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It is shown that a highly randomlike behavior of light polarization states in the output of a free-running
laser diode, covering the whole Poincaré sphere, arises as a result from a fully deterministic nonlinear
process, which is characterized by a hyperchaotic dynamics of two polarization modes nonlinearly coupled
with a semiconductor medium, inside the optical cavity. A number of statistical distributions were found to
describe the deterministic data of the low-dimensional nonlinear flow, such as lognormal distribution for
the light intensity, Gaussian distributions for the electric field components and electron densities, Rice and
Rayleigh distributions, andWeibull and negative exponential distributions, for the modulus and intensity of
the orthogonal linear components of the electric field, respectively. The presented results could be relevant
for the generation of single units of compact light source devices to be used in low-dimensional optical
hyperchaos-based applications.

DOI: 10.1103/PhysRevLett.120.163902

Since the development of the first laser [1,2] it has been
known that the properties of the light emitted by laser
devices are very different from that of conventional light,
such as thermal light. While lasers have a high degree of
coherence, conventional light has a high degree of inco-
herence. However, lasers may also exhibit irregular dynam-
ics or erratic pulsation. For a long time, it was thought that
noisy dynamics in laser devices were exclusively due to the
effects of stochastic processes. From a fundamental point of
view, this thinking was radically modified with the ideas
introduced by Lorenz [3] with the discovery of the effects
of sensitivity to the initial conditions in nonlinear systems,
giving rise to the so-called deterministic chaos theory.
To describe the laser dynamics, theories were formulated

taking into account the light-matter interaction inside an
optical cavity, such as the semiclassical laser theory [4,5].
In 1975, Haken showed that the resulting set of equations
from this theory, the Maxwell-Bloch equations, are fully
equivalent to the atmospheric circulation model proposed
by Lorenz, in which chaotic dynamics was discovered [6].
Haken’s discovery paved the way to investigate chaotic
behavior in optical systems. However, most of the lasers
have very different relaxation rates, requiring an external
perturbation to induce chaotic dynamics, as shown earlier
by Arecchi et al. [7]. In the following years, nonlinear and
chaotic dynamics in lasers became an important area of
study [8,9].
A very important class of lasers, especially for techno-

logical applications, are the semiconductor lasers (or laser
diodes) [10–12]. Semiconductor lasers belong to class B
[13], where the polarization dynamics can be discarded in a
process called adiabatic elimination [14,15], and typically,
they exhibit only damped oscillations in a free-running
operation. To exhibit chaotic dynamics, these devices need

some external perturbation, such as current modulation,
optical injection or optical feedback, which has been
extensively studied in the past, and it is still an ongoing
research topic [16–18]. The dynamical behavior of semi-
conductor lasers changes considerably when the vector
character of the electric field is taken into account and two
macroscopic polarization modes compete inside the optical
cavity. This is the case of a particular type of semiconductor
laser, the vertical-cavity surface-emitting laser (VCSEL)
[19]. Because of its specific geometry, the VCSEL can emit
light with different polarizations. The additional polariza-
tion mode adds extra degrees of freedom in the solitary
laser diode, enabling a very rich dynamics, including
polarization switching and periodic and quasiperiodic
oscillations. Recently, it was shown that deterministic
polarization chaos in VCSELs [20] leads to a chaotic
attractor that, when looked at the Poincaré sphere, exhibits
a typical behavior of systems with 3 degrees of freedom,
such as the so-called Lorenz chaos [3] or Lorenz-Haken
chaos [6].
The aim of this Letter is to report the discovery of a new

deterministic dynamical behavior in semiconductor lasers,
i.e., a hyperchaotic phase, and analyze some statistical
properties of the emitted light. It is shown that the hyper-
chaotic behavior can occur in a free-running operation, due
to polarization mode competition, i.e., without any external
perturbation. The deterministic light dynamics shown here
is more intricate and irregular than the dynamics previously
observed in free-running laser diodes, and it is beyond the
Lorenz chaos, since it exhibits sensitivity to the initial
conditions in two directions of phase space. Since the
optical field consists of two orthogonal components in
the plane transverse to the direction of light propagation,
the effect of sensitivity to the initial conditions in two
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directions of the phase space can produce a highly
disordered dynamics for the light polarization states.
Another finding of this Letter is to show that the low-
dimensional hyperchaotic flows that rule the macroscopic
laser dynamics lead to a lognormal statistical distribution
for the light intensity and a number of other well-known
statistical distributions for the laser variables. This behav-
ior, typical of stochastic systems, is shown here in a fully
deterministic way.
The laser diode is modeled according to the widely used

San-Miguel-Feng-Moloney model or spin-flip model given
by the following set of rate equations [21,22]:

_Ex;y ¼ κð1þ iαÞ½ðN − 1ÞEx;y þ inEy;x� − ðγa þ iγpÞEx;y;

_N ¼ −γ½Nð1þ IÞ − μþ inðEyE�
x − ExE�

yÞ�;
_n ¼ −γsn − γ½nI þ iNðEyE�

x − ExE�
yÞ�: ð1Þ

Here, Ex and Ey represent the slowly varying complex
amplitudes of the two orthogonal linearly polarized fields.
I ¼ jExj2 þ jEyj2 is the total output power (laser intensity).
The normalized carrier variables N and n are defined by
N ¼ ðn̄þ þ n̄−Þ=2 and n ¼ ðn̄þ − n̄−Þ=2, where n̄þ and n̄−
are the corresponding normalized densities of electrons
with spin-down and spin-up, respectively. Amplitude
anisotropy is modeled through linear dichroism γa and
phase anisotropy is modeled by the linear birefringence γp.
Other parameters are defined as follows: α is the linewidth
enhancement factor, κ is the optical field decay rate, γ is the
decay rate of N, γs is the spin-flip relaxation rate, and μ is
the normalized injection current (μ ¼ 1 at threshold). μ and
γs are varied in the numerical simulations. The remaining
parameters are fixed at α ¼ 3, κ ¼ 300 ns−1, γp ¼ 30 ns−1,
γa ¼ 0.5 ns−1, and γ ¼ 1 ns−1. Integrations were done
using the standard fourth-order Runge-Kutta scheme with
a fixed time-step equal to h ¼ 0.0005.
A phase diagram illustrating various instabilities occur-

ring in the laser diode model [Eqs. (1)], as a function of μ
and γs, is shown in Fig. 1. The diagram was done by
computing the Lyapunov exponents (LEs), using the
method of Ref. [23]. The magnitude of the largest LE
(λ1) or, if λ1 ≈ 0, the magnitude of the second largest LE
(λ2) is displayed. Positive exponents are codified in yellow-
red tones and negative exponents in gray tones, with black
(dark color) being associated with zero value. In this way,
the locus of the zero value of λ2 separating the gray regions
indicates the location where bifurcations occur. The black
color locus in the left side shows the occurrence of
polarization switching and the black color locus in the
diagonal shows a transition to an elliptically polarized state.
Alternatively, these transitions could be computed through
numerical continuation methods [24,25]. By checking the
magnitude of λ2, regions with two positive LEs were found
(shown by the hatched area), characterizing a hyperchaotic
dynamics [26].

The main dynamical regimes for the light polarization
states found in Fig. 1 are illustrated in Fig. 2. The
polarization dynamics is shown in the Poincaré sphere, in
terms of the normalized Stokes parameters (NSPs) s̄i ¼
si=s0 [27,28]. To better understand the overall dynamical
scenario, especially the transitions shown in Figs. 2(d)–2(f),
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FIG. 1. Phase diagram of the laser diode as a function of
normalized injection current, μ, and decay rate of spin-flip
processes, γs. Dynamical regimes for laser intensity: steady
states (gray), periodic oscillations (dark), chaos (yellow-red),
and hyperchaos (hatched area). See details in text. Parameter
values for the marked points are A ðμ; γsÞ ¼ ð1.10; 56.0Þ, B
(1.70,41.0), C (2.15,30.0), D (2.25,27.0), E (2.35,24.5), F
(2.40,23.2), G (2.60,18.0), and H (2.90,10.0).

–s1

–s2

–s3

–s1

–s2

–

-1
1–s1

-1

1
–s2

-1

1
–

(a)

–s1

–s2

–

–s1

–s2

–

(b)

-1
1–s1

-1

1
–s2

-1

1
–s3

(c)

-1
1–s1

-1

1
–s2

-1

1
–s3

-1
1–s1

-1

1
–s2

-1

1
–s3

-1
1

-1

1

-1

1
–s3

(d)

–s1

–s2

–s3

-1
1–s1

-1

1
–s2

-1

1
–s3

-1
1

-1

1

-1

1
–s3

(e)

–s1

–s2

–s3

-1
1–s1

-1

1
–s2

-1

1
–s3

-1
1

-1

1

-1

1
–s3

(f)

–s1

–s2

–s3

FIG. 2. Distinct dynamical regimes of light polarization states
observed in the phase diagram shown in Fig. 1.(a) (�) Linearly
polarized light, ŷ LP mode, point A, (×) linearly polarized light x̂
LP mode, point B, and (þ) two elliptically polarized states, EP,
point C; (b) two period-1 limit cycles, point D; (c) two period-2
limit cycles, point E; (d) two chaotic attractors, point F;
(e) hyperchaotic dynamics, point G; (f) hyperchaotic dynamics,
point H. The green attractor projections are not shown.
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it is important to analyze the behavior of the LEs along the
instability processes. The system of Eqs. (1) is six dimen-
sional and, therefore, has six associated LEs. The linearly
polarized states, x̂ LP and ŷ LP, and the elliptically polarized
(EP) states, are stationary states for the intensity, but the field
components oscillate periodically, where λ1 ≈ 0 and the
remaining LEs are less than zero. Note that LEs are
estimated using finite-time integrations, so they are never
exactly zero. When the EP state gets unstable, the intensity
starts to oscillate periodically, but the fields oscillate in a
quasiperiodic regimewhere λ1;2 ≈ 0. When entering into the
chaotic regime, one LE gets positive (λ1 > 0), but two LEs
remain close to zero (λ2;3 ≈ 0). There are two EP states
coexisting that destabilize giving rise to limit cycles that, in
turn, give rise to two chaotic attractors, such as are illustrated
in Figs. 2(a)–2(d). Eventually, the two chaotic attractors
form a single large attractor, but, still, with only one positive
LE. When going towards the hyperchaotic phase, along the
chaos-hyperchaos transition, λ2 becomes progressively
positive, λ3 ≈ 0, and λ4 < 0. Going further into the well-
developed hyperchaotic regime, λ2 becomes significantly
positive and λ3;4 ≈ 0. These results are illustrated in Fig. 3.
Figure 3(a) displays the difference between themagnitude of
λ2 and λ3. The hatched area in Fig. 1 marks the region where
λ2 > 0.01. Figures 3(b) and 3(c) show the four largest LEs
by varying μ and γs, respectively. Figure 3(c) illustrates the
evolution of λ2, λ3, and λ4 along the continuous transition
from chaos to hyperchaos, when decreasing γs. For certain
fixed γs, the same continuous transition is observed along
the chaos-hyperchaos or hyperchaos-chaos transition by
increasing μ. This is due to the fact that, when μ is increased,
there is a transition from the hyperchaotic regime to a strong
chaotic regime (i.e., λ1 increases considerably, λ2 approx-
imates to zero, and λ4 goes to negative values).
It is instructive to look at the probability density functions

(PDFs) for the NSPs to better understand the disordered

states of hyperchaotic dynamics. For large γs, the polariza-
tion states over the Poincaré sphere are more concentrated
around some specific positions and do not cover the whole
sphere [Fig. 4(a)]. Also, for large μ, the statistics of some
NSPs shows pronounced peaks [Fig. 4(b)]. When going
towards the hyperchaotic phase, this concentration starts to
decrease, leading to more homogeneous distributions in
certain parameter ranges [Figs. 4(c)–4(e)]. By increasing μ,
the distributions of the whole set of NSPs approximate to
roughly flat distributions, where the variances are close to
1=3, which is the variance of a uniform PDF from −1 to 1
[Figs. 4(f)–4(h)]. The degree of polarization decreases when
increasing μ, as can be checked by the computed fractional
polarization (FP) [22] in Fig. 4. Alternatively, when going to
the limit γs → γ, considerably homogeneous distributions of
the whole set of NSPs, and a decrease of the FP, can also be
obtained. Notice that strong competition between polariza-
tion states and, therefore, strong reduction of the FP, have
also been obtained in chaotic regimes of large γs [22,24].
However, for large γs [as illustrated in Fig. 4(a)], the NSPs
show distinct statistical properties when compared to the
small γs regime, even when μ is increased and the FP is
reduced. This is because some of the NSPs cover only a
portion of the Poincaré sphere or exhibit strongly bimodal
statistical distributions. If truly rectangular statistical dis-
tributions were obtained for the whole set of NSPs, any
instantaneous polarization state would have the same
probability of occurring. The deterministic hyperchaotic
polarized light, as shown here, can go very close to this limit.
Typical total output power for the hyperchaotic polarized

light is shown in Fig. 5(a). Figure 5(b) shows the evolution
of the hyperchaotic polarization states over the Poincaré
sphere (projected in a plane). The low-dimensional hyper-
chaotic flow covers, approximately, the whole surface of
the sphere where the highly disordered light emission
resembles an “unpolarized light” but in a fully deterministic
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way. In fact, in a given instant of time, the light polarization
is well defined, but the polarization states evolve in a very
disordered way, spanning almost all possible states over the
surface of the sphere, i.e., all orientation (azimuth) and
ellipticity angles. The hyperchaotic dynamics arises for
small γs, since the oscillations of n start to be more
important and, for certain levels of μ, both modes become
chaotic and interact in a complicated way. Since the modes
are weakly coupled, the dynamics takes place in a global
hyperchaotic attractor. In the hyperchaotic polarized light,
the energy exchanges between the electric field and the two
electron populations with different spins are equally
important, leading the light polarization states to a highly
disordered dynamics [Fig. 5(c)].
The statistical properties of the hyperchaotic light

emission and other laser variables were analyzed and the
main findings are shown in Fig. 6. Typically, it was found

that the PDFs for the total output power of the hyperchaotic
light emission are well fitted by a lognormal PDF
[Fig. 6(a)]. The agreement is not exact, but it is very close,
as can be seen by the differences between the PDF of the
laser intensity and the respective fitted curve (in red). When
μ is increased, there is a transition from the hyperchaotic
regime to a strong chaotic regime. In certain parameter
ranges, it is possible to find very smooth distributions for
the chaotic laser intensity, very well fitted by a lognormal
PDF [Fig. 6(b)]. The lognormal statistics is a consequence
of the very weak correlation between the two weakly
coupled polarization modes. Note the difference between
this statistics and that of VCSELs under optical feedback
[29], where a high-dimensional dynamics, with some
considerable degree of correlation, contribute to the light
intensity dynamics. When looking at the dynamics of other
laser variables, a number of known statistical distributions
were found to describe the deterministic data from the laser
system time series. Gaussian distributions for the electric
field components and electron densities [Figs. 6(c) and
6(d)], Rice and Rayleigh distributions, and Weibull
and negative exponential distributions for the modulus
[Figs. 6(e) and 6(f)] and intensity [Figs. 6(g) and 6(h)] of
the orthogonal linear components of the electric field,
respectively, were found. All of them correspond to hyper-
chaotic regimes.
In conclusion, this work predicts that, besides polariza-

tion chaos found experimentally in Ref. [20], which shares
properties of the Lorenz-Haken chaos, a free-running laser
diode can also exhibit polarization hyperchaos with distinct
statistical properties of light polarization dynamics in the
Poincaré sphere. The hyperchaotic polarized light is a
consequence of the two-dimensional disorder of the two
oscillatory modes in the field-matter coupling, explaining a
highly randomlike behavior of polarization states, resem-
bling a “randomly” polarized light, from a deterministic
point of view. Usually, highly disordered light polarization
states are associated with stochastically independent
variables [31,32]. However, here, it was shown that the
hyperchaotic dynamics produces a highly intricate and
irregular laser emission with an output intensity exhibiting
a deterministic lognormal statistical distribution and a
number of other well-known statistical distributions for
the deterministic dynamics of the laser variables. It is well
known that a chaotic signal can have statistical properties
which are consistent with random fluctuations. Some promi-
nent examples are the “U shape” PDF of the Ulam map and
the uniform PDF of the tent map [33], and extreme events in
chaotic systems [34], but, to the best of the author’s knowl-
edge, it is the first time that a variety of statistical distributions
such as lognormal, Gaussian, Rice, Rayleigh, Weibull, and
negative exponential—very common distributions in nature,
usually associated with stochastic variables—has been
shown being generated through a fully deterministic non-
linear process in a low-dimensional flow describing a
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physical system. The presented results are expected to have a
large impact beyond the selected example (laser diode). It
would be interesting to investigate correspondent analogies
of the polarization instabilities described here in other
vectorial flows, such as fluid dynamics and plasma physics.
The results shownhere couldbeof considerable relevance for
chaos-based applications [35–39]. While low-dimensional
chaotic systems are well-known to contain a series of
regularities embedded in chaotic phases [40] leading to
recurrent patterns with some degree of predictability [41],
the hyperchaotic dynamics described here is more intricate
and irregular than the conventional chaotic dynamics. By
adding spontaneous emission effects for realistic values in
VCSELs [42,43], the hyperchaotic dynamicswas found to be
very robust [30].

C. B. thanks Alexandre Bonatto, Antonio Endler, and
Sandra D. Prado for useful discussions.
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