :

5 Found f l i p− f l o p s : 3 o u t o f 3 r e p l i c a s

6

7 V e r i f i c a t i o n o f DFF_2_I1_Q_reg r e p l i c a s :

8 Found f l i p− f l o p s : 3 o u t o f 3 r e p l i c a s

9

10 Comparison among l o g i c cones f o r DFF_0_I1_Q_reg r e p l i c a s :

11 15 c o m b i n a t i o n a l g a t e s i n l o g i c cone of U0_DFF_0_I1_Q_reg

12 15 c o m b i n a t i o n a l g a t e s i n l o g i c cone of U1_DFF_0_I1_Q_reg

13 15 c o m b i n a t i o n a l g a t e s i n l o g i c cone of U2_DFF_0_I1_Q_reg

14 No common g a t e s be tween l o g i c cones o f U0_DFF_0_I1_Q_reg and U1_DFF_0_I1_Q_reg

15 No common g a t e s be tween l o g i c cones o f U1_DFF_0_I1_Q_reg and U2_DFF_0_I1_Q_reg

16 No common g a t e s be tween l o g i c cones o f U2_DFF_0_I1_Q_reg and U0_DFF_0_I1_Q_reg

17

18 Comparison among l o g i c cones f o r DFF_1_I1_Q_reg r e p l i c a s :

19 13 c o m b i n a t i o n a l g a t e s i n l o g i c cone of U0_DFF_1_I1_Q_reg

20 13 c o m b i n a t i o n a l g a t e s i n l o g i c cone of U1_DFF_1_I1_Q_reg

21 13 c o m b i n a t i o n a l g a t e s i n l o g i c cone of U2_DFF_1_I1_Q_reg

22 No common g a t e s be tween l o g i c cones o f U0_DFF_1_I1_Q_reg and U1_DFF_1_I1_Q_reg

23 No common g a t e s be tween l o g i c cones o f U1_DFF_1_I1_Q_reg and U2_DFF_1_I1_Q_reg

24 No common g a t e s be tween l o g i c cones o f U2_DFF_1_I1_Q_reg and U0_DFF_1_I1_Q_reg

25

26 Comparison among l o g i c cones f o r DFF_2_I1_Q_reg r e p l i c a s :

27 5 c o m b i n a t i o n a l g a t e s i n l o g i c cone of U0_DFF_2_I1_Q_reg

28 5 c o m b i n a t i o n a l g a t e s i n l o g i c cone of U1_DFF_2_I1_Q_reg

29 5 c o m b i n a t i o n a l g a t e s i n l o g i c cone of U2_DFF_2_I1_Q_reg

30 No common g a t e s be tween l o g i c cones o f U0_DFF_2_I1_Q_reg and U1_DFF_2_I1_Q_reg

31 No common g a t e s be tween l o g i c cones o f U1_DFF_2_I1_Q_reg and U2_DFF_2_I1_Q_reg

32 No common g a t e s be tween l o g i c cones o f U2_DFF_2_I1_Q_reg and U0_DFF_2_I1_Q_reg

benchmark/s27/s27_fgdtmr_str_verify.rpt

127

1 O u t p u t : / d e s i g n s / s 2 7 _ f g d t m r / p o r t s _ o u t / G17

2 Found v o t e r : / d e s i g n s / s 2 7 _ f g d t m r / i n s t a n c e s _ h i e r / g1

3

4 Comparison among l o g i c cones f o r / d e s i g n s / s 2 7 _ f g d t m r / i n s t a n c e s _ h i e r / g1 p i n s :

5 14 c o m b i n a t i o n a l g a t e s i n l o g i c cone of p i n i n 0

6 14 c o m b i n a t i o n a l g a t e s i n l o g i c cone of p i n i n 1

7 14 c o m b i n a t i o n a l g a t e s i n l o g i c cone of p i n i n 2

8 No common g a t e s be tween l o g i c cones o f p i n s i n 0 and i n 1

9 No common g a t e s be tween l o g i c cones o f p i n s i n 1 and i n 2

10 No common g a t e s be tween l o g i c cones o f p i n s i n 2 and i n 0

11

benchmark/s27/s27_fgdtmr_str_verify_po.rpt

128

Reports of logical and masking capability verification of CGTMR circuit

1 Compared p o i n t s a r e : E q u i v a l e n t

2 (R) + 7 DFF / U0_DFF_0_I1_Q_reg / U$1

3 (R) + 10 DFF / U1_DFF_0_I1_Q_reg / U$1

4 Compared p o i n t s a r e : E q u i v a l e n t

5 (R) + 8 DFF / U0_DFF_1_I1_Q_reg / U$1

6 (R) + 11 DFF / U1_DFF_1_I1_Q_reg / U$1

7 Compared p o i n t s a r e : E q u i v a l e n t

8 (R) + 9 DFF / U0_DFF_2_I1_Q_reg / U$1

9 (R) + 12 DFF / U1_DFF_2_I1_Q_reg / U$1

10 Compared p o i n t s a r e : E q u i v a l e n t

11 (R) + 10 DFF / U1_DFF_0_I1_Q_reg / U$1

12 (R) + 13 DFF / U2_DFF_0_I1_Q_reg / U$1

13 Compared p o i n t s a r e : E q u i v a l e n t

14 (R) + 11 DFF / U1_DFF_1_I1_Q_reg / U$1

15 (R) + 14 DFF / U2_DFF_1_I1_Q_reg / U$1

16 Compared p o i n t s a r e : E q u i v a l e n t

17 (R) + 12 DFF / U1_DFF_2_I1_Q_reg / U$1

18 (R) + 15 DFF / U2_DFF_2_I1_Q_reg / U$1

19 Compared p o i n t s a r e : E q u i v a l e n t

20 (R) + 13 DFF / U2_DFF_0_I1_Q_reg / U$1

21 (R) + 7 DFF / U0_DFF_0_I1_Q_reg / U$1

22 Compared p o i n t s a r e : E q u i v a l e n t

23 (R) + 14 DFF / U2_DFF_1_I1_Q_reg / U$1

24 (R) + 8 DFF / U0_DFF_1_I1_Q_reg / U$1

25 Compared p o i n t s a r e : E q u i v a l e n t

26 (R) + 15 DFF / U2_DFF_2_I1_Q_reg / U$1

27 (R) + 9 DFF / U0_DFF_2_I1_Q_reg / U$1

benchmark/s27/s27_cgtmr_prove_equi_rev.rpt

129

1 # ###

2 # F a u l t I n j e c t i o n

3 # ###

4 F a u l t y s e q u e n t i a l g a t e s :

5 U2_DFF_0_I1_Q_reg / U$1

6 U2_DFF_1_I1_Q_reg / U$1

7 U2_DFF_2_I1_Q_reg / U$1

8 Mapping and compare s t a t i s t i c s

9 ==

10 Compare R e s u l t Golden Rev i sed

11 −−
12 Root module name s27 s27_cg tmr

13

14 Pr imary i n p u t s 5 5

15 Mapped 5 5

16

17 Pr imary o u t p u t s 1 1

18 Mapped 1 1

19 E q u i v a l e n t 1

20

21 S t a t e key p o i n t s 3 9

22 Mapped 3 3

23 E q u i v a l e n t 3

24 Unmapped 0 3

25 E x t r a 0 3

26 Merged 0 3

27 ==

28 Compare r e s u l t s o f i n s t a n c e / o u t p u t / p i n e q u i v a l e n c e s and / o r s e q u e n t i a l merge

29 ==

30 Compared p o i n t s DFF T o t a l

31 −−
32 E q u i v a l e n t 3 3

33 ==

34 Compare R e s u l t s : PASS

35

36

37 # ###

38 # F a u l t I n j e c t i o n

39 # ###

40 F a u l t y s e q u e n t i a l g a t e s :

41 U0_DFF_0_I1_Q_reg / U$1

42 U0_DFF_1_I1_Q_reg / U$1

43 U0_DFF_2_I1_Q_reg / U$1

44 Mapping and compare s t a t i s t i c s

45 ==

46 Compare R e s u l t Golden Rev i sed

47 −−
48 Root module name s27 s27_cg tmr

49

50 Pr imary i n p u t s 5 5

51 Mapped 5 5

130

52

53 Pr imary o u t p u t s 1 1

54 Mapped 1 1

55 E q u i v a l e n t 1

56

57 S t a t e key p o i n t s 3 9

58 Mapped 3 3

59 E q u i v a l e n t 3

60 Unmapped 0 3

61 E x t r a 0 3

62 Merged 0 3

63 ==

64 Compare r e s u l t s o f i n s t a n c e / o u t p u t / p i n e q u i v a l e n c e s and / o r s e q u e n t i a l merge

65 ==

66 Compared p o i n t s DFF T o t a l

67 −−
68 E q u i v a l e n t 3 3

69 ==

70 Compare R e s u l t s : PASS

71

72

73 # ###

74 # F a u l t I n j e c t i o n

75 # ###

76 F a u l t y s e q u e n t i a l g a t e s :

77 U1_DFF_0_I1_Q_reg / U$1

78 U1_DFF_1_I1_Q_reg / U$1

79 U1_DFF_2_I1_Q_reg / U$1

80 Mapping and compare s t a t i s t i c s

81 ==

82 Compare R e s u l t Golden Rev i sed

83 −−
84 Root module name s27 s27_cg tmr

85

86 Pr imary i n p u t s 5 5

87 Mapped 5 5

88

89 Pr imary o u t p u t s 1 1

90 Mapped 1 1

91 E q u i v a l e n t 1

92

93 S t a t e key p o i n t s 3 9

94 Mapped 3 3

95 E q u i v a l e n t 3

96 Unmapped 0 3

97 E x t r a 0 3

98 Merged 0 3

99 ==

100 Compare r e s u l t s o f i n s t a n c e / o u t p u t / p i n e q u i v a l e n c e s and / o r s e q u e n t i a l merge

101 ==

102 Compared p o i n t s DFF T o t a l

103 −−

131

104 E q u i v a l e n t 3 3

105 ==

106 Compare R e s u l t s : PASS

benchmark/s27/s27_cgtmr_comp_equi.rpt

132

Reports of logical and masking capability verification of FGLTMR circuit

1 Compared p o i n t s a r e : E q u i v a l e n t

2 (R) + 7 DFF / U0_DFF_0_I1_Q_reg_tmr / f f _ 0 / U$1

3 (R) + 8 DFF / U0_DFF_0_I1_Q_reg_tmr / f f _ 1 / U$1

4 Compared p o i n t s a r e : E q u i v a l e n t

5 (R) + 8 DFF / U0_DFF_0_I1_Q_reg_tmr / f f _ 1 / U$1

6 (R) + 9 DFF / U0_DFF_0_I1_Q_reg_tmr / f f _ 2 / U$1

7 Compared p o i n t s a r e : E q u i v a l e n t

8 (R) + 9 DFF / U0_DFF_0_I1_Q_reg_tmr / f f _ 2 / U$1

9 (R) + 7 DFF / U0_DFF_0_I1_Q_reg_tmr / f f _ 0 / U$1

10 Compared p o i n t s a r e : E q u i v a l e n t

11 (R) + 10 DFF / U0_DFF_1_I1_Q_reg_tmr / f f _ 0 / U$1

12 (R) + 11 DFF / U0_DFF_1_I1_Q_reg_tmr / f f _ 1 / U$1

13 Compared p o i n t s a r e : E q u i v a l e n t

14 (R) + 11 DFF / U0_DFF_1_I1_Q_reg_tmr / f f _ 1 / U$1

15 (R) + 12 DFF / U0_DFF_1_I1_Q_reg_tmr / f f _ 2 / U$1

16 Compared p o i n t s a r e : E q u i v a l e n t

17 (R) + 12 DFF / U0_DFF_1_I1_Q_reg_tmr / f f _ 2 / U$1

18 (R) + 10 DFF / U0_DFF_1_I1_Q_reg_tmr / f f _ 0 / U$1

19 Compared p o i n t s a r e : E q u i v a l e n t

20 (R) + 13 DFF / U0_DFF_2_I1_Q_reg_tmr / f f _ 0 / U$1

21 (R) + 14 DFF / U0_DFF_2_I1_Q_reg_tmr / f f _ 1 / U$1

22 Compared p o i n t s a r e : E q u i v a l e n t

23 (R) + 14 DFF / U0_DFF_2_I1_Q_reg_tmr / f f _ 1 / U$1

24 (R) + 15 DFF / U0_DFF_2_I1_Q_reg_tmr / f f _ 2 / U$1

25 Compared p o i n t s a r e : E q u i v a l e n t

26 (R) + 15 DFF / U0_DFF_2_I1_Q_reg_tmr / f f _ 2 / U$1

27 (R) + 13 DFF / U0_DFF_2_I1_Q_reg_tmr / f f _ 0 / U$1

benchmark/s27/s27_fgltmr_prove_equi_rev.rpt

133

1 # ###

2 # F a u l t I n j e c t i o n

3 # ###

4 F a u l t y s e q u e n t i a l g a t e s :

5 U0_DFF_0_I1_Q_reg_tmr / f f _ 2 / U$1

6 U0_DFF_1_I1_Q_reg_tmr / f f _ 2 / U$1

7 U0_DFF_2_I1_Q_reg_tmr / f f _ 2 / U$1

8 Mapping and compare s t a t i s t i c s

9 ==

10 Compare R e s u l t Golden Rev i sed

11 −−
12 Root module name s27 s 2 7 _ f g l t m r

13

14 Pr imary i n p u t s 5 5

15 Mapped 5 5

16

17 Pr imary o u t p u t s 1 1

18 Mapped 1 1

19 E q u i v a l e n t 1

20

21 S t a t e key p o i n t s 3 9

22 Mapped 3 3

23 E q u i v a l e n t 3

24 Unmapped 0 3

25 E x t r a 0 3

26 Merged 0 3

27 ==

28 Compare r e s u l t s o f i n s t a n c e / o u t p u t / p i n e q u i v a l e n c e s and / o r s e q u e n t i a l merge

29 ==

30 Compared p o i n t s DFF T o t a l

31 −−
32 E q u i v a l e n t 3 3

33 ==

34 Compare R e s u l t s : PASS

35

36

37 # ###

38 # F a u l t I n j e c t i o n

39 # ###

40 F a u l t y s e q u e n t i a l g a t e s :

41 U0_DFF_0_I1_Q_reg_tmr / f f _ 0 / U$1

42 U0_DFF_1_I1_Q_reg_tmr / f f _ 0 / U$1

43 U0_DFF_2_I1_Q_reg_tmr / f f _ 0 / U$1

44 Mapping and compare s t a t i s t i c s

45 ==

46 Compare R e s u l t Golden Rev i sed

47 −−
48 Root module name s27 s 2 7 _ f g l t m r

49

50 Pr imary i n p u t s 5 5

51 Mapped 5 5

134

52

53 Pr imary o u t p u t s 1 1

54 Mapped 1 1

55 E q u i v a l e n t 1

56

57 S t a t e key p o i n t s 3 9

58 Mapped 3 3

59 E q u i v a l e n t 3

60 Unmapped 0 3

61 E x t r a 0 3

62 Merged 0 3

63 ==

64 Compare r e s u l t s o f i n s t a n c e / o u t p u t / p i n e q u i v a l e n c e s and / o r s e q u e n t i a l merge

65 ==

66 Compared p o i n t s DFF T o t a l

67 −−
68 E q u i v a l e n t 3 3

69 ==

70 Compare R e s u l t s : PASS

71

72

73 # ###

74 # F a u l t I n j e c t i o n

75 # ###

76 F a u l t y s e q u e n t i a l g a t e s :

77 U0_DFF_0_I1_Q_reg_tmr / f f _ 1 / U$1

78 U0_DFF_1_I1_Q_reg_tmr / f f _ 1 / U$1

79 U0_DFF_2_I1_Q_reg_tmr / f f _ 1 / U$1

80 Mapping and compare s t a t i s t i c s

81 ==

82 Compare R e s u l t Golden Rev i sed

83 −−
84 Root module name s27 s 2 7 _ f g l t m r

85

86 Pr imary i n p u t s 5 5

87 Mapped 5 5

88

89 Pr imary o u t p u t s 1 1

90 Mapped 1 1

91 E q u i v a l e n t 1

92

93 S t a t e key p o i n t s 3 9

94 Mapped 3 3

95 E q u i v a l e n t 3

96 Unmapped 0 3

97 E x t r a 0 3

98 Merged 0 3

99 ==

100 Compare r e s u l t s o f i n s t a n c e / o u t p u t / p i n e q u i v a l e n c e s and / o r s e q u e n t i a l merge

101 ==

102 Compared p o i n t s DFF T o t a l

103 −−

135

104 E q u i v a l e n t 3 3

105 ==

106 Compare R e s u l t s : PASS

benchmark/s27/s27_fgltmr_comp_equi.rpt

136

Reports of logical and masking capability verification of FGDTMR circuit

1 Compared p o i n t s a r e : E q u i v a l e n t

2 (R) + 7 DFF / U0_DFF_0_I1_Q_reg / U$1

3 (R) + 10 DFF / U1_DFF_0_I1_Q_reg / U$1

4 Compared p o i n t s a r e : E q u i v a l e n t

5 (R) + 10 DFF / U1_DFF_0_I1_Q_reg / U$1

6 (R) + 13 DFF / U2_DFF_0_I1_Q_reg / U$1

7 Compared p o i n t s a r e : E q u i v a l e n t

8 (R) + 13 DFF / U2_DFF_0_I1_Q_reg / U$1

9 (R) + 7 DFF / U0_DFF_0_I1_Q_reg / U$1

10 Compared p o i n t s a r e : E q u i v a l e n t

11 (R) + 8 DFF / U0_DFF_1_I1_Q_reg / U$1

12 (R) + 11 DFF / U1_DFF_1_I1_Q_reg / U$1

13 Compared p o i n t s a r e : E q u i v a l e n t

14 (R) + 11 DFF / U1_DFF_1_I1_Q_reg / U$1

15 (R) + 14 DFF / U2_DFF_1_I1_Q_reg / U$1

16 Compared p o i n t s a r e : E q u i v a l e n t

17 (R) + 14 DFF / U2_DFF_1_I1_Q_reg / U$1

18 (R) + 8 DFF / U0_DFF_1_I1_Q_reg / U$1

19 Compared p o i n t s a r e : E q u i v a l e n t

20 (R) + 9 DFF / U0_DFF_2_I1_Q_reg / U$1

21 (R) + 12 DFF / U1_DFF_2_I1_Q_reg / U$1

22 Compared p o i n t s a r e : E q u i v a l e n t

23 (R) + 12 DFF / U1_DFF_2_I1_Q_reg / U$1

24 (R) + 15 DFF / U2_DFF_2_I1_Q_reg / U$1

25 Compared p o i n t s a r e : E q u i v a l e n t

26 (R) + 15 DFF / U2_DFF_2_I1_Q_reg / U$1

27 (R) + 9 DFF / U0_DFF_2_I1_Q_reg / U$1

benchmark/s27/s27_fgdtmr_prove_equi_rev.rpt

137

1 # ###

2 # F a u l t I n j e c t i o n

3 # ###

4 F a u l t y s e q u e n t i a l g a t e s :

5 U2_DFF_0_I1_Q_reg / U$1

6 U2_DFF_1_I1_Q_reg / U$1

7 U2_DFF_2_I1_Q_reg / U$1

8 Mapping and compare s t a t i s t i c s

9 ==

10 Compare R e s u l t Golden Rev i sed

11 −−
12 Root module name s27 s 2 7 _ f g d t m r

13

14 Pr imary i n p u t s 5 5

15 Mapped 5 5

16

17 Pr imary o u t p u t s 1 1

18 Mapped 1 1

19 E q u i v a l e n t 1

20

21 S t a t e key p o i n t s 3 9

22 Mapped 3 3

23 E q u i v a l e n t 3

24 Unmapped 0 3

25 E x t r a 0 3

26 Merged 0 3

27 ==

28 Compare r e s u l t s o f i n s t a n c e / o u t p u t / p i n e q u i v a l e n c e s and / o r s e q u e n t i a l merge

29 ==

30 Compared p o i n t s DFF T o t a l

31 −−
32 E q u i v a l e n t 3 3

33 ==

34 Compare R e s u l t s : PASS

35

36

37 # ###

38 # F a u l t I n j e c t i o n

39 # ###

40 F a u l t y s e q u e n t i a l g a t e s :

41 U0_DFF_0_I1_Q_reg / U$1

42 U0_DFF_1_I1_Q_reg / U$1

43 U0_DFF_2_I1_Q_reg / U$1

44 Mapping and compare s t a t i s t i c s

45 ==

46 Compare R e s u l t Golden Rev i sed

47 −−
48 Root module name s27 s 2 7 _ f g d t m r

49

50 Pr imary i n p u t s 5 5

51 Mapped 5 5

138

52

53 Pr imary o u t p u t s 1 1

54 Mapped 1 1

55 E q u i v a l e n t 1

56

57 S t a t e key p o i n t s 3 9

58 Mapped 3 3

59 E q u i v a l e n t 3

60 Unmapped 0 3

61 E x t r a 0 3

62 Merged 0 3

63 ==

64 Compare r e s u l t s o f i n s t a n c e / o u t p u t / p i n e q u i v a l e n c e s and / o r s e q u e n t i a l merge

65 ==

66 Compared p o i n t s DFF T o t a l

67 −−
68 E q u i v a l e n t 3 3

69 ==

70 Compare R e s u l t s : PASS

71

72

73 # ###

74 # F a u l t I n j e c t i o n

75 # ###

76 F a u l t y s e q u e n t i a l g a t e s :

77 U1_DFF_0_I1_Q_reg / U$1

78 U1_DFF_1_I1_Q_reg / U$1

79 U1_DFF_2_I1_Q_reg / U$1

80 Mapping and compare s t a t i s t i c s

81 ==

82 Compare R e s u l t Golden Rev i sed

83 −−
84 Root module name s27 s 2 7 _ f g d t m r

85

86 Pr imary i n p u t s 5 5

87 Mapped 5 5

88

89 Pr imary o u t p u t s 1 1

90 Mapped 1 1

91 E q u i v a l e n t 1

92

93 S t a t e key p o i n t s 3 9

94 Mapped 3 3

95 E q u i v a l e n t 3

96 Unmapped 0 3

97 E x t r a 0 3

98 Merged 0 3

99 ==

100 Compare r e s u l t s o f i n s t a n c e / o u t p u t / p i n e q u i v a l e n c e s and / o r s e q u e n t i a l merge

101 ==

102 Compared p o i n t s DFF T o t a l

103 −−

139

104 E q u i v a l e n t 3 3

105 ==

106 Compare R e s u l t s : PASS

benchmark/s27/s27_fgdtmr_comp_equi.rpt

	Acknowledgments
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Related work
	1.3 Objective
	1.4 Outline

	2 Radiation Effects in integrated circuits
	2.1 Introduction
	2.2 Radiation environments
	2.2.1 Space environment
	2.2.2 Terrestrial environment
	2.2.3 Artificial Man-made radiation

	2.3 Classification of radiation effects
	2.3.1 Displacement Damage (DD)
	2.3.2 Total Ionization Dose (TID) damage
	2.3.3 Single-Event Effect (SEE)
	2.3.3.1 Basic mechanisms of SEE
	2.3.3.2 Types of SEEs

	2.4 Radiation effects in modern world
	2.5 Conclusion

	3 Fault-tolerance techniques for digital circuits
	3.1 Introduction
	3.2 Fault classification
	3.3 Enhanced Process
	3.4 Radiation Hardening by Design
	3.4.1 Layout
	3.4.1.1 Edgeless transistor
	3.4.1.2 Guard rings

	3.4.2 Circuit Level
	3.4.2.1 Hardened Memory cells
	3.4.2.2 Rad-hard library of digital cells
	3.4.2.3 Filtering
	3.4.2.4 Redundancy

	3.5 Conclusion

	4 Automated TMR design
	4.1 Introduction
	4.2 Implementation of digital Integrated Circuits
	4.3 Semi-custom design flow
	4.4 Proposed fault-tolerant design flow
	4.4.1 TMR implementation process (TMRi)
	4.4.2 TMR optimization Process (TMRo)
	4.4.3 TMR verification process (TMRv)

	4.5 Conclusion

	5 Experiments
	5.1 Introduction
	5.2 Fault-tolerant cell-based design flow
	5.2.1 Analyzing the impact of logic optimization in the designs
	5.2.2 Analyzing the impact of adding TMR in area and performance
	5.2.3 Analyzing the impact of performing logic optimization after adding TMR

	5.3 Fault-tolerant FPGA design flow
	5.3.1 Analyzing synthesis in the cell-based and FPGA design flows
	5.3.2 Fault injection campaigns
	5.3.3 Analyzing reliability of unmitigated and TMR implementations

	5.4 Conclusion

	6 Conclusion
	6.1 Future work

	References
	Appendix A — TMR design example

