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“Scientists investigate that which already is;

Engineers create that which has never been.”

— DR. ALBERT EINSTEIN

“Scientists dream about doing great things.

Engineers do them.”

— JAMES A. MICHENER



ABSTRACT

The increasing computing capacity of multicore components like processors and

graphics processing unit (GPUs) offer new opportunities for embedded and high-perfor-

mance computing (HPC) domains. The progressively growing computing capacity of

multicore-based systems enables to efficiently perform complex application workloads

at a lower power consumption compared to traditional single-core solutions. Such effi-

ciency and the ever-increasing complexity of application workloads encourage industry

to integrate more and more computing components into the same system. The number of

computing components employed in large-scale HPC systems already exceeds a million

cores, while 1000-cores on-chip platforms are available in the embedded community.

Beyond the massive number of cores, the increasing computing capacity, as well as

the number of internal memory cells (e.g., registers, internal memory) inherent to emerg-

ing processor architectures, is making large-scale systems more vulnerable to both hard

and soft errors. Moreover, to meet emerging performance and power requirements, the

underlying processors usually run in aggressive clock frequencies and multiple voltage

domains, increasing their susceptibility to soft errors, such as the ones caused by radi-

ation effects. The occurrence of soft errors or Single Event Effects (SEEs) may cause

critical failures in system behavior, which may lead to financial or human life losses.

While a rate of 280 soft errors per day has been observed during the flight of a spacecraft,

electronic computing systems working at ground level are expected to experience at least

one soft error per day in near future. The increased susceptibility of multicore systems to

SEEs necessarily calls for novel cost-effective tools to assess the soft error resilience of

underlying multicore components with complex software stacks (operating system-OS,

drivers) early in the design phase.

The primary goal addressed by this Thesis is to describe the proposal and develop-

ment of a fault injection framework using state-of-the-art virtual platforms, propose set of

novel fault injection techniques to direct the fault campaigns according to with the soft-

ware stack characteristics, and an extensive framework validation with over a million of

simulation hours. The second goal of this Thesis is to set the foundations for a new dis-

cipline in soft error reliability management for emerging multi/manycore systems using

machine learning techniques. It will identify and propose techniques that can be used to

provide different levels of reliability on the application workload and criticality.



Keywords: Multi/Manycore Systems. Fault Tolerance. Reliability. Virtual Platforms.

Simulation. ARM. Soft Errors. Machine Learning.



Avaliação de sistema de larga escala sob à influência de falhas temporárias durante

a exploração de inicial projetos através do uso de plataformas virtuais.

RESUMO

A crescente capacidade de computação dos componentes multiprocessados como

processadores e unidades de processamento gráfico oferecem novas oportunidades para

os campos de pesquisa relacionados computação embarcada e de alto desempenho (do

inglês, high-performance computing). A crescente capacidade de computação progressi-

vamente dos sistemas baseados em multicores permite executar eficientemente aplicações

complexas com menor consumo de energia em comparação com soluções tradicionais de

núcleo único. Essa eficiência e a crescente complexidade das cargas de trabalho das apli-

cações incentivam a indústria a integrar mais e mais componentes de processamento no

mesmo sistema. O número de componentes de processamento empregados em sistemas

grande escala já ultrapassa um milhão de núcleos, enquanto as plataformas embarcadas

de 1000 núcleos estão disponíveis comercialmente.

Além do enorme número de núcleos, a crescente capacidade de processamento, bem

como o número de elementos de memória interna (por exemplo, registradores, memória

RAM) inerentes às arquiteturas de processadores emergentes, está tornando os sistemas

em grande escala mais vulneráveis a erros transientes e permanentes. Além disso, para

atender aos novos requisitos de desempenho e energia, os processadores geralmente exe-

cutam com frequências de relógio agressivos e múltiplos domínios de tensão, aumentando

sua susceptibilidade à erros transientes, como os causados por efeitos de radiação. A ocor-

rência de erros transientes pode causar falhas críticas no comportamento do sistema, o que

pode acarretar em perdas de vidas financeiras ou humanas. Embora tenha sido observada

uma taxa de 280 erros transientes por dia durante o voo de uma nave espacial, os sistemas

de processamento que trabalham à nível do solo devem experimentar pelo menos um erro

transiente por dia em um futuro próximo. A susceptibilidade crescente de sistemas multi-

core à erros transientes necessariamente exige novas ferramentas para avaliar a resiliência

à erro transientes de componentes multiprocessados em conjunto com pilhas complexas

de software (sistema operacional, drivers) durante o início da fase de projeto.

O objetivo principal abordado por esta Tese é desenvolver um conjunto de técnicas

de injeção de falhas, que formam uma ferramenta de injeção de falha. O segundo objetivo

desta Tese é estabelecer as bases para novas disciplinas de gerenciamento de confiabi-



lidade considerando erro transientes em sistemas emergentes multi/manycore utilizando

aprendizado de máquina. Este trabalho identifica multiplicas técnicas que podem ser usa-

das para fornecer diferentes níveis de confiabilidade na carga de trabalho e na criticidade

do aplicativo.

Palavras-chave: Sistemas Multi/Manycore, Tolerância a Falhas, Confiabilidade, Plata-

formas Virtuais, Simulação, ARM, Falhas Transientes, Aprendizado de Máquina .
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1 INTRODUCTION

Computers become ubiquitous in our modern society ranging from everyday life

devices (e.g., televisions, vending machines, smartphones) to complex systems such as

those used to weather forecast or search for microscopic subatomic particles (BUCHA-

NAN, 2018; Inside HPC, 2018). The continuous technology scaling (BORKAR; CHIEN,

2011) and the advance of multicore components such as processors and graphics process-

ing unit (GPUs) are driving the microelectronics industry forward. This evolution can

be exemplified by the advanced driver-assistance systems (ADAS),(VLACIC; PARENT;

HARASHIMA, 2001; MCCLUSKEY, 2017; JONES, 2002; BISHOP, 2005) enabling

self-driven cars in the near future (GEIGER; LENZ; URTASUN, 2012a). The emerge of

The Internet of Things (IoT) is another example(PERERA et al., 2014; ZANELLA et al.,

2014) which is expected to integrate about 30 billion of devices by 2020 (NORDRUM,

2016). The semiconductor systems dissemination phenomenon was possible (or caused)

by Gordon Moore’s seminal work (MOORE, 1965) on transistor scaling. This work intro-

duces the famous Moore’s Law which states that the number of transistors per square inch

doubles every 18 months. As a consequence, every new technology node had delivered

increasing performance, lower power consumption, and smaller transistor cost. The top

plot of Figure 1.1 displays the increasing number of transistors in microprocessors since

1970.

Single-thread processors have benefited from technological advancements to im-

prove their performance by increasing clock frequency (BORKAR; CHIEN, 2011). How-

ever, in mid-2000, this trend reaches the physical limits due to the increased power con-

sumption and the current density within the chip (ESMAEILZADEH et al., 2011; ES-

MAEILZADEH et al., 2012). The central plot of Figure 1.1 shows the growing number of

cores in commercial processors over the last decades. Integrating modern multicore pro-

cessors (e.g. big.LITTLE (ARM, 2017)) and GPUs in the same system is now common-

place in both embedded and high-performance computing (HPC) domains (DINECHIN

et al., 2013; BORKAR; CHIEN, 2011). Such systems aim to perform complex software

stacks (i.e., operating system OS, drivers, and applications) from diverse fields (e.g., spa-

tial, avionics, automotive). However, the ever-increasing demand for performance, energy

efficiency and high reliability of emerging systems is imposing a myriad of challenges to

the design of underlying systems:

• programmability, ease of programming is a feature of paramount importance in
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Figure 1.1: Evolution of commercial processors during the last decades considering the
number of transistors (top), number of cores (middle), and associeted technology node
(botton) from 1970 to 2018. Information gathered from multiple sources including the
ITRS (https://www.itrsgroup.com/).
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large-scale systems composed of different processors, resulting in different plat-

form libraries (e.g., MPI, OpenMP), compilers, instruction set architecture (ISAs)

(GARIBOTTI et al., 2013).

• security, with the increasing number of components and devices sending and receiv-

ing user sensitive data, providing a secure service is fundamental. The increasing

system complexity introduces vulnerabilities to software and hardware architec-

tures compromising the system behavior. Attackers can exploit such vulnerabil-

ities to introduce malicious code, which may incur in undesired effects, security

breaches, or damage to a system (MCCLUSKEY, 2017).

• energy efficiency, while the constant supply and threshold voltage scaling in tran-

sistors led to an exponential increase of leakage current. In addition to that, other

physical restrictions related to device packaging, intra-chip current distribution, and

cooler dissipation during power peaks further impact on the systems energy con-

sumption (ZHANG et al., 2013). Energy-efficiency is becoming more critical than

high-speed operation, and dark silicon era is imposing more power-oriented con-

straints to the design of such systems.

• reliability and dependability, the technology transistors reach the operation physical
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limits, thus becomes increasingly difficult for the hardware components to achieve

reliable execution. The unreliability of multicore-based systems is emerging from

several sources, e.g., electrical noise, cross-talk, radiation particles, aging, and vari-

ability (KARNIK; HAZUCHA, 2004).

Reliability is rapidly emerging as a significant design metric in both embedded and

HPC domains. The increasing chip power densities allied to the continuous technology

shrink is making emerging multicore-based systems more vulnerable to soft errors, such

as the ones caused by radiation events (KARNIK; HAZUCHA, 2004). As illustrated in

the bottom graph of Figure 1.1, commercial processors based on 10 nm process node are

likely to be available in the market in the coming years. Until recently, radiation-induced

faults issue was relegated to high-availability systems such as military applications and

radiation-bounded systems as spatial and avionics. Nowadays, the occurrence of soft error

appears as a primary concern of electronics systems working at ground level (MUKHER-

JEE, 2008). A transient error, also known as a soft error, induced by radiation particles can

lead to financial or human life losses (YOSHIDA, 2015). For instance, the occurrence of a

soft error in HPC systems could lead to the underutilization of resources, which results in

extra cost and time wasted waiting for the re-execution of applications/jobs. Although, a

supercomputer with 900 compute nodes registered a rate of 0.15 error per day, over a year

of operation (BAUTISTA-GOMEZ et al., 2016), electronic computing systems working

at ground level are expected to experience at least one soft error per day in near future

(GRANLUND; GRANBOM; OLSSON, 2003).

The resulting growing susceptibility of multicore systems to soft errors necessarily

calls for novel cost-effective tools to assess the soft error resilience of underlying systems

early in the design phase. The preceding context provides the motivation for this Thesis,

which aims at investigating novel fault injection techniques and tools that can be used to

assess soft errors of multicore-based systems under fault campaigns at early design time.

1.1 Hypothesis to be demonstrated in Thesis

This Thesis relies on two hypothesis:

• Enhancing virtual platforms with fault injection capabilities enable to speed up the

evaluation of more realistic multicore systems (i.e., real software stacks, state-of-

the-art ISAs) at early design phases. The use of such fault injection frameworks
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increases the probability of generating soft errors and failures in those multicore

systems, which allows to generate and collect more error/failure-related data in a

reasonable time.

• With large error/failure-related data sets, engineers are more likely to identify mean-

ingful relationships or associations between fault injection results, application char-

acteristics, and platform parameters. When dealing with large failure-related data

sets obtained from the fault campaigns, it is essential to filter out non-correlated

features (i.e., Parameters without a direct relationship with the system reliability).

In this regard, the second hypothesis of this Thesis is that the use of supervised and

unsupervised machine learning techniques are appropriate to filter and identify the

correlation between fault injection results and application and platform character-

istics, enabling them to improve existing fault mitigation techniques, as well as to

investigate and propose new and more efficient ones.

1.2 Thesis Goal

In order to address the hypothesis mentioned above, the strategic goal of this The-

sis is first to combine existing and novel simulation and fault injection techniques into

virtual platforms, targeting fast and detailed soft error reliability exploration of state-of-

the-art multicore systems. The second strategic goal of this Thesis is investigate appropri-

ete machine learning techniques to develop an automated engine capable of searching and

identifying the individual (or combinations of) microarchitectural (e.g., instruction types,

memory stats) and software parameters (e.g., number of branches, etc), which present the

most substantial relation relationship with each detected soft error and failures.

To accomplish the first strategic goal, the following specific objectives should be

fulfilled:

• Identify the most suitable and efficient virtual platforms to include fault injection

capabilities, aiming to support the soft error analysis of state-of-the-art processor

models;

• Port of several benchmarks from embedded and HPC domains, including the Ro-

dinia and NASA NAS Parallel Benchmark (NPB) suites;

• Investigate the soft error analysis consistency between an instruction-accurate VP



20

and a cycle-accurate full system simulator;

• Proposal and development of novel fault injection techniques and tools that enable

to trace, evaluate, and identify particular source of errors (e.g., application func-

tions, code structure).

The second goal requires the following task to be achieved:

• Support the use of machine learning techniques to enable the identification of indi-

vidual (or combinations of) microarchitectural and software parameters that present

the most substantial relation relationship with each detected soft error or failure.

• Employ proposed techniques and developed tools to investigate the impact of soft-

ware and hardware parameters on soft error system resiliency, considering a signif-

icant number of fault injection campaigns.

1.3 Original Contributions of this Thesis

Figure 1.2 illustrates the main contributions of this work, which are joined into a

soft error analysis flow that includes fault injection and soft error analysis extensions(fully

described in Chapter 3), and automated soft error correlation using machine learning tech-

niques (described in Chapter 5).

The main contributions of this Thesis are described as follows:

1.3.1 Early soft error evaluation

Proposal of two flexible fault injection (FI) frameworks: the OVPsim-FIM de-

veloped on top of the OVPsim (IMPERAS, 2017) and the gem5-FIM, which relies on

the gem5 (BINKERT et al., 2011). Both frameworks integrate a set of fault injection

techniques, allowing fast soft error susceptibility exploration considering state-of-the-art

multicore processor architectures, such as ARMv7, ARMv8, and big.LITTLE.
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Figure 1.2: Diagram with the design space exploration flow and this thesis contributions.
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1.3.2 Novel non-intrusive fault injection techniques

Random fault injection homogeneously probes the application (i.e., every func-

tion has an equal fault probability), nevertheless, some code segments are more critical

than others to the system reliability. The OVPsim-FIM was extended with four novel

and non-intrusive FI techniques targeting: (i) the virtual memory, : (ii) variables, : (iii)

function code, and : (iv) function execution. The underlying techniques offer flexibility

and full control over the fault injection process when targeting complex software stacks.

Further, this new module provides a more powerful fault inspection module, enabling the

user to add custom verifications. In other words, it is possible to check data structures
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and execution patterns during or after the application simulation. For example, this new

module reduces false-positive SDC (i.e., silent data corruption) detections by checking

only a select group of variables instead of the entire memory. This tool provides software

engineers with detailed and comprehensive fault injection capabilities to explore critical

code sections in a quick and non-intrusive manner.

1.3.3 Instruction-accurate fault injection consistency

Instruction-accurate simulators provide a simulation performance of thousands of

millions of instructions per second (MIPS), enabling quick explorations of large and com-

plex scenarios. However, its accuracy regarding soft error assessment was never addressed

and to investigate this matter, the proposed OVPsim-FIM (i.e., instruction-accurate sim-

ulator) was compared against the cycle-accurate gem5-FIM. This exploration comprises

millions of fault injections. Results show that the unmodified OVPsim-FIM can achieve

an average mismatch of less 25% when considering the gem5-FIM. This work further ex-

plores the OVPsim-FIM engine by investigating different configurations. With the proper

simulator settings, the average mismatch can be reduced to less than 15%. More inter-

esting, the worst-case mismatch can be reduced by fivefold while sustaining the high-

performance simulation suitable to early design space explorations.

1.3.4 Extensive investigation of the software stack impact on the system reliability

This work uses the proposed FI framework scalability to explore early design de-

cisions impact on the system reliability, e.g., architecture, number of cores, ISA, OS,

parallelization library, among other possible configurations. Different from other works,

the promoted frameworks use a realistic software stack comprising multiple unmodified

operating systems (e.g., Linux 4.3, Linux 3.13, FreeRTOS) alongside parallelization li-

braries (e.g., OpenMP, MPI, PTHREADS, and OmpSs). Further, this work addresses

another common issue of fault injection frameworks: performance and scalability. The

developed fault injector adopt three simulation techniques to increases the soft error anal-

ysis performance: (i) host multicore parallelization, (ii) checkpoint and restore technique,

and (iii) large-scale and distributed simulation, targeting its use on supercomputers.

This extensive evaluation considers more than three million fault injections (re-
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quiring up to three million of simulation hours) targeting 45 distinct benchmarks, con-

sidering serial, MPI, and OpenMP implementations from the NAS Parallel Benchmark

(NPB) suite (BAILEY et al., 1991) and the Rodinia Benchmark suite (CHE et al., 2009)

among others. This exploration targets single, dual, quad, and octa-core ARM Cortex-A9

and ARM Cortex-A72 processor models. The investigation shows distinct effects of the

chosen parallelization (e.g., OpenMP vs. MPI) library on the system fault tolerance, also,

how the ISA decision can impact the system behavior under fault influence.

1.3.5 Correlating Soft Errors and Microarchitectural Data

Converting fault injection explorations into actual system reliability improvements

is not a straightforward process. This Thesis proposes a cross-layer investigation toolset

that uses machine learning techniques to perform multi-variable and statistical analysis

using the gem5 microarchitectural information (e.g., memory usage, application instruc-

tion composition) along with other software profiling tools (e.g., line coverage) that are

combined with soft error vulnerability evaluation results (i.e., fault injection campaigns).

Proposed toolset enables to reduce the number of fault injection campaigns required dur-

ing early design space exploration by using software symptoms (e.g., execution time,

number of branches) correlated with soft error vulnerabilities to improve the target ap-

plication reliability. Developed toolset provides users with a flexible investigation, where

several information sources can be easily included, selected, and conformed to different

machine learning investigation techniques.

1.4 Thesis Outline

This Thesis is organized into six chapters. Chapter 1 introduces the reliability

issues in modern system design and this Thesis contributions. The following paragraphs

present a succinct Thesis summary chapter by chapter.

Chapter 2 - Background on Soft Errors: The first section of this chapter (Sec-

tion 2.1) introduces the modern challenges to modern electronic devices then Section 2.2

presents a brief background on soft errors history and source mechanisms. Section 2.3

presents the state-of-the-art on soft error assessment using distinct approaches.

Chapter 3 - Simulation-based Fault Injection Using Virtual Platforms: First,
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Sections 3.1 and 3.2 provide a discussion on the available virtual platforms and their fault

injection frameworks. Section 3.3 describes the adopted fault model while Section 3.4

presents the fault injection flow. The fault injection framework detailed development is

shown by Sections 3.5 and 3.6 targeting the gem5 and OVPsim simulators respectively.

Several features had been included in the fault injection framework including speed boost-

ing techniques (Section 3.7). Section 3.8 provides extra tooling to help software develop-

ers to explore in deep the application effects under soft errors this chapter proposes two

FIM extensions: (i) include new software-focused fault injection techniques to restrict

the targeting area, e.g., a particular function or data representation. (ii) provide a non-

intrusive library to customize the error analysis and detection to accommodate the user

necessities.

Chapter 4 - Evaluation of Proposed Fault Injection Framework: This chap-

ter presents results for several fault injection campaign using dozens of applications in

hundred of distinct scenarios. Section 4.1 describes the 45 adopted applications from the

Rodinia benchmarks and the NAS Parallel Benchmark. The chapter is divided in three

main parts: Section 4.2; Performance and Accuracy Evaluation of proposed OVPsim-

FIM. Section 4.3; Soft Error Evaluation Considering Multicore Design Metrics/Decisions.

Section 4.4; Focused Fault Injection Preliminary Results.

Chapter 5 Machine Learning Applied to Soft Error Assessment in Multicore

systems This chapter describes the promoted a cross-layer investigation tool which per-

forms multivariable and statistical analyses. First, Section 5.1 debates the state-of-the-art

of reliability using machine learning techniques. Sections 5.2 and 5.3 discusses, respec-

tively, the problem of investigating large-scale fault injection campaigns and how this

work mitigates this issue. The proposed tool requires multiple machine learning tech-

niques which are described by Section 5.4, while Section 5.5 details the tool execution

flow. Finally, Section 5.6 shows results related to multiple investigations using the pro-

posed tool.

Chapter 6 - Conclusion and Future Works: This chapter summarizes this work

contribution until this point. Also, it describes the future works related to this Thesis.
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2 BACKGROUND ON SOFT ERRORS

This chapter details some necessary backgrounds and state-of-the-art works re-

lated to this Thesis exploration on soft error assessment. First, Section 2.1 enumerates

several reliability challenges encountered by modern electronic devices, while Section 2.2

provides a brief history and background on radiation-induced soft errors. In particu-

lar, Section 2.2.1 explains the particle strike and the charge accumulation process, Sec-

tion 2.2.2 shows several fault masking mechanisms, and Section 2.2.3 introduces useful

metrics to evaluate the occurrence of soft errors. The Section 2.3 investigates the recent

innovations in soft error vulnerability assessment.

2.1 Main Reliability Challenges in Electronic-based Systems

The semiconductor industry is facing significant reliability challenges to guarantee

the correct functionally of electronic systems (KARNIK; HAZUCHA, 2004). Problems

such as process variability, permanent faults, and transient faults are a significant issues

for semiconductor-related industry sectors (HENKEL et al., 2013; SHIVAKUMAR et al.,

2002). Three main fault groups comprehensive encompass the device reliability chal-

lenges for the future technologies:

(i) Process Variability: As the transistor’s features scales down the chip variability

grows during the fabrication process (PANDINI, 2009) impacting multiple parame-

ters, e.g., channel length, doping concentration, oxide thickness. For comparison’s

sake, state-of-the-art fabrication processes 10 nm shapes are only four times larger

than the diameter of a DNA strand. Consequently, devices with identical logical de-

sign have distinct physical and electrical characteristics from die to die (i.e., inter-

die variations) and on the same die (i.e., intra-die variations). These issues result in

yield, power, and performance reduction as the same design must withstand a wider

parameter variation (BORKAR et al., 2003).

(ii) Permanent faults: are physical imperfections such as stuck-at-zero and timing vi-

olations in conjunction with aging problems. For instance, decreasing transistor

sizes cause faster aging and eventually transistor wear out due to distinct phenom-

ena such as Hot Carrier Injection (HCI), Bias Temperature Instability (BTI), Elec-

tromigration, and Time Dependent Dielectric Breakdown (TDDB) (ALAM et al.,
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2007). These problems reduce the chip average lifetime and impact on its meantime

between failures (MTBF) by steadily increasing propagation delays.

(iii) Transient faults: or soft errors encompass all sort of malfunctions without per-

manent circuit damage. Such errors may occur due to the occurrence of electrical

noise, electromagnetic interference, as well as exposition to radiation. Soft errors

cause single event effects (SEEs) in a processor, which can be propagated through

logical (e.g., logic gates) and memory elements (e.g., latches, registers). Whenever

an SEE surpasses a specific charge threshold1 it will induce an incorrect compu-

tation affecting logical and storage elements. In contrast to permanent faults and

process variability, new data can still be correctly written and stored on the affected

device. Due to the technology high-frequency, low voltage supply, and continu-

ous technology shrink the transistor becomes more susceptible to soft errors as the

minimal energy to provoke it is reducing (SEIFERT, 2010; BAUMANN, 2005).

While process variability increases the production cost and development time,

permanent faults lead to premature wearing (i.e., reducing the system’s lifetime). The

technology fabrication process and new low-level system designs (i.e., gate-level) can

partially mitigate its occurrence. Also, it affects appears during a prolonged time span

enabling early detection and correction. In contrast, transient faults will introduce erro-

neous behavior in the system at random time without previous warning or at predictable

rates. Soft errors may emerge either during intensive or idle working periods, affecting

both critical and non-essential system functionalities. Among aforementioned reliability

challenges, soft errors are the most prominent one in several sectors of the semiconductor

industry. Processor-based systems working at sea level are expected to experience at least

one soft error per day (GRANLUND; GRANBOM; OLSSON, 2003).

2.2 Radiation Induced Soft Errors

Soft Errors caused by radiation particles became in the last years a recurring re-

search topic in both academia and industry (SLAYMAN, 2010; LI et al., 2016). Never-

theless, the radiation effects on semiconductor materials are well-known for more than

half-century. In 1961, (WALLMARK; MARCUS, 1961) predicted the transistor scaling

limits arround 10 µm for several reasons, including cosmic rays. A decade later in 1975,

1This critical threshold depends on the technology node, cell design, and neighboring gates.
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the misbehavior of digital circuits used in a communication satellite was identified and

studied by (BINDER; SMITH; HOLMAN, 1975). Binder et al. reported galactic cosmic

rays effects in the processor flip-flops as the principal error source. In a retrospective

investigation, (NORMAND et al., 2010) found an unusual number of parity errors in the

Los Alamos Cray-1 supercomputer during the year of 1976, pointing to ground-level high-

energy neutrons as its cause. DRAM soft error vulnerability to heavily-ionizing radiation

are discussed by (MAY; WOODS, 1978), and (ZIEGLER; LANFORD, 1979) investigate

the silicon interactions at sea-level with cosmic-ray nucleons and muons. The next sub-

section presents examples of radiation strike mechanisms. Afterward, Section 2.2.2 dis-

cusses fault masking mechanisms during and fault propagation, Section 2.2.3 shows some

soft errors quantification metrics, and Section 2.2.4 explores the trends of soft errors in

future systems.

2.2.1 Radiation Source and Soft Errors Mechanisms

According to Baumann et al. (BAUMANN, 2005) soft errors induced by radi-

ation originate from three primary sources: (i) the emissions of alpha particles due to

the presence of radiative impurities on the chip packaging; (ii) an alpha particle (i.e.,

two neutrons and two protons) traveling through a semiconductor material loses kinetic

energy leaving an ionization trail behind; and (iii)high-energy cosmic rays originating

from outer space, which produce a complex cascade of secondary particles in earth’s at-

mosphere (e.g., muons, protons, neutrons, and pions). For example, a neutron collision

with one Si atom emits lighter ions and sub-particles (e.g., protons, alpha particles). Low-

energy cosmic rays (i.e., up to 1 MeV) create ionizing particles in electronic devices from

the interaction of neutrons and borons atoms (i.e., p-type dopant).

The collision of a sub-atomic particle induces a single event transient (SET) by

generating secondary particles capable of ionizing the n-p junctions of sensitive transistors

causing a voltage charge or discharge in the stroke node. Modern and smaller technology

can also suffer from multiple event transients (MET) as the same particle induces a charge

in several neighboring transistors. For simplicity’s sake, this subsection focuses on single

event effects. Figure 2.1 (a-c) shows a high-energy ion path through a reverse-biased

junction, i.e., the most charge-sensitive circuit node (BAUMANN, 2005; LI et al., 2016).

The Figure 2.1a displays the corresponding current pulse resulting from the following

three phases:
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Figure 2.1: Charge generation and collection phases in a reverse-biased junction and the
resultant current pulse caused by the passage of a high-energy ion.

Source: Baumann, R.C., figure adapted from (BAUMANN, 2005).

(i) The high-energy particle interaction with the silicon transfers kinetic energy to the

semiconductor material creating a track of electron-hole pairs and forming a conical

high carrier concentration in the wake of the energetic ion’s passage (Figure 2.1a).

(ii) The electric field in the depletion region collects the closest charge carriers creat-

ing a transient current/voltage at the target device node (Figure 2.1b). During this

phenomenon, a temporary channel may be formed for a short period, around few

picoseconds.

(iii) A nanosecond later the diffusion begins to dominate the collection process Fig-

ure 2.1c, inducing additional current formation.

The radiation event deposits a certain amount of charge (Qall) due to the hole-

pair formation (IBE et al., 2010; HUBERT; ARTOLA, 2013). The collection mechanism

described above has a maximum efficiency coefficient (Lmax) and depends on the ion

track length (xc). For instance, the total amount of collected charge by a SRAM is giving

by Equation (2.1) (IBE et al., 2010):

Qcollected = Qall

(
xc
Lmax

)
(2.1)

Qcollected values range from one to several hundred pC, and the precise Qcollected

estimation involves the ion strike angle, path, energy, mass, and point of impact consider-

ing the nearest reverse-biased junction. The device geometry and electrical characteristics

have additional influence on the collection process. The displacement of charge carriers
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in the time creates an electrical current in the target devices modeled by Equation (2.2):

I(t) =
Qcollected

τα − τβ

(
e−

t
τα − e

− t
τβ

)
(2.2)

τα and τβ are process dependent constants denoting the collection time and ion-

track establishment time. The literature reports a typical value of 164 ps for the τα and

50 ps for the τβ (PALAU et al., 2001; LI et al., 2016). The charge collection in the stroke

node may lead to a single event upset (SEU), in other words, introducing an incorrect bit

in the memory cell. The quantity of Qcollected required to create an SEU in a device is

denoted by the critical charge (Qcritical) and expressed by:

Qcritical =

∫ TF

0

ID(t) dt (2.3)

In the Equation (2.3), ID(t) represents the time-dependent drain transient current,

and (PALAU et al., 2001) defines the flipping time (TF ) as the time instant when the struck

transistor drain voltage is equal to the gate voltage after the radiation event. In simple cir-

cuits such as DRAMs, an error only occurs whenever the Qcritical is greater than Qcollected

masking otherwise the radiation event. The SRAM feedback loop can restore the original

value if the recovery time2 does not exceed the feedback time3 (DODD; SEXTON, 1995).

2.2.2 Fault Propagation and Masking

The transient errors create unintentional electrical signals that need to travel through

many design abstraction layers from the transistor until reaching the application variables

and control flow. Several mechanisms can mask this fault: First, a particle strike needs to

generate enough charge collection to create a noticeable electrical signal, which depends

on the transistor electrical characteristics. The signal propagation also is attenuated by the

circuit resistance (electrical masking) The internal logic structure leads to logical masking

when the fault propagation path is blocked by another dominating data path. The circuit

timing requirements (e.g., setup and hold times) constrain all electrical signals, including

faults. Whenever the faulty signal violates one delay constraints (i.e., the signal arrives

either too early or too late to be captured during the clock edge) results in a temporal

masking.

2Time taken for the struck node voltage to return to its pre-strike value.
3The time taken for the struck node voltage to become latched as incorrect data.



30

Digital systems present two main circuit components: Combinational (e.g., AND,

OR, XOR) and sequential circuits (e.g., SRAM cells, latches, flip-flops). Combinational

circuits are regarded as less prone to soft errors due to the above-described masking mech-

anisms and the absence of feedback loop in the underlying circuit. In turn, the sequential

circuits are more vulnerable to radiation events as a single strike has enough energy to

reverse the stored data as result of the feedback loop. Also, memory elements are sus-

ceptible to bit-flips during extended periods of time when holding data, in contrast, the

sequential circuit switches (i.e., changes the value) more often. For example, an SRAM

cell may be affected by SEUs during almost the entire clock cycle (SEIFERT, 2010).

Also, the clock network under the influence of soft errors results in memory elements

incorrect operation.

At architecture level (e.g., program counter, pipeline registers, register-file, arith-

metic, and logic unit), an erroneous bit can be further masked due to the write and the read

operations. For example, a fault present in a register can be overwritten by a write before

a read, and thus eliminate the incorrect bit. An error is a fault that propagated inside the

application (or OS) before being perceived by the user. At the software level, SEUs are

incorrect variable values or wrong control flow executions. An algorithm can overwrite

the variable before its value is consumed masking the fault. Even with all those masking

processes, the incidence of soft errors is increasing due to the technology susceptibility to

radiation events. Well defined metrics and methods are necessary to analyze the impact

of transient faults under different conditions considering system architecture, application,

and compiler.

2.2.3 Soft Error Metrics

This subsection describes some useful soft error metrics: The transient errors

occurrence per time are quantified by the Soft Error Rate (SER) and measured by the

Failure-In-Time (FIT) parameter. The FIT is equivalent to the number of failures (i.e.,

soft errors in this context) in one billion of operation hours (BAUMANN, 2005).

A well-established metric is the architectural vulnerability factor (AVF) (MUKHER-

JEE et al., 2003) that estimates a particular bit susceptibility to create a visible error in

the application. The architectural bits can be divided into two subgroups: (1) The bits

required for an architecturally correct execution (ACE) and (2) the un-ACE bits. While

an ACE bit propagates faults to the final output, un-ACE bit does not create a visible
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error. The used of AVF enables the search for the most vulnerable architectural state

bits. The AVF focus on the correct result, and thus bit fault can change the intermedi-

ary computations and still have an AVF of 0%. For instance, a transient fault in a branch

predictor generates a miss-prediction, which potentially requires the re-execution of some

instructions without altering the final application.

The AVF lacks an explicit masking rate model that varies according to the hard-

ware component, which may lead to an over-estimation the number of errors. The register

vulnerability factor (RVF) (YAN; ZHANG, 2005) is a metric explicitly used to measure

the register file susceptibility to soft errors. The RVF accounts for the vulnerability factor

by calculating the intervals between two vulnerable register operations (i.e., write/read

and read/read). Write operations mask any fault previously propagated, and thus, the

interval between writes is the most vulnerable register operations.

The AVF shows a larger granularity than desired to measure the instructions inter-

action. To address this issue, (BORODIN; JUURLINK, 2010) create an instruction-based

criticality assessment metric called Instruction Vulnerability Factor (IVF). This metric

uses distinct fault injection techniques to probe every instruction in the code. Given the

involved complexity, complete coverage can be difficult to achieve. Another instruction-

oriented approach is the Instruction Vulnerability Index (IVI) (REHMAN et al., 2011). Its

composition includes the ACE-bits, the area, and specific pipeline components vulnerabil-

ity. This analytical approach avoids the exhaustive simulation by using a fault probability

in each pipeline component. Also, the IVI metric allows the extension to register file IVI

by incorporating the vulnerability window of each register in the instruction4.

2.2.4 Soft Error Trends in Electronic Systems

In the last decades, the Moore’s and the Dennard scaling laws coupled both tran-

sistor features and Vdd scaling down. Nevertheless, the Vdd has a direct impact on memory

cells sensitivity to radiation events due to the charge reduction to achieve the Qcritical. On

larger designs as flip-flops5 the area reduction plays a significant role to improve the cell

reliability as Vdd reduction impacts on SRAM cells reliability. The scaling process reduces

the cell sensible areas, consequently, the total collected charge (DIXIT; WOOD, 2011;

4The vulnerability window is the time between a register write and the last read in the value. During
this period, the register is susceptible to propagate soft errors.

5When compared with SRAMs.
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EBRAHIMI et al., 2016). Nevertheless, the transistor density creates a new phenomenon:

a single particle strike can induce charge generation in several neighboring cells (i.e.,

MET - multiple event transients), which may result in Multiple-Bit Upset (MBU). Also,

MET events in sequential logic reduce the electrical masking probability due to the mul-

tiple concurrent propagations paths.

The difficulties in downscaling the planar CMOS technology lead the major semi-

conductor foundries, such as Intel, TSMC, and GlobalFoundries, to adopt the multi-

gate nonplanar transistor technology also known as Fin Field-Effect Transistor(FinFET).

(DOYLE et al., 2003; RUSS, 2008). Radiation effects as SETs and SEUs have been

studied and analyzed in bulk CMOS (HUBERT; ARTOLA, 2013), and more recent Fin-

FET has been proven equally susceptible to neutron and alpha particles strikes (HUBERT;

ARTOLA; REGIS, 2015; ARTOLA; HUBERT; SCHRIMPF, 2013).

The FinFET technology improves the system soft error reliability by reducing the

gate width in favor of the height forming a tri-gate shape (SEIFERT et al., 2015). The

tri-gate architecture reduces the drain/source area (i.e., reverse-biased junctions), and by

consequence, diminishing the charge collection process. This phenomenon reduces the

total collected charge and the critical charge6 as shown in Figure 2.2b. Figure 2.2a shows

an SRAM cell SER rate transition from planar nodes to FinFET tri-gate nodes. Seifert et

al. (SEIFERT et al., 2015) reports a 23 times SER improvement on a second generation

14-nm SRAM cell when compared to a 32-nm planar technology at nominal voltage. The

amelioration from the first FinFET generation (i.e., 22-nm) to the second (i.e., 14-nm)

achieves up to 8 times for the same cell. The newer generation is taller and slimmer than

the previous one, and so further reducing the device sensitive areas.

The ITRS (KAHNG, 2013) reports soft errors as one major design issues to the

sub-22nm nodes. Although FinFET-based systems improvements, the trend points to

more vulnerable architectures (SEIFERT et al., 2015; LI et al., 2016) as the memory in-

tegrated volume grows at each new architecture (e.g., larger caches and more complex

pipelines). Further, most works on circuit reliability consider only the system execution

at nominal voltage and temperature, which does not reflect the reality and can affect di-

rectly the FinFET reliability (ROSA et al., 2015a; ROSA et al., 2015b). The high-energy

neutrons are becoming the primary source of soft error at ground-level, with up to 77%

(Figure 2.2a), surpassing the alpha particles. To ensure the system’s reliability or at least

fail-safe functionality, the designer should be able to identify soft errors during the ini-

6Amount of induced charge in an SRAM node to change it data status.
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Figure 2.2: FinFET reliability future trend across new technology nodes.
(a) SER rate from planar to tri-gate nodes. (b) Critical charge accros differente technologies.

(c) Radiation-induced soft errors sources into 14-
nm FinFET technology.

Source: Seifert et al. (SEIFERT et al., 2015)

tial design cycle. Aiming at accelerating the fault injection evaluation at early design

phases, researchers are investigating fast, and efficient simulation-based fault injection

approaches to enable complex soft error resilience analysis regarding different system

configurations at an acceptable time.

2.3 Soft Error Assessment

This section resumes the most widely adopted approaches to assess soft error ef-

fects on embedded systems. The development of techniques for soft error injection in

processors has been studied to evaluate processor architecture, organization, and applica-

tions running on those processors in early product design phase. Fault injection can be

performed on board-oriented approaches by interrupting the processors and forcing the

processor to execute corrupted data that is modeling the fault. However, this approach is

also very time consuming when considering complex applications executing under mil-

lions of fault injection experiments. Another alternative is exposing the board to neutron

radiation. Although radiation tests produce the most accurate results, they have a very

high cost. Especially when looking for a large number of error events under neutron



34

fluence, each test may easily take several days to build a desirable confident statistic.

The first group relies on detailed fault injection estimation at register or gate level

employing commercial tools, such as ModelSim from Mentor. For instance, a tool called

VFIT integrates a series of VHDL-based elements designed around the ModelSim to

support fault injection evaluation (BARAZA et al., 2000). Authors considered 3,000

faults per experiment. A similar work extends Modelsim capabilities in order to inject

faults in RTL descriptions using Perl and Tcl scripts (RUANO et al., 2007). Authors

in (VALDERAS et al., 2007) use Foreign Language Interface (FLI) available in Model-

Sim to diminish control overheads during simulation. FLI enables C-Written modules to

monitor and modify any signal in simulation time. Results include a compiled CORDIC

processor in a 10,000 faults scenario reaching 2.33 faults per second in the best simu-

lation case. Due to the number of modeled aspects (BARAZA et al., 2000; RUANO et

al., 2007; VALDERAS et al., 2007), the detailed evaluation produces accurate soft error

results although it is time-consuming, and the amount of memory required by these ap-

proaches is too high. Consequentially restricting the experiments to few thousands faults

(e.g.(BARAZA et al., 2000; VALDERAS et al., 2007)) considering a single target pro-

cessor or specific ISA. Other drawbacks of such approaches are the poor fault access,

and design modifications are usually highly intrusive, which increase the design space

exploration cost.

To speed up the fault injection simulation while improving modeling capabilities

the second group emphasizes the use of SystemC (RAMACHANDRAN et al., 2008). The

work proposed in (EBNENASIR; HAJISHEYKHI; KULKARNI, 2012) explores how

faults can be modeled and injected at different SystemC abstraction levels (e.g., RTL,

TLM). The authors in (BELTRAME; BOLCHINI; MIELE, 2009) focus on soft error

evaluation and a NoC model was used as case study. In (SHAFIK; ROSINGER; AL-

HASHIMI, 2008), a behavioral SystemC description of an MPEG-2 is used to validate a

fault injection technique developed on the SystemC API basis. Authors in (MISERA et

al., 2006), coupled VHDL and SystemC in a hierarchical design fault simulation process

based on SystemC, which can be employed at different abstraction levels. A Python-based

framework, called ResSP is proposed in (BELTRAME; FOSSATI, 2008; BELTRAME et

al., 2007). ResSP provides wrappers to assemble SystemC components and processor

models (e.g., PowerPC, Leon2, and ARM7) described in ArchC (RIGO et al., 2004).

Experiments comprise 10,800 faults injections in a Leon processor model connected to a

memory through a bus. As reported in (BELTRAME; FOSSATI, 2008), ReSP simulation
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achieves 2-3 MIPS on a 2-core host. Although SystemC reduces the simulation cost, the

lack of processor/ISA models and the still inadequate performance of SystemC kernel

limit its adoption when exploring large fault experiments and complex systems.

Fault injection analysis based on simulation is widely used and accepted as an

efficient way to perform soft errors assessment, enabling different system configurations

explorations during early DSEs (CHO et al., 2013; KOOLI; NATALE, 2014). Some

state-of-the-art fault injectors use high-level behavioral models, and others are based on

hardware description language level (HDL) or gate-level models. Although HDL-level

and gate-level models are more precise than a high behavioral model, there are two main

problems when using those models: First, commercial processors are rarely available to

users in HDL or gate-level descriptions. Second, the simulation time in such abstraction

levels is exceptionally high. Thus, thousands of simulations may take several months,

which is not suitable to evaluate systems under soft errors during the early design phases.

Given the ever-increasing complexity of both processor and software architectures, re-

searchers have been investigating the use of virtual platforms as an alternative means to

assess soft error resilience. The next chapter details the proposed use of virtual platforms

as fault injection frameworks.
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3 PROPOSED FAULT INJECTION FRAMEWORK

This chapter describes the first contribution of this Thesis, the development of two

fault injection frameworks designed on the basis of two virtual platform simulators: OVP-

sim (Section 3.5) and gem5 (Section 3.6). The Section 3.1 presents a brief description of

most well-know display state-of-the-arts on virtual platforms (VPs). Next, in Section 3.2,

fault injectors implemented on the top of VP are discussed. After, Section 3.3 presents

the adopted fault model and the Section 3.4 describes the proposed fault injection flow

integrated into both fault injection frameworks developed under the frame of this Thesis.

Section 3.7 presents a set of modeling and simulation techniques developed to improve

the performance and the design space exploration capabilities of both frameworks. Sec-

tion 3.8 another important contribution of this Thesis is presented: the proposal of four

novel fault injection techniques.

3.1 Virtual Platforms

A virtual platform is a full-system simulator that emulates hardware components

(e.g., CPUs, memories), and the execution of real software stacks, on the same machine,

as it is running on real physical hardware. Such simulators usually offer a set of pro-

cessor architectures, peripherals, and memory models, allowing a fast and flexible soft-

ware development at early design stages. VPs differ concerning modeling, flexibility, and

simulation performance. While event-driven VPs such as gem5 target microarchitecture

exploration, just-in-time (JIT) simulators (e.g., OVPsim (IMPERAS, 2017)) are devoted

to software development. JIT-based simulators can achieve speeds approaching actual ex-

ecution time, e.g., thousands MIPS at the cost of limited accuracy. In turn, event-driven

simulators typically report best-case simulation performances of 2-3 MIPS.

It is hard to cover all modeling aspects (e.g., flexibility, debuggability) and sim-

ulation (e.g., accuracy, scalability) requirements in one single simulator. This section

starts by providing an extension of the surveys (BUTKO et al., 2012; GUTIERREZ et al.,

2014) considering the most popular virtual platforms. Such virtual platform simulators are

compared according to different criteria: (i) accuracy, (ii) flexibility regarding supported

processor architectures, (iii) licensing, and (iv) support activity. Table 3.1 summarizes the

reviewed work according to such four criteria.

The wind river Simics (MAGNUSSON et al., 2002) is a simulator that enables un-

modified target software (e.g., operating system, applications) to run on top of a platform
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Table 3.1: Most recognizable virtual platforms simulators.

Simulator ISA(s) Guest OS Accuracy License

Simics
Alpha, ARM,

MIPS, PowerPC,
SPARC, x86

Linux, Solaris,
Windows, and others

Functional Closed

PTLsim x86 Linux Cycle GPL

Flexus SPARC and x86 Linux and Solaris Cycle BSD

SimpleScalar
Alpha, ARM,
PowerPC, and

x86
Linux Cycle none

MARSS x86 Linux
Cycle and
Instruction

GPL

gem5 ARM, MIPS,
SPARC, and x86

Linux, Android,
Solaris, and others

Cycle GPL

QEMU

Alpha, ARC,
ARM, PowerPC,
MicroBraze, and

others

Linux, Android,
Solaris, and others

Instruction GPL

OVP

Alpha, ARC,
ARM, PowerPC,
MicroBraze, and

others

Linux, Android,
Solaris, FreeRTOS, and

others
Instruction

Modified
Apache 2.0

Source: The Authors

model. A wide range of processor architectures (e.g., ARM, MIPS, PowerPC), as well

as operating systems (e.g., Linux, VxWorks, Solaris, FreeBSD, QNX, RTEMS), can be

adapted to model the desired systems. This simulator includes SystemC interoperability,

debuggers, software and hardware analysis views, as well. Simics is not open source, and

thus users require a commercial license, which is one disadvantage.

The PTLsim (YOURST, 2007) is a cycle-accurate simulator, offering the com-

plete cache hierarchy, different processor architectures, memory subsystem and hardware

devices. This tool presents two main drawbacks: it only supports x86-64 architectures,

and it has no active maintained. SimpleScalar (AUSTIN; LARSON; ERNST, 2002) is an

open source infrastructure for simulation and architectural modeling. Similar to previous

simulators, software engineers can use SimpleScalar to develop applications and execute

them onto a range of processor architectures, which varies from simple unpipelined pro-

cessors to detailed microarchitectures with multiple-level memory hierarchies. However,
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SimpleScalar is not actively maintained anymore (the last update was in March 2011),

and other faster solutions, like gem5, are available.

QEMU is an instruction-accurate and open source simulator that relies on dynamic

binary translation supporting several CPUs (e.g., x86, PowerPC, ARM, and SPARC).

Similar to QEMU, the Open Virtual Platform Simulator (OVPsim) (IMPERAS, 2017) en-

gine also employs a just-in-time dynamic binary translation, i.e., target instructions (e.g.,

ARM, MIPS) are morphed into x86-64 host instructions through a translation mechanism.

The OVPsim API provides several component models, including processors, memories,

uarts, among others. The processor architectures and variants sum more than 170, includ-

ing ARMv7, ARMv8, MIPS, Renesas, and MicroBlaze.

gem5 (BINKERT et al., 2011) is a modular discrete event simulator, which has an

open-source code and supports a rich set of models including processor cores, memories,

caches, and interconnections. Among the available instruction set architectures (ISAs)

are x86, MIPS, Alpha, SPARC, and primarily ARM, which is the subject of this work.

The source code and license usage are open, thus enabling any component addition or

modification. Further, the gem5 simulator is described in C++ and Python, and it has an

active development and support team. Its target microarchitectural explorations, which

incurs in substantial simulation overheads due to the number of modeled aspects (e.g.,

memories, caches, and interconnections). Further, the amount of memory required by

the gem5 simulator is very high, making its use infeasible to explore large-scale system

models. MARSS (PATEL et al., 2011) is cycle-accurate full system simulation of the x86-

64 architecture, which uses a hybrid approach through the PTLsim (YOURST, 2007), as

the basis of its CPU simulation environment on top of the QEMU (BELLARD, 2005).

QEMU was initially designed for single-processor platforms and virtualization

purposes, and more recently, researchers are extending its capability to multicore ex-

plorations as well. However, the lack of documentation on the APIs or standardized

methodology for creating manycore platform models limits its use. Excluding PTLSim

and MARSS that only supports x86, reviewed simulators provide support to several pro-

cessor architectures. Cycle-accurate simulators such as SimpleScalar and gem5 entail

high-simulation time, thereby limiting their applicability to more complex or large-scale

systems explorations. Simics has a private license while the others are free to use. Further,

SimpleScalar does not provide support or development anymore.

After careful selection, this work adopted OVPsim (IMPERAS, 2017) and gem5

(BINKERT et al., 2011) as as means to develop the fault injection frameworks. The OVP-
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sim (IMPERAS, 2017) is highly deployed in the industry and the academic communities

under the frame of several research projects. The OVPsim can achieve speeds approach-

ing thousands MIPS and its supports several component models), including 170 processor

variants (e.g., ARMv7, ARMv8, MIPS, Renesas, MicroBlaze), memories, uarts, among

other components. Beyond the high simulation performance, two main other reasons jus-

tify the adoption of OVPsim as means to develop the fault injection framework. First,

among available VPs, OVPsim has the most substantial number of processor models and

thus enabling a broader initial space exploration. Second, Imperas Software Ltd.1, is

directly involved in the work conducted in this Thesis. One expected outcome of this

collaboration is to promote the first commercial fault injection framework in the market.

This work also adopts the state-of-the-art gem5 simulator (BINKERT et al., 2011) for

three main reasons: (1) the gem5 source code is open and several extensions have been

proposed in the past (ALIAN; KIM; KIM, 2016; SHAO et al., 2016), (2) the gem5 enables

microarchitectural cycle-accurate simulation in an acceptable time (i.e., 0.4–2 MIPS de-

pending on the application workload), and (3) it supports the current ARM Cortex-A

architectures (i.e., ARMv7, ARMv8, and big.LITTLE).

3.2 Related Work on Fault Injection Approaches using Virtual Platforms

Virtual platform simulators facilitate fault injection implementation and analyses

due to their design flexibility (e.g., several processor models available), and debugging

capabilities (e.g., GDB support) are shown in Table 3.2. Authors in (HARI et al., 2012)

present the Relyzer, a hybrid simulation framework for SPARC core using Simics (MAG-

NUSSON et al., 2002) and GEMS (MARTIN et al., 2005) simulators coupled with a

pruning technique to reduce injected faults. Also, this framework target architectural in-

teger registers and in the output latches of the address generation units. In this work, a

200-cores cluster was employed and approximately 11 days were required to inject around

32 million faults, resulting in an average of 33 injected faults per second. The low number

of injected faults is due the high-cost simulation time of simics+GEMS simulator, which

can achieve few hundred KIPS. This framework employs 12 benchmarks, four from each

suite Parsec 2 (BIENIA et al., 2008), Splash-2 (WOO et al., 1995), and SPEC-Int (HEN-

NING, 2006). In (HARI et al., 2014), Relyzer is extended to more aggressive pruning,

reducing the number of faults that must be simulated. With the pruning and analysis

techniques embedded in the GangES the authors further reduce this simulation time from

1http://www.imperas.com/
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15,600 CPU-hours to 8,200 CPU-hours.

In (GEISSLER; KASTENSMIDT; SOUZA, 2014), a fault injection framework

based on QEMU (BELLARD, 2005) is proposed. Faults are injected in an x86 architec-

ture running applications in a Real-Time Operating System (RTEMS). The experimental

setup accounts for four applications developed in-house During the experiment, 8,000

faults were injected in 8.7 hours, given an average of less than one fault per second. The

authors in (KALIORAKIS et al., 2015) propose two tools: the GeFIN tool, a gem5-based

fault injection framework and MaFIN, a MARSS-based (PATEL et al., 2011) fault injec-

tion framework. In this work, faults were injected, randomly in time, in general-purpose

registers, caches control registers, and other microarchitectural components. The experi-

mental setup includes only the execution of 10 bare metal benchmarks selected from the

MiBench (GUTHAUS et al., 2001). The use of an operational system is unknown.

Recently, in (TANIKELLA et al., 2016) the authors introduces the gemV, a gem5-

based fault injection framework for micro-architectural elements such as instruction queue,

reorder buffer, load-store queue, pipeline queue, renaming unit, and register file. The ex-

perimental setup includes ten application from the MiBench and SPEC-Int 2006 bench-

mark suites for eleven microarchitectural elements. Each element is subject to a 300-long

fault campaign for each application, totaling 33,000.

The work (GUAN et al., 2016) presents the P-FSEFI tool construct around the

QEMU (BELLARD, 2005) simulator. This tool injects faults in the CPU logic units, reg-

isters, caches, and memory. The experimental setup consists of seven applications from

the NAS Parallel Benchmark (NPB) (BAILEY et al., 1991), each one in a sequential and

a parallel version; injecting 10 thousand faults in each setup. Thus totaling 140 thousand

faults. In (DIDEHBAN; SHRIVASTAVA, 2016) introduces a gem5-based fault injection

capable of flipping random register file bits, pipeline registers, functional units, and load-

store queue. This work employs ten MiBench applications in a total of 72 thousand faults.

Most reviewed approaches consider only small scenarios and only single-core pro-

cessors. Exploration of soft error reliability of single-core architectures has been success-

fully supported over the last decades. However, the assessment of multicore architecture

soft error resilience strongly requires complementary modeling and simulation mecha-

nisms to manage other aspects such as resource sharing, memory allocation, and data

dependencies. Further, such works typically report best-case simulation performances of

2-3 MIPS, allowing 33 fault injections per second considering a supercomputer (HARI et

al., 2012).
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Table 3.2: Most recognizable virtual platform fault injection simulators.
Year Author Simulator ISA(s) Applications Guest OS Accuracy Faults Features

2014
Hari et al.
Relyzer

Simics
GEMS

SPARC V9
12: Parsec 2,
Splash-2, and

SPEC-Int 2006
OpenSolaris

Cycle and
Instruction

32M
(15K

hours)

Architectural integer registers and in the
output latches of the address generation

units

2014
Geissler et

al.
QEMU x86

Four in-house
applications

RTEMS Instruction 32K
8 general-purpose registers, 6 segment

registers, and instruction pointer

2015

Kaliorakis
et al.

MaFIN and
GeFIN

MARSS
gem5

x86
ARMv7

10 MiBench
None or

Unknown
Cycle 300K

Architectural integer registers, L1 and L2
cache, and Load/Store Queue

2016
Tanikella et
al. gemV

gem5

x86
ARMv7
SPARC
ALPHA

10: MiBench and
SPEC-Int 2006

None or
Unknown

Cycle 33K Eleven Microarchitectural components

2016
Didehban

et al.
gem5 ARMv8 10 MiBench

gem5
Syscall
Mode

Instruction 72K
The register file, pipeline registers,

functional units, and load-store queue

2016
Guan et al.
P-FSEFI

QEMU
ARMv7

x86
14 serial NPB

None or
Unknown

Instruction 140K
CPU logic units, registers, caches, and

memory

2018 This work gem5
OVPsim

ARMv7
ARMv8

26 OpenMP; 10
Serial, 9

MPI-Based and
others

Linux
OSs,

FreeR-
TOS, and
Baremetal

Cycle and
Instruction

3.3 M
(1.2M
hours)

Register file and physical address
space in both simulator. Virtual
Memory, Variable data, function

liveness, function instruction code in
the OVPsim-based fault injection

Source: The Authors



42

3.3 Fault Modeling

This Thesis reproduces the soft errors behavior using single-bit-upsets (SBUs) due

to its higher probability of occurrence in electronic systems operating(JOHANSSON et

al., 1999) at sea level. Our SBU model consists of a single bit-flip generated randomly

in one general-purpose register (e.g., r0-13, sp, pc) or memory address during the appli-

cation execution. Additionally, this model does not target the operational system (OS)

explicitly (i.e., the boot process). Nevertheless, the OS calls arising in the application

lifetime could be affected. This approach analyses the application behavior also consider-

ing the execution environment, thus exposing unforeseen consequences when compared

with standalone implementation.

3.4 Fault Injection Flow

A group of fault injections targeting a particular application scenario including all

related steps is here defined as a fault campaign. These steps are divided into four phases:

the reference (or faultless) phase (1), fault generation (2), fault injection management(3),

and final report generation phase (4). The fault campaign flow described by Figure 3.1

is independent of the simulator. The simulation flow is implemented by the simulation

infrastructure (SI), which was mostly developed using shell and python scripts, thus being

compatible with Linux, Windows, and MacOS OS distributions.

In phase one, the SI cross-compiles the application source targeting a given archi-

tecture resulting in an elf object file. After that, the SI simulates the application in an

unmodified virtual platform (i.e., OVPsim or gem5) to verify its correctness and also to

extract information using a gold standard and for fault creation. The register’s contexts (i,

Figure 3.1) and final memory state (ii) composes this reference information. However, it

can be easily adjusted to contain other types of fault injection (e.g., bus, network-on-chip,

or cache information).

Phase 2 creates register or memory fault patterns consisting of injection time, a

target, and a fault mask (i.e., the target bit). A random generation scheme selects the

insertion time, the location, and the register bit since it covers the majority of faults at a

low computational cost. The injection time ranges from one to the final instruction count

extracted during phase 1 (Figure 3.1). A bit-flip injection requires a bitmask with all bits

set to ’0’, excepting the target bit. For instance, to change the second least significant
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bit of a given 32-bit register requires the 0x00000002 mask. This fault generator can

be extended effortlessly to include new types of fault or more sophisticated selection

methods. Afterward, the complete fault list is available to the next phase from a simple

plain text file.

The fault injections (phase 3), the most complex one, has two main components:

single fault injection and simulation speed boost. This flow description considers a single

fault injection as performance boost techniques will be covered in Section 3.7.4. The sim-

ulation infrastructure maps one fault injection to one VP-FIM execution, in other words,

ten fault injections require ten independent VP-FIMs. Each VP-FIM starts by reading

the fault list and then schedule an event targeting insertion time (i.e., the number of ex-

ecuted instructions). At the fault injection moment, the FIM combines a fault bit mask

with the current register value using an exclusive OR (XOR) operation. Supposing a

32-bit value of 0x00000009 and a fault targeting the fourth least significant bit, the mod-

Figure 3.1: Fault injection campaign simulation flow.
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ule performs an XOR operation between 0x00000009 and 0x00000008, which generates

0x00000001. Subsequently, the FIM writes the new value in the target register and the

simulation restarts.

Each VP-FIM instance performs an error analysis where the application behavior

under fault injection is compared with the reference run (phase 1). The proposed flow

supports custom error analysis and this work adopts the Cho et al. (CHO et al., 2013) five

groups error classification:

• Vanished, no fault traces are left;

• Application Output Not Affected (ONA), the resulting memory is not modified.

However, one or more remaining bits of the architectural state is incorrect;

• Application output mismatch (OMM), the application terminates without any er-

ror indication. However, the resulting memory is affected;

• Unexpected termination (UT), the application terminates abnormally with an error

indication;

• Hang, the application does not finish requiring a preemptive remove.

Lastly, phase four assembles all FIMs individual reports to create a single database

and graphics.

3.5 OVPsim-FIM

The Open Virtual Platform simulator (OVPsim) (IMPERAS, 2017) is an instruc-

tion accurate simulator framework market by Imperas under an open license. The OVPsim

relies on a dynamic binary translation (DBT) engine, which enables simulation running

real application code at the speed of hundreds of MIPS. The DBT mechanism sequen-

tially fetches each instruction from a target processor (or core), morphing it into new

x86_64 micro-operations. Further, it uses a micro-operations dictionary to hold the pre-

vious translations aiming to speed-up the simulation process. The OVPsim multicore

simulation algorithm creates fixed length blocks of instructions belonging to each core.

Each of those blocks is sequentially simulated. Note that in such simulation scenarios,

each processor/core advances in fixed-length instruction steps. The OVPsim main limi-

tation is the lack of detailed microarchitectural modeling (e.g., pipeline, decoder, reorder
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buffer) or cache interconnections. Reads and writes are always guaranteed to be atomic in

an instruction-accurate simulator (i.e., the previous instruction always completes before

the next starts), thus removing any data hazards originated from the pipeline access to

information before the write-back stage update.

The fault injection module or just FIM is a series of components embedded in

OVPsim, and it is responsible for:

• Monitoring the target processor;
• Accessing resources as memories and registers;
• Injecting the faults;
• Capturing unexpected events arising from the simulator;
• Extracting information;
• Analyzing errors.

The developed FIM minimizes the intrusion in the simulator engine, thus enabling

any researcher in possession of the original simulator to use, modify, or extend its func-

tionalities. In a matter of fact, the OVPsim provides a complete set of APIs written in

C/C++, which easily enables the simulator extension without any source code access.

Figure 3.2 shows the OVPsim-FIM main components: (A) fault injector, (B) fault moni-

tor, (C) configuration, (D) error analysis, and (E) exception handler.

Figure 3.2: OVPsim-FIM main components.
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The configuration component (C) reads the fault list, setups the monitor compo-

nent (B), triggers the error analysis (D), and forward the unexpected events to the excep-

tion handler (E), invoking each one at the appropriated time. We restrict this section to the
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essential features regarding the fault injection, and other available functions (e.g., speed

boost techniques) are further discussed in the following sections. The monitor compo-

nent (B) controls the internal simulator flow (i.e., starts and restarts the simulator), as the

fault injection need to stop the simulator. This module schedules an event associated with

the number of executed instructions to call the fault injector (A) whenever the injection

time arrives. The fault injector component (A) access to the registers or memory through

the OVPsim APIs enabling the modification of any available microarchitectural element.

After the FI conclusion, it setups the hang (i.e., infinite loop) detector through a similar

event targeting the stipulated threshold and resumes the simulation.

Injecting faults can lead to abnormal application behavior such as OS malfunc-

tions, segmentation faults, or hard faults, and the exception handler (E) is responsible for

captures these events. Finally, the error detection component (D) verifies the simulator

context for any mismatches considering the reference (faultless) execution. For this pur-

pose, it extracts the current memory state, the register’s context including the program

counter, and the number of executed instructions. Thus, the error detection classifies the

application under fault influence using the information acquired in the faultless execu-

tion. Also, it consolidates exceptions captured by the exception handler (E) to create a

final report.

3.6 gem5-FIM

The gem5 simulator offers few accuracy levels depending on the exploration suit-

ability, ranging from the simple atomic mode to a detailed one which includes an Out-of-

Order (OoO) pipeline. The gem5 detailed mode provides a sophisticated memory timing

and cache coherency protocols while the atomic mode emulates the memory and cache

using a single cycle access mechanism. Therefore, the gem5 modes can slightly dif-

fer regarding the execution time and cache activity as additional cache misses or incorrect

branch speculations can cause a pipeline flush. The gem5 simulator possesses an interme-

diary model with the atomic internal microarchitectural elements and enhanced memory

access timing.

The unmodified gem5 simulator precision accuracy varies from 1.39% to 17.94%

when considering the execution time against a prototyping board (BUTKO et al., 2012).

The microarchitectural elements do not always correlate to a particular hardware imple-

mentation due to speed overheads or to provide a more generic model. Thus, to address
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this issue, in (GUTIERREZ et al., 2014) the gem5 was strictly modified to match the

ARM Versatile Express board through the addition or modification of microarchitectural

elements such as cache memory, branch predictor, and fetch buffer. This setup can achieve

a mean percentage error smaller than 5% across several benchmarks.

Figure 3.3: gem5-FIM main components.
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The gem5 offers the complete source code and no proper extension API, and to

maintain a non-intrusiveness extension, the gem5 fault injection module (gem5-FIM)

independently extends the source code requiring only the access to some classes at-

tributes/methods. The gem5 simulator employs Python scripts to control the simulation

flow and C++ modules to model the microarchitectural components. Figure 3.3 displays

the main gem5-FIM components, where white boxes represent the original gem5 compo-

nents (i.e., (i) processor, (ii) memory, (iii) interconnection), and the blue the developed

ones. The gem5-FIM incorporates five main components developed using Python: (A,

Figure 3.3) fault injector, (B) fault monitor, (C) configuration, (D) error analysis, and (E)

exception handle and one C++ extension to access the microarchitectural components (F).

The gem5 has both a Python and C++ objects representations of components

where the python configures and triggers the C++ objects through a series of events.

Consequently, the gem5-FIM requires a C++ module alongside a Python counterpart.

Conveniently the gem5 framework adopts the swig (i.e., Simplified Wrapper and Inter-

face Generator) tool, which interfaces booth programming languages through wrappers.

The Python side (A Figure 3.3) gathers the processor and memory handlers from the
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gem5 configuration and invokes the C++ wrapper (F) to perform the bit flip in the system

description (e.g., memory, register file, pipeline)

3.7 Extensions

State-of-the-art software stacks, including OSs, compilers, and application work-

loads leading to several extensions were conducted in both FIM simulators.

3.7.1 Targeting Complex SW Stacks

The proposed fault injection module and surrounding simulation infrastructure

until this point presented a general methodology to inject faults in the register file of a

given processor. Beyond controlling the fault campaign flow as described in Section 3.4,

the simulation infrastructure requires other modifications to include an operating system.

First, any OS needs a bootloader2, kernel image, file system image and a different cross-

compiler. The simulation infrastructure automatically appends the application binary file

in the file system image, selects the bootloader and kernel files. Indeed, the develop-

ment time spends on the development and improvement of the simulation infrastructure

is comparatively more substantial than the FIM by itself.

The VP-FIM should be able to capture the exact moment where the application

finish (i.e., main function return statement). Also, the FIM captures application starting

point (i.e., faults are only injected during the application execution) and abnormal events

(i.e., attempt to execute an illegal instruction or out of range memory address). In bare-

metal systems this can be easily accomplished, for example, surveying physical memory

access. However, OS abstracts and protects the hardware components from the guest

applications requiring a new solution.

These issues lead to the development of an OS/VP-FIM communication API called

FIM-API, enabling the application inside the guest OS to call different VP-FIM services.

Among the available services are: the application begin and end point, a segmentation

fault events, and others. The gem5-FIM version makes use and extends the gem5 built-

in artificial instructions to deploy these necessary services. Note that the artificial in-

structions are implemented using a library linked to the application, and thus, requiring

2Some OSs require more than one bootloader
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no modification in the compiler. The OVPsim provides an ISA-independent and more

generic solution as it is capable of creating virtual memory callbacks on-the-fly. The

OVPsim-FIM intercepts special function symbols by name during the system execution.

The simulation infrastructure links an FIM-API header file together with the application

while the Linux file system image includes an FIM-API standalone executable.

3.7.2 Injecting Faults on Multicore systems

The adopted VP-FIM handles an arbitrary number of cores/processors limited only

by the simulator supported architectures. To inject and collect the results from multiple

cores, few modifications are necessary: During the reference phase (1), the FIM collects

individual core information such as instruction count and register state. The fault creation

takes into account the target architecture core count, as it distributes the faults evenly

through available cores. For instance, when creating 8,000 fault campaign targeting a

quad-core ARM processor, the fault creator will assign 2,000 faults for each core. Also, it

holds specific information concerning each core instruction count necessary for the hang

threshold. After the simulation end, it retrieves the information to compare with the fault-

less execution for each core. The complete simulation infrastructure automatically adjusts

the FIM, fault generator, and other components according to the user core selection.

3.7.3 ARMv8 Architecture extension

The development of more complex applications in the mobile domain and the user

demand for high-performance devices lead to the adoption of 64-bit architectures (WATT,

2011; KANTER, 2012). This new architecture enables a larger virtual memory addressing

alongside other microarchitectural enhancements. The ARM company developed a series

of processors (e.g., Cortex-A53, Cortex-A72) fitted with a new AARCH64 instruction

set. This new ISA had 33 general purpose registers and fixed 32-bit instruction width,

restricted conditional execution instructions to branches, alongside new float-pointing,

and encryption support. The AARCH64 reduces and simplifies the previous ARMv7-

A ISA, removing old legacy instruction and executions modes particularly suitable for

embedded controllers.

The VP-FIM extension to support the new ARM architecture requires modifica-
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tions in the FIM and simulation infrastructure. This ISA has 17 new integer register,

totaling 33 64-bit wide registers. The reference phase and fault injection capture this new

registers for error analysis. Also, the fault generator has 64-bits extensions to target the

entire architecture. The simulation infrastructure requires additional Linux kernels, file

system images, makefiles, and support libraries.

3.7.4 Fault Campaign Speed Enhancement

A fault injection campaign comprises thousands of simulations, demanding a sig-

nificant computational effort, limiting most investigations to small or simpler scenarios.

This Thesis investigates the virtual platforms as a technique to speed up early design space

explorations regarding reliability assessment of commercial processors. Although the

simulation of some VPs reaches hundreds of MIPS simulating complex software stacks

is real challenge. Two characteristics are noticeable by observing the fault injection cam-

paign: (i) One fault injection is independent of the other. (ii) The application executes

for a significant time without the influence of faults (i.e., equal to gold execution) to pro-

vide an appropriated context for the fault injection. This code executed before the fault

injection is unnecessary and do not influence the final fault result. The proposed fault

campaign deploys techniques to reduce the simulation computation cost at different lev-

els of granularity, which are discussed in the next subsections.

3.7.4.1 Checkpoint and Restore Technique

The checkpoint technique consists of periodically saving the system context dur-

ing a faultless execution and later restoring the appropriate context for each fault injection.

During faultless execution, the VP-FIM stores periodically (i.e., according to a predefined

instruction interval) the application context covering processor and memory models. At

the fault campaign, each FIM identifies the closest checkpoint before the fault injection

time to be restored. Additionally, the fault injection event trigger adjusts the injection time

considering the fast for the number of forwarded instructions. The user can specify this

interval or assign some checkpoints, and thus, the simulation infrastructure automatically

estimates the interval between checkpoints.

The OVPsim-FIM creates the checkpoints concomitantly with the faultless execu-

tion. For this purpose, the OVPsim-FIM includes a checkpoint component responsible
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Figure 3.4: gem5 atomic checkpoint modified simulation flow.
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for stopping and saving the context according to the specified interval by the user. Dur-

ing the fault campaign, the FIM selects the best matching checkpoint to restore (i.e., the

first checkpoint before the fault injection time). From this point, the injection process

resembles the version without checkpoints. While the OVPsim provides memory and

processor checkpoints, it does no offers the same functionalities for other modules (e.g.,

uarts, timers). Consequently, the deployed checkpoint mechanism current works only in

bare-metal platforms.

The gem5 simulator supplies save and restore functionalities, which allows restor-

ing processor and memory context from a binary file. A restored processor model should

execute identically to an unmodified execution, nevertheless, the gem5 does not always

behave as expected. The gem5 checkpoint function has a significant limitation, as it auto-
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Figure 3.5: gem5 detailed mode checkpoint scheme.
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matically restarts the simulation engine to process pending events. This action introduces

few hundreds of ticks3 and in some occasions, increases the simulation in a few instruc-

tions. Resuming, a simulation without any checkpoint finishes with a slightly smaller

number of instructions (and ticks) when compared with a simulation target of checkpoints.

This behavior does not impact the application behavior, however, to avoid any mistaken

comparison it is necessary to extract the exact information. The simulation flow was mod-

ified to incorporate a checkpoint profiling run (see Phase 1A Figure 3.4) to overcome this

problem. This phase extracts the checkpoints and at the end updates the reference infor-

mation (i.e., faultless). At this point, the simulation flow has two reference data sets: One

without checkpoints and another after the checkpoint process. Consequently, the FIM can

compare the correct set during the error analysis.

The gem5 detailed mode has another peculiarity (see Figure 3.5), the simulator

until the present moment does not create executable checkpoints (i.e., which cannot be re-

stored). The new checkpoint scheme first creates the checkpoints using the gem5 atomic

mode, as previously described (Phase 1A). Later each checkpoint will be simulated using

the detailed mode until the application end to acquire the reference information. Assum-

3one tick is the minimum granularity inside the gem5, and usually, each clock cycle has 500 ticks.
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Figure 3.6: Host multicore fault injection campaign.
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ing one application with five checkpoints, for instance, first the faultless execution (Phase

1), then a checkpoint generation using the atomic (one simulation). Finally, the gem5-FIM

detailed simulates the five checkpoints At this point, we have six possible references: One

without a checkpoint and five for each checkpoint re-execution. Additionally, this phase

occurs in parallel to reduce the time overhead.

3.7.4.2 Shared Memory Multicore Parallelization

The fault injection campaign is naturally a parallel process as the fault injections

are independent of each other. To exploit this characteristic, the simulation infrastruc-

ture deploys multiple VP-FIMs across a shared memory multicore processor, nowadays

found in any workstation. The simulation infrastructure automatically limits the maxi-

mum number of platforms running in parallel to match the number of host cores as shown

in Figure 3.6. Each platform match one Linux process with an overall core utilization of

100%, thus in a quad-core, the simulation infrastructure allows four platforms in parallel.

The simulation infrastructure surveys the platform process identification (PID) number
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and dispatches the next platform shortly after the completion of any running VP-FIM.

3.7.4.3 Distribute Fault Injection Campaigns using HPCs

High-performance computers had been used for many decades by researchers of

many domains such as quantum mechanics, weather forecast, environmental research,

and oil and gas explorations to speed-up simulations. HPC system can be divided into two

distinct classes: Extremely complex applications which require a considerable amount of

resources (e.g., RAM, storage, cores) not available in standard workstations. The other

type consists of more straightforward and smaller applications easily executable in or-

dinary computers, however, which requires a significant number of single executions to

obtain meaningful results.

OVPsim is suitable for few thousand faults when considering the contemporary

workloads with hundreds of billions of instructions. For example, a single execution

of the largest application (i.e., NPB EP) requires 12 hours or 4000 days in an 8000-

fault scenario using the gem5 atomic. This Thesis proposes a simulation infrastructure

extension to distribute fault injections across an HPC system, in this work the University

of Leicester ALICE supercomputer. The ALICE has 170 standard nodes; each one has

two 14-core Intel Xeon Skylake, 128 GB of RAM, and a local storage disk. Further, this

HPC extension uses the Portable Batch System (PBS) framework, which is used in most

larger scale systems to provide a generic solution.

An HPC environment deploys a job scheduler to maximize the overall hardware

utilization where a job (i.e., shell scripts that executes a specific work) describes the nec-

essary resources (i.e., memory, the number of cores, the number of nodes, and wall time

precisely) and commands. The walltime (i.e., the maximum execution time) is the job

most significant attribute, and usually, the job scheduler deploys a First-come, First-served

service policy with some modifications. HPC systems aim for higher hardware utilization

and not always the fairest resource division, consequently smaller jobs jump ahead to

fill gaps in the scheduling. Longer jobs will wait in the queue longer, and to reduce the

starvation problem the scheduler also deploys a priority inversion policy.

The simulation flow follows the previous sections and Figure 3.7 illustrates the

same flow across multiple computer nodes. The first phase is performed only once (A,

in Figure 3.7), where the application and disk image are compiled in a local computer

and then transferred to the supercomputer due to some environmental limitations. The

reference phase (B, Figure 3.7) collects the reference information and generates the fault
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Figure 3.7: Distributed fault injection campaign flow.
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list. Additionally, this job estimates the total simulation time for the scenario (i.e., the

number of faults times the execution time of one fault injection) and selects the number

of jobs to be submitted.

The simulation infrastructure does not match one fault per job as it would cre-

ate a substantial management overhead, and instead, it agglomerates the fault blocks in

approximately 24-hour jobs4. Considering an 8,000-fault campaign and an application

simulation time of one hour, the optimum arrangement in this scenario requires 24 appli-

cations per job (i.e., a walltime of 24 hours) requiring 333.33 jobs, which is unfeasible.

The simulation infrastructure selects the best fit between the number of faults per job and

walltime, where for the previous example is 400 jobs with 20 hours walltime. There-

fore, the simulation infrastructure creates job templates (i.e., bash scripts) for each fault

injection scenario.

Developing an application to HPC systems present several challenges, for exam-

ple, the number of jobs running in parallel is limited by the distributed file system per-

formance. The simulation flow has three options to manage scenarios source files (e.g.,

simulator executable, checkpoint files, application binaries, fault list):

(i) The easiest (i.e., no significant modification is needed) solution executes remotely

4Jobs with walltime up to 24h are classified as short jobs by the ALICE scheduler and thus increasing
the execution possibility.
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over the distributed file system (DFS) where the HPC remotely access files in the

storage using the network. This option only fits small scenarios (up to 25 jobs) due

to the bottleneck created in the DFS by the multiple access to the same memory

region.

(ii) The next option transfers all simulation-related files across the network to the node

local storage during each job startup. Nevertheless, the initial copies may overlap

with other jobs reducing the overall transference speed and congesting the DFS

buffers due to the number of files required (i.e., thousands of files). Using the

local storage improves the flow scalability to approximately 500 parallel jobs, not

satisfying our requirements.

(iii) The last solution compresses the simulation source files in a single zip file during

the phase 1, copying this file during each job startup to the node storage where they

are locally decompressed. This approach enables the management of thousands of

concurrent jobs by simulation infrastructure, and it is the adopted in this work.

The jobs responsible for the fault injection are submitted to the scheduler and

queued (E, Figure 3.7) to later be assigned to nodes as the resources are made available

(F). During the job initialization, it copies the compressed file (G) (simulation source

files), locally extracts the contents, and the node executes the designated platforms. The

individual reports are later merged into a final fault injection report.

3.8 Focused Fault Injection Extension

Considering the works reviewed by Section 3.2, authors in (HARI et al., 2012)

present the Relyzer, a hybrid simulation framework for SPARC core using Simics (MAG-

NUSSON et al., 2002) and GEMS (MARTIN et al., 2005) simulators coupled with a

pruning technique to reduce the number of injected faults. The Relyzer is capable of

injecting faults into architectural integer registers, and output latches of the address gen-

eration unit. In (GEISSLER; KASTENSMIDT; SOUZA, 2014), a QEMU-based fault

injection framework is proposed targeting general-purpose registers. Fault injection cam-

paigns in this work consider an X86 architecture running four in-house applications on

the top of RTEMS kernel. Another fault injection framework, called F-SEFI that relies

on QEMU is described in (GUAN et al., 2016; GUAN et al., 2014). The F-SEFI employs
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the QEMU using a hypervisor mode, i.e., it does not emulate the complete target system,

which reduces both its fault injection and soft error analysis capabilities.

The authors in (KALIORAKIS et al., 2015) propose the GeFIN and the MaFIN

tools, which support the injection of faults in microarchitectural components such as

general-purpose and cache control registers. Conducted experiments consider the exe-

cution of 10 bare metal benchmarks. Authors in (TANIKELLA et al., 2016) propose a

gem5-based framework that allows injecting faults in different microarchitecture elements

(e.g., reorder buffer, load-store queue, register file). In this work, each element is subject

to small 300-long fault campaign for each of the ten applications collected from both

MiBench and SPEC-Int 2006 benchmark suites. A similar gem5-based fault injection

framework is described in (DIDEHBAN; SHRIVASTAVA, 2016).

The reviewed frameworks only support the injection of bit-flips in memory and

general single-core processor components, including registers, load/store queue, among

others. Another drawback of such approaches is the lack of detailed and customizable

post-simulation analysis. Reviewed works classify the detected soft errors according to

the inspection of the processor architecture context (i.e., memory and registers), disre-

garding the impact of software components (e.g., functions and variables) on the system

reliability. Further, such approaches typically report low simulation performances of up to

3 MIPS (HARI et al., 2012), which restricts the number and the complexity of fault injec-

tion campaigns. While some works consider a single ISA (HARI et al., 2012), others use

only in-house applications (GEISSLER; KASTENSMIDT; SOUZA, 2014) or bare-metal

implementations (TANIKELLA et al., 2016; KALIORAKIS et al., 2015; DIDEHBAN;

SHRIVASTAVA, 2016).

Different from the above works, the OVPsim-FIM extension called SOFIA (Soft

error Fault Injection Analysis) offers four novel non-intrusive fault injection techniques

that provide software engineers with flexibility and full control over the fault injection

process, allowing to disentangling the cause and effect relationship between a injected

fault and the occurrence of possible soft errors, targeting an specific critical application,

operating system or API structure/function. This tool also differs from all previous works

by allowing users to define bespoke fault injection analysis and soft error vulnerability

classifications, taking into account both software and hardware component particularities

and the system requirements.



58

Figure 3.8: OVPsim-FIM fault injection techniques according to with fault location and
injection time.
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3.8.1 SOFIA

The SOFIA framework was developed on the basis of M*DEV simulator, a more

advanced multicore and commercial version of the OVPsim. The M*DEV provides inter-

cept libraries, and multicore debug primitives used to develop the SOFIA fault injection

techniques. The SOFIA framework supports six fault injection techniques (A to F) mak-

ing it suitable for fast and detailed soft error vulnerability analysis at an early design space

explorations. Note that the six techniques target the register file or physical memory with-

out altering the target software stack (i.e., application, OS, and related libraries). This

extension proposes four new fault injection techniques besides the already available in

the original OVPsim-FIM, Figure 3.8 displays the six fault techniques supported by the

module. These two techniques already embedded on the OVPsim-FIM randomly assign

fault injections to deploy bit-flips targeting the Register File (A) (e.g., sixteen integer reg-

isters from r0 to r15) and Physical Memory (B) (e.g., one bit in a one-gigabyte memory)

respectively.
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3.8.1.1 Application Virtual Memory

The technique C targets the application virtual address space (VAS) to enhance

the fault injection controllability. Operating systems abstract the physical hardware im-

plementation from the user by making available a set of virtual address ranges while using

a translation table to connect both virtual and physical ranges. The promoted technique

C automatically extracts the virtual addressing ranges from the target application object

code, including different segment addresses (e.g., data, code, read-only, debug) during

the phase 1 in order to create the fault lists (phase 2). For each fault injection, the SOFIA

accesses the target OS virtual memory translation table, acquires the correspondent phys-

ical address from the target virtual address, and injects the bit-flip in the system physical

memory. The advantage of this technique over the purely physical memory fault injec-

tion relies on the fact that it targets the application virtual address space (VAS) without

affecting the OS, other applications, or libraries, reducing the number of necessary faults

campaigns since soft errors manifest much quicker. Additionally, this approach enables

the user to target a particular application running in a complex environment with multiple

applications and libraries.

3.8.1.2 Application Variables and Data Structures

To precisely evaluate an application vulnerability to soft errors the fault injection

infrastructure should provide efficient means to correlate errors with particular applica-

tion blocks or data structures. Technique D (Application Variable) enables the software

engineer to direct bit-flip injections into particular data structures, enabling to isolate and

identify the most vulnerable ones with a lower number of fault campaigns and higher

precision. Further, this approach allows evaluating the impact of specific application vari-

ables on the soft error reliability without affecting the application main control flow. For

this purpose, the user is asked to inform the target variable name, and the SOFIA frame-

work automatically captures the variable virtual address to create a set of faults targeting

the data structure virtual addressing. During the application execution, the variable will

suffer a single bit-flip on its physical memory representation using the aforementioned

translation table.
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3.8.1.3 Function Code

To explore the criticality of function codes, this work proposes the technique E

(Function Object Code) that limits the injection spectrum to the memory region, which

holds the target function code (i.e., instructions), including local variables, etc. The prob-

ability of function code to be hit by a transient fault depends on its relative size when

compared to the complete memory range. This technique enables the user to investigate

the soft error reliability of a particular function independent of its size or execution time.

3.8.1.4 Function Lifespan

In state-of-the-art frameworks, the fault injection time follows a random gener-

ation scheme where faults are scattered over the entire application and OS execution.

Consequently, the number of faults per function depends on its execution time and not

on its criticality for the system reliability. Function Lifespan (F) technique enables to

reduce the fault injection spectrum by limiting the insertion time to those small intervals

where the target function is active. During the simulation, the fault monitor component

(B, Section 3.2) traces the function execution at the instruction level and thus create a list

of active ranges, including the processor core(s) that executed the underlying function. In

this work, the lifespan technique implementation targets the general purposed registers

(r0-r15), including the program counter (PC) and the stack pointer (SP). However, this

technique can be combined along with any other fault injection technique (e.g. (C, D, E)

whenever necessary.

3.8.1.5 Fault Inspection

The OVPsim-FIM extension provides a flexible soft error assessment module,

which enables the creation of customizable error classifications. The software engineer

can alter the classification order, add new classes, change their criteria, or include new

parameters. This module is capable of extracting one or more variables value on the

fly during the simulation, and compare then with pre-characterized data. For instance, a

target variable can be compared to another variable in the same application. New classi-

fications are easily embedded in the fault campaign flow, enabling custom fault injection

scenarios according to the application requirements. Injecting a bit-flip in the physical

memory (i.e., B, C, D, and E) produces dirty memory in the majority of the cases. In

other words, the targeted bit remains untouched until the simulation conclusion, result-
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ing in silent data corruption (SDC). Nevertheless, if the mismatch against the faultless

execution is the target bit (i.e., no additional control flow or memory errors), it can be

considered benign depending on the system constraints. The SOFIA tool is capable of

differencing dirty memories from other types of errors.

3.9 Closing Remarks

This chapter presented a fault injection framework targeting commercial multicore

system executing complex software stacks. The promoted framework provides a fast and

flexible soft error assessment tool, especially for early design space explorations. During

this phase, multiple software stacks and hardware configurations can be tested in feasible

time using the two VP-FIMs developed in this chapter. After exploring randomly assigned

fault injections this work investigated new techniques to target/expose the system critical

software segments. In this way enabling a more substantial fault coverage in a complex

software stack by prioritizing the critical portions of the code. Next, Chapter 4 will use

this FI framework to evaluated hundreds of distinct fault injection scenarios considering

commercial multicore systems and real workloads.
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4 EVALUATION OF PROPOSED FAULT INJECTION FRAMEWORK

This Chapter addresses the three additional contributions of this Thesis: (i) An

extensive comparison between two distinct virtual platforms (i.e., instruction vs. cycle-

accurate) regarding simulation performance, soft error analysis credibility/accuracy, and

fault injection flexibility (Section 4.2); (ii) Explore the impact of different software stacks

including OS, parallelization library, ISA using more than 50 distinct embedded and high-

performance applications with up to 85 billion of object code instructions (Section 4.3);

(iii) Demonstrates the benefits of the novel fault injection techniques and error inspection

described in the Section 4.4.

Table 4.1: Fault injection campaigns summary.

VP Description Faults
Total of

faults
Simulation
time (hours)

OV
16 Rodinia Benchmarks for one, two,

and four cores
8,000 384,000 545.82

GA
16 Rodinia Benchmarks for one, two,

and four cores
8,000 384,000 5,855.72

GD
16 Rodinia Benchmarks for one, two,

and four cores
8,000 384,000 44,117.78

OV
10 NPB OpenMP version for one, two,

and four cores
8,000 240,000 1,599.22

OV 10 NPB Serial version for a single core 8,000 80,000 490.69

OV
9 NPB MPI version for one, two, and

four cores
8,000 200,000 1,160.11

GA
10 NPB OpenMP version for one, two,

and four cores
8,000 240,000 179,137.78

GA 10 NPB Serial version for a single core 8,000 80,000 394,468.89

GA
9 NPB MPI version for one, two, and

four cores
8,000 200,000 578,555.56

OV
16 Rodinia Benchmarks for one, two,

and four cores; time-slice 0.00001
8,000 384,000 615.53

OV
16 Rodinia Benchmarks for one, two,
and four cores; time-slice 0.000001

8,000 384,000 782.86

OV
16 Rodinia Benchmarks for one, two,
and four cores; time-slice 0.0000001

8,000 384,000 815.00

Total 3,344,000 1,208,144.96

OVPsim-FIM (OV) - gem5-FIM atomic (GA) - gem5-FIM detailed (GD)
Source: The Authors

The remaining results in this Chapter comprise 3,344,000 fault injections which

require up to 2 million simulation hours. Considering a single-thread sequential com-
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puter, this workload requires approximately more than 150 years. Table 4.1 summarizes

the fault campaign presented in this chapter. Section 4.1 summarizes the adopted bench-

mark suites with their a description and characteristics.

4.1 Experimental Setup

This Thesis performs thousands of fault injections using distinct application. Con-

figurations including single, dual, quad, and octa-core ARM Cortex-A9 processors (ARMv7

Architecture) or Cortex-A72 (ARMv8). The gem5-FIM includes a two-level cache mem-

ory model where the detailed mode provides a more accurate timing model while the

OVPsim does not account for a cache memory model, and thus, accessing the RAM di-

rectly. To avoid external influences and assure the closest comparison, the software stack

uses the same compilation environment regarding compiler, flags, libraries, and target an

identical Linux kernel. Note that the OVPsim does not currently possess a checkpoint

in place for the Linux platform, and instead, it boots the Linux kernel for each fault in-

jection. However, the checkpoint load process would be less efficient than simulating

the entire boot due to the high OVPsim simulation speed. Consequently, the OVPsim

simulation time accounts for the kernel startup, which increases the simulation to approx-

imately 1.3 billion of instructions. Also, the OVPsim-FIM has a signal flag to control

the application begins, which enables it to inject fault only after the application start.

Table 4.2 summarizes the VP-FIMs experimental setup which is identical to perform a

fair comparison between multiple scenarios. Further, MPI applications require a local

communication library, which should be compiled and included in the Linux virtual disk.

This work uses the MPICH, a high-performance and widely portable implementation of

the Message Passing Interface (MPI) standard (GROPP; THAKUR; LUSK, 1999).

This work adopts two distinct workloads1: the Rodinia benchmarks (CHE et al.,

2009) and the Nasa NAS Parallel Benchmarks (NPB) (BAILEY et al., 1991). The Ro-

dinia is a set of applications well-known developed by the University of Virginia aiming

the high-performance computing domain. This suite assembles 24 parallel applications

using three different programming APIs (i.e., OpenMP, CUDA, and OpenCL) from dis-

tinct domains such as Medical, Biological, Physical, Data Mining, and Image Processing.

Nevertheless, CUDA and OpenCL are GPU-based programming languages, and so re-

quiring a distinct simulator, which does not belong to the scope of this work. For this

1This work adopts benchmark and application as similar terms.
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Table 4.2: Virtual platforms experimental setup.

Parameter OVPsim gem5 atomic gem5 detailed

Architecture
ARMv7 ARM Cortex-A9 multicore
ARMv8 ARM Cortex-A72 multicore

Memory
RAM One Gigabyte of RAM

Cache None
L1 Inst 32kB 4-Way Associative
L1 data 32kB 4-Way Associative
L2 512kB 8-Way Associative

Cross-Compiler
ARMv7 arm-linux-gnueabi-gcc

Ubuntu 6.2.0-5ubuntu12
ARMv8 aarch64-linux-gnu-gcc

Ubuntu 6.2.0-5ubuntu12

Compilation Flags
ARMv7 -O3 -g -w -gdwarf-2 -mcpu=cortex-a9 -

mlittle-endian -DUNIX -static -fopenmp -
pthread

ARMv8 -O3 -g -w -gdwarf-2 -mcpu=cortex-a72 -
mlittle-endian -DUNIX -static -fopenmp -
pthread

Linking Flags
ARMv7 -static -fopenmp -lm -lstdc++ -lm5
ARMv8 -static -fopenmp -lm -lstdc++ -lm5

OS
ARMv7 Linux Kernel 3.13.0-rc2
ARMv8 Linux Kernel 4.3.0+

Source: The Authors

experimental setup, we select 16 OpenMP benchmarks as shown in Table 4.3 from A to P.

Table 4.4 shows the simulation time in seconds (i.e., Intel Core I7-7700K 4.20GHz with

16 GB DDR4 2400 MHz) for the Rodinia applications varying the number of target cores

and VP-FIM: OVPsim-FIM, gem5-FIM atomic, and gem5-FIM detailed.

The Rodinia simulation time using the OVPsim-FIM is around six seconds inde-

pendently the number of target cores due to the just-in-time engine. In contrast, the gem5

has several interconnect models for different hardware components, and therefore, each

application behavior (e.g., the number of instructions, type of instructions, memory ac-

cesses pattern, cache misses, and branch predictor misses) impacts simulation time. Some

application (e.g., J, L) are visibly impacted by the number of target cores, for example,

the application J simulation time using the gem5 detailed mode varies from 359 to 1,410

seconds, in this case, due to its memory access pattern (data mining algorithm)

The NAS Parallel Benchmark is developed by the NASA Advanced Supercom-

puting Division (BAILEY et al., 1991) as a set of programs designed to evaluate the

performance of parallel supercomputers. With constant support, these applications suf-
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fered several revisions during the last years to correct errors and improve its performance.

Further, this suite has a unique feature among the benchmark suites: some parallel appli-

cations (i.e., OpenMP and MPI) derive from a common serial version. Table 4.5 shows

the application name, description, and parallelization paradigm. The NPB aims mod-

ern high-performance computers leading to a larger workload when compared with the

Rodinia. For example, The Rodinia applications simulation time range from 4 to 104

seconds (i.e., considering the gem5 atomic only) while the NPB varies between 176 to

42,370 seconds (i.e., 12 hours) for a single simulation. Due to the more extended appli-

cations, the NAS exploration uses only the gem5-FIM atomic mode because the detailed

mode has unacceptable simulation times (i.e., more than a day per simulation). We chose

to execute the serial version (Table 4.6) using a single-core ARM Cortex-A9, as its lack

any explicit parallelization. Table 4.8 and Table 4.7 display the simulation time for both

MPI and OpenMP variants in one, two, and four cores systems.

Table 4.3: Selected Rodinia applications.

# Name Domain # Name Domain

A backprop
Pattern

Recognition
I myocyte

Biological
Simulation

B
bfs

(Breadth-First
Search)

Graph
Algorithms

J
nn (k-Nearest
Neighbours)

Data Mining

C heartwall Medical Imaging K
nw

(Needleman-
Wunsch)

Bioinformatics

D hotspot
Physics

Simulation
L particlefilter Medical Imaging

E hotspot3d
Physics

Simulation
M pathfinder Grid Traversal

F kmeans Data Mining N srad v1 Image Processing

G lavaMD
Molecular
Dynamics

O srad v2 Image Processing

H lud Linear Algebra P streamcluster Data Mining

Source: The Authors



66

Table 4.4: Rodinia applications simulation time varying the VP and number of cores.

#

Simulation Time (Seconds)
OVP gem5 atomic gem5 detailed
Cores Cores Cores

1 2 4 1 2 4 1 2 4

A 4 5 4 11 11 11 30 33 37
B 6 6 6 24 26 27 124 136 150
C 7 5 5 17 17 17 93 103 116
D 5 9 5 22 22 25 111 120 137
E 6 6 6 73 73 75 536 500 526
F 4 4 4 14 14 15 56 60 74
G 4 6 5 20 19 21 123 123 147
H 5 6 5 13 12 14 36 40 60
I 5 4 4 14 15 17 66 71 97
J 6 6 8 57 70 104 359 645 1,410
K 4 5 4 13 14 15 48 59 79
L 4 4 4 39 42 42 282 313 506
M 4 4 4 14 15 15 73 74 76
N 4 5 5 76 71 73 467 507 566
O 4 4 4 40 40 42 260 284 313
P 5 5 5 53 66 59 445 516 746

Source: The Authors

Table 4.5: NAS parallel benchmarks.

Name Description Serial OpenMP MPI
BT Block Tri-diagonal solver x x x

CG
Conjugate Gradient, irregular memory

access and communication
x x x

DC Data Cube x x
DT Data Traffic x
EP Embarrassingly Parallel x x x

FT
Discrete 3D fast Fourier Transform,

all-to-all communication
x x x

IS Integer Sort, random memory access x x x
LU Lower-Upper Gauss-Seidel solver x x x

MG
Multi-Grid on a sequence of meshes, long-
and short-distance communication, memory

intensive
x x x

SP Scalar Penta-diagonal solver x x x

UA
Unstructured Adaptive mesh, dynamic and

irregular memory access
x x

Source: The Authors
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Table 4.6: NPB serial benchmarks simulation time.

# Simulation Time (Seconds)
OVP gem5 Atomic
Cores Cores
1 1

BT 36.7 5.12× 103

CG 19.7 1.92× 103

DC 13.2 182
EP 157 39.5× 103

FT 31.9 5.22× 103

IS 13.3 163
LU 22.9 2.21× 103

MG 13.9 312
SP 21.7 2.67× 103

UA 114 23.3× 103

Source: The Authors

Table 4.7: NPB openMP-based benchmarks simulation time.

# Simulation Time (Seconds)
OVP gem5 Atomic
Cores Cores

1 2 4 1 2 4

BT 47.5 39.6 43.8 5.10× 103 5.48× 103 6.28× 103

CG 20.1 21.8 24.5 1.85× 103 2.06× 103 2.52× 103

DC 25.1 15.0 16.5 176 234 225
EP 185 181 179 38.1× 103 42.4× 103 42.4× 103

FT 33.1 34.5 43.3 5.55× 103 5.93× 103 6.05× 103

IS 13.6 14.7 16.1 171 186 202
LU 23.6 24.0 26.5 2.28× 103 2.49× 103 3.26× 103

MG 14.3 15.5 18.3 318 340 357
SP 22.1 24.0 34.4 2.75× 103 2.83× 103 3.48× 103

UA 124 126 138 24.9× 103 26.5× 103 27.2× 103

Source: The Authors
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Table 4.8: NPB MPI-based benchmarks simulation time.

# Simulation Time (Seconds)
OVP gem5 Atomic
Cores Cores

1 2 4 1 2 4

BT 38.1 ∗ 51.5 5.00× 103 ∗ 6.26× 103

CG 21.3 22.9 29.2 1.84× 103 2.06× 103 2.49× 103

DT 23.9 15.1 18.5 440 417 466
EP 151 155 168 39.0× 103 41.3× 103 42.4× 103

FT 33.9 36.2 47.4 5.48× 103 5.85× 103 6.39× 103

IS 14.0 21.3 29.6 176 225 472
LU 26.0 26.1 29.7 2.66× 103 2.99× 103 3.59× 103

MG 14.7 16.8 19.4 332 391 619
SP 23.4 ∗ 29.5 2.90× 103 ∗ 3.87× 103

*MPI BT and SP are not available for dual-core processors
Source: The Authors

4.2 Performance and Accuracy Evaluation of Instruction-Accurate Virtual Platforms

This section compares the OVPsim-FIM (instruction-accurate) precision against

the gem5-FIM (cycle-accurate) considering three main aspects: accuracy (Section 4.2.1),

OVPsim engine configuration (Section 4.2.2), and simulation speed (Section 4.2.3). For

this purpose, this study employs the ARM Cortex-A9 ISA configured in the OVPsim-

FIM and gem5-FIM using atomic and detailed modes. Recapping, the deployed soft error

model consists of randomly generated single bit-flips injected in any available general-

purpose register (i.e., r0-15) during the software stack execution (i.e., OS, drivers, and

applications). The OS reliability is not the primary focus of this chapter, and thus fault

injections only occur during the application lifespan (i.e., the OS startup is not subject to

faults). Nevertheless, OS system calls arising during this period (i.e., application execu-

tion time) are susceptible to fault injections as part of the application behavior.

4.2.1 Accuracy

This subsection explores the impact on the soft error vulnerability assessment

using different software simulation approaches: discrete event-driven simulation (e.g.,

gem5) and a just-in-time dynamic binary translation engines (e.g., OVPsim). Figures 4.1

and 4.2 show 8,000 randomly assigned register fault injections for each scenario using 10
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NPB Serial, 10 NPB OpenMP, 9 NPB MPI, and 16 Rodinia OpenMP applications.

The gem5 has a higher vanished percentage (i.e., no trace emerges from the fault

injection), in particular, the detailed mode when compared against the OVPSim. This

difference can be traced to components only available in the detailed mode leading to

microarchitectural masking, i.e., some hardware component overwrites the target regis-

ter/memory bit before the fault propagation to other memory elements. For instance, the

gem5 detailed mode has a more precise cache coherency model, increasing the cache

miss rate slightly, and by consequence, re-fetching some cache lines. The register re-

naming module is component exclusive to the detailed mode that protects the register-file

from pipeline data hazards by mapping logical registers (e.g., r0-15) on physical ones.

Both OVPsim and gem5 (atomic mode) do not emulate these two microarchitectural ele-

ments, then using single-cycle read and write operations resulting in the similar masking

rate. In contrast, applications G, I, and N (Figure 4.1a) are exceptions of this behavior,

in these cases, the OVPsim and gem5 (detailed mode) have more similar outcomes than

the gem5 atomic versus the detailed. Due to its instruction-accurate engine the OVPsim

simulation time (i.e., number of executed instructions) is affected by the running applica-

tion characteristics (Section 4.2.2 details this behavior). In turn, the vanish errors results

collected from gem5 detailed show that a more substantial occurrence of ONA error when

compared to gem5 atomic and OVPSim-FIM, as illustrated in Figure 4.1c by applications

such as C and M executing on a quad-core processor.

The Rodinia benchmarks have a more significant presence of ONA errors then the

NPB, in other words, at least one incorrect register bit (e.g., r1, PC, SP) differs from the

faultless execution. The NPB longer execution reduces the probability of dirty bits (i.e.,

lower ONA presence) in the simulation outcome due to a higher likelihood of a bit mask-

ing when comparing with the Rodinia applications. For example, the NPB applications

BT and EP (Figure 4.2a) or the Rodinia benchmarks A, F, and L (Figure 4.1b) when using

the OVPsim. Further, the Rodinia OpenMP applications have a higher number of hangs

then the NPB ones, notably increasing the number of cores (Figure 4.1c). A Hang oc-

curs when the application execution time exceeds the double of expected time (i.e., time

compared to the faultless executions). The two leading causes to explain the higher hang

presence in the Rodina: (i) the fault affected a loop statement (e.g., while, for) wherein

these cases a more extended execution translates to more significant recovery time. For

comparison’s sake, the average Rodinia application executes 80 million instructions while

NPB applications execute on average around 17 billion of instructions (i.e., 212x larger).
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Figure 4.1: Rodinia benchmarks 8000-fault injection campaign for a multicore ARM
Cortex-A9 processor.

(a) Single-core ARM Cortex-A9 processor.
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(b) Dual-core ARM Cortex-A9 processor.
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(c) Quad-core ARM Cortex-A9 processor.
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OVPsim-FIM (OV) - gem5-FIM atomic (GA) - gem5-FIM detailed (GD)
Source: The Authors
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Figure 4.2: NPB applications 8000-fault injection campaign for a multicore ARM Cortex-A9 processor.
(a) Serial applications.
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(b) MPI and OpenMP applications using the single-core processor.
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(c) MPI and OpenMP applications using the dual-core processor.
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(d) MPI and OpenMP applications using the quad-core processor.
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MPI BT and SP are not available for dual-core processors
OVPsim-FIM (OV) - gem5-FIM atomic (GA)

Source: The Authors
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(ii) kernel malfunctions: the fault injection leads to unrecoverable kernel perturbations

(e.g., a thread scheduler error). A longer execution time reduces the Linux kernel expo-

sure time (i.e., the probability of kernel function be stroke by a fault). In other words, the

more prolonged the applications, the less kernel functions execute proportionally.

When considering a multicore processor, increasing the core count results on more

thread context switching and combined with sub-linear scalability (i.e., underutilized

cores in this context) from the Rodinia applications leads to further the kernel errors. Dur-

ing CPU inactivity moments the OS executes the scheduler algorithm2 and then moves to

a sleep mode wait for interruption. Faults striking during this waiting period will remain

in the core register file until its wake-up, affecting the Linux kernel thread dispatcher and

system control flow.

The gem5 suffers event scheduler malfunctions in some specific cases due to un-

foreseen application behavior resulting in a simulator crash (classified as UTs). The gem5

simplistic memory representation as a single binary vector, and whenever the Linux MMU

translates an out of range address, the simulator reaches a segmentation fault in the host

system. On the other hand, the OVPsim withstand better to unexpected application behav-

iors and continues to simulate the application. Thus, it exceeds the predefined threshold

to be considered in an infinite loop, and the FIM pronounces it as a hang error.

To facilitate the data comprehension, we introduce the Accumulated Classification

Mismatch (ACM), which is defined as the sum of absolute differences between classes

divided by the total number of faults. The two VP-FIM in a hypothetical three classes

case study (X, Y, and Z) under comparison as presented on Table 4.9. The difference

between classes is (i.e., 5, 5, and 10,) 20 from 150 fault injections. Thus, the accumulated

classification mismatch for this scenarios ten divide by 150 equals to 6.66%.

Table 4.9: Accumulated classification mismatch hypothetical 150-faults scenario.

Class
VP-FIM

1
VP-FIM

2
Absolute
Difference

X 40 35 5
Y 60 55 5
Z 50 60 10

Total Absolute Difference 20
Total Accumulated Mismatch 10
Total Relative Difference 6.66%

Source: The Authors

2This scenario executes one application per time, and thus, there is no other thread to run.
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Table 4.10: Rodinia benchmarks ACM summary comparing three distinct VP-FIMs.

# Comparison
One

Core
(%)

Two
Cores

(%)

Four
Cores

(%)

Worst Case
OV vs GA 14.34 27.64 39.07
OV vs GD 32.12 33.02 33.79
GA vs GD 25.50 24.45 38.01

Best Case
OV vs GA 0.94 2.43 2.46
OV vs GD 14.49 8.70 6.28
GA vs GD 14.65 13.71 12.15

Average
OV vs GA 6.95 12.55 13.17
OV vs GD 22.32 22.91 16.08
GA vs GD 19.11 19.20 21.17

OVPsim-FIM (OV) - gem5-FIM atomic (GA) - gem5-FIM detailed (GD)
Source: The Authors

Table 4.11: NPB ACM summary considering the OVPsim-FIM against the gem5-FIM
atomic.

# API
One

Core
(%)

Two
Cores

(%)

Four
Cores

(%)

Worst Case
Serial 10.55 * *
MPI 11.55 9.72 9.49

OpenMP 11.15 12.36 23.25

Best Case
Serial 1.70 * *
MPI 0.68 1.36 0.96

OpenMP 3.69 3.05 2.38

Average
Serial 5.73 * *
MPI 5.32 3.21 3.17

OpenMP 6.62 7.11 8.39

OVPsim-FIM (OV) - gem5-FIM atomic (GA)
Source: The Authors

In order to analyze the differences among the VP-FIMs Figures 4.3 and 4.4 ex-

plore the accumulated classification mismatch in three comparisons: gem5-FIM atomic

versus gem5-FIM detailed, OVPsim-FIM versus gem5-FIM atomic, and OVPsim-FIM

versus gem5-FIM detailed. As aforementioned, the NPB experimental setup does not

include the gem5-FIM detailed due to it’s higher simulation time, and thus the NPB mis-

match considers only the OVPsim-FIM versus gem5-FIM atomic. Tables 4.10 and 4.11

summarize the ACM information in average, worst-case, and best-case.
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Figure 4.3a compares the gem5 atomic and detailed modes using the Rodinia ap-

plications in a multicore system (i.e., one, two and four cores). Excluding the application

C (heartwall) where the mismatch increases from 25% to 38%, the number of cores has

little impact. For example, the application A (backprop) mismatch reduces with a grow-

ing number of cores, while the benchmark I (myocyte) has the oposite behavior. In other

words, the atomic mode lack of some microarchitectural components imposes an almost

constant difference when compared with the detailed mode.

The OVPsim-FIM mismatch against the gem5-FIM detailed is around 22% (i.e.,

single and dual-core), while 6.95% and 12.55% when compared with the gem5-FIM

atomic (Table 4.10). Expected behavior when comparing the instruction-accurate OVP-

sim against a microarchitectural simulator due to the already discussed microarchitectural

masking mechanisms. However, the quad-core scenario shows a lower average mismatch

from the OVPsim vs. detailed then atomic vs. detailed. In this case, both OVPsim and

gem5 detailed execute more instructions then the gem5 atomic, however, for distinct rea-

sons. The gem5 detailed mode has a better memory timing model adding cycles to the

execution time, and thus, delaying the OpenMP synchronization events. The OVPsim

engine uses a block-based approach to serialize the multicore simulation adding waiting

times between inter-core synchronizations used by the OpenMP.

Figures 4.3b and 4.4a to 4.4c show several comparison scenarios between the

OVPsim-FIM and gem5-FIM atomic. OpenMP applications show a mismatch worsen-

ing while increasing the number of cores, for example, the Rodinia experiments B, D,

and K (Figure 4.3b) alongside the NPB application MG and CG (Figure 4.4c). The Ro-

dinia mismatch increases using quad-core comparing with single-core processors with

the worst case jumping from 14.34% to 39.07%s. In the same context, the average error

grows from 6.95% to 12.55% considering one and two cores and remains stable for four

cores with a mismatch of 13.17%. The ACM has a more diverse distribution across the

categories than the gem5 atomic versus gem5 detailed, for example, in some applications,

the vanish classification has a more significant mismatch and in others the ONA.

Also, NPB longer workloads reduce the ACM in general when compared with the

Rodinia suite. NPB OpenMP applications average mismatch varies from 6.12% to 8.51%

in contrast with the Rodinia figures of 6.95% and 13.17%. The worst-case mismatch

between the gem5 atomic and OVPsim reduces up to 60% when using the NPB applica-

tions compared with the Rodinia benchmarks. MPI applications have in general a smaller

mismatch for all experiments, and for instance, the worst case reduces from 23.25% to
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Figure 4.3: Rodinia benchmarks ACM considering a multicore ARM Cortex-A9.
(a) gem5-FIM atomic vs gem5-FIM detailed.
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(b) OVPsim-FIM vs gem5-FIM atomic.
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(c) OVPsim-FIM vs gem5-FIM detailed.
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Figure 4.4: NPB applications ACM between the OVPsim-FIM and gem5-FIM atomic
considering a multicore ARM Cortex-A9.

(a) Serial Applications

BT CG DC EP FT IS LU MG SP UA
Applications

0

5

10

15

20

25

30

35

40

45

50

M
is

m
a
tc

h
 (

%
)

1 1 1 1 1 1 1 1 1 1

Cor
es

:

Vanish ONA OMM UT Hang

(b) MPI Applications
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(c) OpenMP Applications
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MPI BT and SP are not available for dual-core processors
Source: The Authors

9.49% considering a quad-core processor. Serial, MPI and OpenMP differences will be

further explored in Section 4.3.2. Next Section 4.2.2 explores different OVPsim engine

configurations under fault injection.
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4.2.2 Instruction-accurate Simulation Engine Parameters Impact On Soft Error As-

sessment

The previous subsection explored the soft error analysis accuracy of the OVPsim-

FIM instruction-accurate framework against cycle-accurate gem5. Results show an aver-

age error of 11% in all cases (considering the gem5 atomic), with the worst-case achieving

up to 40In especial, the OpenMP applications displayed a more significant mismatch then

the MPI or serial ones. This subsection investigates the origin of such mismatch and

analyzes some solutions to improve the OVPsim-FIM accuracy. First, it is necessary to

understand how the gem5 and OVPsim software simulation approaches behave under fault

presence. The gem5 describes the target microarchitecture as components (i.e., register-

file, pipeline, cache) interconnected by a series of events. A scheduler in the gem5 engine

executes these events at each simulation tick, updating the whole system state including

multiple cores, memories, and other subsystems. Events are executed at a rate of 500 ticks

per CPU cycle in the simulated system, and consequently, a complete instruction takes a

couple of thousands of ticks.

The OVPsim relies on just-in-time (JIT) dynamic instruction translation engine,

which translates the target ISA (e.g., ARMv7, ARMv8) to host x86-64 instructions, pro-

viding its higher simulation speed. Further, a complete instruction is the OVPsim mini-

mal simulation granularity, in other words, the simulation always advances one instruc-

tion. Similarly to an OS scheduler where several processes share the same CPU time,

the OVPsim engine simulates each model instance (i.e., processor, core, peripheral) for

a fixed-length block of instructions called Quantum. The quantum size is configurable

using a variable, time-slice, representing a time in seconds3. The quantum size is given by

the following equation where by default the time-slice is 0.001 seconds (one millisecond):

BlockSize = (processor nominal MIPS rate) x 1E6 x (time slice duration) (4.1)

The target processor nominal MIPS rate is 448 MIPS resulting on a quantum size

equal to 448 x 1E6 x 0.01 = 448,000 instructions. The OVPsim also deploys a schedul-

ing policy to manage the processors and other components simulation. The simulator

selects the first processor, after the first processor (or core) has simulated during 448,000

3The time-slice value in seconds refers to an internal configuration parameter and not to the simulation,
host, or real-time.
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Figure 4.5: OVPsim scheduling policy varying the quantum size for a dual-core processor
executing the same workload.
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instructions, it is suspended, and the next processor assumes. In the case of multicore pro-

cessors such as the ARM Cortex-A9x2, each processor core receives a separate quantum,

and it is scheduling accordingly. Figure 4.5 displays two simulation scenarios regard-

ing a dual-core processor, one with the default quantum and another using half of its size

(i.e., 224,000 instructions), which increases the number of model switches for an identical

workload. This block simulation approach delays inter-core communication (or synchro-

nization events), as the sender and receiver cores cannot execute simultaneously. For

instance, communications between the 1st and the 4th cores (i.e., considering a quad-core

processor) take at least two full quantums because the OVPsim needs to simulate 2nd and

3rd quantum blocks, before simulating the target 4th core.

To diminish the soft error mismatch between the gem5 and the OVPsim is neces-

sary to reduce the time required to complete the inter-core communications. Considering

the JIT-engine characteristics, there are two main solutions: reduce the time-slice variable

or parallelize the quantum simulation. In this context, the OVPsim provides an acceler-

ation feature called quantum-leap (QL), which enables mapping processor models (e.g.,

Quad-Core ARM) to physical host cores (i.e., x86_64 multicore). For example, consider-

ing a quad-core ARM processor model, in the sequential simulation mode (Figure 4.6a),

four target cores (CPU 1-4) share a single x86 host core (Core 2). In turn, in the quantum-

leap mode (Figure 4.6b) each ARM model (CPU 1-4) is individually simulated in an x86

host core (Cores 1-4).

First, this work explores the impact of using distinct quantum sizes (i.e., 448,000,
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Figure 4.6: OVPsim simulation workload division into a quad-core host processor.
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4,480, 448, and 44 instructions per block) and quantum-leap configurations on the OVPsim-

FIM accuracy to assess soft error reliability, considering gem5-FIM as the reference. Fur-

ther, the two quantum-leap scenarios (i.e., QL-1 and QL-2), where each one employs a

distinct thread allocation scheme restricted to quad-core processors. Table 4.13 shows the

six proposed scenarios mismatch between OVPsim-FIM and gem5-FIM.

4.2.2.1 Quantum-leap impact on soft error assessment

The first scenario (QL-1, Table 4.13) uses a greedy allocation algorithm and affin-

ity thread, i.e., children threads can only execute in a fixed physical core to avoid host

caches synchronizing costs. In this context, the OVPsim QL children threads compete

with other system threads depending on the system current workload. In the second sce-

nario (QL-2, Table 4.13) the thread affinity is relaxed, enabling children threads to execute

in any host core and apply a less aggressive thread allocation technique, which reduces

the resource competition with other system threads.

QL-1 and QL-2 scenarios show a worse accuracy for all applications when com-

pared to the single-core OVPsim-FIM execution, highlighting that the only distinction

between both scenarios is the thread allocation scheme. The number of quantums ex-
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Table 4.12: Rodinia benchmarks time-slice explorations worst, best, and average cases
considering the gem5-FIM atomic as reference.

# Time-Slice
One
Core
(%)

Two
Cores
(%)

Four
Cores
(%)

Worst Case

0.001 14.33 27.63 39.07
0.00001 12.32 19.86 13.40

0.000001 12.02 19.68 11.97
0.0000001 11.31 18.53 11.42

QL-1 * * 71.24
QL-2 * * 38.69

Best Case

0.001 0.93 2.42 2.46
0.00001 1.12 1.91 1.30

0.000001 0.52 1.10 1.72
0.0000001 0.60 1.55 1.23

QL-1 * * 4.00
QL-2 * * 3.84

Average

0.001 6.95 12.55 13.16
0.00001 5.79 9.17 5.54

0.000001 4.96 8.95 5.23
0.0000001 4.09 7.62 5.39

QL-1 * * 17.56
QL-2 * * 13.38

Source: The Authors

ecuting in parallel varies according to the target application and host system workload

leading to a simulation performance improvement of 200% on average when using a host

quad-core processor. The quantum-leap provides a higher performance, however, its dis-

advantages outweigh the simulation performance gain considering the soft error analysis.

First, soft error analysis requires deterministic simulation of thousands of FI campaigns

and the QL execution can be affected by the host OS thread allocation mechanism and

current workload. Second, the FI flow enables other better speedup techniques as dis-

cussed in the previous chapter. From this point, this thesis will focus on the sequential

execution of the OVPsim only.

4.2.2.2 Mismatch considering the quantum size

Besides the Table 4.13, Figures 4.8a, 4.9a and 4.10a show the reference gem5-FIM

atomic (ψ) and four quantum sizes 448,000 (λ), 4,480 (γ ), 448 (β), and 44 (δ) instructions

per block for one, two, and four cores on an ARM cortex-A9 respectively. The experi-



81

ments show that the quantum reduction has a significant impact on the soft error analysis

of OVPsim-FIM. For example, the quad-core processor model presents an average ac-

curacy improvement of up to 40% when using the smallest block (i.e., 44 instructions),

while some benchmarks reach a five-fold accuracy gain (e.g., F and I). The quantum

ten thousand smaller (i.e., 44 instructions) cuts the average error from 6.95% to 4.09% in

the quad-core scenario (Table 4.13) while the worst case reduces from 39.07% to 11.42%.

Noticeably, reducing the quantum size decreases the communication cycles between cores

approximating the OVPsim-FIM and gem5-FIM behaviors. While the smallest block size

presents the best accuracy, using a slightly larger quantum of 4480 instructions leads to

86% of worst-case improvement and 91% in the average mismatch.

The resulting mismatch can be traced back to its block-based simulation engine,

as previously discussed, each core executes a fixed amount of instructions before chang-

ing to the next one. Note that inter-core communications are completed during the core

switch, leading to temporally unsynchronized cores. Inter-core communication is neces-

sary to synchronize events across multiple cores, for instance, in a parallelization library.

The Rodinia OpenMP-based applications use a fork-join parallelization paradigm where

synchronization barriers coordinate multiple children threads execution. One synchro-

nization event that requires all cores to reach the same statement (i.e., a barrier) requires

multiple quantum executions until completion. Delaying these communication events

lead to some extra instructions executed by the OVPsim due to other cores waiting.

It is possible to observe this behavior by comparing the instruction count of dif-

ferent VP-FIMs executions. Figure 4.7 displays the number of executed instructions for

a single faultless execution considering the OVPsim with the default quantum (a), a ten

thousand smaller quantum (b), the gem5 atomic (c), and the gem5 detailed (d). Note that

in the quad-core scenario the applications nn, nw, streamcluster, and backprop present a

more substantial variance in the number of executed instructions at the same time as they

present the worst soft error mismatch. In contrast, when the overall OVPsim using the

44-instructions quantum follows closely the gem5 atomic comportment (see Figure 4.7c).

For instance, in the nw scenario, the OVPsim-FIM executes nine times more instructions

than gem5-FIM atomic with a 78.15% soft error mismatch. The same scenario using the

smaller quantum results on only 28% more executed instructions along with a five-fold

soft error accuracy improvement. Reducing the quantum size diminishes this inter-core

communication gap (i.e., where one core waits for another) and approaches the gem5-

FIM atomic moded behavior under FI, especially when targeting multicore architectures.
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(a) OVPsim default quantum (448 000 instructions).
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(b) OVPsim 44-instruction quantum.
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(c) gem5 atomic.
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(d) gem5 detailed.
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Figure 4.8: 8000-fault injection campaign deploying the OVPsim-FIM for a single-core
ARM Cortex-A9 processor varying the time-slice and the reference gem5-FIM atomic.

(a) Fault campaign.
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(b) Accumulated classification mismatch for each OVPsim-FIM time-slice value.
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While the optimal quantum size varies according to the application behavior and how

its synchronization primitives are defined, its reduction improves the overall simulation

accuracy.

We select the smallest quantum (i.e., a 44 instructions block size) to expand our
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Figure 4.9: 8000-fault injection campaign deploying the OVPsim-FIM for a dual-core
ARM Cortex-A9 processor varying the time-slice and the reference gem5-FIM atomic.

(a) Fault campaign.
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(b) Accumulated classification mismatch for each OVPsim-FIM time-slice value.
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Figure 4.10: 8000-fault injection campaign deploying the OVPsim-FIM for a quad-core
ARM Cortex-A9 processor varying the time-slice and the reference gem5-FIM atomic.

(a) Fault campaign.

A B C D E F G H I J K L M N O P
Applications

0
10
20
30
40
50
60
70
80
90

100

In
je

ct
e
d
 F

a
u
lt

s 
(%

)

λ γ β δ ψ

Vanish ONA OMM UT Hang

(b) Accumulated classification mismatch for different OVPsim-FIM time-slices for a quad-core
ARM Cortex-A9 processor in comparison with the gem5 atomic.
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Table 4.13: Rodinia mismatch benchmarks comparison considering the OVPsim-FIM
with default (DF) and 44-instruction quantum (Q) against the gem5-FIM atomic.

# Comparison One Core (%) Two Cores (%) Four Cores (%)
DF Q DF Q DF Q

Worst Case
OV vs GA 14.34 11.31 27.64 18.54 39.07 11.43
OV vs GD 32.12 33.55 33.02 30.74 33.79 39.16
GA vs GD 25.50 24.45 38.01

Best Case
OV vs GA 0.94 0.60 2.43 1.55 2.46 1.24
OV vs GD 14.49 14.41 8.70 16.57 6.28 8.54
GA vs GD 14.65 13.71 12.15

Average
OV vs GA 6.95 4.10 12.55 7.62 13.17 5.40
OV vs GD 22.32 21.54 22.91 24.18 16.08 22.38
GA vs GD 19.11 19.20 21.17

Source: The Authors

Table 4.14: NPB mismatch comparison considering the OVPsim-FIM with default (DF)
and 44-instruction quantum (Q) against the gem5-FIM atomic.

# API One Core (%) Two Cores (%) Four Cores (%)
DF Q DF Q DF Q

Worst Case
Serial 8.90 7.34 * * * *
MPI 11.55 3.45 9.72 3.29 9.49 12.50

OpenMP 10.32 4.38 12.36 4.21 23.25 4.50

Best Case
Serial 1.70 0.79 * * * *
MPI 0.68 0.16 1.36 0.55 0.96 1.34

OpenMP 3.69 1.04 3.05 0.84 2.38 0.24

Average
Serial 5.20 2.73 * * * *
MPI 5.32 1.30 3.21 1.36 3.17 4.18

OpenMP 6.12 2.61 7.29 2.07 8.51 2.10

Source: The Authors

investigation using the NPB suite. Figure 4.11 shows the Rodinia benchmarks FI using

the OVPsim-FIM with reduced quantum (OV-Q), the gem5-FIM atomic (GA), the and

gem5-FIM detailed (GD) while Figure 4.12 replicate the experimental setup using the

NPB. Tables 4.13 and 4.14 display the mismatch between gem5-FIM and OVPsim-FIM

using the default quantum size (DF) of 448,000 instructions and a smaller quantum (Q)

value of 44 instructions, considering four distinct workloads: NPB OpenMP (OMP), NPB

MPI, and NPB Serial (SER) alongside the Rodinia OpenMP applications.

Notice, the OVPsim-Q (i.e., OVPsim with the 44-instructions quantum) decreases

the mismatch whenever compared with the gem5-FIM atomic for the Rodinia suite, and

more accentuated in the quad-core system due to the instruction count reduction as previ-
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ously mentioned. For example, the average ACM reduces by 58% (from 13.17% to 5.4%)

as shown in Table 4.13. In the same scenario, the worst-case scenario diminishes from

39.07% to only 11.43%. Note the migration of ONA to OMM by decreasing the quantum

size, in other words, the incorrect content previously restricted to the register file migrate

to the final memory. For instance, note application A, E, F, and L in Figure 4.11a. Notice,

the campaigns simulated with the OVPsim-Q presents a mismatch reduction in 28 out of

30 scenarios with a significant (five-times) improvement in the worst-case of OpenMP-

based benchmarks, which is justified by the impact of synchronization barriers between

children threads.

While the Rodinia benchmarks include applications with up to 220 million, NPB

benchmark applications vary from 16 to 87 billion instructions. By consequence, NPB

benchmarks have more extended computations between synchronization points than the

Rodinia, which impacts on the soft error analysis. NPB benchmarks also have a better

workload distribution and scalability, which means in conjunction with the more pro-

longed execution that children threads have enough instructions to complete one or more

quantums between OpenMP barriers. In contrast, Rodinia applications have a smaller

computation between synchronization points, sometimes shorten then one quantum exe-

cution leading the OpenMP barriers to execute extra instructions while waiting for other

threads. The Rodinia behavior magnifies the mismatch originated due to the OVPsim

simulation policy using fixed-length instructions blocks, and by consequence, these ap-

plications benefit the most when reducing the quantum, achieving a five-fold accuracy

gain. Applications using the MPI library are based on independent threads, which leads

to a smaller number of synchronization points, and thus resulting in a lower mismatch.

The quad-core MPI workload has two NPB applications (IS and MG) in which the scenar-

ios with RQ lead to a mismatch worsening. As discussed before, some application may

suffer from over reduced quantum size, for instance by selecting the best case for these

two applications; the average mismatch reduces to 3.48% and worst-case of 5.85%. IS and

MG are the smallest NPB applications that might contribute to the precision worsening

by reducing the number of instruction per quantum.

The OVPsim-Q decreases the mismatch considering the gem5 atomic while in-

creasing when compared with gem5 detailed. For example, the OVPsim-Q quad-core

scenario average ACM is (22.38%) is higher than previously 16.08% with the unmodified

OVPsim engine (Table 4.13). Even though the unmodified OVPsim-FIM more accurately

emulates the gem5-FIM detailed in some cases, this setup increases the mismatch. The
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OVPsim-Q has a more similar relationship when compared with the gem5 atomic, and by

consequence, a better average figure can be extracted.

Figure 4.11: Rodinia benchmarks the OVPsim-FIM with reduced quantum (OV-Q), the
gem5-FIM atomic (GA), the and gem5-FIM detailed (GD) for a multicore ARM Cortex-
A9 processor.

(a) Single-core ARM Cortex-A9 processor.
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(b) Dual-core ARM Cortex-A9 processor.
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(c) Quad-core ARM Cortex-A9 processor.
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Source: The Authors



89

Figure 4.12: NPB applications using the OVPsim with smaller quantum (OV-Q) and gem5-FIM atomic (GA) for a multicore ARM Cortex-A9
processor.

(a) Serial applications.
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(b) MPI and OpenMP applications using the single-core processor.
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(c) MPI and OpenMP applications using the dual-core processor.

BT CG EP FT IS LU MG SP
Applications

0
10
20
30
40
50
60
70
80
90

100

In
je

ct
e
d
 F

a
u
lt

s 
(%

)

O
V

-Q
-M

P
I

G
A

-M
P
I

O
V

-Q
-O

M
P

G
A

-O
M

P Vanish ONA OMM UT Hang

(d) MPI and OpenMP applications using the quad-core processor.
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MPI BT and SP are not available for dual-core processors
Source: The Authors
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4.2.3 Performance and Speedup

The OVPsim has two main advantages when comparing with other frameworks:

modeling flexibility and simulation speed. This subsection compares the simulation speed

regarding MIPS considering the gem5 and OVPsim in multiple configurations and work-

loads. The experiments were conducted in a Quad-core Intel Core I7-7700K 4.20GHz

with 16 GB DDR4 2400 MHz. Figure 4.13 presents the simulation performance as we in-

crease the host cores from 1 to 4 where both the OVPsim-FIM and gem5-FIM can perform

and manage parallel simulations.

Figure 4.13a displays the first set of simulation considering the Rodinia applica-

tions. The gem5-FIM atomic simulation speed ranges from 4.2 to 11 MIPS while the

detailed mode achieves 0.89 to 1.65 MIPS. In turn, the OVPsim varies from 345 to 2,921

MIPS depending on quantum configuration and application. Modifying the quantum size

Figure 4.13: Multiple VP-FIMs simulation speed and scalability using a quad-core host
processor in terms of MIPS.

(a) Rodinia Benchmarks.
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reduces the number of executed instructions per block impacting simulator performance

directly due to the increasing switching between the models (i.e., cores). The unmodi-

fied OVPsim-FIM (in gray Figure 4.13a) has an average performance of 1,500 MIPS, the

4,400 (red) and 440 (blue) reduce the average performance in 30% and 42% respectively

while the smallest quantum reaches 360 MIPS. The second experiment, Figure 4.13b,

deploys the NPB larger applications (i.e., up to 87 billion of instructions) shows a better

OVPsim performance in all configurations while the gem5 atomic remains stable With

four host cores, the longest workload achieves up to 3,910.86 MIPS when deploying the

OVPsim-FIM. In a similar scenario, the gem5 atomic achieves 12.52 MIPS, approxi-

mately 325 times faster. The OVPsim speed increases as the application grows due to the

just-in-time engine algorithm, and thus benefiting from larger applications. For example,

by comparing the larger and smaller applications, the simulation speed ranges from 1,190

to 3,910 MIPS (i.e., a 3.28 increase) where the gem5-FIM atomic difference is less than

20%, varying from 12 to 10 MIPS.

4.3 Soft Error Evaluation Considering Multicore Design Metrics/Decisions

The emerging use of multicore processors requires specialized libraries, in this

way, including an additional complexity to the system reliability assessment. Section 4.3.2

extensive explores the use of OpenMP and MPI-based applications reliability. Different

ISAs are available during early design space explorations, for example, ARMv7 32 bist

and ARMv8 64 bits. Thus, Section 4.3.1 investigates the impact of such distinct ISAs on

the system behavior under fault injection is crucial because simulating it at lower levels

is unfeasible.

4.3.1 ISA Reliability Assessment

4.3.1.1 Execution Time and Workload

The ARMv7 workload for a single faultless execution has an instruction count

that ranges from 299 million to 87 billion, with an average of 16 billion of instructions. In

contrast, the 64-bit architecture applications execute in average 654 million instructions,

varying from 41 million to 3 billion. Table 4.15 summarizes the workload regarding

simulation time and the number of executed instructions with average, smaller, and larger
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Figure 4.14: Fault injections using a multicore ARM Cortex-A72 processor (ARMv8).
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(a) MPI benchmarks.
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(b) OMP benchmarks.
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(c) Mismatch.

cases.

Applications executed using the ARMv8 ISA present a significant performance

improvement when compared to the ARMv7. In some cases, the speedup reaches up to

10 times. This performance gain can be pinpointed to the removal of several legacies

features (e.g., fast and multilevel interruptions, conditional instructions) and to significant

improvements made in the floating-point (FP) unit by adding new specialized instructions
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Table 4.15: NPB workload summary.
Description Minimum Average Maximum

Executed Instructions
ARMv8 41.1× 106 654× 106 3.08× 109

ARMv7 299× 106 16.5× 109 87.4× 109

Simulation Time Single
Run (sec.)

ARMv8 35 437 2,134
ARMv7 163 7,929 42,763

Single Campaign Run
(hours)

ARMv8 77 971 4,742
ARMv7 363 17,620 95,028

Total Fault Campaign (hours)

ARMv8 82,820 ARMv7 1,152,160

and increasing the number of FP registers. The ARMv7 often resorts to the ARM software

FP library to perform some operations and thus increasing execution time. This choice

was made automatically by the compiler. The evaluated workload employs HPC scien-

tific applications with some of them heavily depending on FP computation, leading to a

significant performance boost. The executed instruction count for each application where

the average value reduces from 16 billion (ARMv7) to 654 million (ARMv8) instruc-

tions (Table 4.15). A shorter execution time improves the ARMv8 mean time between

failures (MTBF) as it has a smaller probability of being stroke by a radiation event for a

given particle fluence

4.3.1.2 Register File Size

The new 64-bit ISA also enlarges the integer register-file, from 16 to 33 registers,

increasing the number of possible targets for fault injection by a factor of four. However,

the compiler algorithm uses a reduced fraction of the available registers for load/store and

control flow operations leaving other registers for global variables or unused. As in this

experiment, each register suffers an identical number of fault injections, critical registers

(e.g., program counter, stack pointer, those used on load/store and control flow operations)

are less likely to face faults in the ARMv8 rather than in the ARMv7.

4.3.1.3 Branches and Function calls

The Hang error occurs when the target application control flow is severely affected

by transient faults, in most cases, leaving the algorithm in an infinite loop. Analyzing in-
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Table 4.16: Hang occurrence compared with the normalized function calls multiplied
branches (F*B).

Scenario Parameter
Number of Cores

Single Dual Quad

IS MPI V7

Hang (%) 0.413 0.625 3.000
Branches 56.0× 106 58.0× 106 196× 106

F. Calls 22.6× 106 23.1× 106 26.9× 106

Index F*B 1.000 1.024 1.700

IS OMP V7

Hang (%) 0.288 0.313 0.400
Branches 54.1× 106 54.3× 106 54.7× 106

F. Calls 21.7× 106 21.7× 106 21.7× 106

Index F*B 1.000 1.001 1.002

IS MPI V8

Hang (%) 0.438 1.850 3.800
Branches 11.2× 106 15.9× 106 17.6× 106

F. Calls 2.85× 106 3.35× 106 4.84× 106

Index F*B 1.000 1.302 1.799

IS OMP V8

Hang (%) 0.225 0.925 1.175
Branches 7.99× 106 9.05× 106 9.50× 106

F. Calls 1.81× 106 2.05× 106 2.06× 106

Index F*B 1.000 1.172 1.194

dividual parameters not always expose direct relationships between profiling data and

fault injection campaigns. For example, the mean branch composition from the total ex-

ecuted instructions is 19.24% (σ = 0.21), 14.08% (σ = 0.56), 17.65% (σ = 0.03), and

12.01% (σ = 0.36) considering the four macro scenarios MPI V7, OpenMP V7, MPI V8,

and OpenMP V8, where σ is the standard deviation. While the ARMv8 displays a 2%

decrease in the mean branch occurrence compared with the 32-bit architecture, the appli-

cation behavior under fault influence does not show any meaningful impact. Additionally,

function calls variation also does not display any distinctive link with Hangs incidence.

By combining both figures, nonetheless, is possible to uncover a correlation between this

new index value (i.e., number of function calls times number of branches) with the Hang

incidence after comparing the 130 scenarios. Table 4.16 exemplifies this behavior using

the IS application as a case study, note that this new index value and the Hang percentage

increases simultaneously, an observable behavior through several scenarios. The ARM

ISA(i.e., ARMv7 and ARMv8) use distinct instructions to compare the conditional state-

ment (e.g., cmp) and another to perform the control flow branching, while function calls

use unconditional branches (e.g., jumps) in conjunction with argument registers.
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Table 4.17: ARMv7 Memory transactions and soft error classification for selected sce-
narios.

Scenario
Vanish
+OMM
+ONA

UT
Mem.

Inst. (%)

RD⁄WR
Ratio

1 MG MPIx1 78 22 15.8 1.18
2 MG MPIx2 78 22 16.3 1.12
3 MG MPIx4 70 30 22.5 2.83

4 IS MPIx1 80 20 18.0 0.85
5 IS MPIx2 80 20 19.0 0.83
6 IS MPIx4 70 31 26.0 2.73

4.3.1.4 Memory Transactions

Table 4.18: ARMv8 Memory transactions and soft error classification for selected sce-
narios.

Scenario
Vanish
+OMM
+ONA

UT
Mem.

Inst. (%)

RD⁄WR
Ratio

A LU OMPx1 57 48 29 1.9
B LU OMPx2 59 45 27 1.9
C LU OMPx4 67 40 22 1.9

D SP OMPx1 57 42 35.1 1.5
E SP OMPx2 59 40 34.0 1.5
F SP OMPx4 70 32 28.5 1.5

G FT MPIx1 62 37 25.7 1.00
H FT MPIx2 62 37 24.6 0.95
I FT MPIx4 62 36 23.7 0.95

UTs (i.e., unexpected terminations) originates from OS segmentation fault excep-

tions, which means that the program has attempted to access an area of memory outside

its permissions. At instruction level, the address generation of memory access opera-

tions (e.g., load and stores) is compromised by transient faults in the source registers to

lead to wrong address calculations. The reduced number of ARMv7 registers to perform

address calculations leads to the use of load/store templates by the compiler to dimin-

ish the computational cost of register recycling. In other words, the ARMv7 compiler

continuously utilizes the same register to perform memory transactions (e.g., R0–3 and

SP). As consequence of this behavior, increasing the number load/store operations can
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lead to a more significant UT occurrence in the target application using an OS on top of

the ARMv7 processor. Table 4.17 shows the soft error results (e.g., Vanish, UT, Hangs)

alongside the memory access figures for some examples of the behavior mentioned above.

By increasing the percentage of memory transactions (i.e., load and stores instructions)

in applications such as MG and IS increases the UT ratio. For example, MG applica-

tion memory-oriented operations for single and quad-core processors are 15%, and 22%

while the UT occurrence increases from 22% to 30%. Further, increasing the core count

alone does not reduce the UT percentage as is possible to note by comparing scenarios (1,

Table 4.17) against (2) where both have similar memory instruction occurrence.

The 64-bit architecture exhibits a similar behavior considering FP memory trans-

actions, supporting the claim above that wrong address calculation related to memory

access, as FP instructions are exclusively used for computation and not for control flow

operations (e.g., branches and jumps). Table 4.18 displays nine scenarios (A-I) of soft

error analysis and FP memory figures. Reducing the memory transactions participation

from the total number of executed instructions for LU (A-C) and SP (D-F) applications

show a UT occurrence reduction trend. Scenarios (G-I) reinforce this hypothesis by

demonstrating that a constant memory-oriented instruction incidence leads to a regular

UT percentage.

4.3.2 Parallelization API

The OpenMP library uses a series of the fork and joins approach to parallelize loop

statements (e.g., for, while) where the API automatically create children threads, being

suitable for shared memory. In contrast, the MPI standard is adequate to distribute systems

due to the use of a message-oriented parallelization technique, which requires the direct

user parallelization regarding thread creation and communication. Figure 4.15 display

fault injection campaigns and mismatches comparing the MPI and OpenMP applications.

4.3.2.1 Serial vs APIs

When we compare the serial implementation with either parallelization libraries

on both architectures, some patterns can be observed. In ARMv7 MPI, only CG has

a small improvement in the number of UTs, while in IS and MG the number of UTs

and Hangs increases. Considering the OpenMP versions, no significant variation can
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Figure 4.15: NPB fault campaigns using distinct parallelization paradigms.
(a) gem5 atomic with MPI applications.
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(b) gem5 atomic with OpenMP applications.
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(c) gem5 atomic mismatch MPI vs OpenMP.
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(d) OVPsim with MPI applications.
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(e) OVPsim with OpenMP applications.
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(f) OVPsim mismatch MPI vs OpenMP.
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MPI BT and SP are not available for dual-core processors
Source: The Authors
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be found. For the 64-bit application set, CG, LU, MG, SP, and UA the number of UTs

diminishes. Further, CG application maintains the number of UTs when the number of

cores increases. The same cannot be said about the other application, where the number

of UTs diminishes with the increase in core count. Other applications have negligible

variations.

4.3.2.2 Vulnerability Window

Within a software stack, some components are more critical to the system correct

behavior. For example, targeting a thread scheduling function with faults has a potentially

more hazardous effect on the system reliability than a purely arithmetic code portion. By

comparing these critical functions active periods against application execution time, it is

possible to define a time interval called vulnerability window, which varies with the num-

ber of calls and executions of the function. Using the NBP benchmark suite provides a

real high-performance workload, enabling a more accurate evaluation of the OpenMP and

MPI libraries impact on the system reliability. Due to its reduced vulnerability window,

the parallelization mechanism has a limited effect on the final reliability assessment, less

than 23% in the worst case.

From the 44 possible comparisons between the MPI and OpenMP scenarios, in 38

the MPI has a higher masking rate (i.e., executions without any errors) due to two main

reasons: First, MPI applications have a better workload balance among the used cores, in

other words, the number of executed instructions per core is very similar. For instance,

the average difference concerning executed instructions per core is around 4% for both

ARMv7 and ARMv8 considering MPI applications, while the OpenMP variation reaches

up 16%. As the OpenMP does not fully utilize the available cores due to the fork/join par-

allelization approach where a loop statement executes in parallel and other code portions

hastily. By contrast, the MPI has individual and independent working threads for each

running core providing a better workload balance during its execution. Whenever a core

is sub-utilized, it executes a thread scheduling policy and when no thread is suitable the

core waits in a sleep mode. By consequence the kernel probability to suffer a transient

fault increases, as the scheduling is more often executed. Second, OpenMP benchmarks

have a smaller execution time, 16% on average, compared against the MPI applications.

By consequence, diminishing the vulnerability window of the MPI inner-functions when

comparing against the OpenMP. Further, the longer execution increases the chance of the

injected fault being erased due to software and microarchitectural masking mechanisms.



99

4.4 Focused Fault Injection Results

The traditional fault injection flow focuses on error rate estimation for a hypo-

thetical radiation fluence through a probabilistic figure. Nevertheless, it does not stress

all possible fault injection outcomes satisfactorily. In other words, it exposes the av-

erage error rate, ignoring that application domains have different reliability constraints.

For example, considering the scientific applications, a silent memory corruption (SDC)

denotes a higher reliability issue than an unexpected termination (UT). A UT is easily

detectable, and the HPC environments already offer solutions as periodical checkpoints

and restartable jobs to deal with this issue. In contrast, SDC detection or correction tech-

niques are computational costly (DIDEHBAN; SHRIVASTAVA, 2016) and the incorrect

detection may affect the final application result (BAUTISTA-GOMEZ et al., 2016). The

incorrect SDC treatment can jeopardize the scientific investigation. In the automotive do-

main, an unexpected termination leads to harmful consequences (YOSHIDA, 2015), and

in contrast, SDCs are mostly benign in a real-time application.

The set of experiments presented in this section aims to demonstrate the OVPsim-

FIM extension usability during early design space explorations stages concerning the

software reliability. The target architecture comprises an ARM Cortex-A9 interconnect

through a bus on a dedicated one-gigabyte memory. The first experiment goal is to pro-

vide a reference for register targeting faults in comparison with the promoted novel fault

injections techniques. It software stack included a Linux 3.13 kernel and selected Ro-

dinia OpenMP applications (i.e., backprop, heartwall, kmeans, nw, and pathfinder) both

compiled with the cross-compiler arm-linux-gnueabi-gcc 6.2.0 20161005. The following

experiment, Figure 4.16, assess the selected benchmarks reliability under an eight thou-

sand register-file fault injections aiming to estimate the percentage of errors that are not

masked by each benchmark. Further, this setup includes three different VP-FIMs: the

OVPsim-FIM (OV), gem5-FIM atomic (GA), and gem5-FIM detailed (GD). As shown

in previous sections, the gem5 detailed presents more vanished faults due to the masking

mechanisms from the microarchitecture representation.

The second case study targets the application virtual memory primarily and to

demonstrate the OVPsim-FIM extension necessity and to establish comparative results it

also shows the outcome of a physical memory fault injection campaign. Figure 4.17 dis-

plays the selected Rodinia applications in five different fault injection scenarios: 80,000

physical memory faults considering the (1) gem5-FIM (PHY-GA) atomic and the (2)
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Figure 4.16: Soft error classification according to the system behavior under register fault
injection considering 5 Rodinia benchmarks executing onto single core ARM Cortex-
A9, regarding the three fault injection module (FIM) implementations: gem5-FIM atomic
(GA), gem5-FIM detailed (GD), and OVPsim-FIM (OV).
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Figure 4.17: Memory-based fault injection campaigns targeting physical memory gem5-
FIM atomic (PHY-GA) and OVPsim-FIM (PHY-OV), comparing with OVPsim-FIM ex-
tension VA the entire range (VA-ALL), the code section (VA-CODE), and data section
(VA-DATA).
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OVPsim-FIM (PHY-OV), and three 8,000 faults targeting the application (3) entire VA

space (VA-ALL), (4) only data sections (VA-DATA), and (5) the code section (VA-CODE).

Physical memory fault injection campaigns faithfully represent the memory behavior un-

der the influence of soft errors the information extracted has little or none relevance.

To achieve meaningfully statistical figures the experimental setup was lengthened by ten

times when compared with the virtual memory experiments; where 99.9% of the total

injected fault. This small physical memory scenario (i.e., 80,000 faults for five applica-

tions) requires approximately 4,400 simulation-hours, and after this long simulation, only

200 from 80,000 fault injections do not present a masked outcome in average. The one-

gigabyte memory has 137,438,953,472 available bits multiplied by the execution time

in which each intersection is a possible target. At any time, the application accesses a

limited memory range (i.e., few kilobytes) during its execution, even the data-intensive

algorithms process small memory blocks per access. Consequently, the chance of phys-

ical memory bit-flip effect the application behavior is minimal, also, this event timing

should be precise and occur before reading access.

The virtual address fault injection technique reduces the target range, thus focus-

ing on the application code and data. Faults targeting the code segment exclusively (i.e.,

VA-CODE) exhibits a larger occurrence of control flow related errors (i.e., UT and Hangs)

due to the instruction representation changes. As a possible utilization of this technique,

several mitigation techniques replicate or introduce a new instruction in the original appli-

cation code after assuming a fault-free code. With this promoted fault injection technique

is possible to explore the SWIFT-based mitigation methods and improve its coverage by

adding a new approach angle. In contrast, the data section faults incur in memory cor-

ruptions, and reduced number of control flow errors as the applications data structures

are affected. Even when reducing the memory range from the full memory to the virtual

memory range a significant portion of the fault injections still leads to a vanished outcome.

The compiler includes hundreds of functions and data structures from adjacent Linux and

C libraries alongside the own application source. Some of them only run during the ap-

plication startup, and the majority never execute during the simulation and consequently,

a large part of the virtual memory, either code or data, does not have any influence over

the application behavior. This technique may be used to target a particular process (i.e.,

an application with a distinct virtual address space) in a sophisticated software stack for

example.

The fault injection scope is further reduced in the third case study by using the
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Figure 4.18: Function-based fault injection techniques targeting four different func-
tions: bpnn_adjust_weights._omp_fn.1, bpnn_layerforward, gomp_barrier_wait_end,
and pick_next_task_fair.
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function code and lifespan techniques which use targets four backprop functions:

(i) The most timing consuming function (bpnn_adjust_weights._omp_fn.1), this func-

tion represents the application kernel OpenMP parallelization;

(ii) A sequential portion of the application (bpnn_layerforward);

(iii) The OpenMP synchronization barrier (gomp_barrier_wait_end);

(iv) The Linux kernel next process selection algorithm (pick_next_task_fair).

Figure 4.18 shows the four 8000-fault campaigns for both function code and lifespan tech-

niques. The lifespan technique targets the 16 general purpose registers (r0-r15) including

the program counter (PC) and stack pointer (SP) assigning each one 500 faults from the

total 8,000. The most time-consuming function bpnn_adjust_weights._omp_fn.1 is the

application kernel parallel phase and data intensive. This function behavior under both

fault techniques (lifespan and instruction code) resembles the compartment when target-

ing the complete application as it accounts for approximately 20% of the total execution

time. The sequential function (2) has a smaller number of hangs due to it execution being

limited to the application initialization, as the subsequent code execution masks most of

the faults.
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The OpenMP gomp_barrier_wait_end is a short (i.e., few lines) function that acts

as a thread synchronization barrier. Therefore, the code and register fault injections have

a similar behavior causing UT (i.e., Linux segmentation) errors due to the wrong address

calculation. Code faults show a more significant number of hangs in the first three cases,

as the small function code increases the probability of a control flow error leading to an

infinite loop. The registers are continuously overwritten at each function invocation and

in contrast, code faults remain incorrect for more extended periods. The Linux kernel

function (4) has a complex chain of control flow statements (i.e., if and else). Whenever

a fault strikes an addressing register (i.e., r3, r4, and r5 for this particular function), the

control flow is severely affected leading to kernel malfunction and consequently, infinite

loops (Hang) and therefore other registers, beside the PC and SP, have little or none im-

pact. In several cases, it causes an SDC error as the target register remains in the function

context stored in the stack. In contrast, the code targeting in this particular function show

as smaller impact, as large portions of the function are not executed due the control flow

statements.

4.4.1 Case Study

To demonstrate the soft error analysis capabilities of proposed fault injection tech-

niques, we select a matrix multiplication (MM) kernel as a case study due to its applica-

tion in several fields and branches of science. During this case study, we will subject the

MM to the fault injection techniques presented in Section 3.8, targeting distinct software

components alongside a customized error classification module. Each technique covers

different aspects of the MM considering its variables and critical functions in an isolated

manner, demonstrating the importance of providing software engines with appropriate

means that can lead to application reliability improvements. Experimental setup com-

prises an ARM Cortex-A9 processor, executing Linux kernel (3.13) and the MM kernel

using 300-wide 32 bits integer square matrices as inputs and output.

A. Sequential and Parallel MM

The first fault injection campaign deploys the MM kernel in two versions: (i) sequential

implementation that uses a simple iteration to perform the multiplication, and (ii) a paral-

lel MM using the Pthreads library to create two working threads. Figure 4.19 shows the

two MM implementations subjected to 8 fault campaigns of 8,000 fault injections each
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Table 4.19: Deployed fault injection techniques into the TMR-Based Matrix Multiplica-
tion reliability exploration.

# Target # Target
A Register file E1 Function Code 1st replication
B Physical Memory E2 Function Code 2nd replication

C1 VA Complete E3 Function Code 3rd replication
C2 VA Code Section E4 Function Code Voter
C3 VA Data sections F1 Function Lifespan 1st replication
D1 Variable Matrix 1 F2 Function Lifespan 2nd replication
D2 Variable Matrix 2 F3 Function Lifespan 3rd replication
D3 Variable Matrix 3 F4 Function Lifespan Voter
D4 Variable Matrix Result

Source: The Authors

(i.e., totaling 128,00 simulations), considering the six fault injection techniques:

(i) random registers (A),

(ii) physical memory (B),

(iii) virtual memory (VM) entire range (C1),

(iv) VM code section (C2),

(v) VM data sections (C3),

(vi) result matrix (D1),

(vii) multiplication function object code (E1),

(viii) multiplication function lifespan (F1).

The sequential MM presents a larger OMM (e.g., silent data corruption) due to

the high number of memory reads and writes with a small number of operations for each

matrix cell. Resulting scenario leads to a significant number of silent data corruptions in

the target system memory as consequence of dirt registers used for the MM. Underlying

implementations are susceptive to UTs (i.e., unexpected terminations) due to the incorrect

memory address computation caused by registers under fault influence, which may lead

to errors such as segmentation fault. However, the parallel MM presents a substantially

more significant number of UT when compared to the sequential version. This behav-

ior is explained because Pthreads scheduling algorithm increases the application control
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Figure 4.19: TMR-Based Matrix Multiplication execution flow and fault target locations
according Table 4.19. WK refers to working thread.
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flow complexity, which might incur in more wrong address computation during the MM

execution.

4.4.1.1 Triple Modular Redundancy

As identified in the previous Section, the injection of bit-flips severely impacts the

matrix multiplication kernel operation due to its simplicity and small code. Aiming to re-

duce the amount of detected silent data corruptions, we propose the use of the MM-TMR

to improve its reliability by using a well-known fault mitigation technique the Triple Mod-

ular Redundancy (TMR). This technique adopts three independent parallel MM instances

(i.e., six working threads in parallel) enabling one incorrect execution to be masked by

a voting process at the end of MM execution (i.e., a function vote the majority from the

partial results). The TMR version corrects most of the errors originated from the input

and output matrices. Nevertheless, the TMR implementation using the Pthread library

increases the occurrence of UT.

To improve the experiment, we included a custom soft error analysis step, which

compares the four matrices (i.e., each TMR replica and the voter) alongside two additional

error classifications considering three possible outcomes:
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(i) All matrices are identical, in this case, the SOFIA classifies the error according to

one of the five default classes (e.g., Vanish, UT, Hang). Note that OMM and ONA

only occur if the result matrix is correct, and thus being considered benign errors in

this context.

(ii) If one TMR matrix does not match the other replicas, the voter will mask the error

and produce the correct result. Nevertheless, in this case, the simulation diverges

concerning the number of executed instructions from the faultless run, which leads

to a false-positive error (i.e., control flow error with incorrect memory) in traditional

fault injection flows. The SOFIA classifies this execution context as Corrected to

signal the appropriate behavior, (i.e., even with the context mismatching the refer-

ence execution of the final matrix is correct.

(iii) The third possible outcome originates from an incorrect voter execution (i.e., the

three TMR matrices are identical and differ from the voter matrix) due to the fault

injection being classified as Voter Error.

Table 4.19 describes 17 distinct fault injection scenarios targeting the MM-TMR,

while Figure 4.20a shows the results considering a single and quad-core ARM Cortex-A9

processor where each fault injection scenario comprises 8,000 faults. Register-based fault

injection (A, E, and F) displays a considerable amount of UT (i.e., Linux OS segmen-

tation faults in this context), around 40% due to the wrong address computation using

registers under fault influence. In contrast, the memory-based technique errors depend on

the stroke region, for example, targeting the 1 Gb physical memory (using technique B)

would result to a minimal number of errors (i.e., masking rate of 99.95%) as the bench-

mark accesses a limited memory range (i.e., few dozen kilobytes). The complete VM

range (C1) and data sections (C3) present a similar behavior as most of the faults hit the

application 300-wide square matrices due to its size (i.e., each one possessing 360 kilo-

bytes or 20% of application size). The code section (C2) contains, besides the application

code, hundreds of Linux and C libraries unused functions added by the compiler, leading

to higher masking rate. By individually targeting the matrix replicas (D1-3) we exercise

the TMR main functionality resulting in an almost complete error coverage. The fault

campaign D4 leads to a 99.9% masking rate as the final result is composed of the voter

function at the application end, which incurs in a narrow sensitive window (i.e., any faults

previously present in this matrix are overwritten).

Passing the focus to function criticality, groups E (E1-4) targets the function object
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Figure 4.20: MM soft error vulnerability analysis considering a single and quad-core
ARM Cortex-A9 processor.

(a) MM-TMR

A B C1 C2 C3 D1 D2 D3 D4 E1 E2 E3 E4 F1 F2 F3 F4
Fault Injection Techniques

0
10
20
30
40
50
60
70
80
90

100

In
je

ct
e
d
 F

a
u
lt

s 
(%

)

O
N

E
FO

U
R Vanish

Corrected

Voter

ONA

SDC UT Hang

(b) Improved MM-TMR
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code while the F (F1-4) injects bit-flips into the processor register-file during the target

function execution (i.e., the function lifespan). The matrix multiplication kernel has a

compact code of few dozens of lines executing for extended periods, which composes

most of the application execution time. Single and quad-core processors show a similar

rate of correct results (i.e., vanish, SDC, and corrected) when targeting the function ob-

ject code (E1-4). However, their composition diverges while the single-core processor

presents a more significant SDC rate (i.e., the MM result is correct with silent data cor-

ruptions on the memory) the multicore system displays a larger masking rate. Further,

the multicore system reveals a higher number of Hangs due to the longer and more sig-

nificant executions of the PTHREAD scheduling policy leading to unrecoverable control

flow. Random register (A) and Lifespan (F1-3) techniques show similar behaviors under
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fault injection as the MM application spends 95% on those multiplication functions. Di-

rectly targeting the voter function show a behavior not seen when targeting the complete

application with random faults due to its short execution time, and thus, demonstrating

the necessity of more detailed fault injection framework. Subjecting the voter code (E4)

and lifespan (F4) to fault injection causes an erroneous matrix voting, which is a severe

error in this context.

4.4.1.2 Improving the Triple Modular Redundancy

The initial MM-TMR solution provides complete coverage to fault injections for

the replicated data (i.e., the partial matrices) while the control flows still prone to un-

expected terminations. By using the promoted framework, it is possible to pinpoint the

major UT cause as OS segmentation faults in one of the thread replicas that terminates the

complete application even if the other replicas had not experienced any errors. To miti-

gate this issue, we modified the application algorithm to include a segmentation handler

for each replication, and consequently, the improved MM-TMR (MM-TMR-I) finishes

correctly even if one of the replicas generates an OS segmentation fault. The experiments

displayed in Figure 4.20b reproduce the 17 fault injection scenarios mentioned above for

the MM-TMR-I version using the single and quad-core processors. The MM-TMR-I im-

proves the MM kernel reliability by achieving of up to 90% of coverage (i.e., with correct

final results) in contrast to the 50% of the traditional TMR considering register-based fault

injections targeting the replicas working threads. Fault injection techniques (D4, E4, and

F4) targeting the voter function and data remains unchanged without any modification

being made in its code.
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4.5 Closing Remarks

This chapter presented three additional contributions contribution thesis. First,

Section 4.2 compares the accuracy between instruction-accurate (i.e., OVPsim) and cycle-

accurate (i.e., gem5) virtual platforms. Further, Section 4.2.2 explores the relationship

between the instruction-accurate engine and mismatch with the gem5. Performance is

fundamental to early design space explorations, for this purpose this work shows the

OVPsim-FIM peak of simulation speed around 4,000 MIPS considering a quad-core host

processor, Section 4.2.3. The OVPsim improves the simulation performance with larger

workloads in the range of hundreds of billions of instructions, in contrast, both gem5-

FIM atomic and detailed do not show any considerable speed variation by varying the

workload size.

The second portion demonstrates the promoted fault injection framework to eval-

uate distinct design decisions during the initial development phase. This work explores

the novel 64 bits ARM architecture and assesses its reliability under a soft error in Sec-

tion 4.3.1. The larger register file from the new ISA increases the masking rate as the

application fails in taking advantage of the extra registers. Further, this work (Section 4.4)

investigates the impact of parallelization APIs in the overall software stack reliability by

comparing serial, OpenMP, and MPI implementations of the same benchmarks. Fault

campaigns show a smaller incidence of the parallelization API in the overall system relia-

bility due to the limited time ratio of those libraries in comparison with the total execution

time.

The third contribution involves the validation/use of proposed novel fault injec-

tions techniques and error analysis methodologies. In this Section 4.4 we demonstrate

the adaptability to different aspects of the fault injections campaigns scenarios. With the

proposed framework, software engineers can focus the resiliency exploration to specific

software stack components.
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5 MACHINE LEARNING APPLIED TO SOFT ERROR ASSESSMENT IN MUL-

TICORE SYSTEMS

Since the computer science origins, researchers are investigating different manners

to program computers. Usually, by defining the system behavior under any given inputs

and current state (i.e., rule-based programming) as a set of predefined rules. In this way,

the system correct execution depends on its designer ability to transfer the desired behav-

ior into a group of rules. This technique has several limitations: (i) unforeseen events

lead to unexpected behaviors; (ii) new requirements can be not quickly introduced in the

system description. Searching for another approach computer scientists started investi-

gating how to give computers the ability to learn without being explicitly programmed

(SAMUEL, 1959). More precisely, machine learning (ML) is the field of study that uses

the target system past (knowledge) to predict its future behavior (intelligence). In other

words, machine learning is an algorithm or model capable of learning from a collection

of inputs without requiring rules-based programming (i.e., if-else)(AKERKAR; SAJJA,

2016; UNPINGCO, 2016) by transforming this information into actions or predictions

(UNPINGCO, 2016).

Machine learning provides a robust method to solve a broad range of complex

problems, such as weather forecast or oil exploration. ML has already several applications

in our daily life already: For example, a video-on-demand distribution algorithm such as

the employed by Netflix, Amazon, or Youtube can recommend for a user new films and

series based on its past interests. Oncologists are using ML algorithms to uncover early

cancer symptoms by analysis millions of breast image reviews (KOUROU et al., 2015).

In this case, by reviewing an extensive set of images, the ML algorithm is capable of

finding complex patterns, which otherwise would be impossible to achieve by humans.

Machine learning algorithms can be categorized into three broad groups:

• Supervised Learning goal is to predict the effect of one set of observations (i.e.,

input, features, attributes) has on another dependent variable (i.e., output, label,

class). In other words, supervised learning algorithms make predictions based on a

set of training examples using two main approaches: A regression technique mod-

els the target system using mathematical equations producing a continuous value

output (e.g., linear regression) to approximate the target system behavior. Classifi-

cation algorithms divide a data set into smaller subsets by evaluating its attributes

(e.g., decision tree).
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• Unsupervised Learning searches for patterns on unlabeled datasets (i.e., without a

dependent variable output). While supervised learning correlates two groups of ob-

servations, unsupervised learning describes the system features into more abstract

levels of representations. For example, K-means is a well-known example of an

unsupervised learning algorithm to subdivide n observations into k clusters where

each observation belongs to the cluster with the nearest mean.

• Reinforced Learning gains experience (i.e., knowledge) through a series of trial-

and-error training sessions where a cost function calculates reward or punishment

value depending on its prediction. By minimizing the target cost function, the re-

inforced learning algorithm improves the system prediction until reaching a pre-

defined quality threshold.

5.1 Machine Learning Applied to System Reliability

Machine Learning has been employed in different domains in recent years to rec-

ognize patterns and predict the future system behavior. For example, (HASHIMOTO;

LIAO; HIROKAWA, 2017) trains a random forest ML algorithm with multiple TCAD

simulations to estimate the SER of an SRAM Cells. Giurgiu et al. (GIURGIU et al.,

2017) uses field information as a training set for a random forest algorithm to predict a

DRAM number of errors. Considering the challenges involved in soft error assessment,

some researchers are studying the applicability of ML techniques to speed-up its simu-

lation, prediction, or mitigation. Table 5.1 shows a review of the state-of-the-art on soft

error investigation on multi/manycore system using machine learning approaches.

Vishnu et al. (VISHNU et al., 2016) analysis the impact of multi-bit memory

errors targeting both permanent and transient faults on large scale applications. The train-

ing sets consist of fault injections targeting the applications primary data structures. This

work tests eight different ML algorithms and compares their predictions (i.e., the applica-

tion error probability) with the ground-truth (fault injection). This paper shows an average

error detection of 90% considering three applications under the influence of permanent

and transient faults. The fault injection and analysis are tightly coupled with the applica-

tion, requiring an excellent understanding of the application execution.

The work (SUBASI et al., 2017) proposes an online adaptive SDC detection al-

gorithm using machine learning. First, it investigates different supervised ML algorithm
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Table 5.1: Most recognizable virtual platform fault injection simulators.
Year Author Machine Learning Features

2015
(ASHRAF et al.,

2015)
Supervised Learning Linear Regression

2016
(DITOMASO et

al., 2016)
Supervised Learning Decision Tree

2016
(VISHNU et al.,

2016)
Supervised and

Unsupervised Learning

SVM, k-nearest Neighbors,
Decision Tree, and other four

algorithms

2017
(SUBASI et al.,

2017)
Supervised Learning

Linear Regression, SVM,
k-nearest Neighbors, Decision
Tree, and Ada boost regressor

2017 (NIE et al., 2017) Supervised Learning Artificial Neural Network
Source: The Authors

execution time to select the best suitable for an online detector. The proposed SDC detec-

tor runs after each application iteration, applying one ML algorithm (from five), predicting

the error impact on the system. The system has a high percentage of correct predictions,

99%, over eleven HPC applications.

Nie et al. (NIE et al., 2017) collects several parameters (e.g., power, GPU error

logs, and temperature) of a supercomputer during four months. This work correlates

these pieces of information for each node searching for error patterns hidden in this big

data problem. After an initial statistical analysis, this work employs an artificial neural

network to predict the GPU error probability in different conditions.

(ASHRAF et al., 2015) studies the propagation of transient errors on large-scale

MPI application (i.e., up to 1000 cores). This work introduces additional instructions in

the application code using the LLVM Intermediate Representation (IR) to inject faults and

check for errors. Further, this instrumentation tracks the “error” through several MPI pro-

cess by monitoring communication messages, load-store operations, and function calls.

With this information, the authors create fault propagation models to estimate the number

of corrupted memory locations.

(DITOMASO et al., 2016) measures several NoC parameters such as temperature

and wearing to feed an error prediction model called VARIUS. The VARIUS provides the

error probability for different types of faults depending on the input parameters. All this

information is supplied to a decision tree which predicts on-the-fly if a specific link will

suffer No Error, Few Errors, or Many Errors before any package transmission. Accord-

ing to the model output, the proposed system adjusts the packet mitigation level using

CRC. SECDED, or retransmission. This mitigation technique requires a two CRC, four
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SECDED, the decision tree, and control modules in every system router.

5.2 Problem Description

Soft errors reliability assessment is a time-consuming process which requires ex-

tensive fault injection campaigns, in some cases, taking thousands of simulation hours.

Accelerating assessment of soft errors impact on the system design during early design

space explorations (DSE), particularity, in the software stack, is one these Thesis goals.

For this purpose, it was two virtual platforms to provide a flexible and fast fault injection

framework, adequate for such explorations. Nevertheless, even virtual platforms cannot

provide adequate fault coverage when executing more realistic workloads. For exam-

ple, this work longer simulation (i.e., EP) takes 12h hours of simulation for a single run

to execute only 50 seconds of the real system time. Note that this simulation targets a

single-core ARMv7 processor, memory, and cache using the gem5 atomic mode. During

early DSEs, the target application undergoes several cycles of reliability optimizations to

meet the desired system constraints. How can we reduce the number of fault injections

(i.e., computational cost) and aid the software engineer to improve the system reliability?

5.3 Proposed Solution

Machine learning techniques are being employed to predict and model systems

behavior considering multi-parameter optimizations. However, the reviewed works target

distribute HPC applications using the ML approach to overcome the inherent overhead

from such scenarios simulation. This work proposes the utilization of multiple machine

learning techniques to improve multicore systems software stack design during early ex-

plorations. Figure 5.1 shows the traditional application development cycle without any

modifications (a,b,d and e) and the proposed solution. The software engineer describes

the application and system in the first step (a), e.g., architecture, compiler, libraries, # of

cores. The second phase (Figure 5.1b) display the traditional soft error vulnerability com-

pressing a random fault injection campaign. Any fault injection flow can be adapted in the

promoted solution, such as the ones based on FPGAs, VHDL simulation, and virtual plat-

forms. For this work, we explore cycle and instruction-accurate virtual platforms in this

role. Using this information, the software engineer recommends a mitigation technique



114

or application modification (Figure 5.1e) according to the target system (f) requirements.

Figure 5.1: Proposed system design cycle using machine learning.
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The proposed solution adds two new development phases in the original flow (Fig-

ure 5.1a,b,e,f): Characterization (c) and error symptoms detection (d). The characteriza-

tion phase facilitates the access to raw gem5 microarchitectural parameters for an initial

exploration. Software engineers can interactively search for parameters of interest (e.g., #

of loads and stores) and compare with previous iterations or workloads. The application

characteristics vary during the development cycle by algorithms or system modifications.

This phase enables the user to evaluate the software adjustments impact on the system

reliability over multiple iterations.

This work proposes an exploratory flow (Figure 5.1d) to find the soft error cor-

relations with multiple application characteristics. This flow applies supervised and un-

supervised machine learning techniques to investigate the correlations between the fault

injection results (i.e., vanish, hang, ONA, OMM, UT) and the application characteristics

(e.g., cache statics, # of branches) without the presence of faults. This phase goal is to

reduce soft error assessment time during early design stages by examining the impact of

these characteristics on the application reliability. This work proposes a fully automated

and standalone tool capable of searching and identifying the individual (or combinations

of) parameters which present the most substantial relationship with each detected soft er-

ror. Initially, the investigation considers the microarchitectural information provided by

the gem5 simulator (e.g., memory usage, application instruction composition). This tool

collects over one million single fault injection raw outcomes alongside gem5 simulation

reports to create statistical figures (e.g., the percentage of Vanish, Hangs) for each one of

the explored scenarios. In possession of this database, the proposed framework applies

supervised and unsupervised learning techniques to produce a model of each feature im-

pact on the system reliability. With this observations, the software engineer may choose

to alter the application or optimize the system parameters.
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5.4 The Promoted ML Investigation Tool

This section provides an overview of multiple ML-related techniques developed

in the promoted tool. The tool provides a generic exploration framework using machine

learning supervised and unsupervised techniques to highlight the most relevant features.

Initially, this framework combines two data sources: the gem5 microarchitectural statis-

tics and the soft error vulnerability. However, its interface enables adoption of other in-

formation sources according to the investigation goals and direction. Further, exploration

flows and other techniques can be created or modified because of the tool data structure

parametrization on intermediate steps.

The proposed framework was developed using Python, taking advantage of avail-

able ML frameworks, in particular, the Scikit-learn module. Why Scikit-learn? Since its

release in 2007, Scikit-learn (PEDREGOSA et al., 2011) has become the most widely-

used, general-purpose, open-source machine learning modules that are popular in both

industry and academia. Further, this work adopts the pandas (MCKINNEY, 2011) mod-

ule which provides a data structure designed for large-scale explorations. Besides this two

modules, several other libraries where employed, such as matplotlib, numpy, scipy, mul-

tiprocessing. Sections 5.4.1 to 5.4.3 display multiple techniques to acquire and process

the features embedded in the proposed tool.

5.4.1 Feature Acquisition

Feature acquisition comprises the data preparation phase of any ML framework,

where the relevant information should be extracted from the raw input files. The promoted

framework collects features from different sources requiring precise knowledge of the file

format. The tool splits each file line into sub-strings considering the format parameters

arrangement, dropping unnecessary information to reduce the memory usage.

5.4.1.1 Pandas DataFrames

Machine learning algorithms demand large amounts of raw data requiring an op-

timize storage method to reduce the memory utilization and increase its execution perfor-

mance. Pandas is a popular python module which provides robust, expressive, and flexi-

ble data structures for data science applications. For 2D problems, the Pandas supports a
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rectangular grid data structure called dataframes (DFs). Unlike a matrix, it supports hier-

archical multi-level index enabling sophisticated data analysis and manipulation. Further,

each cell holds an object pointer enabling the combination of different data types nu-

meric, character, logical in the same structure. Dataframes can be merged, concatenated,

divided, and manipulated in multiple ways facilitating the access to data subsets data.

The raw input is transferred to a single dataframe where columns represent fea-

tures (i.e., soft errors and microarchitectural) while rows represent the fault injection sce-

narios. This dataframe has several missing cells (represented as NaN) because not all

scenarios have the same microarchitectural elements (e.g., number of cores). The missing

data are replaced by zeros when necessary to enable the correct algorithm execution. An-

other dataframe functionality is the possibility to export and import data structures from

comma-separated values (CSV) files. The promoted framework enables pre-processing

or fast-forwarding some exploration steps, reducing the investigation time.

5.4.2 Feature Transformation

The features original representation may be not suitable to be used as input in the

ML algorithms. For example, some algorithm requires float-point or integer values or

the target information may be scattered across several columns. In this context, feature

transformation is a set of techniques which creates new features using the already existing

ones.

5.4.2.1 Rescaling

Some machine learning techniques perform complex equations using high-dimension

equations where the data magnitude impacts on the algorithm performance. For example,

a nominal value of 1000 performs worst than the value 10. For this purpose, this work

adopts a Min-Max Scaler method that transforms features by re-scaling the features. In

this work, we rescale all features to a range between 0 and 10, which yield the best per-

formance. This range improves the average performance of the scikit-learn methods due

to the smaller range from 0 to 10 instead of 0 to billions.
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5.4.2.2 Normalization

The normalization function is another popular resize adopted method which scales

the input vector individually to the unit norm (vector length) or another value. Each

resizing function impacts the target data differently (e.g., flatting the values), the proposed

tool support distinct methods according to the target technique.

5.4.2.3 Merging Similar Features

Multiple features may contain similar information, and merging them is possible

to highlight this behavior. For instance, the gem5 provides microarchitectural informa-

tion subdivided by core, and consequently, the number of parameters depends on the

target architecture. This feature transformation merges ’similar’ gem5 parameters to get

a statistical figure representing the entire processor which can have multiple cores. For

example, merging the number of branches for each core creates a new feature describing

the processor behavior.

5.4.2.4 Feature Combination

The feature transformation goal is to increase the data information gain by high-

lighting second-order correlations between features. By multiplying or adding arbitrary

features, it is possible to emphasize any hidden relationships between variables. This

function multiplies or adds two features (columns) from a dataframe using all possible

column combinations. The generated columns are concatenated with the original DF.

5.4.3 Feature Selection

Selecting the relevant feature subset is crucial in any machine learning algorithms.

Reducing the dataset improves the problem readability, shortens the training time, reduces

the exploration dimensional space, and decreases the overfitting.

5.4.3.1 Variance Threshold

This technique removes features with low variability from the dataset (e.g., re-

moving the features constant values). Further, the variance threshold method targets only

the features (i.e., microarchitectural values) and not the labels (i.e., soft error analysis). If
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the feature has a lower variation, usually a constant value, it carries a reduced amount of

information and can be removed.

5.4.3.2 Principal Component Analysis

Figure 5.2: Principal Component Analysis.
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(b) Linearly Dependent Data.
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(c) Random Data.
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Principal component analysis (PCA) is a mathematical method to reduce a dataset

dimensionality by providing a set of orthogonal vectors indicating the maximum variance

direction. Figure 5.2 shows random collections of points in orange and the black arrows

represent the PCA components. The arrows indicate the direction and magnitude of the

dataset variation when linearly dependent (Figures 5.2a and 5.2b) while a random dataset

provides an arbitrary direction (Figure 5.2c). This work searches for the microarchitec-

tural parameters with a significant impact on the application reliability. In this context,

the PCA provides a fast approach to find linearly dependent variables that maximize a

particular direction. By observing the components strength and direction (i.e., angle) it

is possible to search the ones highlighting a strong correlation with the fault injection
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outcome. A greater X-axis variation (i.e., soft error) has more relevant information (Fig-

ure 5.2a) than a group with higher correlation (Figure 5.2b) with a high angle principal

component (i.e., close to 90° or 0°).

5.4.3.3 Linear Regression

Linear regression models the relationship between two scalar variables, one depen-

dent variable, and one explanatory variable. This technique searches for the best-fitting

straight line through the data points usually using a least squares approach. By analyz-

ing the model angle and accumulated error it is possible to rank the features (Y) with a

stronger impact on the soft error assessment (X).

Y = αX + β (5.1)

5.4.3.4 Correlation Coefficient

A correlation coefficient measures statistical dependence between two variables.

In other words, this function describes two variables relationship through a score number

between +1 and -1, where 0 represents the absence of correlation, 1 a complete correla-

tion, and the sign gives the correlation direction. Pearson’s is the most widely adopted

correlation coefficient, and it measures linear relationships between two variables. Pear-

son’s correlation coefficient is the covariance of the two variables divided by the product

of their standard deviations.

ρ =
cov(X, Y )

σxσy
Pearson’s correlation coefficient

Further, it can be affected by strong outliers in a given dataset. For this purpose,

Charles Spearman proposed a nonparametric measure of rank correlation to assess two

variables monotonic relationship. A monotonic relationship means that two variables

tend to towards the same relative direction, not necessary at an equal rate. By using

ranked variables, the Spearman’s coefficient presents a more robust solution to skewed

points.

ρs = 1− 6
∑
d2i

n(n2 − 1)
Spearman’s correlation coefficient

The coefficient selection is dependent on the raw dataset and its distribution. It is
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possible to filter features from a dataset by analyzing the ones with higher coefficients.

Figure 5.3 shows four distinct datasets of 100 points considering the Spearman’s and

the Pearson’s coefficient. First, Figure 5.3a shows random points with no dependence.

Both coefficients have a similar performance in linear dependence scenarios (Figure 5.3b),

while the Pearson’s suffers from strong outliers (Figure 5.3c). Figure 5.3d displays a more

monotonic dataset, where Spearman’s has a better score.

Figure 5.3: Principal Component Analysis.
(a) Random.
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5.4.3.5 Recursive Feature Elimination

Recursive Feature Elimination (RFE) uses a given external estimator to prune a

dataset until a target number of features. It employs the estimator coefficient to recursively

remove features, creates a model, and calculates its accuracy. The Scikit-learn provides an
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RFE wrapper method for an arbitrary estimator. This work explored a linear regression,

Huber Regressor, and among other estimators. The quality of the selection depends on

the estimator capability to classify different features relevance for the accuracy model.

5.4.3.6 Euclidean Distance

In the original data or due to transformations columns in the dataframe may have

(almost) identical values. Removing such features improve the training time without re-

ducing the dataset information. This method computes the Euclidean Distance between

two features, removing it if they are closer then a predefined threshold.

5.4.3.7 Soft Error Score

Microarchitectural information (i.e., features) comes in multiple ways and they

represent a wide range of parameters such as cache misses, # of float instructions, or

virtual memory page size. Each one has a different distribution, and for example, the vir-

tual memory page size has few possible constant values while the # of float instructions

ranges from zero to billions. Sometimes, parameters are constant for one application

while fluctuates in another benchmark execution. Figure 5.4 shows six common feature

arrangements found in the raw data from the gem5 microarchitectural statistics, for ex-

ample, Figure 5.4a display a random value distribution. Figures 5.4b and 5.4c exhibit

two linear relationships being the first one stronger while Figures 5.4d and 5.4e display

constant features (i.e., independent from the soft error). Finally, Figure 5.4f demonstrates

the average behavior of raw features, mixing some linear behavior, outliers, and constant

values.

Applying one feature filtering algorithm does not provide the target results (i.e.,

the microarchitectural features with higher impact on the system soft error reliability). For

instance, the correlation coefficients perform poorly on noise dataset (Figure 5.4f) where

the relationships exist among other types of data (e.g., constant values). The PCA can

find the maximum growth direction in complex features. However, it can result in false-

positives depending on the data distribution (Figure 5.4e) Regression model provides a

more robust solution without presenting a general solution. Further, applying multiple

filters in sequence results on a small dataset with a significant amount of false-positive

solutions.

For this purpose, this work proposes a filter score (i.e., from 0 to 1) to measure
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Figure 5.4: Different of feature combination extracted from the gem5.
(a) Random distribution.
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(b) Strong linear dependency.
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(c) Weak linear dependency.
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(d) Constant value.

1.0 0.5 0.0 0.5 1.0 1.5 2.0
Features

0.5

0.0

0.5

1.0

1.5

2.0

2.5
S
o
ft

 E
rr

o
r

PCAPCA

Spearman correlation=-0.50
Pearson correlation=-0.00

Regression Model

poly linear rbf

(e) Multiple constant values.
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(f) Usual feature shape.
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the feature quality according to the target soft error problem. This score results from sev-

eral algorithms simultaneous execution, in other words, the PCA, regression, and other

techniques are computed in a single step. These outcomes are standardized in values be-

tween 0 and 1 to remove the parameter magnitude from the equation. The score computes

the PCA first component, the Pearson’s correlation coefficient, variance, dispersion score,

and linear regression. Pearson’s is preferable due to its smaller sensibility to false-positive

linear relationships. Linear regression models with a 45° (from the origin) represent the

optimal correlation between two dependent variables, increasing or decreasing this angle

shows a weaker correlation.

The selection process computes the Soft Error Score for all columns in the target

dataframe. The tool ranks the features by the score selecting the first N most significant

values. This technique provides both filtering and ranking in a single technique, reducing

the number of feature selection steps.

5.5 Exploration Flow

Considering this Thesis first exploration objective (i.e., to find gem5 microarchi-

tectural statistics that affect the most the fault injections outcome) an automated explo-

ration was proposed. Figure 5.5 shows this exploration execution flow which can be

divided into three main phases.

5.5.1 Phase 1 - Feature acquisition and data homogenization

The tool searches for the input files and reads one by one, extracting the relevant

information (Figure 5.5a). Thus, two dataframes are created (b) where lines represent

individual fault campaign scenarios (e.g., varying the # of cores, kernel, application) and

the columns store the soft error (labels) or the microarchitectural statistics (features). The

soft error DF is guaranteed to be complete (i.e., every cell has a value), however, the

features depends on the scenario leaving unfilled data. Empty data points are replaced

with NaN values (i.e., not a number) in the dataframe rectangular grid to retain a regular

shape. Machine learning methods do not handle correctly abstract values, for this purpose,

NaNs are replaced by zero in the features DF (c).
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Figure 5.5: Proposed Automated Flow.
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5.5.2 Phase 2 - Unidimensional Feature Transformation and Selection

The second phase creates a new set of features by combining parameters from mul-

tiple cores. For instance, the gem5 report summarizes the # of float instructions by individ-

ual core (e.g., system.cpu0.num_fp_insts, system.cpu1.num_fp_insts, system.cpu2.num_-
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fp_insts). By merging the multiple related features (Figure 5.5d), it is possible to have

the cores and the complete processor behavior. These reports provide most parameters

as nominal values (e.g., system.cpu0.num_fp_insts, system.cpu0.op_class::MemWrite)

which depends on the target application execution time (i.e., # of instructions). A di-

rect comparison between two applications may no result in an evident relationship due

to the distinct data magnitudes. For instance, if an application A has 1,000 branches and

another B has 5,000 may leads to a distinct conclusion then analyzing the branch partici-

pation (i.e., divided by the # of instructions). To expand the exploration, the tool creates

a second features DF where all columns are divided by the application # of instructions

(e). Similarly, it is necessary to remove the magnitude variance from the features by re-

sizing their range between 1 to 10 (f), enabling a fair comparison between features. This

transformation also improves several machine learning techniques performance. Finally,

the tool reduces the total number of features (i.e., independently from the soft error) by

eliminating the ones with lower variance (g).

5.5.3 Phase 3 - Multidimensional Feature Transformation and Selection

Until this point, the exploration flow was restricted to a single dimension (fea-

tures). When considering the adopted soft error classification (i.e., vanish, hang, ONA,

OMM, UT) the exploration becomes a five-dimensional problem. To reduce the com-

putational cost, this flow performs five bi-dimensional investigations, each class against

the features DF. First, the tool prunes the features from few thousand to 50 using the

proposed Soft Error Score employing both features and labels (i.e., error classification)

(Figure 5.5h). Then, this reduced dataframe suffers two feature combination transforma-

tions: (i) addition and (j) multiplication. In other words, the tool adds and multiplies

the fifty columns in every possible combination leading to a total of 5000 new features.

Again, this significant dataset is pruned to the 50 most relevant features using the Soft

Error Score which also provides the ranking of features (k). The tool automatically plots

each feature and label with its Spearman’s, Pearson’s, and Soft Error Scores alongside the

PCA and three regression models.
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5.6 Results

5.6.1 Training Set Selection and Bias

Selecting a representative training set is paramount to have a meaningful result

from any machine learning technique, i.e., the input dataset caries a bias leading to dif-

ferent outcomes. The algorithm accuracy depends on the acquired data, in other words,

by judiciously reducing or increasing the training set it is possible to achieve different

goals. This work collects inputs from multiple applications representing a large number

of algorithms during a broad investigation. At the same time, the data has serial, OpenMP,

and MPI benchmarks which can be broken down into distinct explorations with different

results. Table 5.2 display the available training sets.

Table 5.2: Available training sets.

Arch Short Description Scenarios
Fault

Injections
V7 WCET WCET Serial 35 280,000
V7 MIB Mibench Serial 19 152,000
V7 SER Nasa NPB Serial 10 10 160,000
V7 ROD Rodinia OpenMP 16 128,000
V7 OMP Nasa NPB OpenMP 30 40 560,000
V7 MPI Nasa NPB MPI 25 32 456,000
V8 OMP Nasa NPB OpenMP 40 320,000
V8 MPI Nasa NPB MPI 32 256,000

Total 289 2,312,000

Source: The Authors

To exemplify this behavior this work compares one parameter exploration by vary-

ing the training dataset. Additionally, this exploration targets the Unexpected Termination

(UT) soft error class. First, Figure 5.6 shows the branch parameter using distinct inputs:

All scenarios (i.e., serial and parallel) (Figure 5.6a), Parallel (i.e., OpenMP and MPI) (Fig-

ure 5.6b), only MPI (Figure 5.6d), and only OpenMP (Figure 5.6c). Considering every

possible scenario, the # of branches has a not negligible relationship with the UT occur-

rence. However, both Spearman’s and Pearson’s describe a weak to medium correlation

due to the prevalence of random data points. This interrelationship increases when re-

stricting the ML inputs to parallel applications which are composed of MPI and OpenMP

applications. Further, Figures 5.6c and 5.6d breaks down the individual components of
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Figure 5.6b, where the MPI applications visibly demonstrate a strong interaction between

the number of branches and UTs. The three adopted coefficients (i.e., Spearman, Pearson,

and soft error scores) exhibit this pattern by increasing 25% on average. By selection, the

most appropriate training set is possible to reduce the error or focus on a smaller target

population.

Figure 5.6: Example of training set bias.
(a) All Scenarios.
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(b) MPI and OpenMP.
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(c) OpenMP.
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(d) MPI.
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5.6.2 Characterization

The following subsection discusses the characterization phase (Figure 5.1c). We

select the Nasa NPB OpenMP and MPI benchmarks because they display a more interest-
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ing and realistic scenario considering multicore systems. The characterization precedes

the machine learning execution, enabling the access to every parameter available. This

phase enables the comparison between multiple applications in order to create subgroups.

Also, it is possible to profile the target application in multiple execution scenarios (e.g.,

distinct compilation flags).m Figure 5.7 shows these benchmarks soft error (red) and mi-

croarchitectural parameters (blue) divided by application (e.g., EP, LU). For this example,

we selected six relevant parameters:

(i) CPU/MEM : The ratio between the number of ALU operations and the number

of memory accesses, both write and read. A larger number means a CPU-bound

application and a smaller one a Memory-bound.

(ii) Func Calls : The concentration (i.e., this instruction occurrence divided by the

number of simulated instructions) of function call instructions.

(iii) Cond Ctrl : The concentration of instructions with conditional control.

(iv) Branches : The concentration of branch instructions.

(v) FP : The concentration of float-pointing instructions.

(vi) Sim Insts : Total number of simulated instructions.

This initial investigation phase provides some useful insights in training sets (e.g.,

OpenMP, MPI). It is visible the large concentration of branch instructions in the OpenMP

applications lead to UTs and hangs due to its parallelization nature as previously dis-

cussed. More significantly, it is possible to divide the application into subgroups among

the datasets to explore similarities among the benchmarks. For instance, LU, MG, and SP

are CPU-bounded with a high concentration of function calls. Further, the combination of

both parameters correlates with the OMM (i.e., memory silent data corruptions) presence

during fault campaigns. Next subsections explore the results extracted using the proposed

tool also considering this characterization phase possible insights.
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Figure 5.7: NPB characterization.
(a) OpenMP.
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5.6.3 Branches and Function calls

Control flow statements (e.g., for, if, else, while) are the fundamental bedrock of

any programming language. The ability of conditionally executing code portions enables

software engineers to create more complex algorithms where jump, branch, and function

call instructions fulfill the control flow function at the assembly level. Any fault in such

instructions typically causes unrecoverable errors (e.g., segmentation faults). The tool

provides preliminary results for investigating the impact of control flow instruction in the

application reliability. Figure 5.8 shows the effect of the branch instructions concentration

(i.e., the number of branches divided by the total of instructions) on the soft error vulner-

ability considering multiple training sets. None of the fault injection classes demonstrate

a strong correlation with the branch concentration due to the diversity of input scenarios

such as serial and parallel applications, with execution time varying from 10 million to 87

billion instructions, from one to eight cores.

Figure 5.8: Branch instruction impact on the soft error classification.
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The training sets wide range conceals several individual relationships, in particu-

lar, how multicore applications behave under this conditions. For this purpose, Figure 5.9

display the branch instruction concentration focusing on the NPB MPI (Figure 5.9b) and

OpenMP-based (Figure 5.9a) applications which presents a more extensive workload and
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better scalability. The execution time of the NAS suite ranges from 300 million to 87

billion instructions, from one to eight cores. Note that the host Linux kernel (i.e., 4.3 or

3.13) shows no direct impact on the application reliability for this particular set of appli-

cations. Due to the NPB has a very long execution time (i.e., 16 billion instructions on

average) only a fraction of this total is dedicated to the kernel. Consequently, direct faults

injections in the Linux inner workings are extremely rare.

Considering the impact of the number of branches on the software stack reliability

(Figure 5.9), note how the OpenMP benchmarks exhibit a weaker relationship than the

MPI ones. OpenMP and MPI have distinct behaviors under fault injection, for example,

the OpenMP relies on loop (i.e., for-while) parallelizations leading to a greater branch

presence. In contrast, MPI applications show a more considerable influence of the number

of branches on its soft error vulnerability, especially, when considering the Hang, UT, and

OMM classes. Hang errors arise due to severe control flow errors (e.g., incorrect iteration

counter), UT is an unexpected application termination (e.g., wrong address calculation),

and an OMM results from an application finishing with an incorrect memory. Both Hang

and UT show a direct and positive correlation while OMM a negative correlation, in other

words, the occurrence of Hang and UT increases at the same time that the OMM reduces

considering MPI applications. In this case, branch errors lead to Hangs or UTs which in

other circumstance would finish with an erroneous memory.

Function calls are a particular type of control flow instruction which simultane-

ously changes the program counter and stack pointer. Observing the Hang error (see

Figure 5.10), both MPI and OpenMP applications reliability improves when increasing

the # of function call until a saturation point. The UT class follows the Hang behavior

(Figure 5.10b) while the OMM presents an inverse correlation. Additionally, the distinct

effect of the OMM versus Hang and UT is similar to the one displayed by the branch on

MPI-based benchmarks (Figure 5.9b). Analyzing individual parameters not always ex-

pose direct relationships between profiling data and fault injection campaigns. By com-

bining both figures, nonetheless, is possible to uncover strong correlations between this

new index value (i.e., number of function calls times number of branches). Figure 5.11

exemplifies this behavior, note that this new index value and the Hang percentage in-

creases simultaneously, an observable behavior through several scenarios for both MPI

and OpenMP. The tool main ability is to combine multiple features to highlight previously

unknown correlations leading to a profound understatement of the scenarios behavior.

As previously mentioned, particular applications can be grouped into subgroups
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Figure 5.9: Branch instruction impact on the soft error classification targeting parallel
applications.

(a) NPB OpenMP.
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(b) NPB MPI.
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according to their similarity. LU, MG, and SP form one of such collections as they are

CPU-bounded with a high concentration of function calls. The three applications reliabil-

ity (i.e., vanish rate) improves as the as the index (i.e., function calls times the branches)
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Figure 5.10: Function calls impact on the soft error classification targeting parallel appli-
cations.

(a) NPB OpenMP.
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(b) NPB MPI.
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grows, also noting how the OMM occurrence also decreases in Figure 5.12a. Reads and

write operations in memory-bounded algorithms usually move these fault values to the

memory. Instead, their CPU-bounded nature leads to longer vulnerability windows, i.e.,
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Figure 5.11: Proposed index impact on the soft error classification targeting parallel ap-
plications.

(a) NPB OpenMP.
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(b) NPB MPI.
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the data remains in the exposed register-file longer. In this particular applications, func-

tion calls have a rejuvenating effect by restoring old registers values saved during earlier

iterations. This behavior is more explicit in Figure 5.12b by visualizing the same data
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Figure 5.12: Proposed index targeting the LU,SP, and MG applications.
(a) Resizing both axis.
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(b) Unmodified soft error values.
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without resizing the soft error (Y) axis.
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5.6.4 Memory Transactions

Figure 5.13: Integer and Float-pointing (FP) memory access instructions impact on the
soft error classification targeting parallel applications.

(a) NPB OpenMP Integer Mem. Access
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(b) NPB MPI Integer Mem. Access
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(c) NPB OpenMP FP Mem. Access
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(d) NPB MPI FP Mem. Access
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At instruction level on a RISC processor, the address generation of memory access

operations (e.g., load and stores) can be compromised by soft errors as the source register

faults lead to wrong address calculations. The reduced number of ARMv7 registers to

perform address calculations leads to the use of load/store templates by the compiler to
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diminish the computational cost of register recycling. In other words, the ARMv7 com-

piler continuously utilizes the same register to perform memory transactions (e.g., R0–3

and SP). Figure 5.13 shows the soft error results (e.g., Vanish+OMM+ONA, UT, Hangs)

alongside the memory access figures both integer and float-pointing (FP). Vanish, OMM,

and ONA where clustered into a single group to investigate the UT and Hang incidence.

Increasing the number of load/store operations can lead to a more significant UT and

Hang occurrence in MPI applications using an OS on top of the ARMv7 processor (Fig-

ure 5.13d). In applications such as MG and IS the increasing percentage of memory trans-

actions (i.e., load and stores instructions) display a growing occurrence of hang and UT.

For example, MG MPI application memory-oriented operations for single and quad-core

processors are 15%, and 22% while the UT occurrence increases from 22% to 30%. DT

and DC have a less pronounced behavior due to its limited execution time approximately

500 million instructions while the NPB average floats around 16 billion. In contrast,

the OpenMP-based applications exhibit no direct impact of the # of load/stores in the

Hang/UT incidence. The OpenMP library parallelizes the for statements and to achieve a

higher performance the loop index remains on the register-file (i.e., reducing the memory

access for branch executions). In Figure 5.13c varying the number of memory accesses

has no apparent correlation with the UT and Hang occurrence on OpenMP benchmarks.

The ARMv7 workload for a single faultless execution has an instruction count

that ranges from 299 million to 87 billion, with an average of 16 billion of instructions. In

contrast, the 64-bit architecture applications execute in average 654 million instructions,

varying from 41 million to 3 billion. Applications executed using the ARMv8 ISA present

a significant performance improvement when compared to the ARMv7. This performance

gain can be pinpointed to the removal of several legacy features (e.g., fast and multilevel

interruptions, conditional instructions) and to significant improvements in the floating-

point unit by adding new specialized instructions and increasing the FP register file. The

ARMv7 often resorts to the ARM software FP library to perform some operations and

thus increasing execution time due to automatically compiler decisions. The 64-bit archi-

tecture exhibits a similar behavior considering FP memory transactions, supporting the

claim above that wrong address calculation related to memory access, as FP instructions

are exclusively used for computation and not for control flow operations (e.g., branches

and jumps). The ARMv8 architecture has a higher percentage of float-pointing instruc-

tions than the ARMv7. Figure 5.14 displays several scenarios of soft error analysis and

FP memory figures. Reducing the memory transactions participation from the total num-
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Figure 5.14: Integer and Float-pointing (FP) memory access instructions impact on the
soft error classification using a 64-bit ARMv8 architecture.

(a) NPB OpenMP Integer Mem. Access

0 1 2 3 4 5 6 7 8 9 10

Feature: Mem Insts

0
1
2
3
4
5
6
7
8
9

10

S
o
ft

 E
rr

o
r:

 U
T

PCA 1st
PCA 2nd

r 0.419 ρ 0.007 rs 0.499 ρs 0.001 M 0.466

0 1 2 3 4 5 6 7 8 9 10

Feature: Mem Insts

0
1
2
3
4
5
6
7
8
9

10

S
o
ft

 E
rr

o
r:

 H
a
n
g

PCA 1st

PCA 2nd

r -0.019 ρ 0.908 rs -0.586 ρs 0.000 M 0.182

0 1 2 3 4 5 6 7 8 9 10

Feature: Mem Insts

0
1
2
3
4
5
6
7
8
9

10

S
o
ft

 E
rr

o
r:

 V
a
n
+

O
M

M
+

O
N

A

PCA 1st

PCA 2nd

r -0.465 ρ 0.002 rs -0.543 ρs 0.000 M 0.510

Training Sets
BT
CG
DC
EP
FT

IS
LU
MG
SP
UA

Regression
poly linear rbf

(b) NPB MPI Integer Mem. Access
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ber of executed instructions for LU and SP applications show a UT occurrence reduction

trend. FT and UA MPI applications reinforce this hypothesis by demonstrating that a

constant memory-oriented instruction incidence leads to a regular UT percentage.
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5.7 Case Study

Following Figure 5.1, this case study first selects and design the target applica-

tion. Nowadays self-driven cars capable of automatically steer and guide the vehicle is

being tested. Such systems should be able to analyze the real word, make decisions, and

perform actions resulting in a complex software stack with multiple algorithms. Visual

odometry (VO) is one of the most critical subsystems, which is the process of determin-

ing the position and orientation of a robot by analyzing the associated camera images. In

other words, the VO system uses a sequence of images to determine the vehicle traveled

path. This work applies the acquired knowledge with multiple characterized benchmarks

and the proposed machine learning tool in a real-life scenario. For this case study, we

selected the LIBVISO2 (GEIGER; ZIEGLER; STILLER, 2011) visual odometry library

developed by the Karlsruhe Institute of Technology (KIT). The library and dependen-

cies are compiled using the arm GCC cross-compiler with hard float-pointing and single

instruction, multiple data (SIMD) flags enabled. Our LIBVISO2 setup uses the KITTI

Vision Benchmark Suite (GEIGER; LENZ; URTASUN, 2012b) which is composed of

22 stereo odometry sequences from real-life vehicle trajectories. Figure 5.15 shows two

input frames of the benchmark 11 from the KITTI suite alongside the algorithm predicted

path and ground truth.

The initial exploration comprises four fault injection campaigns targeting the bench-

mark 11, each one compile with a different optimization flag. Further, this first investi-

gation is restricted to 100 frames from a total of 920 where the fault campaigns are per-

formed by the OVPsim-FIM as described in Section 3.5. The OVPsim-FIM presents a

flexible and fast fault injection framework enabling more complex soft error vulnerability

explorations. While the characterization phase deploys the gem5-FIM (Section 3.5) to

extract the microarchitectural parameters, which also is necessary for the machine learn-

ing investigation. The chosen VPs have differences in the simulation engine without

affecting the target algorithm produced output. Figure 5.15d shows the benchmark 11

execution using the OVPsim-FIM and gem5-FIM which are identical. Figure 5.16 shows

this first exploration fault injection (a) and characterization (b) results. Note how the ap-

plication without any optimization (i.e., O0) has an execution 4.7x times larger than any

optimization flag (i.e., O1-3), from 150 to 32 billion instructions respectively. As result

of this extended execution time results on a more significant number of register opera-

tions (ALU) as shown by Figure 5.16b. Because the compiler optimization reduces the
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Figure 5.15: Visual Odometry benchmark 11.
(a) Input Frame. (b) Input Frame.

(c) Predicted path and ground truth.
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number of instructions between control flow statements (e.g., if) it increases the proba-

bility of Hangs and Unexpected Termination. When comparing the application with code

optimizations (i.e., O1-3) is noticeable a growing number of hang occurrences due to in-

creasing modification in the loop-based snippets. For example, observe the growing # of

branches with more aggressive GCC optimizations.

The visual odometry benchmark was chosen due to its real-life applicability in

self-driven cars which enables a physical representation of the system reliability (i.e., the

traveled path). Figure 5.17 depicts the traveled way (A), # of evaluated frames (B), and the

deviation between the correct and predicted stop point (C) for each algorithm simulation

under fault injection. Lastly, Figure 5.17 (D) shows the scenario (C) restricted to com-

pleted executions (i.e., all frames were evaluated by the algorithm). Figure 5.17a exhibits

these four plots considering no GCC optimization (O0). In this scenario, for instance,

73.12% of the fault injections terminate (i.e., evaluates 100% of the frames), from whom

only four are incorrect. In contrast, when using compiler optimizations, the number of

completed simulations decreases from 73.12% to 55%. In this example (Figure 5.17) the

vehicle travels around 70 meters after processing 100 frames. The error reaches up to

70, where larger values are due to algorithm halts (i.e., UT or Hang) stopping far from
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Figure 5.16: Benchmark 11 initial exploration.
(a) Fault Injection.
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the correct point. The error considering only completed executions achieves up to 0.50m

when compiled with optimizations while the O0 flag has no substantial deviation from the

correct path.

Altering the GCC optimization flags during the compilation is one possible so-

lution to change the application characteristics. Each flag should change the compiler

algorithm to improve assembly code in a specific manner. For example, the unroll loops

option reduces the number of loop iterations, consequently, reducing the number of branch

instructions. The next experiments explore the capabilities of the GCC to influence the

application characteristics aiming to improve its reliability. Compilers, such as the GCC,

have optimization flags enabled by default even when using the argument "-O0". The
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Figure 5.17: Benchmark 11 initial exploration traveled route.
(a) O0.
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(b) O1.
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(c) O2.
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(d) O3.
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first fault campaign as depicted in Figure 5.19a shows the benchmark 11 compiled with-

out any optimization flag under the influence of fault injections. Between the O0 flag

and no optimization at all the final compiled code has not meaningful changes leading
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Figure 5.18: Benchmarks complete execution.
(a) Benchmark 11.
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(b) Benchmark 14.
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to almost identical simulations (i.e., both application execute 150 billion instructions).

Figures 5.17a and 5.19a display this similarity considering the four parameters A-D.

Previous results show a considerable reliability degradation when compiling with

any other compilation (i.e., O1-3) while the O0 has a notable speed reduction (i.e., 4.7x).

Further, the most significative effect occurs when transitioning from O0 to O1, and thus,

we investigate how to improve the O0 performance by adding new compilation flags. The

target application heavenly depends on loops to analyze the images, for this purpose, some

unrolled loops options have been added to its compilation (Figure 5.19b). Also, the next

experiment (Figure 5.19c) mimics the O3 option by using individual optimization flags in-

stead (e.g., -falign-jumps -falign-loops -falign-labels -fcaller-saves -fcrossjumping). This

investigation aims to replicate the O3 effect on the code without directly adding the "-O3"

flag. Individual optimization flags have minimal impact on the final system reliability/per-

formance as they have a minor impact on the compiler behavior. The main optimization

flags (e.g., O0-3) are not just group alias, and they have a direct impact on the compiler

algorithm. In other words, the GCC does not provide full control of these optimizations

leaving the most relevant options hardcoded in the compiler source code. For example,

the benchmark 11 without any optimization simulates 150 billion instructions while the

O3 recreation reduces this amount by only 30 billion when considering 100 frames, still
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Figure 5.19: Exploring the gcc optimization flags.
(a) No optimizations (i.e., removing all possible optimizations flags including the default ones).
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(b) O0 plus multiple unrolling loop options.
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(c) Fabricated O3.
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(d) O3 plus multiple unrolling loop options.
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four times longer than a similar scenario compiled with the O1 flag.

After analyzing the impact of multiple GCC flags on the visual odometry applica-

tion, we extended this exploration to the effects of the traveled path on the accumulated
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error. This exploration uses two input sets from the KITTI suite, the 11 featuring 920

frames and the 14 with 630 frames, and both compiled with the O3 optimization flag.

Figure 5.18 shows the traveled path for each fault injection scenario (A) with a zoom

on the final stopping point (B). The benchmark 11 follows a more straight path leading

to horizontal errors, in other words, the vehicle diverges either to the right or the left

(Figure 5.18a. In contrast, the benchmark 14 after each curve the traveled path leans to-

wards the correct way (dashed green line) as right and left accumulated errors attenuate

each other. However, the vertical error accumulates in a greater magnitude as shown by

Figure 5.18bB. Figure 5.18 also displays the error from the correct stopping point con-

sidering every fault injection (C) and only the ones with complete (i.e., neither Hang or

UT) application (D). Note how the number of completed simulations (in red) remains at

the same levels of the reduced simulations (i.e., 100 frames), around 55% when compiled

with an identical GCC flag (i.e., O3).

Most of the existing software projects use O2 as standard shipping optimization

flag because a four times slowdown is not acceptable. In the impossibility of improv-

ing the software compiled with O0, the last experiment attempts to reduce the number

of unexpected terminations when using the O3 option in the GCC. This fault campaign

(Figure 5.19d) uses aggressive loop and branch optimizations, given more freedom to

the compiler to allocate the instructions orders. Again, it demonstrates the GCC lack of

support to algorithm customizations as most of the code transformations are locked to

hardcoded arguments.

5.8 Closing Remarks

This chapter introduced the basic concepts of machine learning and its applica-

bility to system development. Further, we reviewed the state-of-the-art ML approaches

to improve the reliability assessment of large-scale systems. By observing the lack of

methodologies targeting embedded multicore systems software stack, this Thesis pro-

poses the use of ML algorithms to speed up dependability investigations during early

design space explorations. We proposed a cross-layer investigation tool which performs

multivariable and statistical analyses using the gem5 microarchitectural information com-

bined with fault injection campaigns. This tool enables reducing the number of fault

injection campaigns or improving the mitigation technique efficiency by observing mi-

croarchitectural symptoms. To explore the functionalities of the promoted development
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cycle, we investigated the reliability of a visual odometry algorithm common on self-

driven cars.



147

6 CONCLUSION AND FUTURE WORKS

The continuous transistor shirking features lead to increasing system vulnerability

to high-energy radiation particles causing malfunctions and abnormal behaviors. In this

context, soft errors is an emerging concern in ground-level electronics devices such as

smartphones and self-driven cars. Those systems deploy a complex software stack on top

of commercial processor architectures, which does not possess an inherent fault tolerance

technique. Investigating the system reliability since early design space explorations is

fundamental to achieve a dependable system.

6.1 Contributions

This section briefly resumes this work contributions and achieved results.

6.1.1 Early soft error evaluation

This Thesis presented a flexible and fast simulation framework by including a

pair of fault injectors with complementary characteristics. The instruction-accurate OVP-

sim provides a dynamic and adaptable environment for simulating a myriad of platforms.

However, it lacks microarchitectural (e.g., pipeline) models limiting its utilization when

considering hardware components explorations. To fulfill this gap, the gem5 covers mi-

croarchitectural modeling aspects and thus enabling an early architectural design space

exploration. The precision leads to an order of magnitude in performance loss and a lack

of scalability when comparing to the OVPsim.

HPC evaluations and emerging embedded applications require an early investiga-

tion of the soft error over multi/manycore systems. This work extends the framework from

single to multi/manycore ARM Cortex processor architectures. For the sake of knowledge

of the authors, this is the first work to address multi/manycore fault injection in virtual

platforms. The simulation speed is fundamental to rapid investigate the reliability during

early design stages. For this purpose, we include and enhance the simulation infrastruc-

ture to include new speed-up techniques such as multicore processors, checkpointing, and

distributed simulation.
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6.1.2 Fault Injection Controllability

This Thesis developed new fault injection techniques and analysis tools to trace

the individual software component error source. For example, this extension enables

fault injections onto the virtual memory ranges, functions, variables, among others with a

completely automatic and transparent tool. Additionally, we enhance the traditional error

analysis by including customizable inspections during the application execution. This

enhanced tooling enables disentangling the cause and effect of soft errors from different

software components.

6.1.3 Instruction-accurate fault injection consistency

To investigate the fault injection consistency between two instruction and cycle-

accurate virtual platforms this work performed a comprehensive fault injection campaign.

This evaluation comprised hundreds of scenarios targeting complex software stacks (i.e.,

Linux, parallelization libraries) and multiple hardware configurations (i.e., single, dual,

quad, and octa-core ARM Cortex-A9 and A72 processor models).

6.1.4 Extensive investigation of the software stack impact on the system reliability

This work uses the proposed FI framework scalability to explore early design de-

cisions impact on the system reliability, e.g., architecture, number of cores, ISA, OS,

parallelization library, among other possible configurations. For this purpose, this work

ports high-performance applications, including 35 OpenMP and MPI-based applications

and ten serial from the Rodinia benchmarks and the NASA NAS Parallel Benchmark

(NPB) suites. This work comprises 3,344,000 fault injections which require a total of

2 million simulation hours. During this extensive fault campaigns, we covered multi-

core processors, different parallelization APIs, distinct simulation abstraction levels, and

architectures.
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6.1.5 Using machine learning techniques to explore the software stack reliability

This work proposed a cross-layer investigation tool to correlate microarchitectural

parameters and fault injection campaigns. The investigation uses machine learning tech-

niques such as linear regression to discover hidden relationships between two parameters.

The developed tool helps to uncover critical parameters to the system dependability.

6.2 Future Works

This Thesis proposed collection of soft error evaluation tools enabling the rapid

prototyping of complex systems. To take full advantage of this developed framework

we propose two lines of research: Section 6.2.1 describes a self-aware soft error mitiga-

tion system. In Section 6.2.2, we outline the next steps to build a self-driven reliability

assessment tool.

6.2.1 Soft Error Mitigation

Many/multicore system requires an adaptable and flexible methodology, to dy-

namically evaluate both application requirements and system state. The traditional tech-

niques target a single-thread application with design-time built-in fault tolerance tech-

niques. Emerging manycore systems require flexible and adaptable solutions, capable of

dealing at runtime with the unpredictable occurrence of permanent and transient faults.

In this regard, a checkpoint and restore scheme, called SafetyNet (SORIN et al., 2002),

targeting multiprocessor architecture is proposed. SafetyNet includes 512 kb Checkpoint

Log Buffers (CLBs) to store the node information. The memory consistency uses a logi-

cal time technique to atomize each transaction. Also, the fault detection occurs in parallel

with the normal execution to avoid synchronization barriers. The SafetyNet performance

is tightly coupled with its design parameters: checkpoint granularity and CLB size. Using

a one-million cycles interval and 512 kb dedicated memory leads to a 0.3% overhead. In

contrast, a 5,000 cycles interval achieves a 4% overhead, and a 256 kb CLB has a perfor-

mance degradation up to 50%. (PRVULOVIC; ZHANG; TORRELLAS, 2002) proposes

the ReVive a hardware trade-off between dedicated hardware and performance. The RAM

stores the checkpoint logs and the cache do not require any modification. For instance,
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the fault-free overhead achieves up to 22%.

DepMan (KOKOLIS et al., 2016) is a python-based checkpoint and restore at ap-

plication level. It stores periodical checkpoints for manycore applications without extra

hardware. The DepMan framework continuously evaluates the error rate at the target ap-

plication to estimate the optimal checkpoint interval. Additionally, using the error rate in-

formation the framework improves the application performance by controlling the DVFS

module.

In a multiprocessor system, the task mapping plays a major role in the system per-

formance and reliability. Task mapping algorithms distribute and assign working threads

among the available resources (i.e., processing units - PE). This algorithm should take into

account parameters such as task communication, length, and execution pattern as well the

system environment conditions like the workload distribution, temperature, DVFS, among

others. In recent years the academic begins to explore mapping heuristics aim system re-

liability improve. Chen et al. (CHEN et al., 2016) proposes reliability-aware mapping

algorithm based on Hungarian Algorithm. The algorithm includes the core-to-core fre-

quency on an iso-ISA manycore system, multi-version applications, dateline awareness,

and redundant multithreading. In a similar approach, (DAS et al., 2014) promotes a multi-

goal mapping algorithm considering the aging effects and voltage-frequency variation into

the application soft error tolerance. Also, it deploys selective redundant multithreading

to increase the application reliability. The main mapping algorithm uses a genetic sorting

algorithm with the considered parameters.

Task migration mechanisms can be explored to mitigate the soft error occurrence.

On (CHAKRAVORTY; MENDES; KALé, 2006), the solution employs the virtual pro-

cessor concept to abstract an MPI applications. A manager maps the virtual processor to

physical processor, which has the inherent capability to migrate virtual processor. Tasks

are migrated whenever a fault warning arises. The MADNESS (MELONI et al., 2012)

approach includes a self-test hardware to detect permanent faults and TMR replications.

After an error detection, each processor has a built-in task migration hardware to move

the task to another processor.

Bolchini et al. (BOLCHINI; MIELE; SCIUTO, 2012) proposes an online and

adaptive fault tolerance approach for a P2012 16-core cluster system. This approach

modifies the task dispatcher to create three task copies automatically. Also, to avoid bot-

tlenecks in the cluster and excessive wearing, several healthy tables compute the overall

utilization. In a posterior extension (BOLCHINI; CARMINATI; MIELE, 2013), the adap-
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tation engine includes four three distinct tolerance techniques: Duplication with Compar-

ison (DWC), Duplication with Comparison and Re-execution (DWCR), and Triplication

(TMR). Moreover, the control system incorporates an Observe–Decide–Act (ODA) con-

trol loop (LAFRIEDA et al., 2007) to introduces the self-adaptive engine. This engine

defines the protection level and granularity on-the-fly for the application considering the

system status. However, the application should be modeled using a task-graph to provide

the necessary information to the engine algorithm.

We propose a combined hardware and software solution to improve the soft er-

rors mitigation of multi/manycore systems through the use of thread-redundancy. The

target core is a general-purpose COTS processor architecture without any inherent hard-

ware fault tolerance components built-in. The proposed self-adaptive soft error mitigation

framework consists of series of protection techniques and error detection mechanisms

working collectively to improve the application and system dependability. This solution

relies on a mitigation library for the application and a manager module embedded into the

main core operating systems. This mitigation technique decides on-the-fly the protection

granularity depending on the system environment (e.g., temperature, workload) and user

constraints regarding the application criticality, dateline, latency, among others. Advising

the redundancy coarseness incurs several challenges regarding performance, energy effi-

ciency, and intrusiveness. For instance, replicating the entire application induces in larger

overheads. To alleviate this issue, the soft error mitigation into software level usually em-

ploys simple code replication by the use of explicit parallelization into the source code. In

other words, the software designer should explicitly impose the parallelization granular-

ity, APIs, and configurations. Among the main advantages of this proposed self-adaptive

soft error mitigation framework are:

(i) Flexible software stack: It is easily portable to other architectures as thread redun-

dant fault tolerance techniques that do not require any ISA previous knowledge or

modification.

(ii) Adaptable hardware stack: The components are easily adaptable to other archi-

tectures such as ARMv7, RISCV or MIPS. No hardware alteration (e.g., hardware

duplication or additional instructions) is required enabling the use of COTS com-

ponents.

(iii) Modularity: Besides the thread replication technique, other mitigation algorithms

can be easily included in the system design.
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6.2.2 Self-Driven Reliability Assessment and Reaction

Machine learning provides a powerful framework to investigate large quantities of

data, which has been presented on Chapter 5. Figure 6.1 display the traditional applica-

tion development cycle without any modifications (a,b, e and f) and the proposed solution.

This Thesis developed an investigation tool that deploys supervised and unsupervised ma-

chine learning techniques to correlate profiling information with fault injection campaigns

as described on Section 5.3. Further, the adopted machine learning approach can be fur-

ther improved by using an automatic grouping algorithm (e.g., k-means) to split complex

features into small subsets. This tool objective is to find the most relevant parameters

helping the software engineer to understand the source of errors and improve its system

reliability. The developed algorithm shows the relationship strength between any two

parameters, however, modifications are a user responsibility.

Figure 6.1: Proposed application design cycle using reinforced learning.
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Source: The Authors

ML has the ability to create reactive and intelligent algorithms by learning from

previous experiences. We propose a second ML development phase which provides a

self-driven and pro-active tool using reinforced machine learning approaches. In other

words, iteratively improving the target system reliability. This tool collects information

from the previous phases (Figure 5.1b-c) to build a knowledge database from which it

will manage the next exploration step. The tool algorithm has two main parts: Decision

making and Reaction. A decision tree provides the ’intelligence’ to steer the investigation

taking in to account a cost function for each complete iterations. Successive executions
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increase should maximize the application reliability considering several parameters and

goals defined by the software engineer. The acquired information will be supplied to a

decision tree (or similar) algorithm deciding the best mitigation technique to be applied

in the next iteration. After choosing an action, the tool changes the application by apply-

ing automatic GCC optimization flags (e.g., O3, funroll-all-loops) to improve the system

reliability. For instance, after observing a high concentration of Hangs the tool decides

to recompile the target application using an unrolling loop flag1. Following the previ-

ous section mitigation technique with variable thread/task replication is also applicable

in such situation. Considering the adopted profiling tools and user information about the

application behavior, it is possible to selective protect the target algorithm. Further, we

plan to study and develop an LLVM reliability optimization module using the compiler

intermediary representation (IR). IR enables a better control on the performance optimiza-

tions and facilitates the inclusion of other mitigation techniques at instruction-level. The

IR optimization would be assigned by the system intelligence (i.e., decision tree) from a

pool of LLVM optimizations.

1Loop unrolling, also known as loop unwinding, is a loop transformation technique that attempts to opti-
mize a program’s execution speed at the expense of its binary size. The goal of loop unwinding is to increase
a program’s speed by reducing or eliminating instructions that control the loop, such as pointer arithmetic
and "end of loop" tests on each iteration. To remove this computational overhead, loops can be re-written as
a repeated sequence of similar independent statements. From https://en.wikipedia.org/wiki/Loop_unrolling.
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